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ABSTRACT 

The ubiquity of Internet chat applications has benefited many different 

segments of society.  It also creates opportunities for criminal enterprise, 

terrorism, and espionage.  This thesis proposes statistical Natural Language 

Processing (NLP) methods for creating systems that would detect the topic of 

chat in support of larger NLP goals such as information retrieval, text 

classification and illicit activity detection. 

We propose a novel method for determining the topic of chat discourse.  

We trained Latent Dirichlet Allocation (LDA) models on source documents and 

then used inferred topic distributions as feature vectors for a Support Vector 

Machine (SVM) classification system.  We constructed LDA models in three 

ways:  We considered the collective posts of authors as documents, 

hypothesizing that we could detect the topic physics given only one side of the 

conversation.  The resultant classifiers obtained F-scores of 0.906.  Next, we 

considered individual posts as documents, hypothesizing we could detect 

physics posts.  The resultant classifiers obtained F-scores of 0.481.  Finally, we 

considered physics textbook paragraphs as documents, hypothesizing that we 

could determine the topic of an author or a post based on an LDA model created 

from a textbook and a sample of noisy chat.  The resultant classifiers obtained F-

scores of 0.848 and 0.536, respectively. 
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I. INTRODUCTION  

A. MOTIVATION 

One would have to be cut off from society not to have noticed the growing 

immergence of Computer Mediated Communication (CMC).  Forms of CMC such 

as chat, blogs, email, and Short Message Service (SMS) all permeate the daily 

lives of people nearly everywhere.  Chat in particular is being used as a means of 

socializing, marketing goods, providing services, and creating value in business.  

On the other hand, chat has been used to coordinate terrorist activities, recruit 

new terrorists, conduct criminal activity and victimize children [1].  Systems that 

are able to detect the topic of a conversation could be very useful for law 

enforcement, national security agents, corporations, and parents seeking to 

maintain control of their children’s online activities.   

Many organizations could benefit from these systems.  Military 

organizations use chat in tactical and non-tactical environments.  They could use 

a topic predicting system to detect information leaks over unclassified networks.  

Law enforcement would find it useful in sifting through chat during criminal 

investigations.  National security agents could monitor chat for topics of interest 

such as bomb making, and anti-American sentiment.  Parents could monitor the 

type of conversations their children are having with others.  They could also use 

it to prevent online bullying or sexual predation.  Businesses could use such 

systems for protecting trade secrets, ensuring employees make the best use of 

their time, or trying to determine what consumers are interested in based on their 

topic of conversation.  Business may also be interested in protecting their public 

image or at least monitoring it by learning of unfounded rumors spread through 

chat.  Libraries could use the system to determine what areas of study people 

are researching, and then plan accordingly.  

Beyond these practical motivations, there is a deeper interest involved, 

embodied in the question: How is it that humans are able to use symbols to 
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convey meaning?  Furthermore, how is it that different types of symbols are able 

to perform the same conveyance regardless of the mode—be it sound, little 

bumps on paper, ink on a piece of paper or differences in light intensity on a 

computer monitor?  There exists a relationship between a book, speech, a few 

lines of chat and sign language.  What is the nature of that relationship?  

Particularly, can abstractions such as topic be found beyond the borders of the 

mode, or must they necessarily be expressed and extracted?   

What is a topic?  Ask several friends what a particular song is about.  You 

will likely get several different answers.  Ask the same people on a different day, 

you will probably get a different set of answers.  You have probably been in a 

disagreement with friends about the topic of such a song.  This thesis does not 

settle that argument or resolve the matter of what a topic is.  Instead, it explores 

a small segment of what it means to find a topic within chat.  In our experiments, 

we seek first to create statistical models that naively agree with human beings 

about the topic of physics using only past examples of things people have called 

physics, using statistical Natural Language Processing (NPL) techniques.  Then, 

we explore how to leverage another mode of human communication to determine 

the topic in chat.  We use a physics text to try to determine whether people in a 

chat room are discussing physics.  Hopefully, this research will help us 

understand human language more fully, and lead to systems that are able to 

automatically detect topics in chat.  

B. STRUCTURE OF THIS THESIS  

This thesis is organized in the following manner.  In Chapter I, we discuss 

the various motivations for determining the topic of chat.  In Chapter II, we 

provide a summary of previous research in this field.  We include: 1) an analysis 

of chat as it relates to other modes of human communication, most prominently, 

traditional written text, and speech; 2) a brief survey of NLP and its relation to 

Chat; 3) an example of the types of debates regarding the uncertain definition of 

Topicality and its relation to our research; and 4) a discussion of the machine 
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learning techniques we employ, and measures of evaluating their results.  In 

Chapter III, we discuss the experimental methodology employed.  We include: 1) 

the sources of data used in our experiments; 2) the way in which we intend to 

use the data to perform four classes of experiments, which are classification 

tasks; and 3) how we determine settings for the NLP models that we have 

chosen.  In Chapter IV, we provide the results of all four types of experiments.  

We include a detailed discussion of the primary performance parameters 

observed as a result of the experiments and what their relationships to the other 

experiments entail.  In Chapter V, we summarize the results of the experiments 

and propose future work. 
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II. BACKGROUND 

Chat is an increasingly important form of CMC.  It is employed by many 

sectors of society to improve communication, create value, and commit crimes.  

In this chapter, we explore chat first as it relates to other human language 

modalities.  Then, we explore Natural Language Processing (NLP) and its goals, 

followed by its applicability to chat.  Finally, we discuss the idea of topicality and 

previous Machine Learning (ML) techniques used to detect topics in chat. 

The objective of automatically revealing the topic of any form of 

communication is twofold.  The first motive is to increase the knowledge of how 

humans communicate, to unravel the mystery of information conveyance.  The 

second is to build useful systems.  Topic detection in this context is a step toward 

automating tasks that would otherwise be untenable, because the sheer volume 

of data makes it impractical.  Section A provides working definitions of CMC, 

chat, and natural human languages.  

A.  CHAT’S RELATIONSHIP TO OTHER NATURAL LANGUAGE 
CONSTRUCTS 

This work considers chat to be a mode of natural language.  Natural 

language is simply a language that humans speak [2].  This definition is a bit 

restrictive because it does not account for written text, sign language, Braille and 

manual languages developed by deaf-blind people.  However, it is helpful in the 

sense that it conveys the origin of language—people.  Speaking, writing, Braille, 

signing, and CMC are all methods that represent the innovations and 

phenomena of natural language.  We briefly compare and contrast chat to two of 

these modes—speaking and traditional writing.   

According to Herring, CMC is “communication that takes place between 

human beings via the instrumentality of computers” [3].  CMC itself takes many 

forms to include e-mail, Weblogs (blogs), micro-blogs, video, audio, text chat, 

text messaging, instant messaging, bulletin boards, and list-servs.  Social 



 6

networking services (SNS) and online games also use computers and computer 

networks to mediate communication by combining many CMC technologies.  

Many online gaming venues feature some chat functionality or audio service.  

SNSs combine nearly all of these CMC forms.   

Text chat is a subcategory of chat that is a near-synchronous form of 

CMC.  Chat may be categorized as text chat, voice chat and video chat.  This 

research is dedicated solely to text chat.  Any further reference to chat will mean 

text chat.  Further, we narrow our meaning of chat to that which is near-

synchronous, multi-member conversation contributed and conversation 

interleaved.  Near-synchronous means that conversation contributors interact in 

near real-time.  They are temporally proximate to each other.  Multi-member 

conversation contributed refers to the fact that there may be more than two 

people contributing to the chat statements (posts) at the same time.  

Conversationally interleaved indicates that the many conversations (threads) 

may occurring at the same time.   

Chat communication is affected significantly by its technological 

implementation—its computer mediation [4].  All chat implementations share 

some common characteristics.  First, there is a main dialog.  It is a relatively 

large text field, which displays the posts created by all chat room participants.  

The main dialog is public to all.  If a poster wishes to “say” something, the main 

dialog is where it is displayed for all to see [4].  Second, there is a personal 

dialog.  This is a text field where each user composes his or her particular posts.  

It is, for the most part, private to each particular user.1  After the user has 

completed composing her message, she posts the message to the main dialog.  

The message she composed in private is now public to all participants [4].  

Implementations vary significantly, but these are chat’s essential 

properties.  Any implementation may seem similar to other forms of CMC and 

                                            
1 Features of some chat software implementations allow other users to view whether or not 

individuals are in the act of typing which reveals something about the user—it is not totally 
private. 
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somewhat similar to writing a letter or having a speaking conversation.  Varying 

degrees of these characteristics, along with a fair amount of anonymity, 

profoundly and uniquely determine the way chat participants interact, and hence, 

the way chat must be analyzed linguistically.   

Those who have participated in chat forums know that people do not use 

chat the same way they use spoken and traditional written communication.  The 

chatter’s lexicon includes emoticons and unusual spellings of common words and 

phrases [4].  These are uncommon or altogether absent from traditional written 

language and spoken language.  Chatters do not have the same visual or 

auditory cues that usually accompany speaking.  Chatting and speaking are 

usually synchronous2 [4], whereas traditional writing usually is not.3  Speaking is 

usually a one-to-one or one-to-many act.  Writing is usually a one-to-one or one-

to-many.  Chatting offers participants a method for one-to-one, one-to-many, 

many-to-one, or many-to-many conversations, whether the participants wish it or 

not.    

Beyond these intuitions, linguists and sociologists have engaged in 

serious study of language and conversation in the context of these three domains 

(written, spoken, and chatted).  Forsyth uses Nystrand’s [4] constructions of 

Context of Production and Context of Use to demonstrate that chat technology 

causes notable distinctions between chat and the other communication domains.  

Forsyth quotes Zitzen and Stein’s [5] characterization of spoken language and 

written language in the following ways.  First, face-to-face spoken language is 

characterized by concurrent contexts of production and use [4].  Thus, 

participants monitor and interact with each other as the conversation unfolds.  

Second, traditional writing is characterized by contexts of production and use that  

 

 

                                            
2 Speeches are forms of spoken communication that is not always synchronous. 

3 Passing notes is a type of written communication that is synchronous—we do not include 
this in our definition of traditional writing. 
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are not concurrent [4].  Rather, they are separate spatiotemporally.  Thus, 

participants are unable to monitor and interact with each other as the 

conversation develops [4]. 

Forsyth applies this analysis to chat, asserting that chat’s private personal 

dialog serves as the chatter’s Context of Production and “the public main dialog 

functions as [the] Context of Use” [4].  On one hand, he observes that chat is like 

written language in that its Context of Production is private and therefore the 

contexts of production and use are not concurrent.  On the other hand, chat’s 

Context of Use, which is public, is like spoken language because the 

conversation participants interact proximately in time.  Like speakers, chatters 

are able to use paralinguistic information4 [5] in their discourse. 

The disparity between Context of Production and Context of Use in the 

different domains provides the chatter with a situation where she must maintain a 

conversation or multiple simultaneous conversations.  She must post enough per 

unit time in order to avoid a great deal of “silence” and yet she must type her 

messages, which costs time [4].  This is a situation where the writer would have 

no time constraint and a speaker would have no problem “filling the space” 

between utterances.  Chatters overcome the problem by a number of 

mechanisms.   

A chatter may read and write, or read and wait at the same time, because 

other chatters are similarly engaged in typing as well [4].  Such delays allow the 

chatter to switch between multiple conversations easily because she has time, 

which would normally be reserved for formulating discourse or responding to 

paralinguistic communication in a spoken situation.  This situation is convenient 

because it allows the chat participant to engage in multiple conversations without 

being considered rude [4]. 

                                            
4 Paralinguistic information—information conveyed by something other than the meaning of 

words.  In spoken language—intonation, body language, etc.  In chat—bolding, all capitalization, 
emoticons, capitalization, font type, font color, etc. 
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Chatters tend to balance their level of activity in order to maintain the 

conversation, while not “hogging the conversation” [4].  This favors a shorter 

more precise post.  A short post does not take much time to construct and is 

more likely [6] to appear in the main dialog next to the post to which it is 

responding or interacting.  Long posts take time to create and fill up the screen, 

in effect pushing out the other conversation contributors.  Such posts are 

therefore not favored [4].  Other methods include ways of constructing many 

small posts instead of one long post [4, 5].   

Forsyth citing Freiermuth [7] notes additional differences between chat 

and the other domains caused by the unique time constraints imposed and 

allowed by chat [4].  Chatters, having more time to interact conversationally than 

speakers, tend to include more varied and creative words and more word forms.  

They may also consider their words more wisely and “elevate” their vocabulary 

more than in a speaking situation.  The chatters, however, have less time than a 

writer, and thus simplify their sentence structures.  Sometimes this is also the 

result of technological restrictions for some applications have a maximum 

character length per post.  The demands of relatively fast conversation and 

multiple conversation occurring at the same time, place the chatter in a position 

where speed is usually preferable to precision [4].   

 The chatter is liberated to use language and behave conversationally in a 

way that suits her, because there is little social recourse for not adhering to 

written language norms [4].  They use colloquialisms and contractions.  The 

chatter does not “hedge” her statements: indicate whether or not she is satisfied 

with her word selection.  They may leave the conversation or chat room with very 

little warning—anathema in spoken conversation.  They may engage in long 

periods of silence or selective silences5 that would not be tolerated in face-to-

face conversations [4].  

                                            
5 When one member of a conversation deliberately does not speak to another member of the 

conversation.   
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Chat relates to other types of human language use, but its distinctive 

properties create challenges for NLP practitioners.  In the following section we 

outline NLP, NLP tasks, chat features and previous efforts to use NLP methods 

to solve chat related problems. 

B. NLP AND CHAT 

NLP problems are approached in two basic ways—rules-based NLP and 

statistical NLP.  Rules based NLP practitioners assume that humans possess a 

great deal of underlying knowledge of language that allows humans to learn 

particular languages.  Their objective is to model these mental processes in order 

to create a system that mimics or duplicates the functioning of the human brain.  

