A NOVEL STRUCTURAL HEALTH MANAGEMENT APPROACH FOR STEEL BRIDGES

Robert Mason, Lawrence Gintert, Michael Miller, and Mark Singleton, Ph D Concurrent Technologies Corporation (CTC)

Vincent Hock, Richard Lampo, and Steven Sweeney U.S. Army Corps of Engineers, Engineer Research and Development Center,

Construction Engineering Research Laboratory (ERDC-CERL)

Keith Chandler Chandler Monitoring Systems, Inc.

Report Documentation Page					Form Approved OMB No. 0704-0188	
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.						
1. REPORT DATE FEB 2009		2. REPORT TYPE		3. DATES COVE 00-00-2009	RED • to 00-00-2009	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
A Novel Structural Health Management Approach for Steel Bridges				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, IL, 61826-9005				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NOTES 2009 U.S. Army Corrosion Summit, 3-5 Feb, Clearwater Beach, FL						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF				18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT Same as Report (SAR)	OF PAGES 41	RESPONSIBLE PERSON	

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

Overview

- Problem Description
- Objectives
- Technical Approach
 - Team
- Technology Implementation
 - Fiber Bragg Grating
 - Acoustic Emission Sensors
 - Completed System
 - Data Acquisition and Analysis
- Next Steps
- Summary

Problem Description

- Corrosion of steel bridges remains a critical infrastructure concern
 - Corrosion of U.S. highway bridges costs economy \$8.3M annually (Source: FHWA)
 - 25% of U.S. bridges are structurally deficient or functionally obsolete (Source: FHWA)
 - 503 U.S. bridges
 failed over 11 year
 period (100 due to
 corrosion) (Source: ERDC-CERL)

Concurrent Technologies Corporation

Problem Description (cont.)

- Current method of monitoring routine inspection – has limitations
 - Several techniques employed visual, dye penetrant, ultrasonic, radiographic non-destructive testing methods
 - May not detect hidden cracks in built-up structures
 - Unable to determine if defect is actively growing

Objectives

- Demonstrate and validate state-of-the-art and emerging innovative technology approaches for remote structural health and corrosion degradation monitoring of steel bridges
- Employ system on two subject bridges to greatly reduce risk of catastrophic failure by providing advance warning of growing structural problems caused by corrosion/materials degradation

CTC Concurrent Technologies Corporation

Objectives (cont.)

- Subject Bridge 1 I-20 Bridge, Vicksburg, MS
 - Steel truss through deck
 - About 23,000 vehicles per day
 - Westward movement of bridge piers E-1 and E-2 on east side

Objectives (cont.)

- Subject Bridge 2 Government Bridge, Rock Island, IL
 - Steel truss through deck
 - Built in 1893
 - About 10,300 vehicles per day (lower deck)
 - About five trains
 per day (upper deck)

Technical Approach

- Conduct structural assessment of subject bridges to determine optimal types and locations of sensors
- Integrate optical and other sensors into a novel structural health monitoring system specifically tailored to the subject bridges
- Design software that can not only collect data but can also interpret to provide early warning of areas of concern

Technical Approach (cont.)

- For the I-20 bridge, design and implement system utilizing:
 - Corrosion sensors two types plus corrosion coupons
 - Accelerometers modal response, monitor abnormal vibration characteristics
 - Strain gauges monitor abnormal deflections
 - Tilt sensors
 - Deflection/displacement gauges Monitor movement of piers and associated stress to structural members

Technical Approach (cont.)

- For the Government Bridge, design and implement system utilizing:
 - Corrosion sensors two types plus corrosion coupons
 - Accelerometers modal response, monitor abnormal vibration characteristics
 - Strain gauges monitor abnormal deflections
 - Acoustic Emission sensors monitor crack growth

Team Members

- U.S. Army Corps of Engineers, Engineer Research & Development Center Construction Engineering Research Laboratory (ERDC-CERL)
- Mandaree Enterprises Corporation (MEC)
- Concurrent Technologies Corporation (CTC)
- O'Donnell Consulting Engineers, Inc.
- Chandler Monitoring Systems, Inc.
 - Carlyle Consultants
 - Defense Science and Technology Office (DSTO), Australia
- Input from Office of the Secretary of Defense (OSD), other ERDC personnel, relevant Departments of Transportation (DOTs) and Directorates of Public Works (DPWs)

