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ABSTRACT

This thesis applies Latent Dirichlet Allocation (LDA) to the problem of topic and topic change
in conversational threads using e-mail. We demonstrate that LDA can be used to successfully
classify raw e-mail messages with threads to which they belong, and compare the results with
those for processed threads, where quoted and reply text have been removed. Raw thread clas-
sification performs better, but processed threads show promise. We then present two new, un-
supervised techniques for identifying topic change in e-mail. The first is a keyword clustering
approach using LDA and DBSCAN to identify clusters of topics, and transition points between
them. The second is a sliding window technique which assesses the current topic for every
window, identifying transition points. The keyword clustering performs better than the sliding
window approach. Both can be used as a baseline for future work.
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CHAPTER 1:
Introduction

1.1 Introduction
This thesis applies Latent Dirichlet Allocation (LDA) to the problem of topic and topic change
in conversational threads using e-mail. Using LDA, probabilistic models are built for the topics
within the corpus, and these topics are used both to cluster e-mails with their original threads,
as well as to study where these topics change within threads.

We demonstrate that LDA can be used to successfully classify raw e-mail messages with threads
to which they belong, and compare the results with those for processed threads, where quoted
and reply text have been removed.

We then present two new, unsupervised techniques for identifying topic change in e-mail. The
first takes keywords identified by the LDA algorithm and clusters them to identify topics in
threaded conversations. Topic changes are then by definition the transitions between clusters.
The second technique uses a sliding window over each thread. For each window, the current
topic is calculated using the LDA word-topic weights, and a note is made when this topic
changes.

1.2 Motivation
The resolution, accuracy and availability of sociological information is increasing at a rapid
rate. So, too, is our ability to quantify that data. Never in history have we had such fine grained,
quantitative measures of individuals’ actions across such vast and diverse swaths of people.
The consistency and benevolent nature of this data goes orders of magnitude beyond what was
possible even ten years ago. To have compatible and consistent data sets across large groups of
people has historically been messy and difficult, if not impossible.

Today, not only has this type of data become more available, it has become so ubiquitous that it
requires us to develop new approaches to studying them. Machine learning algorithms, includ-
ing probabilistic topic models, are a promising approach.

Mining through these large data collections to detect consistent patterns and trends can give us
empirically verifiable data about the nature of human social dynamics and interactions. Mining
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through them for anomalies and deviations from some reference point can suggest events or
individuals worthy of further study.

For example, it is a well known problem in digital forensics that investigators are often given
large hard drives to analyze, with little or no indication of where to start or what the important
documents are. A personal hard drive in 2009 can easily be half a terabyte in size. Much of
this data can be natural language content, with conversational content interspersed throughout.
Without statistical methods to handle all this data, scientists and investigators alike are lost.

E-Mail specifically, is a rich source of information about the dynamics of information flow in
social networks. It is inherently structured, with a variety of time, author, and content-related
metadata fields. Its increase in availability on phones and online has increased its prevalence as
an easy and accessible communications medium for the full range of online tasks, from com-
munications to grocery lists and event planning. Storage trends in reliability and affordability
mean people are retaining more and more of their e-mail, and for longer periods of time.

E-Mail presents an analytical challenge different from longer documents such as articles, reports
or books. E-Mail bodies can vary in length from a few words to multiple paragraphs. Their often
terse nature can push the limits of most content- and topic-analysis algorithms in use today.

Interestingly, e-mail might not be such a rich source of information for long. As technology-
based communications diversify into more customized and better suited platforms such as in-
stant messenger, social networking sites, and wikis, we may no longer have the luxury of a
single, de-facto platform for the exchange of content between individuals. We should take the
opportunity to study e-mail corpora now, while they are still in widespread use.

Motivated by a desire to better understand characteristic patterns of human interaction, this
thesis focuses on the question of how conversations evolve. Using e-mail for its threaded con-
versational nature, topic and topic change are studied are studied by examining patterns of word
usage in e-mails. Specifically, this work uses new and emerging techniques in data mining and
machine learning to show that we can build accurate models of topics in e-mail threads, us-
ing state-of-the-art probabilistic techniques. It then extends these techniques to the problem of
identifying topic change within threads, providing a baseline for what is possible with current
methodologies, and identifying directions for future work in this area.
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1.3 Applications
In Marti Hearst’s paper “Text Tiling” (discussed further in Chapter 2), she points out that topic
change can be seen as an inverted approach to topic detection. If we know where topic changes,
we also know the boundaries of topics [13]. Beyond a study of topic boundaries, the nature and
frequency of topic change is interesting in its own right, giving us insight into the dynamics of
human communications.

Topic change is useful for understanding the ways that content or opinion change over time in
personal relationships, public sentiment, news coverage, and the evolution of interests within
populations. Digital forensic investigations are often interested in the point at which the na-
ture or content of a relationship changes. The ability to detect topic change would support
investigations of sexual predators, where a conversation often starts out platonic and then turns
sexual [21], as well as investigations into the techniques of recruitment for criminal or religious
activity.

If social networking sites can identify the point at which new topics emerge in individual or
aggregate discussions, they can make better recommendations, and even serve better advertise-
ments.

Companies would often like greater insight into what their employees are talking about. Are
discussions beginning on the topic of work, and then frequently evolving towards more social
topics? Are managers confusing or distracting their group by assigning too many projects at
once, or changing team goals too often? Could this be correlated to successfully or unsuccess-
fully managed projects?

Looking at the more subtle aspects of topic change, the ability to observe changes from positive
to negative sentiments about a topic, or discussion of one policy issue moving into another (for
example, as Congress’ schedule changes) would be very interesting. This has huge potential
to help policy makers (in fact, all of us) understand public sentiment. The ability to correlate
the actions of leadership in any group, with the presence, speed and nature of its constituency’s
reactions, or the path of a topic’s flow through different demographics, could greatly aid in
improving feedback loops, and forming more effective policies.

Topic change can also be used to study how our understanding or priorities within certain top-
ics change. Blei applied dynamic topic models applied to 100 years of the journal Science, to
see how our understanding of topics such as quantum physics and neuroscience had changed

3



[2]. Similarly, many government organizations such as the National Academy of Sciences, and
the National Aeronautics and Space Administration (NASA), undertake decadal surveys of re-
search priorities. The study of topic change can help us to see not only how those priorities have
changed between surveys, but could also be used to find differences between identified and im-
plemented priorities, through documents associated with actual missions or studies undertaken.
Automated techniques are useful here, both because of the quantity of data, and because auto-
mated techniques are objective in a way that can be difficult for humans.

More theoretical research could look for characteristic patterns in the evolution of ideas, opin-
ions or populations, captured in text over time. Sociologically, the ability to measure patterns
of communications across cultures, age groups, dispositions, or mental conditions could all
provide insights into ways to improve communication or simply improve insights in their na-
ture. How often do topics or popular opinion change within specific realms, generations, or
nations? To what degree does the average conversation change topic? Do conversations fre-
quently change topic abruptly, or in a slow and meandering fashion? When they do or do not,
what does it imply about the participants, their relationships, or the underlying topics them-
selves?

1.4 Relationship to Space Exploration
As this is NASA-sponsored research, we touch briefly upon how this work can support ongoing
efforts to advance exploration and settlement of the solar system.

Conversational document clustering can be applied to transcripts of verbal communications,
and written communications, of astronauts on board the space station. Psychological and soci-
ological studies focused on stress and quality of life factors, collaboration dynamics, and team
effectiveness could benefit from the ability to tie together threaded conversations. Similarly,
insight into the dynamics of topic change, as described above, could also support our insight
into requirements for successful team dynamics, in space or otherwise. On a more immediate
level, studies of organization priorities and undertakings, as mentioned above, could help insti-
tutions begin to understand where discrepancies arise between intention and implementation.
Like many large organizations, NASA is no stranger to these questions. The larger and more
distributed a group (and NASA has over 50,000 people across 10 centers [8]), the harder it can
be to make implementation match intention. More people tends to mean more data, and as our
understanding of how to measure topic change develops, we can actually examine where and
how these shifts take place.
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1.5 Outline of this Thesis
In Chapter 2, an overview of supporting and related work is provided. Chapter 3 goes into the
mathematics and theory behind the techniques and concepts used in the experiments for this
thesis, and describes the data processing done to the corpus. Chapter 4 outlines the experiments
and their results, and Chapter 5 discusses the implications of these results and ideas for future
work. Chapter 6 offers conclusions.

5
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CHAPTER 2:
Prior and Related Work

Topic detection and the automated detection of topic change touches on a number of different
areas in natural language processing, machine learning, and visualization techniques.

Topic detection has been around in varying forms since the earliest work in natural language
processing. Techniques such as word-sense disambiguation, clustering, cosine similarity, and
basic word-counting have been applied with reasonable success to the topical problems of au-
tomatic summarization, sub-topic clustering, probabilistic topic modeling, and keyword identi-
fication.

Topic change as a phenomenon in its own right has been studied in relatively fewer areas,
although some researchers, such as Hearst [13], propose the detection of topic change as a
reformulation of the problem of topic detection. Others, such as Blei and Lafferty [2], have
studied the evolution of topics over decadal time spans as a way to observe changing norms,
practices, and beliefs as reflected in popular scientific literature.

A variety of more visual techniques have also been applied to natural language corpora, in
attempts to capture and represent intuitive notions of conversational evolution, which is another
way to approach detection of topic change. These are described below.

2.1 Topic Detection
At its core, topic change is heavily related to topic detection. State of the art in topic detection
is currently rooted in probabilistic models which hypothesize a latent topic space, manifested
in the documents of a corpus; that is, that there is a specific set of topics represented by the
documents, and each word w has a probability of belonging to each of the topics, z, with a
given probability. That is,

P (wi) =
T∑
j=1

P (wi|zi = j)P (zi = j) (2.1)

(This equation is developed more fully in Section ??). Initial work in probabilistic topic model-
ing was called Latent Semantic Analysis (LSA), which applied Singular Value Decomposition
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(SVD) to term frequency counts in order to identify documents likely to be of the same topic [6].
Probabilistic Latent Semantic Indexing (PLSI) [14] built on LSA by associating a latent topic
variable with each word, and postulating that the probability of a given word in a document is
actually given by summing over the probabilities of that word across each latent topic, times the
probability of each topic given a document.

By introducing the latent topic variable as a probability distribution, P’S replaced SVD with
probabilistic mixture models. The output of PLSI is a set of mixing weights, representing the
contributions of the various topics to the document.

By representing topics as probability distributions, PLSI provides an intuitive notion of topics
not as discrete objects which begin and end on a boundary, but as distributions which can, and
do, mix in with other topics.

However, while PLSI models words using probabilities across topics, there is no generative
model of how these probabilities arise, that is, of the topics themselves. The Expectation-
Maximization algorithm used in PLSI to estimate topic likelihood is, partially as a result, prone
to overfitting, and the number of parameters can grow linearly with the size of the corpus [3,
p.2].

Blei, Ng, and Jordan attempted to address these shortcomings with a technique called Latent
Dirichlet Allocation (LDA). This technique represents documents as random probability mix-
tures over latent topics, but each topic is itself represented as a distribution over words [3].
A prior is assumed on the topics, drawn from a Dirichlet distribution. The parameters of this
Dirichlet are known as the mixing weights.

BuzzTrack [4] uses cosine similarity between messages as one of the features of its topic detec-
tion and tracking system. Damashek [5] uses cosine similarity to cluster documents by remov-
ing the average of a document set from each document to be clustered, and then clustering on the
remaining values. He finds that good, language-independent results are obtained. However, his
technique is sensitive to any differences in the document bodies, and these can be sentimental
as well as topic differences.

2.2 Topic Change
Two papers focusing specifically on the notion of topic change are worth noting here. The first is
Marti Hearst’s “TextTiling” paper [13], which analyzes documents on a paragraph-by-paragraph
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basis and uses “patterns of lexical co-occurrence and distribution” to detect transition from one
topic to the next. Hearst removes stop words and applies stemming, and then evaluates two
metrics to formalize the notion of co-occurrence. The first metric uses a normalized dot product
(or cosine similarity) between two adjacent blocks, where blocks are approximately paragraph-
length. The second metric is called “vocabulary introduction”, and is calculated as the ratio of
new words in a given interval, to the length of that interval. Hearst’s results are comparable
to or better than state of the art at the time. Hearst’s work is applied to journal articles with a
single set of authors. This differs substantially from the conversational corpus we use here.