This process usually starts with creating rules that mimic such functionality [8].   

Statistical NLP practitioners agree with the rules-based-inclined in that 

they proceed from the assumption that humans possess something innate that 

enable them to recognize patterns, which allows humans to learn how to 

communicate.  They, however, differ on the degree to which humans possess 

this ability [8]—the former more and the latter less.  Statistical NLP’s general 

approach is to build statistical models of language and then use ML techniques 

to validate those models.  This research approaches the problems using 

statistical NLP methods. 

NLP is used in problems, which involve spoken language or speech after 

automatic speech recognition (ASR) has been applied.  ASR seeks to build a 

mapping between sounds and strings.  Automatic speech understanding (ASU) 

takes this goal one-step further and tries to understand the words in the broader 

context of a sentence [2].  Like ASU, conversational agents leverage NLP.  

Conversational agents such as SGT Star6, a U.S. Army avatar that chats with 

potential Army enlistees, receives chat input from users and outputs textually, 

visually and audibly.  Just as with telephone menus, SGT Star’s capabilities are 

limited, but indicate an ideal direction for such systems. 

                                            
6 Available from U.S. Army Web site at http://www.goarmy.com/ChatWithStar.do. 
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Some NLP goals are relate to improving the language experience or use.  

For instance, most word processors include a spell checker and grammar 

checker, enabling thesis students everywhere the opportunity to reduce time in 

editing.  These two types of systems are emblematic of lexical and syntactic 

analysis, which capture the way symbology is used in language.  Unfortunately, 

human language does not follow simple and static rules, which makes lexical and 

syntactic analysis difficult, making these systems unwieldy and unreliable.  

Language scientists face challenging problems such as reference resolution, 

pronoun resolution and word sense disambiguation that must be addressed in 

lexical and syntactic analysis.  Often the semantics of language interact with the 

lexical and syntactic components of the language, which causes even greater 

difficulty in disambiguation.  

NLP addresses each of these problems individually for improving the use 

of language and it addresses them collectively in support of larger goals such as 

document and text classification, author classification, and discourse analysis.7  

The results of these goals may be used alone or in concert to build Information 

Retrieval (IR) systems, Information Assurance (IA) systems and machine 

translation systems.8  

Document classification or categorization is a common goal in NLP.  Its 

goal is to divide documents into different categories based on the characteristics 

of the document.  Research has been put into categorizing news articles into 

different topical categories [9], such as health, sports, entertainment.  One 

example of such research is Cohen et al.’s attempt to classify email messages 

into categories based on their motive for being sent.  He analyzed emails 

according to four types of business acts: request, proposal, delivery, and 

commitment [10].  Document classification is often a precursor to the broader 

goals of IR, IA and criminal activity detection.   

                                            
.7Classifying statements as parts of a conversation or conversations. 

8 Automatically converting one language to another, e.g., English to Spanish. 
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Author classification or author profiling addresses questions that relate to 

the attributes of an author, given some sample of the author’s use of language.  

For instance, given a set of Weblog posts, chat posts or text documents from a 

single author, is it possible to identify the author, the author’s gender or the 

author’s age?  Subsets of author classification include stylometry and authorship 

attribution.  Author classification has often been used to study the authenticity of 

documents such as the works of Shakespeare.  In the case of chat, law 

enforcement officials may be interested in using author classification to 

determine whether a chat participant who is chatting with a young person is lying 

about his or her age.  Such behavior may be indicative of sexual predation [11], 

[12] or other malevolence. 

Information Retrieval (IR) is a board area of research, which has received 

a great deal of focus.  It considers the problem of storage and retrieval of data.  A 

common use of IR is the Internet search engine.  Minimally, such technology 

takes a user’s request in the form of a set of words and returns Internet 

resources—Web sites, audio, video, image, and document data.  For such IR 

applications, NLP may provide improved results using techniques such as word 

sense disambiguation, word stemming9 and document classification.     

IA is also a broad area of research, but not often thought of in the context 

of NLP.  NLP may be able to aid in preventing information leaks by detecting 

topics that an organization considers sensitive [13], [1].  Once the topic is 

detected, its transmission may be halted or the offender questioned.  More 

sophisticated systems might be able deduce particular pieces of information that 

are undetectable based on topic such as technical information embedded in a 

discussion about entertainment.  The military may be more interested in 

controlling information about locations of military assets or future troop 

movements.  Such things can be discussed in ways that are difficult to detect, 

                                            
9Stemming means to determine the root of a word (e.g., run is the root of running, and ran). 
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given the broad range of possible topical contexts in which they may reside.  

Such system outputs might also be indicators of subversive behaviors.  

CMC has become a hot bed for criminal activity.  Terrorists, sexual 

predators, organized crime, bullies, prostitution rings and others use CMC, chat 

in particular, to commit and plan criminal activity [1].  A recent case of online 

bullying resulted in one child taking her life [14].  The SNS, Craigslist, is often 

used by prostitution rings to solicited sex [15].  Terrorists are known to have used 

the Internet as a medium for recruitment, and planning and coordination of terror 

acts [16].  Sexual predators frequently use chat rooms to connect with other 

predators and arrange meetings with their potential victims [17].  NLP offers law 

enforcement officials an automated tool for detecting such activities by text 

classification or by author classification.  Parents and concerned citizens may 

also find such tools useful for preventing victimization were they to be used in 

monitoring applications [13].  

C. NLP DIFFICULTIES 

The problem for NLP scientists is that human language is full of ambiguity.  

Many words may have the same meaning and a single word may have many 

meanings.  Sentence structure, the valid sequence of parts of speech, may have 

more than one reasonable structure—making it difficult to disambiguate the 

sentence meaning.  Pronouns may have many plausible and equally likely 

antecedents.  People handle these and many other ambiguities very well, but 

they pose problems for machines.  This is the challenge for NLP in general and is 

particularly difficult in chat, where parts of speech have not yet been well studied 

and formalized.  Statistical NLP practitioners are able to side-step formalization, 

by using of statistical ML methods.  They presume that language phenomena 

follow statistical laws and therefore many of the hidden properties are accessible 

via probabilistic means. 
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D. THE FEATURE VECTOR 

The feature vector is the heart of nearly every statistical NLP application.  

The feature vector allows the scientist the ability to abstract linguistic objects 

such as words, sentences, phrases, documents, topics, etc. into a mathematical 

framework.  A scientist may then use these models to test various hypotheses 

using ML techniques.  For example, a simple model may consider a document as 

a probability distribution of words over a common dictionary.  A dictionary in this 

case would be the set of all unique word level linguistic objects—types.  In this 

case, the feature vector is composed of real values ranging from zero to one, 

whose total is one—the probability of each type.  The dimensionality of such a 

vector is the size of the dictionary.  Just from this simple model, one may now 

train several different types of classifiers such as Naïve Bayes, Support Vector 

Machine and k-means clustering.  

The feature vector is not limited to words.  Anything can be considered a 

feature vector so long as it can be distinguished from other things, counted or 

measured.  In Lin’s master’s thesis she used average post length, vocabulary 

size, and emoticon use to create an author model of a chatter [11].  This model 

was used to construct a Naïve Bayes classifier.  Other such features may include 

parts of speech, dialog acts and other linguistic or paralinguistic artifacts found in 

a text. 

Feature vectors are not always straightforward.  In Forsyth’s master’s 

thesis, he created a dialog act tagger for chat.  He used what may seem like a 

very obscure set of features, which included “the number of posts ago the poster 

last posted,” and “the number of posts ago the poster made a spelling error.”  He 

then used these features to train a back-propagating neural network and a Naïve 

Bayes classifier [4].  

Adams master’s thesis demonstrates two commonly encountered chat 

NLP problems that he addressed in feature vector selection: inflated values of 

unimportant words due to their high frequency and discounted value of important 
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words due to their infrequency [13].  His work involved thread disambiguation 

and dialog act detection as a way of complementing Forsyth’s work in dialog act 

tagging and part of speech tagging.   

In order to overcome these problems, he altered the feature vectors, 

which were composed of word frequencies, by using term frequency-inverse 

document frequency (tf-idf).  tf-idf is a weighting scheme that discounts the 

frequency of a term according to the logarithm of the inverse of the proportion of 

documents that contain the word to the number of total documents.   

Adams addresses another common chat NLP problem—the lack of 

sizable discourse for statistical significance.  He employed text augmentation.  

Text augmentation strategies add or replace words that have some relation to the 

data in view, thereby enlarging the amount of data or reducing the variety of 

types.  Adams used hypernym augmentation: the addition of or replacement of a 

particular word for a more semantically generic version [13].  This type of 

augmentation is a direct addition or replacement of words in the data.  Another 

way to augment a text is to weight the feature vector differently according to 

certain criteria.  He did so with nickname augmentation, which weighted each 

post more heavily if it came from the same author [13].   

Similarly, Wang, attempted to improve upon Elsner et al.’s [18] thread 

disentanglement results, by using different “contexts” within the chat data as a 

means by which to augment a particular post’s chat data [19].  Recognizing that 

short chat utterances may not produce statistically significant results, she 

probabilistically augmented each post based on references to other chat 

participants, all other posts by the author, and the time between the post and all 

other posts.  She then used single-pass clustering to group each post into a 

particular thread, based on cosine similarities of the word distributions (which 

have now been adjusted base on augmentation).  She reported better results 

than Elsner, but only marginally so [19]. 
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E. TOPICALITY 

The objective of our experiments is to demonstrate computationally viable 

ways of determining the topic of chat utterances.  Topicality has many theoretical 

problems.  There are many formal definitions for topic and divergent ideas 

concerning the scope and approach one should take in determining the topic of a 

document.  We present Hjorland’s perspectives on the issue of topicality and 

demonstrate how this idea may affect our results.   

Hjorland writes in response to Bruza et al. concerning their approach to 

aboutness.  Hjorland equivocates aboutness with subject, topicality and a 

number of other related ideas [20].  He contends that their approach was too 

narrow to properly describe the full range of ideas expressed by that term.  Bruza 

et al. concluded that there is a “common-sense” approach to determining a 

documents subject, which is detectable by a rules-based framework [21].  

Hjorland flatly denies this contention and deals with the idea in a comprehensive 

way.  He builds his arguments within the context of how Information Science (IS) 

practitioners ought to construct IR systems, in light of ambiguities and the 

dynamic nature of topicality in its various social, epistemological, and structural 

settings.  He provides several definitions of what a subject is and how it relates to 

other near complementary ideas such as field, discipline, theme, topic, domain, 

content, and relevance [20].    

He states that the challenge of topicality, subjectivity, and aboutness is 

demonstrated by the wide variance in what people believe to be a document’s 

subject.  He provides additional evidence in that there are many different 

approaches to determining what the subject of a document is—none of which is 

sufficient on its own.  He cites the work of Patrick Wilson who enumerates the 

following methods for determining a documents subject [20]:  

1) […] identify the author’s purpose in writing the document 

2) […] weigh the relative dominance and subordination of different 
elements in the picture given by reading the document 
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3) […] group or count the documents’ use of concepts and 
references, and 

4) […] invent a set of rules of selection for what are the “essential” 
elements (in contrast to the inessential) of the document in its 
entirety 

Wilson concludes that the subject of a document is undeterminable.  

Hjorland disagrees and interprets Wilson’s methods in the following ways.  The 

first method is addressed by hermeneutics, which studies the characteristics of 

the author to determine the meaning of the text [20].  Wilson’s second method is 

likened to efforts made by “modern psychological, cognitive, and user-oriented 

approaches” [20].  The third method analyzes documents according to statistical, 

bilbiometric and positivistic strategies.  Hjorland, considers the fourth method to 

be related to “text linguistics and compositional methods” [20].  Hjorland 

summarizes this analysis by stating that the subject of a document is “related to 

theories of meaning, interpretation, and epistemology” [20]. 

Where Bruza et al. attempt to formalize aboutness within a framework, 

and then discuss methodologies for determining completeness, soundness and 

consistency of the system [21], Hjorland considers the role that aboutness plays 

in theories of IS and IR.  In particular, Hjorland highlights IR systems biases 

toward a particular type of IR system based on their retrieval model.  Therefore, 

any common-sense (rules-based) approaches to building these systems favor 

certain types of aboutness over and above other types [20].  The point of 

departure in his theory is that Bruza et al. assume that there exists universal 

structures that cause intersubjectivity10 agreement, while he believes that 

discourse, and theoretical presumptions cause the agreement [20].   

Countering Bruza et al., Hjorland defines subject in two ways.  First, he 

defines it as “that ‘something’ that subject analysis and retrieval are supposed to 

identify” [20].  Second, he calls it, “the epistemological or informative potentials of 

                                            
10 Intersubjectivity in many NLP contexts means the understanding that is shared between 

people who are communicating.  Hjorland simply means the subject that is common to a set of 
documents.  
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documents” [20].  These two definitions demonstrate that he believes there exists 

some knowledge that is true with respect to the people using the documents.  

From these definitions, he proceeds to discuss ideas similar to subject by way of 

distinctions.  He distinguishes subject from field in that field is a social and 

cognitive concept.  He describes topic as being related to field, but narrower in 

scope.  The theme of a document is a description of the “broad pattern[s] of 

similarity” [20] in a document.   

He performs the same type of analysis with domain, which he considers a 

cognitive and social construction.  He defines information, which is also 

connected to subject, as a subjective concept that informs a person of 

“something” within a social context, requiring that different information systems 

treat documents differently according to the community of interest [20].  Finally, 

he analyzes the role of relevance in IR systems, arguing that a document may be 

relevant even if it is not of the desired subject.  The affect skews IR system 

outputs, allowing reported incompetence and bias of annotators to negatively 

alter the results of such systems [20].   

