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Introduction 
 
This report constitutes deliverable D3 (month 12) as prescribed in the project 
specification document, and accompanies the delivery of D2 (the final version of the 
system for vehicle detection and tracking in UAV-captured video data). The aim of 
this report is to explain the internal workings of the system developed, providing a 
detailed description of the algorithms involved, as well as describing and validating 
its performance based on quantitative evaluations performed. 

The report is broken down as follows: Section 1 presents some background 
information, aimed at providing a level of context to the reader. Section 2 introduces 
the issues surrounding the problem addressed, provides an outline of the solution 
proposed, and describes the dataset used in experiments Section 3 details how the 
algorithms were implemented. Finally, Section 4 describes the experiments 
performed, discusses the results obtained, and expounds on conclusions drawn. 
 
 
 
1. BACKGROUND 
 
1.1. Review of Project Objectives 
 
For the purposes of context, this report begins with a brief review of the objectives, 
and targeted outcomes of the project. 

The goal of this work is the development of a software solution that provides 
continuous robust localisation (i.e. ‘tracking’) of vehicle-type objects throughout the 
scenes of aerial video footage captured by Unmanned Aerial Vehicles (UAVs). The 
scientific field of object-tracking is well-studied in the field of computer vision, with 
many competing solutions offered. However, one of the interesting aspects of this 
work is the opportunity to investigate the benefits of a proposed adaptive feature 
weighting technique, which we envisage should increase the robustness of typical 
vehicle tracking solutions in the face of common pitfalls (e.g. relating to changes in 
lighting, poor vehicle-road contrast, etc.).  

The targeted outcome of this work is a MATLAB[1] based prototype software 
simulation, that allows the operator to select a video file for analysis, and to 
subsequently view the processed video footage (in video playback mode), with the 
vehicles in the scene automatically ‘highlighted’ against their surroundings. The 



system was to be developed, tested, and evaluated using the DTO VACE [2] 2005 
video dataset, which is a suite of multi-spectral (visible and thermal infrared) MPEG-
2 video files captured over a military training base, provided for experimentation 
purposes by the Air Force Research Laboratory. 
   
 
1.2. Chronicle of Work 
 
This project was a 12-month undertaking, with three deliverables specified. 
Deliverable D1 - which consisted of an interim version of the system coupled with an 
associated report [2] describing the achievements and progress made, was transferred 
to EOARD at the six-month point (January 2009). As described in [2], the progress 
made at that time consisted of background research, data formatting, and the 
development of a working system framework based on preliminary versions of the 
various components. Since then, the work undertaken has mainly involved activities 
relating to (i) the refinement of the system components, (ii) the development of 
additional functionality, (iii) ground-truth creation, (iv) performance evaluation, and 
(v) document writing. For completeness, a list of relevant milestone achievements is 
presented in timeline format in Appendix A. 
 
 
 
2. PROBLEM & SOLUTION 
  
2.1. Problem Discussion 
 
The task of developing an automated system for the detection and tracking of vehicles 
in UAV-captured video is non-trivial. To introduce it, we consider its two main 
constituent parts, i.e. vehicle detection and region tracking. 
 
2.1.1. Vehicle Detection 
 

2.1.1.1. Frame Differencing 
The most obvious approach to the detection of moving vehicles within the scenes of a 
video sequence corresponds to image-differencing, whereby the pixels of two video 
frames are subtracted from each other, yielding so-called ‘frame-differenced images’. 
The idea is that, assuming a static camera scenario (i.e. an unchanging background), 
for an appropriately chosen interval over which the differencing is applied, the pixels 
constituting the frames will differ only in regions of moving foreground objects, and 
therefore the locations of moving objects will be highlighted in the ‘images’ resulting 
from the frame-differencing procedure. This technique has been shown to work quite 
well in a variety of applications featuring static camera scenarios. 
 