Blei and Lafferty [2] extend Latent Dirichlet Allocation (LDA) with a temporal element in order
to study the evolution of topics over time. Specifically, LDA makes no assumption about the
sequential aspect of documents in a corpus; however, in this work, each year is modelled as a
set of topics, which are themselves a function of the set of topics in the previous year. They
apply this technique to 120 years of archives of Science. At ten year intervals, they compare
keywords from specific (pre-defined) categories such as Neuroscience and Quantum Physics,
and the result is a study of how these keywords change on decadal time frames. Blei and
Lafferty apply their dynamic topic models to predict the time-evolution of topics, and their
results show that improved predictive accuracy can be obtained with these dynamic rather than
static topic models.

Blei and Lafferty’s work uses set intervals on which they study changes in topic contents,
whereas we instead attempt to automatically detect when topic change occurs. Their corpus
contains a pre-defined list of categories, or high level topics, within which they focus their anal-
ysis of changing keywords. Finally, they examine ten year increments of a larger corpus, while
we examine changes on the hourly or daily time frame, as represented by mere sentences or
paragraphs.

In this work, we explore e-mail, which is terse and informal. It is addressed to an internal
audience (those copied on the e-mail). In addition, because of the conversational aspect, there
are often new elements of a thread which lexically have little or nothing in common with the
previous sentence or e-mail, but which refer to the same topic. These factors provide a rather
different context for detecting topic change.
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2.3 Conversation Flow
Innovative methods for representing conversation flow are the focus of many studies on e-mail,
as well as blog comments and revision controlled documents. Many of these studies develop
techniques to visually highlight important elements of conversations, and use the viewer as the
classifier. Their success or failure is judged on the assessment of the viewer. In this sense, most
of them do not represent algorithms which can be automated, as we are exploring here, but they
do represent a legitimate approach to representing the evolution of topics and conversation flow.

Two particularly interesting efforts in this regard can be found in the techniques of history flow

and theme river.

History flow [22] visualizes changes in the life cycle of a document by representing each revi-
sion as a vertical line, and contributions by each author as individually coloured lines between
these revisions. The thickness and location of each author’s line corresponds to the number of
words, and location in the document, respectively. If a new contribution is made, a new line is
started; if one is removed, that line is terminated.

History flow has been used to visualize edits over time of Wikipedia articles. It demonstrates
interesting, consistent visual patterns over time corresponding to specific behaviours such as
edit wars and vandalism.

Theme river [12] is a visualization technique which hand selects a specific set of key words in a
series of documents, and represents their relative frequency of occurrence as the thickness of a
smoothed line. This line “flows” along a time line of the documents in question. The thickness
is meant to intuitively convey those words in the set which appears frequently in any given
document.

Theme river is visually appealing and intuitive in its representation. Although the version im-
plemented in the paper requires much supervision and hand labeling, one could imagine modi-
fications to such a system which would automatically determine keywords, and track their role
as a conversation evolved. These techniques are an alternative way of exploring the notion of
conversational evolution.

2.4 E-Mail
E-Mail corpora have been used extensively for studies as diverse as thread prediction, author-
ship studies, role identification, spam filtering, topic detection, information synthesis, keyword
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extraction, and many more. We will not review all applications of e-mail research here; how-
ever, we touch briefly on the Enron corpus [15] to discuss why it was not used.

By far, the Enron corpus is the most widely used corpus for research in the area of e-mail [15].
It consists of approximately half a million e-mails from 150 users, with attachments removed.
Although this corpus presents a valuable option for many research areas, there are two principle
reasons why it was not used here (also identified by [4]):

• Ground Truth – working with other peoples’ e-mails provides a difficult reference point
for ground truth, in terms of topic identification, relevance or meaning. In this set of ex-
periments, using the author’s personal e-mail enabled more knowledgeable and accurate
interpretation of topics and topic change.

• Metadata – The experiments in this thesis all revolve around the e-mail thread, which
are programmatically re-constructed from individual e-mails using the The In-Reply-To
header field populated by most e-mail systems. The vast majority of e-mails in the Enron
corpus do not have this header field, which would have prevented thread-based analysis.
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CHAPTER 3:
Technical Concepts and Data Processing

In this chapter we document the techniques, concepts, and technical approaches used in the
experiments undertaken for this thesis. As the intended audience spans the digital forensics and
natural language processing communities, as well as graduate students in other fields, certain
foundational terms and concepts are covered.

3.1 Technical Concepts
3.1.1 Natural Language Processing
In Natural Language Processing (NLP), researchers attempt to give structure to unstructured, or
natural, language documents, in order to build tools or algorithms which analyze patterns and
meaning in the content. This is typically done by splitting documents into words, and analyzing
those words either individually (the ‘bag-of-words’ approach, see below), or as n-grams, sen-
tences, or paragraphs. The process of identifying word boundaries is called tokenization, and
the resulting objects are formally called tokens.

The term ‘bag-of-words’ is used to describe an approach to text processing where the words
are treated as isolated entities, without regard to their immediate context or order. Conceptu-
ally, it’s as though the words in a document were thrown into a bag; but more importantly, a
bag is a technical term that, as opposed to a set, allows for duplication of tokens. For many
applications this is a useful simplifying approach. This thesis uses the bag-of-words approach
for topic modeling in several of the experiments. N -grams are ordered sequences of n words
or characters, and they give additional context to words (or characters) in a document. Because
the possible number of n-grams in a document with vocabulary of size V is V n, the number
of possible n-grams for a given vocabulary is (relatively) huge, while the number of actual n-
grams in a document is low compared to this possibility space. Natural Language data sets, for
this reason, are often referred to as ‘sparse.’ Naturally, as n increases, so does the sparsity of the
coverage. Because of this sparsity, the probability of any specific n-gram is very low, and thus
its presence can be a strong indicator of a feature (such as a topic or author). However, greater
sparsity may come hand in hand with over-training, and selection of the right n is typically a
trade off between accuracy and coverage–as is the case with most statistical techniques.

Whatever the basic unit of analysis, many NLP techniques involve creation of some kind of
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vector space model. Each word (or n-gram) in the vocabulary represents a dimension, and each
document can then be represented by a vector. The dimensions correspond to the words or
n-grams therein, and the value of each dimension corresponds to the number of occurrences of
that object. In many cases, the value for a given dimension will be 0 if it has not occurred in
that particular document.

For example, consider the sentence, “Government data transparency is important for govern-
ment to function well.” tokenized on white space boundaries.

Figure 3.1: Basic word tokenization and vector-space representation for unigrams.

By converting documents to a vector space representations, the tools of geometry and algebra
can be applied, and questions of difference and distance between documents become meaning-
ful.

3.1.2 Supervised and Unsupervised Learning
There are two basic categories of machine learning algorithm, supervised and unsupervised.

Supervised learning involves a problem where the number of classes or groups into which the
input data is being sorted, is known ahead of time, or determined at some point in the analysis.
Supervised learning asks, “to which of these n groups does this record or data point belong?”
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Supervised learning is often associated with classification problems. It is considered supervised

in the sense that the learning task has examples of correct patterns to work with, in order to build
its model. Supervised learning is used in the e-mail classification experiment in this thesis.

In contrast, unsupervised learning involves determining as part of the algorithm, the number
of classes or groups of the final output, as well as which records fit into which classes. It is
unsupervised in the sense that the algorithm has no set of known correct examples guiding the
development of a model. Unsupervised learning is often associated with clustering problems.
Unsupervised learning is used for the topic change experiment in this thesis.

3.1.3 Cross Validation, Test and Training Data
In machine learning, data is needed to train a model, but once that model has been built, data is
also needed to test the quality of that model. N -fold cross-validation is the practice of dividing a
dataset into N equal-sized subsets, and then iteratively reserving one, training on the remaining
N − 1 subsets, and testing on the reserved subset. A typical number for N is 10%.

Our corpus contained a large number of threads, with a large number of messages. A 20/80
split was used between our test data and training data.

3.1.4 Latent Dirichlet Allocation
As introduced in Chapter 2, Latent Dirichlet Allocation (LDA) is a technique which models a
natural language corpus as a probabilistic distribution over topics.

Before defining LDA itself, recall these mathematical concepts from probability theory:

A conjugate prior is a prior which results in a posterior probability distribution of the same
algebraic form, or family, as the prior.

A multinomial distribution of order k is one in which each time a measurement is made,
exactly one of k possible outcomes occurs. Multinomial distributions are also sometimes
referred to as categorical distributions, where there are k categories. The most popular
form of multinomial distribution is, of course, the binomial distribution.

Each topic has a probability distribution over the documents in the corpus, and each word has
a probability distribution over the topics in the documents. These distributions are multinomial
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distributions, because each time a selection is made, exactly one topic or word is chosen from
the possibility set.

The main question in probabilistic topic models, is how to model these distributions, and what
the assumptions, or priors, will be about those distributions. The following derivation follows
closely what is presented in [19].

The probability distribution over words in a given document for T topics is

P (wi) =
T∑
j=1

P (wi|zi = j)P (zi = j) (3.1)

For a given topic j, let φ(j) = P (w|z = j) be the distribution over words in the corpus for topic
j; similarly, θ(d) = P (z) is the distribution over topics for a specific document, d ∈ D, where
D is the total set of documents in the corpus. Then (3.1) can be written as

P (wi) =
T∑
j=1

φ(j)θ(d) (3.2)

φ and θ are referred to as the mixture weights of the words and topics, respectively. These
parameters indicate which words are important for which topics, and which topics are important
for which documents.

To give a starting point for determining these mixing weights, Blei et al. [3] apply a prior to
the topics in the form of a Dirichlet distribution. The Dirichlet distribution is a conjugate prior
for the topic mixing weights θ. For a model with T topics, the T -dimensional Dirichlet is a
distribution over the set of possible probability distributions p = (p1, . . . , pT ) for the topics,
and is given by

Dir(α1, . . . , αT ) =
Γ(

∑
j αj)

ΠjΓ(αj)
ΠT
j=1p

αj−1
j (3.3)

The parameters α1, . . . , αT are considered hyperparameters for the topic model itself. In prac-
tice, symmetric hyperparameters are used, such that α1 = α2 = . . . = αT = α.
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Figure 3.2 shows a 2-dimensional representation of the probability space for 3 topics following
a Dirichlet distribution. The triangle shape in the figure is a geometric notion called a simplex.
The simplex is a coordinate system for probability distributions; each point p in the simplex
is a T -tuple of the probabilities pj for each topic j ∈ T , and

∑
j pj = 1– that is, as required,

the sum over the probabilities for each of the topics is 1. One can think about the simplex as
the (n− 1)-dimensional region that connects the basis vectors for n-space. So for 3-space, we
would have the 2-dimensional triangle between (1, 0, 0), (0, 1, 0), and (0, 0, 1).

The hyperparameter α affects the smoothing of the topics across the simples. Higher alpha has
a squeezing effect, focusing the distributions around the center of the simplex, and therefore
resulting in greater smoothing or similarity between the different pjs. In practice, α is generally
set to ¡ 1, which pushes the modes of the Dirichlet to the corners of the simplex, leading to
greater distinction between the different topics.

Figure 3.2: Symmetric Dirichlet distribution for three topics on a 2-dimensional simplex. Darker colours indicate
higher probability. Left: α = 4; right: α = 2. Figure and caption from [19, p.5].

Steyvers and Griffiths [9] [10] [11] extend this model by applying a Dirichlet prior Dir(β) to
the mixing weights of the words over topics, φ, as well. Thus, there are now two hyperparame-
ters to the model: α and β.

For the implementation, instead of estimating the latent hyperparameters φ and θ, the algorithm
directly estimates the probabilities for each topic j ∈ z directly, using a process called Gibbs
sampling. Once the posterior for z has been estimated, φ and θ can also be estimated.

In Gibbs sampling, each word or token in the corpus is given a probability of arising from
a given topic, as a function of the topic probabilities for all other words in the corpus. This
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conditional probability distribution is derived in [20] and given in [19] as follows:

P (zi = j|z−1, wi, di, ·) ∝
CWT
wij

+ β∑W
w=1C

WT
wij

+Wβ

CDT
dij

+ α∑T
t=1C

DT
dij

+ Tα
(3.4)

CWT and CDT are WxT - and DxT -dimensional matrices, respectively, of token counts. The
first matrix contains the number of time a word wi is assigned to topic j; the second matrix
contains the number of times topic j is assigned to a word token in document d. In practice,
equation (3.4) is normalized by the number of topics, T .

The Gibbs sampling process itself has two phases, an initial so-called burn-in period, during
which samples must be discarded, and post-burn-in, during which samples begin to converge
on the true posterior distribution more accurately. The process of Gibbs sampling begins by
assigning a random topic to each word token. Then, a new topic (where, recall, a topic in this
case is simply another probability distribution based on the Dirichlet prior) is sampled from
equation (3.4), and the count matrices are updated based on the new topic assignment. Every

sample performs a topic assignment for all N word tokens in the corpus.

