

# NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

# THESIS

### TRI-LEVEL OPTIMIZATION OF CRITICAL INFRASTRUCTURE RESILIENCE

by

John P. Babick

September 2009

Thesis Advisor: Second Reader: W. Matthew Carlyle Gerald G. Brown

Approved for public release; distribution is unlimited

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               | Form Appr                        | roved OMB No. 0704-0188         |                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|---------------------------------|-------------------------------------------------------------------|
| Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                  |                                 |                                                                   |
| 1. AGENCY USE ONLY (Leave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>blank</i> ) <b>2. REPORT D</b> A<br>September 200          |                                  |                                 | AND DATES COVERED<br>ater's Thesis                                |
| 4. TITLE AND SUBTITLE       5. FUNDING NUMBERS None         Tri-Level Optimization of Critical Infrastructure Resilience       6. AUTHOR(S) John P. Babick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                  | NUMBERS None                    |                                                                   |
| 7. PERFORMING ORGANIZA<br>Naval Postgraduate School<br>Monterey, CA 93943-5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FION NAME(S) AND ADDR                                         | ESS(ES)                          | 8. PERFORM<br>REPORT NU         | IING ORGANIZATION<br>MBER                                         |
| 9. SPONSORING /MONITORIN<br>ADDRESS(ES)<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NG AGENCY NAME(S) AND                                         |                                  |                                 | RING/MONITORING<br>REPORT NUMBER                                  |
| <b>11. SUPPLEMENTARY NOTE</b><br>policy or position of the Departme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 The views expressed in this nt of Defense or the U.S. Gover | thesis are tho<br>nment.         | se of the author                | and do not reflect the official                                   |
| 12a. DISTRIBUTION / AVAILABILITY STATEMENT       12b. DISTRIBUTION         Approved for public release; distribution is unlimited       12b. DISTRIBUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               | BUTION CODE                      |                                 |                                                                   |
| 13. ABSTRACT (maximum 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                  |                                 |                                                                   |
| We introduce a new way to perform network analysis on critical infrastructure that is superior to Risk Analysis<br>and Management for Critical Asset Protection (RAMCAP), currently used by the Department of Homeland<br>Security. We introduce the idea of a Design-Attack-Defend (DAD) model that determines the optimal defense<br>plan for a critical infrastructure network within a specified budget constraint. Design-Attack-Defend first<br>determines worst-case attacks and then determines where to defend or build additional infrastructure that will<br>maximize the surviving efficiency of the infrastructure after a malicious attack or natural disaster. Design-<br>Attack-Defend ensures that the defense plan suggested is optimal to a range of attacks, out of all possible<br>defense plans, within budget constraints. The Design-Attack-Defend will always give a solution at least as good<br>as RAMCAP and as a simpler, bi-level Attacker-Defender model—and in many cases it can be expected to<br>suggest a better plan for where to defend or build additional critical infrastructure. We demonstrate with a<br>model of the Western U.S. railroad network. |                                                               |                                  |                                 |                                                                   |
| 14. SUBJECT TERMS     15. NUMBER OF PAG<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               | <b>15. NUMBER OF PAGES</b><br>70 |                                 |                                                                   |
| Network analysis for critical infrastructure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |                                  | 16. PRICE CODE                  |                                                                   |
| CLASSIFICATION OF C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8. SECURITY<br>LASSIFICATION OF THIS<br>AGE<br>Unclassified   | OF ABS                           | FICATION<br>FRACT<br>classified | 20. LIMITATION OF<br>ABSTRACT<br>UU<br>ndard Form 298 (Rev. 2-89) |

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18

#### Approved for public release; distribution is unlimited

#### TRI-LEVEL OPTIMIZATION OF CRITICAL INFRASTRUCTURE RESILIENCE

John P. Babick Lieutenant, United States Navy B.S., University of California Riverside, 2002

Submitted in partial fulfillment of the requirements for the degree of

#### MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

#### NAVAL POSTGRADUATE SCHOOL September 2009

Author: John P. Babick

Approved by:

W. Matthew Carlyle Thesis Advisor

Gerald G. Brown Second Reader

Robert F. Dell Chairman, Department of Operations Research

#### ABSTRACT

We introduce a new way to perform network analysis on critical infrastructure that is superior to Risk Analysis and Management for Critical Asset Protection (RAMCAP), currently used by the Department of Homeland Security. We introduce the idea of a Design-Attack-Defend model that determines the optimal defense plan for a critical infrastructure network within a specified budget constraint. Design-Attack-Defend first determines worst-case attacks and then determines where to defend or build additional infrastructure that will maximize the surviving efficiency of the infrastructure after a malicious attack or natural disaster. Design-Attack-Defend ensures that the defense plan suggested is optimal to a range of attacks, out of all possible defense plans, within budget constraints. The Design-Attack-Defend will always give a solution at least as good as RAMCAP and as a simpler, bi-level Attacker-Defender model—and in many cases it can be expected to suggest a better plan for where to defend or build additional critical infrastructure. We demonstrate with a model of the Western U.S. railroad network.

# TABLE OF CONTENTS

| I.   | INTR    | ODUCTION                                      | 1 |
|------|---------|-----------------------------------------------|---|
|      | А.      | OPERATIONAL ENVIRONMENT                       |   |
|      | В.      | MODELS DISCUSSED                              | 4 |
| II.  |         | CKER-DEFENDER AND DESIGN-ATTACK-DEFEND MODELS |   |
|      | OF IN   | FRASTRUCTURE RESILIENCE                       | 7 |
|      | А.      | ATTACKER-DEFENDER MODEL                       | 7 |
|      |         | 1. Mathematical Formulation                   | 7 |
|      |         | 2. Planning Defenses Using AD                 | 3 |
|      | В.      | DESIGN-ATTACK-DEFEND MODEL1                   | D |
|      |         | 1. Mathematical Formulation1                  |   |
|      |         | 2. Decomposition Algorithm to Solve DAD12     | 2 |
|      |         | a. Subproblem (SUB)12                         |   |
|      |         | b. Master Problem (CREATE_DEFENSE)1.          |   |
|      |         | c. Algorithm for DESIGN-ATTACK-DEFEND1.       | 5 |
| III. | DESIG   | GN-ATTACK-DEFEND RESULTS1                     | 9 |
|      | А.      | CASE STUDY: WESTERN U.S. RAILROAD NETWORK19   | 9 |
|      | В.      | RAMCAP2                                       | D |
|      | C.      | ANALYSIS OF THE ATTACKER-DEFENDER ALGORITHM2  | 3 |
|      | D.      | ANALYSIS OF THE DESIGN-ATTACK-DEFEND MODEL2   | 5 |
|      | Е.      | COMPARISON OF DESIGN-ATTACK-DEFEND VERSES     |   |
|      |         | ATTACKER-DEFENDER AND RAMCAP2                 | 7 |
| IV.  | CONO    | CLUSIONS AND FOLLOW-UP RESEARCH2              | 9 |
| LIST | OF RE   | FERENCES                                      | 1 |
| APPI | ENDIX A | A: WESTERN U.S. RAILROAD NETWORK ARC LIST     | 3 |
| APPI | ENDIX I | B: WESTERN U.S. RAILROAD NETWORKDEMAND MATRIX | 9 |
| INIT | IAL DIS | STRIBUTION LIST                               | 1 |

# LIST OF FIGURES

| Figure 1. | Diagram of California Component of the Western U.S. Railroad Network  | 3   |
|-----------|-----------------------------------------------------------------------|-----|
| Figure 2. | RAMCAP-Percent Increase in Operating Costs of Network vs. Number of   |     |
|           | Defenses                                                              | .21 |
| Figure 3. | Percent Increase in Operating Costs of Network vs. Number of Defenses |     |
|           | Using AD                                                              | .24 |
| Figure 4. | Network Increase in Operating Costs vs. Number of Defenses            | .25 |
| Figure 5. | Comparison of Network Analysis Methods                                | .27 |

# LIST OF TABLES

| Table 1. | Sample California Commercial Rail Graph Adjacencies. | 19 |
|----------|------------------------------------------------------|----|
| Table 2. | California Commercial Rail Demand.                   | 20 |
| Table 3. | RAMCAP Defense Plan                                  | 22 |
| Table 4. | Defense Plans Determined by AD                       | 23 |
| Table 5. | •                                                    |    |
|          |                                                      |    |

# LIST OF ACRONYMS AND ABBREVIATIONS

| AD          | Attacker-Defender Model                               |
|-------------|-------------------------------------------------------|
| DAD         | Design-Attack-Defend Model                            |
| DHS         | Department of Homeland Security                       |
| GAMS        | Generic Algebraic Modeling Software                   |
| PRA         | Probabilistic Risk Analysis                           |
| NIAC        | National Infrastructure Advisory Council              |
| NIPP        | National Infrastructure Protection Plan               |
| RAMCAP Risk | Analysis and Management for Critical Asset Protection |
| TFE         | Twenty Foot Equivalent                                |
| TSA         | Transportation Security Administration                |
| TSI         | Transportation Security Incident                      |

#### **EXECUTIVE SUMMARY**

We introduce a Design-Attack-Defend (DAD) algorithm for critical infrastructure vulnerability analysis. We compare three approaches to network analysis: the Risk and Management for Critical Asset Protection (RAMCAP) method used by the Department of Homeland Security (DHS), a bi-level Attacker-Defender algorithm, and tri-level Design-Attack-Defend. We simulate an attack on the U.S. West coast commercial rail system and calculate the resilience of the rail system after the attack using each of these assessment methods. We show that RAMCAP does not yield an optimal defense plan within a given budget constraint and that the Design-Attack-Defend model is a much more effective model to use when performing network analysis to determine where to defend infrastructure. In addition, the Design-Attack-Defend model always gives a defense plan at least as good as that of bi-level Attacker-Defender, and as the number of attacks and defenses increases, tri-level Design-Attack-Defend yields a significantly better defense plan than either RAMCAP or Attacker-Defender.

Design-Attack-Defend (DAD) finds the optimal defense plan for a critical infrastructure network using integer linear programming. DAD first finds the optimal attack using a bi-level Attacker-Defender algorithm. DAD then defends against that attack. DAD continues to iterate between designing affordable infrastructure enhancements, and attacking the network with the enhancements, eventually leading to an optimal defense strategy: The defense plan that DAD yields is an optimal defense plan within given budget constraints.

Design-Attack-Defend gives better advice than RAMCAP because RAMCAP performs no analysis of network performance following an attack or natural disaster. RAMCAP bases it defense plan solely on the flow of goods prior to an attack or natural disaster. Design-Attack-Defend performs better than bi-level Attacker-Defender because Attacker-Defender only looks at the worst-case attack and defends against that attack for a given, fixed infrastructure.

## ACKNOWLEDGMENTS

To Professor Mathew Carlyle, for your exceptional guidance, patience, and expertise in directing this thesis. Your knowledge and expertise in Operations Research and Network Analysis were instrumental in this effort.

To Distinguished Professor Gerald Brown, for your guidance and knowledge of linear programming models.

### I. INTRODUCTION

Since 9/11, federal, state, and local governments have been concerned with protecting our critical national infrastructure. The Presidential National Strategy for Homeland Security says:

We cannot simply rely on defensive approaches and well-planned response and recovery measures. We will disrupt the enemy's plans and diminish the impact of future disasters through measures that enhance the resilience of our economy and critical infrastructure before an incident occurs. (White House, 2007)

Critical infrastructure includes "telecommunications, energy, banking and finance, transportation, water systems and emergency services" (PDD-63, 1998). The White House directive mandates that the federal government take steps to improve the resilience in our national infrastructure, where resilience is defined as, "The ability to reduce the magnitude and/or duration of disruptive events. It is the ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event" (NIAC, 2009).

Currently, Department of Homeland Security (DHS) guidance (NIPP, 2009) suggests the use of risk-based models for analyzing and remediating vulnerabilities in infrastructure systems, but such methods use simplistic assumptions that can result in ineffective defense plans. These models use Probabilistic Risk Analysis (PRA) that calculates risk by using the equation Risk=Vulnerability\*Threat\*Consequence, and then ranks the components of the critical infrastructure by their calculated risk. These models assume that reducing the individual risk of each component in the system brings down overall "system risk." This simple analysis ignores the interactions between components in complex systems, and has been shown to be inappropriate for developing resilient infrastructure (Cox, 2009).

This thesis provides a network analysis tool to suggest how limited funds should be used to protect, back up, or build additional components in an infrastructure network to increase resilience to malicious attacks or natural disasters. We calculate resilience as robustness of system operating cost to a range of attacks or to a worst-case attack or disaster. We show how to maximize resilience of infrastructure networks and compare our result with the RAMCAP method, which the Department of Homeland Security (DHS) currently requires.

We propose two ways to assessing and improve infrastructure resilience: an Attacker-Defender model and the Design-Attack-Defend model. With Attacker-Defender, we first model the operation of a rail network using a multi-commodity network flow optimization that minimizes shipping costs (and penalties for non-delivery), then wraps an attacker model around it that discovers attacks to maximize the resulting minimum cost of operating the surviving network. Design-Attack-Defend extends Attacker-Defender by adding defensive decisions that minimize the resulting worst-case attack costs.

This thesis uses the Western U.S. railroad network as a case study. Our model of network operation prescribes how the network should be managed in any state to deal with disruptions, delays, and incremental costs inflicted by a Transportation Security Incident (TSI) on the U.S. West Coast commercial rail industry. The Transportation Security Administration (TSA) defines a TSI as, "A security incident resulting in significant loss of life, environmental damage, transportation system disruption, or economic disruption in a particular area" (TSA, 2009). We offer an assessment tool that is more reliable than PRA in identifying vulnerabilities of networks and can help policy makers allocate money for defending or adding additional infrastructure to a network.

#### A. OPERATIONAL ENVIRONMENT

The Western U.S. rail network is a vital resource for moving large amounts of supplies, such as food, water, and fuel, to large population centers and for moving large amounts of heavy equipment for both military and disaster response organizations. In its national Rail and Infrastructure Study, the Department of Transportation (DOT) estimates that the demand for rail freight transportation, measured in tonnage, will nearly double by 2035 (DOT, 2008). It is important to maintain the ability to move supplies via the rail network in order to respond quickly to an unforeseen event. Figure 1 shows the location of the existing railroads in California, a subset of the Western U.S. railroad network.



Figure 1. Diagram of California Component of the Western U.S. Railroad Network

The current Western U.S. railroad network was not designed to withstand a malicious attack, and as a result, is a prime target for an adversary with limited means to cause significant damage. The existing studies of rail transportation requirements and possible expansions do not take into account the impact of a TSI (DOT, 2008). Rail is a key infrastructure because, for example, the majority of the nation's major seaports, which are responsible for 90 percent of the imports and exports to the U.S. at an annual value of \$800 billion, are connected to major distribution cities by railroads (BTS, 2008). In addition, the rail network acts as a vital resource to the military by moving large amounts of heavy equipment and ordinance to military bases inside the U.S. Our rail infrastructure is a prime example of a system designed with no regard to resilience, having just enough capacity to work under normal operating conditions, and extremely

vulnerable to even a moderate amount of disruption. This infrastructure was designed to convey freight at competitive costs, not to resist attacks by intelligent terrorists bent on maximizing operational disruption.

#### **B.** MODELS DISCUSSED

For rail systems, the RAMCAP calculated risk is proportional to the amount of flow on each arc (an arc is a length of rail connecting two cities) (Alion Science and Technology Corporation, 2009). RAMCAP recommends defending the arcs in decreasing order of rank until available funds for defenses are depleted. RAMCAP performs no analysis of network function after an attack, nor does it consider the influence of adding new components to the critical infrastructure.

Our proposed Attacker-Defender algorithm determines the locations of the worstcase attacks for various levels of attacker effort, and the resulting responding optimal flows over the damaged network. To determine the best defense using Attacker-Defender, we first allow the enemy one attack and then defend the arc that corresponds to the worst-case single attack by making that arc invulnerable. Once that arc is defended, we then run the Attacker-Defender algorithm on the new defended network to determine the operating cost of the network after attacking the defended network.

On the second run, the number of attacks is set to a constant value; for our analysis, we set the maximum number of attacks to five. We then allow the defender to increase the number of defenses, which means increasing the number of invulnerable arcs with the given number of attacks, held constant, and record the operating cost of the network after each new defense is added. Attacker-Defender does not consider building additional infrastructure, but instead only allows for hardening of existing infrastructure to render it essentially invulnerable.

Our Design-Attack-Defend model is a tri-level model that determines how best to design against a worst-case attack (as determined from the bi-level Attacker-Defender model) in response to that defense. We solve Design-Attack-Defend by determining a worst-case attack in the presence of no defense. We then choose a defense plan (that either protects existing infrastructure or adds new infrastructure) that is robust, i.e., that

minimizes the resulting damage that would result from any set of attacks seen so far. We repeat attacking and defending until the cost of operating the network after the worst-case attack and defense converge.

## II. ATTACKER-DEFENDER AND DESIGN-ATTACK-DEFEND MODELS OF INFRASTRUCTURE RESILIENCE

#### A. ATTACKER-DEFENDER MODEL

For any fixed number of attacks, our two-level Attacker-Defender (AD) model is formulated to determine the set of arcs to attack that maximizes the resulting minimum operating cost in the network (Brown et al., 2005).

#### **1.** Mathematical Formulation

Sets

| $n \in N$      | nodes in network (alias: <i>i</i> , <i>j</i> , <i>p</i> ) |
|----------------|-----------------------------------------------------------|
| $(i, j) \in A$ | arcs in network                                           |

Data

| $b_i^p$         | supply of commodity $p$ at city $i$              |
|-----------------|--------------------------------------------------|
| u <sub>ij</sub> | capacity on arc $(i, j) \in A$                   |
| $c_{ij}$        | cost on arc $(i, j) \in A$                       |
| $Q_{ij}$        | penalty cost on arc $(i, j) \in A$ , if attacked |
| maxAttacks      | max number of attacks allowed                    |

Decision Variables:

| $X_{pij}$ | flow on arc $(i, j)$ with commodity $p$ |
|-----------|-----------------------------------------|
| $Y_{ij}$  | = 1 if arc $(i, j)$ attacked            |

#### Formulation (AD):

$$\max_{Y} \min_{X} \sum_{p} \sum_{(i,j) \in A} (c_{ij} + q_{ij}Y_{ij}) X_{pij}$$
(AD1)

Subject to:

$$\sum_{j:(i,j)\in A} X_{pij} + \sum_{j:(j,i)\in A} X_{pji} = b_i^p \quad \forall i,p$$
 (AD2)

$$0 \le \sum_{p} X_{pij} \le u_{ij} \qquad \qquad \forall (i, j) \in A \qquad (AD3)$$

$$\sum_{(i,j)\in A} Y_{ij} \le maxAttacks \tag{AD4}$$

$$Y_{ij} \in \{0,1\} \tag{AD5}$$

#### **Discussion:**

The objective function, (AD1), calculates the cost of operating the network after an attack occurs. Constraint (AD2) ensures balance of flow to all supply and demand nodes, for each commodity. Constraint (AD3) ensures that the flow on arc (i, j) does not exceed the capacity of arc (i, j). Finally, constraint (AD4) limits the maximum number of attacks to the user-specified limit, and stipulations (AD5) require the attacks to be binary.

#### 2. Planning Defenses Using AD

We now provide a heuristic algorithm to illustrate how we can determine reasonable defense plans for a range of defense plan sizes, s, between one and eleven arcs, using AD in response to an anticipated attack. For the purpose of illustration, we will evaluate all defense plans against the optimal resulting five-arc attack. (We could evaluate each defense plan against a range of attack sizes, and we have done so, but we choose a five-arc attack to illustrate our results over the range of defense plans.) To determine a reasonable set of s arcs to defend, we first solve AD allowing the attacker sarcs to attack. We then defend the s arcs he chose to attack by setting their  $q_{ij}$  values to zero. In order to evaluate the effectiveness of this defense, and to compare it to defenses of other sizes, we then solve the modified AD model for the optimal resulting five-arc attack. For example, we first determine a one-arc defense by first running the Attacker-Defender algorithm with *maxAttacks* = 1. The Attacker-Defender algorithm will then report the worst-case single attack, which in our case is the arc from Los Angeles to Burbank. We then defend that arc by setting its attacked cost,  $q_{ii} = 0$ .