Technology Implementation

- Optical Sensors Fiber Bragg Gratings (FBGs)
 - Fiber cores with photo-imprinted FBGs to change refractive index
 - Laser input signals sent through fiber core reflect off FBGs
 - Each FBG sensor has different wave length and spectural operating window band
 - As pressure or temperature changes, reflected wave length changes, providing data

Fiber Bragg Gratings

Concurrent Technologies Corporation

STATES OF

- Typically can monitor up to +/-2500 microstrain ($\mu\epsilon$)/FBG with up to 40 FBGs written-on or spliced-to each fiber, each FBG having a unique λ_{Bragg}
 - Interrogator scans for and finds each unique- λ_{Bragg} peak
 - Software analyzes each unique- λ_{Bragg} peak and numerically logs its precise λ_{Bragg} value
- Can spread FBG locations over long distances of fiber
- Greatly simplifies cabling, instrumentation, and installation

C Concurrent Technologies Corporation

• Can monitor *many* sensors (>100 in some cases) on *one fiber*

- Each sensor on fiber is wavelength-specific, providing implicit identification and ability to *multiplex* data.
- Simplifies cabling and instrumentation:

Cabling and instrumentation for 400 *wired* strain sensors

Cabling and instrumentation for ≥ 640 multiplexed *fiber-optic* strain sensors, inside environmental enclosure with heat exchanger

For FBG strain sensor that is tack-welded/bonded to structure:

- Structure *strain* → FBG *stretch/compression*
- FBG stretch/compression $\rightarrow \Lambda$ (FBG period) stretch/compression
- Λ stretch/compression $\rightarrow \lambda_{Bragg}$ increase/decrease

- Benefits of FBG optical sensors
 - Established, proven technology
 - Fast, accurate, field-reliable
 - Resistant to fatigue and drift
 - Immune to electromagnetic interference
 - Resistant to corrosion, chemicals, water, and lightning
 - Large temperature range (-40 to +150°C)
 - Signals can travel long distances (kilometers)
 - Small, light weight, easy to install
 - Surface mountable or embeddable into structures

Technology Implementation

- Acoustic Emission (AE) Sensors
 - Detects and locates active, growing defects
 - Totally inspects monitored area for all defects, covering beams, gussets, stringers, and all hidden structural members
 - Only normal bridge traffic and/or wind loads needed
 - Works on both steel and composite bridges
 - Locates cracks by their actual growth
 - Corrosion revealed through reduction in local structural integrity
 - Computerized
 - Quick results are available in real-time during testing

Acoustic Emission Sensors

- I-80 Bryte Bend bridge
 - Box-beam design
 - Inappropriate material selection resulted in cracks
 - AE detected 1/16" long fatigue crack, hidden under paint but growing under traffic loading

Concurrent Technologies Corporation

Technology Implementation -Complete Sensor System

Data Acquisition and Analysis FBG Instrumentation — Typical Scan Results

• Valuable data but must be interpreted!

Concurrent Technologies Corporation

Data Acquisition and Analysis (cont.)

Multi-point λ_{Bragg} peaks as displayed by interrogator

• Valuable data but must be interpreted!

C Concurrent Technologies Corporation

Data Acquisition and Analysis (cont.)

Sensor-location and in-situ graphical data screen

CTC

Next Steps/Upcoming Events

• Schedule

MILESTONE CHART				
EVENT	TIME			
Project Coordination Meeting	October 2008			
Submit Work Plan	October 2008			
Kickoff Meetings at Two Subject Bridges	November 2008			
Structural Evaluation on Both Bridges	March 2009			
Technologies Selected for System	April 2009			
Procure Technologies and Assemble System	May 2009			
Demonstrate System on Prototype	July 2009			
Install System on Two Bridges	August 2009			
Confirm Functionality	August 2009			
Submit Systems Manual	October 2009			
One-Year System Inspection	August 2010			
Complete ROI Validation	August 2010			
Complete Interim Technical Report	July 2010			
Complete Documentation (includes Interim Tech Report, Procurement Specification, etc.)	August 2010			

Summary

- The corrosion of steel bridges continues to be a critical infrastructure concern
- A novel sensor system, based on optical FBG sensors but incorporating other unique types of sensors and technologies, is envisioned for the structural health monitoring of these bridges
- The system will provide 24-hour, thorough evaluations of bridge structures, including instantaneous warnings of potential failure spots (visible or not)

Acknowledgments

- This work was funded by ERDC-CERL through MEC, with the support of OSD
- The authors wish to thank
 - Mr. Dan Dunmire and Mr. Richard Kinzie, OSD
 - Dr. Doug Neale and Mr. Larry Cranford, Mandaree Enterprises Corporation
 - Mr. Kirk Galien and Louisiana DOT
 - Mr. Mitch Carr and Mississippi DOT
 - Mr. Christian Hawkinson and Rock Island DPW
 - Mr. Colby Talbot and C.E.C., Inc.