Defining and describing a topic is challenging and topics possess a 

subjective component as demonstrated by Bruza et al.’s work and Hjorland’s 

analysis.  Whatever the underlying topic may be, it lays hidden, yet somehow 

shared.  In this work, we construct models that do not consider cognitive, social, 

or psychological constructs explicitly.  We define topic as the model that best fits 

what people consider topics.  We consider only the surface aspects of language 

to be indicative of the latent topics.  Any distinctions between topic, field, theme, 

or domain that may exist are ignored to the extent that the annotator ignored 

them.  By taking this position, we acknowledge that the social context of 

annotators will affect our results.  However, to some degree, by using 

probabilistic methods, we overcome the variance with large amounts of data.  

Essentially, we acknowledge Hjorland’s position, but leave such granular 

distinctions to the future work of others.   
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Unlike Bruza et al., who used a system of complex rules to develop a 

framework, we considered particular probabilistic models, which we train to 

develop robust topic models particular to chat.  We discuss various probabilistic 

topic models that have been used to detect topics in chat, but focus on the model 

we use in our experiments—Latent Dirichlet Allocation (LDA). 

F. TOPIC MODELS FOR TEXT 

There are many ways to create topic models for textual documents.  Many 

of these models leverage co-occurrence of terms in documents.  Latent Semantic 

Analysis (LSA) (also Latent Semantic Indexing (LSI)), probabilistic Latent 

Semantic Analysis (pLSA) (also probabilistic Latent Semantic Indexing (pLSI)), 

and LDA all take advantage of the collocation of terms in documents.  The 

differences in the models depend largely upon the probabilistic assumptions 

each model considers.  LSA  models each document as a linear projection of its 

term frequencies [22].  pLSA [23] and LDA [6] are probabilistic generative mixture 

models that consider each document a mixture of topics.   

LSA and its IR complement LSI examine vector representations of 

documents (usually only term frequencies), which have a high dimension, and 

create a low dimension linear projection.  Singular Value Decomposition (SVD) is 

a common method for creating such mappings.  This model has improved IR 

tasks because documents that share co-occurring words should have a similar 

representation even though they may not share the particular word used to 

create the query [23].  Ostensibly, LSA is simultaneously performing a type of 

noise reduction [23].  Indeed, LSA has been helpful in detecting synonymy 

amongst words of the same topic and many of its applications have resulted in 

improved word processing [23]. 

pLSA and LDA are generative mixture models.  A generative probability 

model assumes that outputs (documents, in this case) are produced according to 

a set of probabilistic rules.  In these models, a topic is simply a distribution of 

words, where words with higher probability assumed to occur commonly together 
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when the (unnamed) topic is being discussed.  pLSA and LDA models have a 

more robust concept of a topic than LSA because they assume more than one 

topic generates each document.  These models share two multinomial 

distributions: the document-topic distribution; and the topic-word distributions.  

Documents are assumed to accumulate words by randomly selecting them from 

topics.  For each word position, a topic is first selected according to the 

document-topic distribution, and then a word is randomly selected from the 

corresponding topic-word distribution.  These models use what is commonly 

referred to as the bag-of-words assumption, which disregards word sequence [6].  

The interest of most literature on the subject is the relation of these models to the 

semantics of corpora and how to efficiently and effectively determine the models 

using statistical inference. 

For pLSA, Hoffman used a modification of Expectation Maximization (EM) 

called tempered EM (TEM) in order to create estimates of the document-topic 

multinomial and the topic-word multinomial [23].  LDA takes a Bayesian 

approach, and places a Dirichlet prior on each topic.  It places a conjugate prior 

over the multinomial document-topic distribution.  This enables the use of 

estimation methods such as variational inference [6] and Gibbs sampling [24].  

The pLSI model has parameters k  multinomial distributions and the mixtures M .  

The multinomial distributions are the size of the vocabulary V .  And there are k  

number of mixtures M .  There are as many mixtures as there are documents, 

therefore the number of parameters grows linearly with the number of documents 

(size of the corpus).  LDA, which treats “the topic mixture weights as a k-

parameter hidden random variable” [6], has parameters that do not grow with the 

size of the corpus.  Because of this, LDA does not have the same overfitting 

problems as pLSA [6]. 

G. LATENT DIRICHLET ALLOCATION (LDA) 

We describe LDA in a more formal way because it is the topic model in 

view for the rest of this thesis.  LDA has received much acclaim by the NLP 
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community, and, as of this writing, represents the state-of-the-art for topic 

detection in textual documents.  Adams used LDA in the context of chat for 

performing thread extraction [13].  We were unable to find experiments that use 

LDA as the central means of determining the topic of chat.  LDA, in addition to 

the aforementioned advantages, provides the benefit of feature reduction for use 

in classification tasks [6].   

We follow Griffiths and Steyvers’ notation in our examination of LDA.  As 

mentioned before LDA models documents as mixtures of topics, which are in turn 

distributions over words.  For ease of explanation, we introduce notation to 

describe the ideas previously discussed: 

z —a topic 

iw —the i th word token in a document  

( )P z —the distribution of topics in a document 

( | )P w z —the distribution over words given topic 

T —number of topics 

( )iP z j —probability the j th topic was sampled for the i th word token 

( | )iP w z j —probability of word iw under topic j  

( ) ( | )j P w z j   —multinomial distribution over words for topic j  

( ) ( )d P z  —multinomial distribution over topics for document d  

D —number of documents in the corpus 

dN —number of words in document d  

dN N —total number of word tokens 

1( ..., )T   —Dirichlet prior hyperparameter for   

 —Dirichlet prior hyperparameter for   
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1( ..., )Tp p p —Dirichlet distribution over the topic multinomial 

Given this notation the word distribution for a document is: 
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Blei et al.’s innovation was to place a Dirichlet prior ( ) on  .  Dirichlet 

distribution is a conjugate prior to the multinomial distribution.  This simplifies the 

problem of statistical inference. 1( ..., )Tp p p  is the Dirichlet distribution for the 

topic multinomial and its probability density is: 
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where   is the set of all hyperparameters on  —  can be individually 

interpreted as the expected count of a particular topic in a document before 

observing any of the words in the document.  By changing these parameters, one 

may change the amount of smoothing amongst topics [24].  Increasing the   

parameter increases the smoothing.  This means that higher settings of    

indicates the belief that the documents contain a greater mixture of topics rather 

than a smaller mixture containing fewer more concentrated topics [24]. 

Blei et al. introduced a similar strategy for smoothing the word-topic 

distribution by the placing a Dirichlet prior over the multinomial [6].    like  is a 

hyper-parameter, but for   multinomial distribution.    can be individually 

interpreted as the count of a particular word is sampled from a topic before any 

words have actually been observed [24].  This has the same smoothing affect 

that   has on the   distribution.  Hyperparameters   and   depend upon the 

particular corpus vocabulary and the number of topics selected for the model.  

Previous research conducted by Steyvers et al. shows that   values of 50/T  

and   values of 0.01 seem to work with various corpora [24].  In our 

experiments, we use these parameter settings as a proof of concept.  
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With the framework of LDA in place we now turn to the subject of 

constructing the model distributions   and  .  Many scientists have used to Gibb 

sampling as a means of constructing LDA models of texts.  It offers scientists the 

following advantages: easy of implementations, memory efficiency, and 

competitive speed and performance as compared to existing algorithms [25].  

This thesis makes extensive use of the Mallet toolkit, which uses Gibbs sampling 

in constructing LDA models and inferring topic distributions of unseen texts.   

H. GIBBS SAMPLING 

Griffiths and Steyvers create estimates of   and   by evaluating the 

posterior distribution of words to topics, ( | )P z w .  ( | )P z w  cannot be computed 

directly [25], so they estimate ( | )P z w  using Gibbs sampling which is a Markov 

chain Monte Carlo (MCMC).  MCMC is a method commonly employed in physics 

applications to sample large discrete probability distributions.  Griffiths and 

Steyvers, describe it thusly [25]:  

In Markov chain Monte Carlo, a Markov chain is constructed to 
converge to the target distribution, and samples are then taken 
from that Markov chain.  Each state of the chain is an assignment 
of values to the variables being sampled, in this case z, and 
transitions between states follow a simple rule.  We use Gibbs 
sampling, known as the heat bath algorithm in statistical physics, 
where the next state is reached by sequentially sampling all 
variables from their distribution when conditioned on the current 
values of all other variables and the data. 

The process of constructing the posterior of words to topics using Gibbs 

sampling can be seen as keeping track of two matrices.  The first matrix is the 

counts of words per topic WTC  with dimensions W T , which contains the 

number of times a words is assigned to topics.  The second matrix is the count of 

times a topics is assigned to a word in a documents: DTC .  Its dimensions are 

D T .  The probability distribution below is used for assigning a word token to 

each topic, given the topic assignments of all other words after a sample has 

been executed [24]: 
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iz j   – is the topic assignment of token i  to topic j  

iz   – is the topic assignments of all other word tokens 

   – all known or observed information (e.g., other word and document 
indices iw , id  and  hyperparameters  , and  .)   

DT
djC  – contains the number of times topic j  is assigned to some word 

token in document d , not including the current instance i  

Gibbs sampling would proceed as follows in order to construct the posterior [24]: 

1. Randomly assign each token to a topic, which initializes WTC and DTC  

2. For each word token 

2a. In WTC and DTC  decrement the entries that correspond to the 
current topic assignment by one 

2b. Sample a new topic from the ( | , , , )i i i iP z j z w d   and increment 
WTC and DTC with the new topic assignment by one 

3. Step 2 continues without saving topic assignments until after a certain 
number of trips through the corpus called burn-in. 

4. After burn-in, sampling continues and estimates of   and   (equations 
below) are collected periodically according to a predetermined interval of 
iterations, preventing correlations between samples—a process called 
thinning. 

5. The process continues until a predetermined number of iterations 
execute at which point the process ends.   

Determining appropriate values for burn-in, thinning, and the total iterations is the 

subject of open research.  This thesis uses values from research concerning 

large corpora, but future work should give a better understanding of appropriate 

values for chat corpora.  Gibbs sampling provides the means to construct an LDA 

model.  Estimates of '  and '  of the word-topic distributions and topic-

document distributions respectively, may be obtained by the following equations 

[24]: 
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I. SAMPLED TOPIC DISTRIBUTIONS USING GIBBS SAMPLING 

After,   and    were discovered using an LDA training set, we needed to 

determine the topic distribution of a new unseen document.  Obtaining such a 

sampled distribution is a matter of performing the same procedure (Gibbs 

sampling), but holding the posterior distribution static and allowing the entry in 

the document topic counts for that document to be accumulated.  Again, 

appropriate values of burn-in, thinning, and total iterations must be provided.   

Given Gibb sampling as a method for constructing LDA models, we now 

discuss a method for determining the appropriate number of topics to create LDA 

models.  Many methods for determining the number of topics in a given corpus 

have been proposed.  Generally, these methods fall into two categories: 

objective and performance based.  Performance based approaches evaluate the 

appropriateness of the number of topics selected by using the performance of a 

resultant classifier as a metric [24].  Conversely, Griffiths and Steyvers in Finding 

Scientific Topics propose an objective method for determining the appropriate 

number of topics by using the log-likelihood of the data used to build the model 

as an objective measure of the appropriateness of a particular number of topics 

[25].  We use the same method, but use the implementation provided with the 

Mallet toolkit.  Griffiths and Steyvers, use the following equation to evaluate the 

likelihood of the data, ( )P w | z  [25]: 

( )

( )
1

( )
( )

( ) ( )

T wT
jw

W
t j

nW
P

n W


 

 
     

w | z  , 

where ( )w
jn  is the number of times w  has been assigned to topic j  in the vector 

assignment z , and  is the gamma function.   
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J. SUPPORT VECTOR MACHINES—SVM 

After determining the appropriate number of topics for the chat corpus, we 

will use the LDA model and additional data to construct feature vectors, which 

represent the data.  The feature vectors are the sampled topic probabilities that 

result from performing Gibbs sampling with the addition of an unseen document  

(described above).  The resultant feature vectors are then used to construct a 

Support Vector Machine (SVM) classification system.  After presenting test data, 

in the form of feature vectors, we use various metrics to evaluate the 

performance of the resultant classification systems.  One of the advantages of 

using a feature vector created from an LDA model is that its dimensionality is the 

same as the number of topics chosen for the model. 

An SVM is a maximum margin classifier that generates a separating 

hyperplane between sets of data distinguished by their class [26].  Classes of 

data are always separable, given an appropriate nonlinear mapping of the data to 

some higher dimensional space [27].  Figure 1 provides an example of a set of 

data that is linearly separable and demonstrates that SVMs create a maximum 

margin between the two sets. 

 

Figure 1.   Trivial example of linearly separable data.  From [28] 



 27

The linear SVM will seek the maximum margin between the two classes; it 

will find the hyperplane that creates the greatest distance between the closest 

data points of the opposing classes.  These points define the support vectors.  

Figure 2 shows a hypothetical data set and its accompanying hyperplane, and 

support vectors.   

 

Figure 2.   Linear Separating Hyperplanes.  From [12].  The support vectors are 
circled.  The maximum margin is the distance between the two dashed 

lines (l1 and l2).  The hyperplane is the solid line between the two dashed 
lines. 

We use the nomenclature used in A Short SVM (Support Vector Machine) 

Tutorial, by J. P. Lewis, in the following discussion of how to obtain the support 

vectors for a given data set.  We consider a situation where there exists only to 

classes of data.  Lewis uses the following set of mathematical relationships [26]: 

0Tw x b 
 

—the general equation for the hyperplane 

b   —a constant 

x


  —a data point using vector notation 

w


 —a vector of weights  

0T
jw x b 

 
—the equality statement for data of class one 

0T
kw x b 

 
—the equality statement for data of class two  
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{ 1,1}iy   —set of labels for the classes  

( ) 0T
i iy w x b 
 

—holds for all points 

It can be demonstrated that the hyperplane is offset from the origin along w


 by 

b

w
 .  Additionally,  w


 and b are scalable without altering the hyperplane.  In 

order to prevent such scaling Lewis adds the following constraint [26]: 

( ) 1  T
i iy w x b i  
 

 

Next, Lewis describes how to obtain “an expression for the distance 

between the hyperplane and the closest points” [26].  In Figure 2, this is the 

distance between the l1 and l2, which pass through the support vectors.  Lewis 

refers to them as supporting hyperplanes.  Their formula’s are ( ) 1T
j jy w x b 
 

 for 

the positive support vector(s) and ( ) 1T
k ky w x b 
 

 for the negative support 

vector(s).  Lewis demonstrated how KKT (Karush Kuhn Tucker) [26] methods are 

used to determine w


 and b  to maximize the distance.  