The second step is to attack the network with the newly-defended arc, allowing the enemy five attacks and recording the operating cost. This is done by setting *maxAttacks* = 5 and attacking the network (with the new defended arc having  $q_{ij} = 0$ ). This gives us our first data point for the Attacker-Defender model allowing the operator to defend one arc against five attacks.

To determine two defenses, we first run the Attacker-Defender algorithm allowing the enemy two attacks; that is, setting *maxAttacks* = 2. The resulting worst-case attack is Los Angeles to Burbank and Los Angeles to Glendale. We then defend both arcs by setting their respective  $q_{ij} = 0$ . Next, we attack the new defended network, with both  $q_{ij} = 0$ , by running the Attacker-Defender model with *maxAttacks* = 5, and record the operating cost of the network after two defenses against five attacks. We continue this increasing the number of allowed defenses until there was no attack on the network that would increase the operating cost. The algorithm used is below:

- 1. For s = 1 to Given a fixed number of defenses (*numDefenses*)
  - a. Solve AD for optimal attack by setting maxAttacks = s
  - b. Protect the arcs that correspond to the worst-case attack by setting  $q_{ii} = 0$
  - c. Solve AD for optimal attack with defended arcs  $q_{ij} = 0$  and *maxAttacks* = 5
  - d. Record the operating cost of the network with s defenses and 5 attacks
  - e. Set all  $q_{ii} = 1$
- 2. End For Loop

#### **B. DESIGN-ATTACK-DEFEND MODEL**

We formulate the problem of designing a rail network that is resilient to attack as a Design-Attack-Defend (DAD) model (Brown et al., 2006), where we now introduce decision variables V that explicitly represent the (defender's) choice of arcs to protect or build in the network. For each arc (or potential arc) in the network, we introduce a set of defense options, indexed by d, that are available for that arc. The set of defense options for a given arc will always include a special option,  $d_0$ , which represents the arc in its current state. This special defense option is the "do-nothing" option for this arc, and choosing this option for an arc will not consume any defense budget we might impose. Any other defense option for that arc will have new arc data associated with choosing it, such as a new operating cost, a new capacity, and a new penalty cost.

#### **1.** Mathematical Formulation

Sets:

| $n \in N$               | nodes in network (alias: <i>i</i> , <i>j</i> , <i>p</i> )       |
|-------------------------|-----------------------------------------------------------------|
| $(i, j) \in A$          | arcs in network                                                 |
| $d \in D$               | defense options                                                 |
| k                       | attack iteration index                                          |
| l                       | defense iteration index                                         |
| Data:                   |                                                                 |
| $b_i^{p}$               | demand for commodity $p$ at city $i$                            |
| $u^d_{ij}$              | capacity on arc $(i, j) \in A$ under defense plan d             |
| $c^d_{ij}$              | cost on arc $(i, j) \in A$ under defense plan d                 |
| $oldsymbol{q}_{ij}^{d}$ | penalty cost on arc $(i, j) \in A$ , if attacked, under defense |
| plan <i>d</i>           |                                                                 |
| maxAttacks              | maximum number of attacks allowed                               |
| maxDefenses             | maximum number of non- $d_0$ defense options allowed            |

**Decision Variables:** 

| $X^{d}_{pij}$ | flow with destination $p$ on arc $(i, j)$ under defense plan $d$ [ $p$ - |
|---------------|--------------------------------------------------------------------------|
| units]        |                                                                          |
| $Y_{ij}$      | = 1 if arc $(i, j)$ attacked [binary]                                    |
| $V^{d}_{ij}$  | = 1 if defense option $d$ is chosen for arc $(i, j)$ [binary]            |

Formulation:

$$\min_{V} \max_{Y} \min_{X} \sum_{p,d} \sum_{(i,j)\in A} (c_{ij}^{d} + q_{ij}^{d} Y_{ij}) X_{pij}^{d}$$
(DAD1)

s.t. 
$$\sum_{d} \left( \sum_{(i,j)} X_{pij}^{d} - \sum_{(j,i)} X_{pji}^{d} \right) = b_i^p \quad \forall i, p \qquad (DAD2)$$

$$\sum_{d} V_{ij}^{d} = 1 \qquad \qquad \forall (i, j) \in A \qquad (DAD3)$$

$$0 \le \sum_{p} X_{pij}^{d} \le u_{ij}^{d} V_{ij}^{d} \qquad \forall (i, j) \in A, d \qquad (DAD4)$$

$$\sum_{(i,j)\in A} Y_{ij} \leq maxAttacks$$
 (DAD5)

$$\sum_{\substack{d \neq d_0, (i,j) \in A}} V_{ij}^d \le maxDefenses \tag{DAD6}$$

$$V_{ij}^{a} \in \{0,1\} \qquad \forall (i,j) \in A, d$$

$$Y_{ij} \in \{0,1\} \qquad \forall (i,j) \in A$$

$$X_{pij}^{d} \ge 0 \qquad \forall p \in N, (i,j) \in A, d$$

The objective function, (DAD1), calculates the operating cost of the network after an attack occurs. Constraint (DAD2) ensures balance of flow to all supply and demand nodes, for each commodity. Constraint (DAD3) requires that exactly one defense option be chosen for each component in the network. Of course, each arc has the "do-nothing" defense option,  $d_0$ , available; choosing this option for each arc in the network is a feasible, but probably sub-optimal, defense plan. Constraint (DAD4) ensures that the flow on arc (i,j) does not exceed the capacity of arc (i,j) for the chosen defense plan. Constraint (DAD5) limits the maximum number of attacks to the user specified limit. Finally, constraint (DAD6) forces the model to defend arcs within the available budget constraints (represented here as a simple cardinality constraint).

Design-Attack-Defend determines the best place to protect existing infrastructure or build additional infrastructure that will minimize the cost of operating a network after a worst-case attack. Unfortunately, Design-Attack-Defend is not a linear program and cannot be solved using linear programming techniques. Therefore, we separate the model into a master problem that determines defenses and arc flows, and a subproblem that determines optimal attacks against any given (i.e., fixed) defense. We use a Benders Decomposition algorithm to solve the model.

#### 2. Decomposition Algorithm to Solve DAD

Our algorithm for solving DAD considers a sequence of defense plans, solves AD to evaluate each of those defense plans, and keeps a record of every attack seen so far. It then determines a new, improved defense plan that is optimal against all attacks seen up to that point. The algorithm terminates when the AD model does not determine a new, effective attack, or when it cannot find any improvement to the best defense plan found so far.

At each Benders iteration, for any fixed defense plan, the subproblem (SUB) evaluates the worst-case attack plan for that defense by solving AD using the arc data for the defense options chosen for each arc.

#### a. Subproblem (SUB)

Given any fixed defense plan  $\overline{V}_{ij}^{d}$ , we define our subproblem to be AD with modified data.

Calculated Data:

$$\overline{q}_{ij} \equiv \sum_{d} q_{ij}^{d} \overline{V}_{ij}^{d}$$
$$\overline{c}_{ij} \equiv \sum_{d} c_{ij}^{d} \overline{V}_{ij}^{d}$$
$$\overline{u}_{ij} \equiv \sum_{d} u_{ij}^{d} \overline{V}_{ij}^{d}$$

Formulation SUB:

$$\max_{Y} \min_{X} \sum_{p} \sum_{(i,j)\in A} (\overline{c}_{ij} + \overline{q}_{ij}Y_{ij}) X_{pij}$$
(SP1)

Subject to:

$$\sum_{j:(i,j)\in A} X_{pij} + \sum_{j:(j,i)\in A} X_{pji} = b_i^p \quad \forall i, p$$
(SP2)

$$0 \le \sum_{p} X_{pij} \le \overline{u}_{ij} \qquad \forall (i, j) \in A \qquad (SP3)$$

$$\sum_{(i,j)\in A} Y_{ij} \le maxAttacks \tag{SP4}$$

$$Y_{ij} \in \{0,1\} \tag{SP5}$$

#### Discussion:

SUB determines the optimal attack for the current, fixed defense plan. It is a modified version of AD, using cost, capacity, and attack cost data as determined by that defense plan. We solve the model above the same way as AD. Once SUB finds the optimal attack, that attack is added to list of attacks seen so far and the MASTER problem is called to determine a new optimal defense plan.

#### b. Master Problem (CREATE\_DEFENSE)

At iteration k, given the finite list of k attack plans found so far by SUB,  $\overline{Y}_{ij}^k$ , the master problem, CREATE\_DEFENSE, determines the optimal defense that minimizes the resulting operating cost under the worst of these attacks. Therefore, each attack provides a lower bound on the value of the defense plan chosen. Because the flows are chosen *after* the attacker chooses an attack, each of the k attacks has its own set of arc flow variables to model the optimal response. The master problem follows.

| Sets:                                              |                                                             |
|----------------------------------------------------|-------------------------------------------------------------|
| $n \in N$                                          | nodes in network (alias: <i>i</i> , <i>j</i> , <i>p</i> )   |
| $(i, j) \in A$                                     | arcs in network                                             |
| $d \in D$                                          | defense options                                             |
| k                                                  | attack iteration index                                      |
| l                                                  | defense iteration index                                     |
| Data:                                              |                                                             |
| $b_i^{p}$                                          | demand for commodity p at city i                            |
| $u^d_{ij}$                                         | capacity on arc $(i, j) \in A$ under defense plan d         |
| $c^d_{ij}$                                         | cost on arc $(i, j) \in A$ under defense plan d             |
| $q^{\scriptscriptstyle d}_{\scriptscriptstyle ij}$ | penalty cost on arc $(i, j) \in A$ , if attacked, under     |
| defense plan d                                     |                                                             |
| maxDefenses                                        | maximum number of non- $d_0$ defense options                |
| allowed                                            |                                                             |
| Decision Variables:                                |                                                             |
| $X\!K^{dk}_{pij}$                                  | flow with destination $p$ on arc $(i, j)$ under defense $d$ |
| after attack k                                     |                                                             |
| $\overline{Y}_{ij}$                                | = 1 if arc $(i, j)$ attacked [binary]                       |
| $V^{d}_{ij}$                                       | = 1 if defense option $d$ is chosen for arc $(i, j)$        |

[binary]

Formulation CREATE DEFENSE:  $\begin{array}{l} \min_{V} Z_{DEF} \\ \text{Subject to:} \\ Z_{DEF} \geq \sum \sum \left( c_{ii}^{d} + q_{ii}^{d} \overrightarrow{Y}_{ij}^{k} \right) XK_{pij}^{dk}
\end{array}$ 

$$Z_{DEF} \ge \sum_{p,d} \sum_{(i,j)} (c_{ij}^d + q_{ij}^d Y_{ij}^{\hat{k}}) X K_{pij}^{dk} \qquad (\text{CD1})$$

$$\sum_{d} \left( \sum_{j:(i,j)\in A} XK_{pij}^{dk} - \sum_{j:(j,i)\in A} XK_{pji}^{dk} \right) = b_i^p \quad \forall p, i, k$$
(CD2)

$$\sum_{d} V_{ij}^{d} = 1 \qquad \qquad \forall i, j \in A \qquad (\text{CD3})$$

$$0 \le \sum_{p} XK_{pij}^{dk} \le u_{ij}^{d}V_{ij}^{d} \qquad \forall d, k, i, j \qquad (CD4)$$
$$\sum_{d, (i, j) \in A} V_{ij}^{d} \le maxDefenses \qquad (CD5)$$

**Discussion:** 

The objective function of the CREATE\_DEFENSE model minimizes the cost of operating the network. The Constraint (CD1) bounds the cost of operating the network with the defense plan using the  $k^{th}$  attack found by SUB. Constraint (CD2) maintains balance of flow for each node, for each commodity, under each attack k, and ensures the network meets all demand. Constraint (CD3) forces the model to choose only one defense plan for each component on the network. Constraint (CD4) ensures that the new flow on the new network does not exceed the capacity of the arc for the given defense plan, and for each attack k. Constraint (CD5) ensures the total cost of the additional infrastructure does not exceed the available funds, again, represented here as a simple cardinality constraint.

#### c. Algorithm for DESIGN-ATTACK-DEFEND

Design-Attack-Defend solves CREATE\_DEFENSE after every new attack found by SUB. After determining a new defense plan by solving CREATE\_DEFENSE, our decomposition then solves the subproblem (SUB) to find the optimal attack against the new defense plan, and the optimal response to that attack given the additional CREATE\_DEFENSE. It alternates infrastructure created by between CREATE\_DEFENSE and SUB thereby creating new infrastructure and then attacking the new network until the costs of attacking and defending the network converge, and we have found the optimal placement of additional infrastructure that will minimize the cost of operating the network for all possible attacks. Below is a list of the parameters used by the DAD model, and our solution procedure.

Variables:

| v_ub                    | upper bound on current defense plan            |
|-------------------------|------------------------------------------------|
| v_lb                    | lower bound on current defense plan            |
| max_iter                | maximum iterations                             |
| defense_tol             | acceptable optimality gap for solutions to DAD |
| attack_tol              | acceptable relative optimality gap for SUB     |
| $\overline{Y}_{ij}^{k}$ | fixed attack at iteration k                    |
| $\overline{V}^{d}_{ij}$ | fixed defense plan                             |

1. Pseudo code for the Design-Attack-Defend Algorithm:

 $\overline{Y}_{ii}^{k} = 0 \ \forall (i, j) \in A, \forall k$  $\overline{V}_{ii}^{d} = 0 \ \forall (i, j) \in A, \forall d$  $v_ub = INF$  $v_lb = -INF$ k = 1While  $(v_ub - v_lb) > defense_tol^*v_lb$  and  $k < max_iter$ Solve SUB to obtain *attack tol*-optimal solution  $\overline{Y}$  with value Z and upper bound Z\_UB If  $v_ub > Z_UB$ :  $v_u b = Z_U B$  $v_{ii}^{d^*} = \overline{V}_{ii}^d$  for all  $(i, j) \in A$ , for all dSet  $\overline{y}_{ii}^k = \overline{Y}_{ii}$  for all  $(i, j) \in A$ Solve CREATE\_DEFENSE to obtain optimal solution  $\overline{V}$  with value  $Z_{Def}$ If  $Z_{Def} > v_l b$  $v_lb = Z_{Def}$ k=k+1End While

Design-Attack-Defend offers an optimal or near-optimal (for difficult instances) solution for determining where to build additional critical infrastructure. As is shown in the analysis below, it is not possible for Attacker-Defender or RAMCAP to give a solution that is better than the Design-Attack-Defend algorithm. It is important to note that if there is no attacker, that is *numAttacks* = 0, then the Design-Attack-Defend model reduces to a classis multi-commodity network design problem (Balakrishnam et al., 1997). The complete GAMS code (GAMS, 2009) is available from the author or his thesis advisors.
THIS PAGE INTENTIONALLY LEFT BLANK

#### III. DESIGN-ATTACK-DEFEND RESULTS

#### A. CASE STUDY: WESTERN U.S. RAILROAD NETWORK

Appendix A provides the graph underlying the Western U.S. railroad network; there are 96 nodes, representing stations along a rail line or the junction of more than one rail line, and 225 arcs, representing segments of track connecting the nodes. Table 1 is a sample of the data in Appendix A. Every node appears at least once in either the "Tail" column or the "Head" column. The "Tail" column is the city from which goods are leaving and the "Head" column is the adjacent city on the network where the goods are going. Every arc in our graph also has an associated cost, capacity, and additional cost if attacked. If no defensive preparations have been made for an arc, we say that the defender chose the "do-nothing" defense option for that arc, and then its per-unit cost for traffic is simply one dollar per pound. Likewise, its capacity is 2,000,000 pounds per day, and, if it is attacked, the additional penalty cost on shipping goods across that arc is \$101 per pound. If the defender chooses to protect the arc, then attacks have no effect, and so the additional penalty for goods shipped across such an arc is zero. In more complex scenarios, several defense options can be defined for each arc, each with its own cost, capacity, and attack penalty.

| Tail               | Head             |
|--------------------|------------------|
| Anaheim            | Irvine           |
| Anaheim            | Norwalk          |
| Anaheim            | Santa_Ana        |
| Anaheim            | Fullerton        |
| Antioch_Pittsburgh | Martinez         |
| Antioch_Pittsburgh | Stockton         |
| Bakersfield        | Palmdale_Airport |

 Table 1.
 Sample California Commercial Rail Graph Adjacencies.

Appendix B shows the complete demand matrix for the Western U.S. railroad network. Each column in Appendix B shows demand node, and each row is the supply node. Table 2 provides an excerpt of this demand data. Each entry is notional data

estimated based on the populations of the respective cities, and is proportional to the product of those two populations (U.S. Census, 2000).

|                    | Albany | Anaheim | Antioch-Pit | Bakersfield | Barstow | Bellingham | Berkeley |
|--------------------|--------|---------|-------------|-------------|---------|------------|----------|
| Albany             | 12130  | -5      | -18         | -7          | -78     | -694       | -16      |
| Anaheim            | -1995  | 243851  | -362        | -133        | -1553   | -13840     | -319     |
| Antioch-Pittsburgh | -551   | -28     | 67230       | -37         | -429    | -3820      | -88      |
| Bakersfield        | -1501  | -75     | -273        | 183524      | -1169   | -10418     | -240     |
| Barstow            | -128   | -6      | -23         | -9          | 15607   | -891       | -21      |

 Table 2.
 California Commercial Rail Demand.

For example, Albany has 12,130 pounds of goods to ship. From Albany, Anaheim has a demand of 5 pounds, Antioch-Pit has a demand of 18 pounds, and Bakersfield has a demand of 7 pounds.

#### B. RAMCAP

RAMCAP is a probabilistic risk analysis method that calculates risk using the equation *Risk=Vulnerability\*Threat\*Consequence*. RAMCAP ranks arcs by calculated risk. In the absence of any actionable intelligence regarding threat to individual components in our infrastructure, the standard approach in RAMCAP is to assume all threats are equal, and so, without loss of generality, "Threat"=1. We assume that any attack against undefended rail segments will be successful, and, therefore, that "Vulnerability"=1 as well. Finally, we must choose a single, scalar number for each arc to represent the consequence of losing it. The only reasonable consequence value we can calculate is the actual flow on each arc in the network when no components have been attacked, and so "Consequence"=flow on each arc. For rail systems, then, the risk of an arc is proportional to the flow on that arc; therefore, the arc with the highest flow is the most critical (Alion Science and Technology Corporation, 2009). The RAMCAP user then sorts arcs by amount of flow. RAMCAP suggests defending the arcs in decreasing order of flow until available resources run out. RAMCAP assumes that by protecting individual arcs in the network, the overall performance increases.

To determine the effectiveness of RAMCAP, we first evaluate the network performance after an attack, then we compare with performance before an attack. In order to determine the effectiveness of RAMCAP, we rank all of the components using the risk measure above, and then, for each number of defenses *numDef*, we make the top *numDef* components from that ranked list invulnerable, and evaluate that defense plan by running the Attacker-Defender model on that modified network. Figure 2 shows how network improves as the number of defenses increases using the RAMCAP defense plan. Notice that RAMCAP defense, allowing the enemy five attacks, has an 11.67% increase in cost after 18 defenses. The reason is, RAMCAP does not anticipate the best place for an attack and only adds defenses based on current flow before an attack. RAMCAP's inability to anticipate the enemy's worst attack for a given defense plan allows the enemy to find a weakness in the defense by analyzing possible flow after an attack, and to attack arcs in such a way as to minimize capability after an attack.