Thank You!

Questions?

BACKUP SLIDES

Overall Program Objective (from SOW)

"The objectives of this project are to demonstrate and validate state-of-the-art and emerging innovative technology approaches for the remote structural health and corrosion degradation monitoring of steel bridges. The intent of a monitoring system is to greatly reduce the risk of a catastrophic failure by providing advance warning of a growing structural problem caused by corrosion/materials degradation with an opportunity for repair before catastrophic failure. This project will help demonstrate the capabilities of such systems and validate the potential benefits for future possible application by the Army and the rest of the Department of Defense (DoD) on mission critical bridges and similar load bearing structures."

Concurrent Technologies Corporation

Multi-Point Sensing with One Fiber

Concurrent Technologies Corporation

Fiber Bragg Gratings

CTC

Sensitivity: ~1.2 µ ϵ /pm. Range: ±2500 µ ϵ . Fatigue life: 10⁸ cycles at ±2000 µ ϵ . Temperature limits: -40C to +120C. Construction: Stainless steel frame. Fiberglass-braid-protected fiber pigtails.

Bottom View

Concurrent Technologies Corporation

creep fiber

connections

0.8 mm

Tack-weldable/bondable/screw-mountable FBG temperature sensor

Screw-mount holes & tack-weld pockets. Weldable with laptopsize, battery-powered welder.

Optical fiber in protective braided jacket.

Sensitivity: 28.9 pm/°C. Temperature range: -40 to 120°C. Short-term repeatability ±0.75°C Drift: ±1.0°C at 50°C and 85% RH. Construction: Stainless steel frame. Fiberglass-braid-protected fiber pigtails. Concurrent Technologies Corporation

Response of FBG Strain Sensor Temperature response

More generally, the FBG sensor responds to temperature as well as strain:

The curve below—for an unstrained FBG strain sensor mounted on steel—illustrates the need for temperature compensation:

Tack-weldable/bondable FBG strain and temperature sensors: structural installation

Connection & Encapsulation

- Short pigtails get spliced to *armored* fiber-optic cables.
- Sensor, pigtails, splices, and ends of armored cable get environmentally sealed together with stainlesssteel over-patch.

Concurrent Technologies Corporation

Multi-mountable, environmentally sealed FBG strain sensor

Sensitivity: ~1 $\mu\epsilon$. *Accuracy*: 0.5%. Range: 2500 $\mu\epsilon$. *Connection*: Armored cable. *Environmental* : Stainless steel & Teflon envelope; especially suited for wet environments. T*emp. limits*: - 40C to +80C. Built-in T-compensation FBG.

Concurrent Technologies Corporation

Accelerometer

Strain meter

Pressure meter

Incline meter

Fissurometer

 Gas and Humidity
 Pres

 Concurrent Technologies Corporation

Relative Displacement Meter

Ocean bottom seismometer

Pressure for Oil Drilling

Temperature

Water Detection

Land Slide Detection

FBG Sensor Instrumentation High speed fixed-location FBG interrogator

- Sampling rate as fast as 2000 Hz—with each scan referenced to a stable, zero-temperature-coefficient wavelength standard
- 80 nm standard range (1510 to 1590 nm); 160 nm optional range
- For multiplexed monitoring of 4 fibers—16 fibers with expansion module, each fiber potentially containing ≥40 FBGs

FBG Sensor Instrumentation

Fixed-location computer

- Interrogator-matched industrial grade PC for data logging, manipulation/analysis, and communication:
- One of two available models

FBG Sensor Instrumentation

Moderate speed portable FBG interrogator

- For sampling as fast as 1 ZHz (faster model available soon)
- For multiplexed monitoring of 1 fiber, potentially containing over a hundred FBGs. Complete with integral monitor and pre-installed software

FBG Sensor Instrumentation Environmentally enclosed *field system* example

Sm040-016 passive multiplexer for remote cable connections Main control cabinet with sm130 high-speed FBG interrogator, sp130 PC, dual climate control, heat exchanger, internet switch, satellite modem and optical /electrical connections

Concurrent Technologies Corporation