2.1.1.2. Camera Modelling 
However, the scenario of UAV-captured video data is quite different from the above-
described. In short, the aerial video footage captured from an overhead UAV does not 
conform to the static background description, since the overall scene (including the 
background) continuously changes as the UAV flies over land. The consequence is 
that, when trying to detect vehicle locations in this data, simply applying the frame-
differencing technique would result in highly irregular results, because, not only are 



the foreground objects shifting position from frame-to-frame, but the objects 
constituting the background scene are displaced too. Hence, frame-differencing 
applied to UAV video footage would result in difference-images exhibiting a 
multitude of highlighted regions, on the basis of which, the ability to discern 
foreground objects would be severely compromised. Hence, to overcome this 
problem, the video sequence needs to be first analysed in terms of camera movement. 
That is, it is required to mathematically characterise or ‘model’ the camera motion 
that occurs throughout the sequence. Armed with such a model, it can then be used to 
process the video sequence towards essentially undoing (‘compensating’) for the 
frame-to-frame camera motion, to the extent that vehicle detection may then be 
performed in ‘camera-motion compensated’ versions of the video images - within 
which (assuming an ideal model) foreground object movement is retained and can be 
discerned (e.g. as outlined above). Hence, obtaining an accurate camera model that 
exhibits fidelity to the actual frame-to-frame scene displacement observed throughout 
the video sequence, is an important component of this approach. 
 

2.1.1.3. Intervals 
One of the main issues in relation to vehicle detection by frame-differencing concerns 
the intervals chosen over which the differencing is to be performed. Clearly, it is 
crucial that the intervals chosen are long enough such that a detectable amount of 
vehicle movement is observed within the scene. That is, if the interval over which the 
frames are differenced is too small, the vehicles may have only moved a very small 
amount from the first image to the next, resulting in very small highlighted regions in 
the frame-differenced images may not be discernable from the noise floor. However, 
different video sequences are obviously also captured from a variety of different 
altitudes, meaning the vehicles appearing in the video images vary in size, and hence 
the interval required to represent discernable vehicle movement within the scenes 
varies from sequence-to-sequence. Hence, no ‘one-size-fits-all’ interval value would 
be suitable for all sequences. Further still, different video sequences will typically 
feature a variety of vehicles moving at different speeds through the scenes, resulting 
in inconsistent levels of vehicle displacement, which suggests that no single interval 
value would even suffice for a given sequence. Hence the requirement that some level 
of flexibility be incorporated into the interval setting in a frame-differencing based 
vehicle detection solution.  
 
2.1.2. Region Tracking 
 

Assuming the accurate detection of a given vehicle (current position known), the 
challenge of tracking as it shifts location from frame-to-frame, would typically be 
approached by first somehow mathematically characterising its appearance in the 
image (i.e. based on the pixel values constituting the region), and then based on a 
similarity to this representative model, attempting to determine its new location in the 
image pixel grid from one frame to the next. Clearly, the main issues here relate to (i) 
the nature of the representation extracted, (ii) the definition of similarity, and (iii) the 
search strategy employed, all of which would have some bearing on the tracking 
performance attained. 

In terms of the former, histogram-style solutions have been shown to be robust 
and efficient, as they discard spatial information, and are therefore insensitive to small 
changes in object pose. The idea is that, based (e.g.) on the vehicle’s appearance upon 
detection, statistics are extracted for the pixel values observed in the corresponding 
region of the image. The extracted histogram serves as the representative model for 



the vehicle, against which all potential new instances/positions of it throughout 
subsequent video frames are then compared. However, there is an inherent problem 
with histogram-style tracking in that these types of representations do not scale well 
to higher dimensions [3]. For example, given a four-dimensional feature space (R, G, 
B, I), quantizing the pixel ranges into 8-bins (typical for standard 0-255 pixel ranges) 
would lead to the construction of 4096-D histogram representations, which are not 
very practical from a computation or memory point of view. Another problem is the 
‘curse of dimensionality’ [4], which suggests that we would most likely experience 
unsatisfactory matching performance in comparing representations at this very fine 
level of granularity. Clearly, these scale-related issues must be addressed in terms of 
implementing a practical and effective histogram-based solution.  