Figure 2. RAMCAP–Percent Increase in Operating Costs of Network vs. Number of Defenses

The optimal RAMCAP defense plan is in Table 3. We analyze the "optimal" (i.e., greedy, myopic heuristic) RAMCAP defense plan by setting the defenses in accordance with the optimal RAMCAP defense plan and then running the bi-level Attacker-Defender

model shown above to determine the percent degradation after five attacks versus the number of indicated defenses. Table 3 shows the RAMCAP defense plan.

| Number of Defenses | Head         | Tail         |
|--------------------|--------------|--------------|
| 1                  | Sacramento   | Stockton     |
| 2                  | Oroville     | Marysville   |
| 3                  | Marysville   | Sacramento   |
| 4                  | Chico        | Oroville     |
| 5                  | Red Bluff    | Chico        |
| 6                  | Dunsmuir     | Redding      |
| 7                  | Redding      | Red Bluff    |
| 8                  | Klamath Fall | Dunsmuir     |
| 9                  | Stockton     | Modesto      |
| 10                 | Chemult      | Klamath Fall |
| 11                 | Merced       | Fresno       |
| 12                 | Eugene       | Chemult      |
| 13                 | Modesto      | Merced       |
| 14                 | Albany       | Eugene       |
| 15                 | Fresno       | Bakersfield  |
| 16                 | Salem        | Albany       |
| 17                 | Portland     | Salem        |
| 18                 | Bakersfield  | Glendale     |

Table 3. RAMCAP Defense Plan

The first column is the number of defenses; the head and tail column correspond to the head and tail of the arc that is added to the RAMCAP defense plan as the number of allowed defenses increases.

### C. ANALYSIS OF THE ATTACKER-DEFENDER ALGORITHM

| 1-6 Defenses        |                 | 10 I |
|---------------------|-----------------|------|
| Los Angeles         | Burbank         | Los  |
| Los Angeles         | Glendale        | Los  |
| Pomona              | Los Angeles     | Nor  |
| Red Bluff           | Chico           | Oak  |
| San Jose            | Berkeley        | Oro  |
| Richmond            | Martinez        | San  |
| 7 Defenses          |                 | San  |
| Los Angeles         | Glendale        | San  |
| Pomona              | Los Angeles     | Sylı |
| Red Bluff           | Chico           | Tah  |
| Richmond            | Martinez        | 11 1 |
| Santa Clarita       | Los Angeles     | Gle  |
| Sylmar              | Burbank         | Los  |
| Union City          | Oakland Airport | Nor  |
| 8 Defenses          |                 | Oak  |
| Los Angeles         | Burbank         | Oro  |
| Los Angeles         | Glendale        | Pon  |
| Redding             | Dunsmuir        | Ric  |
| Richmond            | Berkeley        | San  |
| San Bernardino      | Pomona          | San  |
| Santa Clarita       | Los Angeles     | Sylı |
| Tahoe               | Roseville       | Tah  |
| Union City          | Oakland Airport |      |
| 9 Defenses          |                 |      |
| Los Angeles         | Glendale        |      |
| Oroville            | Marysville      |      |
| Richmond            | Martinez        |      |
| Riverside           | Oakland Airport |      |
| San Bernardino      | Pomona          |      |
| San Juan Capistrano | Irvine          |      |
| Santa Clarita       | Los Angeles     |      |
| Sylmar              | Burbank         |      |
| Union City          | Oakland Airport |      |

The Defense plan for the bi-level Attacker-Defender model is shown below:

| 10 Defenses         | 1            |
|---------------------|--------------|
| Los Angeles         | Glendale     |
| Los Angeles         | Industry     |
| Norwalk             | Industry     |
| Oakland Airport     | Industry     |
| Oroville            | Marysville   |
| San Bernardino      | Pomona       |
| San Jose            | Berkeley     |
| San Jose            | Redwood City |
| Sylmar              | Burbank      |
| Tahoe               | Roseville    |
| 11 Defenses         |              |
| Glendale            | Bakersfield  |
| Los Angeles         | Industry     |
| Norwalk             | Industry     |
| Oakland Airport     | Industry     |
| Oroville            | Marysville   |
| Pomona              | Los Angeles  |
| Richmond            | Berkeley     |
| San Juan Capistrano | Irvine       |
| San Luis Obispo     | Salinas      |
| Sylmar              | Burbank      |
| Tahoe               | Roseville    |

Table 4.Defense Plans Determined by AD

The six-arc defense suggested by AD includes the first six arcs. *Note that the seven-arc defense does not contain the six-arc defense plan suggested by AD, and that, therefore, defense plans are not necessarily monotonic.* That is, there is no optimal ranking of defenses, and forcing such ranking, as RAMCAP would, is an unnecessary restriction of defense efforts that can lead to degraded results.

The columns correspond to the head and tail of the defended arc. As the number of defenses increases, the arcs that are defended change in accordance with the Attacker-Defender algorithm, and do so in a non-monotonic fashion. For example, the seven-arc defense suggested by AD does not include the six-arc defense as a proper subset. This means that there is no strict ranking of components to defend. AD suggests *sets* of components to defend, and those sets depend on the number of components to be defended.



Figure 3. Percent Increase in Operating Costs of Network vs. Number of Defenses Using AD

Figure 3 shows how the optimal operating cost of the attacked network decreases as the number of defenses increase. The graph reveals a tremendous benefit to be gained by even one defense. Successive defenses are less effective, but still improve the resilience of the network. The graph shows that after eleven defenses, there is no additional gain from additional infrastructure because the attacker has no effective fivearc attack against the optimal eleven-arc defense. The system is as robust as we need to make it for this attack scenario.

#### D. ANALYSIS OF THE DESIGN-ATTACK-DEFEND MODEL

Figure 4 shows the percent of degradation to the Western U.S. railroad network versus the number of allowed defenses using Design-Attack-Defend. The analysis below allows the enemy five attacks. Notice that the percent degradation versus the number of defenses decreases more rapidly than the defense plans created by RAMCAP and Attacker-Defender.



Figure 4. Network Increase in Operating Costs vs. Number of Defenses

As can be seen in Figure 4, the first defense improves the cost of moving goods on the Western U.S. railroad network by 10 percent. After three defenses, the rail network is only degraded 1.7% by five attacks. At seven defenses, there is no attack plan that consists of five attacks that can degrade flow on the rail network. Design-Attack-Defend is able to determine where the worst-case five-arc attack occurs, and ensure that goods can be shipped around all possible attacks in order to meet supply and demand. Table 5 shows how the defense plan responding to five attacks changes as the number of affordable defenses increases. Note that, again, as the number of affordable defenses increases, the arcs defended do not appear in a priority order. That is, *sets* of arcs are chosen for defense, rather than individual arcs in any particular myopic order. This is more evidence that a strict ranking of defenses is a restriction of optimal behavior, and a restriction of unknown severity to the defender.

| 1 Defense:  |             | 6 Defenses: |                 |
|-------------|-------------|-------------|-----------------|
| Industry    | Los Angeles | Bakersfield | Glendale        |
| 2 Defenses: |             | Berkeley    | San Jose        |
| Bakersfield | Glendale    | Burbank     | Los Angeles     |
| Marysville  | Oroville    | Industry    | Los Angeles     |
| 3 Defenses: |             | Industry    | Norwalk         |
| Industry    | Oakland     | Martinez    | Richmond        |
| Martinez    | Suisun Fair | 7 Defenses: |                 |
| Marysville  | Oroville    | Bakersfield | Glendale        |
| 4 Defenses: |             | Berkeley    | San Jose        |
| Berkeley    | San Jose    | Burbank     | Los Angeles     |
| Chico       | Red Bluff   | Industry    | Los Angeles     |
| Industry    | Los Angeles | Industry    | Norwalk         |
| Marysville  | Oroville    | Industry    | Oakland Airport |
| 5 Defenses: |             | Marysville  | Oroville        |
| Marysville  | Oroville    | 8 Defenses: |                 |
| Industry    | Los Angeles | Bakersfield | Glendale        |
| Industry    | Norwalk     | Burbank     | Sylmar          |
| Industry    | Oakland     | Industry    | Los Angeles     |
| Roseville   | Tahoe       | Industry    | Norwalk         |
|             |             | Industry    | Oakland Airport |
|             |             | Los Angeles | Pomona          |
|             |             | Martinez    | Richmond        |
|             |             | Marysville  | Oroville        |

Table 5.DAD Defense Plan

#### E. COMPARISON OF DESIGN-ATTACK-DEFEND VERSES ATTACKER-DEFENDER AND RAMCAP

Figure 5 compares the three network analysis methods. We base the analysis on allowing the enemy five attacks. The graph below shows the operating cost of the network after five attacks versus the number of defenses allowed using the indicated network analysis algorithms.



Figure 5. Comparison of Network Analysis Methods

As can be seen in Figure 5, Attacker-Defender outperforms RAMCAP. Attacker-Defender quickly determines the worst-case attack scenario and defends against it. As soon as Attacker-Defender is able to defend against all attacks, the amount of degradation to the network goes to zero. RAMCAP never yields a good defense, except when there is an unlimited defense budget. RAMCAP, and other PRA techniques, cannot consider adding additional infrastructure or redundant capacity, because they do not model infrastructure system function; they only evaluate individual components as they are currently configured. Design-Attack-Defend considers new infrastructure or additional capacity for additional infrastructure with minimal additional data. For this study, we did not use the additional infrastructure feature of Design-Attack-Defend, and chose to only make existing arcs invulnerable to offer a more direct comparison with RAMCAP. If we were to consider additional infrastructure, Design-Attack-Defend would produce a solution at least as good as the defend-only option that we have chosen for our comparison. Therefore, Design-Attack-Defend can only perform better as we increase the number of additional components it can consider to reinforce or enhance the network.

For this problem, we have 96 nodes and 215 arcs, for the Attacker-Defender models there are 4,738 equations and 22,169 single variables for the cases where the attacker is given five attacks and the defender is allowed five defenses. For the Design-Attack-Defend model, there are 6,401 equations and 33,667 single variables for the five-attack and five-defense scenario.

Figure 5 also shows that the Design-Attack-Defend model provides significant improvement over the bi-level Attacker-Defender model for three to six defenses, and a significant improvement over RAMCAP for any number of defenses. If you can only afford to protect or add a few components, then Design-Attack-Defend is evidently the only reasonable way to determine how to create resilient infrastructure.

#### IV. CONCLUSIONS AND FOLLOW-UP RESEARCH

Risk Analysis and Management for Critical Asset Protection (RAMCAP) does not model the operation of the infrastructure being analyzed (in fact, it assumes that any notion of infrastructure "function" is summarized in the scalar value representing the consequence of losing an individual component). RAMCAP does not consider interactions among components in a complex critical infrastructure system, and it does not consider the worst-case possible attack an adversary could inflict against that infrastructure. Additionally, RAMCAP does not perform any analysis on the resilience of the new network after protecting existing infrastructure, and does not even consider the possibility of building additional infrastructure to enhance resilience.

Design-Attack-Defend is superior to RAMCAP and mere Attack-Defender models. Planning defenses based on Design-Attack-Defend will ensure maximum robustness to an attack, and will ensure the optimal flow of goods after a malicious attack or, as a side benefit, a natural disaster. The reason Design-Attack-Defend renders better advice than RAMCAP, is that RAMCAP simply defends the arcs with the highest amount of flow on them and does not analyze how a network is used after a malicious attack or natural disaster. Design-Attack-Defend performs better than the bi-level Attacker-Defender model because the Attacker-Defender model only looks at where the optimal attack will occur and does not consider how the optimal attacks will change in response to any given defense plan. The decision maker using the Attacker-Defender model can only defend the arcs that will cause the most damage when an attack occurs, and cannot perform any analysis on how to flow goods around an attack. Only Design-Attack-Defend shows how to flow goods around an attack and performs analysis on how the network is operated after an attack. For the Western U.S. railroad network, as presented here, we find that Design-Attack-Defend is clearly the most effective model to use when performing network analysis to determine where to defend infrastructure, but that the Attacker-Defender model is still better than PRA-based methods such as RAMCAP.

THIS PAGE INTENTIONALLY LEFT BLANK

### LIST OF REFERENCES

- Alion Science and Technology Corporation. "RAMCAP user's guide," http://www.ramcapplus.com/index.htm (accessed August 30, 2009).
- Balakrishnan, A., T.L. Magnanti, & P. Mirchandani. (1997). Network design, in M. Dell'Amico, F. Maffioli, and S. Martello (eds.), *Annotated Bibliographies in Combinatorial Optimization*. Wiley, New York, pp. 311–334.
- Brown, G., M. Carlyle, J. Salmeron, & K. Wood. (2005). Analyzing the vulnerability of critical infrastructure to attack, and planning defenses, in *Tutorials in Operations Research: Emerging Theory, Methods, and Applications,* H. Greenberg and J. Smith (eds.), Institute for Operations Research and Management Science, Hanover, MD.
- Brown, G., M. Carlyle, J. Salmeron, & K. Wood. (2006). Defending critical infrastructure, *Interfaces*, 36(6), pp. 530–544.
- BTS (Burerau of Transportation Statistics, Department of Transportation). *America's Container Ports: Delivering the Goods.* Burerau of Transportation Statistics, Department of Transportation, 2008.
- Cox, Louis Anthony. (2009). *Risk Analysis of Complex and Uncertain Systems*. New York: Springer U.S.
- DOT (Department of Transportation). (2008). *National Rail Freight Infastructure and Investment Study*. Systematics: Cambridge.
- GAMS Corporation. (2009). "GAMS user's guide," http://www.gams.com (accessed September 23, 2009).
- NIAC (National Infrastructure Advisory Council). (2009). The Critical Infrastructure Resilience Study.
- NIPP (National Infrastrucutre Protection Plan, Department of Homeland Security). (2009). "National Infrastrucutre Protection Plan."
- PDD-63. (1998). Presidential Decision Directive-63. Presidential Decision Directive.
- Schrijver, Alexander. (2001). On the history of the transportation and maximum flow problems. *Mathematical Programming*, *91*(3), pp. 437–445.

- TSA (Transportation Security Administration), (2009). *Interface Requirements* Specification (IRS) (Version 1.5). Transportation Security Administration.
- United States Census Bureau. (2000). *Census 2000*, http://www.census.gov/main/www/access.html (accessed September 23, 2009).
- White House. (2007). *Presidential National Strategy for Homeland Security*. White House. Government Printing Office, Washington D.C.

# APPENDIX A: WESTERN U.S. RAILROAD NETWORK ARC LIST

| Tail               | Head             |
|--------------------|------------------|
| Anaheim            | Irvine           |
| Anaheim            | Norwalk          |
| Anaheim            | Santa_Ana        |
| Anaheim            | Fullerton        |
| Antioch_Pittsburgh | Martinez         |
| Antioch_Pittsburgh | Stockton         |
| Bakersfield        | Palmdale_Airport |
| Bakersfield        | Fresno           |
| Bakersfield        | Wasco            |
| Bakersfield        | Glendale         |
| Barstow            | Needles          |
| Barstow            | Victorville      |
| Berkeley           | Richmond         |
| Berkeley           | San_Jose         |
| Burbank            | Los_Angeles      |
| Burbank            | Sylmar           |
| Burbank_Airport    | Santa_Clarita    |
| Burbank_Airport    | Van_Nuys         |
| Chico              | Oroville         |
| Chico              | Red_Bluff        |
| Colfax             | Truckee          |
| Colfax             | Tahoe            |
| Corcoran           | Hanford          |
| Corcoran           | Wasco            |
| Davis              | Suisun_Fairfield |
| Davis              | Roseville        |
| Davis              | Sacramento       |
| Dunsmuir           | Redding          |
| Escondido          | University_City  |
| Escondido          | Murrieta         |
| Fresno             | Bakersfield      |
| Fresno             | Merced           |
| Fresno             | Madera           |
| Fresno             | Hanford          |
| Fullerton          | Anaheim          |
| Fullerton          | Los_Angeles      |
| Gilroy             | Salinas          |
| Ginoy              |                  |
| Gilroy             | San_Jose         |

| Glendale             | Los_Angeles         |
|----------------------|---------------------|
| Hanford              | Fresno              |
| Hanford              | Corcoran            |
| Indio                | Palm_Springs        |
| Industry             | Los_Angeles         |
| Industry             | Norwalk             |
| Industry             | Oakland_Airport     |
| Irvine               | Anaheim             |
| Irvine               | San_Juan_Capistrano |
| Irvine               | Santa_Ana           |
| Los_Angeles          | Norwalk             |
| Los_Angeles          | Industry            |
| Los_Angeles          | Burbank             |
| Los_Angeles          | Fullerton           |
| Los_Angeles          | Glendale            |
| Los_Angeles          | Pasadena            |
| Los_Angeles          | Pomona              |
| Los_Angeles          | Santa_Clarita       |
| Madera               | Merced              |
| Madera               | Fresno              |
| Martinez             | Richmond            |
| Martinez             | Suisun_Fairfield    |
| Martinez             | Antioch_Pittsburgh  |
| Marysville           | Roseville           |
| Marysville           | Oroville            |
| Marysville           | Sacramento          |
| Merced               | Fresno              |
| Merced               | Modesto             |
| Merced               | Turlock_Denair      |
| Merced               | Madera              |
| Modesto              | Merced              |
| Modesto              | Stockton            |
| Moorpark_Simi_Valley | Van_Nuys            |
| Moorpark_Simi_Valley | Santa_Barbra        |
| Murrieta             | Escondido           |
| Murrieta             | Riverside           |
| Needles              | Barstow             |
| Norwalk              | Anaheim             |
| Norwalk              | Industry            |
| Norwalk              | Los_Angeles         |
|                      |                     |

| Oakland          | Oakland_Airport  |
|------------------|------------------|
| Oakland_Airport  | Union_City       |
| Oakland_Airport  | Oakland          |
| Oakland_Airport  | Riverside        |
| Oakland_Airport  | Industry         |
| Oceanside        | Solana Beach     |
| Oceanside        |                  |
| Oroville         | Marysville       |
| Oroville         | Chico            |
| Palm_Springs     | Indio            |
| Palm_Springs     | San_Bernadido    |
| Palmdale_Airport | Sylmar           |
| Palmdale_Airport | Bakersfield      |
| Pasadena         | Los_Angeles      |
| Pomona           | San_Bernadido    |
| Pomona           | Los_Angeles      |
| Red_Bluff        | Chico            |
| Red_Bluff        | Redding          |
| Redding          | Red_Bluff        |
| Redding          | Dunsmuir         |
| Redwood_City     | San_Jose         |
| Redwood_City     | SFO_Airport      |
| Richmond         | Berkeley         |
| Richmond         | Martinez         |
| Riverbank        | Stockton         |
| Riverbank        | Turlock_Denair   |
| Riverside        | Murrieta         |
| Riverside        | Oakland_Airport  |
| Roseville        | Sacramento       |
| Roseville        | Tahoe            |
| Roseville        | Davis            |
| Roseville        | Marysville       |
| Sacramento       | Stockton         |
| Sacramento       | Davis            |
| Sacramento       | Marysville       |
| Sacramento       | Roseville        |
| Salinas          | San_Luis_Obispo  |
| Salinas          | Gilroy           |
| Salinas          | San_Jose         |
| San_Bernadido    | <br>Palm_Springs |

| San_Bernadido       | Victorville          |
|---------------------|----------------------|
| San_Bernadido       | Pomona               |
| San_Clemente        | Oceanside            |
| San_Clemente        | San_Juan_Capistrano  |
| San_Diego           | Solana_Beach         |
| San_Fransisco       | SFO_Airport          |
| San_Jose            | Union_City           |
| San_Jose            | Redwood_City         |
| San_Jose            | Gilroy               |
| San_Jose            | Salinas              |
| San_Juan_Capistrano | San_Clemente         |
| San_Juan_Capistrano | Irvine               |
| San_Luis_Obispo     | Ventura              |
| San_Luis_Obispo     | Salinas              |
| San_Diego           | University_City      |
| San_Jose            | Berkeley             |
| Santa_Ana           | Irvine               |
| Santa_Ana           | Anaheim              |
| Santa_Barbra        | Moorpark_Simi_Valley |
| Santa_Barbra        | Ventura              |
| Santa_Clarita       | Los_Angeles          |
| Santa_Clarita       | Burbank_Airport      |
| SFO_Airport         | Redwood_City         |
| SFO_Airport         | San_Fransisco        |
| Solana_Beach        | San_Diego            |
| Solana_Beach        | Oceanside            |
| Sparks              | Truckee              |
| Stockton            | Modesto              |
| Stockton            | Sacramento           |
| Stockton            | Antioch_Pittsburgh   |
| Stockton            | Riverbank            |
| Suisun_Fairfield    | Martinez             |
| Suisun_Fairfield    | Davis                |
| Sylmar              | Burbank              |
| Sylmar              | Palmdale_Airport     |
| Tahoe               | Colfax               |
| Tahoe               | Roseville            |
| Truckee             | Sparks               |
| Truckee             | Colfax               |
| Turlock_Denair      | Riverbank            |
|                     |                      |