Because the initial topic assignments are random, and because new topic assignments are sam-
ples from a probability distribution, multiple Gibbs samples from after the burn-in period must
be obtained and combined, to generate a representative sample.

The output of the LDA algorithm using Gibbs sampling is a set of weights for each word in the
corpus, for each topic. That is, for a corpus of N words, each topic will contain N words, with
a corresponding weight indicating its likelihood of being drawn from that topic. A smoothing
process means that a word never has an absolute zero probability of being drawn from any topic.
These outputs can be used as inputs to other algorithms, or can be used directly to estimate the
topic probabilities of new documents.

3.1.5 Distance and Similarity Measures
Four measures of similarity or distance are used in our experiments, falling into two categories–
distance metrics, and entropic measures.

To be considered a true metric, a distance measure must satisfy the properties that, for three
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vectors x, y, and z,

d(x, y) = 0 ⇐⇒ x = y

d(x, z) < d(x, y) + d(y, z)

The latter condition is known as the triangle inequality.

The euclidean distance is probably the most familiar notion of distance, and is the only true
distance metric used. Recall that for two n-dimensional vectors x and y it is expressed as

d =
√

(y1 − x1)2 + . . .+ (yn − xn)2 (3.5)

Euclidean distance has a range of [−∞,+∞].

Cosine similarity is a measure of similarity between two vectors. It is calculated by taking the
cosine of the angle between two feature vectors. This is a rather intuitive measure of similarity:
when two vectors are exactly the same, the angle between them is 0, and the cosine of the angle
between them is 1; when the vectors are orthogonal, the cosine value is 0. The cosine similarity
is given by the quotient of the dot product between the two vectors, with the product of their
length. If x and y are the input vectors, the cosine similarity is given as

cos θ =
x · y
‖x‖‖y‖

(3.6)

As can be seen from (3.6), the measure is inherently normalized, and its range is [−1, 1]. Be-
cause of this normalization, two vectors in the same direction with different lengths, will have
a similarity value of almost 1, but will have a euclidean distance equal to the difference in their
lengths, which in general can be arbitrarily large. One can see, then, why cosine similarity is
a useful tool for comparing the similarity of documents, since we would indeed likely consider
two documents of different lengths with the same words ‘similar’.

For the e-mail classification experiment, classification decisions are based on comparison of
the distribution of topic probabilities between a set of potential threads and a test e-mail. As a
result, we also calculate the Kullback-Leibler (KL)- and Shannon-divergence. Both are entropic
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measures of difference between probability distributions.

KL-divergence between P and Q is an asymmetric measure of the amount of information, or
number of bits, needed to encode distribution P based on distribution Q. It is calculated in the
following way:

KL(P,Q) =
∑
i

P (i) logP (i)Q(i) (3.7)

The Shannon divergence is a symmetrized version of the KL-divergence. It is essentially the
average of the KL-Divergence in both directions:

Shannon(P,Q) = Shannon(Q,P ) = 1
2
KL(P, 1

2
(P +Q)) + 1

2
KL(Q, 1

2
(P +Q)) (3.8)

Experimental results are calculated using all four difference metrics, and compared in detail in
Chapter 5.

3.1.6 DBSCAN
DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise. As the
name suggests, it is a density-based clustering algorithm which efficiently discovers clusters of
arbitrary shape. DBSCAN also allows for certain points to be deemed noise, and therefor not
allocated to any cluster [7].

DBSCAN is used in the automated detection of topic change experiment, because we do not
want to make assumptions a priori about the number of topics there are in a thread.

To discover clusters, the algorithm looks for points which have a minimum number of neigh-
bouring points, min pts, within some radius ε (i.e., sets of points with a certain density). Any
distance function can be used to compute the radius, although euclidean space is used here.

A key observation of the DBSCAN algorithm is that there are two kinds of points in a cluster:
core points and boundary points. Core points will contain the requisite neighbour density, but
boundary points will not.

Thus DBSCAN demands that all points within a cluster are density-reachable from one another.
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Instead of requiring every point in the cluster to have min pts within its ε-radius, the require-
ment of density reachability instead requires that every point in the cluster have a neighbour

within ε that has min pts within its radius. That is, for every point q in a cluster C, there must
be another point p within the epsilon neighbourhood of q that has min pts in its neighbour-
hood. p is then said to be directly density-reachable from q, and points reachable in a chain of
directly-density-connected points are considered just plain density reachable.

Finally, there may be some points in a cluster which are not density-reachable, but which are
connected via a common density-reachable point. These are called density-connected.

Figure 3.3: Illustration of points that would be considered border points and core points in the DBSCAN algorithm.
Figure from [7, p.3].

All density-reachable and density-connected points make up a cluster. More formally, let D be
a set of data points. A cluster, defined with respect to ε and min pts is a non-empty subset C
of D satisfying the following conditions:

1. ∀p, q if p ∈ C and q is density-reachable from p with respect to ε and min pts, then
q ∈ C.

2. ∀p, q ∈ C, p is (at least) density-connected to q via ε and min pts.

3. Any point p ∈ D and /∈ C1 . . . Cn, where C1 . . . Cn are the clusters of the data set, is
considered noise.

Figure 3.4 shows an example of both density-reachable and density-connected points. For
topic change, we use DBSCAN to identify clusters of keywords forming a topic, and most
importantly, where the boundaries of those clusters are. Boundaries are affected by the input
parameters to the algorithm, and are the key element in identifying transition points, or topic
changes.

Appendix A contains the code for this algorithm, and current links to its availability online.
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Figure 3.4: DBSCAN density-reachable and density-connected points. Figure from [7, p.3]

3.1.7 Topic Change
In order to give some quantitative measure of the performance of the topic change algorithms,
the traditional measures of precision and recall were used– being calculated as functions of
true positives (tp), false positives (fp), and false negatives (fn)– with very slight modification.
For a given thread, we care both about the number of changes detected, and the accuracy of
the locations of those changes. For a thread with N actual topic changes, if D changes were
detected, and L of those changes were in the correct location, then the precision is defined as:

p =

{
tp

tp+fp
= L

L+(D−L)
= L

D
if D 6= 0

0 otherwise
(3.9)

False positives are the number of topic changes detected that were not actually topic changes.
Recall is defined as

r =


tp

tp+fn
= L

L+(N−D)
if N > D

0 if L = 0

1 otherwise

(3.10)

The notion of false negative corresponds to the number of topics that were missed–those that
were considered negatives but were actually positives. Consider a thread that contains one
topic change. If 50 topic changes were detected, including one in the correct location, then
the precision is low, because there were many false positives. However, the recall would be 1,
because there were no false negatives–that is, all the changes that exist were detected (and in
the correct location).

Similarly, if a thread has 2 topic changes, and 2 changes were identified, but neither in the
correct location, then both precision and recall would be 0.
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It is worth noting that true negative is not correspondingly well defined here. One could think
of the number of true negatives as the number of words, sentences, or paragraphs during which
a topic change does not take place, but it is somewhat different from the traditional notion of
true negative.

The F-score is calculated in the usual way:

F -score =

{
2pr
p+r

if p > 0 and r > 0

0 otherwise
(3.11)

The F-score is used as a measure of accuracy because it is a special form of the harmonic mean.
The consequence of this algebraic form is that neither P nor R can be inflated at the other’s
expense, without compromising the total F-score [16].

3.2 Data Processing
The corpus used for this thesis was 4.9GB of the author’s personal e-mail over the course of
approximately 3 years.

Although these experiments use e-mail for its rich social value, there is a large amount of other
content which must be accounted for when processing arbitrary e-mail data sets. Discussion
lists, announcements, calendar invites, administrivia, company-wide broadcasts, and notifica-
tions from reminder services. Further, some services such as Gmail store chat logs as e-mails;
some people might use e-mail as a way to send themselves reminders, or even as a file store.
This is all noise from the perspective of our research.

To remove the vast majority of these noisy e-mails, only threads of length 5 or longer were
retained. 5 was chosen because we are interested in threads where the topic has some time to
develop, and where there is a meaningful conversational (back-and-forth) component.

After removing shorter threads, empty messages, and messages with only attachments or with
unrecognized encodings, there were 2168 threads remaining.

3.2.1 Experimental Overview
Figure 3.5 shows a high-level overview of the steps taken in order to pre-process the e-mail
data, and how and in what order the various techniques described herein are applied.
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Figure 3.5: High-level overview of steps taken for data pre-processing, and both experiments.

3.2.2 E-Mail Processing

Corpus messages were in Mbox format. Although Mbox format can come in several different
flavours, generally speaking it is a plain text electronic mailbox format which stores all mes-
sages within a folder in a single file. Messages are separated by a blank line and their beginning
is delimited by the word From_ (note the space after the word, underlined for emphasis).

Mbox files were parsed using Python’s e-mail-handling modules, and converted to internal Mes-
sage objects which stored the headers, message bodies, and in-reply-to header field, if it was
present (this field is described more in Section 3.2.3, below. Message bodies were extracted
using the Content-Type header field, which describes the MIME-type formats contained in
the message. Often times, a message will be multipart, containing a plain text formatted
version of the message along with HTML or other encodings.
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However, some messages are not multipart, nor do they have a plain text component. Some of
these are HTML only. The Content-type ‘Message’ is one of these. In this case, the message can
be encapsulated, along with possible error messages from servers, digests, forwarded messages,
etc.

For our purposes, anything not plain text- or HTML-formatted was discarded. The plain text
body was selected if it existed, otherwise, if an HTML version was present, it was used, and the
HTML removed separately. Message bodies were stored in UTF-8, replacing any unrecognized
characters with the Unicode replacement character \uFFFD.

3.2.3 Thread Extraction
A thread is a series of e-mails which are related to one another through the messages they reply
to. A thread is a tree-type data structure because multiple e-mails may be in response to the
same e-mail, and messages may not necessarily be in response to the latest message in a thread.

Threads were reconstructed using the message-id header field, and in-reply-to header
fields of e-mail messages.

The Message-id field contains a globally unique identifier typically made up of a message
hash followed by an ‘@’ symbol and the mail server domain. For example:
3cb0e8e0610091234q5affb09fq2969c9ca2a051c17@mail.gmail.com.

The in-reply-to field also contains a message ID; that ID is of the message which the
current message is, not surprisingly, in reply to. This field should not to confused with the
reply-to header field, which is a user-specified preferred e-mail address for message reply.

Two passes are made over the messages to reconstruct the threads. During the first pass, if a
message’s in-reply-to header field matches the message-id field of another message,
that message is added to the thread. If a message either does not have an in-reply-to header
field, or that field does not match any messages already in a thread, a new thread is created.

The second pass is a consolidation pass, since as threads are reconstructed, it may turn out that
the initial message of a thread was in fact in reply to a message that came later in the processing
queue. If this is the case, the two threads are consolidated.

For each thread, we then identify each possible branch through that thread. Because we are
interested in studying topic change over the course of a thread, how to handle the branching
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Figure 3.6: Overview of thread structure and terms, showing in-reply-to structure and longest branch.

structure of the thread is a consideration. Threads can be examined a) on a branch-by-branch
basis (essentially treating each branch as a distinct thread), b) the branching structure can be
ignored, focusing instead on the relative time ordering of the messages, or c) a representative

branch can be selected, such as the longest branch, to represent the thread as a whole. For
our purposes, a) was deemed to time consuming, b) was deemed impractical due to unknowns
regarding timezones of intermediate mail servers, as well as the fact that often people do some-
times reply to older messages in a thread on purpose. Thus, the ‘representative branch’ approach
was used.

After threads were reconstructed, they were stored in an internal Thread object and saved to
disk in JSON format. A custom JSON-encoder and decoder were used.

3.2.4 Quoted Text
In order to properly analyze conversations, a way is needed to distinguish between original
content in e-mail bodies, and the category of text we call ‘quoted text.’ Quoted text arises
from three general categories: reply text is text quoted from one or more previous e-mails, and
typically appears either inline, or appended to the current e-mail; signatures, which may be
repeated many times in the course of a conversation thread but bear no relevance to the content
(similar in some ways to stop words); and forwarded text, that may not have been present in

26



previous e-mails, and may well be relevant to the conversation at hand, but is not original text
from the author of the message.

A simple rule-based approach was applied using regular expressions to remove quoted text and
forwarded messages. Each message is parsed for lines beginning with typical quoted-text sym-
bols (one or more of the pipe (‘—’), and the greater-than symbol (‘>’)). Patterns are developed
to match lines which mark the beginning of a quoted section, such as the many possible vari-
eties of prefixes similar to “On May 1, 2009, jessy <jessy.cowansharp@gmail.com> wrote:”,
or lines marking the beginning of a forwarded message, e.g. “——— Forwarded message ——
—-”.