In terms of similarity metrics, there are a variety of options from (e.g.) 
distance-based to (e.g.) probabilistic styles, all well studied and all equally advocated.  

The choice of search-strategy plays an important role in the speed 
performance of a tracking system. Clearly, a so-called exhaustive-search will tend to 
give the most accurate result - whereby, in attempting to track a moving object from 
one frame to the next, all (conforming) pixel locations within the image are 
considered as potential new positions of the object within the new frame. However, 
this approach is clearly unfavourable from a computational point of view. Hence 
search-spaces are typically confined to reflect a reduced number of localised 
candidates for the object’s new position, surrounding the current object position 
(‘localised search’). In a further attempt to reduce computation, coarse-to-fine search 
involves first sub-sampling the localised search space, determining the best coarse 
match, and then performing a more detailed search within a small search space 
surrounding the best match coarse position. Clearly, these latter approaches represent 
a trade-off between reducing computation (i.e. speed performance) and finding the 
correct match within the image. 
 
2.1.3. Approaching the Problem 
 

The above outlines the issues involved in addressing the challenge of vehicle 
detection/tracking in UAV-captured video. The system developed and described in 
this document represents an implementation of a solution whereby, in approaching the 
abovementioned issues, decisions were made based on optimising performance for the 
particular dataset used for development/testing. For transparency, this dataset is now 
detailed below.  
 
 
2.2. The Dataset 
 
Provided for experimentation purposes by the Air Force Research Laboratory, the 
DTO VACE [5] 2005 dataset is a suite of multi-spectral video files captured by 
airborne UAVs flying over a military training base. The corpus consists of numerous 
video sequences, with each sequence corresponding to a single unbroken pass of 
video footage captured from the UAV. Each video sequence is in fact typically 
instantiated by two separate MPEG-2 format video files; one presenting (640x480, 
30fps) visible spectrum (RGB) video data, and the other (320x256, 30fps) thermal 
infrared (I) video data. The two separate streams result from independent cameras 
mounted on the underside of the UAV. The motivation for including the infrared 
channel in the dataset is to complement the colour/luminance-based visible data, in 



the expectation that if and when visible-based detection/tracking is compromised (e.g. 
due to poor lighting/contrast, etc.), the I-based analysis may suffice in terms of 
preventing detection/tracking failure, and vice-versa. 

The VACE video dataset is accompanied by corresponding ground-truth 
dataset, whereby the true locations/positions of vehicles within the scenes of each 
video sequence have been recorded. Specifically, within this dataset, an annotation of 
vehicle positions exists for every 12th video frame (I-frame*) of the corresponding 
(visible-stream) sequences. The choice of I-frame level annotating follows on from 
the MPEG structure of the video files, and represents a considered trade-off between a 
more ideal annotation depth (e.g. frame-level), and the labour involved in manual 
logging. As mentioned above, the system developed targets optimising performance 
for this dataset in particular. Hence, this (12 frame) I-frame interval constitutes a key 
analysis level upon which the analysis/evaluation is based around.  

The infrared channel can simply be considered as a fourth channel of 
information to be processed along with the 3-channel (RGB) visible stream. However, 
given that the two streams were captured using independent cameras, they tend to (i) 
exhibit a slight temporal misalignment, and (ii) exhibit a discrepancy in the 
perspective of the scene captured. Clearly, both of these issues need to be corrected in 
advance of joint visible/infrared-based analysis. However, this involves a substantial 
level of manual intervention, the procedures involved in which are outlined in 
Appendix B. 

 
 
2.3. Solution Outline 
 
Given a video sequence from the dataset to be processed, this section outlines the 
solution framework designed for the provision of vehicle detection/tracking 
throughout the images of that sequence.  
 