| Turlock Denair      | Merced               |
|---------------------|----------------------|
| -                   |                      |
| Union_City          | San_Jose             |
| Union_City          | Oakland_Airport      |
| University_City     | San_Diego            |
| University_City     | Escondido            |
| Van_Nuys            | Burbank_Airport      |
| Van_Nuys            | Moorpark_Simi_Valley |
| Ventura             | Santa_Barbra         |
| Ventura             | San_Luis_Obispo      |
| Victorville         | Barstow              |
| Victorville         | San_Bernadido        |
| Wasco               | Corcoran             |
| Wasco               | Bakersfield          |
| Dunsmuir            | Klamath_Falls        |
| Klamath_Falls       | Chemult              |
| Chemult             | Eugene               |
| Eugene              | Albany               |
| Albany              | Salem                |
| Salem               | Portland             |
| Portland            | Vancouver            |
| Portland            | Tacoma               |
| Tacoma              | Portland             |
| Vancouver           | Kelso_Longview       |
| Kelso_Longview      | Centrailia           |
| Vancouver           | Bingen_white_Salmon  |
| Centrailia          | Olympia_Lacey        |
| Olympia_Lacey       | Tacoma               |
| Tacoma              | Seattle              |
| Seattle             | Edmonds              |
| Bingen_white_Salmon | Wilshram             |
| Wilshram            | Pasco                |
| Pasco               | Spokane              |
| Spokane             | Ephrata              |
| Spokane             | Hinkle               |
| Hinkle              | Spokane              |
| Ephrata             | Wenatchee            |
| Wenatchee           | Everett              |
| Edmonds             | Everett              |
| Everett             | Mt_Vernon            |
| Mt_Vernon           | Bellingham           |
|                     |                      |

| Bellingham          | Vancouver           |
|---------------------|---------------------|
| Klamath_Falls       | Dunsmuir            |
| Chemult             | Klamath_Falls       |
| Eugene              | Chemult             |
| Albany              | Eugene              |
| Salem               | Albany              |
| Portland            | Salem               |
| Vancouver           | Portland            |
| Kelso_Longview      | Vancouver           |
| Centrailia          | Kelso_Longview      |
| Bingen_white_Salmon | Vancouver           |
| Olympia_Lacey       | Centrailia          |
| Тасота              | Olympia_Lacey       |
| Seattle             | Tacoma              |
| Edmonds             | Seattle             |
| Wilshram            | Bingen_white_Salmon |
| Pasco               | Wilshram            |
| Spokane             | Pasco               |
| Ephrata             | Spokane             |
| Wenatchee           | Ephrata             |
| Everett             | Wenatchee           |
| Everett             | Edmonds             |
| Mt_Vernon           | Everett             |
| Bellingham          | Mt_Vernon           |
| Vancouver           | Bellingham          |

# APPENDIX B: WESTERN U.S. RAILROAD NETWORKDEMAND MATRIX

|                      | Albany | Anaheim | Antioch-Pit | Bakersfield | Barstow | Bellingham | Berkeley | Bingen-whi | Burbank |
|----------------------|--------|---------|-------------|-------------|---------|------------|----------|------------|---------|
| Albany               | 12130  | -5      | -18         | -7          | -78     | -694       | -16      | -190       | -16     |
| Anaheim              | -1995  | 243851  | -362        | -133        | -1553   | -13840     | -319     | -3783      | -327    |
| Antioch-Pittsburgh   | -551   | -28     | 67230       | -37         | -429    | -3820      | -88      | -1044      | -90     |
| Bakersfield          | -1501  | -75     | -273        | 183524      | -1169   | -10418     | -240     | -2848      | -246    |
| Barstow              | -128   | -6      | -23         | -9          | 15607   | -891       | -21      | -244       | -21     |
| Bellingham           | -14    | -1      | -3          | -1          | -11     | 1663       | -2       | -27        | -2      |
| Berkeley             | -625   | -31     | -113        | -42         | -486    | -4335      | 76312    | -1185      | -102    |
| Bingen-white_Salmon  | -53    | -3      | -10         | -4          | -41     | -366       | -8       | 6348       | -9      |
| Burbank              | -610   | -31     | -111        | -41         | -475    | -4233      | -98      | -1157      | 74507   |
| Burbank_Airport      | -610   | -31     | -111        | -41         | -475    | -4233      | -98      | -1157      | -100    |
| Centrailia           | -32    | -2      | -6          | -2          | -25     | -224       | -5       | -61        | -5      |
| Chemult              | -146   | -7      | -27         | -10         | -114    | -1012      | -23      | -277       | -24     |
| Chico                | -368   | -18     | -67         | -25         | -287    | -2553      | -59      | -698       | -60     |
| Colfax               | -9     | 0       | -2          | -1          | -7      | -64        | -1       | -18        | -2      |
| Corcoran             | -127   | -6      | -23         | -8          | -99     | -879       | -20      | -240       | -21     |
| Davis                | -367   | -18     | -67         | -24         | -286    | -2545      | -59      | -696       | -60     |
| Dunsmuir             | -12    | -1      | -2          | -1          | -9      | -81        | -2       | -22        | -2      |
| Edmonds              | -161   | -8      | -29         | -11         | -126    | -1120      | -26      | -306       | -26     |
| Ephrata              | -5     | 0       | -1          | 0           | -4      | -33        | -1       | -9         | -1      |
| Escondido            | -813   | -41     | -148        | -54         | -633    | -5640      | -130     | -1542      | -133    |
| Eugene               | -56    | -3      | -10         | -4          | -43     | -387       | -9       | -106       | -9      |
| Everett              | -159   | -8      | -29         | -11         | -124    | -1102      | -25      | -301       | -26     |
| Fresno               | -2601  | -130    | -472        | -173        | -2025   | -18044     | -416     | -4933      | -426    |
| Fullerton            | -766   | -38     | -139        | -51         | -597    | -5317      | -123     | -1453      | -126    |
| Gilroy               | -252   | -13     | -46         | -17         | -196    | -1750      | -40      | -478       | -41     |
| Glendale             | -1186  | -59     | -215        | -79         | -923    | -8227      | -190     | -2249      | -194    |
| Hanford              | -254   | -13     | -46         | -17         | -197    | -1759      | -41      | -481       | -42     |
| Hinkle               | -38    | -2      | -7          | -3          | -30     | -266       | -6       | -73        | -6      |
| Indio                | -299   | -15     | -54         | -20         | -233    | -2072      | -48      | -567       | -49     |
| Industry             | -5     | 0       | -1          | 0           | -4      | -33        | -1       | -9         | -1      |
| Irvine               | -870   | -44     | -158        | -58         | -677    | -6037      | -139     | -1650      | -143    |
| Kelso-Longview       | -56    | -3      | -10         | -4          | -44     | -389       | -9       | -106       | -9      |
| Klamath_Falls        | -124   | -6      | -22         | -8          | -96     | -857       | -20      | -234       | -20     |
| Los_Angeles          | -22469 | -1126   | -4081       | -1496       | -17495  | -155896    | -3596    | -42615     | -3683   |
| Madera               | -263   | -13     | -48         | -17         | -205    | -1823      | -42      | -498       | -43     |
| Martinez             | -218   | -11     | -40         | -15         | -170    | -1513      | -35      | -414       | -36     |
| Marysville           | -75    | -4      | -14         | -5          | -58     | -518       | -12      | -141       | -12     |
| Merced               | -389   | -19     | -71         | -26         | -303    | -2696      | -62      | -737       | -64     |
| Modesto              | -1149  | -58     | -209        | -76         | -894    | -7969      | -184     | -2178      | -188    |
| Moorpark_Simi_Valley | -191   | -10     | -35         | -13         | -149    | -1326      | -31      | -362       | -31     |
| Mt_Vernon            | -430   | -22     | -78         | -29         | -335    | -2983      | -69      | -816       | -70     |
| Murrieta             | -269   | -14     | -49         | -18         | -210    | -1868      | -43      | -511       | -44     |
| Needles              | -29    | -1      | -5          | -2          | -23     | -204       | -5       | -56        | -5      |
| Norwalk              | -634   | -32     | -115        | -42         | -494    | -4402      | -102     | -1203      | -104    |

|                     | Albany | Anaheim | Antioch-Pit | Bakersfield      | Barstow | Bellingham | Berkelev | Bingen-whi | Burbank |
|---------------------|--------|---------|-------------|------------------|---------|------------|----------|------------|---------|
| Oakland             | -2430  | -122    | -441        | -162             | -1892   | -16859     | -389     | -4609      | -398    |
| Oakland Airport     | -2430  | -122    | -441        | -162             | -1892   | -16859     | -389     | -4609      | -398    |
| Oceanside           | -979   | -49     | -178        | -65              | -763    | -6795      | -157     | -1857      | -161    |
| Olympia-Lacey       | -107   | -5      | -19         | -7               | -83     | -743       | -17      | -203       | -18     |
| Oroville            | -79    | -4      | -14         | -5               | -62     | -549       | -13      | -150       | -13     |
| Palm Springs        | -260   | -13     | -47         | -17              | -203    | -1806      | -42      | -494       | -43     |
| Palmdale Airport    | -709   | -36     | -129        | -47              | -552    | -4923      | -114     | -1346      | -116    |
| Pasadena            | -814   | -30     | -123        | -54              | -634    | -5651      | -130     | -1545      | -134    |
| Pasco               | -014   | -12     | -42         | -16              | -182    | -1620      | -130     | -443       | -38     |
| Pomona              | -233   | -12     | -42         | -10              | -182    | -6307      | -145     | -443       | -149    |
| Portland            | -241   | -12     | -44         | -01              | -188    | -1672      | -145     | -457       | -39     |
| Red Bluff           | -241   | -12     | -44         | -10              | -188    | -1072      | -39      | -437       | -33     |
|                     | -492   | -4      | -13         |                  |         |            | -13      |            |         |
| Redding             | 1      |         |             | -33              | -383    | -3412      |          | -933       | -81     |
| Redwood_City        | -459   | -23     | -83         | -31              | -357    | -3182      | -73      | -870       | -75     |
| Richmond            | -603   | -30     | -110        | -40              | -470    | -4186      | -97      | -1144      | -99     |
| Riverbank           | -96    | -5      | -17         | -6               | -75     | -668       | -15      | -183       | -16     |
| Riverside           | -1552  | -78     | -282        | -103             | -1208   | -10766     | -248     | -2943      | -254    |
| Roseville           | -486   | -24     | -88         | -32              | -378    | -3372      | -78      | -922       | -80     |
| Sacramento          | -2475  | -124    | -450        | -165             | -1927   | -17174     | -396     | -4695      | -406    |
| Salem               | -208   | -10     | -38         | -14              | -162    | -1445      | -33      | -395       | -34     |
| Salinas             | -868   | -43     | -158        | -58              | -676    | -6020      | -139     | -1646      | -142    |
| San_Fransisco       | -4724  | -237    | -858        | -315             | -3678   | -32774     | -756     | -8959      | -774    |
| San_Bernadido       | -1127  | -57     | -205        | -75              | -878    | -7822      | -180     | -2138      | -185    |
| San_Clemente        | -304   | -15     | -55         | -20              | -236    | -2107      | -49      | -576       | -50     |
| San_Diego           | -7440  | -373    | -1351       | -496             | -5793   | -51621     | -1191    | -14111     | -1220   |
| San_Jose            | -5444  | -273    | -989        | -363             | -4239   | -37769     | -871     | -10324     | -892    |
| San_Juan_Capistrano | -206   | -10     | -37         | -14              | -160    | -1427      | -33      | -390       | -34     |
| San_Luis_Obispo     | -269   | -13     | -49         | -18              | -209    | -1864      | -43      | -510       | -44     |
| Santa_Ana           | -2055  | -103    | -373        | -137             | -1600   | -14261     | -329     | -3898      | -337    |
| Santa_Barbra        | -545   | -27     | -99         | -36              | -424    | -3781      | -87      | -1034      | -89     |
| Santa_Clarita       | -919   | -46     | -167        | -61              | -716    | -6377      | -147     | -1743      | -151    |
| Seattle             | -343   | -17     | -62         | -23              | -267    | -2377      | -55      | -650       | -56     |
| SFO_Airport         | -4724  | -237    | -858        | -315             | -3678   | -32774     | -756     | -8959      | -774    |
| Solana_Beach        | -79    | -4      | -14         | -5               | -61     | -548       | -13      | -150       | -13     |
| Sparks              | -142   | -7      | -26         |                  | -111    | -987       | -23      | -270       | -23     |
| Spokane             | -94    | -5      | -17         | -6               | -73     | -651       | -15      | -178       | -15     |
| Stockton            | -1482  | -74     | -269        | -99              | -1154   | -10286     | -237     | -2812      | -243    |
| Suisun-Fairfield    | -159   | -8      | -29         | -11              | -124    | -1102      | -25      | -301       | -26     |
| Sylmar              | -36    | -2      | -7          | -2               | -28     | -251       | -6       | -69        | -6      |
| Tacoma              | -68    | -3      | -12         | -5               | -53     | -469       | -11      | -128       | -11     |
| Tahoe               | -54    | -3      | -10         | -4               | -42     | -372       | -9       | -102       | -9      |
| Truckee             | -84    | -4      | -15         | -6               | -66     | -585       | -13      | -160       | -14     |
| Turlock-Denair      | -339   | -17     | -62         | -23              | -264    | -2355      | -54      | -644       | -56     |
| Union_City          | -407   | -20     | -74         | -27              | -317    | -2821      | -65      | -771       | -67     |
| University_City     | -407   | -20     | -74         | -27              | -317    | -2821      | -65      | -771       | -67     |
| Van_Nuys            | -416   | -21     | -76         | -28              | -324    | -2886      | -67      | -789       | -68     |
| Vancouver           | -539   | -27     | -98         | -36              | -420    | -3740      | -86      | -1022      | -88     |
| Ventura             | -712   | -36     | -129        | -47              | -555    | -4943      | -114     | -1351      | -117    |
| Victorville         | -389   | -20     | -71         | -26              | -303    | -2702      | -62      | -739       | -64     |
| Wasco               | -129   | -6      | -23         | 40 <sup>-9</sup> | -101    | -897       | -21      | -245       | -21     |
| Wenatchee           | -31    | -2      | -6          | -40<br>-2        |         | -214       | -5       | -59        | -5      |
| Wilshram            | -138   | -7      | -25         | -9               |         |            | -22      | -262       | -23     |

|                      | Gilroy | Glendale | Hanford | Hinkle | Indio | Industry | Irvine | Kelso-Long | Klamath_F | Los_Angele | Madera | Martinez |
|----------------------|--------|----------|---------|--------|-------|----------|--------|------------|-----------|------------|--------|----------|
| Albany               | -40    | -8       | -39     | -261   | -33   | -2116    | -11    | -178       | -81       | 0          | -38    | -46      |
| Anaheim              | -791   | -168     | -787    | -5198  | -668  | -42215   | -229   | -3553      | -1614     | -9         | -759   | -915     |
| Antioch-Pittsburgh   | -218   | -46      | -217    | -1435  | -184  | -11651   | -63    | -981       | -446      | -2         | -210   | -252     |
| Bakersfield          | -595   | -127     | -592    | -3913  | -503  | -31776   | -173   | -2675      | -1215     | -7         | -571   | -688     |
| Barstow              | -51    | -11      | -51     | -335   | -43   | -2718    | -15    | -229       | -104      | -1         | -49    | -59      |
| Bellingham           | -6     | -1       | -6      | -38    | -5    | -305     | -2     | -26        | -12       | 0          | -5     | -7       |
| Berkeley             | -248   | -53      | -246    | -1628  | -209  | -13223   | -72    | -1113      | -506      | -3         | -238   | -286     |
| Bingen-white_Salmon  | -21    | -4       | -21     | -137   | -18   | -1116    | -6     | -94        | -43       | 0          | -20    | -24      |
| Burbank              | -242   | -51      | -241    | -1590  | -204  | -12911   | -70    | -1087      | -494      | -3         | -232   | -280     |
| Burbank_Airport      | -242   | -51      | -241    | -1590  | -204  | -12911   | -70    | -1087      | -494      | -3         | -232   | -280     |
| Centrailia           | -13    | -3       | -13     | -84    | -11   | -685     | -4     | -58        | -26       | 0          | -12    | -15      |
| Chemult              | -58    | -12      | -58     | -380   | -49   | -3088    | -17    | -260       | -118      | -1         | -56    | -67      |
| Chico                | -146   | -31      | -145    | -959   | -123  | -7788    | -42    | -656       | -298      | -2         | -140   | -169     |
| Colfax               | -4     | -1       | -4      | -24    | -3    | -196     | -1     | -16        | -7        | 0          | -4     | -4       |
| Corcoran             | -50    | -11      | -50     | -330   | -42   | -2682    | -15    | -226       | -103      | -1         | -48    | -58      |
| Davis                | -145   | -31      | -145    | -956   | -123  | -7762    | -42    | -653       | -297      | -2         | -140   | -168     |
| Dunsmuir             | -5     | -1       | -5      | -30    | -4    | -247     | -1     | -21        | -9        | 0          | -4     | -5       |
| Edmonds              | -64    | -14      | -64     | -421   | -54   | -3415    | -19    | -287       | -131      | -1         | -61    | -74      |
| Ephrata              | -2     | 0        | -2      | -12    | -2    | -101     | -1     | -8         | -4        | 0          | -2     | -2       |
| Escondido            | -322   | -69      | -321    | -2118  | -272  | -17202   | -93    | -1448      | -658      | -4         | -309   | -373     |
| Eugene               | -22    | -5       | -22     | -145   | -19   | -1180    | -6     | -99        | -45       | 0          | -21    | -26      |
| Everett              | -63    | -13      | -63     | -414   | -53   | -3363    | -18    | -283       | -129      | -1         | -60    | -73      |
| Fresno               | -1031  | -219     | -1026   | -6777  | -871  | -55039   | -299   | -4633      | -2105     | -12        | -990   | -1192    |
| Fullerton            | -304   | -65      | -302    | -1997  | -257  | -16217   | -88    | -1365      | -620      | -3         | -292   | -351     |
| Gilroy               | 30738  | -21      | -99     | -657   | -84   | -5336    | -29    | -449       | -204      | -1         | -96    | -116     |
| Glendale             | -470   | 144905   | -468    | -3090  | -397  | -25093   | -136   | -2112      | -960      | -5         | -451   | -544     |
| Hanford              | -101   | -21      | 30903   | -661   | -85   | -5365    | -29    | -452       | -205      | -1         | -96    | -116     |
| Hinkle               | -15    | -3       | -15     | 4593   | -13   | -812     | -4     | -68        | -31       | 0          | -15    | -18      |
| Indio                | -118   | -25      | -118    | -778   | 36429 | -6321    | -34    | -532       | -242      | -1         | -114   | -137     |
| Industry             | -2     | 0        | -2      | -12    | -2    | 478      | -1     | -8         | -4        | 0          | -2     | -2       |
| Irvine               | -345   | -73      | -343    | -2267  | -291  | -18413   | 106306 | -1550      | -704      | -4         | -331   | -399     |
| Kelso-Longview       | -22    | -5       | -22     | -146   | -19   | -1188    | -6     | 6765       | -45       | 0          | -21    | -26      |
| Klamath_Falls        | -49    | -10      | -49     | -322   | -41   | -2615    | -14    | -220       | 15011     | -1         | -47    | -57      |
| Los_Angeles          | -8911  | -1895    | -8863   | -58554 | -7522 | -475514  | -2582  | -40025     | -18185    | 2747754    | -8552  | -10302   |
| Madera               | -104   | -22      | -104    | -685   | -88   | -5560    | -30    | -468       | -213      | -1         | 32032  | -120     |
| Martinez             | -86    | -18      | -86     | -568   | -73   | -4616    | -25    | -389       | -177      | -1         | -83    | 26574    |
| Marysville           | -30    | -6       | -29     | -194   | -25   | -1579    | -9     | -133       | -60       | 0          | -28    | -34      |
| Merced               | -154   | -33      | -153    | -1013  | -130  | -8223    | -45    | -692       | -314      | -2         | -148   | -178     |
| Modesto              | -455   | -97      | -453    | -2993  | -385  | -24306   | -132   | -2046      | -930      | -5         | -437   | -527     |
| Moorpark_Simi_Valley | -76    | -16      | -75     | -498   | -64   | -4043    | -22    | -340       | -155      | -1         | -73    | -88      |
| Mt_Vernon            | -171   | -36      | -170    | -1121  | -144  | -9100    | -49    | -766       | -348      | -2         | -164   | -197     |
| Murrieta             | -107   | -23      | -106    | -702   | -90   | -5699    | -31    | -480       | -218      | -1         | -102   | -123     |
| Needles              | -12    | -2       | -12     | -77    | -10   | -622     | -3     | -52        | -24       | 0          | -11    | -13      |
| Norwalk              | -252   | -54      | -250    | -1653  | -212  | -13426   | -73    | -1130      | -513      | -3         | -241   | -291     |