Alternatively, quoted text can be interpreted as key to giving context to a discussion, and repeat-
ing what someone has said might legitimately give higher weighting to their words. Further,
if someone quotes a paragraph or sentence of a correspondent, and simply says, “yes,” then
removing that text could be more harmful than helpful in terms of understanding the evolution
of the conversation.

We call the versions of the e-mail threads with the quoted text removed processed threads,
and the version with all the original content raw threads. In the e-mail thread classification
experiment in Section 4.1, we compare results with both processed and raw threads.

3.2.5 Stop Words
It is typical in many NLP applications to remove what are called stop words from text being
analyzed. Stop words have high frequency but low meaning; they are words which stitch sen-
tences together, such as the, it and at. Unfortunately, stop words are language dependent, and
must be manually identified. Many corpora also have custom stop words as a function of their
topic.

For our applications, the English-language stop list was used from the Python Natural Language
Toolkit (NLTK) [1]. In addition, a set of custom stop words were identified through initial
analysis and removed as well. The full list of stop words, both generic and custom, is contained
in Appendix B.

3.2.6 Tokenization and Stemming
For our purposes in these experiments we use a very simple tokenizer which creates strings from
groups of alphanumeric characters. It’s acceptable if certain words are tokenized incorrectly or
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somewhat arbitrarily, e.g., times (8:00 gets tokenized into 8 and 00, or http://example.com/index
gets tokenized into http, example, com and /index)– as long as the tokenization is consistent.
However, it would be undesireable for words with contextual punctuation to be treated as dif-
ferent from ones without– eg. “no” vs. no, or *menu* vs. menu, or (for me?) vs me.

Two types of word stemming, Porter and Lancaster, were applied to message bodies. The ideal
word stymie would replace word tokens with their morphological roots. However, this is a rather
difficult task in practice, and so various stemmers have been developed which take slightly
different approaches to normalizing different tenses and possible conjugations of tokens.

Character n-grams have been used as an alternative to stemming in some applications; the idea
being that a good choice of n will have a similar effect, by truncating tokens in a manner similar
to a stemmer. Based on the results in [5], we try character 5-grams.
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CHAPTER 4:
Experiments

These experiments apply Latent Dirichlet Allocation (LDA) to the problems of e-mail-thread
classification, and automated detection of topic change.

Since the majority of threads are on a single high level topic, in the first experiment we explore
how LDA performs on conversational corpora, by classifying e-mail messages with their cor-
responding thread. Four distance metrics are used and compared as accuracy measures for this
experiment.

In the second experiment, we select a number of e-mail threads where the topic did not remain
consistent, and attempt to automatically identify the topics using LDA, and the transition points
between topics using DBSCAN.

4.1 Message Thread Classification using LDA
A naive guess about which thread an e-mail belongs to would select the longest thread; without
any other information, this is the most likely category. Since this experiment has not been done
previously, this becomes the baseline against which the e-mail thread classification experiments
are compared. The baseline value is the percent of correct classifications we would expect a
system using this naive decision scheme to achieve. The number of messages in the raw and
processed thread groups are the same, and so the baselines are the same. The baselines for
control groups of size 50, 100, 150, 500, and 1000, are given in Table 4.1.

Experiment Baselines for Different Control Group Sizes
Group Size Longest Branch Total Messages Baseline
50 5 250 2%
100 28 594 4.7%
150 28 931 3%
500 36 3489 1.03%
1000 54 7374 0.73%

Table 4.1: Baseline accuracy values for different control groups.

For this experiment, the open source library Machine Learning for Language Toolkit (MAL-
LET) was used [17]). Mallet includes a parametrized interface for the creation of LDA topic
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models, a highly efficient implementation of Gibbs sampling, and a number of tools for explor-
ing the algorithm’s results.

Using Mallet, a classifier was built, with 20% of the messages from each thread reserved for a
test set, and 80% used as training data. The resulting classifier was then applied to classify the
test e-mails with their original threads. All experiments were averaged over 5 runs; this number
was determined by running one experiment 5, 10, and 15 times, and comparing the variation of
the results. Since the variation was within +/−2 each time, an average of 5 runs was deemed
to be sufficient. The LDA and Gibbs parameters to this model are outlined in Table 4.3 and
4.2, respectively. These values were chosen based on experimental best-practice determined by
Steyvers and Griffiths in [19].

LDA Model Parameters
α 50
β 0.01

Table 4.2: LDA Parameters for LDA model of e-mail threads

Gibbs Parameters
Iterations 40
Thinning 3000

Table 4.3: Gibbs Parameters for LDA model of e-mail threads

LDA Topics: Top Words
space house nasa yuri volunteer
earth room gov night people
moon people ames space events
mars place arc event volunteers
human craigslist center nasa room
http living colab art setup
nuclear mansions research science stage
nations home 605 www 1
climate rainbow http ames area
science move 604 worldspaceparty table

Table 4.4: Top ten words for 5 of the 50 topics in one of the LDA models, ordered by decreasing weight from the top.
Note that these words are representative, and in practice change slightly for each run due to Gibbs sampling. This
example also includes stop words which were subsequently removed.

First, the topic weights or probabilities for each thread were calculated. For LDA, this is called
estimating, and the result of an estimation is a vector with as many dimensions as there are
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topics in the model. Each dimension corresponds to the estimated probability that the words in
the e-mail were drawn from that specific topic.

In order to classify e-mails, these topic probability weight vectors were compared with that of
each thread, and the e-mail was classified as coming from the thread that was most similar.

Four metrics were used to measure similarity, in order to compare their results: cosine similarity,
euclidean distance, the entropy-based measure KL-divergence, and the symmetric version of
KL-divergence, Shannon divergence.

To begin with, we started with 100 threads, and results were obtained using Porter stemming,
Lancaster stemming, no stemming, and character 5-grams. In Tables 4.5 and 4.6, we compare
the results of these four tokenizing approaches using all four distance metrics.

% Correct over 100 Processed Threads using 50 Topics
Porter Correct Lancaster Correct No Stemming Correct 5-gram Correct
Cosine 34 Cosine 33 Cosine 36 Cosine 16
Euclidean 29 Euclidean 28 Euclidean 26 Euclidean 11
KL 33 KL 30 KL 30 KL 10
Shannon 37 Shannon 35 Shannon 38 Shannon 14

Table 4.5: Results from LDA classification experiment for each of Cosine, Euclidean, and Shannon and KL-
divergence distance measures for processed threads. Since the results are a function of sampling, this is an
average over 5 runs. Numbers may not sum to 100 due to rounding.

% Correct over 100 Raw Threads using LDA Topics = 50
Porter Correct Lancaster Correct No Stemming Correct 5-gram Correct
Cosine 84 Cosine 84 Cosine 83 Cosine 80
Euclidean 88 Euclidean 85 Euclidean 83 Euclidean 66
KL 86 KL 87 KL 87 KL 77
Shannon 88 Shannon 85 Shannon 84 Shannon 82

Table 4.6: Results from LDA classification experiment for each of Cosine, Euclidean, and Shannon and KL-
divergence distance measures for raw threads. Since the results are a function of sampling, this is an average
over 5 runs. Numbers may not sum to 100 due to rounding.

As can be seen from Table 4.5, the correctly classified e-mails were in the low to high 30%
range in most cases, except the character n-grams, which performed worse at 12%. Compared
to our baseline of 4.7%, these classification results do show improved performance.

The same experiment is performed with raw e-mail threads, without any quoted reply text,
forwarded content, or signatures removed. Table 4.6 clearly shows that having this extra text
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to train on is a substantial advantage.

Based on the results of these initial experiments, we can see that Porter very slightly out-
performs the other methods for the processed threads, but performs equally well with no stem-
ming at all for the raw threads. Cosine similarity and Shannon distance were also slightly better
performers in terms of the distance metric, but not significantly. We continue to calculate the
different distance metrics throughout the other experiments.

Figure 4.1: E-Mail classification performance for LDA models built with different numbers of topics, for both raw
and processed threads. Each line shows a different distance metric. It can be seen that varying the LDA topics
parameter improves the results.

Next, the number of topics used as input to the LDA models was varied, to see if these first
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results could be improved upon. Porter stemming was used exclusively for this experiment. In
Figure 4.1, we can see that by varying the number of topics, the results for the processed threads
(the bottom group) go as high as 45% for the Shannon divergence, with the optimal number of
LDA topics at 150 or 175. The performance for LDA topics less than 50 is significantly worse
than for the higher values. Other metrics follow a similar curve, with Cosine and Shannon
competing (marginally) for first place.

For the raw threads, as seen in the top group of Figure 4.1, there is a similar sharp improvement
in accuracy up to 75 LDA topics. The best results are obtained at a value of 150 or higher. It
looks like the results may be starting to dip down again after 200 LDA topics, but results for the
Euclidean metric stay roughly the same. This graph would need to be extended to higher LDA
topic numbers to verify if the results continue to decrease.

For processed threads, the optimal number of topics seemed to be 150 LDA topics, while for
raw threads we selected 275. Holding the topic number constant at these values for processed
and raw threads, respectively, the number of threads is increased to see how the model will
perform on larger control groups. Figure 4.2 shows how LDA performs when run on 50, 100,
150, 500, and 1000 threads. As in the previous experiments, a 20/80 split was used, building a
model from 80% of the data, and testing it on the remaining 20%.

The accuracy of the classification results decreases as the number of threads goes up, for both
processed and raw threads. Although increasing the number of threads increases the amount
of data to train on, it also increases the choices the classifier has when selecting a thread to
associate a test e-mail with. This suggests that the noise in the data is increasing faster than
the quality of the topic models, resulting in decreased accuracy. Given the corpus, this is not
terribly suprising. We explore this further in Chapter 5.

The results for the raw threads are quite good here, even up to 1000 threads, while the results
for the processed threads is fair up to about 150 threads, then dips under 25% at 500 threads,
and achieves between 13 and 15% accuracy for 1000 threads. The results are still better than
the baseline of 0.73%.

For the 1000 thread control groups, the LDA topic variation experiment was re-run to see if
the results differed for the larger number of threads. Figure 4.3 shows the results for the
processed and raw threads. The processed threads are the buttons group, and the raw threads
are the top group. The processed threads experience a minor improvement in classification
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Figure 4.2: A Comparison of e-mail classification performance for LDA models built with increasing numbers of
threads. Results are shown for both processed threads (lower group) and raw threads (upper group). Each line
shows a different distance metric. Performance decreases as the number of threads goes up.

results as the number of LDA topics is increased up to 500, which is interesting since for the
100 thread group, this number of topics resulted in decreased performance. The raw threads
also demonstrate increased performance, but with a lower overall gain.
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Figure 4.3: Performance as the number of LDA topics is increased, for 1000 processed threads.
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4.2 Automated Detection of Topic Change

While the majority of e-mail threads are on a single topic, a conversation can switch focus
within a thread, either completely, or by moving into a different but related area. The question
arises whether we can accurately define, detect, and measure such changes.

Two approaches to detecting topic change were taken. Both were based on topic models built
using Mallet’s implementation of Latent Dirichlet Allocation. All 2168 e-mails in the corpus
were used to train a model, from which the weight of each word for each topic was determined.

As can be seen in Figure 4.4, there is an exponential falloff in the weight or probability of each
word for a given topic. Because of the probabilistic nature of LDA, and the smoothing applied,
every word has at least some minimal probability of having being drawn from each topic. Thus,
for the first approach, the top N keywords from each topic in the topic model were extracted.
A clustering algorithm was applied to the resulting output to identify subtopics, and transition
points identified corresponding to topic changes.

For the second approach, a sliding window technique was used. Each window was classified
as belonging to a specific topic by calculating the total weight of the words in one window for
each topic, and selecting the topic with the maximum value. As the window moved across the
thread, if the topic classification of the window differed from the previous one, a topic transition
was identified.

The keyword clustering experiment involved iterating over the words of a thread; if a keyword
appeared, this was taken as an indicator of the topic. Simplistically, as different keywords
appear over the thread, if they belong to a different topic, then a topic change is considered to
have occured.

One of the challenges with this approach is that certain terms, like ‘http’, and ‘NASA’ are in
the top N words for many topics. In certain cases, this may be a function of the relatively small
sample size, but it is also the case that many individuals will have cross-cutting themes in their
personal communications.