It is advantageous to allow some data points to lie on the opposite class 

side of the separating hyperplane or between the margin and the separating 

hyperplane in order to prevent overfitting in classification [26].  Using non-linear 

mappings into higher dimensional spaces will separate the data, but these 

mappings may make a poor classifier for unseen examples (i.e. test data).  This 

problem is overcome by providing a mechanism for allowing deviation from the 

margin—“slack variables” ( ks ) [26].  The slack variable is introduced by modifying 

the margin constraint:  

( ) 1T
k ky w x b 
 

 (original)     ( ) 1T
k k ky w x b s  
 

 (modified) 

This allows the creation of a better hyperplane by loosening the margin constraint 

Figure 3 demonstrates slack variables in use. 
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Figure 3.   This figure shows the relationship of slack variables to the margin and 
data points that are found on the opposite class side of the separating 

hyperplane. s1 and s2 are distances from the margin to the point in 
question. After [37].  Hsep is the separating hyperplane and H1 and H2 are 

the margins. 

In order to prevent simply selecting a large slack variable that allows any 

hyperplane to separate the data, Lewis shows how a penalizing term is added to 

the KKT set used to determine the maximal margin [26].  The slack variable and 

corresponding penalization help to create SVMs that are more general.  A more 

robust treatment may be found in the reference material ([26]), for the interested 

reader.  We now turn to the matter of how to map data into higher dimensional 

space using the various kernel functions.   

 The kernel function is a function that maps the original feature space into 

a new feature space [29].  Generally, a researcher should use a kernel that has 

some meaningful relation to the data domain in view, or convert the data to a 

domain where other kernels have some demonstrated relevance [29].  However, 

in our study we thought it wise to begin with well-know and simple kernels, as 

SVM applications in the chat domain are relatively unexplored.  Borrowing Hsu et 

al.’s notation from A Practical Guide to Support Vector Classification [30], we use  
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the following kernels as the basis for the SVMs in this research: linear, 

polynomial, radial basis function, and sigmoid.  Their respective functions are as 

follows [30]: 

 Linear: ( , ) T
i j i jK x x x x  

 Polynomial: ( , ) ( ) , 0T d
i j i jK x x x x r     

 Radial Basis Function (RBF): 2( , ) exp( ), 0i j i jK x x x x       

Sigmoid: ( , ) tanh( )T
i j i jK x x x x r   

Here,  , r , and d  are kernel parameters.  These kernels are a 

reasonable first step for SVM users because they are simple and are often used 

to build other more complex kernels [30].  

You, Lee and Li proposed a kernel, which may hold more relevance for 

features taken from a probability distribution [31].  Past research using a 

Kullback-Leibler (KL) kernels have been applied classification systems for 

evaluating voice recognition using Gaussian Mixture Model-supervectors11 

(GMM-supervectors) SVM classifiers [31].  They propose a kernel that uses the 

Bhattacharyya distance measure instead of a KL kernel.  Both Bhattacharyya 

and KL distances are means by which to evaluate the relation of one probability 

distribution to another [31].  Either a KL or Bhattacharyya may produce better 

results than the four kernels used in this research; since using SVM’s for LDA 

model chat data is relatively new territory, we will leave evaluation of other 

kernels to future research.  

An SVM classifier takes one set of data to build its model.  This set is 

called the training set.  It is composed of feature vectors from the positive and 

negative classes, which are labeled as such.  In our case, the positive label is 1 

and the negative label is -1.  Then a separate set (the test set) of feature vectors 

from both classes are placed in the newly constructed feature space.  If a 

                                            
11 GMM-supervectors are vectors that include GMM parameters such as mean vectors, 

covariance matrices, and mixture weights. 
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positive test feature vector falls on the positive class’s side of the hyperplane it is 

counted as a “true positive.”  If it falls on the negative class’s side of the 

hyperplane it is counted as a “false negative.”  If a negative feature vector falls on 

the positive class’s side of the hyperplane it is counted as a “false positive.”  The 

counts are used to evaluate the performance of the classifier. 

K. EVALUATION METHODS 

We use precision, recall, and F-score to measure the performance of the 

various classifiers discovered in the research.  These are common, easy to 

implement and easily interpreted measures of performance.  Each measure 

relies on the three following values: 

TP —true positives 

TN —true negatives 

FP —false positives 

FN —false negatives 

TP  is the count of all the test examples that were from the positive class, and 

were classified as such by the classifier.  TN  is the count of all the test examples 

that were from the negative class and were classified as such.  FP  is the count 

of all the test examples that were from the negative class but were classified as 

being a part of the positive class.  FN  is the count of all the test example that 

were from the positive class but were classified as being a part of the negative 

class.  We provide the equation and short description of each measure below.  

1.  Precision   

Precision is the proportion of correctly classified positive examples to the 

total of those that were classified as positive examples.  Colloquially, it might be 

stated thusly, “Of all the ones I called positive, what percent actually were 

positive.”  It can be interpreted as the classifier’s ability to identify the positive 
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class while at the same time not calling negative examples positive, for as FP  

decreases, precision increases.  Its equation is a follows:  

TP
Precision

TP FP



 

2.  Recall 

Recall is the proportion of correctly classified positive examples to the total 

of those that were actually positive examples.  Colloquially, it might be stated 

thusly, “Of all the actual positive examples, what percent actually were classified 

as positive.”  It can be interpreted as the classifier’s ability to identify the positive 

class while at the same time not missing positive examples, for as FN  

decreases, recall increases.  Its equation is: 

TP
Recall

TP FN



 

3.  F-score 

F-score is the harmonic mean of precision and recall.  It can be interpreted 

as the balance between precision and recall.  Its equation is: 

2
1 1

F score

P R

 


 

Generally, the F-score functions as the means to ensure the integrity of a 

classifier.  Those wishing to obtain high levels of recall need only classify all 

examples as positive.  In this case, no examples would be labeled as negative, 

causing FN  to equal 0, which in turn causes recall to equal 1—its highest 

possible value.  F-score prevents such a scheme from going unnoticed by 

favoring the lower of the two.  Were the case in point to actually occur, FP  would 

equal the number of negative examples in the test set, because they were all 

classified as positive.  This would in turn drive precision to its lowest possible 

value.  The lower precision value would increase the overall size of the 
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denominator in the F-score equation driving the F-score value to its lowest 

possible value.  For our purposes, high values of F-score are considered more 

favorable, followed closely by high values of recall. 
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III. EXPERIMENTAL DESIGN AND METHODOLOGY 

A. SOURCE OF DATA 

We explored four different types of classification tasks for our research.  

Each of the experiment sets included the construction of SVM classifiers.  We 

construct LDA models based on different document notions from which we 

derived feature vectors for SVM classifiers.  The first set of experiments 

considered the collective posts of an author as a document.  The second set 

considered an individual post as a document.  The third and fourth considered a 

textbook paragraph as a document. 

1. NPS Chat Corpus 

We use two distinct sections of the NPS Chat Corpus.  First, age-oriented 

chat posts from twenty-year-olds collected by Lin in 2006 [13].  Second, 

Freenode IRC posts for physics collected by Adams [13].  Lin collected chat 

posts from five different age-segregated socially oriented rooms.  There are more 

than 475,000 posts created by over 3,200 users.  Lin’s collection was from a non-

IRC chat site—Talkcity.  The chat rooms were not oriented by topic, but were 

socially oriented [13].  We will focus on a small segment of the corpus; namely, 

those posts created by self-reported age group users.  The age groups collected 

were teens, twenties, thirties, forties, and fifties.  We ignore their age in order to 

focus on methods for topic detection.  We refer to this set of chat posts hereto 

forward as all-ages-chat. 

Adams collected the second corpus, also a part of the NPS Chat Corpus, 

from the Freenode IRC server during July 2008.  Using the open source pidgin 

[32] client, the data was collected over twelve days and is composed of 7,803 

posts [13].  Over 280 authors contributed to the physics chat.  The conversations 

involved people seeking help with physics related problems, seeking out physics 

textbook recommendations, and reflecting on physics in general.  Conversations 

about religion and confrontations often occurred, despite the general focus on 
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physics.  Additionally, the system generates posts created as a direct result of 

user interaction.  For instance, the system performs a Wikipedia lookup if a user 

posts a message with certain syntax.  Physics chat, compared to all-ages-chat, 

has more focused conversations.  Adams attributes this characteristic to three 

factors: 1) the chat room’s topic assignment, 2) usage rules, and 3) enforcement 

of the rules [13].  The usage rules were posted in the room automatically and 

periodically.  In two instances, users were ejected from the chat room because 

their conversations were off-topic and confrontational.  We use this physics chat, 

because physics has a known and particular theme that is readily identifiable by 

people and distinct from other types of conversation.   

2. Newtonian Physics Textbook 

We use a Newtonian Physics Textbook [33] made available under the 

Creative Commons License as a basis for LDA models in two set of experiments.  

The physics text is a textbook dedicated to the small segment of physics know as 

“Newtonian” physics.  This book covers the following subjects as stated in its 

table of contents: Velocity and Relative Motion, Acceleration and Free Fall, Force 

and Motion, Analysis of Forces, Motion in Three Dimensions, Vectors, Circular 

Motion, and Gravity.  We decompose the textbook into paragraphs for use in the 

LDA model as documents.  There are 488 paragraphs in the book.  Paragraphs 

are reasonable size compared to the documents they will be use to predict, 

namely short chat posts and the collective posts of individual authors.   

3.  Use and Annotation of the Corpora 

We use the corpora in various ways throughout our experiments.  

Generally, the physics chat forms the core of the positive class in all of our 

classification experiments.  All-ages-chat forms the core of our negative class in 

author experiments, because we assume that all the authors contributed to at 

least one physics conversation.  In two sets of experiments, we use non-physics 

chat posts within the physics chat corpus as the negative class.  In this case, we 

hand annotated all of the posts from the physics chat as either “physics” or “non-
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physics.”  We only use the physics textbook to construct LDA models with which 

to build feature vectors for training and testing the SVM classifier.  We never use 

the textbook as a source of training and or testing data for the SVM. 

B.  GENERAL APPROACH 

1. Four Types of Experiment Sets 

We perform four different types of experiments.  In each experiment set, 

we first create an LDA model from a source of topic information then generate 

SVM testing and training sets based on data from a positive and negative class 

of the class data.  In the experiments, we exclude the negative class from the 

LDA model in one subset and then add the negative class for the second subset.  

The SVM classifier requires testing and training data in the form of feature 

vectors.  In our case, the feature vectors are the sampled topic distributions 

created by Gibbs sampling as described in Chapter II, Section J of this thesis.  

After generating the feature vectors using the LDA model, we train and test the 

SVM classifier.  Each set of feature vectors is classified using a combination of 

the four previously mentioned kernels, and a range of slack variables.  Figure 4 

shows a diagram of the mechanics of the experiments. 
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A. Build LDA model and derive SVM Feature Vectors

Separate and process  the Data (1)

LDA Training Data
SVM Training Data – positive class

SVM Training Data – negative class

SVM Testing Data – positive class

SVM Testing Data – negative class

LDA Model
(k – topics)Create LDA Model (2) 

Create
Sample Topic 
Distributions

(3a) 

SVM Training FV – positive class

SVM Training FV – negative class

SVM Testing FV – positive class
SVM Testing FV – negative class

Feature 
Vector (FV)
construction

(3b) 

Train SVM Classifier (4a) 

Test SVM Classifier (4b) 

SVM Classifier
(kernels – 4 types)
(slack – 2‐15 – 215)

B. SVM Classification

Record and Process 
Results (5) 

Precision
Recall
F‐score

C. Results

Source Data

Experimental Process

 

Figure 4.   This figure outlines the general experimental process.  Note, in the 
LDA Model, “k-topics” refers to a different setting for the number of topics 

calculated per data set (Discussed in Chapter III, Section C).  Note also, in 
the SVM classifier,  “kernels” refers to the four different kernel types 

(linear, radial basis function, polynomial and sigmoid) that will be used in 
separate SVM models of the same training and testing set. Note also, the 

range of slack variables to be investigated for each kernel type. 

Each experiment hypothesizes that topic distributions of LDA documents 

in some way map to what humans consider topics.  First, we consider the 

author’s posts as documents, deriving all the testing and training sets from the 

collective posts by an author from the physics chat (positive class) and all-ages-

chat (negative class).  In the second set of experiments, we consider only the 

posts within the physics chat, using those items labeled physics as our positive 

class and non-physics as our negative class.  Third, we consider the posts 

collected by author as they relate to an LDA model constructed by the physics 

textbook.  As in the first experiment set, we use the physics authors as the 

positive class and all ages of authors as the negative class.  In the fourth set of 

experiments, we again use the physics text as the basis for constructing the LDA 
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model and then classify physics posts versus non-physics posts.  In all 

experiment sets, we construct LDA models based on the positive class alone and 

then construct the LDA models using both the positive and negative classes.  

Table 1, outlines how the different data are used in each experiment set.   