|                     | Gilroy | Glendale | Hanford | Hinkle        | Indio | Industry        | Irvine | Kelso-Long | Klamath F | Los_Angele | Madera | Martinez |
|---------------------|--------|----------|---------|---------------|-------|-----------------|--------|------------|-----------|------------|--------|----------|
| Oakland             | -964   | -205     | -958    | -6332         | -814  | -51424          | -279   | -4329      | -1967     | -11        | -925   | -1114    |
| Oakland_Airport     | -964   | -205     | -958    | -6332         | -814  | -51424          | -279   | -4329      | -1967     | -11        | -925   | -1114    |
| Oceanside           | -388   | -83      | -386    | -2552         | -328  | -20726          | -113   | -1745      | -793      | -4         | -373   | -449     |
| Olympia-Lacey       | -42    | -9       | -42     | -279          | -36   | -2265           | -12    | -191       | -87       | 0          | -41    | -49      |
| Oroville            | -31    | -7       | -31     | -206          | -26   | -1674           | -9     | -141       | -64       | 0          | -30    | -36      |
| Palm_Springs        | -103   | -22      | -103    | -678          | -87   | -5509           | -30    | -464       | -211      | -1         | -99    | -119     |
| Palmdale_Airport    | -281   | -60      | -280    | -1849         | -238  | -15015          | -82    | -1264      | -574      | -3         | -270   | -325     |
| Pasadena            | -323   | -69      | -321    | -2123         | -273  | -17238          | -94    | -1451      | -659      | -4         | -310   | -373     |
| Pasco               | -93    | -20      | -92     | -608          | -78   | -4941           | -27    | -416       | -189      | -1         | -89    | -107     |
| Pomona              | -360   | -20      | -359    | -2369         | -304  | -19237          | -104   | -1619      | -736      |            | -346   | -417     |
| Portland            | -96    | -20      | -95     | -628          | -81   | -5098           | -28    | -429       | -195      | -1         | -92    | -110     |
| Red_Bluff           | -32    | -7       | -32     | -208          | -27   | -1692           | -9     | -142       | -65       | 0          | -30    | -37      |
| Redding             | -195   | -41      | -194    | -1282         | -165  | -10407          | -57    | -876       | -398      | -2         | -187   | -225     |
| Redwood_City        | -195   | -39      | -134    | -1195         | -105  | -10407          | -57    | -817       | -338      | -2         | -187   | -223     |
|                     | -182   | -55      | -181    |               |       |                 | -53    | -1075      | -488      | -2         | -173   | -210     |
| Richmond            |        |          |         | -1572<br>-251 | -202  | -12769<br>-2037 |        |            | -400      |            |        | -277     |
| Riverbank           | -38    | -8       | -38     | -251          | -32   |                 | -11    | -171       |           |            | -37    |          |
| Riverside           | -615   | -131     | -612    |               | -520  | -32840          | -178   | -2764      | -1256     |            | -591   | -711     |
| Roseville           | -193   | -41      | -192    | -1267         | -163  | -10286          | -56    | -866       | -393      | -2         | -185   | -223     |
| Sacramento          | -982   | -209     | -976    | -6450         | -829  | -52383          | -284   | -4409      | -2003     | -11        | -942   | -1135    |
| Salem               | -83    | -18      | -82     | -543          | -70   | -4407           | -24    | -371       | -169      | -1         | -79    | -95      |
| Salinas             | -344   | -73      | -342    | -2261         | -291  | -18364          | -100   | -1546      | -702      | -4         | -330   | -398     |
| San_Fransisco       | -1873  | -398     | -1863   | -12310        | -1581 | -99966          | -543   | -8414      | -3823     | -21        | -1798  | -2166    |
| San_Bernadido       | -447   | -95      | -445    | -2938         | -377  | -23859          | -130   | -2008      | -912      | -5         | -429   | -517     |
| San_Clemente        | -120   | -26      | -120    | -791          | -102  | -6427           | -35    | -541       | -246      |            | -116   | -139     |
| San_Diego           | -2951  | -627     | -2935   | -19389        | -2491 | -157454         | -855   | -13253     | -6021     | -33        | -2832  | -3411    |
| San_Jose            | -2159  | -459     | -2147   | -14186        | -1822 | -115203         | -626   | -9697      | -4406     | -24        | -2072  | -2496    |
| San_Juan_Capistrano | -82    | -17      | -81     | -536          | -69   | -4353           | -24    | -366       | -166      |            | -78    | -94      |
| San_Luis_Obispo     | -107   | -23      | -106    | -700          | -90   | -5686           | -31    | -479       | -217      | -1         | -102   | -123     |
| Santa_Ana           | -815   | -173     | -811    | -5356         | -688  | -43498          | -236   | -3661      | -1663     | -9         | -782   | -942     |
| Santa_Barbra        | -216   | -46      | -215    | -1420         | -182  | -11532          | -63    | -971       | -441      | -2         | -207   | -250     |
| Santa_Clarita       | -364   | -78      | -363    | -2395         | -308  | -19451          | -106   | -1637      | -744      | -4         | -350   | -421     |
| Seattle             | -136   | -29      | -135    | -893          | -115  | -7251           | -39    | -610       | -277      | -2         | -130   | -157     |
| SFO_Airport         | -1873  | -398     | -1863   | -12310        | -1581 | -99966          | -543   | -8414      | -3823     | -21        | -1798  | -2166    |
| Solana_Beach        | -31    | -7       | -31     | -206          | -26   | -1670           | -9     | -141       | -64       | 0          | -30    | -36      |
| Sparks              | -56    | -12      | -56     | -371          | -48   | -3012           | -16    | -253       | -115      | -1         | -54    | -65      |
| Spokane             | -37    | -8       | -37     | -245          | -31   | -1986           | -11    | -167       | -76       |            | -36    | -43      |
| Stockton            | -588   | -125     | -585    | -3863         | -496  | -31373          | -170   | -2641      | -1200     | -7         | -564   | -680     |
| Suisun-Fairfield    | -63    | -13      | -63     | -414          | -53   | -3361           | -18    | -283       | -129      | -1         | -60    | -73      |
| Sylmar              | -14    | -3       | -14     | -94           | -12   | -766            | -4     | -64        | -29       | 0          | -14    | -17      |
| Tacoma              | -27    | -6       | -27     | -176          | -23   | -1432           | -8     | -121       | -55       | 0          | -26    | -31      |
| Tahoe               | -21    | -5       | -21     | -140          | -18   | -1134           | -6     | -95        | -43       | 0          | -20    | -25      |
| Truckee             | -33    | -7       | -33     | -220          | -28   | -1784           | -10    | -150       | -68       | 0          | -32    | -39      |
| Turlock-Denair      | -135   | -29      | -134    | -884          | -114  | -7183           | -39    | -605       | -275      | -2         | -129   | -156     |
| Union_City          | -161   | -34      | -160    | -1060         | -136  | -8606           | -47    | -724       | -329      | -2         | -155   | -186     |
| University_City     | -161   | -34      | -160    | -1060         | -136  | -8606           | -47    | -724       | -329      | -2         | -155   | -186     |
| Van_Nuys            | -165   | -35      | -164    | -1084         | -139  | -8802           | -48    | -741       | -337      | -2         | -158   | -191     |
| Vancouver           | -214   | -45      | -213    | -1405         | -180  | -11408          | -62    | -960       | -436      | -2         | -205   | -247     |
| Ventura             | -283   | -60      | -281    | -1857         | -239  | -15077          | -82    | -1269      | -577      | -3         | -271   | -327     |
| Victorville         | -154   | -33      | -154    | -1015         | -130  | -8241           | -45    | -694       | -315      | -2         | -148   | -179     |
| Wasco               | -51    | -11      | -51     | -337          | -43   | -2737           | -15    | -230       | -105      | -1         | -49    | -59      |
| Wenatchee           | -12    | -3       | -12     | -80           | -10   | -653            | -4     | -55        | -25       | 0          | -12    | -14      |
| Wilshram            | -55    | -12      | -55     | -360          | -46   | -2927           | -16    | -246       | -112      | -1         | -53    | -63      |

|                      | Marysville | Merced              | Modesto | Moorpark | Mt_Vernon | Murrieta | Needles | Norwalk | Oakland | Oakland_A | Oceanside | Olympia-La |
|----------------------|------------|---------------------|---------|----------|-----------|----------|---------|---------|---------|-----------|-----------|------------|
| Albany               | -134       | -26                 | -9      | -52      | -23       | -37      | -340    | -16     | -4      | -4        | -10       | -93        |
| Anaheim              | -2674      | -513                | -174    | -1044    | -464      | -741     | -6791   | -314    | -82     | -82       | -204      | -1864      |
| Antioch-Pittsburgh   | -738       | -142                | -48     | -288     | -128      | -204     | -1874   | -87     | -23     | -23       | -56       | -514       |
| Bakersfield          | -2013      | -386                | -131    | -786     | -349      | -558     | -5112   | -237    | -62     | -62       | -153      | -1403      |
| Barstow              | -172       | -33                 | -11     | -67      | -30       | -48      | -437    | -20     | -5      | -5        | -13       | -120       |
| Bellingham           | -19        | -4                  | -1      | -8       | -3        | -5       | -49     | -2      | -1      | -1        | -1        | -13        |
| Berkeley             | -837       | -161                | -54     | -327     | -145      | -232     | -2127   | -98     | -26     | -26       | -64       | -584       |
| Bingen-white_Salmon  | -71        | -14                 | -5      | -28      | -12       | -20      | -180    | -8      | -2      | -2        | -5        | -49        |
| Burbank              | -818       | -157                | -53     | -319     | -142      | -227     | -2077   | -96     | -25     | -25       | -62       | -570       |
| Burbank_Airport      | -818       | -157                | -53     | -319     | -142      | -227     | -2077   | -96     | -25     | -25       | -62       | -570       |
| Centrailia           | -43        | -8                  | -3      | -17      | -8        | -12      | -110    | -5      | -1      | -1        | -3        | -30        |
| Chemult              | -196       | -38                 | -13     | -76      | -34       | -54      | -497    | -23     | -6      | -6        | -15       | -136       |
| Chico                | -493       | -95                 | -32     | -193     | -86       | -137     | -1253   | -58     | -15     | -15       | -38       | -344       |
| Colfax               | -12        | -2                  | -1      | -5       | -2        | -3       | -31     | -1      | 0       | 0         | -1        | -9         |
| Corcoran             | -170       | -33                 | -11     | -66      | -29       | -47      | -432    | -20     | -5      | -5        | -13       | -118       |
| Davis                | -492       | -94                 | -32     | -192     | -85       | -136     | -1249   | -58     | -15     | -15       | -37       | -343       |
| Dunsmuir             | -16        | -3                  | -1      | -6       | -3        | -4       | -40     | -2      | 0       | 0         | -1        | -11        |
| Edmonds              | -216       | -42                 | -14     | -84      | -38       | -60      | -549    | -25     | -7      | -7        | -16       | -151       |
| Ephrata              | -6         | -1                  | 0       | -2       | -1        | -2       | -16     | -1      | 0       | 0         | 0         | -4         |
| Escondido            | -1090      | -209                | -71     | -425     | -189      | -302     | -2767   | -128    | -33     | -33       | -83       | -759       |
| Eugene               | -75        | -14                 | -5      | -29      | -13       | -21      | -190    | -9      | -2      | -2        | -6        | -52        |
| Everett              | -213       | -41                 | -14     | -83      | -37       | -59      | -541    | -25     | -7      | -7        | -16       | -148       |
| Fresno               | -3486      | - <mark>6</mark> 69 | -226    | -1361    | -605      | -966     | -8854   | -410    | -107    | -107      | -266      | -2430      |
| Fullerton            | -1027      | -197                | -67     | -401     | -178      | -285     | -2609   | -121    | -32     | -32       | -78       | -716       |
| Gilroy               | -338       | -65                 | -22     | -132     | -59       | -94      | -858    | -40     | -10     | -10       | -26       | -236       |
| Glendale             | -1589      | -305                | -103    | -621     | -276      | -440     | -4037   | -187    | -49     | -49       | -121      | -1108      |
| Hanford              | -340       | -65                 | -22     | -133     | -59       | -94      | -863    | -40     | -10     | -10       | -26       | -237       |
| Hinkle               | -51        | -10                 | -3      | -20      | -9        | -14      | -131    | -6      | -2      | -2        | -4        | -36        |
| Indio                | -400       | -77                 | -26     | -156     | -69       | -111     | -1017   | -47     | -12     | -12       | -30       | -279       |
| Industry             | -6         | -1                  | 0       | -2       | -1        | -2       | -16     | -1      | 0       | 0         | 0         | -4         |
| Irvine               | -1166      | -224                | -76     | -455     | -202      | -323     | -2962   | -137    | -36     | -36       | -89       | -813       |
| Kelso-Longview       | -75        | -14                 | -5      | -29      | -13       | -21      | -191    | -9      | -2      | -2        | -6        | -52        |
| Klamath_Falls        | -166       | -32                 | -11     | -65      | -29       | -46      | -421    | -19     | -5      | -5        | -13       | -115       |
| Los_Angeles          | -30117     | -5783               | -1956   | -11761   | -5225     | -8344    | -76496  | -3542   | -925    | -925      | -2294     | -20994     |
| Madera               | -352       | -68                 | -23     | -138     | -61       | -98      | -895    | -41     | -11     | -11       | -27       | -245       |
| Martinez             | -292       | -56                 | -19     | -114     | -51       | -81      | -743    | -34     | -9      | -9        | -22       | -204       |
| Marysville           | 9024       | -19                 | -6      | -39      | -17       | -28      | -254    | -12     | -3      | -3        | -8        | -70        |
| Merced               | -521       | 47419               | -34     | -203     | -90       | -144     | -1323   | -61     | -16     | -16       | -40       | -363       |
| Modesto              | -1539      | -296                | 140360  | -601     | -267      | -426     | -3910   | -181    | -47     | -47       | -117      | -1073      |
| Moorpark_Simi_Valley | -256       | -49                 | -17     | 23264    | -44       | -71      | -650    | -30     | -8      | -8        | -20       | -179       |
| Mt_Vernon            | -576       | -111                | -37     | -225     | 52487     | -160     | -1464   | -68     | -18     | -18       | -44       | -402       |
| Murrieta             | -361       | -69                 | -23     | -141     | -63       | 32833    | -917    | -42     | -11     | -11       | -27       | -252       |
| Needles              | -39        | -8                  | -3      | -15      | -7        | -11      | 3492    | -5      | -1      | -1        | -3        | -27        |
| Norwalk              | -850       | -163                | -55     | -332     | -148      | -236     | -2160   | 77487   | -26     | -26       | -65       | -593       |