In addition, certain words are genuinely content, but have a high frequency in the corpus and
thus in multiple topics, because of natural commonalities in the topics of an individual’s e-mails.
Such frequent keywords have the same problem as stop words–they dilute the topic assessment
because they do not provide a clear indication of topic.
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Figure 4.4: This figure shows the keywords per topic sorted in order of decreasing weight (or relevance) to that
topic. The x-axis shows the word ordering, while the y-axis shows the weight of a word for a given topic. There is
one line per topic. The words themselves are not displayed; rather, the chart is shown to emphasize the exponential
falloff of word-topic weights.

A threshold, T , is chosen for the number of topics a word can be a keyword for before it becomes
too diluted. If a word exceeds the threshold, it is discarded from the keyword list, and the next
most frequent word in that topic (that is not also too common) replaces it. What we end up with
is a list of key distinguishing words. Others have taken a more formal entropy-based approach
[21], but that was not explored here. Higher values of N imply a more relaxed topic definition,
accounting for more peripheral words in a topic; thus, we can think of N as a relaxation factor.

If T is increased, a keyword can be present for more topics, meaning that they will be less
unique. In a way, this can be thought of as playing as similar role to the hyperparameter α in
the Dirichlet distribution. Increasing T increases the amount of keywords a topic can share, or
how much they overlap.
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Keyword Selection Parameters
Parameter Effect
N (Keywords) Relaxation
T (Threshold) Uniqueness

Table 4.7: High level effects of varying the parameters N and T in the selection of keywords used in topic identifi-
cation.

If a low threshold is chosen, the resulting output will emphasize words that were more indicative
of that topic. If N is also decreased, the distinguishing words are those which are increasingly
related to that topic. In practice, the result is a squeezing effect that emphasizes groups of
words which appear frequently in the same grouping, such as newsgroup footers or frequent
correspondents’ signatures.

Figure 4.5: Topic correlations for keywords in a single e-mail thread. LDA Topics = 50; Keywords = 10; Threshold =
5. We can see that structure emerges in the thread. Note that the x-axis shows words in the order they appeared in
the thread, and thus also correlates with time.
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In Figure 4.5 it can be seen that this method begins to indicate some structure in the threads.
In order to automate detection of significant changes, a custering algorithm is applied to the
data. The goal of the clustering is to determine where the groupings of points in Figure 4.5 are
significant, and how to determine the boundaries of topics.

The clustering algorithm used is called DBSCAN, as described in Section 3.1.6. DBSCAN is
a density based clustering algorithm, with the important characteristic that it discovers, instead
of taking as input, the number of clusters in a given set of data points. DBSCAN has two
input parameters, ε, and min pet′s. ε defines the radius around a given point that is searched
for neighbours, while min pts defines the minimum number of neighbours that radius must
contain.

For this application of the DBSCAN algorithm, we only want points to be clustered with other
points from the same topic. Since a point can only be considered a neighbour of another point
if it’s within a distance of ε or less, to enforce clustering within topics only, the feature vectors
passed to DBSCAN are defined such that each topic is its own dimension, and the distance
between topics is always greater than ε.

Larger ε means fewer, but larger, clusters. Similarly, as min pts is increased to values closer to
ε, the algorithm will find more densely connected regions. In this experiment, because we are
only clustering within topics, min pts represents the number of keywords in a given window
that should be part of the same LDA topic, before we consider it representative of a topic of the
thread. In other words, min pts is the minimum number of points needed to form a coherent
topic within the thread. ε is a measure of how tightly bound the topics are. If the ratio of
min pts to ε stayed the same, but both values grew larger, it would be as though the focus of
the clustering had blurred, or the edges of each group were less well-defined.

We want to choose a min pts/ε ratio that will be sensitive enough to detect changes in topic,
but forgiving enough to account for the uncertainty introduced by the probabilistic nature of
word-topic associations in LDA.

Finally, in order to mark the transitions between the identified clusters (topics), the mid-point
between the end of one cluster and the beginning of another was selected. Topic changes at the
first word of a thread were discarded.

Twelve threads were identified that contained one or more clear topic changes. These threads
typically either had a main topic, with a detour in the middle from which it turned back on track,
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or, exhibited a complete topic change from which it did not return. The former threads contained
two changes, one to change topic onto the detour topic, and the second to change topics back.
These detour topics are typically shorter than the parent topic. The latter threads exhibited only
a single change. The second topics were often items that the original topic reminded the author
to bring up, while others were unrelated to any contextual information.

Between the keyword selection and the DBSCAN parameters, 4 variable values must be selected
for each run of the experiment. In Tables 4.8 to 4.13, the results are shown for 6 runs of the
experiment over 12 threads, using the word-topic weights from LDA with the number of topics
set to 50. The parameter inputs for keyword selection and the DBSCAN algorithm are included
in the table header as a 4-tuple representing (N , T , ε, min pts). The number and location of
topic changes identified were tracked, and compared to the number of actual changes in the
thread (determined by hand labelling), and their correct locations. Precision and Recall were
calculated for all threads. The location accuracy was determined to within +/− one sentence.

Figure 4.6 shows the results of clustering and transition point identification for a single thread.
The top plot shows the LDA topics plotted for the selected keywords and threshold, and the bot-
tom shows the clusters after scanning. The vertical lines are automatically determined transition
points. The x-axis shows the keywords in the same order they appeared in the original thread,
and thus also represent the time dimension. Note that in this (and subsequent) images, only the
topN keywords are shown. Points which were not allocated to any cluster are considered noise,
and they are shown in a light gray colour on the bottom plot.

The second approach taken was the sliding window-based technique. Recall that each word has
a certain weight associated with each topic. In general, words have a high weight in association
with only a few topics. Thus, for each window of size N words, the corresponding word
weights for each topic were summed, and the topic with highest associated value was selected.
A transition was identified as occuring at the middle of the window (N/2) location. As the
window was moved across the text of the thread, the topic could be seen to change at specific
points, as seen in Figure 5.3.

The challenge with the window classification scheme was to select a window size large enough
to smooth over elements like signatures, but small enough to capture genuine topic changes.
Trial and error resulted in the selection of 20, 40 and 100 for the window sizes. The results for
the sliding window experiment applied to the 12 threads are shown in Tables 4.14 to 4.16.
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Figure 4.6: An example of the clustering results for a single thread. Threshold T=25, N=10 min pts = 4 and ε = 6
(LDA Topics = 50). Vertical lines show identified topic transitions. Personally identifying terms are grayed out for
privacy purposes.
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DBSCAN - (N=25, T=5, E=6, MP=4)
Thread ID Len (ch) Msgs # Changes # Found Cor. Loc P R F

75273856 length 8 2097 8 1 1 0 0 0 0
53773016 length 7 908 7 1 1 0 0 0 0
78378912 length 15 4530 14 1 4 1 0.25 1 0.4
85425331 length 6 1820 6 2 1 0 0 0 0
83944656 length 9 3450 9 1 1 1 1 1 1
83872656 length 15 4148 15 3 1 0 0 0 0
59502032 length 13 2714 13 2 1 1 1 0.5 0.67
75215072 length 7 3868 7 1 2 0 0 0 0
65048659 length 5 14436 5 1 3 0 0 0 0
83864104 length 18 8743 18 1 5 1 0.2 1 0.33
73555624 length 7 6063 7 1 2 0 0 0 0
53638713 length 6 1306 6 1 1 1 1 1 1

Table 4.8: DBSCAN results for (N=25, T=5, E=6, MP=4). Results show the Thread ID, thread length in characters
(len (ch)), number of messages in thread branch, the number of actual topic changes in the thread (# Changes), the
number of topic changes found (# Found), and the number found in the correct location (Cor. Loc). P, R, and F give
the precision, recall and F-score, as defined in 3.1.7

DBSCAN - (N=25, T=5, E=10, MP=6)
Thread ID Len (ch) Msgs # Changes # Found Cor. Loc P R F

75273856 length 8 2097 8 1 0 0 0 0 0
53773016 length 7 908 7 1 0 0 0 0 0

78378912 length 15 4530 14 1 1 0 0 0 0
85425331 length 6 1820 6 2 0 0 0 0 0
83944656 length 9 3450 9 1 1 1 1 1 1

83872656 length 15 4148 15 3 1 0 0 0 0
59502032 length 13 2714 13 2 0 0 0 0 0
75215072 length 7 3868 7 1 1 0 0 0 0
65048659 length 5 14436 5 1 1 0 0 0 0

83864104 length 18 8743 18 1 3 0 0 0 0
73555624 length 7 6063 7 1 3 0 0 0 0
53638713 length 6 1306 6 1 1 1 1 1 1

Table 4.9: (DBSCAN results for N=25, T=5, E=10, MP=6). Results show the Thread ID, thread length in characters
(len (ch)), number of messages in thread branch, the number of actual topic changes in the thread (# Changes), the
number of topic changes found (# Found), and the number found in the correct location (Cor. Loc). P, R, and F give
the precision, recall and F-score, as defined in 3.1.7
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DBSCAN - (N=10, T=5, E=6, MP=4)
Thread ID Len (ch) Msgs # Changes # Found Cor. Loc P R F

75273856 length 8 2097 8 1 0 0 0 0 0
53773016 length 7 908 7 1 0 0 0 0 0
78378912 length 15 4530 14 1 3 0 0 0 0
85425331 length 6 1820 6 2 0 0 0 0 0
83944656 length 9 3450 9 1 1 0 0 0 0
83872656 length 15 4148 15 3 3 2 0.67 1 0.8
59502032 length 13 2714 13 2 1 1 1 0.5 0.67
75215072 length 7 3868 7 1 0 0 0 0 0
65048659 length 5 14436 5 1 1 0 0 0 0
83864104 length 18 8743 18 1 4 1 0.25 1 0.4
73555624 length 7 6063 7 1 4 1 0.25 1 0.4
53638713 length 6 1306 6 1 1 1 1 1 1

Table 4.10: DBSCAN results for (N=10, T=5, E=6, MP=4). Results show the Thread ID, thread length in characters
(len (ch)), number of messages in thread branch, the number of actual topic changes in the thread (# Changes), the
number of topic changes found (# Found), and the number found in the correct location (Cor. Loc). P, R, and F give
the precision, recall and F-score, as defined in 3.1.7

DBSCAN - (N=10, T=5, E=10, MP=6)
Thread ID Len (ch) Msgs # Changes # Found Cor. Loc P R F

75273856 length 8 2097 8 1 0 0 0 0 0
53773016 length 7 908 7 1 0 0 0 0 0

78378912 length 15 4530 14 1 1 0 0 0 0
85425331 length 6 1820 6 2 0 0 0 0 0
83944656 length 9 3450 9 1 1 0 0 0 0

83872656 length 15 4148 15 3 3 3 1 1 1
59502032 length 13 2714 13 2 1 0 0 0 0
75215072 length 7 3868 7 1 0 0 0 0 0
65048659 length 5 14436 5 1 1 0 0 0 0

83864104 length 18 8743 18 1 1 0 0 0 0
73555624 length 7 6063 7 1 2 0 0 0 0
53638713 length 6 1306 6 1 1 1 1 1 1

Table 4.11: DBSCAN results for (N=10, T=5, E=10, MP=6). Results show the Thread ID, thread length in characters
(len (ch)), number of messages in thread branch, the number of actual topic changes in the thread (# Changes), the
number of topic changes found (# Found), and the number found in the correct location (Cor. Loc). P, R, and F give
the precision, recall and F-score, as defined in 3.1.7
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DBSCAN - (N=25, T=51, E=15, MP=10)
Thread ID Len (ch) Msgs # Changes # Found Cor. Loc P R F

75273856 length 8 2097 8 1 0 0 0 0 0
53773016 length 7 908 7 1 0 0 0 0 0

78378912 length 15 4530 14 1 1 0 0 0 0
85425331 length 6 1820 6 2 0 0 0 0 0
83944656 length 9 3450 9 1 1 0 0 0 0

83872656 length 15 4148 15 3 1 0 0 0 0
59502032 length 13 2714 13 2 0 0 0 0 0
75215072 length 7 3868 7 1 1 0 0 0 0
65048659 length 5 14436 5 1 2 0 0 0 0

83864104 length 18 8743 18 1 1 0 0 0 0
73555624 length 7 6063 7 1 3 0 0 0 0
53638713 length 6 1306 6 1 1 1 1 1 1

Table 4.12: DBSCAN results for (N=25, T=51, E=15, MP=10). Results show the Thread ID, thread length in charac-
ters (len (ch)), number of messages in thread branch, the number of actual topic changes in the thread (# Changes),
the number of topic changes found (# Found), and the number found in the correct location (Cor. Loc). P, R, and F
give the precision, recall and F-score, as defined in 3.1.7

DBSCAN - (N=25, T=51, E=5, MP=3)
Thread ID Len (ch) Msgs # Changes # Found Cor. Loc P R F

75273856 length 8 2097 8 1 0 0 0 0 0
53773016 length 7 908 7 1 1 0 0 0 0
78378912 length 15 4530 14 1 7 1 0.14 1 0.25
85425331 length 6 1820 6 2 1 0 0 0 0
83944656 length 9 3450 9 1 3 0 0 0 0
83872656 length 15 4148 15 3 7 3 0.43 1 0.6
59502032 length 13 2714 13 2 1 0 0 0 0
75215072 length 7 3868 7 1 5 1 0.2 1 0.33
65048659 length 5 14436 5 1 7 1 0.14 1 0.25
83864104 length 18 8743 18 1 6 1 0.17 1 0.29
73555624 length 7 6063 7 1 7 1 0.14 1 0.25
53638713 length 6 1306 6 1 1 1 1 1 1

Table 4.13: DBSCAN results for (N=25, T=51, E=5, MP=3). Results show the Thread ID, thread length in characters
(len (ch)), number of messages in thread branch, the number of actual topic changes in the thread (# Changes), the
number of topic changes found (# Found), and the number found in the correct location (Cor. Loc). P, R, and F give
the precision, recall and F-score, as defined in 3.1.7
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Window Size = 20
Thread ID Len (ch) Msgs # Changes # Found Cor. Loc P R F

75273856 length 8 2097 8 1 4 0 0 0 0
53773016 length 7 908 7 1 2 1 0.5 1 0.67
78378912 length 15 4530 14 1 23 0 0 0 0
85425331 length 6 1820 6 2 14 1 0.07 1 0.13
83944656 length 9 3450 9 1 10 1 0.1 1 0.18
83872656 length 15 4148 15 3 8 1 0.13 1 0.22
59502032 length 13 2714 13 2 11 2 0.18 1 0.31
75215072 length 7 3868 7 1 27 0 0 0 0
65048659 length 5 14436 5 1 76 1 0.01 1 0.03
83864104 length 18 8743 18 1 48 1 0.02 1 0.04
73555624 length 7 6063 7 1 24 1 0.04 1 0.08
53638713 length 6 1306 6 1 1 1 1 1 1

Table 4.14: Sliding window results for window size = 20. Results show the Thread ID, thread length in characters
(len (ch)), number of messages in thread branch, the number of actual topic changes in the thread (# Changes), the
number of topic changes found (# Found), and the number found in the correct location (Cor. Loc). P, R, and F give
the precision, recall and F-score, as defined in 3.1.7

Window Size = 40
Thread ID Len (ch) Msgs # Changes # Found Cor. Loc P R F

75273856 length 8 2097 8 1 2 0 0 0 0
53773016 length 7 908 7 1 0 0 0 0 0
78378912 length 15 4530 14 1 8 0 0 0 0
85425331 length 6 1820 6 2 3 0 0 0 0
83944656 length 9 3450 9 1 7 1 0.14 1 0.25
83872656 length 15 4148 15 3 4 1 0.25 1 0.4
59502032 length 13 2714 13 2 6 1 0.17 1 0.29
75215072 length 7 3868 7 1 4 0 0 0 0
65048659 length 5 14436 5 1 54 1 0.02 1 0.04
83864104 length 18 8743 18 1 48 1 0.02 1 0.04
73555624 length 7 6063 7 1 7 0 0 0 0
53638713 length 6 1306 6 1 0 0 0 0 0

Table 4.15: Sliding window results for window size = 40. Results show the Thread ID, thread length in characters
(len (ch)), number of messages in thread branch, the number of actual topic changes in the thread (# Changes), the
number of topic changes found (# Found), and the number found in the correct location (Cor. Loc). P, R, and F give
the precision, recall and F-score, as defined in 3.1.7
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Window Size = 100
Thread ID Len (ch) Msgs # Changes # Found Cor. Loc P R F

75273856 length 8 2097 8 1 0 0 0 0 0
53773016 length 7 908 7 1 0 0 0 0 0
78378912 length 15 4530 14 1 2 0 0 0 0
85425331 length 6 1820 6 2 0 0 0 0 0
83944656 length 9 3450 9 1 1 0 0 0 0
83872656 length 15 4148 15 3 0 0 0 0 0
59502032 length 13 2714 13 2 0 0 0 0 0
75215072 length 7 3868 7 1 4 0 0 0 0
65048659 length 5 14436 5 1 21 0 0 0 0
83864104 length 18 8743 18 1 28 1 0.04 1 0.07
73555624 length 7 6063 7 1 1 1 1 1 1
53638713 length 6 1306 6 1 0 0 0 0 0

Table 4.16: Sliding window results for window size = 100. Results show the Thread ID, thread length in characters
(len (ch)), number of messages in thread branch, the number of actual topic changes in the thread (# Changes), the
number of topic changes found (# Found), and the number found in the correct location (Cor. Loc). P, R, and F give
the precision, recall and F-score, as defined in 3.1.7
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CHAPTER 5:
Analysis and Future Work

In this chapter we discuss the results for both thread classification and the topic change detection
experiments. The raw versus processed versions of the data set are considered, and the relative
performance of the four distance metrics is compared. Characteristics and challenges of the
data set are identified, and the definition and implementations of topic and topic change are
explored.

The conversational aspect of e-mail threads gives rise to high variance in vocabulary usage
over the thread space, with a large number of contextual terms and references to concepts,
experiences or discussions external to the thread itself. There are less nouns and other anchoring
terms to train on, and more implicit assumptions about common ground and shared knowledge.
In addition, e-mail communications are often short and informal, reducing meaningful context
even futher.

All these factors make e-mail conversations a rather challenging data set to analyze, and this is
borne out in the results from Chapter 4 and discussed further below. At the same time, these are
new areas of research, and it is our hope that baselining performance with these techniques will
help to identify directions where future research can lead to improvements.

5.1 E-Mail Thread Classification
For the thread classification experiments, overall we saw decreasing performance for larger
numbers of threads. Performance was substantially increased for classification of raw threads
versus processed threads, due to the additional context.

The best results were around 35% for the processed threads, and just over 90% for the raw
threads. Porter stemming, Lancaster stemming, and no stemming performed roughly the same,
with character 5-grams performing distinctly worse in both cases. The Cosine and Shannon
distance metrics performed slightly better on the processed threads, and the KL-divergence
performed marginally better for the raw threads, but not significantly.

Stemming is a difficult task, so one explanation for the lack of improvement is simply that
the stemming algorithms performed poorly on the text they were given. An inspection of the
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Porter and Lancaster stemmed words does reveal that many words were stemmed incorrectly.
For example, these words were stemmed as follows, using the Porter and Lancaster stemmers,
respectively:

manage legal financial→ Porter Stemmer→ manag legal financi
manage legal financial→ Lancaster Stemmer→ man leg fin

An incorrect word wouldn’t reduce the accuracy of the results, since all instances of that word
would be stemmed in the same way, and therefore their counts in the LDA topic models would
be unchanged. The advantage of successful stemming is rather that ‘managing’ and ‘manage’
will get counted as the same word. Incorrect stemming simply means that the words counted
will be ‘manage’ and ’manag’ (for example). Another possible explanation is that our results
are dominated by the LDA topic model quality, and slight changes in token counts may not
matter much if the underlying topic model is not strong.

It is interesting that the character n-grams performed substantially worse than the other tech-
niques. Because n-grams are implemented as a sliding window, many are made up of the end of
one word and the beginning of another word, implicitly giving them more context. In contrast,
the other stemming techniques all use whitespace for token boundaries, and thus do not include
context. That the techniques without this context performed better, might mean that words are
not being frequently repeated in the same sequences. This could be a by-product of the fact that
an e-mail corpus has many authors, thereby dominating any effects that an individual author’s
‘voice’ might have. It could also be a function of swiftly changing contexts and tenses, or the
casual nature of the medium.

Varying the number of LDA topics did have a measurable impact on the performance of the
classification task. In all cases, there was a dramatic drop in performance for very low values of
the LDA topics parameter. Considering the size and nature of the data set, it could legitimately
be the case that such a low number of topics is simply a poor fit for the data, causing multiple
‘real’ topics in the data to be conflated. Additionally, because cosine similarity measures an-
gular distance, it is much less sensitive to differences in values within dimensions than across
them. Thus in general we would expect the cosine difference measure to perform slightly worse
at lower topic values.

We did see that, for all the topic variation experiments for both the 100- and 1000-thread control
groups, the divergence in performance between the different distance metrics was lower when
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the results were either very good or very bad. That is, the extreme good or bad results seemed
to be more agnostic to the distance metric. Perhaps the differences in the categories (topics)
are greater than the variation in the distance measures, as the quality of the model goes up (or
down). Using the convergence of multiple distance measures might be an interesting technique
for assessing the quality of the models in future experiments.

As the number of threads was increased, a corresponding decrease in the accuracy of the thread
classification was also observed. At first glance this isn’t suprising; more threads to choose
from means, all else being equal, that there is a lower probability of selecting the correct thread
for classification. However, additional threads also mean significantly more training data, and
thus one would hope for it to increase the quality of the topic models, enough to maintain or
improve the classification results. Instead, what we see is that the noise factor increases more
quickly than the quality of the topic models.

If additional threads are not refining existing topics, then it may instead be adding new topics,
suggesting that the corpus, and thus the topics of this individual’s e-mails, contain more breadth
than depth overall.

The optimal number of topics for the LDA model changed for the larger thread groups. This is
implies that 100 threads was not a large enough subset to be representative of the broader set of
topics. As would be expected, the number of LDA topics increased for the larger control group,
indicating that there were more latent topics.

In general, there were several factors affecting the quality of the results for processed threads in-
dependent of the algorithm applied. Fully cleaning an e-mail corpus from scratch is a formidable
task, and our desire to work with threads, as opposed to individual e-mails, made it infeasible
to use the more common Enron corpus (because the required header fields were not included).
Many Usenet and modern newsgroups have been archived and are stored online for research or
analysis purposes, but none that we came across had been pre-processed. There was no imme-
diately clear advantage to using these newsgroups over a corpus belonging to the author, while
using the author’s corpus did provide the bonus of familiarity with the contents. However,
in retrospect, newsgroups may have offered a more rich conversational medium, with longer
messages and more substantially fleshed out topics.

Due to the private nature of an individual’s e-mail corpus, this makes the data set difficult to
sanitize for public release, and thus rigorous verification of research results obtained using it
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not possible. These are strong arguments against using personal data sets. While newsgroups
would address this because many are public, it would also be useful if the community pooled
efforts to clean and release individual e-mail corpora.

The major effort in cleaning such a data set involves the removal of extraneous content; in
particular, quoted reply text, forwarded content, and signatures. Hand removal was impractical
for the timeframe and resources at hand, and so a best-effort attempt was made to automate
the cleaning process (see Section 3.2). Unfortunately, the result was that many replies were
missed, reducing the quality of the data set and making it more difficult to assess all the factors
influencing the results. In particular, since the results with raw threads were so high, it is
possible that stray reply content may have artificially inflated some of the results for processed
threads.

Signatures were an equally difficult challenge. They were not removed, since there was no
clear way to do this in an automated fashion. Although they represented a smaller proportion
of the text than quoted replies and forwards, they are not actually content per se. On one hand,
an e-mail thread between two authors would legitimately recognize those authors’ respective
e-mail signatures as being indicators of membership in a thread. Further, depending on the task,
the raw (un-processed) thread content might be the only data on hand (for example, file carving
in digital forensics). On the other hand, from a topic modeling standpoint, it’s a bit dishonest,
since it is not genuinely topical. Worse, for shorter threads, signature text might even dominate
the message bodies.

As a function of the casual nature of e-mail, there are likely to be more spelling errors in e-mail
conversations than published documents, causing mis-spelled words to be counted as distinct
tokens. A simple improvement would probably be to run a spell-check over the message bodies
before other processing was conducted.

For the raw threads, given the high frequency with which prior messages were quoted in replies,
running the classifier on the raw threads was equivalent to training on the test data. Although the
raw thread results provide an upper bound, we’re really interested in seeing if the topic models
built are robust enough to match a thread with an e-mail that has not been seen. Further, in the
interest of generalizing results to other conversational domains such as chat, blog comments, or
phone conversations, they do not in general have the luxury of quoted reply text.

For our baseline, and for creation of the training and test data set, the atomic unit of analysis
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was the message. Messages vary greatly in their lengths, and our results did not account for this
factor.

Based on these observations, we improve thread classification by building better data sets,
studying multiple individuals’ e-mail corpora, and better parametrizing their nature and vari-
ance. If there is enough commonality in the topics discussed by individuals within certain
demographics, training on multiple peoples’ e-mail would help to refine the topic models and
improve classification capability.