For experiments that compared authors (1 and 3), our training to testing 

ratio was 90%-10%.  The class split was 10% physics authors to 90% all-ages-

chat authors to simulate rarity of the positive class.  For experiments that 

compared individual posts (experiments 2 and 4), our training to testing ratio was 

80%-20%; the class split was 41.5% physics and 58.5% non-physics as this is 

the naturally occurring split.  In all experiments, we performed random sampling 

from each class 10 times and evaluate the average, maximum and minimum of 

the results.  When splitting the classes, it was necessary to leave some data out 

in order to precisely obtain the correct training and testing ratios.  We chose to 

leave out the smallest author and post documents in the corpus.  Table 1 shows 

the data settings for each experiment subset. 
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Experiment Set Subset
LDA Model 

Construction

Training Set ‐ 

Physics Class 

(Positive Class)

Training Set ‐ Non‐

Physics Class 

(Negative Class)

Testing Set ‐ Physics 

Class (Positive Class)

Testing Set ‐ Non‐

Physics Class 

(Negative Class)

Class mixture

Training 

Testing 

Mixture

1. LDA Constructed with 

the Positive Class Only
Physics Authors

2. LDA Constructed with 

the Positive and 

Negative Class

All‐ages‐chat Authors

1. LDA Constructed with 

the Positive Class Only
 Physics Posts

2. LDA Constructed with 

the Positive and 

Negative Class

 Physics Posts; Non‐

Physics Posts

1. LDA Constructed with 

the Positive Class Only
Newtonian Textbook

2. LDA Constructed with 

the Positive and 

Negative Class

Newtonian Textbook; All‐

ages‐chat Authors'

1. LDA Constructed with 

the Positive Class Only
Newtonian Textbook

2. LDA Constructed with 

the Positive and 

Negative Class

Newtonian Textbook;  

Non‐Physics posts

Data Selection for Each Experiment Set

10% Physics Author

90% All‐ages‐chat

 41.5% Physics Posts 

58.5% Non‐Physics

90% Training

10% Testing

80% Training

20% Testing

90% Training

10% Testing

80% Training

20% Testing

4: Textbook LDA ‐ 

Physics and Non‐

Physics Posts

3: Textbook LDA ‐ 

Physics and Non‐

Physics Authors

2:  Physics Posts vs.   

Non‐Physics Posts

1: Physics Authors' 

vs. Non‐Physics 

Authors 

Physics Authors
All‐ages‐chat 

Authors'  posts

Different Portion of 

Physics Authors'  

posts

Different Portion of All 

Ages Authors'  posts

Physics Posts Non‐Physics Posts

Different Portion of  

Physics Posts labeled 

as Physics

 Physics Posts labeled as 

Non‐Physics

10% Physics Author

90% All‐ages‐chat

 41.5% Physics Posts 

58.5% Non‐Physics

Physics Authors'  

posts

All‐ages‐chat 

Authors'  posts

Different Portion of 

Physics Authors'  

posts

Different Portion of All 

Ages Authors'  posts

 Physics Posts 

labeled as Physics
Non‐Physics Posts

Different Portion of  

Physics Posts labeled 

as Physics

Different Portion of  

Physics Posts labeled 

Non‐Physics

 

 

Table 1.   Data Selection for each Experiment Set 
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For all the experiments, we divided the data into 5 different sets then 

preprocess them.  The data sets are: 1) the LDA training data 2) the SVM 

training data—positive class 3) the SVM training data—negative class, 4) the 

SVM testing data—positive class, and 5) the SVM testing data—negative class.  

We perform simplistic stop word selection in all of the experiments, but leave the 

exhaustive search of that space to future work.  We used the stop word list 

provided by the classification toolkit: Mallet [34]. 

C. LDA MODEL SELECTION USING MALLET 

Mallet (MAchine Learning for LanguagE Toolkit) performs all of the 

functions we required for creating LDA models.  It allows the user to adjust all the 

LDA hyperparameters  , , and k  (discussed in Chapter II, Section G), and the 

Gibbs Sampling hyperparameters: thinning, burn-in and total iterations 

(discussed in Chapter II, Section H).  Mallet offers more than one LDA 

implementation.  We use the ParallelTopicModel class of Release Candidate 4 

[34], in our experiments because it allows the user the ability to obtain sampled 

distributions of unseen documents. 

1. LDA Hyperparameter Selection 

Hyperparameter optimization with regard to LDA and Gibbs Sampling is 

the subject of current research.  We use hyperparameters used in previous 

research, except in the case for k .    and   were obtained from Griffiths and 

Steyvers in [25].  As stated in Chapter II, Section G we use values of 50/ k  for   

and 0.01 for   in all experiments. 

2. Empirically Derived Topic Number Selection 

Like Griffiths and Steyvers we empirically derive the number of topics for 

each Experiment Set.  Using Griffiths and Steyvers’ method, we use the objective 

measure of log-likelihood of ( )P w | z  as described in Chapter II, Section K to 

determine the number of topics each data set requires.  Since Gibbs Sampling is 
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a stochastic process, there exists some variation between the results of running 

the Gibbs Sampler over the same data, using the same settings.  Mallet uses the 

following Gibbs Sampling hyperparameters for finding the log-likelihood of a data 

set and accompanying settings: 1000 for total iterations, 200 for burn-in, and 50 

for thinning.  In order to determine optimal value of k , we execute the process of 

constructing the LDA model and then measure the log-likelihood of ( )P w | z  ten 

times for each setting of k topic number.  This is performed for each data set.  

We chose the k  that generated the highest average log-likelihood for the models 

used in classifying the data set under investigation.  The results of these 

experiments are provided in this chapter, Section E. 

3. SVM Parameter Selection 

There are several settings associated with SVM classifiers.  The 

parameter explored most in this work is the “slack” or cost parameter.  We use 

the LIBSVM implementation for SVM and all experiments we use the default 

values native to the implementation [35].  However, we range over all values of 2-

15 to 215 increasing by powers of two for the slack parameter.  We use four 

different kernels: linear, radial, sigmoid, and polynomial.  The linear kernel 

( ( , ) T
i j i jK x x x x ) has no hyperparameters to adjust.  For the polynomial kernel 

( ( , ) ( ) , 0T d
i j i jK x x x x r    ), we use the default setting of the    parameter of 

1 1

Feature Vector Size Number of Topics
 , 0 for the r  parameter, and 3 for the d  

parameter.  The RBF kernel ( 2( , ) exp( )i j i jK x x x x    ) requires one 

parameter  , which we set to 
1 1

Feature Vector Size Number of Topics
  (the 

default).  For the sigmoid kernel ( ( , ) tanh( )T
i j i jK x x x x r  ) we use the default 

values for    and r .  Each kernel and parameter settings are applied to each 

experiment set.  Table 2 shows the setting of the kernel and their parameters that 

we use for each experiment set. 
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Kernel Slack

Linear 2
‐15
 to 2

15

Sigmoid 2
‐15
 to 2

15

Raidal 2
‐15
 to 2

15

Polynomial 2
‐15
 to 2

15

Other

None

Kernel Parameters for SVM Classifiers

1/ k 

1/ ,  0,  3k r d   

1/ ,  0k r  

 

Table 2.   This table summarizes the kernel parameters and the slack 
variables explored in our experiments.   

The combination of LDA model parameter choices and SVM classifier 

parameter choices creates a very large set of experiments to explore.  Instead of 

focusing on any one type, we explore the broad number of possibilities as a way 

of demonstrating the validity of these types of experiments.  This provides a solid 

“first-step” into the this type of classification system for chat.   

D. RESULTS OF TOPIC NUMBER DETERMINATION 

As stated afore, the number of topics determined in this set of 

experiments, also determines the k  number of topics to be used in the 

subsequent experiments.  The three different divisions of the data sets demand 

an empirical estimate of the optimal values of k .  For our use, the optimal k  is 

the number of topics that contain the largest average log-likelihood of each 

model.  This k  provides the basis for the constructing subsequent LDA models.  

In each of the experiments, we used different document types for the LDA model.  

We chose three different document types, which form the basis for the four 

different experiment sets.  We chose the documents to be 1) all of an individual 

author’s post, 2) an individual post, and 3) a paragraph from the physics 

textbook.   

1.  Number of Topics for Author Level Documents 

The author-divided chat data is the collection of the physics chat posts 

that were created by a single author.  One may think of this data set as the 
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composition of each author’s half of the conversation.  More precisely, it is the 

composition of each of the author’s contribution to multiple conversations.  This 

data set, model, and accompanying classifier, should be able to identify whether 

or not an author had discussed a particular topic.   

For this division of the data, we removed all the authors that had zero 

posts.  We also removed all the authors that had only system level posts such as 

entering and exiting declarations.  We did not remove punctuation, emoticons, 

but removed stop words provided in the Mallet toolkit.  Each LDA model was 

constructed ten times with the same settings, and the log-likelihood was 

determined.  We conducted ten iterations of each k  ranging from 4 to 200, 300, 

400, 500, 600, 700, 800, 900, and 1000 on the entire data set.  There were 283 

author documents extracted from the physics chat data. 

Figure 5 shows the average log-likelihood of each k topics explored.  For 

these experiments 50 / k   and 0.01  .  The maximum average log-likelihood 

was -171078, for the k  value 13. 
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Figure 5.   This figure shows the average of 10 samples of each value of k .  The 
LDA settings were: {4,..., 200,300,400,500,600,700,800,900,1000}k , 

0.01  , and 50 / k  .  The document selections were the collection of 
individual author posts. 
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Figure 6 displays the all log-likelihood results for k  values 4 to 60.  It 

demonstrates the difficulty of concluding an optimal value of k .  In each of the 

topic selection experiments, the variation between log-likelihood samples for 

each value of k , was significant.  So much so, that concluding which k  values 

would yield the most probable model based on log-likelihoods alone made little 

sense.    
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Figure 6.   This figure shows all 10 samples of a subset of k  values for Author 
Level Documents.  The LDA settings were: {4,...,60}k , 0.01  , and 

50 / k  .  The document selections were the collection of individual 
author posts. 

2. Number of Topics for Post Level Documents 

The post-divided chat data considers each document of the LDA model to 

be a post.  This type of design decision supposes that each post can be identified 

with a topic.  We removed all the posts that had only system created messages 

such as entering and exiting declarations, except Wikipedia lookups.  We did not 

remove punctuation, emoticons, or stop words.  We conducted ten iterations for 

each topic number ranging from 4 to 200, 300, 400, 500, 600, 700, 800, 900, and 

1000 on the entire data set.  There were 5037 post documents extracted from the 

7803 post corpus.  
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Figure 7 shows the average log-likelihood of each k topics explored.  For 

these experiments 50 / k   and 0.01  .  The maximum average log-likelihood 

was -171129, for the k  value 16.  Figure 8 displays the all log-likelihood results 

for k  values 4 to 60. 

‐350000

‐330000

‐310000

‐290000

‐270000

‐250000

‐230000

‐210000

‐190000

‐170000

‐150000

0 200 400 600 800 1000

Lo
g‐
Li
ke
lih
o
o
d

k ‐ topics

Average Log‐Likelihood Post 
Documents

 

Figure 7.   This figure shows the average of 10 samples of each value of  k  for 
Post Level Doucuments.  The LDA settings were: 

{4,..., 200,300,400,500,600,700,800,900,1000}k , 50 / k  , and 0.01  .  
The document selections were the collection of individual posts. 
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Figure 8.   This figure shows all 10 samples of a subset of k  values for Post Level 
Documents.  The LDA settings were: {4,...,60}k , 0.01  , and 

50 / k  .  The document selections were the collection of individual 
author posts. 
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3. Number of Topics for Textbook Paragraph Level Documents 

The Newtonian Physics textbook data document division considers each 

paragraph of the textbook an LDA document.  In all the other models, under 

consideration, the model of the physics topic is constructed based on chat data.  

Using textbook data, the model is constructed based on a traditional written 

language example.  In the experiment sets involving this model, we test whether 

LDA is suitable model for cross-domain topic modeling.  This data set, model, 

and accompanying classifiers should be able to identify whether or not an author 

or a post relates to the physics text.  

We removed no punctuation, but removed the stop words provided by the 

Mallet Toolkit.  We conducted 10 iterations of each topic number ranging from 4 

to 200, 300, 400, 500, 600, 700, 800, 900, and 1000, holding out no data.  There 

were 488 paragraphs extracted from the Newtonian Physics textbook.  

Figure 9 shows the average log-likelihood of each k topics explored.  For 

these experiments 50 / k   and 0.01  .  The maximum average log-likelihood 

was -171043, for the k  value 15.  Figure 10 displays the all log-likelihood results 

for k  values 4 to 60. 
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Figure 9.   This figure shows the average of 10 samples of each value of k  for 
Paragraph Level Documents.  The LDA settings were: 

{4,..., 200,300,400,500,600,700,800,900,1000}k , 50 / k  , and 0.01  .  
The document selections were the collection of paragraphs from the 

Newtonian Physics textbook. 
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Figure 10.   This figure shows all 10 samples of a subset of k  values for Paragraph 
Level Documents.  The LDA settings were: {4,...,60}k , 0.01  , and 

50 / k  .  The document selections were the collection of paragraphs 
from the Newtonian Physics textbook. 
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4. Topic Number Selection Analysis 

In each of the topic-number experiments, the graphs reach a maximum 

value around the 13 to 16, k  topic mark.  The curves demonstrate remarkable 

consistency in shape.  This type of result was expected for the author documents 

and the post documents, as they were exactly the same data.  However, the 

Newtonian Physics textbook data exhibited similar shape and maximum values.  

These phenomena may have resulted from the limited scope of   and   values 

examined.  Since we did not vary these parameters, it is difficult to determine 

whether they would have any effect.  Were we to vary these parameters it may 

demonstrate that the resultant k  topics are not a good measure of the topic 

models for the corpora.  However, the consistent shape and topic number 

similarities between data sets may indicate that humans discuss matters of 

physics in very similar ways; regardless of the mode of language employed.   

The range of log-likelihood for each ten iterations of the k  topics explored 

is also troubling.  Each k  values’ log-likelihood varies so greatly that it is difficult 

to distinguish the quality of its model from those surrounding it.  That is to say, 

any number of the surrounding models may be as good or better than the one 

with the highest log-likelihood.  Ten samples may not be sufficient to determine 

which k  topic is best.  Regardless, the maximum average meets the immediate 

need of providing our four experiment sets with an initial value for k  that holds 

some meaningful relationship to the corpora.   

E. CROSS VALIDATION 

Cross validation is methodology used to prevent anomalous statistical 

results from driving scientific conclusions in small data sets.  Two major factors 

drive this motivation.  First, the small data sets may contain divisions of the data, 

which create classification examples that are not representative of the whole: 

they are exceptions [36].  Secondly, the results may be based on random factors 

that affect classifier generalization [37].  In our case, Gibbs sampling contains 

such a stochastic process.  
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We did not use 10-fold cross validation in our experiments.  Consider a 

popular method for performing 10-fold cross validation.  The data set is divided 

into ten smaller data sets, whose elements are chosen randomly.  Then, nine 

divisions are used to train the model or classifier and the remaining division is 

used for testing.  This is done 10 times each time, exchanging one of the training 

divisions with the testing division.  Then, the classification results are analyzed.  

Often, they are averaged.   

A simpler version of this process randomly samples 10% of the data ten 

times.  In this case, quality of generalization will depend on the amount of overlap 

in the training set.  We instead use random sampling, where we randomly select 

90% (or 80%) of the data for training, and use the remaining 10% (or 20%) for 

testing.  We perform this procedure ten times and then analyze the results. 
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IV. RESULTS AND ANALYSIS 

In this chapter, we present the results of the experiments described in 

Chapter III.  We provide the results of the four different LDA leveraged SVM 

experiments.  We explored four different types of classification tasks.  We 

construct LDA models based on different document notions from which we 

derived feature vectors for SVM classification classifiers.  The first set of 

experiments considered the collective posts of an author as a document.  The 

second set considered an individual posts as a document.  The third and fourth 

considered a textbook paragraph as a document. 

We describe the data set and each experiment’s setup as each 

experiment is expounded.  We analyze the results of the experiments as they are 

presented, and then conclude with collective analysis of the experiments. 

A. AUTHOR LEVEL DOCUMENT TRAINED LDA TO PREDICT PHYSICS 
AUTHORS EXPERIMENTS RESULTS 

1.  Further Setup 

In this set of experiments, we examine the classifier’s ability to identify 

physics related authors amongst a large set of authors who are chatting about 

various different non-physics related topics.  The document concept for this 

experiment set uses the collective posts produced by individual author to 

generate the LDA model.  In the first subset, we use only authors from physics 

chat to construct the LDA model.  In the second subset, we use authors from 

both physics and all ages authors to generate the LDA model. 

Originally, we started with 283 authors, but left out 69 of the authors with 

the smallest number of tokens in their chat.  This was done to get the proper 

90%/10% training-testing proportions leaving us with 224 authors from physics.  

As mentioned before, we simulate the rarity of physics conversations by creating 

a 90% all-ages-chat class to 10% physics class split.  In all, 201 physics authors 

were used for training and 23 for testing.  We left out eight of the 2,023 all-ages-
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chat authors, resulting in 1,809 for training and 207 for testing.  Table 3 displays 

the data set configuration for the SVM classifiers for this experiment set.  Table 4 

displays the Mallet, and LIBSVM configurations used. 

Author Count Training/Testing Percent Percent of Class1 to Class2

SVM Training Physics Authors
1,2

201 90% 10%

SVM Training All‐ages‐chat
2

1809 10% 90%

SVM Testing Physics Authors 23 90% 10%

SVM Testing All‐ages‐chat 207 10% 90%

Notes:

Author Level Document Experiment Data Set Construction

1. Used to train the LDA model for subset 1

2. Used to train the LDA model for subset 2  

Table 3.     This table shows the data configuration for the Author Level 
Document Experiments. 

Setting 1 Setting 2 Setting 3

Burnin Thinning Iterations

500 50 1000

Kernel Slack Other

Linear 2
‐15
 to 2

15 None

Sigmoid 2
‐15
 to 2

15

Raidal 2
‐15
 to 2

15

Polynomial 2
‐15
 to 2

15

Gibbs Sampling

SVM

Post Level Document LDA and SVM Configuration

LDA  0.01  50 /T  13k 

1/ k 

1 / ,  0,  3k r d   

1 / ,  0k r    

Table 4.   This table shows the configuration of LDA, Gibbs Sampling and the 
SVM model used in constructing the classification system for the Author 

Level Documents Experiments. 

2. First Subset Results  

The first subset of experiments for author level document experiments left 

the negative class out of the LDA model creation process.  We performed 10 

random samples for all SVM classifier settings of kernel and slack variables, 

resulting in 1,200 distinct classifiers.  The classifiers were unable to distinguish 

physics authors from non-physics authors.  The classifiers identified each test 

document as belonging to the negative class—all-ages-chat.  
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3. Second Subset Results  

The second subset of experiments for author level document experiments 

used the positive and negative class documents for LDA model creation.  We 

performed 10 random samples for all SVM classifier settings of kernel and slack 

variables.  The classifier performance from these experiments showed marked 

performance improvement over the LDA model created in subset one.  All of the 

kernel types, except polynomial, generated multiple classifiers that were able to 

distinguish physics author documents from all ages author documents.  Many of 

them achieved F-scores above 90%.  We provide Table 5, which shows all the 

results of this experiment subset that attained an F-score above zero.   

Kernel Slack F‐Score Recall Precision TP TN FP FN

4 0.033 0.017 0.300 0.4 207 0 22.6

8 0.691 0.552 1.000 12.7 207 0 10.3

16 0.826 0.709 1.000 16.3 207 0 6.7

32 0.846 0.739 0.994 17 206.9 0.1 6

64 0.871 0.778 0.994 17.9 206.9 0.1 5.1

128 0.892 0.813 0.995 18.7 206.9 0.1 4.3

256 0.897 0.822 0.995 18.9 206.9 0.1 4.1

512 0.898 0.826 0.990 19 206.8 0.2 4

1024 0.905 0.839 0.990 19.3 206.8 0.2 3.7

2048 0.906 0.843 0.986 19.4 206.7 0.3 3.6

4096 0.906 0.843 0.986 19.4 206.7 0.3 3.6

8192 0.904 0.843 0.980 19.4 206.6 0.4 3.6

16384 0.906 0.843 0.986 19.4 206.7 0.3 3.6

32 0.302 0.183 0.900 4.2 207 0 18.8

64 0.748 0.609 1.000 14 207 0 9

128 0.833 0.722 0.994 16.6 206.9 0.1 6.4

256 0.855 0.752 0.994 17.3 206.9 0.1 5.7

512 0.885 0.800 0.995 18.4 206.9 0.1 4.6

1024 0.895 0.817 0.995 18.8 206.9 0.1 4.2

2048 0.895 0.822 0.990 18.9 206.8 0.2 4.1

4096 0.900 0.830 0.990 19.1 206.8 0.2 3.9

8192 0.905 0.839 0.990 19.3 206.8 0.2 3.7

16384 0.906 0.843 0.986 19.4 206.7 0.3 3.6

64 0.302 0.183 0.900 4.2 207 0 18.8

128 0.748 0.609 1.000 14 207 0 9

256 0.833 0.722 0.994 16.6 206.9 0.1 6.4

512 0.855 0.752 0.994 17.3 206.9 0.1 5.7

1024 0.885 0.800 0.995 18.4 206.9 0.1 4.6

2048 0.895 0.817 0.995 18.8 206.9 0.1 4.2

4096 0.895 0.822 0.990 18.9 206.8 0.2 4.1

8192 0.900 0.830 0.990 19.1 206.8 0.2 3.9

16384 0.905 0.839 0.990 19.3 206.8 0.2 3.7

Average Performance Parameters for Author Level Document Experiments 

LDA Trained on Two Classes

Radial

Sigmoid

Linear

 

Table 5.   Table displays all SVM classifiers from Author Level experiments 
where the LDA model was created using both classes of data.  All 
classifiers with an F-score value greater than zero are provided.  

Maximums are bolded. 
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These results provide evidence that LDA models of chat data must use 

both classes of data in order to provide sample distributions of unseen 

documents suitable for use as feature vectors for SVM classification systems, as 

the experiments in the first subset performed much worse than those in the 

second subset.  Figure 11 shows the trend of increasing average F-scores with 

increasing slack values across kernel types.  However promising these results 

may be, in general, the classifiers showed a strong bias for the negative class.  

Of the 1,200 classifiers built, 889 classified all the documents as all-ages-chat, 

and 44 classifiers misclassified only one of the all-ages-chat documents.     

 

Figure 11.   This figure demonstrates the increase average values of F-score with 
an increase in the slack value for three of the four kernel types.  The 
polynomial kernel (not displayed) did not attained F-scores over zero. 
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The best performing classifier in this experiment set achieved an F-score 

of 0.906, Recall of 0.843, and Precision of 0.986.  Table 7 provides the 10 best 

performing classifiers based on average F-score.  Five of the ten top-performing 

classifiers had linear kernels, their slack variables ranged from 1024 to 16384.   

Kernel Slack F‐Score Recall Precision

Linear 2048 0.906 0.843 0.986

Linear 4096 0.906 0.843 0.986

Linear 16384 0.906 0.843 0.986

Radial 16384 0.906 0.843 0.986

Linear 1024 0.905 0.839 0.990

Radial 8192 0.905 0.839 0.990

Sigmoid 16384 0.905 0.839 0.990

Linear 8192 0.904 0.843 0.980

Radial 4096 0.900 0.830 0.990

Sigmoid 8192 0.900 0.830 0.990

Average Performance Parameters for Author Level 

Document Experiments 

 

Table 6.   The Top 10 Best Performing Classifier for Author Level Documents. 

B.  POST LEVEL DOCUMENT TRAINED LDA TO PREDICT PHYSICS 
POSTS EXPERIMENTS RESULTS 

1. Further Setup 

In this set of experiments, individual posts in physics chat room form the 

basis for generating the LDA model and SVM classifier.  We examine the 

classifier’s ability to identify physics related posts from a physics chat room 

amongst posts from the same chat room, but were not about physics.  As noted 

in Chapter III, the physics chat corpus is composed of 7803 posts.  After 

removing the system generated posts, the corpus retrained 4966 post of which 

we removed six of the smallest posts to obtain the correct training and testing 

mixture: 80% training-20% testing.  In the first subset, we train the LDA model 

using only the posts labeled as physics; in the second subset, we use both posts 

hand labeled as physics and posts hand labeled as non-physics. 
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Using the 4960 posts, we split the data into testing and training groups.  

We used 20% for training and 80% for testing.  Within both of these groups, we 

retained a class split of 41.4% physics class to 58.6% non-physics class (this is 

approximately the same as the inherent 41.5% physics class to 58.5% non-

physics class that naturally occurs in the original data set).  Table 7 displays the 

data set configuration for the SVM classifiers for this experiment set.  Table 8 

displays the Mallet, and LIBSVM configurations. 

Author Count Training/Testing Percent Percent of Class1 to Class2

SVM Training Physics Posts
1,2

1644 80% 41.4%

SVM Training Non‐physics post
2

2224 20% 58.6%

SVM Testing Physics Posts 411 80% 41.4%

SVM Testing Non‐physics post 556 20% 58.6%

Notes:

Post Level Experiment Data Set Construction

1. Used to train the LDA model for subset 1

2. Used to train the LDA model for subset 2  

Table 7.   This table shows the data configuration for the Post Level 
Document Experiments. 

Setting 1 Setting 2 Setting 3

Burnin Thinning Iterations

500 50 1000

Kernel Slack Other

Linear 2
‐15
 to 2

15 None

Sigmoid 2
‐15
 to 2

15

Raidal 2
‐15
 to 2

15

Polynomial 2
‐15
 to 2

15

Gibbs Sampling

SVM

Post Level Document LDA and SVM Configuration

LDA  0.01  50 / T  16k 

1/ k 

1/ ,  0,  3k r d   

1/ ,  0k r  
 

Table 8.   This table shows the configuration of LDA, Gibbs Sampling and the 
SVM model used in constructing the classification system for the Post 

Level Document Experiments. 

2. First Subset Results  

In the first subset, we created SVM classifier varying the settings of kernel 

and slack variables for 10 random samples of the data, resulting in 1,200 distinct 
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classifiers.  The classifier performance from these experiments shows limited 

ability to distinguish physics posts from non-physics posts.  Figures 12, 13 and 

14 display the classifier F-scores by slack value.  They are arranged by linear, 

radial, and sigmoid kernels respectively.  Each figure includes the maximum, 

minimum, and average F-scores.   
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Figure 12.   Post Level Document SVM Classifier F-scores by Slack Value:  
Linear kernel.  

Figure 12 shows that the linear kernel performance is highly dependent on 

the particular sample used for the experiment.  The minimum F-score line 

remains zero for all slack values, indicating that there was at least one random 

sample that yielded a classifier that could not identify a single physics post level 

document.  In fact, a random sample that creates an F-score greater than zero is 

the exception. This pattern holds for the radial and sigmoid kernels as well. 
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Figure 13.   Post Level Document SVM Classifier F-scores by Slack Value: Radial 
kernel.  
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Figure 14.   Post Level Document SVM Classifier F-scores by Slack Value: 
Sigmoid kernel. 
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Although, these results are rather low, the classifiers performed better 

than the author level document experiments whose LDA models were created 

with only one class.  This may have been caused by the more equitable mixture 

between the positive and negative classes (41.4% - 58.6% for posts; and 90% - 

10% for authors).  It may have also been a result of using data from two radically 

different sources.  That is, in the author level document experiments we used 

authors in a physics chat room and compared them to the posts of authors in 

several different socially oriented chat rooms.  While in the post level document 

experiments, we used posts that came from the exact same chat room.   

On the other hand, it may be the case that post level documents have 

characteristics that are more discriminating than the collective posts of an 

individual author, e.g., an author is more “noisy” than any one of his or her posts.  

This experiment subset also shows a general trend of increasing F-score 

performance as the slack value is increased, regardless of the kernel type.  Table 

9 shows all of the non-zero average performance metrics for the linear, radial 

and sigmoid kernels.  Figure 15 combines the average F-scores of linear, radial 

and sigmoid kernels. 
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Kernel Slack F‐score Recall Precision TP TN FP FN

64 0.010 0.005 0.071 2.2 555.1 0.9 408.8

128 0.034 0.018 0.193 7.6 551.9 4.1 403.4

256 0.042 0.024 0.285 9.9 550.5 5.5 401.1

512 0.049 0.028 0.250 11.4 549.5 6.5 399.6

1024 0.049 0.028 0.250 11.4 549.5 6.5 399.6

2048 0.050 0.028 0.252 11.7 549.5 6.5 399.3

4096 0.050 0.028 0.249 11.6 549.4 6.6 399.4

8192 0.050 0.028 0.249 11.6 549.4 6.6 399.4

16384 0.050 0.028 0.249 11.6 549.4 6.6 399.4

512 0.015 0.008 0.270 3.2 554.9 1.1 407.8

1024 0.035 0.020 0.190 8.1 551.5 4.5 402.9

2048 0.048 0.027 0.351 11.2 549.7 6.3 399.8

4096 0.058 0.032 0.376 13.3 548.3 7.7 397.7

8192 0.093 0.053 0.602 21.7 544.3 11.7 389.3

16384 0.124 0.072 0.613 29.7 541.4 14.6 381.3

1024 0.015 0.008 0.270 3.2 554.9 1.1 407.8

2048 0.035 0.020 0.190 8.1 551.5 4.5 402.9

4096 0.045 0.025 0.249 10.4 550.1 5.9 400.6

8192 0.049 0.028 0.250 11.4 549.5 6.5 399.6

16384 0.050 0.028 0.252 11.7 549.5 6.5 399.3

Average Performance Parameters for Post Level Document Experiments 

LDA Trained on One Class

Linear

Radial

Sigmoid

 

Table 9.   Average Performance metrics: Post Level Document 
Experiments—LDA trained on one class.  Maximum for each kernel type is 

bolded. 
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Figure 15.   Average F-score by Slack Value: Post Level Documents—LDA trained 
on One Class. 
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3. Second Subset Results  

The second subset of the post level document experiment set included 

both classes to create the LDA model.  It performed better than the first subset.  

We used the same random samples, slack and kernel settings used for subset 

one, again creating 1,200 distinct classifiers.  In general, the classifiers in this 

subset out-performed those in the previous subset.  The best performing 

classifier used a linear kernel with a slack value of 16384.  It obtained an F-score 

of 0.481, precision of 0.375, and recall of .677.  This maximum performance is 

better than the previous experiment subset.  Table 10 records the average 

values of each classifier whose average F-score is greater than zero.  
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Kernel Slack Recall Precision F‐Score TP TN FP FN

8 0.054 0.029 0.705 11.9 553.3 2.7 399.1

16 0.315 0.205 0.732 84.4 523.9 32.1 326.6

32 0.421 0.302 0.702 124.3 502.7 53.3 286.7

64 0.449 0.333 0.695 137 495.5 60.5 274

128 0.465 0.352 0.688 144.8 490 66 266.2

256 0.474 0.365 0.684 149.9 485.9 70.1 261.1

512 0.477 0.368 0.684 151.3 485.5 70.5 259.7

1024 0.479 0.373 0.678 153.4 481.9 74.1 257.6

2048 0.479 0.373 0.677 153.5 481.7 74.3 257.5

4096 0.481 0.375 0.677 154.1 481.6 74.4 256.9

8192 0.480 0.375 0.676 154.1 481 75 256.9

16384 0.480 0.374 0.677 153.9 481.5 74.5 257.1

32 0.001 0.000 0.100 0.2 556 0 410.8

64 0.126 0.071 0.709 29.3 546.4 9.6 381.7

128 0.359 0.243 0.710 99.8 514.7 41.3 311.2

256 0.430 0.313 0.699 128.5 500.2 55.8 282.5

512 0.454 0.340 0.690 139.8 492.9 63.1 271.2

1024 0.467 0.357 0.686 146.6 488.2 67.8 264.4

2048 0.474 0.364 0.685 149.6 486.6 69.4 261.4

4096 0.476 0.367 0.681 151 484.8 71.2 260

8192 0.476 0.368 0.681 151.1 484.7 71.3 259.9

16384 0.478 0.370 0.682 152 484.4 71.6 259

64 0.001 0.000 0.100 0.2 556 0 410.8

128 0.126 0.071 0.709 29.3 546.4 9.6 381.7

256 0.359 0.243 0.710 99.7 514.8 41.2 311.3

512 0.431 0.313 0.700 128.7 500.2 55.8 282.3

1024 0.454 0.340 0.690 139.8 492.9 63.1 271.2

2048 0.469 0.358 0.685 147.3 487.6 68.4 263.7

4096 0.475 0.366 0.685 150.5 486 70 260.5

8192 0.477 0.369 0.681 151.8 484.1 71.9 259.2

16384 0.479 0.373 0.677 153.2 481.9 74.1 257.8

Linear

Average Performance Parameters for Post Level Document Experiments 

LDA Trained on Two Classes

Radial

Sigmoid

 

Table 10.   Average Performance Parameters Results: Post Level Document 
Experiments—LDA Trained on Two Classes 

While, these set of experiments perform better than the previous subset, 

they fail to outperform their author level document analog.  In fact, the F-score 

values are approximately half for each corresponding setting of kernel and slack 
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value.  This may be due difference class mixtures.  It may have been caused by 

the fact that the physics authors chat was compared to all-ages-chat, which from 

a completely different set of chat rooms, while the physics posts and non-physics 

posts came from the same chat room making them more difficult to distinguish 

from one another.  

C.  TEXTBOOK AND AUTHOR LEVEL DOCUMENT TRAINED LDA TO 
PREDICT PHYSICS AUTHORS EXPERIMENTS RESULTS 

1. Further Setup 

In this set of experiments, we examined the classifier’s ability to identify 

authors discussing physics from authors discussing socially oriented topics after 

training the LDA topic model on the textbook paragraph level documents.  In the 

first subset, the LDA model was created using the textbook paragraphs.  The 

SVM model was then trained and tested using the same author level documents 

as used in the first experiment set.  In the second subset, the all-ages-chat 

author level documents are combined with the textbook paragraph documents for 

LDA model creation. 

Table 11 displays the data set configuration for the SVM classifiers for this 

experiment set.  Table 12 displays the Mallet, and LIBSVM configurations. 

Author Count Training/Testing Percent Percent of Class1 to Class2

LDA Training Set 488 Textbook N/A N/A

SVM Trianing Physics Authors 201 90% 10%

SVM Trianing All‐ages‐chat
1

1809 10% 90%

SVM Trianing Physics Authors 23 90% 10%

SVM Trianing All‐ages‐chat 207 10% 90%

Textbook and Author Document Level Experiment Data Set Construction

1. Used to train the LDA model for the second subset  

Table 11.   This table shows the data configuration for the Textbook and 
Author Level Document Experiments. 
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Setting 1 Setting 2 Setting 3

Burnin Thinning Iterations

500 50 1000

Kernel Slack Other

Linear 2
‐15
 to 2

15 None

Sigmoid 2
‐15
 to 2

15

Raidal 2
‐15
 to 2

15

Polynomial 2
‐15
 to 2

15

Text Paragraph Level Document LDA and SVM 

Configuration Author Level Documents

LDA 

Gibbs Sampling

SVM

0.01  50 / T  15k 

1/ k 

1/ ,  0,  3k r d   

1/ ,  0k r    

Table 12.   This table shows the configuration of LDA, Gibbs Sampling and the 
SVM model used in constructing the classification system for the Textbook 

Paragraph and Author Level Document Experiments. 

2. First Subset Results 

The classifiers in the first subset of these experiments failed to identify a 

single positive class author document; instead, it classified each document as an 

all-ages-chat document.  No table is provided for these results.   

3. Second Subset Results 

The second subset, however, performed better.  Table 13 shows the 

average major performance metrics for classifiers that obtained F-scores greater 

than zero.  The best performing classifier used a linear kernel with a slack value 

of 16384.  It obtained an F-score of 0.848, recall of 0.800, and precision of 0.909.  

This maximum performance is better than the previous experiment subset.  Table 

13 records the average values of each classifier whose average F-score is 

greater than zero. 
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Kernel Slack F‐score Recall Precision TP TN FP FN

Linear 16 0.150 0.087 0.700 2 207 0 21

Linear 32 0.682 0.530 0.987 12.2 206.8 0.2 10.8

Linear 64 0.792 0.678 0.959 15.6 206.3 0.7 7.4

Linear 128 0.805 0.717 0.923 16.5 205.6 1.4 6.5

Linear 256 0.833 0.765 0.918 17.6 205.4 1.6 5.4

Linear 512 0.831 0.770 0.909 17.7 205.2 1.8 5.3

Linear 1024 0.839 0.783 0.911 18 205.2 1.8 5

Linear 2048 0.841 0.791 0.903 18.2 205 2 4.8

Linear 4096 0.838 0.791 0.899 18.2 204.9 2.1 4.8

Linear 8192 0.841 0.796 0.898 18.3 204.9 2.1 4.7

Linear 16384 0.848 0.800 0.909 18.4 205.1 1.9 4.6

Radial 128 0.178 0.104 0.800 2.4 207 0 20.6

Radial 256 0.698 0.548 0.987 12.6 206.8 0.2 10.4

Radial 512 0.795 0.683 0.960 15.7 206.3 0.7 7.3

Radial 1024 0.820 0.739 0.925 17 205.6 1.4 6

Radial 2048 0.827 0.761 0.913 17.5 205.3 1.7 5.5

Radial 4096 0.831 0.770 0.910 17.7 205.2 1.8 5.3

Radial 8192 0.839 0.783 0.911 18 205.2 1.8 5

Radial 16384 0.841 0.791 0.903 18.2 205 2 4.8

Sigmoid 256 0.178 0.104 0.800 2.4 207 0 20.6

Sigmoid 512 0.698 0.548 0.987 12.6 206.8 0.2 10.4

Sigmoid 1024 0.795 0.683 0.960 15.7 206.3 0.7 7.3

Sigmoid 2048 0.820 0.739 0.925 17 205.6 1.4 6

Sigmoid 4096 0.827 0.761 0.913 17.5 205.3 1.7 5.5

Sigmoid 8192 0.831 0.770 0.910 17.7 205.2 1.8 5.3

Sigmoid 16384 0.839 0.783 0.911 18 205.2 1.8 5

Average Performance Parameters for Textbook and Author Level Document Experiments 

LDA Trained on Two Classes

 

Table 13.   Average Performance Parameters Results: Textbook and Author 
Paragraph Level Document Experiments—LDA Trained on Two Classes 

Table 13 highlights some interesting differences between the classifiers 

produced by LDA models created by positive and negative class author 

documents as opposed to those created by the textbook and the author negative 

class.  Although the physics author trained classifiers performed better than the 

textbook-trained classifier, the difference between the two in most cases is less 

than 10%.  Figures 16, 17, and 18 highlight this observation.  
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Figure 16.   Classifiers Results: LDA Models Created by Textbook-Author 
Documents and Author-Author Documents—Linear Kernel.   
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Figure 17.   Classifiers Results: LDA Models Created by Textbook-Author 
Documents and Author-Author Documents—Radial Kernel.   
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Figure 18.   Classifiers Results: LDA Models Created by Textbook-Author 
Documents and Author-Author Documents—Sigmoid Kernel.   

These results indicate that there may be some degree of 

interchangeability between the traditional written language domain and the chat 

domain across subjects.   

D.  TEXTBOOK AND POST LEVEL DOCUMENT TRAINED LDA TO 
PREDICT PHYSICS POSTS EXPERIMENTS RESULTS 

1. Further Setup 

In this set of experiments, we examine the classifier’s ability to identify 

posts about physics in a physics chat room after training the LDA topic model on 

the textbook paragraph level documents.  The first subset used no negative class 

for LDA model creation and the second subset used post level documents from 

the non-physics chat posts along with the textbook paragraph documents to 

create the LDA model—the positive class.   

Table 14 displays the data set configuration for the SVM classifiers for this 

experiment set.  Table 15 displays the Mallet, and LIBSVM configurations. 
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Author Count Training/Testing Percent Percent of Class1 to Class2

LDA Training Set 488 N/A N/A

SVM Training Physics Posts 1644 80% 41.4%

SVM Training Non‐physics post
1

2224 20% 58.6%

SVM Testing Physics Posts 411 80% 41.4%

SVM Testing Non‐physics post 556 20% 58.6%

Textbook and Posts Level Documents Experiment Data Set Construction

1. Only used in the second subset of experiments  

Table 14.   This table shows the data configuration for the Textbook Paragraph 
and Post Level Document Experiments. 

Setting 1 Setting 2 Setting 3

Burnin Thinning Iterations

500 50 1000

Kernel Slack Other

Linear 2
‐15
 to 2

15 None

Sigmoid 2
‐15
 to 2

15

Raidal 2
‐15
 to 2

15

Polynomial 2
‐15
 to 2

15

Text Paragraph Level Document LDA and SVM 

Configuration Post Level Documents

LDA 

Gibbs Sampling

SVM

0.01  50 / T  15k 

1/ k 

1/ ,  0,  3k r d   

1/ ,  0k r  
 

Table 15.   This table shows the configuration of LDA, Gibbs Sampling and the 
SVM model used in constructing the classification system for the Textbook 

Paragraph and Post Level Documents Experiments. 

2. First Subset Results  

The first subset of the textbook and post level document experiment set 

performed better than the post level document experiment set, where the LDA 

model was trained on physics posts alone.  Its best performing classifier used a 

radial kernel and had a slack value of 16384.  The F-score was 0.144, had a 

recall of 0.084, and a precision of 0.581.  Table 16 shows the average major 

performance metrics for classifiers that obtained F-scores greater than zero. 
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Kernel Slack F‐score Recall Precision TP TN FP FN

Linear 64 0.000 0.000 0.033 0.1 555.8 0.2 410.9

Linear 128 0.023 0.012 0.390 5.1 552.4 3.6 405.9

Linear 256 0.058 0.033 0.438 13.4 546.6 9.4 397.6

Linear 512 0.091 0.052 0.542 21.4 539.7 16.3 389.6

Linear 1024 0.108 0.062 0.642 25.5 536.9 19.1 385.5

Linear 2048 0.114 0.066 0.604 27.2 535.5 20.5 383.8

Linear 4096 0.118 0.068 0.602 28 535 21 383

Linear 8192 0.119 0.069 0.595 28.3 534.8 21.2 382.7

Linear 16384 0.117 0.067 0.594 27.7 535.1 20.9 383.3

Radial 512 0.001 0.000 0.022 0.2 555.3 0.7 410.8

Radial 1024 0.029 0.016 0.464 6.4 551.2 4.8 404.6

Radial 2048 0.068 0.038 0.590 15.5 545.5 10.5 395.5

Radial 4096 0.100 0.057 0.657 23.5 538.8 17.2 387.5

Radial 8192 0.121 0.070 0.616 28.6 535.9 20.1 382.4

Radial 16384 0.144 0.084 0.581 34.7 530 26 376.3

Sigmoid 1024 0.000 0.000 0.025 0.1 555.7 0.3 410.9

Sigmoid 2048 0.028 0.015 0.364 6.2 551.2 4.8 404.8

Sigmoid 4096 0.061 0.034 0.422 14.1 546 10 396.9

Sigmoid 8192 0.092 0.053 0.543 21.8 539.3 16.7 389.2

Sigmoid 16384 0.110 0.063 0.643 26 536.5 19.5 385

Average Performance Parameters for Textbook and Post Level Document Experiments 

LDA Trained on One Class

 

Table 16.   Average Performance Parameters Results: Textbook and Post 
Paragraph Level Document Experiments—LDA Trained on One Class 

This subset outperformed the post level document experiment set whose 

LDA model was trained solely on the positive class.  Figures 19, 20 and 21 show 

the improvement.  In each case, the F-score nearly doubles. 
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Figure 19.   Average F-score Comparison between Post Level Document 
Classifiers and Textbook Paragraph Level Documents Classifiers.  LDA 

models trained solely on the positive class.  Linear Kernel Average 
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Figure 20.   F-score Comparison between Post Level Document Classifiers and 
Textbook Paragraph Level Documents Classifiers.  LDA models trained 

solely on the positive class.  Radial Kernel 



 71

‐0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5000 10000 15000 20000

F‐
sc
o
re

Slack Value

Average F‐score Textbook and Post 
Level Document ‐ Sigmoid Kernel 

LDA Trained on One Class

Textbook‐Post

Post‐Post

 

Figure 21.   F-score Comparison between Post Level Document Classifiers and 
Textbook Paragraph Level Documents Classifiers.  LDA models trained 

solely on the positive class.  Sigmoid Kernel 

3. Second Subset Results  

It performed better than the first subset.  We used the same random 

samples, slack and kernel settings used for subset one, again creating 1200 

distinct classifiers.  Several classifiers generated the highest obtained F-score. 

Linear, radial and sigmoid kernel classifiers all obtained an F-score of 0.536.  

Table 17 records the average metrics of each classifier whose average F-score 

is greater than zero.  
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Kernel Slack F‐Score Recall Precision TP TN FP FN

4 0.007 0.004 0.088 1.5 555.8 0.2 409.5

8 0.096 0.086 0.712 35.5 526.2 29.8 375.5

16 0.485 0.410 0.639 168.6 451.7 104.3 242.4

32 0.531 0.473 0.620 194.3 432.3 123.7 216.7

64 0.534 0.475 0.620 195.1 432.9 123.1 215.9

128 0.536 0.477 0.618 196.2 431.9 124.1 214.8

256 0.536 0.477 0.618 196 431.8 124.2 215

512 0.534 0.475 0.618 195.3 432.1 123.9 215.7

1024 0.533 0.473 0.619 194.2 433.6 122.4 216.8

2048 0.533 0.472 0.620 194 434.1 121.9 217

4096 0.534 0.472 0.621 194 434.3 121.7 217

8192 0.533 0.471 0.620 193.6 434.1 121.9 217.4

16384 0.534 0.472 0.621 194.1 434.1 121.9 216.9

32 0.013 0.007 0.088 2.8 555.6 0.4 408.2

64 0.128 0.106 0.683 43.5 523.1 32.9 367.5

128 0.497 0.426 0.633 175 446.9 109.1 236

256 0.533 0.475 0.619 195.3 431.3 124.7 215.7

512 0.534 0.475 0.619 195.3 432.6 123.4 215.7

1024 0.536 0.477 0.618 196.2 431.8 124.2 214.8

2048 0.537 0.479 0.618 196.8 431.6 124.4 214.2

4096 0.536 0.477 0.618 196 431.8 124.2 215

8192 0.536 0.475 0.620 195.4 433.3 122.7 215.6

16384 0.534 0.473 0.619 194.6 433.4 122.6 216.4

64 0.013 0.007 0.088 2.8 555.6 0.4 408.2

128 0.128 0.106 0.683 43.5 523.1 32.9 367.5

256 0.497 0.426 0.633 175 446.9 109.1 236

512 0.533 0.475 0.620 195.3 431.6 124.4 215.7

1024 0.534 0.475 0.619 195.1 432.7 123.3 215.9

2048 0.536 0.478 0.618 196.3 431.7 124.3 214.7

4096 0.536 0.478 0.618 196.3 431.6 124.4 214.7

8192 0.534 0.475 0.618 195.3 432.1 123.9 215.7

16384 0.534 0.473 0.620 194.3 433.8 122.2 216.7

Average Performance Parameters for Textbook and Post Level Document Experiments 

LDA Trained on Two Classes

Linear

Radial

Sigmoid

 

Table 17.   Average Performance Parameters Results: Textbook and Post 
Paragraph Level Document Experiments—LDA Trained on Two Classes 

These results were surprising because they were better than the results 

obtained from classifiers whose LDA model were constructed based on post level 
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documents.  Figures 22, 23, and 24 show the difference in average F-scores 

obtained from this subset and the previous experiments that used post level 

documents.  
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Figure 22.   F-score Comparison between Post Level Document Classifiers and 
Textbook Paragraph Level Documents Classifiers.  LDA models trained on 

Two Classes.  Linear Kernel 
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Figure 23.   F-score Comparison between Post Level Document Classifiers and 
Textbook Paragraph Level Documents Classifiers.  LDA models trained on 

Two Classes.  Radial Kernel 
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Figure 24.   F-score Comparison between Post Level Document Classifiers and 
Textbook Paragraph Level Documents Classifiers.  LDA models trained on 

Two Classes.  Sigmoid Kernel 

E. RESULTS SUMMARY 

We have constructed four sets of experiments based on three different 

types of documents: chat posts; the collective posts of authors and; textbook 

paragraphs.  All three were used to construct topic models of physics.  Table 18 

provides a summary of the maximum classifier results for each of the experiment 

sets.  The author level document classifiers with an LDA model trained on two 

classes performed the best, followed by textbook paragraph level documents 

with an LDA model trained on two classes used for classifying authors.  Next, the 

textbook paragraph level documents with an LDA model trained on two classes 

used to classify posts performed well, followed by post level documents with an 

LDA model trained on two classes used to classify other posts.  Lastly, all the 

experiments whose LDA model was trained with one class all performed poorly.  
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Hypothesis Subset F‐score Precision Recall

1
Authors and 
Authors

1 
Positive Class Only

0.124 0.631 0.072

2
Both Classes

0.906 0.986 0.843

2
Posts and Posts

1 
Positive Class Only

0 0 0

2
Both Classes

0.481 0.677 0.375

3
Text and 
Authors

1 
Text Only

0 0 0

2
Text and Negative Authors

0.848 0.909 0.800

4
Text and Posts

1 
Text Only

0.119 0.595 .065

2
Text and Negative Posts

0.536 0.477 0.618

 

Table 18.   Maximum Classifier Average Performance for Each Experiment Set 

We can derive several generalities about the performance of the 

classifiers.  First, in every experiment set the first subset dramatically under-

performed the second subset.  LDA models in the first subset were constructed 

with just the positive class document type.  Second, the polynomial kernel was 

unable to classify a single physics document correctly.  Third, linear, and radial 

kernels generally outperform sigmoid kernels.  The highest performing classifiers 

generally had a linear or radial kernel with slack values 2048 or greater.  

Classifiers created with author level documents were better predictors of  

author documents than post level documents were able to predict other post level 

documents.  Unfortunately, it is difficult to know, whether the higher performance 

is because authors create better models of physics chat or the better 

performance is a circumstance of class mixture, testing-training proportion or the 

difference in source data.  For authors, the positive class was taken from a 

physics chat room from July 2008, and the negative class author documents 

were taken from an entirely different type of chat room, in the previous year.  The 
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data may have been so different that the ability to distinguish them may not have 

been due characteristics other than topic.  Also, the class mixture and testing-

training proportions were quite different between those experiments making it 

difficult to compare author experiments with post level experiments. 

The most interesting results were the post level classifiers built with LDA 

models generated with textbook paragraph documents.  The ability to predict 

post level documents was improved with the use of textbook paragraph LDA 

model construction versus those made entirely from post level document 

exemplars.  Even more interesting is the fact that the same procedure with 

author level documents has the opposite effect—predictability decreased in that 

case.  This may lend credence to two ideas.  First, that the difference in class 

sources, mixture, and testing-training proportions affected the predictability of 

author derived classifiers.  Second, it may demonstrate that creating classifiers 

based on other language modes is a viable way of producing topic classification 

systems.  

Having analyzed the results of our experiments, we now present 

conclusions and a discussion of future work.   
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. TOPIC NUMBER SELECTION FUTURE WORK 

We explored four different types of classification tasks for our research.  

Each of the experiment sets included the construction of 1,200 SVM classifiers.  

We construct LDA models based on different document notions from which we 

derived feature vectors for the SVM classification system.  The first set of 

experiments considered the collective posts of an author as a document.  The 

second set considered an individual post as a document.  The third and fourth 

considered a textbook paragraph as a document. 

For the first type of classifier, we compared the collective posts of 

individual authors in several different socially oriented chat rooms to those in a 

physics chat room.  When we constructed LDA models solely on physics author 

documents, we achieved best average F-scores of zero.  When we trained the 

LDA model on both physics chat and all-ages-chat, we achieved best average F-

scores of 0.906.  

For the second type of classifier, we compared the individual physics 

posts from a physics chat room with non-physics posts from the same chat room.  

When we trained our LDA model solely on those from the physics chat, we 

achieved best average F-scores of 0.124.  When we trained the LDA model on 

both physics chat and non-physics chat, we achieved best average F-scores of 

0.481. 

For the third type of classifier, we compared the topics generated from 

physics textbook paragraphs to author level documents.  We first constructed the 

LDA models solely on physics textbook paragraphs, resulting in best average F-

scores of zero.  When we trained the LDA model on both physics textbook 

paragraphs and all-ages-chat, we achieved best average F-scores of 0.848. 

For the fourth type of classifier, we compared the topics generated from  

physics textbook paragraphs to posts about physics from a physics chat room.  
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We first constructed LDA models solely on the physics textbook paragraphs, 

resulting in best average F-scores of 0.144.  When we trained the LDA models 

on both physics textbook and non-physics posts, we achieved best average F-

scores of 0.536. 

From these results, we conclude the following things.  First, when 

constructing LDA models for classification systems based on sampled 

distributions, always include documents from both classes.  Second, even just a 

cursory use of SVM classifiers yields reasonably good results when using LDA 

sampled distributions as feature vectors across multiple kernels.  Third, the 

polynomial classifier in this case performed the worst; however, this may be due 

to the simplistic settings of its parameters that we selected.    

It would seem that detecting physics chat at the author level is reasonably 

attainable given a large enough portion of known positive chat exemplars.  It may 

be the case that the classifiers are identifying the general “speak” of a chat room 

rather than topics being discussed.  It is clear that correctly classifying physics 

posts is a truly challenging endeavor, and using a physics textbook to train the 

LDA model may indeed improve the situation. 

Overall, these are good first steps, but leave much room for future work. 

B. FUTURE WORK 

For each of these experiments there is much space to explore with regard 

to grooming the data, constructing the LDA models, and configuring SVM 

classifiers.  First, the SVM model should be explored without creating feature 

vectors based on the LDA model.  LDA leveraged experiments should be 

conducted that predict post level documents after training on author level 

documents.  In addition, research should include testing different stop word lists 

and text augmentation.  Our experiments removed stop words provided by 

Mallet.  There may be improved results were stop words tailored for chat.  

Techniques employed by Wang [19] and Adams [13] ought to be employed to 

augment the chat text.     
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The LDA model should be tested with various values of k ,   and   .  

The SVM classifier should be configured with different parameters for different 

kernels used.  In particular, the polynomial kernel should be tested with various 

values of   and r .  Additionally, kernels more suitable for probabilities such as 

those proposed by You et al., which utilize KL and Bhattacharyya distances, 

should be constructed [31] and tested.  In order to test the generalness of this 

methodology, topics other than physics should be explored.  For physics, 

different textbooks as well as different physics chat rooms should be used as 

source data.   

Finally, we propose using physics texts as augmentation for the LDA 

model.  In our experiments involving the textbook, we use it to replace the 

positive class.  In future experiments, using it in addition to the positive class 

should be considered.  
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