|                     | Marysville | Merced | Modesto | Moorpark | Mt_Vernon | Murrieta | Needles | Norwalk            | Oakland | Oakland A | Oceanside | Olympia-La |
|---------------------|------------|--------|---------|----------|-----------|----------|---------|--------------------|---------|-----------|-----------|------------|
| Oakland             | -3257      | -625   | -212    | -1272    | -565      | -902     | -8273   | -383               | 297065  | -100      | -248      | -2270      |
| Oakland_Airport     | -3257      | -625   | -212    | -1272    | -565      | -902     | -8273   | -383               | -100    | 297065    | -248      | -2270      |
| Oceanside           | -1313      | -252   | -85     | -513     | -228      | -364     | -3334   | -154               | -40     | -40       | 119668    | -915       |
| Olympia-Lacey       | -143       | -28    | -9      | -56      | -25       | -40      | -364    | -17                | -4      | -4        | -11       | 12989      |
| Oroville            | -106       | -20    | -7      | -41      | -18       | -29      | -269    | -12                | -3      | -3        | -8        | -74        |
| Palm_Springs        | -349       | -67    | -23     | -136     | -61       | -97      | -886    | -41                | -11     | -11       | -27       | -243       |
| Palmdale_Airport    | -951       | -183   | -62     | -371     | -165      | -263     | -2416   | -112               | -29     | -29       | -72       | -663       |
| Pasadena            | -1092      | -210   | -71     | -426     | -189      | -302     | -2773   | -128               | -34     | -34       | -83       | -761       |
| Pasco               | -313       | -60    | -20     | -122     | -54       | -87      | -795    | -37                | -10     | -10       | -24       | -218       |
| Pomona              | -1218      | -234   | -79     | -476     | -211      | -338     | -3095   | -143               | -37     | -37       | -93       | -849       |
| Portland            | -323       | -62    | -21     | -126     | -56       | -89      | -820    | -38                | -10     | -10       | -25       | -225       |
| Red_Bluff           | -107       | -21    | -7      | -42      | -19       | -30      | -272    | -13                | -3      | -3        | -8        | -75        |
| Redding             | -659       | -127   | -43     | -257     | -114      | -183     | -1674   | -78                | -20     | -20       | -50       | -459       |
| Redwood_City        | -615       | -118   | -40     | -240     | -107      | -170     | -1561   | -72                | -19     | -19       | -47       | -428       |
| Richmond            | -809       | -155   | -53     | -316     | -140      | -224     | -2054   | -95                | -25     | -25       | -62       | -564       |
| Riverbank           | -129       | -25    | -8      | -50      | -22       | -36      | -328    | -15                | -4      | -4        | -10       | -90        |
| Riverside           | -2080      | -399   | -135    | -812     | -361      | -576     | -5283   | -245               | -64     | -64       | -158      | -1450      |
| Roseville           | -651       | -125   | -42     | -254     | -113      | -180     | -1655   | -77                | -20     | -20       | -50       | -454       |
| Sacramento          | -3318      | -637   | -216    | -1296    | -576      | -919     | -8427   | -390               | -102    | -102      | -253      | -2313      |
| Salem               | -279       | -54    | -18     | -109     | -48       | -77      | -709    | -33                | -9      | -9        | -21       | -195       |
| Salinas             | -1163      | -223   | -76     | -454     | -202      | -322     | -2954   | -137               | -36     | -36       | -89       | -811       |
| San_Fransisco       | -6331      | -1216  | -411    | -2472    | -1099     | -1754    | -16081  | -745               | -194    | -194      | -482      | -4414      |
| San_Bernadido       | -1511      | -290   | -98     | -590     | -262      | -419     | -3838   | -178               | -46     | -46       | -115      | -1053      |
| San_Clemente        | -407       | -78    | -26     | -159     | -71       | -113     | -1034   | -48                | -12     | -12       | -31       | -284       |
| San_Diego           | -9972      | -1915  | -648    | -3894    | -1730     | -2763    | -25330  | -1173              | -306    | -306      | -760      | -6952      |
| San_Jose            | -7296      | -1401  | -474    | -2849    | -1266     | -2021    | -18533  | -858               | -224    | -224      | -556      | -5086      |
| San_Juan_Capistrano | -276       | -53    | -18     | -108     | -48       | -76      | -700    | -32                | -8      | -8        | -21       | -192       |
| San_Luis_Obispo     | -360       | -69    | -23     | -141     | -62       | -100     | -915    | -42                | -11     | -11       | -27       | -251       |
| Santa_Ana           | -2755      | -529   | -179    | -1076    | -478      | -763     | -6997   | -324               | -85     | -85       | -210      | -1920      |
| Santa_Barbra        | -730       | -140   | -47     | -285     | -127      | -202     | -1855   | -86                | -22     | -22       | -56       | -509       |
| Santa_Clarita       | -1232      | -237   | -80     | -481     | -214      | -341     | -3129   | -145               | -38     | -38       | -94       | -859       |
| Seattle             | -459       | -88    | -30     | -179     | -80       | -127     | -1167   | -54                | -14     | -14       | -35       | -320       |
| SFO_Airport         | -6331      | -1216  | -411    | -2472    | -1099     | -1754    | -16081  | -745               | -194    | -194      | -482      | -4414      |
| Solana_Beach        | -106       | -20    | -7      | -41      | -18       | -29      | -269    | -12                | -3      | -3        | -8        | -74        |
| Sparks              | -191       | -37    | -12     | -74      | -33       | -53      | -484    | -22                | -6      | -6        | -15       | -133       |
| Spokane             | -126       | -24    | -8      | -49      | -22       | -35      | -320    | -15                | -4      | -4        | -10       | -88        |
| Stockton            | -1987      | -382   | -129    | -776     | -345      | -550     | -5047   | -234               | -61     | -61       | -151      | -1385      |
| Suisun-Fairfield    | -213       | -41    | -14     | -83      | -37       | -59      | -541    | -25                | -7      | -7        | -16       | -148       |
| Sylmar              | -49        | -9     | -3      | -19      | -8        | -13      | -123    | -6                 | -1      | -1        | -4        | -34        |
| Tacoma              | -91        | -17    | -6      | -35      | -16       | -25      | -230    | -11                | -3      | -3        | -7        | -63        |
| Tahoe               | -72        | -14    | -5      | -28      | -12       | -20      | -182    | -8                 | -2      | -2        | -5        | -50        |
| Truckee             | -113       | -22    | -7      | -44      | -20       | -31      | -287    | -13                | -3      | -3        | -9        | -79        |
| Turlock-Denair      | -455       | -87    | -30     | -178     | -79       | -126     | -1156   | -53                | -14     | -14       | -35       | -317       |
| Union_City          | -545       | -105   | -35     | -213     | -95       | -151     | -1384   | - <mark>6</mark> 4 | -17     | -17       | -42       | -380       |
| University_City     | -545       | -105   | -35     | -213     | -95       | -151     | -1384   | -64                | -17     | -17       | -42       | -380       |
| Van_Nuys            | -557       | -107   | -36     | -218     | -97       | -154     | -1416   | -66                | -17     | -17       | -42       | -389       |
| Vancouver           | -723       | -139   | -47     | -282     | -125      | -200     | -1835   | -85                | -22     | -22       | -55       | -504       |
| Ventura             | -955       | -183   | -62     | -373     | -166      | -265     | -2425   | -112               | -29     | -29       | -73       | -666       |
| Victorville         | -522       | -100   | -34     | -204     | -91       | -145     | -1326   | -61                | -16     | -16       | -40       | -364       |
| Wasco               | -173       | -33    | -11     | -68      | -30       | -48      | -440    | -20                | -5      | -5        | -13       | -121       |
| Wenatchee           | -41        | -8     | -3      | -16      | -7        | -11      | -105    | -5                 | -1      | -1        | -3        | -29        |
| Wilshram            | -185       | -36    | -12     | -72      | -32       | -51      | -471    | -22                | -6      | -6        | -14       | -129       |

| cey                  | Oroville | Palm_Sprin | Palmdale_/ | Pasadena | Pasco | Pomona | Portland | Red_Bluff | Redding | Redwood_0 | Richmond | Riverbank |
|----------------------|----------|------------|------------|----------|-------|--------|----------|-----------|---------|-----------|----------|-----------|
| Albany               | -126     | -38        | -14        | -12      | -43   | -11    | -42      | -125      | -20     | -22       | -17      | -104      |
| Anaheim              | -2522    | -766       | -281       | -245     | -854  | -219   | -828     | -2495     | -406    | -435      | -331     | -2073     |
| Antioch-Pittsburgh   | -696     | -211       | -78        | -68      | -236  | -61    | -229     | -689      | -112    | -120      | -91      | -572      |
| Bakersfield          | -1899    | -577       | -212       | -184     | -643  | -165   | -623     | -1878     | -305    | -327      | -249     | -1560     |
| Barstow              | -162     | -49        | -18        | -16      | -55   | -14    | -53      | -161      | -26     | -28       | -21      | -133      |
| Bellingham           | -18      | -6         | -2         | -2       | -6    | -2     | -6       | -18       | -3      | -3        | -2       | -15       |
| Berkeley             | -790     | -240       | -88        | -77      | -268  | -69    | -259     | -781      | -127    | -136      | -104     | -649      |
| Bingen-white_Salmon  | -67      | -20        | -7         | -6       | -23   | -6     | -22      | -66       | -11     | -11       | -9       | -55       |
| Burbank              | -771     | -234       | -86        | -75      | -261  | -67    | -253     | -763      | -124    | -133      | -101     | -634      |
| Burbank_Airport      | -771     | -234       | -86        | -75      | -261  | -67    | -253     | -763      | -124    | -133      | -101     | -634      |
| Centrailia           | -41      | -12        | -5         | -4       | -14   | -4     | -13      | -40       | -7      | -7        | -5       | -34       |
| Chemult              | -185     | -56        | -21        | -18      | -62   | -16    | -61      | -182      | -30     | -32       | -24      | -152      |
| Chico                | -465     | -141       | -52        | -45      | -158  | -40    | -153     | -460      | -75     | -80       | -61      | -382      |
| Colfax               | -12      | -4         | -1         | -1       | -4    | -1     | -4       | -12       | -2      | -2        | -2       | -10       |
| Corcoran             | -160     | -49        | -18        | -16      | -54   | -14    | -53      | -159      | -26     | -28       | -21      | -132      |
| Davis                | -464     | -141       | -52        | -45      | -157  | -40    | -152     | -459      | -75     | -80       | -61      | -381      |
| Dunsmuir             | -15      | -4         | -2         | -1       | -5    | -1     | -5       | -15       | -2      | -3        | -2       | -12       |
| Edmonds              | -204     | -62        | -23        | -20      | -69   | -18    | -67      | -202      | -33     | -35       | -27      | -168      |
| Ephrata              | -6       | -2         | -1         | -1       | -2    | -1     | -2       | -6        | -1      | -1        | -1       | -5        |
| Escondido            | -1028    | -312       | -115       | -100     | -348  | -89    | -337     | -1017     | -165    | -177      | -135     | -845      |
| Eugene               | -71      | -21        | -8         | -7       | -24   | -6     | -23      | -70       | -11     | -12       | -9       | -58       |
| Everett              | -201     | -61        | -22        | -20      | -68   | -17    | -66      | -199      | -32     | -35       | -26      | -165      |
| Fresno               | -3289    | -999       | -367       | -319     | -1114 | -286   | -1080    | -3253     | -529    | -567      | -431     | -2702     |
| Fullerton            | -969     | -294       | -108       | -94      | -328  | -84    | -318     | -958      | -156    | -167      | -127     | -796      |
| Gilroy               | -319     | -97        | -36        | -31      | -108  | -28    | -105     | -315      | -51     | -55       | -42      | -262      |
| Glendale             | -1499    | -455       | -167       | -146     | -508  | -130   | -492     | -1483     | -241    | -259      | -197     | -1232     |
| Hanford              | -321     | -97        | -36        | -31      | -109  | -28    | -105     | -317      | -52     | -55       | -42      | -263      |
| Hinkle               | -49      | -15        | -5         | -5       | -16   | -4     | -16      | -48       | -8      | -8        | -6       | -40       |
| Indio                | -378     | -115       | -42        | -37      | -128  | -33    | -124     | -374      | -61     | -65       | -50      | -310      |
| Industry             | -6       | -2         | -1         | -1       | -2    | -1     | -2       | -6        | -1      | -1        | -1       | -5        |
| Irvine               | -1100    | -334       | -123       | -107     | -373  | -96    | -361     | -1088     | -177    | -190      | -144     | -904      |
| Kelso-Longview       | -71      | -22        | -8         | -7       | -24   | -6     | -23      | -70       | -11     | -12       | -9       | -58       |
| Klamath_Falls        | -156     | -47        | -17        | -15      | -53   | -14    | -51      | -155      | -25     | -27       | -20      | -128      |
| Los_Angeles          | -28412   | -8632      | -3167      | -2759    | -9624 | -2472  | -9327    | -28103    | -4569   | -4900     | -3724    | -23346    |
| Madera               | -332     | -101       | -37        | -32      | -113  | -29    | -109     | -329      | -53     | -57       | -44      | -273      |
| Martinez             | -276     | -84        | -31        | -27      | -93   | -24    | -91      | -273      | -44     | -48       | -36      | -227      |
| Marysville           | -94      | -29        | -11        | -9       | -32   | -8     | -31      | -93       | -15     | -16       | -12      | -78       |
| Merced               | -491     | -149       | -55        | -48      | -166  | -43    | -161     | -486      | -79     | -85       | -64      | -404      |
| Modesto              | -1452    | -441       | -162       | -141     | -492  | -126   | -477     | -1437     | -234    | -250      | -190     | -1193     |
| Moorpark_Simi_Valley | -242     | -73        | -27        | -23      | -82   | -21    | -79      | -239      | -39     | -42       | -32      | -199      |
| Mt_Vernon            | -544     | -165       | -61        | -53      | -184  | -47    | -178     | -538      | -87     | -94       | -71      | -447      |
| Murrieta             | -341     | -103       | -38        | -33      | -115  | -30    | -112     | -337      | -55     | -59       | -45      | -280      |
| Needles              | -37      | -11        | -4         | -4       | -13   | -3     | -12      | -37       | -6      | -6        | -5       | -31       |
| Norwalk              | -802     | -244       | -89        | -78      | -272  | -70    | -263     | -794      | -129    | -138      | -105     | -659      |

| сеу                 | Oroville | Palm Sprin | Palmdale_/ | Pasadena | Pasco | Pomona | Portland | Red_Bluff | Redding | Redwood_0 | Richmond | Riverbank |
|---------------------|----------|------------|------------|----------|-------|--------|----------|-----------|---------|-----------|----------|-----------|
| Oakland             | -3073    | -933       | -342       | -298     | -1041 | -267   | -1009    | -3039     | -494    | -530      | -403     | -2525     |
| Oakland_Airport     | -3073    | -933       | -342       | -298     | -1041 | -267   | -1009    | -3039     | -494    | -530      | -403     | -2525     |
| Oceanside           | -1238    | -376       | -138       | -120     | -419  | -108   | -407     | -1225     | -199    | -214      | -162     | -1018     |
| Olympia-Lacey       | -135     | -41        | -15        | -13      | -46   | -12    | -44      | -134      | -22     | -23       | -18      | -111      |
| Oroville            | 9571     | -30        | -11        | -10      | -34   | -9     | -33      | -99       | -16     | -17       | -13      | -82       |
| Palm_Springs        | -329     | 31735      | -37        | -32      | -111  | -29    | -108     | -326      | -53     | -57       | -43      | -270      |
| Palmdale_Airport    | -897     | -273       | 86670      | -87      | -304  | -78    | -295     | -887      | -144    | -155      | -118     | -737      |
| Pasadena            | -1030    | -313       | -115       | 99511    | -349  | -90    | -338     | -1019     | -166    | -178      | -135     | -846      |
| Pasco               | -295     | -90        | -33        | -29      | 28453 | -26    | -97      | -292      | -47     | -51       | -39      | -243      |
| Pomona              | -1149    | -349       | -128       | -112     | -389  | 111066 | -377     | -1137     | -185    | -198      | -151     | -944      |
| Portland            | -305     | -93        | -34        | -30      | -103  | -27    | 29362    | -301      | -49     | -53       | -40      | -250      |
| Red Bluff           | -101     | -31        | -11        | -10      | -34   | -9     | -33      | 9678      | -16     | -17       | -13      | -83       |
| Redding             | -622     | -189       | -69        | -60      | -211  | -54    | -204     | -615      | 60041   | -107      | -82      | -511      |
| Redwood_City        | -580     | -176       | -65        | -56      | -196  | -50    | -190     | -574      | -93     | 55978     | -76      | -476      |
| Richmond            | -763     | -232       | -85        | -74      | -258  | -66    | -250     | -755      | -123    | -132      | 73689    | -627      |
| Riverbank           | -122     | -37        | -14        | -12      | -41   | -11    | -40      | -120      | -20     | -21       | -16      | 11670     |
| Riverside           | -1962    | -596       | -219       | -191     | -665  | -171   | -644     | -1941     | -316    | -338      | -257     | -1612     |
| Roseville           | -615     | -187       | -69        | -60      | -208  | -53    | -202     | -608      | -99     | -106      | -81      | -505      |
| Sacramento          | -3130    | -951       | -349       | -304     | -1060 | -272   | -1027    | -3096     | -503    | -540      | -410     | -2572     |
| Salem               | -263     | -80        | -29        | -26      | -89   | -23    | -86      | -260      | -42     | -45       | -35      | -216      |
| Salinas             | -1097    | -333       | -122       | -107     | -372  | -95    | -360     | -1085     | -176    | -189      | -144     | -902      |
| San_Fransisco       | -5973    | -1815      | -666       | -580     | -2023 | -520   | -1961    | -5908     | -961    | -1030     | -783     | -4908     |
| San Bernadido       | -1426    | -433       | -159       | -138     | -483  | -124   | -468     | -1410     | -229    | -246      | -187     | -1171     |
| San_Clemente        | -384     | -117       | -43        | -37      | -130  | -33    | -126     | -380      | -62     | -66       | -50      | -316      |
| San_Diego           | -9408    | -2858      | -1049      | -913     | -3187 | -818   | -3088    | -9306     | -1513   | -1623     | -1233    | -7730     |
| San_Jose            | -6884    | -2091      | -767       | -668     | -2332 | -599   | -2260    | -6809     | -1107   | -1187     | -902     | -5656     |
| San_Juan_Capistrano | -260     | -79        | -29        | -25      | -88   | -23    | -85      | -257      | -42     | -45       | -34      | -214      |
| San_Luis_Obispo     | -340     | -103       | -38        | -33      | -115  | -30    | -112     | -336      | -55     | -59       | -45      | -279      |
| Santa_Ana           | -2599    | -790       | -290       | -252     | -880  | -226   | -853     | -2571     | -418    | -448      | -341     | -2136     |
| Santa_Barbra        | -689     | -209       | -77        | -67      | -233  | -60    | -226     | -682      | -111    | -119      | -90      | -566      |
| Santa_Clarita       | -1162    | -353       | -130       | -113     | -394  | -101   | -381     | -1150     | -187    | -200      | -152     | -955      |
| Seattle             | -433     | -132       | -48        | -42      | -147  | -38    | -142     | -429      | -70     | -75       | -57      | -356      |
| SFO Airport         | -5973    | -1815      | -666       | -580     | -2023 | -520   | -1961    | -5908     | -961    | -1030     | -783     | -4908     |
| Solana_Beach        | -100     | -30        | -11        | -10      | -34   | -9     | -33      | -99       | -16     | -17       | -13      | -82       |
| Sparks              | -180     | -55        | -20        | -17      | -61   | -16    | -59      | -178      | -29     | -31       | -24      | -148      |
| Spokane             | -119     | -36        | -13        | -12      | -40   | -10    | -39      | -117      | -19     | -20       | -16      | -98       |
| Stockton            | -1875    | -569       | -209       | -182     | -635  | -163   | -615     | -1854     | -301    | -323      | -246     | -1540     |
| Suisun-Fairfield    | -201     | -61        | -22        | -20      | -68   | -17    | -66      | -199      | -32     | -35       | -26      | -165      |
| Sylmar              | -46      | -14        | -5         | -4       | -15   | -4     | -15      | -45       | -7      | -8        | -6       | -38       |
| Tacoma              | -86      | -26        | -10        | -8       | -29   | -7     | -28      | -85       | -14     | -15       | -11      | -70       |
| Tahoe               | -68      | -21        | -8         | -7       | -23   | -6     | -22      | -67       | -11     | -12       | -9       | -56       |
| Truckee             | -107     | -32        | -12        | -10      | -36   | -9     | -35      | -105      | -17     | -18       | -14      | -88       |
| Turlock-Denair      | -429     | -130       | -48        | -42      | -145  | -37    | -141     | -425      | -69     | -74       | -56      | -353      |
| Union_City          | -514     | -156       | -57        | -50      | -174  | -45    | -169     | -509      | -83     | -89       | -67      | -423      |
| University_City     | -514     | -156       | -57        | -50      | -174  | -45    | -169     | -509      | -83     | -89       | -67      | -423      |
| Van_Nuys            | -526     | -160       | -59        | -51      | -178  | -46    | -173     | -520      | -85     | -91       | -69      | -432      |
| Vancouver           | -682     | -207       | -76        | -66      | -231  | -59    | -224     | -674      | -110    | -118      | -89      | -560      |
| Ventura             | -901     | -274       | -100       | -87      | -305  | -78    | -296     | -891      | -145    | -155      | -118     | -740      |
| Victorville         | -492     | -150       | -55        | -48      | -167  | -43    | -162     | -487      | -79     | -85       | -65      | -405      |
| Wasco               | -164     | -50        | -18        | -16      | -55   | -14    | -54      | -162      | -26     |           | -21      | -134      |
|                     |          | -12        | -4         | -4       |       |        | -13      | -39       | -6      |           | -5       | -32       |
| Wenatchee           | -39      | -12        | -4         | -4       | -13   | -3     | -13      | -35       | -0      | -/        | -5       | -52       |

|                      | Riverside | Roseville | Sacrament | Salem  | Salinas | San Frans | i San_Bernad | San Cleme | San Diego | San Jose | San Juan ( | San Luis C | Santa_Ana | Santa Barb | Santa Clar | Seattle | SFO Airpor | Solana_Bea |
|----------------------|-----------|-----------|-----------|--------|---------|-----------|--------------|-----------|-----------|----------|------------|------------|-----------|------------|------------|---------|------------|------------|
| Albany               | -6        | -21       | -4        | -48    | -12     | -2        | 9            | -33       | -1        |          | -49        | -37        | -5        | -18        | -11        | -29     | -2         |            |
| Anaheim              | -129      | -410      | -81       | -958   | -230    | -42       | -177         | -657      | -27       | -37      | -970       | -742       | -97       | -366       | -217       | -582    | -42        | -2527      |
| Antioch-Pittsburgh   | -35       | -113      | -22       | -264   | -63     | -12       | -49          | -181      | -7        | -10      | -268       | -205       | -27       | -101       | -60        | -161    | -12        | -698       |
| Bakersfield          | -97       | -309      | -61       | -721   | -173    | -32       | -133         | -494      | -20       | -28      | -730       | -559       | -73       | -276       | -163       | -438    | -32        | -1902      |
| Barstow              | -8        | -26       | -5        | -62    | -15     | -3        | -11          | -42       | -2        | -2       | -62        | -48        | -6        | -24        | -14        | -37     | -3         | -163       |
| Bellingham           | -1        | -3        | -1        | -7     | -2      | 0         | -1           | -5        | 0         | 0        | -7         | -5         | -1        | -3         | -2         | -4      | 0          | -18        |
| Berkeley             | -40       | -129      | -25       | -300   | -72     | -13       | -55          | -206      | -8        | -11      | -304       | -233       | -30       | -115       | -68        | -182    | -13        | -792       |
| Bingen-white_Salmon  | -3        | -11       | -2        | -25    | -6      | -1        | -5           | -17       | -1        | -1       | -26        | -20        | -3        | -10        | -6         | -15     | -1         | -67        |
| Burbank              | -39       | -126      | -25       | -293   | -70     | -13       | -54          | -201      | -8        | -11      | -297       | -227       | -30       | -112       | -66        | -178    | -13        | -773       |
| Burbank_Airport      | -39       | -126      | -25       | -293   | -70     | -13       | -54          | -201      | -8        | -11      | -297       | -227       | -30       | -112       | -66        | -178    | -13        | -773       |
| Centrailia           | -2        | -7        | -1        | -16    | -4      | -1        | -3           | -11       | 0         | -1       | -16        | -12        | -2        | -6         | -4         | -9      | -1         | -41        |
| Chemult              | -9        | -30       | -6        | -70    | -17     | -3        | -13          | -48       | -2        | -3       | -71        | -54        | -7        | -27        | -16        | -43     | -3         | -185       |
| Chico                | -24       | -76       | -15       | -177   | -42     | -8        | -33          | -121      | -5        | -7       | -179       | -137       | -18       | -68        | -40        | -107    | -8         | -466       |
| Colfax               | -1        | -2        | 0         | -4     | -1      | 0         | -1           | -3        | 0         | 0        | -4         | -3         | 0         | -2         | -1         | -3      | 0          | -12        |
| Corcoran             | -8        | -26       | -5        | -61    | -15     | -3        | -11          | -42       | -2        | -2       | -62        | -47        | -6        | -23        | -14        | -37     | -3         | -161       |
| Davis                | -24       | -75       | -15       | -176   | -42     | -8        | -33          | -121      | -5        | -7       | -178       | -137       | -18       | -67        | -40        | -107    | -8         | -465       |
| Dunsmuir             | -1        | -2        | 0         | -6     | -1      | 0         | -1           | -4        | 0         | 0        | -6         | -4         | -1        | -2         | -1         | -3      | 0          | -15        |
| Edmonds              | -10       | -33       | -7        | -77    | -19     | -3        | -14          | -53       | -2        | -3       | -78        | -60        | -8        | -30        | -18        | -47     | -3         | -204       |
| Ephrata              | 0         | -1        | 0         | -2     | -1      | 0         | 0            | -2        | 0         | 0        | -2         | -2         | 0         | -1         | -1         | -1      | 0          | -6         |
| Escondido            | -52       | -167      | -33       | -390   | -94     | -17       | -72          | -268      | -11       | -15      | -395       | -303       | -40       | -149       | -88        | -237    | -17        | -1030      |
| Eugene               | -4        | -11       | -2        | -27    | -6      | -1        | -5           | -18       | -1        | -1       | -27        | -21        | -3        | -10        | -6         | -16     | -1         | -71        |
| Everett              | -10       | -88       | -6        | -76    | -18     | -8        | -14          | -52       | -2        | -3       | -77        | -59        | -8        | -29        | -17        | -46     | -8         | -201       |
| Fresno               | -168      | -535      | -105      | -1249  | -300    | -55       | -231         | -856      | -35       | -48      | -1264      | -968       | -127      | -477       | -283       | -759    | -55        | -3295      |
| Fullerton            | -49       | -158      | -31       | -368   | -88     | -16       | -68          | -252      | -10       | -14      | -373       | -285       | -37       | -141       | -83        | -224    | -16        | -971       |
| Gilroy               | -16       | -52       | -10       | -121   | -29     | -5        | -22          | -83       | -3        | -5       | -123       | -94        | -12       | -46        | -27        | -74     | -5         | -319       |
| Glendale             | -76       | -244      | -48       | -569   | -137    | -25       | -105         | -390      | -16       | -22      | -576       | -441       | -58       | -218       | -129       | -346    | -25        | -1502      |
| Hanford              | -16       | -52       | -10       | -122   | -29     | -5        | -22          | -83       | -3        | -5       | -123       | -94        | -12       | -47        | -28        | -74     | -5         | -321       |
| Hinkle               | -2        | -8        | -2        | -18    | -4      | -1        | -3           | -13       | -1        | -1       | -19        | -14        | -2        | -7         | -4         | -11     | -1         | -49        |
| Indio                | -19       | -61       | -12       | -143   | -34     | -6        | -26          | -98       | -4        | -5       | -145       | -111       | -15       | -55        | -32        | -87     | -6         | -378       |
| Industry             | 0         | -1        | 0         | -2     | -1      | 0         | 0            | -2        | 0         | 0        | -2         | -2         | 0         | -1         | -1         | -1      | 0          | -6         |
| Irvine               | -56       | -179      | -35       | -418   | -100    | -18       | -77          | -287      | -12       | -16      | -423       | -324       | -42       | -160       | -95        | -254    | -18        | -1102      |
| Kelso-Longview       | -4        | -12       | -2        | -27    | -6      | -1        | -5           | -18       | -1        | -1       | -27        | -21        | -3        | -10        | -6         | -16     | -1         | -71        |
| Klamath_Falls        | -8        | -25       | -5        | -59    | -14     | -3        | -11          | -41       | -2        | -2       | -60        | -46        | -6        | -23        | -13        | -36     | -3         | -157       |
| Los_Angeles          | -1448     | -4623     | -908      | -10791 | -2589   | -476      | -1993        | -7399     | -302      | -413     | -10923     | -8363      | -1093     | -4123      | -2445      | -6558   | -476       | -28467     |
| Madera               | -17       | -54       | -11       | -126   | -30     | -6        | -23          | -87       | -4        | -5       | -128       | -98        | -13       | -48        | -29        | -77     | -6         | -333       |
| Martinez             | -14       | -45       | -9        | -105   | -25     | -5        | -19          | -72       | -3        | -4       | -106       | -81        | -11       | -40        | -24        | -64     | -5         | -276       |
| Marysville           | -5        | -15       | -3        | -36    | -9      | -2        | -7           | -25       | -1        | -1       | -36        | -28        | -4        | -14        | -8         | -22     | -2         | -95        |
| Merced               | -25       | -80       | -16       | -187   | -45     | -8        | -34          | -128      | -5        | -7       | -189       | -145       | -19       | -71        | -42        | -113    | -8         | -492       |
| Modesto              | -74       | -236      | -46       | -552   | -132    | -24       | -102         | -378      | -15       | -21      | -558       | -427       | -56       | -211       | -125       | -335    | -24        | -1455      |
| Moorpark_Simi_Valley | -12       | -39       | -8        | -92    | -22     | -4        | -17          | -63       | -3        | -4       | -93        | -71        | -9        | -35        | -21        | -56     | -4         | -242       |
| Mt_Vernon            | -28       | -88       | -17       | -207   | -50     | و.        | -38          | -142      | -6        | -8       | -209       | -160       | -21       | -79        | -47        | -125    | -9         | -545       |
| Murrieta             | -17       | -55       | -11       | -129   | -31     | -6        | -24          | -89       | -4        | -5       | -131       | -100       | -13       | -49        | -29        | -79     | -6         | -341       |
| Needles              | -2        | -6        | -1        | -14    | -3      | -1        | -3           | -10       | 0         | -1       | -14        | -11        | -1        | -5         | -3         | -9      | -1         | -37        |
| Norwalk              | -41       | -131      | -26       | -305   | -73     | -13       | -56          | -209      | -9        | -12      | -308       | -236       | -31       | -116       | -69        | -185    | -13        | -804       |

|                     | Riverside | Roseville | Sacramento | Salem | Salinas | San Franci | San_Bernad | San Cleme | San Diego | San Jose | San Juan ( | San_Luis_C | Santa Ana | Santa Bark | Santa Clar | Seattle | SFO_Airpor | Solana Rea |
|---------------------|-----------|-----------|------------|-------|---------|------------|------------|-----------|-----------|----------|------------|------------|-----------|------------|------------|---------|------------|------------|
| Oakland             | -157      | -500      | -98        | -1167 | -280    | -51        | -216       | -800      | -33       | -45      | -1181      | -904       | -118      | -446       | -264       | -709    | -51        | -3079      |
| Oakland_Airport     | -157      | -500      | -98        | -1167 | -280    | -51        | -216       | -800      | -33       | -45      | -1181      | -904       | -118      | -446       | -264       | -709    | -51        | -3079      |
| Oceanside           | -63       | -201      | -40        | -470  | -113    | -21        | -87        | -322      | -13       |          | -476       | -365       | -48       | -180       | -107       | -286    | -21        | -1241      |
| Olympia-Lacey       | -7        | -22       | -4         | -51   | -12     | -2         | -9         | -35       | -1        |          | -52        | -40        | -5        | -20        | -12        | -31     | -2         | -136       |
| Oroville            | -5        | -16       | -3         | -38   | -9      | -2         | -7         | -26       | -1        | -1       | -38        | -29        | -4        | -15        | -9         | -23     | -2         | -100       |
| Palm_Springs        | -17       | -54       | -11        | -125  | -30     | -6         |            | -86       | -3        |          | -127       | -97        | -13       | -48        | -28        | -76     | -6         | -330       |
| Palmdale_Airport    | -46       | -146      | -29        | -341  | -82     | -15        | -63        | -234      | -10       |          | -345       | -264       | -35       | -130       | -77        | -207    | -15        | -899       |
| Pasadena            | -52       | -168      | -33        | -391  | -94     | -17        | -72        | -268      | -11       | -15      | -396       | -303       | -40       | -149       | -89        | -238    | -17        | -1032      |
| Pasco               | -15       | -48       | -9         | -112  | -27     | -5         | -21        | -77       | -3        |          | -113       | -87        | -11       | -43        | -25        | -68     | -5         | -296       |
| Pomona              | -59       | -187      | -37        | -437  | -105    | -19        | -81        | -299      | -12       | -17      | -442       | -338       | -44       | -167       | -99        | -265    | -19        | -1152      |
| Portland            | -16       | -50       | -10        | -116  | -28     | -5         | -21        | -79       | -3        | -4       | -117       | -90        | -12       | -44        | -26        | -70     | -5         | -305       |
| Red_Bluff           | -5        | -16       | -3         | -38   | -9      | -2         | -7         | -26       | -1        | -1       | -39        | -30        | -4        | -15        | -9         | -23     | -2         | -101       |
| Redding             | -32       | -101      | -20        | -236  | -57     | -10        | -44        | -162      | -7        | -9       | -239       | -183       | -24       | -90        | -54        | -144    | -10        | -623       |
| Redwood_City        | -30       | -94       | -19        | -220  | -53     | -10        | -41        | -151      | -6        | -8       | -223       | -171       | -22       | -84        | -50        | -134    | -10        | -581       |
| Richmond            | -39       | -124      | -24        | -290  | -70     | -13        | -54        | -199      | -8        | -11      | -293       | -225       | -29       | -111       | -66        | -176    | -13        | -764       |
| Riverbank           | -6        | -20       | -4         | -46   | -11     | -2         | -9         | -32       | -1        | -2       | -47        | -36        | -5        | -18        | -10        | -28     | -2         | -122       |
| Riverside           | 189672    | -319      | -63        | -745  | -179    | -33        | -138       | -511      | -21       | -29      | -754       | -578       | -75       | -285       | -169       | -453    | -33        | -1966      |
| Roseville           | -31       | 59339     | -20        | -233  | -56     | -10        | -43        | -160      | -7        | -9       | -236       | -181       | -24       | -89        | -53        | -142    | -10        | -616       |
| Sacramento          | -160      | -509      | 302608     | -1189 | -285    | -52        | -220       | -815      | -33       | -45      | -1203      | -921       | -120      | -454       | -269       | -722    | -52        | -3136      |
| Salem               | -13       | -43       | -8         | 25364 | -24     | -4         | -18        | -69       | -3        | -4       | -101       | -78        | -10       | -38        | -23        | -61     | -4         | -264       |
| Salinas             | -56       | -179      | -35        | -417  | 106018  | -18        | -77        | -286      | -12       | -16      | -422       | -323       | -42       | -159       | -94        | -253    | -18        | -1099      |
| San_Fransisco       | -304      | -972      | -191       | -2269 | -544    | 577572     | -419       | -1555     | -63       | -87      | -2296      | -1758      | -230      | -867       | -514       | -1379   | -100       | -5985      |
| San_Bernadido       | -73       | -232      | -46        | -541  | -130    | -24        | 137772     | -371      | -15       | -21      | -548       | -420       | -55       | -207       | -123       | -329    | -24        | -1428      |
| San_Clemente        | -20       | -62       | -12        | -146  | -35     | -6         | -27        | 37038     | -4        | -6       | -148       | -113       | -15       | -56        | -33        | -89     | -6         | -385       |
| San_Diego           | -479      | -1531     | -301       | -3573 | -857    | -158       | -660       | -2450     | 909778    | -137     | -3617      | -2769      | -362      | -1365      | -810       | -2171   | -158       | -9426      |
| San_Jose            | -351      | -1120     | -220       | -2614 | -627    | -115       | -485       | -1795     | -73       | 665627   | -2646      | -2026      | -265      | -999       | -592       | -1589   | -115       | -6897      |
| San_Juan_Capistrano | -13       | -42       | -8         | -99   | -24     | -4         | -18        | -68       | -3        | -4       | 25057      | -77        | -10       | -38        | -22        | -60     | -4         | -261       |
| San_Luis_Obispo     | -17       | -55       | -11        | -129  | -31     | -6         | -24        | -88       | -4        | -5       | -131       | 32757      | -13       | -49        | -29        | -78     | -6         | -340       |
| Santa_Ana           | -132      | -423      | -83        | -987  | -237    | -44        | -182       | -677      | -28       | -38      | -999       | -765       | 251260    | -377       | -224       | -600    | -44        | -2604      |
| Santa_Barbra        | -35       | -112      | -22        | -262  | -63     | -12        | -48        | -179      | -7        | -10      | -265       | -203       | -27       | 66542      | -59        | -159    | -12        | -690       |
| Santa_Clarita       | -59       | -189      | -37        | -441  | -106    | -19        | -82        | -303      | -12       | -17      | -447       | -342       | -45       | -169       | 112299     | -268    | -19        | -1164      |
| Seattle             | -22       | -70       | -14        | -165  | -39     | -7         | -30        | -113      | -5        | -6       | -167       | -128       | -17       | -63        | -37        | 41803   | -7         | -434       |
| SFO_Airport         | -304      | -972      | -191       | -2269 | -544    | -100       | -419       | -1555     | -63       | -87      | -2296      | -1758      | -230      | -867       | -514       | -1379   | 577572     | -5985      |
| Solana_Beach        | -5        | -16       | -3         | -38   | -9      | -2         | -7         | -26       | -1        | -1       | -38        | -29        | -4        | -14        | -9         | -23     | -2         | 9553       |
| Sparks              | -9        | -29       | -6         | -68   | -16     | -3         | -13        | -47       | -2        | -3       | -69        | -53        | -7        | -26        | -15        | -42     | -3         | -180       |
| Spokane             | -6        | -19       | -4         | -45   | -11     | -2         | -8         | -31       | -1        | -2       | -46        | -35        | -5        | -17        | -10        | -27     | -2         | -119       |
| Stockton            | -96       | -305      | -60        | -712  | -171    | -31        | -131       | -488      | -20       | -27      | -721       | -552       | -72       | -272       | -161       | -433    | -31        | -1878      |
| Suisun-Fairfield    | -10       | -33       | -6         | -76   | -18     | -3         | -14        | -52       | -2        | -3       | -77        | -59        | -8        | -29        | -17        | -46     | -3         | -201       |
| Sylmar              | -2        | -7        | -1         | -17   | -4      | -1         | -3         | -12       | 0         | -1       | -18        | -13        | -2        | -7         | -4         | -11     | -1         | -46        |
| Tacoma              | -4        | -14       | -3         | -32   | -8      | -1         | -6         | -22       | -1        | -1       | -33        | -25        | -3        | -12        | -7         | -20     | -1         | -86        |
| Tahoe               | -3        | -11       | -2         | -26   | -6      | -1         | -5         | -18       | -1        | -1       | -26        | -20        | -3        | -10        | -6         | -16     | -1         | -68        |
| Truckee             | -5        | -17       | -3         | -40   | -10     | -2         | -7         | -28       | -1        | -2       | -41        | -31        | -4        | -15        | -9         | -25     | -2         | -107       |
| Turlock-Denair      | -22       | -70       | -14        | -163  | -39     | -7         | -30        | -112      | -5        | -6       | -165       | -126       | -17       | -62        | -37        | -99     | -7         | -430       |
| Union_City          | -26       | -84       | -16        | -195  | -47     | -9         | -36        | -134      | -5        | -7       | -198       | -151       | -20       | -75        | -44        | -119    | -9         | -515       |
| University_City     | -26       | -84       | -16        | -195  | -47     | -9         | -36        | -134      | -5        | -7       | -198       | -151       | -20       | -75        | -44        | -119    | -9         | -515       |
| Van_Nuys            | -27       | -86       | -17        | -200  | -48     | -9         | -37        | -137      | -6        | -8       | -202       | -155       | -20       | -76        | -45        | -121    | -9         | -527       |
| Vancouver           | -35       | -111      | -22        | -259  | -62     | -11        | -48        | -178      | -7        | -10      | -262       | -201       | -26       | -99        | -59        | -157    | -11        | -683       |
| Ventura             | -46       | -147      | -29        | -342  | -82     | -15        | -63        | -235      | -10       | -13      | -346       | -265       | -35       | -131       | -78        | -208    | -15        | -903       |
| Victorville         | -25       | -80       | -16        | -187  | -45     | -8         | -35        | -128      | -5        | -7       | -189       | -145       | -19       | -71        | -42        | -114    | -8         | -493       |
| Wasco               | -8        | -27       | -5         | -62   | -15     | -3         | -11        | -43       | -2        | -2       | -63        | -48        | -6        | -24        | -14        | -38     | -3         | -164       |
| Wenatchee           | -2        | -6        | -1         | -15   | -4      | -1         | -3         | -10       | 0         | -1       | -15        | -11        | -2        | -6         | -3         | -9      | -1         | -39        |
| Wilshram            | -9        | -28       | -6         | -66   | -16     | -3         | -12        | -46       | -2        | -3       | -67        | -51        | -7        | -25        | -15        | -40     | -3         | -175       |

| ich                  | Sparks | Spokane | Stockton | Suisun-Fair | Sylmar | Tacoma | Tahoe  | Truckee | Turlock-Dei | Union City | University | Van Nuys | Vancouver | Ventura | Victorville | Wasco  | Wenatchee | Wilshram |
|----------------------|--------|---------|----------|-------------|--------|--------|--------|---------|-------------|------------|------------|----------|-----------|---------|-------------|--------|-----------|----------|
| Albany               | -70    | -107    | -7       | -63         | -276   | -148   | -187   | -119    | -29         | -25        | -25        | -24      | -19       | -14     | -26         | -77    | -324      | -72      |
| Anaheim              | -1402  | -2126   | -135     | -1256       | -5513  | -2948  | -3723  | -2366   | -588        | -491       | -491       | -480     | -370      | -280    | -512        | -1543  | -6466     | -1442    |
| Antioch-Pittsburgh   | -387   | -587    | -37      | -347        | -1522  | -814   | -1027  | -653    | -162        | -135       | -135       | -132     | -102      | -77     | -141        | -426   | -1785     | -398     |
| Bakersfield          | -1055  | -1600   | -101     | -945        | -4150  | -2219  | -2802  | -1781   | -442        | -369       | -369       | -361     | -279      | -211    | -386        | -1161  | -4867     | -1086    |
| Barstow              | -90    | -137    | -9       | -81         | -355   | -190   | -240   | -152    | -38         | -32        | -32        | -31      | -24       | -18     | -33         | -99    | -416      | -93      |
| Bellingham           | -10    | -15     | -1       | -9          | -40    | -21    | -27    | -17     | -4          | -4         | -4         | -3       | -3        | -2      | -4          | -11    | -47       | -10      |
| Berkeley             | -439   | -666    | -42      | -393        | -1727  | -924   | -1166  | -741    | -184        | -154       | -154       | -150     | -116      | -88     | -160        | -483   | -2025     | -452     |
| Bingen-white_Salmon  | -37    | -56     | -4       | -33         | -146   | -78    | -98    | -63     | -16         | -13        | -13        | -13      | -10       | -7      | -14         | -41    | -171      | -38      |
| Burbank              | -429   | -650    | -41      | -384        | -1686  | -902   | -1139  | -724    | -180        | -150       | -150       | -147     | -113      | -86     | -157        | -472   | -1977     | -441     |
| Burbank_Airport      | -429   | -650    | -41      | -384        | -1686  | -902   | -1139  | -724    | -180        | -150       | -150       | -147     | -113      | -86     | -157        | -472   | -1977     | -441     |
| Centrailia           | -23    | -34     | -2       | -20         | -89    | -48    | -60    | -38     | -10         | -8         | -8         | -8       | -6        | -5      | -8          | -25    | -105      | -23      |
| Chemult              | -103   | -155    | -10      | -92         | -403   | -216   | -272   | -173    | -43         | -36        | -36        | -35      | -27       | -20     | -37         | -113   | -473      | -105     |
| Chico                | -259   | -392    | -25      | -232        | -1017  | -544   | -687   | -436    | -108        | -90        | -90        | -88      | -68       | -52     | -95         | -285   | -1193     | -266     |
| Colfax               | -6     | -10     | -1       | -6          | -26    | -14    | -17    | -11     | -3          | -2         | -2         | -2       | -2        | -1      | -2          | -7     | -30       | -7       |
| Corcoran             | -89    | -135    | -9       | -80         | -350   | -187   | -237   | -150    | -37         | -31        | -31        | -30      | -24       | -18     | -33         | -98    | -411      | -92      |
| Davis                | -258   | -391    | -25      | -231        | -1014  | -542   | -684   | -435    | -108        | -90        | -90        | -88      | -68       | -51     | -94         | -284   | -1189     | -265     |
| Dunsmuir             | -8     | -12     | -1       | -7          | -32    | -17    | -22    | -14     | -3          | -3         | -3         | -3       | -2        | -2      | -3          | -9     | -38       | -8       |
| Edmonds              | -113   | -172    | -11      | -102        | -446   | -239   | -301   | -191    | -48         | -40        | -40        | -39      | -30       | -23     | -41         | -125   | -523      | -117     |
| Ephrata              | -3     | -5      | 0        | -3          | -13    | -7     | -9     | -6      | -1          | -1         | -1         | -1       | -1        | -1      | -1          | -4     | -15       | -3       |
| Escondido            | -571   | -866    | -55      | -512        | -2246  | -1201  | -1517  | -964    | -239        | -200       | -200       | -195     | -151      | -114    | -209        | -629   | -2635     | -588     |
| Eugene               | -39    | -59     | -4       | -35         | -154   | -82    | -104   | -66     | -16         | -14        | -14        | -13      | -10       | -8      | -14         | -43    | -181      | -40      |
| Everell              | -112   | -169    | -11      | -100        | -439   | -235   | -297   | -188    | -47         | -89        | -59        | -58      | -29       | -22     | -41         | -125   | -515      | -115     |
| Fresno               | -1828  | -2771   | -175     | -1637       | -7187  | -3844  | -4854  | -3085   | -766        | -640       | -640       | -625     | -482      | -365    | -668        | -2011  | -8430     | -1880    |
| Fullerton            | -538   | -817    | -52      | -482        | -2118  | -1133  | -1430  | -909    | -226        | -188       | -188       | -184     | -142      | -108    | -197        | -593   | -2484     | -554     |
| Gilroy               | -177   | -269    | -17      | -159        | -697   | -373   | -471   | -299    | -74         | -62        | -62        | -61      | -47       | -35     | -65         | -195   | -817      | -182     |
| Glendale             | -833   | -1263   | -80      | -747        | -3277  | -1753  | -2213  | -1406   | -349        | -292       | -292       | -285     | -220      | -166    | -305        | -917   | -3843     | -857     |
| Hanford              | -178   | -270    | -17      | -160        | -701   | -375   | -473   | -301    | -75         | -62        | -62        | -61      | -47       | -36     | -65         | -196   | -822      | -183     |
| Hinkle               | -27    | -41     | -3       | -24         | -106   | -57    | -72    | -46     | -11         | -9         | -9         | -9       | -7        | -5      | -10         | -30    | -124      | -28      |
| Indio                | -210   | -318    | -20      | -188        | -825   | -441   | -557   | -354    | -88         | -73        | -73        | -72      | -55       | -42     | -77         | -231   | -968      | -216     |
| Industry             | -3     | -5      | 0        | -           | -13    | -7     | -9     | -6      | -1          | -1         | -1         | -1       | -1        | -1      | -1          | -4     | -15       | -3       |
| Irvine               | -611   | -927    | -59      | -548        | -2405  | -1286  | -1624  | -1032   | -256        | -214       | -214       | -209     | -161      | -122    | -223        | -673   | -2820     | -629     |
| Kelso-Longview       | -39    | -60     | -4       |             | -155   | -83    | -105   | -67     | -17         | -14        | -14        | -13      | -10       | -8      | -14         | -43    | -182      | -41      |
| Klamath_Falls        | -87    | -132    | -8       |             | -341   | -183   | -231   | -147    | -36         | -30        | -30        | -30      | -23       | -17     | -32         | -96    | -401      | -89      |
| Los_Angeles          | -15789 | -23942  | -1516    | -14146      | -62097 | -33211 | -41933 | -26650  | -6620       | -5525      | -5525      | -5402    | -4168     | -3154   | -5770       | -17376 |           | -16245   |
| Madera               | -185   | -280    | -18      | -165        | -726   | -388   | -490   | -312    | -77         | -65        | -65        | -63      | -49       | -37     | -67         | -203   | -852      | -190     |
| Martinez             | -153   | -232    | -15      |             | -603   | -322   | -407   | -259    | -64         | -54        | -54        | -52      | -40       | -31     | -56         | -169   | -707      | -158     |
| Marysville           | -52    | -79     | -5       |             | -206   | -110   | -139   | -88     | -22         | -18        | -18        | -18      | -14       | -10     | -19         | -58    | -242      | -54      |
| Merced               | -273   | -414    | -26      |             | -1074  | -574   | -725   | -461    | -114        | -96        | -96        | -93      | -72       | -55     | -100        | -300   | -1259     | -281     |
| Modesto              | -807   | -1224   | -77      | -723        | -3174  | -1698  | -2143  | -1362   | -338        | -282       | -282       | -276     | -213      | -161    | -295        | -888   | -3723     | -830     |
| Moorpark_Simi_Valley | -134   | -204    | -13      | -120        | -528   | -282   | -357   | -227    | -56         | -47        | -47        | -46      | -35       | -27     | -49         | -148   | -619      | -138     |
| Mt_Vernon            | -302   | -458    | -29      |             | -1188  | -636   | -802   | -510    | -127        | -106       | -106       | -103     | -80       | -60     | -110        | -333   | -1394     | -311     |
| Murrieta             | -189   | -287    | -18      | -170        | -744   | -398   | -503   | -319    | -79         | -66        | -66        | -65      | -50       | -38     | -69         | -208   | -873      | -195     |
| Needles              | -21    | -31     | -2       |             | -81    | -43    | -55    | -35     | -9          | -7         | -7         | -7       | -5        | -4      | -8          | -23    | -95       | -21      |
| Norwalk              | -446   | -676    | -43      | -399        | -1753  | -938   | -1184  | -752    | -187        | -156       | -156       | -153     | -118      | -89     | -163        | -491   | -2056     | -459     |

| ich                        | Sparks       | Spokane       | Stockton    | Suisun-Fair   | Svimar       | Tacoma        | Tahoe         | Truckee       | Turlock-De    | Union_City  | University   | Van Nuvs     | Vancouver  | Ventura     | Victorville | Wasco         | Wenatchee       | Wilshram      |
|----------------------------|--------------|---------------|-------------|---------------|--------------|---------------|---------------|---------------|---------------|-------------|--------------|--------------|------------|-------------|-------------|---------------|-----------------|---------------|
| Oakland                    | -1708        | -2589         | -164        | -1530         | -6715        | -3592         | -4535         | -2882         | -716          | -598        | -598         | -584         | -451       | -341        | -624        | -1879         | -7876           |               |
| Oakland Airport            | -1708        | -2589         | -164        | -1530         | -6715        | -3592         | -4535         | -2882         | -716          | -598        | -598         | -584         | -451       | -341        | -624        | -1879         | -7876           |               |
| Oceanside                  | -688         | -1044         | -66         | -617          | -2707        | -1448         | -1828         | -1162         | -289          | -241        | -241         | -235         | -182       | -137        | -252        | -757          | -3174           | -708          |
| Olympia-Lacey              | -75          | -114          | -7          | -67           | -296         | -158          | -200          | -127          | -32           | -26         | -26          | -26          | -20        | -15         | -27         | -83           | -347            | -77           |
| Oroville                   | -56          | -84           | -5          | -50           | -219         | -117          | -148          | -94           | -23           | -19         | -19          | -19          | -15        | -11         | -20         | -61           | -256            |               |
| Palm_Springs               | -183         | -277          | -18         | -164          | -719         | -385          | -486          | -309          | -77           | -64         | -64          | -63          | -48        | -37         | -67         | -201          | -844            |               |
| Palmdale Airport           | -499         | -756          | -48         | -447          | -1961        | -1049         | -1324         | -842          | -209          | -174        | -174         | -171         | -132       | -100        | -182        | -549          | -2300           |               |
| Pasadena                   | -572         | -868          | -55         | -513          | -2251        | -1204         | -1520         | -966          | -240          | -200        | -200         | -196         | -151       | -114        | -209        | -630          | -2640           |               |
| Pasco                      | -164         | -249          | -16         | -147          | -645         | -345          | -436          | -277          | -69           | -57         | -57          | -56          | -43        | -33         | -60         | -181          | -757            | -169          |
| Pomona                     | -639         | -969          | -61         | -572          | -2512        | -1344         | -1696         | -1078         | -268          | -224        | -224         | -219         | -169       | -128        | -233        | -703          | -2946           |               |
| Portland                   | -169         | -257          | -16         | -152          | -666         | -356          | -450          | -286          | -71           | -59         | -59          | -58          | -45        | -34         | -62         | -186          | -781            | -174          |
| Red_Bluff                  | -105         | -85           | -10         | -50           | -221         | -118          | -149          | -200          | -24           | -20         | -20          | -19          | -15        | -11         | -21         | -62           | -259            |               |
| Redding                    | -346         | -524          | -33         | -310          | -1359        | -727          | -918          | -583          | -145          | -121        | -121         | -118         | -15        | -69         | -126        | -380          | -1594           |               |
| Redwood_City               | -340         | -489          | -31         | -289          | -1355        | -678          | -856          | -585          | -145          | -121        | -121         | -110         | -91        | -64         | -118        | -355          | -1394           |               |
| Richmond                   | -424         | -643          | -41         | -380          | -1667        | -892          | -1126         | -716          | -178          | -148        | -148         | -145         | -112       | -85         | -155        | -467          | -1956           |               |
| Riverbank                  | -424         | -103          | -41         | -580          | -266         | -142          | -1120         | -114          | -178          | -148        | -148         | -23          | -112       | -83         | -133        | -487          | -1950           | -430          |
| Riverside                  | -1090        | -1653         | -105        | -977          | -4289        | -2294         | -2896         | -1840         | -457          | -24         | -382         | -373         | -288       | -218        | -23         | -1200         | -5030           |               |
|                            | -1090        | -1055         | -105        | -306          | -4289        | -2294         | -2890         | -1840         | -437          | -582        | -382         | -117         | -200       | -218        | -125        | -1200         | -5050           |               |
| Roseville                  | -342         | -2637         | -35         | -308          | -1545        | -3659         | -4619         | -2936         | -145          | -120        | -120         | -117         | -90        | -08         | -125        | -576          | -1575           | -1790         |
| Sacramento<br>Salem        | -1759        | -2057         | -167        | -1558         | -0841        | -3059         | -4619         | -2956         |               |             |              | -595         | -459       |             | -656        |               |                 |               |
|                            | -146         | -222          | -14         | -131          | -2398        | -308          | -1619         | -247          | -61<br>-256   | -51<br>-213 | -51<br>-213  |              | -39        | -29<br>-122 | -53         | -161<br>-671  | -675<br>-2813   | -151<br>-627  |
| Salinas                    |              |               |             |               |              |               |               |               |               |             |              | -209         |            |             |             |               |                 | -627          |
| San_Fransisco              | -3319        | -5033         | -319        | -2974         | -13054       | -6982         | -8815         | -5603         | -1392         | -1162       | -1162        | -1136        | -876       | -663        | -1213       | -3653         | -15311          |               |
| San_Bernadido              | -792         | -1201         | -76         | -710          | -3116        | -1666         | -2104         | -1337         | -332          | -277        | -277         | -271         | -209       | -158        | -290        | -872          | -3654           | -815          |
| San_Clemente               | -213         | -324          | -20         | -191          | -839         | -449          | -567          | -360          | -89           | -75         | -75          | -73          | -56        | -43         | -78         | -235          | -984            | -220          |
| San_Diego                  | -5228        | -7928         | -502        | -4684         | -20562       | -10997        | -13885        | -8824         | -2192         | -1830       | -1830        | -1789        | -1380      | -1044       | -1911       | -5754         | -24116          |               |
| San_Juse                   | -3825        | -5800         | -367        | -3427         | -15044       | -8046         | -10159        | -6457         | -1604         | -1339       | -1339        | -1309        | -1010      | -764        | -1398       | -4210         | -17645          |               |
| San_Juan_Capistrano        | -145<br>-189 | -219<br>-286  | -14         | -130<br>-169  | -569<br>-743 | -304<br>-397  | -384<br>-501  | -244<br>-319  | -61           | -51<br>-66  | -51<br>-66   | -49<br>-65   | -38<br>-50 | -29         | -53         | -159<br>-208  | -667<br>-871    | -149<br>-194  |
| San_Luis_Obispo            | -189         | -286          | -18         | -109          | -745         | -3038         | -3836         | -2438         | -606          | -505        | -505         | -65          | -50        | -38         | -528        | -208          | -8/1            | -194          |
| Santa_Ana                  | -1444        | -2190         | -139        | -1294<br>-343 | -5680        | -3038         | -3836         | -2438<br>-646 | -606          | -505        | -505         | -494         | -381       | -289        | -528        | -1590         | -6662           |               |
| Santa_Barbra               | -585         | -581          | -57         | -545          | -1506        | -805          | -1017         | -040          | -101          | -154        | -154         | -131         | -101       | -76         | -140        | -421<br>-711  | -1/00           |               |
| Santa_Clarita              | -040         |               |             | -216          | -2540        |               |               | -1090         |               | -226        | -226         |              | -170       | -129        |             |               |                 |               |
| Seattle                    | -241         | -365<br>-5033 | -23<br>-319 | -216          | -13054       | -506<br>-6982 | -639<br>-8815 | -406          | -101<br>-1392 | -84         | -84          | -82<br>-1136 | -64        | -48         | -88         | -265<br>-3653 | -1111<br>-15311 | -248<br>-3415 |
| SFO_Airport                | -55          |               | -319        | -2974         | -13054       |               | -8815         | -5603         | -1392         |             | -1162<br>-19 |              |            | -663        |             | -3653         |                 |               |
| Solana_Beach<br>Sparks     | 17303        | -84<br>-152   | -10         | -50           | -218         | -117<br>-210  | -147          | -94           | -23           | -19<br>-35  | -19          | -19<br>-34   | -15<br>-26 | -11         | -20         | -01           | -256<br>-461    |               |
|                            | -66          | 11377         | -10         | -90           | -259         | -210          | -200          | -109          | -42           | -35         | -35          | -34          | -20        | -20         | -37         | -110          | -401            | -105          |
| Spokane<br>Stockton        | -00          | -1580         | -6          | -59           | -259         | -139          | -1/5          | -111          | -28           | -23         | -23          | -25          | -17        | -13         | -24         | -73           | -304            |               |
|                            |              |               |             |               |              |               |               |               | -457          |             |              |              |            |             |             |               |                 |               |
| Suisun-Fairfield<br>Sylmar | -112<br>-25  | -169<br>-39   | -11         | 19324<br>-23  | -439<br>4325 | -235          | -296<br>-68   | -188<br>-43   | -4/           | -39<br>-9   | -39          | -38          | -29        | -22         | -41         | -123          | -515<br>-117    | -115          |
| Tacoma                     | -25          | -59           | -2          | -23           | 4525         | -55<br>8174   | -08           | -45           | -11           | -17         | -17          | -16          | -13        |             |             | -28           | -117            |               |
| -                          | -48          | -72           | -5          | -43           | -187         | -79           | -126          | -80           | -20           | -17         | -17          |              | -15        | -9          |             | -52           | -219            |               |
| Tahoe                      | -58          | -90           | -4          | -54           | -148         |               | -157          |               | -16           | -13         | -13          | -13          |            | -12         |             | -41           |                 |               |
| Truckee                    | -59          |               |             | -53           | -233         | -125          |               | 10211         |               | -21         |              | -20          | -16        | -12         | -22         |               | -273<br>-1100   |               |
| Turlock-Denair             |              | -362          | -23         |               |              | -502          | -633          | -403          | 41408         |             | -83          | -82          | -63        |             |             | -262          |                 |               |
| Union_City                 | -286         | -433          | -27         | -256          | -1124        | -601          | -759          | -482          | -120          | 49632       | -100         | -98          | -75        | -57         | -104        | -314          | -1318           |               |
| University_City            | -286         | -433          | -27         | -256          | -1124        | -601          | -759          | -482          | -120          | -100        | 49632        | -98          | -75        | -57         | -104        | -314          | -1318           | -294          |
| Van_Nuys                   | -292         | -443          | -28         | -262          | -1149        | -615          | -776          | -493          | -123          | -102        | -102         | 50765        | -77        | -58         | -107        | -322          | -1348           |               |
| Vancouver                  | -379         | -574          | -36         | -339          | -1490        | -797          | -1006         | -639          | -159          | -133        | -133         | -130         | 65825      | -76         | -138        | -417          | -1747           | -390          |
| Ventura                    | -501         | -759          | -48         | -449          | -1969        | -1053         | -1330         | -845          | -210          | -175        | -175         | -171         | -132       | 87025       | -183        | -551          | -2309           | -515          |
| Victorville                | -274         | -415          | -26         | -245          | -1076        | -576          | -727          | -462          | -115          | -96         | -96          | -94          | -72        | -55         | 47520       | -301          | -1262           | -282          |
| Wasco                      | -91          | -138          | -9          | -81           | -357         | -191          | -241          | -153          | -38           | -32         | -32          | -31          | -24        | -18         | -33         | 15714         | -419            |               |
| Wenatchee                  | -22          | -33           | -2          | -19           | -85          | -46           | -58           | -37           | -9            | -8          | -8           | -7           | -6         | -4          | -8          | -24           | 3673            |               |
| Wilshram                   | -97          | -147          | -9          | -87           | -382         | -204          | -258          | -164          | -41           | -34         | -34          | -33          | -26        | -19         | -36         | -107          | -448            | 16815         |

## **INITIAL DISTRIBUTION LIST**

- 1. Defense Technical Information Center Ft. Belvoir, VA
- Dudley Knox Library Naval Postgraduate School Monterey, CA
- Distinguished Professor Gerald Brown Naval Postgraduate School Monterey, CA
- 4. Professor W. Mathew Carlyle Naval Postgraduate School Monterey, CA