2.3.1. Camera Modelling & Vehicle Detection 
 

2.3.1.1 Framework & Intervals 
Towards synthesizing a camera-motion compensated domain for the sequence (within 
which vehicle detection will be performed), the camera motion modelling stage is 
concerned with characterising the scene displacement that occurs as a consequence of 
the UAV-housed camera(s) travelling over land as they film (see Fig 2.1). In terms of 
analysis depth, the camera modelling (and therefore vehicle detection) process is 
targeted at the I-frame level - reflecting the paradigm of the dataset#. So, for every I-
frame of the sequence, e.g. iframei, the process begins by; 
 

• Modelling camera motion between iframei and iframei±1, then… 
• Modelling camera motion between iframei and iframei±2, then… 
• Modelling camera motion between iframei and iframei±3 

 
                                                 
* I-frames are one of the three main frame types that constitute an MPEG video stream. They occur at 
regular intervals within the stream, and represent non-temporally predicted image data, and hence are 
the frame types representing the highest fidelity to the original scene captured by the camera. 
# It is envisioned that I-frame level analysis represents a reasonable trade-off between the early 
detection of newly visible vehicles in the scene, and the computational overhead associated with the 
vehicle detection process. 



 

    
 

Fig. 2.1. Scene displacement over I-frame intervals due to travelling camera. 
 
 
 
The reasons for the bi-directional (±) modelling will become apparent later, but the 
implementation of the ±1, ±2, and ±3 I-frame intervals represents an attempt to meet 
the aforementioned requirement of flexibility on the interval underpinning a frame-
differencing based vehicle detection solution#. It was envisioned that basing the 
frame-differencing around these three intervals independently, and then merging their 
individual results, would yield a combined frame-differenced ‘image’ that would tend 
to highlight the locations of moving objects largely irrespective of their size/velocity, 
and would therefore represent an effective, yet computationally moderate, vehicle 
detection solution. 
 

2.3.1.2. Vehicle Detection 
Following the camera modelling analysis, each I-frame of the sequence, e.g. iframei, 
has associated with it; models of the camera motion existing between itself and its 
three neighbouring I-frames (in both a forward and backward direction) - i.e. I-frames 
i±1, i±2, and i±3. So, prior to image-differencing, for each I-frame (e.g. iframei), 
these models are used to spatially translate (‘warp’) iframei±1, iframei±2, and iframei±3 
so that their respective scenes become spatially aligned with that of iframei (this is 
akin to ‘undoing’ the scene displacement in each case represented in the respective 
camera models). The result is that the ‘background’ scenes of iframei±1, iframei±2, and 
iframei±3 should match that of iframei, and any residual differences between them 
should then correspond to foreground objects (e.g. vehicles) moving independent of 
the camera. Assuming accurate results, image-differencing should then allow for 
reliable identification of the locations of these objects. Hence, in terms of iframei, the 
process proceeds as follows (where w indicates the warped version of a particular I-
frame image); 
 

• iframei differenced from iframew
i±1, then… 

• iframei differenced from iframew
i±2, then… 

• iframei differenced from iframew
i±3

  
 
The highlighted regions identified from each individual image differencing process 
(i.e. over I-frame intervals i±1, i±2, and i±3) are then merged, yielding a finalised set 
of candidate vehicle locations for iframei. 
 
 
 

                                                 
# Considering the framerate/structure of the MPEG-2 format VACE videos, the intervals between (i) 
iframei and iframei±1 approximately correspond to a period of 0.4s, (ii) iframei and iframei±2 

approximately correspond to a 0.8s period, and (iii) iframei and iframei±3 approximately correspond to 
an interval of 1.2s. 



2.3.2. Vehicle Tracking 
 

2.3.2.1. Spatiogram-Bank 
For each detected vehicle, a spatiogram[6]-based representation is then extracted - 
based on its corresponding region of image pixels. Spatiograms are similar to 
histograms (in that they contain information on colour distribution), but also include 
some coarse spatial information*. In fact, in attempting to combat the problems of 
scale surrounding histogram-style solutions (as alluded to in Section 2.1.2), as a 
compromise, each object is represented by multiple independent spatiograms (i.e. one 
for each feature) – a so-called spatiogram-bank#. The multi-band spatiogram-bank 
serves as a static representation of each detected vehicle upon which the tracking 
process involving it is based. 
 

2.3.2.2. Tracking 
For a given detected vehicle (e.g. vehiclev), it’s new location in the subsequent frame 
of the video is then determined by comparing its representative spatiogram-bank with 
that of (a selective list of) potential new pixel locations within the new image, and 
then presuming the true new location to be that exhibiting least mathematical distance 
between them. More explicitly, for a potential new location of vehiclev (e.g. in the 
frame subsequent to iframei), a spatiogram-bank is extracted for its corresponding 
pixels (i.e. independent spatiograms are extracted for each image feature), and then 
the individual spatiograms (corresponding to the vehicle and its potential new 
location) are compared against each other on a feature-by-feature basis. Then, armed 
with a similarity score for each feature spatiogram, an overall (‘combined’) 
spatiogram-bank similarity score is generated via product fusion of these. Formally, 
an expression for the combined similarity of vehicleV (ρV) at (e.g.) position x, may be 
written as follows (assuming K features): 
 

ρV(x) = ∏ ρk(x)           ∀ k = {1,…K}             (1) 
 

This outlines the general framework governing the basis for which a detected vehicle 
(vehiclev) is tracked throughout the successive frames of the input video sequence. 
However, further to this is the proposal of adaptively weighting the features in the 
calculation of the fused score – see below. 
 

2.3.2.3. Adaptive Weighting 
Central to this work concerns an investigation into the benefits of adaptive weighting 
of features based on the dynamics (throughout the sequence) of their relative object-
discrimination ability. That is, depending on the variance of the conditions observed 
(e.g. lighting, contrast, etc.), of the bank of features upon which the tracking is to be 
based (e.g. R, G, B, I, etc.), certain features may temporarily exhibit an ability to 
outperform others in discriminating the target object from its background 
environment. To exploit this towards more robust tracking, it was proposed that the 
tracking system should rely more heavily on the better performing features at the 
expense of those considered less reliable. It was envisaged that emphasising the best 
performing features in this way should provide for more robust object tracking in the 
face of potential distractions. To this end, it was proposed to weight (on a frame-by-

                                                 
* Essentially, spatiograms represent a trade-off between the efficiency of pure histogram-based 
representations and the accuracy offered by extracting rigid pixel-level object templates. 
# The spatiogram-bank approach has the benefit of making the matching task more efficient, as well as 
more suitable to multi-modal data fusion, by allowing additional features to be easily 
integrated/removed into/from the tracking system.  



frame basis) the contribution of the individual spatiogram similarity scores to the 
combined similarity score, on the basis of their relative recent ability in object 
discrimination. This corresponds to an augmentation of the aforementioned formal 
expression for spatiogram-bank similarity as follows, where wk is the weight currently 
assigned to feature k. 
 

ρV(x) = ∏ wk.ρk(x)     ∀ k = {1,…K} : Σwk = 1    (2) 
 

Clearly the challenge is to find the appropriate weights wk in each case. The method 
proposed for doing so was based on measuring how well the individual features 
separate the object’s true location from other potential background ‘distractors’ - 
defined as regions of close similarity to the object, in the vicinity of the object. The 
idea is that the weights are chosen on the basis of assigning greatest influence to the 
feature that offers the greatest separation between the true object appearance and that 
of the distractor (which closely resembles the object, but which we want to suppress 
as a viable match, as it is erroneous).  
 

This concludes Section 2.3 describing the solution framework governing the detection 
and tracking of vehicles in UAV video. The next section describes the implementation 
of the algorithms underpinning each component and sub-component as outlined here. 
 
 
 
3. ALGORITHM IMPLEMENTATION 
 
3.1. Camera Modelling  
 
This section describes the implementation of the camera modelling solution deployed 
in the system. 

Modelling the camera motion between e.g. two successive I-frames is 
performed in the visible (RGB) feature space and begins with the process of corner 
detection#. Applying a standard corner point detector (e.g. