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ABSTRACT 

Recently, a great deal of attention has been given to the use of Massively 

Multiplayer Online Games (MMOGS) for both gaming and military applications. The 

revenue generated by MMOGs and the effect that they have on the network infrastructure 

has resulted in significantly more developmental resources being applied to commercial 

MMOG technology than for military distributed virtual (DVE) development. All DVEs 

share a common set of characteristics, and additional requirements exist for the 

interoperability of military DVEs. It is possible to exploit these similarities to take 

advantage of developments in the supporting technologies of commercial MMOGs.  

Specific capabilities of interest include scalability for large numbers of players, 

capacity for large amounts of network traffic, portability across operating systems, and 

adaptability to connect diverse codebases, network protocols, and data formats. Project 

Darkstar is a Sun Labs research project that has developed an open-source middleware 

for MMOGs. This thesis has produced and tests a MMOG server, which interconnects 

heterogeneous simulators in a DVE using the Project Darkstar middleware and locally 

developed network gateways. The performance of the system and the character of the 

network traffic it generates are analyzed. Initial test results warrant further development 

and eventual deployment.   
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I. INTRODUCTION 

A. PROBLEM AND THESIS STATEMENT 

Throughout the history of games, there has been interplay between gaming for 

military purposes and gaming for entertainment purposes (Smith, 2009; Zyda, 1997). 

Attention has lately been directed towards finding military applications for Massively 

Multiplayer Online Games (MMOG) (Bonk & Dennen, 2005). MMOGs continue to be 

one of the fastest growing segments of the computer game market. Typically, the 

commercial MMOG environment is dominated by role-playing games (RPG). This is a 

function of the economics of commercial MMOG development, sales and operation. 

There is nothing inherent in MMOG architecture that requires them to be RPGs. The 

inherent characteristics of MMOGs are scalability, persistence, and a consistent world 

state.  

For purposes of this thesis, the term Distributed Virtual Environment (DVE) is 

used to mean a scalable, virtual environment that enforces to some degree a common 

world state for all clients independent of a specific session. Several important questions 

relate to use of MMOG technology in military simulations. What state information needs 

to be made available to participants in this environment? Is it possible to leverage the 

investment in existing simulators by adapting them to function as the user-interface for a 

persistent virtual environment? Can improved performance or additional functionality be 

gained by using Distributed Interactive Simulation (DIS) protocol and MMOG hybrid 

architecture? These questions are examined in this thesis.  

B. MOTIVATION 

The military and business communities have long noted the potential for 

simulation and gaming technology to develop high-order thinking skills. It has been 

suggested that certain skills gained and practiced by gamers in multiplayer online gaming 

environments closely parallel those required by teams of operators interacting in the real 

world. This analogy might be pushed even further to that of a military transforming to 



 2

operate under the concept of network-centric warfare. A DVE that is able to maintain an 

objective state independent of whether any participants are connected to it may lend itself 

to medium-term and long-term virtual exercises. Sufficient scalability is needed to allow 

large numbers of participants. The growth and popularity may mean that technology to 

facilitate development and operation of DVE for military applications might be made 

rapidly available by taking advantage of the competition within the gaming industry.  

It is important to note that a DVE and an MMOG are not necessarily the same. By 

way of distinction, a game may be described as a real-time system having actors, goals, 

rules, feedback in the form of a score, and some sort of plot or scenario. A DVE as 

described here may only possess some of these characteristics. A DVE intended to be 

used for training and experimentation may only need to support hundreds of participants, 

not the tens or hundreds of thousands of linked players that commercial MMOGs must 

support in order to be economically viable. Given the scope of today’s problems of 

interest, however, hundreds of participants are hardly “Massive.” Explicit user interaction 

within a DVE is usually defined at the client level by the application interface. Such 

interaction can range from text messages from a mobile phone to immersive stereo and 

data gloves in a 3D virtual world.  

Currently, the IEEE Distributed Interactive Simulation (DIS) network protocol is 

widely used to enable interoperability for distributed simulation in military applications. 

In order to deliberately move from known to projected DVE capabilities, this thesis work 

first takes advantage of the rich set of DIS-enabled X3D models provided by the online 

Scenario Authoring and Visualization for Advanced Graphical Environments (Savage) 

and For Official Use Only (FOUO) SavageDefense model archives. The ongoing 

production of agent-based and robot-based models that are completely visualized using 

X3D provides a large and growing set of exemplars. Prior thesis work comparing 

prominent DVEs (Sanders, 2008) provides a good summary of baseline capabilities. 

Relevant thesis work regarding metadata for distinguishing entities is SAVAGE 

Modeling and Analysis Language (SMAL) (Rausch, 2006). 
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It is also possible to develop a local DIS interface to the SH-60B MRT3 training 

device and other simulations that enable communication with a persistent virtual 

environment. Such an interface is developed, described and demonstrated in this thesis. 

This proof of concept demonstrates that any real-time training or tactical device, which 

uses DIS for interoperability, is also able to participate in the DVE.  Additional data 

formats and network protocols with semantically similar information can be then as 

added as connections to this MMOG server. 

C. SCOPE OF THE THESIS 

The thesis is limited to an exploration of the requirements for a DVE to support 

distributed training and experimentation. This requirements set is used to develop a 

recommended architecture for such a DVE. A small-scale DVE is developed using 

Project Darkstar® as middleware. Lessons learned from this demonstration are then used 

to develop a DVE, which is capable of supporting four or more separate and remote 

generic devices. Local (client) interfaces are created for the SH-60B MRT3 and a 

commercial desktop based flight simulator. A visualization of the environment state is 

constructed using the X3D Graphics open standard for defining and communicating real-

time, interactive 3D content.  Test results are added to the Savage model archives and 

software extensions are added to the online open-source Open-DIS codebase.  Finally, the 

overall system is demonstrated and a performance test of the system scalability is 

conducted. 

D. THESIS ORGANIZATION 

The remainder of this thesis is organized as follows. 

1. Chapter II: Background 

This chapter provides a general functional description of distributed virtual 

environments with a focus on enabling interoperability and interactivity for distributed 

participants. Existing standards for distributed interactive applications are briefly  
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examined and an argument is presented for the relevance of research, which seeks to 

apply MMOG architectures, and middleware to military distributed virtual environments 

(DVEs).  

2. Chapter III: Related Work  

This chapter examines previous work specifically related to alternative 

architectures for distributed virtual environments including MMOGs and application 

middleware. This chapter also presents an overview of the existing Modeling & 

Simulation (M&S) applications used as test cases for the implementation portion of this 

work. 

3. Chapter IV: Methodology 

Details of the implementation choices relevant to this DVE-construction work are 

presented here. In addition to implementation of an MMOG server, the use of 

heterogeneous simulation applications required the construction of several gateways. 

Development of an open-source gateway for a high frame-rate commercial flight 

simulator is also presented. Since a virtual environment is not complete without 

visualization, the implementation of a graphical reflection of the virtual environment state 

using open-source, open-standards tools is presented. Methods for measuring the 

performance of the system architecture are also given. 

4. Chapter V: Results, Performance and Behavior 

Quantitative and qualitative system performance is presented in this chapter. 

Software profiling data of the server under different loads is presented as well as network 

analysis of the communication between the server and a client simulator. 

5. Chapter VI: Conclusions and Recommendations 

Based upon the insight gained from this work, conclusions are presented on the 

feasibility of using MMOG architecture for a military distributed virtual environment. In 

addition to the functionality demonstrated in this work, several other useful capabilities  
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may be gained with this hybrid architecture. This work is expected to serve as the 

foundation for a dedicated Massively Multiplayer Online (MMO) service hosted at the 

Naval Postgraduate School. 
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II. BACKGROUND 

A. INTRODUCTION 

The DoD pioneered the use of Distributed Virtual Environments (DVEs) for the 

training of large numbers of heterogeneous interacting units with the development of 

Simulator Networking (SIMNET). The design choices made for SIMNET sill heavily 

influence the development of DVEs today. Whether they are complex networks of 

military training devices or entertainment services such as Massively Multiplayer Online 

Games (MMOGs), all DVEs share a common set of features. One key feature is the 

ability of each participant to have a shared sense of state of the environment. Due to some 

fundamentally difficult characteristics of heterogeneous distributed systems, assuring 

success is an inherently complex and demanding task. The growth of commercial 

MMOGs means that significant resources outside of the DoD are being invested and 

applied to addressing similar challenges, and the technology in the MMOG sector will 

continue to develop more rapidly than the corresponding technology in the defense 

sector. It may therefore be possible to take advantage of this development with DVE 

architectures that are hybrids of current standards and emerging technologies. 

B. DISTRIBUTED VIRTUAL ENVIRONMENTS  

The scenario is dramatic. The group of tanks swiftly moves cross-country to cut 

off the opposing armored column. It is late afternoon but the overcast and the dust reduce 

visibility to almost nighttime conditions. The tank commander in the lead vehicle peers 

through his night vision scope trying to make out the shapes on the distant rise ahead. A 

quick verbal command to the gunner and the turret slews right. There, just moving from 

behind an earthen revetment is definitely a tank, no three tanks. He calls out a sighting 

report as the gunner prepares to fire. Soon the rest of the regiment would follow. The 

Battle of “73 Easting” had begun. 
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The above vignette is directly relevant to the subject of distributed virtual 

environments because one of the first successful distributed virtual environments (DVE), 

SIMNET, was used to augment the training of the 2nd Armored Cavalry Regiment 

soldiers that fought in that one-sided battle on February 26, 1991. The SIMNET 

infrastructure was also used to recreate the battle for purposes of visualization and 

analysis after the fact (Figure 1). The architectural and conceptual decisions made for the 

implementation of SIMNET still heavily influence the development of DVEs today 

(Lenoir, 2003; Miller & Thorpe, 1995). A functional definition is needed for the term 

distributed virtual environment, identifying the primary factors, which constrain their 

scale and consistency. 

 

Figure 1.   (left) SIMNET vehicle simulators at Fort Knox, KY. (right) SIMNET 
screenshot From Bruce Sterling's “War is Virtual Hell,” (From: Sterling, 
1993). 

Military operations by their nature involve many heterogeneous interacting units. 

Historically, due to system complexity and hardware costs, as well as the benefits gained 

by collective training, the military has been the leading pioneer in the development of 

distributed virtual environments (Miller & Thorpe, 1995). As hardware performance has 

improved to the point where even desktop computers can outperform the expensive 

purpose-built systems of only a few years ago, and as relatively high-bandwidth network  
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infrastructure has become ubiquitous beyond the military domain, the commercial game 

industry (with some significant caveats) is now leading the development of DVE 

architectures (Smith, 2009; Narayanasamy et al., 2006). 

Regardless of whether the system is a tool for combined arms training such as 

SIMNET or a Massively Multiplayer Online Game (MMOG) such as World of 

Warcraft®, all DVEs can be described as a system, which possesses the five following 

features. 

• A shared sense of space: All participants have the illusion of being in 
some physical relation to one another whether adjacent or across a field. 

• A shared sense of presence: Participants take on a persona or avatar when 
they enter and interact within this environment. The avatar is not 
necessarily a human. 

• A shared sense of time: Some degree of real-time interaction and temporal 
consistency must occur. 

• A way to communicate: Voice or message transmission among 
participants adds a necessary sense of realism to any simulated 
environment. 

• A way to share: The ability to interact with other participants in the 
environment includes the ability to have a shared state of the environment 
itself (Singhal & Zyda, 1999). 

In addition, four basic components are required to implement a DVE.  

• Graphics engines and displays 

• Communications and control devices 

• Processing Systems 

• Data Network (Singhal & Zyda, 1999). 

As a distributed computer system, at its most abstract a DVE is a system for 

passing messages between computers over a network. DVE designers and developers 

must cope with the challenges of managing network resources, dealing with concurrency, 

and compensating for the variability in the transport of network traffic (Diehl, 2001). In 

an idealized shared virtual environment, all participants need to have completely up-to-

date knowledge of the environment state and also need to interact with the environment  
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and other participants in a natural and seamless manner. As a specific example, if 

participant A picks up an object, participant B (within the limits of human or game 

perception) needs to have knowledge of this change of environment state.  

Network latency is defined as the amount of time required to transfer a data 

message from one point to another. In a Local Area Network (LAN), this is on the order 

of 10 milliseconds (ms). It is on the order of 100 ms for transcontinental transfer and 250 

to 500 ms for intercontinental transfer (Pullen, 2000; Singhal & Zyda, 1999). The 

theoretical lower limit is based on the speed of light, approximately 10 ms per time zone. 

Due to network latency and processing delays, it is theoretically impossible to have a 

highly dynamic shared state and high consistency at the same time. This is referred to as 

the consistency-throughput tradeoff. 

Consistency-Throughput Tradeoff: It is impossible to allow dynamic 
shared state to change frequently and guarantee that all hosts 
simultaneously access identical versions of that state. (Singhal & Zyda, 
1999) 

Consistency in this context is best defined as information uniformity among the 

parts of a complex system. Throughput is the rate at which such shared state is updated. 

While graphics engines and computer processing may impose some constraint on how 

quickly updates to shared state may be displayed, it is the architecture of the DVE and the 

characteristics of the network itself that is primarily the cause of the consistency-

throughput tradeoff (Singhal & Zyda, 1999; Pelligrino & Dovrolis, 2003; Tannenbaum & 

Steen, 2002). 

In general, DVEs place a significant demand on network resources. Without 

modification, the original SIMNET architecture would require 375 Mbps of network 

bandwidth for 100,000 players (Macedonia, 1995). Modern MMOGs, which are 

relatively sparse with the amount of data that is exchanged in each message, still require 

approximately 2-3 Kbps of bandwidth per player (Chen et al., 2005). This is actually 

comparable to the bandwidth per participant required for military DVEs (Keune & 

Coppock). Commercial and military DVE developers face similar challenges and 

consequentially are forced to consider similar solutions. 
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Most commercial distributed virtual environments use a client-server architecture 

in order to maintain authority over the interactions between participants (Hall & Novak, 

2008; IGDA, 2004; Bogojevic & Kazemzadeh, 2003). This includes administrative 

interactions such as authentication and session matchmaking, or simulation interactions 

such as collision detection and combat resolution. The server manages the current state of 

the entire world. A client sends an update to the server, which propagates it to all other 

clients. When all communication is via the server, the server is a potential bottleneck. In 

peer-to-peer architectures, every client has a partial copy of the state of the world. If 

something changes, the client has to send this change to all other clients. Client-server 

and peer-to-peer are the extremes of the spectrum of possible architectures (Figure 2). For 

large flexible virtual worlds, hybrids are often more appropriate (Hsu et al., 2003; Diehl, 

2001). 

 

 

Figure 2.   Topologies of Distributed Virtual Environments. In practice, hybrid 
topologies are often used for large DVEs in the military domain. (From: Hsu 
et al., 2003) 

The basic functional characteristics of a distributed virtual environment have been 

examined. One of the primary components, the network infrastructure, is generally 

beyond the direct control of the developer. The consequence is a fundamental limitation 

on a DVEs capability as described by the consistency-throughput tradeoff. Generic 

architectures for managing consistency and throughput usually have common 

architectural designs. 
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C. LEVERAGING THE DEVELOPMENT OF MASSIVE MULTIPLAYER 
ONLINE GAMES (MMOGS) FOR DISTRIBUTED SIMULATION 

A massively multiplayer online game (MMOG) is a distributed virtual 

environment (DVE) in which a large number of people can participate simultaneously 

over a network, interact with each other (and usually interact with the game world), join 

in or leave at any time and expect everything they have produced to persist while they are 

offline (Hall & Novak, 2008). Applications may vary from simple text-based Multi-User 

Dungeons (MUDs) to visually rich role-playing games. Both extremes meet the 

functional requirements of a DVE that were presented above. While there has always 

been interest in the cognitive and social dynamics of participant interaction within shared 

virtual environments, recently there has been an explosion in academic and commercial 

interest regarding the development of both the technology to enable these environments 

and the content to make them viable (Bonk & Dennen, 2005). The rapid growth in the 

number of subscribers has consequences that extend beyond the aesthetic value or social 

implications of interacting with large numbers of other participants. Commercial MMOG 

development is being driven fundamentally because of the fact that when they are 

successful, they can be much more profitable than single-player computer games (Hall & 

Novak, 2008). As the number of subscribers grows (Figure 3), there is a corresponding 

push to develop the technology required to manage the large numbers of participants 

within individual environments, corresponding efforts are also needed to manage the 

significant and growing impact that the message traffic of these game has on the internet 

infrastructure. Developers of DVEs for military applications must both carefully watch 

both trends and actively participate in this process of innovation. 

For a premier single-player computer game to be profitable, where development 

costs range from $15 to $20 million, 500,000 unit sales is the minimum needed. Some 

have argued that the computer game market can no longer support development of more 

than a few such titles (Deering, 2009). Even though first-class MMOGs may cost more to 

develop, often they can become profitable at only 250,000 unit sales. MMOGs can also 

lose much more money because of the infrastructure cost of supporting the game (Hall & 

Novak, 2008). Per-subscriber revenue for commercial MMOGs averages between $9.95 a 
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month and $12.95 a month (Tay, 2005; IGDA, 2004). A naïve analysis shows that an 

MMOG that maintains an average of 250,000 subscribers over five years will generate on 

the order of $150 million in revenue. Extremely successful MMOGs like World of 

Warcraft® might generate this amount of revenue in a few months (Lent, 2008). The cost 

of operating and updating this ongoing service must also be factored into the budget 

equation. Arguably, this post-sale revenue potential is the key economic factor, which is 

driving the development of MMOG technology. 
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Figure 3.   MMOG Active Subscriptions: (http://www.mmogchart.com). This shows 
the growth of MMOGs and the dominance of the top six. (From: Woodcock, 
2008) 

As the number of subscribers grows rapidly, it follows that the number of 

simultaneous users will grow as well. In general, distributed virtual environments place 

great demands on network resources, and such demands are expected to increase 

(Claypool, 2005). For example, Gamania, a Taiwanese company that operates the game 

Lineage, owns more than 4,000 Mbps of dedicated links for game traffic (Chen et al., 
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2005). This imposes a cost on the providers of MMOGs and has an impact on other users 

of the network. This is a real constraint on the growth potential of these environments. As 

has been discussed, the Internet, while generally extremely successful at scaling up to a 

global sized system, was not designed with distributed virtual environments in mind. As 

these games grow, they are likely to have an influence on the way that network 

infrastructure develops.  

The development software required to implement such games has followed a 

traditional arc, from closed and proprietary software tied to a single game, to commercial 

toolkits decoupled from a specific game, to multiple, disparate open-source 

implementations. As the segment further develops, a nascent standardization and 

interoperability effort is beginning to coalesce in the Internet Engineering Task Force 

(IETF) space (MMOX Wiki), primarily around architecture closely related to Linden 

Labs’ Second Life. The maturation of the commercial MMOG market creates an 

opportunity for the DoD. If a viable, standards-based community develops around 

MMOGs, the DoD may be able to piggyback off this effort and exploit the economies of 

scale, commercial tools, and base of experienced engineers produced by the commercial 

game industry (Bonk & Dennen, 2005). However, this opportunity must be balanced 

against the requirements of a large installed base of legacy M&S software. 

D. ENABLING INTEROPERABILITY IN DISTRIBUTED VIRTUAL 
ENVIRONMENTS 

Interoperability is the ability to connect simulation clients together such that those 

clients can operate on a perceived shared virtual environment (Zyda, 2005). A useful 

distributed virtual environment needs to enable heterogeneous hardware and software 

applications to participate in the environment. This is especially critical for military 

DVEs since there has been a great deal of investment made in hardware and software 

without consideration to DVE interoperability. Subsequently, much effort has been 

expended to enable interoperability in order produce a common synthetic environment 

(Page, 2002). This section examines both the syntactic and semantic interoperability 

prerequisites for the use of heterogeneous hardware and software in a DVE. This is a 
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fundamentally difficult problem. Interoperability can also be described as the meaningful 

exchange of information between participants in a DVE. The Distributed Interactive 

Simulation (DIS, IEEE 1278) and High Level Architecture (HLA, IEEE 1516) are 

discussed and the ability of each standard to enable interoperability is briefly examined. 

The architecture of MMOGs is reviewed in general and posited as an alternative 

architecture for military DVEs. Finally, the necessary quality of this information 

exchange is discussed with specific attention to update rate and latency for shared state.  

1. Motivation for Interoperability 

Interoperability is a fundamental requirement of military virtual environments 

because military operations are highly complex and heterogeneous.  Nevertheless 

military simulations tend to be developed for specific purposes. In addition, the idea of 

cost savings through reusability and composability has driven the desire for 

interoperability among DoD virtual environment applications (Tolk & Muguira, 2003; 

Davis & Anderson, 2003). Further significant benefits can occur if tactical systems 

become capable of interoperations with simulations systems (Brutzman et al., 2002). 

DoD virtual environment applications range from relatively simple PC-based 

simulations to multi-million dollar training devices. Although often a great deal of effort 

and expertise has gone into their development, generally speaking each is developed for a 

specific purpose without considering for the need to interact in a meaningful manner with 

one another. The fact that military operations are inherently highly complex and 

heterogeneous means that, in order to use these virtual environments in a way that 

reflects real world military operations, each must be composed coherently into a 

distributed virtual environment (Miller & Thorpe, 1995).  

The complexity of developing monolithic virtual environment systems has often 

led to failures in system development. A possible alternative to monolithic systems is 

composability, which is the selection and assembly of previously existing components to 

satisfy some user requirement. Interoperability is a necessary precondition for 

composability (Page et al., 2002). If two systems cannot exchange information in a 

meaningful manner then they certainly cannot interact to satisfy overall system 



 16

requirements (Davis & Anderson, 2003). Therefore, composability reduces the risk of 

developing large scale virtual environment systems and leverages the huge investment in 

previously existing systems. Such composability becomes far more powerful if the 

functional improvements are focused on data-stream interoperability rather than codebase 

re-engineering. 

2. Theory and Practice of Interoperability 

Interoperability is defined in general as: 

The ability of systems, units or forces to provide services to and accept 
services from other systems, units or forces, and to use the services so 
exchanged to enable them to operate effectively together. (Joint 
Publication 1-02) 

A technological definition of interoperability may be as simple as the ability to 

exchange data or services at run-time. For distributed virtual environments this definition 

must be extended because individual simulations whether they are game-based trainers or 

full-motion flight simulators must act on this data in order for a shared virtual 

environment to exist. While interconnection as a prerequisite for interoperability, there is 

little point to interconnected communication systems if the meaning of the exchanged 

information is different in each system.  

A great deal of rhetoric has been published regarding to the notion of plug and 

play interoperability of different simulations. The actual experience of composing large 

numbers of heterogeneous simulations together has forced many users and developers of 

distributed virtual environments to re-examine the motivation and theoretical foundations 

for arbitrary simulator interoperability (Ceranowicz et al., 2002; Davis & Anderson, 

2003). Recent work has generally concluded that it is impossible to apply a fixed 

standard of interoperability across all domains of modeling and simulation, and that a 

level-of-interoperability metric might better be used instead (Tolk & Muguira, 2003). A 

fundamental definition of a model is representation of an element of the real world for a 

purpose. A simulation is the corresponding execution and response over time. By the 

nature of model construction, there are usually explicit and (more importantly) implicit 
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assumptions made that reveal gaps when the model is compared to the real world. In 

attempting to enable these models to interact with real world systems or other models, 

there is a tendency towards complexity. As model complexity increases, it soon reaches a 

point where the risk of failure rises much more quickly (Chwif et al., 2000). 

Distributed virtual environments (DVEs) are directly analogous to command and 

control (C2) systems and distributed databases because they are all essentially means of 

sharing a common state. The notion of information-exchange requirements (IERs) is one 

of the central concepts in the development of these types of systems (Tolk & Turnitsa, 

2007). For distributed virtual environments, the IERs can be summarized as follows. 

• Syntactic: data type, message length, protocol  

• Contextual/Conceptual: modeling assumptions, purpose of the information 

• Semantic: units and meaning of data, conventions for internal algorithms 

Syntactic interoperability is primarily an engineering problem and is generally 

addressed with well-defined and broadly accepted standards. Understanding of 

conceptual interoperability is perhaps incomplete but there is usually sufficient 

conceptual understanding to enable correct syntactic mappings between different data 

formats. Semantic interoperability is achieved by having a common method of 

identifying data, such as a common data model (Davis & Anderson, 2003; Tolk & 

Muguira, 2003). Arguably DIS and other network protocols completely address syntactic 

interoperability. To some extent both DIS and HLA address semantic interoperability as 

it is defined above. One important element of semantic interoperability is the need for a 

common way of specifying location as some models may use geocentric Cartesian (x, y, 

z) and others spherical (latitude, longitude, and altitude) coordinate systems. Middleware, 

distributed algorithms, and data-type coercion are generally used to solve the problem of 

semantic interoperability. Middleware is a software layer that masks the heterogeneity of 

the underlying networks, hardware, operating systems and programming languages 

(Britton et al., 2004; Tannenbaum et al., 2002). Another key element of conceptual 

interoperability is the nature of each individual model’s assumptions (Garlan et al., 

1995). Both DIS and HLA presume that all participants are trusted agents, in that they do  
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not deliberately “cheat” or misrepresent DVE state. However if one system considers 

clouds in visibility determination and another does not, then an unintended “cheat” has 

just been introduced. Simplistic solutions to these challenges are likely to fail. 

The Extensible Modeling and Simulation Framework (XMSF) and the Levels of 

Conceptual Interoperability Model (LICM) are efforts directed towards addressing both 

semantic interoperability and conceptual interoperability (Brutzman et al., 2002; Tolk & 

Muguira, 2003). Further discussion on conceptual interoperability is beyond the scope of 

this thesis, except to show that alternative frameworks for distributed virtual 

environments supporting military applications are important topics for continued 

consideration. The application of standards and middleware for enabling interoperability 

is relevant to this thesis. In the end, what the “cooperative execution framework” of two 

simulations might be called is unimportant when compared to whether or not useful 

training can be provided by the connected systems (Page et al., 2004).  

3. Distributed Interactive Simulation (DIS): A Protocol Approach 

The Distributed Interactive Simulation (DIS) protocol, IEEE 1278.1a 1998, is an 

open-standard protocol that defines message format and content to enable the connection 

of simulations. It was developed specifically for real-time applications and this is 

reflected by the specifications of the standard. DIS benefits from being relatively 

straightforward conceptually and structurally, but it has some limitations, which are 

imposed by its real-time nature. 

DIS was closely patterned after the distributed interaction protocol for SIMNET 

that was developed in the 1980s. SIMNET itself was developed to enable distributed 

interaction for large numbers of combatant entities. The original concept was eventually 

constrained to ground vehicles because the message-exchange requirements were more 

manageable (Miller & Thorpe, 1995). The success of SIMNET led to the funding of an 

effort to develop a standard for real-time platform-level wargaming across distributed 

hosts beyond SIMNET. A series of workshops hosted at the University of Central Florida 

led to the initial adoption of the DIS standard, which then became a formal IEEE standard  
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in 1993. The mission of DIS is to create synthetic virtual representations of warfare 

environments by systematically connecting separate subcomponents of simulations, 

which reside at distributed multiple locations (SISO, 2007). 

DIS messages are called Protocol Data Units (PDUs) and they are the means of 

information exchange between simulations. There are 67 standard PDUs in the current 

version of the standard (IEEE 1278). Non-standard PDUs that are application specific are 

sometimes used as well. There are four types of PDUs, which generally define the 

primary interactions between participants in a DIS-based DVE. These are the Entity 

State, Fire (as in weapon fire), Collision, and Detonation PDUs (IEEE 1278). 

The Entity State PDU (ESPDU) is a fairly complete representation of the dynamic 

physical state of the entity (Table 1). It is an inherently platform-level representation of 

position and orientation based on rigid-body physics, capturing state for kinematic 

(velocity-based) or dynamic (acceleration-based) motion. The ESPDU contains elements 

such as location, linear velocity and others. At a minimum, an ESPDU will be 576 bits 

(72 bytes) in length. A typical ESPDU is 144 bytes long. ESPDUs generally make up 

more than 70% of the message traffic in DIS based DVEs (SISO, 2007). 

DIS requires several key assumptions in order to work that are part of the formal 

standard.  

• Participating simulation nodes in a DIS-based DVE are autonomous and 
authoritative with respect to their own state, and transmit the ground-truth 
of that state to other nodes.  

• Each simulation node is responsible for periodically issuing the PDUs that 
reflect that node’s state.  

• There is no central computer with an authoritative record of the state of 
that node. Each simulation node determines what is true for that node 
including the effect of actions by other nodes (IEEE 1278). 

A specific example considering two simulation nodes (A and B) and the handling 

of weapons fire is descriptive. If simulation node A fires a weapon at node B, node A 

sends a Fire PDU, via broadcast or multicast transport. The simulation modeling the 

munitions fired then sends a Detonation PDU, which includes the impact location if 

applicable. This is typically the firing node but the DIS standard does not explicitly 
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require this to be the case. Upon receipt of a Detonation PDU, simulation node B 

determines if any damage occurred as result of the detonation. It is apparent that DIS 

relies inherently upon completely trustworthy clients.  Another key assumption in this 

methodology is the use of dead reckoning for updating physical location and orientation 

between updates, in order to reduce the number of messages that need to be transmitted 

and to provide a shared consistent state at all nodes. 

While DIS has been relatively successful, it has some well-known limitations that 

are a result of the fact that it was derived from the SIMNET protocol. SIMNET was 

specifically designed for interaction involving dozens to hundreds of distributed real-time 

platform level simulations (Miller & Thorpe, 1995). One consequence of the autonomous 

node architecture is that many “heartbeat” state-update messages must be sent, even 

when there are in fact no changes to the state of the entities at that node. Even when some 

aspect of state does change, much of the information contained within the PDUs 

themselves may be the same. The result of this is that while DoD goals foresaw 

networked simulations involving 100,000 or more participants, in practice the highest 

numbers of simultaneous participants using DIS only is on the order of two to three 

thousand such as was seen during the Synthetic Theater of War (STOW) series of 

experiments in the mid 1990s (OTA, 1995; Keune & Coppock, 1995).  
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Table 1.   The first 144 bits (18 bytes) of an ESPDU (From: IEEE 1278)  

 

Significant research has been conducted to expand the scalability of DIS-based 

DVEs, including an area of interest management (AOIM) schemes, which seek to only 

transmit state update messages to those nodes that have a need for the information, and 

hybrid architectures where related messages are aggregated and then sent collectively to 

disaggregation nodes (Macedonia, 1995). In this regard, DIS does not meet the 

requirement of a scalable system because the architecture must be changed in order to 

increase the size of the system. For small-to-medium sized platform-level real-time 

distributed virtual environments, DIS is completely suitable. Despite the fact that its 

conceptual framework is based upon a twenty-year-old protocol, it is still in widespread 

use in military DVEs (Strassburger et al., 2008; Steel, 2000). 

4. The High Level Architecture (HLA) IEEE 1516 

The High Level Architecture (HLA) IEEE 1516 is a software architecture that 

provides the ability to link different kinds of simulations, simulators, models and other 

tools. Although it is generally associated with distributed simulation, the primary 

motivation for its development was to support “composable” simulation (Dahmann, 
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1999; IEEE 1516, 2000). Although HLA is potentially a powerful architecture, the 

process by which it was developed and the requirements it must meet created a structure 

that has a steep learning curve for users. Hopefully, an emergent need for complex 

reusable simulations beyond defense applications might someday reduce this learning 

curve.  

Traditional simulation models often lack two desirable properties: reusability and 

interoperability (Kuhl et al., 1999). In this context, reusability means that old simulation 

models can be reused in different simulation scenarios and applications. Interoperability 

means that the reusable component simulations can be combined with other models and 

simulations without the need for recoding. Several HLA design goals were established in 

response to these common needs. They may be divided into two sets. 

• The need to save existing simulations 

• To maximize the reusability of the existing simulations models 

• To make it possible for individual simulation models to be 
combined in order to model more complex systems 

• To allow the individual simulation models to interact in a manner 
that supports distributed simulation technologies 

• The need to allow for future capabilities. 

• To provide a larger capability for modeling command and control 
(C2) structures 

• To provide a flexible framework that will permit new technologies 
to be incorporated in the simulation models 

• To provide simulation models that can be immediately 
incorporated into developing planning and control technologies 
(Kuhl et al., 1999) 

To encourage widespread acceptance of HLA, DOD submitted the HLA standards 

to two standards bodies, the Object Management Group (OMG) and the IEEE. The 

Interface Specification was adopted by the OMG in 1998. The IEEE adopted the HLA 

Standard in 2000 as the IEEE 1516 series. In November 2000, all of the services signed a 

Memorandum of Agreement that mandated HLA as the standard technical architecture 

for interoperability among DoD simulations (DoD A&T, 2000). 
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a. Features of HLA 

The baseline definition of the HLA includes: HLA Rules, HLA Interface 

Specification, and HLA Object Model Template. It is important to note that HLA is not 

software per-se. Rather HLA is a set of rules. The rules are divided into two parts: the 

federation rules and the federate rules. Federations work with the Federation Object 

Model (FOM) to interoperate. The federate rules direct that each federate must document 

their public information as well as what they must import and export to other federates, in 

order to comply with the federation Run-Time Infrastructure (RTI). The RTI is the actual 

implementation software and hardware that links federates (Figure 4). The RTI manages 

six critical functions; Federation management, Object management, Time management, 

Declaration management, Ownership management, and Data Distribution management 

(Kuhl et al., 1999). For two HLA-compliant applications to interoperate, they must utilize 

the same FOM and the same RTI (Ryan & Zalcman, 2003). Some form of software 

commonality is also needed for message exchange.  More detailed technical discussion of 

HLA is beyond the scope of this thesis. 

The DoD-sponsored development of HLA was given impetus due to the 

belief that composability (reusability and interoperability) leads to better simulations at 

reduced cost. Based upon the historical trend towards increasingly complex and 

expensive “monolithic” simulations, this notion certainly seems reasonable. Typically 

technology goes through a lifecycle from birth to retirement. Initially, it may be 

completely within the research and development (R&D) domain, and then through the 

process of transfer and diffusion a new technology transitions to a point where new 

products are developed, ultimately to a phase where it undergoes general adoption. 

Usually it does not reach the phase of general adoption until tools and methods for its 

implementation are relatively stable and mature. This maturation process takes time and 

significant effort (Fowler et al., 1993). Due to the apparent urgency, initially DoD tried to 

supply all of the elements of the software economy that normally accompany the 

development of a new technology. This includes the software producers, consumers, 

publicity, training, support, testing, and perception of economic benefit (Kuhl et al., 

1999).  
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Figure 4.   Conceptual Overview of HLA. 

Generally, a Federation Object Model is described as what the various 

federates publish and subscribe to. This is a deceptively simple description. It follows 

that in order to build a federation object model, the developer must specify all of the 

publish-and-subscribe characteristics for every federate. Except for very simple 

federations this must be carefully defined beforehand. This requires a software 

engineering approach and a capacity for high-level thinking, and discourages rapid 

changes at run-time. Anecdotally, for large-scale simulations, federation development 

time is measured in many weeks or months (Ceranowicz et al., 2002; Kim et al., 2005). 

b. Limitations of HLA 

Non-military application of HLA has primarily been limited to the 

research community with a few exceptions. The general sentiment is that HLA offers too 

much irrelevant capability for industrial or commercial applications. The perception of 

commercial simulation developers is that there is no economic benefit to themselves from  

 

 



 25

reusability and interoperability. These factors, coupled with the steep learning curve 

associated with competence (let alone expertise) in HLA, have made its non defense-

sector reception lukewarm at best (Boer et al., 2003). 

HLA was designed to support composable military simulations. HLA 

complexity is perhaps “as simple as possible but no simpler” (Kuhl et al., 1999) but 

nevertheless faces barriers to widespread adoption (Strassburger et al., 2008). A recurring 

theme of discussion is the desire for the subsetting of major HLA functionality to enable 

widespread adoption. Other architectures are capable of providing analogous if reduced 

functionality sets with much less complexity.  

A fundamental limitation is that the HLA specification does not require 

HLA RTI implementations to interoperate with each other and specifies no networked 

data formats for interoperability between different HLA implementations (IEEE 1516, 

2000). This has the result of leaving otherwise HLA-compliant simulations unable to 

connect with each other. Sponsors of HLA-compliant simulations thus potentially 

become “locked in” by commercial licenses on specific RTIs.  

5. Generic Massively Multiplayer Online Game (MMOG) Architectural 
Description 

Massively Multiplayer Online Games (MMOGs) are a subset of distributed virtual 

environments (DVEs). While MMOGs are obviously games first and foremost, they face 

information exchange requirements similar to DVEs. Strip away the game facade (Figure 

5) and they are more like military DVEs than not. Some general principles of distributed 

virtual environments can be seen in the following examination of the components and 

connections of a MMOG system. This examination is conducted within the context of 

using MMOG architecture to enable interconnection and interoperability of militarily 

useful virtual environments and simulations. 
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Figure 5.   Screenshots of two popular MMOGs. (left) Lineage® (NCsoft), (right) 
Navy Field® (SD Enternet). 

a. Qualitative Definition of the Term Massive Multiplayer Online 
Game 

A massively multiplayer online game is one in which a large number of 

people can interact simultaneously over a network. They are able to join and leave at any 

time and they can expect that their own game state will not change while they are offline. 

The game environment is “persistent.” The term “large number” and the length of time, 

which makes a game “persistent,” are application dependent and not rigorously defined. 

Typically, most commercial MMOGs will last several years, and some have been 

operating continuously for almost a decade (Hall & Novak, 2008). Contrast this with the 

typical military distributed virtual environment whose persistence is usually measured in 

hours or days at most. With respect to the “massive” qualifier, any hard number selected 

is often completely arbitrary. Multiuser virtual environments of any size have the same 

fundamental functional requirements. It is also important to note that while many 

MMOGs may have hundreds of thousands of subscribers, and some have seen more than 

50,000 users online simultaneously, none allow more than a few thousand participants to 

simultaneously interact with one another. This is comparable to military DVEs such as 

the Synthetic Theater of War (STOW) experiments (Feng et al., 2007; IGDA, 2004; 

Keune & Coppock, 1995). 
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MMOG developers are not free from the consequences of the consistency-

throughput tradeoff. Many of the load-management schemes employed in the 

development of large experimental military distributed virtual environments such as area-

of-interest management (AOIM) and hybrid architectures are also employed by 

commercial MMOGs (Bogojevic & Kazemzadeh, 2003; Macedonia, 1995; Lecky 

Thompson, 2009). While other military synthetic exercises such as Millennium Challenge 

2002 have included as many at 30,000 participants, they were not interacting directly 

with one another. Separate federations of participants were used to feed command and 

control systems primarily for visualization (Ceranowicz et al., 2002). The qualifying 

characteristics of an MMOG are therefore persistent state and inherent scalability (IGDA, 

2004). Scalability explicitly means that the system can handle larger and larger numbers 

of participants gracefully or without more-than-minor changes to the system architecture 

(Diehl, 2001; Singhal & Zyda, 1999). 

b. MMOGs Are a Game Service 

MMOGs are games. This seemingly obvious statement serves to 

emphasize that their design and system architecture are driven by this reality. Briefly, a 

game can be described as a rule-based system in which the player(s) must overcome 

some obstacle or challenge to reach the predetermined end-state of the game. Game 

actions are typically constrained by well-defined rules and a story or narrative that sets 

the abstract context for the challenges, the rules, and the end state (Narayanasamy, 2006; 

Lindley, 2003). Commercial games are designed largely to maximize sales, repeated 

usage, and profits. MMOGs primarily differ from stand-alone games in that they are 

inherently more of a service than a product. Figure 6 depicts a generalized MMOG 

service architecture. It follows that a major part of any MMOG system is customer 

management. While a complete implementation must include a significant customer-

management component, only the game-services component is directly relevant to this 

thesis. Game services allow players to interact with other participants and enable player  
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actions to change the game state. Since it is difficult to enforce a consistent game 

experience among different system architectures, almost all commercial MMOGs today 

are client-server systems (Hall & Novak, 2008; IGDA, 2004).  
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Figure 6.   Abstract architecture for massively multiplayer online game (From: Hall & 
Novak, 2008). 

Game services are described schematically in Figure 7. They are summarized as follows. 

• In addition to managing the user interface, the client process the users 
input in the form of state update messages and transmits them to the 
server. 

• The server then calculates a new game state by applying the received user 
actions and the game logic to the current game state. As a result of this 
calculation, the state of several dynamic entities has changed.  

• Finally, the new game state is transferred back to the clients (Bogojevic & 
Kazemzadeh, 2003). 
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Figure 7.   The fundamental game services of a client-server based distributed virtual 
environment (From: Glinka et al., 2007). 

c. MMOGs and Scalability 

Commercial MMOGs almost all have client-server architecture for reasons 

outlined earlier. However, it is obvious that a single server cannot handle an infinite 

number of client connections; CPU cycles on the server will eventually run out, or the 

server will be unable to handle a large number of socket connections or bandwidth 

availability becomes saturated. These problems lead to a scale-out solution, in which a 

cluster of computers on the server side each handles separate client connections and game 

state. This can be done in a variety of ways. One of the most popular is “sharding” in 

which parallel instances of the game state are each handled by a single server node. One 

of the disadvantages of sharding is that participants on separate shards cannot interact 
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with one another (Ye & Cheng, 2006; Emilsson et al., 2009). Zoning is another load 

distribution scheme in which participants are assigned to server nodes based upon the 

participant’s virtual location in the game environment. The overall game-play area is 

divided up into multiple geographic regions, and players are assigned to a server 

dedicated to each virtual region. However, this approach can have its own problems, 

including low server utilization. A server must be associated with a region even if few 

people are there at the time, which can lead to over-provisioning the data center 

(McGregor et al., 2009; Nae et al., 2008). Often, zoning and sharding are combined with 

popular game regions being duplicated over several server nodes (Glinka et al., 2007; Lu 

et al., 2006; Ye & Cheng, 2006). 

There are a few alternatives such as the single-shard architecture used for 

the space-based MMO Eve Online. Eve Online applies a design philosophy that holds 

that the game participants are the primary content. The developers take advantage of the 

fact that the distance scales in the game environment create natural aggregation points at 

certain game locations. In this single-shard architecture, there is only one instance of the 

game state and any player from the global base may interact with any other player 

provided they are at the same game location.  In the case of Eve Online, an exceptionally 

large cluster is used to achieve this scale (Emilsson et al., 2009). 

Despite the differing motivations for their development, militarily useful 

distributed virtual environments and MMOGs faces similar challenges. The next section 

examines the similarity of the information-exchange requirements between typical 

MMOGs and military DVEs. 

6. Comparison of MMOG Network Traffic to Military DVE Traffic  

The consistency-throughput tradeoff means that developers of DVEs cannot 

arbitrarily decide upon the rate at which information flows between the participants. For 

commercial MMOG developers, who desire to handle large numbers of simultaneous 

players while maintaining a consistent game experience, this has a direct economic 

impact. A look at the network traffic patterns of various DVEs shows that with regard to 

network traffic, MMOGs and some large scale DVEs are analogous. While high update 
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rates may be required for small-scale fast-reflex DVEs such as first-person shooter (FPS) 

type games or air combat maneuvering, it is often true that for loosely coupled interaction 

relatively modest update rates are acceptable (Bonk & Dennen, 2005). 

Even during the development of early DVEs such as SIMNET and NPSNET, the 

importance of measuring network traffic was realized (Macedonia, 1995). Due to the 

impact that game traffic has on networks and the cost of maintaining sufficient capacity 

to handle large numbers of simultaneous participants, the body of research on game 

traffic analysis and quality of service requirements (QoS) for games has grown in parallel 

with the growth in the number of MMOG subscribers. This type of research can be 

broadly categorized into two categories. The first is the experimental determination of the 

effects of latency and throughput on the DVE user experience, and the second is the 

characterization of the network traffic of existing DVEs (Kwok, 2006). 

a. Tightly and Loosely Coupled DVEs 

The notion of coupling is important. This term is borrowed from systems 

engineering and distributed computing and refers to the degree that the behavior or 

processes of a node depends on knowledge about the behavior of another node. In a 

DVE, entities are either closely or loosely coupled. An example of tight coupling might 

be a group of tanks in a closely spaced formation moving at high speed. In order to 

maintain safe spacing and fidelity, and to avoid interfering with mutual fields of fire, each 

entity needs to have sufficiently accurate and timely information about the other entities 

in the formation (Chassot et al., 1999; Rushby, 1994). In general, tightly coupled systems 

do not function well when message delays exceed 100 ms. In contrast, an example of 

loosely coupled entities might be two tanks 20 kilometers apart. The notion of coupling is 

important because network QoS requirements are generally determined by whether 

entities are tightly or loosely coupled. Note, however, there is no hard line dividing 

tightly and loosely coupled systems. A qualitative distinction is typically decided by the 

interaction needs of the application models (Kuiper & Lemmers, 2000; Singhal & Zyda, 

1999). 
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b. Delay and Throughput for Typical Military DVEs 

The acceptable delay and throughput for a typical military DVE needs to 

be considered for any effective application. Unfortunately, most of the literature on 

acceptable QoS for military DVEs is experiential in nature. Nevertheless, experience has 

shown that delays of less than or equal to 100 milliseconds (ms) are acceptable for tightly 

coupled real-time platform-level DVEs (Chassot et al., 1999; DIS Steering Committee, 

1994; Singhal & Zyda, 1999). Throughput for tightly coupled real-time platform level 

DVEs depends upon the information-exchange requirements for the type of platform that 

an entity represents. By utilizing traffic management schemes such as dead reckoning, the 

acceptable throughput ranges from one update per second for ground vehicles to 30 

updates per second for articulated human entities (Singhal & Zyda, 1999; Macedonia, 

1995). 

For loosely coupled platform level military DVEs, delays of up to 300 ms 

are acceptable. Acceptable throughput rates again depend upon the type of entity being 

simulated. Unfortunately, the limited amount of research on acceptable QoS for military 

specific DVEs does not differentiate between throughput requirements for tightly or 

loosely coupled entities. Experience from the STOW experiments indicates that one to 

three updates per second are acceptable in this case (Keune & Coppock, 1995). Analysis 

that only reports average update rates should be used with caution, as this metric typically 

includes periods of time in which entities were stationary (Macedonia, 1995; Cheung & 

Loper, 1994). 

The above examples are typical. An extreme case of a tightly coupled 

system includes remote surgery applications with haptic feedback. Minimum acceptable 

throughput for this type of application is on the order of 1000 updates per second (Yap et 

al., 2005; Choi et al., 2004). At the other extreme, computer-assisted exercises in which 

all interaction between entities is highly abstracted can require relatively infrequent 

updates from the participating entities (Ceranowicz et al., 2002). 
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c. Throughput and Delay in MMOGs 

There are several papers describing experimental determination of 

acceptable delay and throughput for networked games in the literature. Not surprisingly, 

acceptability is broadly categorized by game genre.  

d. Massively Multiplayer Online Role-Playing Games (MMORPG) 

Massively multiplayer online role playing games (MMORPG) are best 

described as loosely coupled distributed virtual environments even though they have 

significant interactivity. This is because game interaction is event based. When a player 

clicks on a monster to attack it, an attack message is sent. The combat resolution of 

success or failure then occurs at the server. There is no parallel processing between the 

client and the server to handle the flight of an arrow for example. A typical MMORPG is 

Everquest II (Sony, 2009). For these types of games, investigators have reported 

degraded user experience at delays of approximately 200 ms (Ries et al., 2008; Chen et 

al., 2006). In some cases, however, delays on the order of 1000 ms have been 

demonstrated to have almost no effect on self-reported user experience (Fritsch et al., 

2005). Within this genre, update rates range from three per second for stationary entities 

to seven per second for entities involved in game combat (Park et al., 2005; Chen et al., 

2005). 

e. Massively Multiplayer Real-Time Strategy Games (MMRTS) 

Massively multiplayer real-time strategy games (MMRTS) are in relative 

infancy compared to MMORPGs. Typically, the player does not closely control a single 

avatar but exercises general direction and oversight over a large number of entities. 

Networked real-time strategy games (RTS) are quite mature but these are limited to a few 

dozen players. Warcraft III is a typical example. For these types of games, user 

experience often degraded once interaction delays exceeded 800 ms. In at least one case, 

user effectiveness at a set of specified in-game tasks remained unaffected with update 

delays of up to 2000 ms. The minimum rate for real-time strategy games is about four 

updates per second, with six updates per second being typical. Peaks of up to 15 updates 
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per second are seen during combat sequences involving large numbers of entities at each 

node (Claypool, 2005; Bettner & Terrano, 2001). Unfortunately, the literature that covers 

this genre is not yet directly relevant to the challenges of MMRTS because only 

conventional (non-massive) real-time strategy games have been studied and reported. 

Developers of conventional RTS games are able to use schemes such as lock-step 

simulation processing. Roughly, instead of passing the status of each unit in the game, the 

exact same simulation is run on each machine with only commands being distributed to 

the other participants (Bettner & Terrano, 2001). This is only practicable for session-

based games where all participants begin with the exact same state.  

f. Platform-level Simulation Games  

Platform-level simulation games include both vehicle simulators and so-

called first-person shooters (FPS). For vehicle-based simulations such as driving 

simulation games, user experience and performance are relatively unaffected by delays of 

up to 100 ms. Beyond this point, however, performance degrades rapidly. Lap times 

around a simulated track in one study were 100% worse when user-interaction delay went 

from 150 ms to 250 ms. For car-racing games, 12 updates per second (~ 80 ms delay) is a 

typical throughput rate. Less-dynamic platform-level simulations do not require as high 

an update rate (Pantel & Wolf, 2002; Yasui et al., 2005). For FPS games, in at least one 

case, no degradation to player effectiveness at game tasks is experienced with delays up 

to 100 ms. Player effectiveness degrades rapidly for precise tasks such as precision 

shooting above 100 ms latency. Networked FPS games have update rates of from 20 to 

40 updates per second (Beigbeder et al., 2004). These demanding throughput 

requirements make implementation of a scalable FPS problematic. Planetside®, a science 

fiction combat-oriented MMOG in which hundreds of players can participate in a single 

fight, is a notable example of a FPS MMOG (Sony, 2009). 

g. The Effect of Architecture on Bandwidth Requirements 

The state-update behavior per node for military DVEs and MMOGs has 

long been considered. Bandwidth requirements are dependent upon per-node behavior, 
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the information-exchange requirements of the participants in the DVE, and the network 

architecture (Pelligrino & Dovrolis, 2003). Since game developers control the 

implementation of all nodes, the information exchange requirements for games are 

significantly smaller than that for militarily useful DVEs. Game nodes usually know 

exactly the type and behavior of all possible entities at every other game node.  For 

online games, small packet size is used in order to reduce bandwidth and latency (Chen et 

al., 2005; Feng et al., 2005). A typical update message from the client to the server in a 

MMORPG is 30-60 bytes long following the protocol header.  Compare this small size to 

a typical DIS ESPDU at 144 bytes. At six updates per second, the bandwidth impact is on 

the order of two Kbps/sec. Since servers must send partial or complete updates of 

complete relevant game state to clients in MMOGs, server-to-client messages vary 

widely in size. Some comparisons between HLA and DIS have shown that their 

bandwidth requirements are similar (USAF ASC, 1998). 

These considerations naturally brings up the subject of DVE architecture. 

As discussed, MMOGs almost exclusively use client-server architecture in order to 

control the user experience. This means that the average bandwidth requirement at the 

server is a multiple of the number of clients connected to that server. This does not 

consider peaks in traffic for which sufficient capacity must be available. Even a dedicated 

T1 line (1.544 Mbps) to the server will only accommodate on the order of 600 

simultaneous clients (Macedonia, 1995). It is assumed that some sort of interest 

management occurs at the server to prevent overloading the client’s network capability. 

For a strict peer-to-peer architecture using DIS in which there is no server, every client 

broadcasts its state update messages in the form of ESPDUs. Six hundred such clients 

might theoretically require on the order of 3 Mbps of dedicated bandwidth at every peer. 

Clearly, this is unworkable in a wide-area network (WAN) environment. In fact, entity 

update rates vary significantly and in practical large-scale DVEs, hybrid architectures are 

used instead (Diehl, 2001; Singhal & Zyda, 1999). 
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h. The Question of Acceptability 

Many MMOGs are able to maintain high levels of interactivity at what 

might normally be considered unacceptable QoS. Acceptability is determined by the 

objective of the specific DVE being considered. With current networking technology it is 

difficult to achieve tightly coupled entity-level simulation in real time for numerous 

entities in a wide-area network (WAN) environment. In fact, most large-scale widely 

distributed military DVEs used to date have been focused upon training objectives other 

than platform-level crew proficiency. Distributed simulation is primarily used as a tool 

for the training of multiple crews or staff as a coordinated military unit. The major 

interest has been focused on collective and not individual training. Even SIMNET, the 

progenitor of platform-level large-scale DVEs, had a design goal to make the crews and 

units, not the device, the center of attention in the simulation (Miller & Thorpe, 1995). 

While military DVEs have increased information-exchange requirements because of the 

need to support interoperability, this is a difference in degree and not type between 

militarily useful DVEs and commercial MMOG architectures. 

7. Comparing the DIS/HLA Conceptual Model to MMOG Architecture 

DIS and to a lesser extent HLA conform to the concept that autonomous nodes are 

trustworthy clients and they are authoritative over their own state. Games assume that 

some or many clients will cheat and for this reason enforce consistency at the server. In 

fact, cheating can occur without intent even by trustworthy clients because of differences 

in combat models. In effect, clients can cheat even though they are trustworthy, due to the 

nature of unexpected interaction consequences that emerge from different combat models 

or differences in terrain representation (Johnson et al., 2004). 

Existing military DVEs and simulators cannot be arbitrarily connected using 

MMOG architecture without breaking some of the governing standards of both DIS and 

HLA. In fact a great deal of middleware has already been developed to enable more 

useful DVEs while maintaining consistency with existing standards. MMOG systems can  
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be employed as middleware or as the core of a military DVE to improve their utility and 

ease of use. The similar nature of the use of the DIS protocol and architecture makes it 

particularly appealing for adaption to MMOG approaches. 

E. APPLYING MMOG ARCHITECTURE TO MILITARY DISTRIBUTED 
VIRTUAL ENVIRONMENTS 

Upon considering this survey analysis, the first basic use that can be made of an 

MMOG system for a military DVE is as middleware that connects and mediates between 

distributed entities interacting in a physically realistic virtual environment and a scalable 

MMOG server. 

1. Use Cases for MMOG Middleware 

The lowest level is to implement a MMOG system as a DIS-Packet Server. The 

motivation for this implementation includes the following. 

• Abstracting away the networking component 

• Allowing persistent server-side entities with their own behavior 

• Implementing interest management schemes on the server side 

• Development of a client-level DIS Gateway, which aggregates traffic and 
sends it over a single channel to the server that then interacts with another 
server (Singhal & Zyda, 1999) 

The next level is to add game logic on the server to provide the following. 

• Enforcement of consistent state via standardized damage resolution 

• Collision checking 

• Sophisticated server side entities 

• “Gap” frame generation via dead-reckoning of client entities at the server 
(Fujinoki, 2006) 

• Logging and reporting of DVE activity 
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2.  Using an Open-Source MMOG Package to Implement Simulation 
Middleware 

Project Darkstar, to be examined later, is a free and open-source MMOG toolkit 

from Sun Microsystems. For the purpose of this section, the Project Darkstar middleware 

is abstracted as a mechanism for managing the distribution and maintenance of the DVE 

state. A real-time platform level DVE using DIS is considered. 

This work is specifically focused upon DIS because, for real-time platform-level 

simulations, DIS is completely suitable and this type of simulation encompasses the 

majority of military simulations. DIS traffic can also be used to reflect ongoing status 

changes in command and control (C2) systems. Existing heterogeneous platform-level 

simulations and tactical systems might thus become interconnected using MMOG 

architecture. This work shows that this type of architecture can be implemented without 

violating the rules and assumptions of DIS.  Ongoing work at NPS is investigating 

bridging between DIS-style network protocols with military C4I data streams by building 

a track-data conversion hub. 

F. SUMMARY 

DIS, which has its genesis in SIMNET, was designed to support real-time 

platform level distributed virtual environment of at most a few hundred entities. 

Alternative architectures have made larger systems possible if unwieldy. HLA defines 

mechanisms beyond a platform-centric model to enable composability, but in practice, 

has not proven significantly more scalable or robust than DIS. Evidence of this is the fact 

that DIS is still commonly used for real-time platform level distributed simulation within 

the Defense sector and integrated within HLA-based simulations.  MMOGs are growing 

rapidly and are receiving significant interest and attention. Although facing similar 

challenges with developers of MMOGs, developers of militarily useful DVEs must also 

be concerned with interoperability. Nevertheless, it is possible and advisable to apply 

commercial MMOG development to military DVE applications.  Various tradeoffs and 

alternative approaches provide a rich basis for continued work.  
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III. RELATED WORK 

A. INTRODUCTION 

Large-scale DVEs and MMOGs are not useful or interesting simply because they 

might work better than systems, which allow only a few participants. Generally, other 

advantages dominate. Their strength lies in bringing physically distributed participants 

together in a shared environment with many potentially complex interactions. This has 

many helpful uses ranging from knowledge solicitation to distributed mission operations. 

There are ongoing efforts to mature new scalable hybrid architectures as well as to 

develop middleware that abstracts some of the complexity of MMOG implementation 

away from the application developer. Open standards allow existing simulations and 

models to be incorporated into a heterogeneous DVE. 

B. OFFICE OF NAVAL RESEARCH (ONR) MASSIVE MULTIPLAYER 
ONLINE WARGAME LEVERAGING THE INTERNET (MMOWGLI) 

1. Purpose 

Massive Multiplayer Online Wargame Leveraging the Internet (MMOWGLI) is 

an Office of Naval Research (ONR) concept-development project that seeks to marry the 

concepts of immersive alternate reality games with massively multiplayer online games, 

demonstrating their application to a real scenario of interest to the Navy. An alternate 

reality game is one that uses the real world as a platform. Conceptually, they attempt to 

combine the elements of real life with an interactive artificial narrative (IGDA, 2006). It 

is expected that by massively scaling up the participant pool, the ability might be gained 

to explore more novel combinations and complex interactions of ideas, producing 

insights that are otherwise not forthcoming, or might be hard to predict using traditional 

methods. Continuous on-line play is intended to significantly reduce the fixed overhead 

cost of conducting a scenario-driven exercise (Jensen, 2008). 
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2. Implementation and Looking Ahead 

MMOWGLI is not a technology development project. The objective of the project 

is to utilize existing technologies in a new way. The discovery phase began in 2008 with 

a detailed exploration into the use of MMOGs for other than entertainment purposes.  

The purpose of MMOWGLI is enhanced distributed collaboration specifically for 

knowledge solicitation. ONR has developed several detailed notional scenarios that serve 

as use cases for the MMOWGLI project. This project is a credible use of MMOG 

technology because it focuses upon social interactions and not tightly coupled real-time 

interaction. While the focus is on role-playing, a rich shared environment might even 

allow the participation of platform level entities and their crews as stand-ins for 

computer-controlled units.  Many interesting outcomes are possible. 

C. USAF DISTRIBUTED MISSION OPERATIONS ENVIRONMENT 

1. Program Purpose 

The Distributed Mission Operations (DMO) Environment is a persistent training 

simulation network that provides an on-demand virtual/constructive environment for 

mission training of air crew and C4I operators. It is specifically able to operate in an 

environment over WAN distances, through firewalls, and constrained by high latencies 

(USAF ASC, 1998). 

2. Current Architecture 

DMO uses the Distributed Missions Operations Network (DMON), which 

consists of 60 nodes, at over 30 locations worldwide. DMON is a Virtual Private 

Network run from a Network Operations Center (NOC) in Orlando, FL (Figure 8). The 

individual endpoint Mission Training Center (MTC) LAN receives all outbound network 

traffic from the simulator and forwards it to a stream manager component that determines 

the appropriate data stream(s) needed for each of the participants. After stream 

duplication, a distributor component then distributes the stream among the remote MTC 

sites (McVearry et al., 2008). DMO is expected to always be a world in which multiple 
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standards will overlap and co-exist. Specifically, both HLA and DIS are used in a 

federation of simulation systems. There is no indication that DMO will use less DIS in 

the future. 

One of the primary component groups of DMO is the Test and Training Enabling 

(TENA) middleware, repository, and logical range data archive (Noseworthy, 2008). This 

system is only superficially similar to HLA and requires a gateway to participate in an 

HLA federation. 

 

 

Figure 8.   Distributed Mission Operations Network. (From: McVearry et al., 2008) 

3. Future Possibilities 

Analysis of the potential of DMO anticipates that commercial virtual environment 

technology will leapfrog the DoD because of the tens of thousands of developers working 

to advance the commercial field. It is envisioned that a hypothetical fusion of World-of-

Warcraft like technology and a Second Life type system all built upon real-world 

databases that accurately model terrain, friendly and enemy forces has great potential to 

enable the scaling and extension of DMO (McVearry et al., 2008). 
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D. ALTERNATIVE ARCHITECTURES FOR PERSISTENT VIRTUAL 
ENVIRONMENTS 

There are many research efforts directed towards developing alternative 

architectures for distributed virtual environments. These efforts can be generally 

categorized into two groups. 

• Hybrids between client-server and peer-to-peer architectures 

• Development of protocols specifically designed for distributed virtual 
environments. 

The following are descriptions of representative examples. 

1. Brigham Young University (BYU) Hybrid Game Architecture 

The goal of the hybrid game architecture developed at Brigham Young University 

(BYU) is to reduce bandwidth requirements for MMOGs while maintaining central 

control. Central control is required in this architecture because it is important to control 

the sequence of events in the game, enforce the game rules, and update the game logic 

and environment. This hybrid architecture possesses the following conceptual 

architecture. 

• Only state-changing moves are processed by the central game server 

• Position changes are distributed by clients on a peer-to-peer level based 
upon availability and game world proximity 

The guiding principle of the BYU system is that only clients that are proximate in 

the game environment are concerned with the most up-to-date position of one another. 

Moves such as attempts to retrieve objects or take some combat action are all controlled 

by the server. In summary, movement messages are distributed peer-to-peer to other 

nodes that are in the same virtual region. All other messages are distributed client-server 

including movement messages for nodes not in the same virtual region.  Experimental 

results show that bandwidth requirements at the server decrease as player density 

increases within a game region. When player density is low within a game region, the  
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central server is overwhelmed because very few movement messages are distributed 

peer-to-peer.  In other words, only a small portion of the workload is offloaded to the 

clients. 

This particular implementation of hybrid client-server and peer-to-peer 

architecture suggests that this type of system is suitable for DVEs where player density 

within regions will typically be relatively high and is not worth special implementation 

effort when this is not the case (Jardine, 2008). 

2. The University of Pennsylvania Peer-to-Peer for Massively 
Multiplayer Games 

Efforts at the University of Pennsylvania have produced another client-server, 

peer-to-peer hybrid architecture that uses a slightly different conceptual framework. 

Instead of having every client send non-persistent state updates (e.g., movement) to every 

other client that is proximate within the game region, this architecture uses a self-

organizing peer-to-peer overlay based upon both the game region proximity of entities 

and the physical network connection between the clients, which control them (Knutsson 

et al., 2004). 

The architecture automatically selects trusted clients to act essentially as servers 

for complete game-state distribution where selected clients are proximate in the network 

itself, not necessarily in the game environment. This differs from the system described 

earlier in that complete state is distributed albeit to a select number of participants. 

FreePastry, which is an open-source version of Pastry (Microsoft, 2009), a peer-to-peer 

overlay and routing network (whose detailed description is beyond the scope of this 

thesis) was used to implement a simple Multi-User environment.  

Position updates are multicast every 150 ms to replicate the behavior of 

MMORPGs. Network simulation results with 4000 entities distributed across 100 to 400 

regions using a single server showed that message latency is within an acceptable range 

for most MMORPGs. System performance suffered when player density was non- 
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uniform from region to region (Knutson et al., 2004). While this effort is in its early 

phases, it suggests an alternate type of hybrid architecture that is worth considering for 

developers of militarily useful DVEs. 

3. MMOX: Live Entity State Stream Protocol 

The popular online virtual environment Second Life (Linden Labs) has received a 

great deal of popular attention. There are over 15 million registered accounts but little 

authoritative data on actual ongoing usage. Linden Labs self-reports that on average 

approximately 38,000 players are simultaneously connected. Second Life is interesting 

because it uses a slightly different information exchange framework than typical 

MMOGs. Analysis of Second Life network traffic shows that it is atypical for MMOGs 

(Kumar et al., 2008). The developers of Second Life do not describe it as a MMOG and 

in fact, it does not conform to all characteristics such games that are described earlier. 

MMOX is an Internet Engineering Task Force (IETF) standards development 

project for Massively Multiplayer Online applications of all types (IETF-MMOX, 2009). 

The MMOX Live Entity State Stream (LESS) Protocol, which is derived from the update 

protocol used for Second Life, is geared toward high-rate virtual world object update. 

The objective of the MMOX standard development is to enable interoperability between 

different DVEs. It is specifically intended to enable participants to move seamlessly from 

one DVE to another with their persistent virtual persona or avatar. While the bandwidth 

requirements for LESS (approximately 100 Kbps) may limit its utility for widely 

distributed military specific DVEs, this effort is an important development (Rosedale et 

al., 2008) 

E. OTHER MIDDLEWARE FOR PERSISTENT VIRTUAL 
ENVIRONMENTS 

Quite apart from the difficulties of game development, MMOGs add the 

challenges of distributed-client connection handling, load balancing, shared object 

contention, and synchronization of data. Despite many project attempts, there has been a 

significant amount of attrition in this area, and much past and recent literature describes 
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failed or stalled efforts. As a result the emerging popularity of MMOGs has led to a lot of 

interest in the development of MMOG-specific middleware applications. In addition to 

Project Darkstar described earlier, the Real-Time Framework being developed at the 

University of Munster in Germany is another such middleware effort. There are also 

some efforts to apply the DoD HLA to the domain of MMOGs. Projects that are intended 

to be complete MMOG solutions such as Multiverse are not within the scope of this 

thesis, though it is recommended that readers compare this type of software to the 

middleware described here (Multiverse, 2009). 

1. University of Munster: Real-Time Framework 

The Real-Time Framework (RTF) project is being developed at the University of 

Munster in Germany as part of the edutain@grid (www.edutaingrid.eu) project to support 

development of large multiplayer virtual environments. Its goal is to liberate the 

developer from low-level tasks such as multi-server communications, object migration 

across servers and load balancing. The RTF provides a high-level communication and 

computation middleware for single-server and multi-server online games (Glinka et al., 

2007). The distinction of RTF is that is abstracts all of the components of MMOG 

development including the game engine, game logic, and game state distribution. RTF 

supports three parallelization schemes that are common to MMOGs; zoning, instancing, 

and replication. 

The RTF project has not yet published implementation details beyond this level 

and it remains unclear whether or not the implementation or source code will be 

publically available. Such availability is worth monitoring because it appears to be well 

supported, and if successful may provide a useful platform upon which to base scalable 

DVEs of various types. 

2. Cybernet OpenSkies MMOG Middleware/Runtime Infrastructure 

While HLA is a specification, any particular HLA implementation is by definition 

a middleware application because it is used to connect simulation applications to the 

network/communications infrastructure. HLA is fairly complex yet most of its 
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functionality is not needed for game development. Cybernet Systems, which has 

developed complete HLA RTIs and gateways for use in federating military simulators, 

developed a mini-RTI designed for MMOGs called OpenSkies (Figure 9). 

 

 

Figure 9.   OpenSkies HLA-based Architecture for MMOGs (From: OpenSkies, 2009). 

OpenSkies is designed to convert the peer-to-peer communications approach of 

typical HLA implementations to an approach similar to the client-server approach 

adopted by commercial games servers (Cohen et al., 2004). The development of 

OpenSkies is partially predicated upon the belief that the pure peer-to-peer approach of 

military distributed simulation will be discarded as joint military training simulations 

grow. Commercial game-developer acceptance of OpenSkies is not evident but the 

concept of alternative architectures is relevant to this thesis. 
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F. SH-60B MISSION REHEARSAL TACTICAL TEAM TRAINER (MRT3) 
AS A GAME CLIENT 

ONR funded the development of the SH-60B Mission Rehearsal Tactical Team 

Trainer (MRT3) by Naval Air Warfare Command Training Systems Division (NAWC-

TSD) to provide a PC-based training simulation for anti-submarine helicopter crews. 

It was developed specifically with the idea that PC-based simulation might better 

enable the creation of communities of learners. It is built primarily upon commercial-off-

the-shelf (COTS) hardware and software with the addition of some application-specific 

user-interface hardware. 

MRT3 is a collection of independent applications that reflect the specific crew 

positions within the SH-60 helicopter (Figure 10). In addition to stand-alone use, the 

MRT3 has been extended to participate in military distributed simulations using both DIS 

and HLA. The SH-60B MRT3 has been incorporated into several distributed 

environments including Fleet Synthetic Training (FST) Exercises (Gallo et al., 2006). 

 

 

Figure 10.   Screen capture from the Airborne Tactical Officer (ATO) and Pilot Station 
of the MRT3 (From: Gallo et al., 2006). 

Since a great deal of time and effort has already been invested in developing the 

MRT3, and because it uses standard specifications for connecting to military DVEs, it 

serves as a good test case for integrating existing simulations with alternative DVE 

architectures. 
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G. X3D: OPEN SOFTWARE STANDARD FOR DEFINING AND 
COMMUNICATING REAL-TIME, INTERACTIVE 3D CONTENT 

1. X3D Conceptual Framework 

Despite almost three decades of graphics research, creating compelling distributed 

3D virtual spaces is usually problematic due to intense competition and little 

interoperability between large numbers of proprietary commercial technologies. The 

Web3D Consortium in a nonprofit organization dedicated to the creation of open 

standards, specifications and best practices in order to promote the evolution of 

technologies that can help bring Web3D to the mainstream. 

Extensible 3D (X3D) Graphics is the current Web3D standard for web-capable 

3D content. It is an XML-based standard that is derived from Virtual Reality Modeling 

Language (VRML) that was designed to overcome several of the limitations of VRML. 

Since XML is a standard for describing the scene graphs of 3D content, browser and 

viewer developers can implement the actual rendering of these scenes in any way. Visual 

simulation is one of the target applications for VRML and X3D (Blais et al., 2001; 

Brutzman & Daly, 2007). 

2. Authoring Tools 

Since X3D is XML and text-based, authoring can be done in any environment. 

Productivity and quality depends upon the availability of user-friendly authoring tools of 

which there are several. A detailed survey is beyond the scope of this thesis, though 

numerous tools and applications are listed on the X3D Resources page (Web3D 

Consortium, 2009).  X3D-Edit is presented as an exemplar because of its support for DIS 

ESPDU functionality. X3D-Edit is the authoring tool developed and maintained at the 

Naval Postgraduate School’s Modeling Virtual Environments and Simulation (MOVES) 

Institute (Brutzman, 2003). One of its key tools for DVE development is the DIS Player-

Recorder (Figure 11), which enables inspection and analysis of DIS PDUs as they arrive 

over the network. 



 49

 
Figure 11.   DIS Player-Recorder Panel from X3D Edit 3.2 

3. X3D and Distributed Virtual Environments 

3D virtual scenes without interactivity do not meet the requirements of a DVE. 

X3D content can be remotely manipulated across the network in realtime through the use 

of Script nodes (Brutzman & Daly, 2007). More interestingly, the X3D specification 

includes the EspduTransform node (McGregor & Brutzman, 2008). This node allows 

distributed control over geometry nodes via DIS entity state PDUs. Visualization of the 

state of the entities in a DVE becomes relatively trivial if the remote applications, which 

control them, produce ESPDUs, which reflect their state.  

4. Scenario Authoring and Visualization for Advanced Graphical 
Environments (Savage) X3D Model Archive 

The Scenario Authoring and Visualization for Advanced Graphical Environments 

(Savage) archive is a collection of composable X3D models designed to enable 

straightforward development of web-based virtual environments. The Savage model 

collection is developed primarily by active-duty military students at NPS (Figure 12). 
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The Savage collection includes Savage Modeling and Analysis Language (SMAL) 

tactical metadata, which supports the 3D authoring process by embedding information 

about a model inside the model itself. The X3D-Edit authoring tool provides a growing 

number of support capabilities for building and testing composable-networked X3D 

models (Blais et al., 2001).  Additional models can be added and used from different 

sources such as the Army Model Exchange (U.S. Army Virtual Targets Center, 2009). 

 

 

Figure 12.   Model of an AH-1W Cobra developed by Maj C. B. Lakey, USMC 
(https://savage.nps.edu/Savage) 

H. OPEN-DIS: OPEN-SOURCE IMPLEMENTATION OF DIS 

Even more directly relevant to this work is the Open-DIS library. It is a free, open 

source implementation of the DIS standard implemented in C++, C# and Java. Open-DIS 

and SAVAGE models, combined with an application that provides game services such as 

Project Darkstar together provide a relatively straightforward means to implement a 

distributed virtual environment that may integrate DIS datastreams from multiple 

sources. 

Open-DIS is a collection of applications and libraries to support use of DIS 

developed at the MOVES Institute at NPS. Its ultimate goal is to make available a full 

implementation of the DIS protocol in multiple programming languages for multiple 

platforms. It carries a Berkeley Software Distribution (BSD) license, which means that 

applications developed with it (or modifications to it) are not required to be released 

themselves as open-source (McGregor & Brutzman, 2008). 
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In both C++ and Java, the protocol data unit (PDU) is modeled as a class. 

Complete program representation of all DIS PDUs is a cumbersome task requiring over 

20,000 lines of code (McGregor & Brutzman, 2008). An extensible markup language 

(XML) like dialect is used to structure the development of PDU classes. The Open-DIS 

PDU class objects are able to marshal themselves to XML or serialized Java objects. This 

is in addition to network reading and writing of arrays of bytes. Due to this source-code 

auto-generation capability the Open-DIS implementation is thus relatively lightweight. 

Tests have shown that up to 1,000 PDUs per second can be received and processed on 

commodity hardware (McGregor & Brutzman, 2008). Open-DIS is also capable of 

running on mobile computing devices as well (Figure 13). 

Elements of the Open-DIS library form an integral part of several of the 

components developed in support of this thesis work. The primary advantage derived 

from using Open-DIS is that it was not necessary to develop an application-specific 

protocol. This allows the thesis work to be extended to other DIS-capable simulations 

relatively easily.  

 

Figure 13.   (l) Open-DIS running on an iPhone® controlling icon position.  (r) A partial 
sample of the DIS PDUs implemented to date in Open-DIS. 
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I. AUTONOMOUS UNMANNED VEHICLE (AUV) WORKBENCH 

The importance of structured data interchange for DVE interoperability is 

essential. Currently individual Autonomous Unmanned Vehicle (AUV) systems typically 

operate on their own with a proprietary data format for collected data and no command 

task language for mission planning that is sharable among robots. The problem of data 

interchange between AUVs is directly analogous to the problem of DVEs, which use 

heterogeneous clients (Weekley et al., 2004). The AUV Workbench 

(https://savage.nps.edu/AuvWorkbench) was developed at NPS to provide a tool for 

mission planning, mission rehearsal and mission playback (Figure 14). 

 

 

Figure 14.   Screen capture from AUV Workbench 2D view showing UAV mission 
waypoints. 

During the execution of robot mission rehearsal or robot mission playback, AUV 

Workbench is able to generate ESPDUs that reflect the state of the entities whose 
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movement behavior it is representing. It supports underwater, maritime surface, airborne, 

and ground vehicles. Individual vehicle state updates can be reported via classical binary 

DIS PDUs or as DIS-XML fragments embedded in Extensible Messaging and Presence 

Protocol (XMPP) chat messages.  Visualizations are produced using networked X3D 

models from the Savage archive (Weekley et al., 2004). The AUV Workbench is 

therefore usable as another source of entities, which can populate a persistent DVE 

(Brutzman, 1994). 

J. SUMMARY  

Examples of the usage of large scale persistent DVEs for knowledge solicitation 

and distributed training have been provided. Alternatives to pure client-server 

architectures are being examined for MMOGs in order to reduce the tendency of the 

server to become a bottleneck. Since an efficient mechanism for state distribution is an 

essential core element for both MMOGs and large militarily useful DVEs, there are 

ongoing efforts to develop middleware that allows the developer to concentrate on the 

application instead of this core. Existing simulators and models can be integrated into a 

DVE that makes use of emerging technology. The Savage X3D model archive and related 

applications such as X3D-Edit and AUV Workbench provide a ready means to develop a 

DVE application using a DIS-based middleware core.  
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IV. METHODOLOGY 

A. INTRODUCTION 

Project Darkstar can be thought of as an application server for massive 

multiplayer online games. It is not a game implementation but a toolkit to handle the 

many low-level tasks that are common to all multiplayer online games. The development 

of a DVE application that uses the Project Darkstar toolkit has been produced in order to 

examine some of the questions raised in this thesis. A client simulator enables many 

simultaneous remote connections to be made to the server for testing purposes. Gateways 

are necessary to integrate simulators that do not use common standards into a common 

environment. Open standards are used to exchange information and visualize the state of 

the DVE. Performance and behavior measurement methodology is a fundamental 

component of a systematic development process. 

B. IMPLEMENTATION OF A MMOG SERVER APPLICATION 

1. Project Darkstar  

a. Overview  

Project Darkstar (PDS) is a free and open-source MMOG toolkit from Sun 

Microsystems (Project Darkstar, 2009). The server code is distributed under the GNU 

Public License (GPL), while the client code is distributed under the Berkeley Software 

Distribution (BSD) license. While both licenses are open source, this licensing choice 

makes modifications to the server side code “viral,” and required to be themselves open-

source, while client side code can remain unconstrained. Darkstar is still officially in a 

pre-release form and lacks some critical release features, such as multi-server scalability. 

Darkstar is not yet a complete server-side implementation of game technology, but is  
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nevertheless a highly functional toolkit that allows the server-side component of games to 

be constructed easily. It can be thought of as an application server for games (Figures 15 

and 16). 

Project Darkstar provides a framework to handle common tasks such as 

low latency communications, thread management, handling contention between clients 

for shared state, persistence, and (in future releases) scalability. Darkstar’s basic insight is 

to treat objects on the server side as persistent, and to make state changes to them 

transactional and parallelizable. Darkstar provides three main services to the implementer 

as subsystems: a data manager, a task manager, and a channel manager (Burns, 2007; 

Project Darkstar, 2009). 

b. Darkstar Data Manager  

The data manager coordinates access to the persistent, server-side objects. 

The objects are stored in a database and brought into memory by the data manager; as of 

this writing the Berkeley database is used to store the data (Olson et al., 1999). Clients 

may acquire read or write access to an object, and if modified the object can be written to 

the database by the data manager in a transaction.  

c. Darkstar Task Manager 

The task manager is responsible for scheduling and running tasks, which 

are pieces of the server-side program that can modify object state. Tasks are assumed to 

be relatively short in duration; if they run for more than about 100 ms, the task manager 

will cancel the task, roll back any changes the task made to persistent objects, and 

reschedule it to run later. The assumption at that point is that the task has been delayed or 

blocked by some (hopefully temporarily) unavailable resource. This design choice is a 

product of experience in game implementations and the nature of the data manager. 

Project Darkstar’s objective is to run as many tasks in parallel as possible. To do this, 

Darkstar must distribute the tasks across multiple cores, multiple CPUs, and eventually 

multiple hosts; if this can be done efficiently (particularly the latter) games can be called  
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to near infinite size. For this to be practical, the tasks must be completely independent of 

each other, with no dependencies or communications between the tasks (Project Darkstar, 

2009). 

The Darkstar design therefore makes some assumptions and imposes some 

requirements about what a “typical” task on a server looks like. Tasks are assumed to be 

of short duration, either prompted by a client request or by a server-side task. The typical 

use case is a client either requesting a change to the state of an object or else simply 

requesting the state of an object, both of which can be handled in code that does not take 

long to run. Programmers must design and organize their tasks to conform to these 

assumptions in order to optimize overall performance (McGregor et al., 2009). 

 

 

Figure 15.   Call of the Kings (Gamalocus Studios) is an in-development MMORPG that 
uses Project Darkstar as MMOG middleware (From: Gamalocus, 2009). 
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When a Darkstar server fails, even ungracefully or unexpectedly, upon 

server reboot the task manager retrieves any incomplete or outstanding tasks from the 

data store for rescheduling. Persistent objects are likewise safe in the database. Thus, the 

power plug on a server running Darkstar can be pulled, and once rebooted the server 

resumes and continues as it was at the time of failure, with all object state preserved 

(Burns, 2007; McGregor et al., 2009). 

d. Darkstar Channel Manager 

All communications with the Darkstar server must be done via channels, 

which abstract away the housekeeping requirements of network sockets. As with HLA, 

Darkstar channels can define their delivery mechanism as reliable or unreliable, ordered 

or unordered. Generally, the Transmission Control Protocol (TCP) is used unless the 

channel is set to unordered and unreliable in which case User Datagram Protocol (UDP) 

is used. Darkstar does not define or require any particular protocol between the clients 

and the server. Darkstar simply passes data to the programmer-implemented protocol as a 

byte buffer wrapped in a Darkstar channel. On the client side, a relatively small amount 

of code is needed to implement the communications framework, and this can be done in 

any of several programming languages such as Java, C or C++, or Python (Project 

Darkstar, 2009). This approach is quite powerful because it allows the equivalent use of a 

variety of client-server data protocols if messaging semantics are consistent throughout. 
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Figure 16.   Project Darkstar is a Sun R&D project for the development of an application 
server for MMOGs. 

e. Technology Roadmap 

Future planned features for Darkstar include the ability to have multiple 

hosts that are sharing the same data managed together in an efficient way. This approach 

is expected to allow multiple hosts to handle client connections and, eventually, load 

balance Darkstar tasks across cooperating servers.  

2. The MOVES Darkstar Server Architecture 

As candidate middleware for MMOGs, Project Darkstar (PDS) is designed to 

support client-server architectures. This is the base case for the MOVES test 

implementation. A simple server is constructed, which allows a client to establish a 

connection and send messages to the server. The messages are byte buffers and DIS 

ESPDUs are used in this implementation. The server sends a copy of the message to 

every interested client. In the base case, there is no area of interest management (AOIM) 

and so all connected clients receive all messages (Figure 17). The improved functionality 

that this server adds to a typical multicast DIS environment is that much of the network  
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programming is greatly simplified and abstracted away. DIS simulation nodes connect to 

the server via a gateway that listens for incoming PDUs on the network. Native PDS 

clients are able to connect directly to the server.  
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Figure 17.   Overview of the architecture of the prototype DVE that includes 
autonomous DIS nodes and Project Darkstar clients. Gateways are used as 
middleware to address heterogeneity of clients. 

Given this base case, an additional protocol is added next.  The X-Plane 

simulation node uses a gateway that translates its proprietary data format into DIS 

ESPDUs.  This approach lets all DIS-enable clients on the LAN listen to X-Plane DIS 

PDUs.  Future work will construct a direct gateway between the X-Plane UDP and the 

Darkstar server. 

3. Adding Server-side Game Logic 

Server-side entities increase the richness of the environment and suggest the 

notion of an always-on and populated DVE (Figure 18). This simple representation uses 
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the Open-DIS library and represents the server-side entity state as an ESPDU. Dead 

reckoning or path prediction is a DIS algorithm that is also commonly implemented in 

online games. Server-side dead-reckoning of both server-side entities and connected 

client entities has been successfully implemented in this work (Figure 19). This opens up 

the possibility of traffic management schemes at the server, and reconstruction of the 

state of other relevant clients at each connected client, using information provided by the 

server in the event of some fault at the client (Yasui et al., 2005). 

PDS is an inherently event-based system. Careful thought must be given to which 

processes are to be executed as PDS tasks and which are suitably implemented as 

function calls responding to client requests. Yet, other tasks can sometimes be delegated 

to the clients themselves.  Of the desirable characteristics of a DVE system, scalability 

and low-latency state update capabilities are particularly useful as has been discussed 

(Project Darkstar, 2009).  Proper division and deployment of labor is essential to 

effective DVE design. 

For this work, the base implementation of server-side logic revolves around the 

scheduling of so-called TickEntityTasks for every entity at some specific update rate. 

This task is not native to PDS but is part of the server implementation developed in 

support of this thesis. Darkstar tasks are either periodic or scheduled. Scheduled tasks can 

either be set to execute immediately or after some delay. The baseline implementation in 

this body of work uses a periodic task to emulate the behavior of a DIS-based entity on 

the server. The periodicity or tick interval is analogous to DIS heartbeat update interval. 

The effect of various tick intervals on the server are measured and examined in Chapter 

V. As stated, the middleware abstracts multi-threading away from the developer. This 

thesis is specifically concerned with appropriate choices of update handling when dealing 

with large numbers of dynamic entities.  
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Figure 18.   Pseudocode of the server initialization logic. The periodicity of state updates 
on the server side is set at this point. 

It is important to emphasize that running many parallel independent simulated 

entities is not the goal and is not the difficulty. Many independent threads can be 

executed when there is no contention between objects. The scalability challenge derives 

from the need to have a consistent shared state between all of the entities that make up of 

the environment state. The entities must be able to share knowledge if necessary. They 

are not independent. This is one of the fundamental distinguishing requirements for a 

distributed virtual environment (DVE).  

The base implementation for task scheduling includes a Heartbeat Task and a 

TickEntityTask. The heartbeat task has a 5000 ms (5 seconds) maximum periodicity in 

order to satisfy the DIS standard. Any entities for which updates have not been received 

after five heartbeats are subsequently removed from the environment state by a Reaper 

Task. Future implementations may seek to eliminate the Heartbeat Task for clients that 

connect directly to the server since open socket connections provide an alternate 

mechanism for confirming that an entity is live. 

 

Initialize (server.properties) 
 Declare DataManager, ChannelManager, TaskManager 
 
 for zero to (number of starting server entities) 
  Declare an Entity 
   
  Use the DataManager to get a reference for the Entity 
 
  Add the Entity reference to the ScalableHashMap 
  
  Using the TaskManager to declare a task handler 
  Associate a HeartbeatTask with the reference 
  Associate a TickEntityTask with the reference 
 
 Start the ClientListener 
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The TickEntityTask is the mechanism by which dead reckoning occurs for all 

entities that are registered with the server. The time interval between ticks is a test point 

but is defaulted to 250 ms in this initial test. Dead reckoning occurs as a simple function 

call to a member method of the Entity object. Second-order acceleration-based dead 

reckoning is implemented though the default server-side entities all have acceleration 

equal to zero. 

 

 

Figure 19.   Vector and pseudocode representation of second-order motion computations 
used for dead reckoning.  Full vector state includes both position and 
orientation. 

Task design and implementation is important because of the default task timeout 

of 100 ms. Tasks that take more than this duration due to processing time or contention 

with shared objects are marked as failed by the middleware and rescheduled. Such 

failures are costly and hopefully avoided through proper overall design.  Jobs that take 

longer periods of time to accomplish (perhaps due to computational complexity or 

network delays) may be better accomplished by a series of tasks that cooperatively start, 

monitor, and complete a long-duration job. 

Simultaneous task generation creates a likelihood of object contention and the 

degree to which this might become a problem is examined experimentally. This 

implementation uses a periodic task handler to schedule a Tick Entity Task for every 

entity in the global state with an interval set upon server initialization. It follows that the 

number of tasks scheduled per second equals Number of Entities * (1000 ms/tick 

interval). For example, 500 entities with an interval of 250 ms will theoretically result in 

the scheduling of 2000 Tick Entity Tasks every second. This thumb-rule does not 

consider other less frequent tasks that are used for server management. For instance,  
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simple dead reckoning used here is completed in less than 0.1 ms on a 2.6 GHz x86 

processor (M = 0.048 ms, SD = 0.014 ms) and so in itself does not produce task failures 

due to timeouts. 

Task failure does occur when a task is unable to obtain a lock on the object it is 

associated with before the timeout deadline is reached.  Such failures are easy to detect 

and reschedule.  However, it is difficult to analytically predict when such faults occur. 

Study of the behavior of the system under different configurations provides some insight 

into such problems and also can suggest approaches for server-side state-update logic 

improvements. For example, allowing tasks to fail only a certain number of times or 

avoiding the scheduling of dependent tasks. 

4. Mixed-Authority DIS Entity State Server 

A mixed-authority server is simply a system in which the server maintains 

authority over the entities that it simulates internally while it further accepts as 

authoritative, state updates received from all remote clients. This is exactly in accordance 

with the requirements of the DIS standard (IEEE 1278). As an alternative example, 

server-side enforcement of consistency might be implemented by rejecting inputs from 

remote clients that do not correspond to the server’s dead reckoned record of that entity’s 

state. This approach, however, is a violation of the DIS assumptions. Implementing 

deadreckoning on the server enables an architecture by which a client-server relationship 

can be established between DIS nodes and the Darkstar server while maintaining the 

autonomy of the DIS nodes. All connections are via the server. The server creates an 

entity whenever a new client connects and begins to dead reckon the movement of the 

entity upon receipt of the first ESPDU. The client behaves as a normal DIS node except 

that it communicates solely with the server (Figure 20).  DIS logic can be satisfactorily 

supported as long as server capacity and performance are sufficient. 

The base implementation state distribution logic forwards every received state 

update to all clients. If there are N clients connected, theoretically this will result in N 

updates per client at the mean update rate. Although this is a naïve estimate of the traffic 

load at the server node, it demonstrates that such a fully interconnected state-distribution 
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method theoretically suffers from poor scalability. For purposes of comparison, message 

size is considered to be equivalent to a DIS ESPDU sent as a User Datagram Protocol 

(UDP) packet of 172 bytes, (144 bytes payload + 28 bytes header). If there are 500 

remote clients, each of which transmits one 172-byte update per second, which is 

forwarded by the server to every remote client, the average traffic load becomes a 

daunting 43 Mbytes per second. 

The specific communication protocol is abstracted away from the implementation 

developer by the Project Darkstar middleware. Inspection of common examples shows 

that typically the reliable-delivery TCP is used for network traffic. When the server 

receives a message from the client, it compares the update to its internal model of the 

entity. It only forwards the message if its model does not match the update within some 

tolerance. This eliminates the need for transmitting expected incremental changes. When 

new participants log in, the server initially provides each new participant with the state of 

all the connected entities.  Thus, all participants in the DVE share a consistent world 

state, even for latecomers whose presence was not known beforehand. 
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Figure 20.   Flowchart showing the state exchange between the client and server for the 
mixed-authority DIS server.  Consistent state is maintained by all existing 
and arriving participants. 
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5. Darkstar Client Simulator 

A DVE system is best tested with actual distributed clients and human users. For 

the purpose of gaining insight into how to implement the server logic and testing the 

general architecture of the system, it is sufficient to use a client simulator that generates 

many simultaneous connections to the server and then sends messages that are analogous 

to what might be seen from actual clients (Kwok, 2006). 

Such a basic client test application was developed as part of this effort. Platform 

simulation and dead reckoning behavior are added to the package by means of classes 

from the X-Plane to DIS gateway, which is described below. Each simulated client runs 

in its own thread, which is instantiated and started by the Client Simulator (Figure 21). 

The simulated clients attempt to establish a connection with the remote server. Once a 

network connection is established each enters a loop that executes its behavior. 

 

While (Connected)
Platform.move
DeadReckoning.move
If (Platform.postion - DeadReckoning.position)  

>tolerance
Send update message to server
DeadReckoning.update(Platform)

Wait 50 milliseconds

Set Entity ID()
Set Start Location()
Set Linear Velocity()
Connect to Server()
Platform
DeadReckoning Model

Connection Granted

Simulated ClientServerAddress
ServerPort
Map<Clients>

For (entity in range 0 to Number of Clients)
SimulatedClient.
ID = Site, entity, application
Start Client Thread
Put client into Map with EntityID as key

 

Figure 21.   Diagram showing the logic of the client simulator used for testing the 
connection-handling behavior of the server. 
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The test behavior consists of three-dimensional (3D) movement at a random 

speed from 0 to 100 meters/second. Initial direction and location are randomly assigned. 

After a fixed interval, a turn is executed by setting the acceleration to a suitable value for 

a fixed interval. Time steps are 50 ms, which is equivalent to 20 frames (and 

corresponding computational updates) per second.  

The simulated clients also possess a dead-reckoning model that is compared to the 

movement model at every time step. If the error between the two exceeds a preset 

tolerance distance or orientation, an update message is sent to the server via the client 

channel and the dead reckoning model is updated with new state values. This mimics the 

behavior of a remote DIS simulation node. This step is included because the only purpose 

of the simulator is to generate characteristic DIS traffic. 

6. Project Darkstar DIS Gateway Client 

Game logic in the PDS original server implementation allows the server to 

differentiate between entities that represent client entities and server-side entities. Game 

logic can then comply with DIS rules about the authority of autonomous nodes. For use 

in DIS multicast environments, a DIS-Gateway client is built, which listens for DIS 

PDUs and sends them to the PDS Server application via a connection channel. The 

gateway, therefore, acts as a point of aggregation, which can also segregate the DIS peer-

to-peer architecture from the client-server architecture of PDS. Such a flexible scheme is 

quite useful for building hybrid-architecture DVEs. 

C. COMPONENT GATEWAY DEVELOPMENT 

To make use of existing simulations, gateways are developed as proof-of-concept 

of connecting heterogeneous DVEs using the middleware. 

1. Laminar Research X-Plane ® to DIS Gateway 

X-Plane is a popular commercial PC-based flight simulator that dominates what 

might be considered the hard-core PC flight simulator community. Its primary utility is 

the built in menus for sending messages about the state of the aircraft being represented 
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to network-connected third-party applications. For this reason, it often used for other-

than-entertainment flight simulation purposes (Laminar Research, 2009). A DIS gateway 

was constructed in this project in order to include X-Plane as a heterogeneous client. 

There are several types of messages, which X-plane is capable of producing and 

these are generally described as X-Plane UDPs. The X-Plane UDPs follow a proprietary 

format that is described in the documentation that comes with the software (Laminar 

Research, 2007). The “DATA” UDP contains all of the information needed to construct a 

DIS ESPDU except for some details about the entity type, which can be obtained from 

the “SNAP” UDP.  

The gateway process consists of a loop, which listens at the IP address and port to 

which X-plane is set to transmit. Upon receipt of an X-Plane UDP, it is interpreted and 

the relevant data is read into an Open-DIS ESPDU object. Since X-Plane is a real-time 

platform level simulation, it is capable of generating messages at very high data rates. 

Second-order dead reckoning with user-selectable error tolerance occurs at the gateway, 

and only updates which are not within this distance tolerance (as compared to the dead-

reckoning model) result in the transmission of a DIS ESPDU via the user-selectable 

output channel. Figure 22 is a depiction of the data-handling logic of this process. 

Second-order dead reckoning is usually sufficient to reduce output packet rate to the 

heartbeat interval. Part of the launch panel for this gateway application is shown in 

Figure 23. 

Input rates as high as 40 X-Plane UDPs per second are handled with little 

apparent difficulty. With dead reckoning implemented and the aircraft in X-Plane in 

straight and level flight, output rates are comparable to typical platform-level DIS 

entities.  

Several opportunities for improvement exist. There is a free open-source X-Plane 

Software Development Kit (SDK), which can allow implementation of a more 

sophisticated X-Plane to DIS gateway (X-Plane SDK, 2009). More importantly, the need 

for gateway translation might be eliminated completely by implementing customized X- 
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Plane data channels directly on the Darkstar server.  At that point, no translation is 

needed between X-plane and DIS clients, since the data channels map each protocol to 

consistent server-side semantics for position, orientation, velocity, accelerations, etc. 

 

 

Figure 22.   Diagram of the X-Plane to DIS Gateway Process Logic. 
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Figure 23.   Prototype X-Plane to DIS gateway user-interface. 

2. NAVAIR SH-60B MRT3 Client 

The SH-60B MRT3 already has native support for DIS built into the pilot station 

of the system. The HLA implementation is on the Instructor-Operator Station and it 

interfaces with the Common Distributed Mission Training System (CDMTS) to populate 

the virtual environment of the MRT3 with entities. The MRT3 is actually a small but self-

contained tightly-coupled distributed virtual environment where each of the crew stations 

is a node that communicates with the other four nodes over a LAN. 

A simple java client was developed, which listens for the ESPDUs that the pilot 

station multicasts, and then either forwards them to a local multicast address or else 

connects to the PDS DIS server and sends the message to the channel. This, 

unfortunately, is a one-way interaction since the MRT3 client only sends DIS packets and 

does not listen for DIS inputs. Full interaction with the current MRT3 system requires 

implementing an HLA bridge to the Darkstar server. This was not done but remains an 

excellent opportunity for future research. Special care must be taken, however, since 

independent HLA implementations are not required to support data-exchange 

interoperability with other HLA implementations. 
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D. VISUALIZATION SCENE DEVELOPMENT 

1. X3D Scene Authoring 

In addition to using existing simulations as clients, it is useful both for purposes 

of visualization and for demonstrating the potential use of X3D to provide interaction in a 

DVE built upon a Project Darkstar Server. One of the considerations is that DIS uses 

geocentric Cartesian coordinates to represent entity location. X3D uses a coordinate 

system oriented towards the presentation of 3D scenes on a screen. This requires a 

transformation at some point in the process, typically performed by the standardized X3D 

ESPDU transform node.  In some cases, local coordinate systems are used by both X3D 

scenes and DIS-enabled applications. 

Scene construction itself is the construction of a X3D scene-graph that contains 

X3D Earth terrain and entity models. The models are added as a node within an 

EspduTransform within the X3D scene file. The terrain and the models are used directly 

from the Savage model repository without modification.  

2. Keyhole Markup Language (KML) Document Construction 

In order to further demonstrate the utility of open standards, the Open-DIS library 

is used with the Document Object Model (DOM) API to generate XML documents, 

which represent the state of entities in the virtual environment. DOM is a supported 

component API of the Java API for XML Processing (JAXP). Keyhole Markup 

Language (KML) is an XML language focused on geographic visualization, including 

annotation of maps and images (OGC, 2008). Geographic visualization includes not only 

the presentation of graphical data on the globe, but also the control of the user's 

navigation in the sense of where to go and where to look. 

At some user-selected periodicity, this application generates a KML document 

from the ESPDUs of the entities about which the client is aware (Figures 24, 25 and 26).  
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This allows the observation of the position of the entity in an earth-browser via the 

network link function. While this application is somewhat ancillary to this work, is has 

significant implications for the further visualization of large-scale DVEs. 

 

EntityLocation

DIS EntityStatePDU

EntityID
Site, Application, ID

Orientation

Entity<ID>.kml

Lookat
Long, Lat, Altitude, 
Range, Tilt, Heading

Placemark
Name 

Convert From DIS to 
Lat/Long

Point
Transform from DIS Euler 
Angles to Local Tangent 

Reference Frame

 
Figure 24.   Diagram showing data mapping from the DIS ESPDU to Open Geospatial 

Consortium (OGC) Keyhole Markup Language (KML) standard. 

Figure 25.   Representative KML document generated by the X-Plane to DIS gateway 
developed in support of this thesis work. 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<kml xmlns="http://www.opengis.net/kml/2.2"> 
  <Document> 
   <Style id="airplaneIcon"> 
    <IconStyle> 
      <Icon> 
       <href>http://maps.google.com/mapfiles/kml/shapes/airports.png</href> 
      </Icon> 
    </IconStyle> 
    <LineStyle> 
      <width>2</width> 
    </LineStyle> 
   </Style> 
   <Placemark> 
    <name>Entity 1_0</name> 
     
    <styleUrl>#airplaneIcon</styleUrl> 
    <Point> 
      <altitudeMode>absolute</altitudeMode> 
      <coordinates>-5.35002412341,36.11826004028321,813.855103126727</coordinates> 
    </Point> 
   </Placemark> 
  </Document> 
</kml> 
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Figure 26.   Screen capture showing a KML-based visualization in an Earth-browser of 

the entities for which the client has received state information. 

E. SUMMARY 

Project Darkstar is a specific implementation of middleware intended to enable 

MMOG/DVE deployment without the error-prone complexity of developing the 

communication and data-handling infrastructure. Some understanding of how the 

middleware operates is necessary in order to develop effective and efficient applications. 

The need for gateways and the importance of using open standards for interoperability 

are completely independent of the use of any specific MMOG/DVE middleware. Testing 

methodology includes monitoring the internal operation of the system and the 

communication among the distributed components. A successful example 

implementation is presented for testing purposes. Test results and analysis appear in the 

next chapter. 
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V. EXPERIMENTAL RESULTS 

A. INTRODUCTION 

This chapter reports details of task scheduling, metrics and measuring 

success/failure for various numbers of server-managed entities. This data provides 

interesting results and raises questions about the baseline server-side logic for updating 

the state of managed entities. The character of the network traffic between the server 

application and remote clients is also reported and explained. 

B. MEASURING OVERALL SYSTEM PERFORMANCE 

1. Experimental Parameters of Operation 

Understanding the behavior of the server architecture and logic requires 

measurement under various configurations. The first study examines the effect of both 

tick interval and the number of server side entities on the behavior of the system. The 

second study examines system behavior under varying numbers of remotely connected 

simulated clients. The test hardware is a Dell PowerEdge 1750 rack-mounted server 

(Table 2).  

Table 2.   System Information for the Server Used in this Work 

Server Dell PowerEdge 1750 rack-mounted server 

Processor(s) Two Intel Dual-Core P4/Xeon 2.4 Ghz ea 

Memory 1.0 GB 

Operating System Redhat Enterprise Linux version 4.1.2 

Java Version 1.6.0_12 
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2. Server Profiling Test 

The server profiling experimental design is (7 x 4) full factorial. Entity behavior is 

deterministic and no repetition is performed. 

a. Independent Variables 

• Simultaneous Server-Side Entities: 0, 100, 250, 500, 1000, 1500, 2000 

• Tick Interval: 100, 250, 500, 750 milliseconds 

b. Dependent Variables 

• Failed Tick Tasks 

• Successful Tick Tasks 

• Entity with Tick Task Contention 

• Transaction Conflict Timeouts 

3. Network Traffic and Server Connection-Handling Test 

Due to the need to run many simulated clients on multiple machines, all tests are 

conducted within a 100 Mb/s Ethernet LAN in order to avoid any routing or bridging 

delays. Each client generates on the order of a hundred bytes per second of traffic. 

However, state updates received from the server will be many times this amount, directly 

proportional to the number of connected clients. Since all of the simulated clients are 

actually connecting to the same server node this approach generates significant traffic at 

that node. If clients are distributed across a WAN, the requirement to operate inside of a 

LAN does not exist. As the tests were conducted within a LAN during periods of low 

traffic, the effect of network latency is not examined. The tick interval is held fixed at 

250 ms and the number of server-side entities is kept at zero. The number of remote 

connections is varied through the set; 100, 250, 500, 750.  

The client simulator application is run on two separate machines connected to the 

LAN by 100 Mbs Ethernet. Each is able to generate 500 connections without difficulty. 

The client simulator hardware platforms are as follows. 
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• Dual-Core x86 2.2 GHz Laptop with 2 GB RAM 

• Single-Core x86 2.666 GHz Desktop 3 GB RAM 

a. Independent Variables 

• Remote Simulated Clients: 100, 250, 500, 750 

b. Dependent Variables 

• Network Traffic between Server and simulator nodes 

• Packets per second 

• Packet Size 

• Aggregate Flow 

• Failed Tick Tasks 

• Successful Tick Tasks 

• Entity with Tick Task Contention 

• Transaction Conflict Timeouts 

• Successful Handle Channel Message Tasks (Part of middleware package) 

• Failed Handle Channel Message Tasks 

4. Measurement Methods 

Data on the server’s behavior at different test points is collected using a profiling 

plug-in to the Darkstar server (Darkstar Profiler, 2009). Coarse analysis provides insight 

into the suitability of this particular server implementation. A detailed examination of the 

tasks that are scheduled, succeed, and marked as failed points to specific implementation 

weaknesses. A network protocol analyzer is also used in order to characterize the 

communications traffic between clients and the server. 

a. Profiling Data 

A server profiler produced by an independent effort is used to generate a 

record of each test run. The record includes the following. 
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• Successful and Failed tasks 

• Timeout exceptions 

• Object contentions 

The profiler package is added to the library for the Darkstar server 

implementation. The file darkstar-server.properties file is modified so that the profiler is 

started concurrently with the server (Darkstar Profiler, 2009). 

The server configuration is passed is also passed by adding two properties 

to the darkstar-server.properties file. These are server entities and server tick interval. An 

experimental run consists of editing these properties using a text editor, starting the server 

remotely with a call to an ant target via an SSH client (PuTTY is used) (Tatham, 2009; 

Apache Foundation, 2009). The server is first run for one minute to allow its behavior to 

stabilize after initialization. After an additional two minutes, the server is stopped with a 

call to a different ant target. The server data store is erased so that it initializes with the 

next set of test parameters upon the next start. If this step is omitted, the server (which is 

designed for reliable persistence) will start with the configuration it had when it was 

stopped regardless of the darkstar-server.properties file.  

The measured profiling data is then downloaded to a local machine for 

subsequent analysis. The profiler produces blocks of data that cover 60 seconds of run 

time. For tests with large numbers of entities, each recorded data block may be 15-20 MB 

in size. 

b. Network Traffic 

The Wireshark network protocol analyzer is used to capture traffic at the 

machines that are running the client simulators (Wireshark, 2009). The address of the 

server is known and so traffic from other sources is appropriately filtered from the 

capture trace. The aggregate of captured traffic from the two test nodes is the total 

communication between the server and all of the simulated clients. Since the test is done 

in a quiet network environment, packet loss is minimal. Background traffic at the 

simulator nodes is typically less than 0.1 Mb/s during the tests. 
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The server is started in accordance with the procedure described earlier, 

and then allowed to run for one minute so that it is stable and ready to accept 

connections. The client simulator waits one second between instantiation of simulated 

clients so that the server does not receive all the connection requests simultaneously, 

which is a reasonable precaution since its ability to handle this circumstance is not under 

test. After the client simulator indicates that all of its simulated clients are connected to 

the server, the traffic capture is initiated in the network protocol analyzer application. 

Five minutes of network traffic is captured to smooth out any effects of transient 

behavior. The capture file is saved, and the server and client simulator are each 

reinitialized and restarted with configuration parameters adjusted according to the test 

design. 

C. SERVER PROFILING WITH SERVER-SIDE ENTITIES ONLY 

1. Discussion 

Server profile behavior with zero server-side entities reveals 189 housekeeping 

tasks over the 60 second period of data collection. As expected, there are no task failures 

or contentions at zero entities.  

Curiously, the server had many more failed tasks with only 100 entities than it did 

at all other test levels. More usefully, at around 500 entities on the server side, the ratio of 

successful tick tasks to failed tick tasks reaches a maximum. Recall that the tick task 

represents a state update of each entity for which the server has a record. The ability of 

the server to maintain a consistent state is determined by the number of successful tasks. 

The theoretical number of generated tasks for 500 entities at an interval of 250 ms over a 

60 second period is 120,000. In fact, a total of approximately 14,000 tick tasks were 

generated. Development of a methodology to compare the state of the server side entities 

after a run to an analytically predicted state is required to determine the effect of this 

disparity and is reserved for future work. 

At 2000 server-side entities, an out-of-memory error caused the server to halt 

execution. No data was collected for 2000 server-side entities (Figure 27).  
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Figure 27.   Effect of the number of server-side entities on task success at the server.  
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Tick interval had little apparent effect on the profiling data (Figure 28). Possible 

explanations for this measured result are that some maximum capacity is reached even at 

the least demanding test point or that this is a characteristic of the middleware package. 

Further study is required. 

 

 

Figure 28.   Effect of the tick interval on task success at the server. 
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D. SERVER TESTING WITH THE REMOTE CLIENT SIMULATOR 

1. Discussion 

Profiling of the server execution is conducted for purposes of comparison to the 

server-side entity only data. Since the record of each client is maintained as a server side 

entity, the profiling data is similar to that of the case where there are no remote clients 

(Figure 29). 

 

 
Figure 29.   (l) Server profiling data showing effect of the number of connected clients. 

(r) Network traffic analysis showing effect of the number of connected 
clients on the traffic at the server. 
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Since all the clients are actually resident at one node, all traffic between clients 

and the server is between these two physical nodes. For purposes of this test, this unusual 

distribution of clients is not consequential. Of interest is the ability of the server 

implementation to handle many dynamic simultaneous connections. In addition, some 

idea of the network traffic generated by the implementation is obtained. 

This implementation uses the Open-DIS library to marshal ESPDU objects to a 

byte buffer (McGregor & Brutzman, 2008). This byte buffer is the actual message sent 

from the server to the client using the Darkstar Channel. Although a DIS ESPDU is 

typically 144 bytes in length, TCP packets sent from each client to the server were 

exactly 54 bytes long including the protocol header of 40 bytes (Tables 3 and 4). This 

confirms that the message is streamed to the server rather than sent as one packet. 

Investigation reveals that the Project Darkstar Server uses a communication setting of 

TCP-no delay. This setting disables nagling, which is a TCP feature that combines 

several smaller packets into one larger packet (Technet, 2009). 

 

Table 3.   Summary of network traffic generated during the test. 

Number 
of 
Entities 
 

Total 
(Packets/Sec) 
 

Total 
(Kbytes/Sec) 
 

Clients to 
Server 
(Kbytes/sec) 
 

Server to 
Clients 
(Kbytes/Sec) 
 

Mean Client 
to Server 
Packet Size 
(Bytes) 

Mean Server 
to Client 
Packet Size 
(Bytes) 

100 681.35 338.74 18.89 319.85 66.31 806.84 
250 3645.63 2057.11 96.23 1960.88 60.73 951.36 
500 6612.35 3900.50 178.19 3722.30 61.84 997.67 
508 6979.09 4143.78 186.39 3957.39 61.72 999.55 
 

Table 4.   Summary of per client packet rate and byte rate for server to client and 
client to server messages respectively. 

Number 
of 
Entities 

Server to Client  
(Packets/Second/Client) 

Server to Client 
(Bytes/Second/Client) 

Client to Server 
(Packets/Second/Client) 

Client to Server 
(Bytes/Second/Client) 

100 3.96 3198.55 2.84 188.93 
250 8.24 7843.55 6.34 384.93 
500 7.46 7444.62 5.76 356.39 
508 7.79 7790.15 5.94 366.92 
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Despite multiple attempts including running client simulators on more than one 

hardware platform simultaneously, the maximum number of connected clients never 

exceeds 508 even though 750 clients attempted to connect. Approximately ten percent of 

packets sent from the server to the client simulator node are lost when 500 and 508 

simulated clients are connected. No packets sent from the client simulator to the server 

over established channels are lost. Inspection of the profiling data does not suggest a 

reason for the server application’s inability to establish more than this number of 

connections. Inspection of plots of the traffic provides additional insight. 

100 Simulated Clients: 

Every simulated client executes the same behavior model. Despite efforts to 

stagger the initialization of the simulated clients, strong periodicity is apparent in the 

communication between the clients and the server. Packet rate between the clients and the 

server are proximate as is expected. Inspection of the throughput in Bytes/second shows 

that each client transmission causes a corresponding surge in traffic from the server 

(Figure 30). Despite a mean traffic load of 338 KB/sec, the load peaks near 1,000 KB/sec 

because the simulated clients appear to be synchronized. This is consistent with the server 

state distribution logic described earlier. The relative size of the client-to-server packet 

and the server-to-client packet are comparable to MMOGs discussed earlier. 
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Figure 30.   Plot of the network traffic between the server and 100 simulated clients.  
Upper plot shows packets/second whilethe lower plot shows bytes/second. 

250 Simulated Clients: 
 

While the plot of this trace tends to aggregate patterns that exist at small time 

resolutions, it is apparent that increasing the number of clients has the effect of 

smoothing out the traffic (Figure 31). This is a logical result. In this case, the peak traffic 

between the server and the client is only slightly above the mean of 2,057 KB/sec. 
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Figure 31.   Plot of the network traffic between the server and 250 simulated clients. 
Upper plot shows packets/second whilethe lower plot shows bytes/second. 

500 Simulated Clients: 
 
The trace does not show the stable network traffic behavior that was previously 

observed at 250 clients in Figure 31. Ten percent of the packets sent from the server to 

the client simulator node are lost and the plot of the traffic resembles the familiar “saw-

tooth” shape associated with rate control in TCP (Figure 32). There are no client-to-

server messages lost and 90.88% of the lost packets are over 1280 bytes in length. This 

suggests that 500 entities is a practical upper limit to the number of simulated clients that 

behave similarly to connect to this particular PDS DIS server implementation. 
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Figure 32.   Plot of the network traffic between the server and 500 simulated clients. 
Upper plot shows packets/second whilethe lower plot shows bytes/second. 

750 Simulated Clients: 
 
The current system and test architecture are unable to exceed approximately 500 

simultaneous connections. The platforms on which the client simulators are running are 

able to generate the required number of simulated clients however the maximum number 

of simultaneous connections achieved is 508. This experiment was attempted in two 

ways, first with 750 simulated clients on a single machine and alternatively with 375 on 

one machine and 375 on another. In both cases, the number of simultaneous connected 

clients reached exactly 508. The loss rate of packets sent from the server to the clients is 

10%. No packets sent from the client simulator node to the server were lost. The plot of 

the traffic is qualitatively identical to the previous case of 500 clients and is not presented 

here.  
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E. SUMMARY 

During the test sequence the server implementation is stable and only fails when 

the number of server-side entities exceeds 1,500. However, inspection of the profiling 

data shows that performance decreases markedly when the server must maintain state for 

more than 500-600 dynamic entities when object contention is possible.  

The number of tick tasks generated was an order of magnitude less than expected. 

Not enough is understood about the middleware behavior to determine if this is 

acceptable. A diagnostic algorithm by which the server’s model of the state might be 

compared against an analytically predicted state is needed to test the ability of the server 

implementation to maintain a consistent world state.  

One particular feature of this implementation is a “Reaper Task,” which removes 

entities from the server when no state update is received from a client for more than five 

“Heartbeats.” During testing with either 100 or more server-side entities or 100 or more 

connected clients, this task failed 100% of the time. An alternative method to accomplish 

this behavior (or a debugged API method) is still needed. 

The small size of client-to-server packets compared to the size of the DIS ESPDU 

that forms the body for all messages to the server introduces new questions about how the 

client communicates with the server (Figures 33 and 34). While one of the goals of the 

Project Darkstar middleware is to abstract network programming away from the 

developer, some knowledge about the communication behavior is required in order to use 

the middleware in a heterogeneous environment. 

Network traffic grew geometrically with an increase in the number of connected 

clients from 100 to 250; however, it grew linearly when connected clients went from 250 

to 500. Alternative server-side logic is likely necessary to avoid geometric growth in 

network traffic over certain ranges of connected clients.  

The server application and test methodology described here establish a foundation 

for additional exploration. In addition to potential applications of this middleware, the 

test results themselves have generated questions that need to be answered in order to  
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fully determine if this is a feasible approach to militarily useful distributed virtual 

environment state distribution and interoperability.  In general, within identified limits, 

performance is excellent and Darkstar behaves as expected. 

 

 

Figure 33.   Packet length distribution for packets sent from the client to the server. The 
mean packet size was 60 bytes. 

 

Figure 34.   Packet length distribution for packets sent from the server to the client.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. TESTING CONSIDERATIONS 

Since DoD distributed virtual environments must incorporate many heterogeneous 

simulations, and because no pure architecture can be applied with equal effectiveness 

across all scales, most military-useful DVEs expected to be hybrids. There is no one size 

fits all architecture for such diverse requirements. The growth of commercial MMOGs 

and the consequences for poor system performance means that significant resources are 

being applied toward the development of these technologies and the tools that enable 

them. As a result, the commercial gaming sector is likely to pass the DoD as pioneers of 

large-scale DVEs. One fast-progressing area where DoD developers can benefit is in 

leveraging the middleware that is being developed for commercial MMOG applications.  

Testing reveals occasionally undesirable behavior of the baseline application used 

in this work and suggests alternative implementations that are expected to be more 

effective and more efficient. Once these core implementation issues are addressed and re-

implemented satisfactorily, this work provides a ready foundation for a wide variety of 

important research directions. Any application requiring interactivity and shared state 

distribution among large numbers of remote participants is a potential avenue for applied 

research using these technologies. 

B. CONCLUSIONS 

1. Most Militarily-Useful DVEs will use Hybrid Network Architectures 

The development of large-scale distributed virtual environments is a complex 

task. Since military operations inherently involve many heterogeneous elements, this task 

is made more complex for developers of militarily useful DVEs. Such difficulties are 

further compounded by the basic differences between simulations and C4I systems. 

While game developers must be concerned with heterogeneity of the hardware upon 

which their applications will run, military DVEs must be concerned with the syntactic, 
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conceptual and semantic interoperability of the connected simulations. The DoD 

pioneered the development and use of distributed virtual environments for real-time 

platform-level applications with SIMNET and the Distributed Interactive Simulation 

protocol. Many early networked computer games borrow heavily from the conceptual 

architecture of DIS. As early development was for this specific application domain, it is 

difficult to extend to large-scale scope other than by using platform-level real-time 

distributed virtual environments. HLA supports composability of simulations at any level 

of abstraction, not just at the platform level. While the HLA standard defines the 

requirements for HLA compliance, the performance and interoperability of a particular 

system is dependent upon the commercial RTI implementation chosen. In fact, most 

DVEs implemented in the Defense sector are architectural hybrids as well as hybrids of 

HLA and DIS. This will be true for the near future.  

2. MMOG Technology will Develop more Rapidly than Defense-Specific 
DVEs 

Despite the differences between networked games and militarily useful DVEs, 

they share in common the primary elements of a distributed virtual environment (DVE). 

Large-scale militarily useful DVEs and MMOGs have analogous design requirements 

such as area-of-interest management and traffic management (AOIM) through position 

prediction. Since MMOGs are a service and not a product, they must efficiently and 

effectively meet these design requirements for an indefinite period. While the user-

interface is a game, a MMOG system is a mechanism for distributing shared state. The 

significant growth of this industry creates competitive pressure to improve the 

technology. It is likely to develop much more rapidly than military-specific applications. 

The challenge is to maintain interoperability through standards while taking advantage of 

these rapid developments. 

Persistence of a DVE is the ability to maintain the shared state for an extended 

period of time. A persistent environment provides an “always on” space for distributed 

participants to interact. It also allows the effect of participant actions to permanently 

affect the state of the DVE, and for the effects of participant interaction to play out over 
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days, weeks, or even months. Unfortunately, a typical military-specific distributed virtual 

environment is not characterized as persistent in comparison to commercial MMOGs. A 

few days are the maximum reported persistence of defense-sector DVEs. Arguably, 

persistence is a key element in the growth of MMOGs. 

3. Middleware is a Key Component of Distributed Virtual Environments 

Large-scale DVE development is inherently complex. Pure client-server or peer-

to-peer architectures cannot be applied uniformly across all ranges of DVE applications 

because networks were not designed for distributed virtual environments. Furthermore, 

many stand-alone systems that are usefully integrated into a DVE were not designed to 

operate with heterogeneous systems. Middleware is a system placed between two 

applications to deal with the heterogeneity of the two applications. Furthermore, 

middleware is placed to manage the interaction between two perhaps dissimilar 

applications. It is difficult to avoid the need for middleware even when strong standards 

are available in use. In fact, because many military DVEs are hybrids, middleware is 

absolutely required. 

Commercial MMOGs must not only distribute state updates efficiently but they 

must enforce relevant consistency between clients. This must be done in a manner that is 

seamless to users. When the need to maintain a shared persistent environment is added, as 

well as requirements for authentication and failure handling, the complexity often 

exceeds the capabilities of most developers. Middleware that abstracts the details of this 

functionality from developers while providing the necessary services is a key enabler of 

the growth of large-scale persistent DVEs and MMOGs.  

4. DVE Systems are Complex and Must be Tested to be Understood 

The interaction between the system logic, the connected nodes, and the network is 

difficult to foresee. While there may be some insight gained from analytical models of 

the system, the abstractions and assumptions required to develop the model may make it 

difficult to extend the results to aggregate distributed behavior. The logic implemented in 

this case for state distribution resulted in system performance varying as the number of 
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entities changed, but modifying the update interval has no apparent effect on the system. 

This result was unexpected. It is important to note that because Project Darkstar is an 

application middleware, this behavior may be a bug or limitation particular to this 

specific server implementation.  Some other undiagnosed pathology might also be the 

cause. 

System testing, which explores all of the relevant parameters, requires careful 

design. The experience of this work demonstrates that manual testing is not feasible for 

anything other than low resolution over a few design parameters. The test results do 

provide some insight, which may enable the development of future implementations.  

Furthermore, continuous persistent testing under a wide range of conditions is necessary 

for robust analysis of performance under expected and unexpected operational load. 

C. RECOMMENDATIONS FOR FUTURE WORK 

The use and value of an open-source MMOG middleware to connect 

heterogeneous simulators is clearly demonstrated by this work. The test results raise new 

questions about the performance and behavior of this particular state update and 

distribution architecture. The software tools developed and the lessons learned suggest 

several directions for further useful research. 

1. Alternative Server Logic for State Distribution 

The test results show that simultaneous scheduling of state update tasks for all of 

the entities on the server results in many failed tasks. While these initialization-failure 

tasks are rescheduled and ultimately completed, the recovery delays can lead to 

inconsistency between state updates. Additionally, there is no way to predict when a 

specific task will be executed. The need to distribute the processing of state updates is not 

peculiar to the Project Darkstar middleware. It is one of the key challenges of developing 

such systems. A design in which an update is scheduled for every object needs to be re-

examined. Area of interest management (AOIM) and object behavior-update 

considerations are possible approaches to address this challenge. 
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The server logic has a significant effect on the network traffic produced by the 

system. While clients drive the behavior of the server, the response is non-linear. In fact, 

there is no need for the server to distribute every received state update to all clients. 

Prediction schemes already applied to DVEs need to be applied as consistently as 

possible for each type of network connection supported. The server only needs to forward 

updates that change the shared environment state. Alternatively, a pull versus push 

architecture might better be used for the server-to-client communications.  

2. Consistency Comparison of System State to Distributed Client State 

While inspection of the profiling data showed that failed state update tasks were 

rescheduled and ultimately succeeded, the number of such tasks was an order of 

magnitude lower than expected. This raises the question as to whether or not object state 

is being updated as expected. Without comparison to some expected state, this is difficult 

to examine. 

The states of the entities on the server, which represent distributed clients need to 

be compared to an analytical model of the simulation environment as well as the actual 

clients themselves. Distributed simulation state consistency characterization is a nascent 

research area specifically with regard to DVEs. The ability to characterize distributed 

consistent state formally is an important for systematic development of useful operational 

systems. 

3. Two-Way Interaction for Legacy Simulation Clients via an MMOG 
Middleware 

The steps necessary to connect simulation clients to an MMOG middleware are 

discussed earlier. The extent of implementation in this work did not go beyond one way 

communication from the client to the other clients and the server, although it permits 

visualization and measurement. This approach is incomplete. To achieve a true DVE such 

communications must be two-way. In order to implement this, the client-specific  
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communication protocols must be reconstructed from the standard DIS protocol used for 

communication in this system. Any necessary coordinate transformations must be 

included as well.  

Since many legacy platform simulations are designed for updates at essentially 

display frame-rate, the low rate of updates from this MMOG-like system may require 

message spawning at some legacy clients. No assumptions about the ability of the legacy 

system to handle updates at a fraction of the rate it was designed for ought to be made, so 

interface adapters may be needed. 

The legacy simulation itself must have the ability to discover objects from the 

messages it receives; otherwise, all such interacting objects will need to be manually 

inserted and a communication channel assigned to it. This may be, in fact, desirable if 

only certain distributed objects are of interest.  Once again, the need is clear to achieve 

both syntactic and semantic interoperability when establishing interoperability among 

dissimilar systems. 

4. X3D and JAVA MMOG Framework for Militarily Useful DVE. 

Two of the major challenges in broadly expanding the use of DVEs for military 

applications are the development and distribution of client user interfaces that support 

network demands. Almost all DVE applications require the installation of proprietary 

client software for participation. Information technology management policies often 

make this licensing requirement untenable for government use. Furthermore, the models 

developed for these proprietary clients are generally not usable for other applications due 

to their closed nature, lack of documented testing and possible encumbrance by hidden 

patents. 

Since X3D is the Web3D Consortium standard for web-based 3D graphics, tools 

and models developed for any application are readily transported to any other application. 

The only requirement to interact with a scene is a suitable X3D browser. Several dozen 

X3D browser implementations and importers are currently available including open-

source versions and commercially supported software packages.  Each of these 

approaches is compatible with X3D. 
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X3D animation can be controlled by embedded networked scripts and also 

directly by DIS entity state PDUs. While the traffic at the network server node may be 

high when there are many simultaneous participants, the traffic at distributed clients can 

be relatively low. Three Kilobits per second (Kbps) is typical for such systems and 

comparable to the client node traffic for MMORPGs. This enables distributed simulation 

across even very low-bandwidth networks provided the client nodes are widely 

distributed.  

5. Consistency Enforcement for Distributed Simulation 

Commercial distributed game service providers often use a client-server 

connection model in order to control the quality of the game-play experience. This is 

important because users will not maintain their paid subscriptions if the experience is 

poor. For military applications of DVEs, credible interactions are necessary for effective 

participant immersion. Armored vehicles that move as fast as aircraft or ignore the effects 

of weapons fire (for example) reduce the face validity of the system. For commercial 

games, various forms of cheating are one of the greatest disruptors of game-play 

experience. It is assumed that any client may be dishonest. The opposite assumption 

holds for developers of military-application DVEs. Even when all clients are honest, 

differences between (or weaknesses within) specific simulations may have the same 

effect as cheating, without the malicious intent. 

Consistency enforcement is the active assurance of a shared state between the 

participants of a DVE. Although already difficult to implement in a game, the 

heterogeneous nature of military DVEs may greatly increase this difficulty because 

knowledge about the internal logic and external behavior of the client is not always 

known. Game developers control all nodes; developers of heterogeneous DVEs do not. 

A basic form of consistency enforcement includes control of interactions but not 

the movement of the client entity. This is analogous to hybrid DVEs, which distribute 

position updates in a peer-to-peer fashion and interactions between entities in a client-

server fashion. The idea is that the movement only changes the shared environment state, 

for that entity and for others, which can see that entity. 
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a. Army Research Laboratory (ARL) DIS Lethality Server 

An example of consistency enforcement in an otherwise-autonomous node 

DVE is the DIS Lethality Communication Server developed by the Army Research 

Laboratory (ARL). In this approach, a single vulnerability/lethality server provides 

standard DIS damage states to entities. The system is designed to centralize the 

maintenance of computing damage state stables; thus, simplifying the configuration of 

DIS exercises. One key goal is to eliminate variability in lethality results. Including such 

a server as a federate in an HLA federation is a logical consequence (Sauerborn, 1999). 

There is no conceptual difference between that server and the system developed for this 

work. Both are means of distributing a shared consistent state. 

b. NAVAIR UAV/UCAV Distributed Simulation Infrastructure 

Naval Air Systems Command (NAVAIR) has developed an unmanned 

aerial vehicle (UAV)/unmanned combat aerial vehicle (UCAV) distributed simulation 

infrastructure. Its objective is to explore how UAVs and UCAVs can function together in 

the future. The element of the infrastructure that is relevant to this work is the use of a 

weapons-effect server in a DIS-based DVE (Twesme, 2003). 

A potential application of MMOG technology for simulated UAV 

operations is as a persistent data-store. Real-world objects or environments of interest 

under observation by UAVs might be updated over days, months, and years in a 

persistent virtual environment.  

6. Migrating MOVES MMOG Server to NPS Hamming High 
Performance Computing Cluster 

The current implementation runs on a single server within the LAN and 500 

simultaneous connections and up to 1500 dynamic server-side entities were 

demonstrated. Alternative state distribution logic may enable higher numbers but they 

will still be on the order of 1000 clients per server. The Naval Postgraduate School 

recently installed the hamming system for high-performance cluster computing. The 

hamming system is a Sun Microsystems 6048 blade system consisting of 144 blades that 
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together contain a total of 1152 cores. The system has 112 terabytes of disk space (Naval 

Postgraduate School, 2009). This system provides an opportunity for the development of 

an NPS or DoD wide persistent virtual environment. Ten percent of this capability could 

theoretically support on the order of 10,000 simultaneous participants. Recall that the 

user interface is defined at the client level. Such participants are not necessarily 

individuals using a computer to control an avatar in a 3D scene but could be any 

distributed device or individual, which has a need to share a common state. 

7. Construction of a Bridge between an HLA Federation and a MMOG 
Server 

One of the strengths of HLA is its conceptual support for simulation 

composability. More importantly, HLA is the declared standard of distributed simulation 

implementation in the DoD. A militarily useful DVE must be capable of participating in 

HLA federations. The feasibility of composing a MMOG middleware application into an 

HLA federation is an important research direction. The OpenSkies middleware discussed 

earlier is an effort in this area.  The open-source Portico implementation of an RTI is also 

worth exploring (Portico, 2009). 

8. MMOG Application as a Track Data Conversion and Distribution 
Hub for Command and Control 

An MMOG is essentially a service for distributing and maintaining shared state 

information of a virtual environment. This is directly analogous to command and control 

systems, which distribute and maintain a virtual copy of the real-world state. The 

consistency of that state can never be better or timelier than the quality of the real-world 

information, which feeds it. 

A logical application of the state-distribution mechanism of a MMOG middleware 

is to provide a means for distributing track data for command and control. The word 

“game” in MMOG may suggest that this is a ridiculous notion. Recall, however, that 

underneath the game implementation, large modern MMOGs are among the highest-

performing distributed systems with several having achieved over 50,000 distinct  
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simultaneous participants (IGDA, 2004). While the consequences for system failure 

cannot compare to the reliability requirements of military systems, they are not 

inconsequential. In any event, the technical challenges are similar. 

A basic demonstration of the utility of a track distribution hub includes the 

capability to convert data from one format to another. This sees the system as a form of 

middleware in addition to being a state distribution mechanism providing DIS mappings 

to and from other C4I languages is a good start. 

Further work can also connect hand-held devices such as GPS-capable cell 

phones.  As with most scalable technologies, the most important success metric is the 

ease of integration rather than the sophistication of the implementation. 

9. Establish Persistent Darkstar MMOG Virtual Battlespace 

Since commercial online games now have lifetimes measured in years, without 

interruption, a similar capability can be achieved for military DVEs.  This effort can 

address the significant limitations inherent in typically transient, ephemeral military 

simulations. Ongoing measurement, testing, expansion and improvement will lead to 

further capabilities and lessons learned.  Establishing public and controlled-access DVEs 

for simulations based on existing model archives such as Savage and SavageDefense 

using X3D Earth as a backdrop is a relevant goal. 

10. Integrating Effective Shared Physics Governing Sensor Interactions 

Entities in military DVEs not only need to have physically based motion 

governing their travel through virtual space, but also need high-resolution physics for 

sensor applications.  This is essentially true for naval scenarios where the determination 

of sensor propagation may be computationally expensive and require durations of many 

seconds to complete.  Additional work is needed to accomplish consistent coherent 

shared physics for phenomenology other than motion in DVEs. 
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APPENDIX.  SOURCE CODE 

Source code developed in support of this thesis is available at URL: http://open-

dis.sourceforge.net/Open-DIS.html 

Specific excerpts of source code are presented below. 

 

public void initialize(Properties props) 
  { 
  logger.log(Level.INFO, "Started Persistent Virtual World"); 
 
  // Manages persistent objects 
  DataManager dataManager = AppContext.getDataManager(); 
 
  // Manages communications channels 
  ChannelManager channelManager = AppContext.getChannelManager(); 
 
  // Periodic tasks to run 
  TaskManager taskManager = AppContext.getTaskManager(); 
 
  try 
  { 
    // Retrieve an existing, known entity from the data manager. 
    //initialize() is called only the very first time 
    // a datastore is created, when the datastore will always be empty. 
    Entity anEntity = (Entity)dataManager.getBinding("ENTITY(0,0,1)"); 
    logger.log(Level.INFO, "Found existing entity object"); 
  } 
  catch(NameNotBoundException nnbe) 
  { 
    // We have a brand new object store that is completely empty. Add some objects and tasks to it. 
    logger.log(Level.INFO, "Creating initial server-side entities and tasks"); 
 
    // The hash map contains a key of a string in the format of 
    // ENTITY(x,y,z), using the entityID of the DIS entity,  
    entitiesMapRef = dataManager.createReference(new ScalableHashMap()); 
    ScalableHashMap entitiesMap = entitiesMapRef.get(); 
 
    // Save the hash map of entities in the system under a named string 
    dataManager.setBinding("ENTITIES,” entitiesMap); 
 
    //Get the server side entity count from the properties file 
    try{ 
    serverSideEntityCount = Integer.parseInt(props.getProperty("server.entities")); 
    }catch (NumberFormatException nfe){ 
     System.out.println("Unable to Parse server.entities value using default of " + serverSideEntityCount); 
    }//end catch 
 

Source code excerpt showing server initialization code of the Darkstar Server 
implementation used for this work.
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    for(int idx = 0; idx < serverSideEntityCount; idx++) 
    { 
     Entity anEntity = new Entity(); 
     anEntity.lastPduReceived.getEntityID().setSite(0); 
     anEntity.lastPduReceived.getEntityID().setApplication(0); 
     anEntity.lastPduReceived.getEntityID().setEntity(idx); 
 
     anEntity.currentState.getEntityID().setSite(0); 
     anEntity.currentState.getEntityID().setApplication(0); 
     anEntity.currentState.getEntityID().setEntity(idx); 
 
     //Set a random initial velocity and position for each entity with max in any dimension 
     anEntity.setEntityRandomVelocity(); 
     anEntity.setRandomEntityStartLocation(); 
 
     anEntity.controlLocation = Entity.ControlLocation.SERVER; 
     ManagedReference<Entity> anEntityRef = dataManager.createReference(anEntity); 
 
     // Add other information, such as entity type. We really should be reading 
     // info from a config file. 
 
     // Put the entity into a list of entities. Should this be a reference being added? 
 
     entitiesMap.put(anEntity.toString(), anEntity); 
 
     // Instruct the scheduler to run a heartbeat task for this entity, which 
     // will send out an ESPDU at a given interval on the DIS channel. 
      
     // We set the task to contain a handle to the task 
     // itself. If the underlying entity object is deleted--perhaps because it hasn't 
     // been heard from, or some other reason--the task will cancel itself when it discovers 
     // the object missing in the task's run() method. 
 
     HeartbeatTask heartbeatTask = new HeartbeatTask(anEntityRef); 
     PeriodicTaskHandle heartbeatHandle = taskManager.schedulePeriodicTask(heartbeatTask, 10000,  
HEARTBEAT_FREQUENCY); 
     heartbeatTask.setTaskHandle(heartbeatHandle); 
 
     // Tick frequency. Mostly a test of object contention. The tick method in an 
     // entity gets called every DEFAULT_TICK_INTERVAL ms. 
     // A task-per-entity is a somewhat suspect choice as you go to more and 
     // more entities. It might be better to have one tick task that simply 
     // cycles through the list of all entities. However, calling tick() 
     // on all the entities may take a while, longer than the task scheduler 
     // is willing to give. So it's a tradeoff. 
 
     //Get the tick Interval from the properties 
     try{ 
 
     tickInterval = Long.parseLong(props.getProperty("server.tickInterval")); 
 
     }catch (NumberFormatException nfe){ 
     System.out.println("Unable to Parse server.tickInterval value using default of " + tickInterval); 
      }//end catch 
 
     TickEntityTask tickEntityTask = new TickEntityTask(anEntityRef); 
     PeriodicTaskHandle tickTaskHandle = taskManager.schedulePeriodicTask(tickEntityTask, 10000, tickInterval); 

Code excerpt showing task scheduling in the Darkstar server implementation. 
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    switch(dataType) 
    { 
      case FRAME_RATE: 
       dataReader.skipBytes(32); 
       break; 
 
      case ANGULAR_VELOCITY: 
       Vector3Float angVel = deadReckoningParameter.getEntityAngularVelocity(); 
       angVel.setX(dataReader.readFloat()); 
       angVel.setY(dataReader.readFloat()); 
       angVel.setZ(dataReader.readFloat()); 
 
       //Set the angular velocity dead reckoning parameter 
       deadReckoningParameter.setEntityAngularVelocity(angVel); 
 
       dataReader.skipBytes(20); // 12 bytes read, 32 bytes in group, 20 left to read 
       break; 
 
      case ATTITUDE: 
       Orientation att = espdu.getEntityOrientation(); 
 
      att.setTheta((float)Math.toRadians(dataReader.readFloat())); 
      att.setPhi((float)Math.toRadians(dataReader.readFloat())); 
      att.setPsi((float)Math.toRadians(dataReader.readFloat())); 
 
      dataReader.skipBytes(20); // 12 bytes read, 20 bytes left 
 
       //Actually set the espdu to the decoded values 
       espdu.setEntityOrientation(att); 
 
       break; 
 
      case LOCATION: 
       Vector3Double loc = espdu.getEntityLocation(); 
       loc.setY((double) dataReader.readFloat()); 
       loc.setX((double) dataReader.readFloat()); 
       loc.setZ(FEET_TO_METERS*(double) dataReader.readFloat()); 
 
       loc.convertLatitudeLongitudeAltitudeToDis(); 
 
       if (DEBUG) System.out.println("x=" + loc.getX() + ,”" + loc.getY()); 
       dataReader.skipBytes(20); // 12 bytes read, 20 bytes left 
 
       espdu.setEntityLocation(loc); 
       break; 
 
      case VELOCITY: 
       Vector3Float linearVel = espdu.getEntityLinearVelocity(); 
       dataReader.skipBytes(12); 
      
       linearVel.setY(dataReader.readFloat()); 
       linearVel.setZ(dataReader.readFloat()); 
       linearVel.setX(dataReader.readFloat()); 
 
       dataReader.skipBytes(8); // 12 + 12 = 24 bytes read, 8 left out of 32 
 
       espdu.setEntityLinearVelocity(linearVel); 
       break; 

X-Plane to DIS Gateway: data packet parsing code excerpt. 
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