5.1.1 Distance Metrics
For the topic variation experiment with 1000 processed threads, the Shannon and Cosine mea-
sures diverged notably as the number of topics grew, performing consistently better as the num-
ber of topics increased. As well, for the 100 processed threads, Shannon and Cosine measures
performed better than their counterparts.

The Shannon and Cosine measures also perform better than Euclidean distance and KL diver-
gence for the thread variation experiment with processed threads. For the raw threads, there is
no clear dominant performer.

The 1000 thread experiment with the raw threads shows the Shannon and KL divergence out-
performed Cosine and Euclidean measures consistently for all topics, while the results for 100
raw threads are too close for a winner to be declared.

5.2 Topic Change
While the keyword clustering experiment generally had poor results, many threads did have
clusters that resulted in topics with clear boundaries, and contained close to if not precisely the
correct number of topic change events.

The range of F-score results for the different experiments was from 0 to 1. Most of the threads
where all changes were accurately detected were those with a single change, and strong topics.
Still, while there were a non-negligible number of finite results, the more frequent result was 0,
meaning that 0 topic changes were accurately detected in the correct location. Here we explore
some of the factors in the success and failure of the techniques applied.

The runs with N = 25 performed better overall, although changing N from 25 to 10 had a
smaller effect on the F-scores than varying the DBSCAN inputs. In both cases the, (ε = 6,
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min pts = 4) values performed better than (ε = 10, min pts = 6). Although ε = 10 is a more
forgiving radius, the topic data was too sparse for min pts = 6. For these experiments, often
no clusters were even detected.

Our corpus was relatively small, with a large breadth of topic coverage and short, terse e-mails
on average. Although there were a few overarching themes across the corpus resulting in good
models for a few topics, many of the other topics were poorly reflected in the topic models,
with keywords not accurately represented. Correspondingly, words in the message bodies that
perhaps should have been associated with a topic were missed, and the resulting clusters were
of smaller size. In other cases, words had not developed a clear association with any topic, and
topics that were seen to exist by human inspection were consistently treated as noise by the
algorithms. Certain threads never had good cluster representation.

This result could simultaneously be indicative of characteristic topic lengths in this medium.
Rather than being a descriptive prose environment, most e-mail tends to be purposeful and
functional (there are, of course, exceptions). Even a 7- or 8-message thread might only have a
couple of thousand characters, leaving little time for a topic to develop.

The (25, None, 5, 3) experiment increased the number of keywords again, removed the keyword
threshold altogether, and then shrank the DBSCAN radius. Relaxing the threshold allowed more
of the significant keywords to be included, in order to see if the topic boundaries would be more
accurate. What we saw is that slightly more threads seemed to have non-zero results in this
case, although they were on average lower than the non-zero results of the other runs. It seemed
that the parameters for this run were a little too forgiving, often including words it shouldn’t
have.

There were several threads which consistently had high F-scores across multiple different pa-
rameter inputs. These topics may have been better represented in the training corpus, and
therefore while different parameters shifted the topic boundaries forward or back a few words,
or changed the density of keywords in the cluster, the clusters themselves persisted. Overall,
these more frequent topics were robust under different sets of parameter inputs, and performed
well in these experiments.

For some threads, the number of topic changes detected was correct, but the location was incor-
rect because the clusters were too far apart. In these cases, the ‘median’ method used to identify
transitions points (whereby the middle point between two cluster boundaries was taken) was at
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Figure 5.1: DBSCAN clusters are too far apart, resulting in meaningless transition.

fault, causing transitions to be placed far from the boundaries of either cluster. See Figure 5.1
for an example of this. These smaller clusters were often more accurate, but their boundaries
simply too tight. The resulting space between clusters introduced ambiguity about where the
transition occured. In general, the location and size of neighbouring clusters greatly affected
the transition locations.

In other cases, a cluster ended, and no subsequent cluster was identified, but the transition to
‘noise’ after the end of the last cluster was a meaningful transition from one topic that was
rather well defined, to one that simply was not. This could be remedied by either or both of
more suitable clustering parameters, as well as more nuanced transition point identification (see
Figure 5.2).
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Certain transitions were incorrectly inserted between clusters of the same topic. In these cases
the division between clusters was an artifact of the parameters for that particular run of the
experiment, and did not represent the presence of intermediary topics. See again Figure 5.2

Figure 5.2: The end of the last cluster is a meaningful transition, but is not captured because there is no subsequent
cluster. The transition identified between clusters of the same topic is an artifact of the experiment parameters, and
not a real transition.

The transition mechanism also did not perform well with overlapping clusters. In the present
implementation, multiple clusters overlapping would cause the endpoints of those clusters to be
averaged, when calculating the transition point between the end of one set of clusters and the
beginning of another. This made the calculation simple, but there was no particular structural
reason for these clusters to be handled that way. A more subtle treatment of transition point
calculation would aid in the identification of accurate transitions.
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Beyond the mechanics of topic change identification, there are subtleties to its definition as well.
Almost never is a transition discrete, but rather it is more accurately modelled by the decreasing
influence of one topic, and the corresponding increasing influence of another. An intuitive
decision for the transition point in this case would be the point at which one topic overtakes
another in terms of weight. But clearer steps should be taken to make logical decisions when
there is a gap between clusters, or when the topic transion is gradual.

For both experiments, the transition point selection mechanism involved taking the median
point either of the sliding window, or the boundaries of two clusters. For the sliding window
approach, this is clearly not a scalable approach if the window size were to get larger. In fact,
this is a shortfall of the method overall, since by taking the total weight over a single window,
the growing influence of secondary topics is smoothed over, as is the order of the words (for
example, perhaps the winning topic is actually strong at the beginning of the window but tapers
off at the end). A way to address this might be to keep track of multiple topics in each window,
supporting the conceptual approach that documents are mixtures of topics.

This thesis treated transition points between topics as discrete points in time. A more nuanced
analysis of how topic changes, alternative ways to measure it, and ways to represent slow versus
fast changes, or discrete versus evolutionary changes, would enrich the discussion.

Overall, the sliding window technique performed measureably worse, in particular in the num-
ber of changes detected (as opposed to their location). For many of the threads, this method
vastly ovestimated the number of transitions (see Figure 5.3 C), causing overall high recall.
The result in these cases was that the likelihood of one of those transitions being in the correct
location increased, but the positive results in those cases were actually a side effect of the recall.

Unfortunately, increasing the window size from 20 to 40 and then to 100 did more to negate
previously correct transitions detected by the smaller window sizes, than to improve the vast
overfitting observed in some threads.

Between the keyword clustering and sliding window approaches, the sliding window approach
was simpler to implement, but too sensitive to change. The keyword clustering approach was
more challenging, with more parameters to understand and refine, but it was also better at
detecting substance over noise. The DBSCAN method did not account for word-topic weights
beyond their presence in the top N keywords. There was a question of whether this would gloss
over important nuances, but it did not negatively impact the results. In fact, because the top
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Figure 5.3: Three outputs from the sliding window experiment. Window sizes as described in respective titles. A)
Correct results; B) Erroneously detects two topics, close to the actual topic change; C) Extreme overfitting, too many
topics detected. LDA Topics = 50). Personally identifying terms are grayed out for privacy purposes.

words for a topic tend to have extremely high weights (again, see Section 4.4) it raises the
question of whether the sliding window approach is too influenced by the relative weights of
words, especially as they get large. Future experiments might try modifying the sliding window
approach by capping or smoothing the word-topic weights.

Topic change is a more challenging area than e-mail-thread classification. The classification
task had the advantage of working with all information in a thread, whereas the topic detection
was working with shorter sequences of words; sometimes only a couple of sentences. This
isn’t much content for the algorithm to accurately detect a topic, especially if the words used
were not already heavily weighted towards a particular topic. Oftentimes, it might be missed
altogether.
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To a certain extent, using e-mail conflated many of the questions about how to detect topic
change. Most messages are short, and topic changes, when they do occur, can be very subtle.
Between the data cleaning and pre-processing issues discussed in the previous section, the mul-
tiple possible paths through each thread, and the low frequency with which clear topic change
occurs in e-mail, it was difficult to get good quality data, in enough quantity, to make statistical
conlusions about the result.

In summary, detecting the presence of topic change in a conversational setting still requires
work, as evidenced by the results and discussions above. Many of the observations made here
could likely improve the techniques, but first and foremost the current techniques should be
applied to a larger corpus, and run with a significantly expanded range of parameters inputs.
Additionally, a more formal analysis of how to optimize the paramters N , T , ε and min pts
used in the keyword clustering experiment is necessary.

5.2.1 Open Questions
Through this experiment, many important questions surfaced about the nature of topic change
and how it should be measured. Every topic is arguably part of a hierarchy, and every topic has
sub-elements. As a result, a critical factor in topic change analysis is the coarseness of analysis
applied, and defining transitions that are formalizable and repeatable.

LDA is a tool we use to statistically represent topics, and to some degree the number of topics
selected as input parameter to the algorithm will determine this coarseness. At the same time,
it should be remembered that the ‘topics’ discovered by LDA might not be the topics a human
reader would pick out.

For example, an entire e-mail thread might be about an academic course being taken, but the
first few e-mails are about meeting for a study session, and the last few about the latest as-
signment. Similarly, another thread might be about a vendor’s plans to film an event, but the
beginning might be about getting the vendor event passes, and the second half might be a de-
tailed discussion about the cabling they need. Less explicit changes need more training.

Additionally, there are many topics which appear once in the corpus and then never again,
and thus as mentioned above, the weighting of those words for the respective topics isn’t very
good. It is easy to say that more and better data would help in our ability to detect more subtle
transitions, and that is true. But it would also be very interesting to take multiple conversational
corpora and train over the whole set, in an attempt to improve the quality of the models. If there
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genuinely is overlap in conversational topics across individuals, this will be helpful. And where
there is not, such a technique might instead be useful in identifying personal versus popular
topics.

Proximity between words of the same topic could be used to scale the weight of each word in
either technique, decreasing the likelihood of stray words being picked up. In fact, the inherent
time dimension of conversational texts suggests that a Markov approach giving greater weight
to the current or previously seen topics, could help to improve the results. Topics could be
clustered together, showing where transitions among certain sets of topics are more likely than
others. The likelihoods would ultimately be a function of generic as well as personal categories.

Part-of-speech tagging could be used to give grammatical context where token context is in-
suffient. In particular, conversational contexts contain many question/answer type interactions,
where even the probabilistic models applied here seem to fail. Modeling these interactive dy-
namics and using them as, or to inform, the priors for topics might yield improved results.

5.3 Stopwords and Keywords
Additional work on averaging and entropy-based methods (such as [21]) could determine and
remove stop words on the fly. This would reflect the fact that stop words are often a function of
context, and would also support the development of language independent solutions.

Consider Figure 5.4, which shows a full graph of LDA word-topic weights, where stop words
have not been removed. Although the stop words are co-appearing with their more substantive
neighbours, they are also co-appearing frequently with other stopwords. In the resulting LDA
topic models, these stop words are weighted most heavily towards topics which appear to be
dominated by stop words. This could be used as a way to programmatically identify stop words.
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Figure 5.4: In this graph of a subsection of a thread, we can see that stopwords consistently appear in two topics
above and beyond all others. Personally identifying names and locations have been blurred.
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5.4 Signature Detection
Signature detection and removal is a laborious and time consuming process if done by hand,
and error-prone if done programmatically. In the course of examining patterns present in e-mail
threads, small repeated blocks of text, in particular, signatures, were seen to be very distinct
when viewed visually. In addition, because signatures of frequent correspondents appear multi-
ple times, in exactly the same word sequences, these signatures are clustered together in topics
with extremely high frequency (see 5.6).

Figure 5.5: A graph of topic word weight for one e-mail. Again the words along the x-axis are in order of appearance,
so this dimension also represents time.

This begs the question of whether LDA might be useful in automatically identifying and re-
moving signatures. This would only be useful for authors with whom correspondence was
moderately frequent. However, others have shown [18] that the relationship between corre-
spondents and frequency exhibits an exponential falloff, suggesting that such a method, if it
succeeded, would still be useful for the majority of e-mails in an individual’s corpus.
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Figure 5.6: Power distribution of relationships in e-mail. Figure from [18, p.8]
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5.5 Other Future Work
Many times in this document the nature of conversational text compared to more traditional doc-
uments has been mentioned. E-Mail has more stop words, more implicit references, and is more
casual. It is possible these same characteristics which make e-mail challenging to analyze would
also allow conversational text to be automatically identified in a stream of non-conversational
text. For example, could the point in a webpage where a blog posts ends and the comments be-
gin, be automatically identified? Or conversational content in noisy packet streams? Similarly,
while conducting forensic file system analysis or file carving, such a technique could identify
chat logs or e-mails not otherwise known to exist.

While exploring the optimal number of input topics to the LDA algorithm, a question that
arises is whether there might be a characteristic number of topics which map onto the average
individual’s day-to-day communications. Do most people talk about a certain number of things?
What can be said of those who have a larger or smaller breadth of topics they discuss? Might
conditions such as Autism or Attention Deficit Disorder be detected via long term studies of
topics in individuals’ personal communications?
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CHAPTER 6:
Conclusions

We have demonstrated that state-of-the-art probabilistic topic models can be successfully ap-
plied to classifying emails with their original threads. These documents are more casual and
contextual, and generally shorter and more terse, than their more formal counterparts. For up
to 1000 threads, we show that raw email messages can be correctly classified with up to 95%
accuracy.

For more generic conversational threads, without the characteristic quoted and reply text of
emails, we present results significantly better than baseline, and identify several ways that the
results could be improved upon.

Further exploring the nature of conversation corpora, two new techniques for identifying topic
change are developed and tested on a token set of cleaned email threads. The first is a keyword
clustering method, and the second is a sliding window technique. The results show promise,
and provide a concrete baseline on which future work can improve. We describe numerous
ways in which these methods could be refined.
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APPENDIX A:
Code

A.1 DBSCAN
The DBSCAN Python implementation used for this thesis is included below.

#!/usr/bin/python

####################################################

# Jessy Cowan-Sharp, August 2009

# References:

# 1. "A density-based algorithm for discovering clusters in large

# spatial databases with noise," Ester, M. and Kriegel, H.P. and

# Sander, J. and Xu, X.

####################################################

# very code-like pseudo-code

# DBSCAN

# for point in points:

# if point is visited:

# continue

# mark point as visited

# neighbours = immediate_neighbours(point, epsilon)

# if len(neighbours) > min_pts:

# cluster = new_cluster()

# append point to cluster

# for n in neighbours:

# cluster.append(all_neighbours(n))

# else:

# mark point as NOISE

#

# def all_neighbours(n, epsilon, cluster):

# for point in points:

# if point has not been visited:

# mark point as visited

# new_points = immediate_neighbours(point)

# if len(new_points) > min_pts:

# points.append(new_points)

# if point is not member of any cluster:

# append point to cluster

from math import pow, sqrt

class Point(object):

’’’ internal helper class to support algorithm implementation’’’

def __init__(self,feature_vector):

# feature vector should be something like a list or a numpy

# array

self.feature_vector = feature_vector

self.cluster = None

self.visited = False

def __str__(self):

return str(self.feature_vector)

def _as_points(points):

’’’ convert a list of list- or array-type objects to internal

Point class’’’

return [Point(point) for point in points]
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def as_lists(clusters):

’’’ converts the Points in each cluster back into regular feature

vectors (lists).’’’

clusters_as_points = {}

for cluster, members in clusters.iteritems():

clusters_as_points[cluster] = [member.feature_vector for member in members]

return clusters_as_points

def print_points(points):

’’’ klugey function for printing lists of points. ’’’

s = ’’

for p in points:

s += str(p) + ’\n’

return s[:-2]

def euclidean(x,y):

’’’ calculate the euclidean distance between x and y.’’’

# sqrt((x0-y0)ˆ2 + ... (xN-yN)ˆ2)

assert len(x) == len(y)

sum = 0.0

for i in xrange(len(x)):

sum += pow(x[i] - y[i],2)

return sqrt(sum)

def immediate_neighbours(point, all_points, epsilon, distance, debug):

’’’ find the immediate neighbours of point.’’’

# NOTE: there is probably a better way to do this.

neighbours = []

for p in all_points:

if p == point:

# you cant be your own neighbour...!

continue

d = distance(point.feature_vector,p.feature_vector)

if d < epsilon:

neighbours.append(p)

return neighbours

def add_connected(points, all_points, epsilon, min_pts, current_cluster, distance, debug):

’’’ find every point in the set of all_points which are

density-connected, starting with the initial points list. ’’’

cluster_points = []

for point in points:

if not point.visited:

point.visited = True

new_points = immediate_neighbours(point, all_points, epsilon, distance, debug)

if len(new_points) >= min_pts:

# append any new points on the end of the list we’re

# already iterating over.

for p in new_points:

if p not in points:

points.append(p)

# here, we separate ’visited’ from cluster membership, since

# ’visited’ only helps keep track of if we’ve checked this

# point for neighbours. it may or may not have been assessed

# for cluster membership at that point.

if not point.cluster:

cluster_points.append(point)

point.cluster = current_cluster

if debug:

print ’Added points %s’ % print_points(cluster_points)

return cluster_points

def dbscan(points, epsilon, min_pts, distance=euclidean, debug=False):

’’’ Main dbscan algorithm function. pass in a list of feature

vectors (most likely a list of lists or a list of arrays), a

radius epsilon within which to search for neighbouring points, and

a min_pts, the minimum number of neighbours a point must have

within the radius epsilon to be considered connected. the default
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distance metric is euclidean, but another could be used as

well. your custom distance metric must accept two equal-length

feature vectors as input as return a distance value. pass in

debug=True for verbose output.’’’

assert isinstance(points, list)

epsilon = float(epsilon)

if not isinstance(points[0], Point):

# only check the first list instance. imperfect, but the lists

# could be arbitrarily long.

points = _as_points(points)

if debug:

print ’\nEpsilon: %.2f’ % epsilon

print ’Min_Pts: %d’ % min_pts

clusters = {} # each cluster is a list of points

clusters[-1] = [] # store all the points deemed noise here.

current_cluster = -1

for point in points:

if not point.visited:

point.visited = True

neighbours = immediate_neighbours(point, points, epsilon, distance, debug)

if len(neighbours) >= min_pts:

current_cluster += 1

if debug:

print ’\nCreating new cluster %d’ % (current_cluster)

print ’%s’ % str(point)

point.cluster = current_cluster

cluster = [point,]

cluster.extend(add_connected(neighbours, points, epsilon, min_pts,

current_cluster, distance, debug))

clusters[current_cluster] = cluster

else:

clusters[-1].append(point)

if debug:

print ’\nPoint %s has no density-connected neighbours.’ % str(point.feature_vector)

# return the dictionary of clusters, converting the Point objects

# in the clusters back to regular lists

print ’length of original list: %d’ % len(points)

returned = 0

for members in clusters.values():

returned += len(members)

print ’length of returned points: %d’ % returned

return as_lists(clusters)

if __name__ == ’__main__’:

import random

epsilon = 2.0

min_pts = 2.0

points = []

points.append([1,1])

points.append([1.5,1])

points.append([1.8,1.5])

points.append([2.1,1])

points.append([3.1,2])

points.append([4.1,2])

points.append([5.1,2])

points.append([10,10])

points.append([11,10.5])

points.append([9.5,11])

points.append([9.9,11.4])

points.append([15.0, 17.0])

points.append([15.0, 17.0])

points.append([7.5, -5.0])

clusters = dbscan(points, epsilon, min_pts, debug=True)

69



print ’\n========== Results of Clustering =============’

for cluster, members in clusters.iteritems():

print ’\n--------Cluster %d---------’ % cluster

for point in members:

print point

points = []

for i in xrange(100):

points.append([random.uniform(0.0, 20.0), random.uniform(0.0, 20.0)])

clusters = dbscan(points, epsilon, min_pts, debug=True)

print ’\n========== Results of Clustering =============’

for cluster, members in clusters.iteritems():

print ’\n--------Cluster %d---------’ % cluster

for point in members:

print point

70



APPENDIX B:
Stop Words

B.1 Generic Stop Words
The generic English language stop word list was taken from the Natural Language Toolkit
(NLTK) [1]. It is comprised of the following words:

a
a’s
able
about
above
according
accordingly
across
actually
after
afterwards
again
against
ain’t
all
allow
allows
almost
alone
along
already
also
although
always
am
among

amongst
an
and
another
any
anybody
anyhow
anyone
anything
anyway
anyways
anywhere
apart
appear
appreciate
appropriate
are
aren’t
around
as
aside
ask
asking
associated
at
available

away
awfully
b
be
became
because
become
becomes
becoming
been
before
beforehand
behind
being
believe
below
beside
besides
best
better
between
beyond
both
brief
but
by

c
c’mon
c’s
came
can
can’t
cannot
cant
cause
causes
certain
certainly
changes
clearly
co
com
come
comes
concerning
consequently
consider
considering
contain
containing
contains
corresponding

could
couldn’t
course
currently
d
definitely
described
despite
did
didn’t
different
do
does
doesn’t
doing
don’t
done
down
downwards
during
e
each
edu
eg
eight
either

71



else
elsewhere
enough
entirely
especially
et
etc
even
ever
every
everybody
everyone
everything
everywhere
ex
exactly
example
except
f
far
few
fifth
first
five
followed
following
follows
for
former
formerly
forth
four
from
further

furthermore
g
get
gets
getting
given
gives
go
goes
going
gone
got
gotten
greetings
h
had
hadn’t
happens
hardly
has
hasn’t
have
haven’t
having
he
he’s
hello
help
hence
her
here
here’s
hereafter
hereby

herein
hereupon
hers
herself
hi
him
himself
his
hither
hopefully
how
howbeit
however
i
i’d
i’ll
i’m
i’ve
ie
if
ignored
immediate
in
inasmuch
inc
indeed
indicate
indicated
indicates
inner
insofar
instead
into
inward

is
isn’t
it
it’d
it’ll
it’s
its
itself
j
just
k
keep
keeps
kept
know
knows
known
l
last
lately
later
latter
latterly
least
less
lest
let
let’s
like
liked
likely
little
look
looking

looks
ltd
m
mainly
many
may
maybe
me
mean
meanwhile
merely
might
more
moreover
most
mostly
much
must
my
myself
n
name
namely
nd
near
nearly
necessary
need
needs
neither
never
nevertheless
new
next
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nine
no
nobody
non
none
noone
nor
normally
not
nothing
novel
now
nowhere
o
obviously
of
off
often
oh
ok
okay
old
on
once
one
ones
only
onto
or
other
others
otherwise
ought
our

ours
ourselves
out
outside
over
overall
own
p
particular
particularly
per
perhaps
placed
please
plus
possible
presumably
probably
provides
q
que
quite
qv
r
rather
rd
re
really
reasonably
regarding
regardless
regards
relatively
respectively

right
s
said
same
saw
say
saying
says
second
secondly
see
seeing
seem
seemed
seeming
seems
seen
self
selves
sensible
sent
serious
seriously
seven
several
shall
she
should
shouldn’t
since
six
so
some
somebody

somehow
someone
something
sometime
sometimes
somewhat
somewhere
soon
sorry
specified
specify
specifying
still
sub
such
sup
sure
t
t’s
take
taken
tell
tends
th
than
thank
thanks
thanx
that
that’s
thats
the
their
theirs

them
themselves
then
thence
there
there’s
thereafter
thereby
therefore
therein
theres
thereupon
these
they
they’d
they’ll
they’re
they’ve
think
third
this
thorough
thoroughly
those
though
three
through
throughout
thru
thus
to
together
too
took
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toward
towards
tried
tries
truly
try
trying
twice
two
u
un
under
unfortunately
unless
unlikely
until
unto
up
upon
us
use

used
useful
uses
using
usually
uucp
v
value
various
very
via
viz
vs
w
want
wants
was
wasn’t
way
we
we’d

we’ll
we’re
we’ve
welcome
well
went
were
weren’t
what
what’s
whatever
when
whence
whenever
where
where’s
whereafter
whereas
whereby
wherein
whereupon

wherever
whether
which
while
whither
who
who’s
whoever
whole
whom
whose
why
will
willing
wish
with
within
without
won’t
wonder
would

would
wouldn’t
x
y
yes
yet
you
you’d
you’ll
you’re
you’ve
your
yours
yourself
yourselves
z
zero

B.2 Custom Stop Words
These stop words were identified by human inspection of the corpus.

jessy
cowan
sharp
cowansharp
cowan-sharp
202
360
3967
http

www
org
com
net
arc
nasa
gov
mail
email

gmail
google
googlegroups
groups
subscribe
unsubscribe
1
2
3

4
5
6
7
8
9
10
11
121

13
14
15
16
17
18
19
20
80
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30
2006
2007
2008
2009
html

650
815
450
831
656
mailing

mailman
listinfo
lists
cgi
bin
604

br
ll
ve
div
ames
center

_______________________________________________
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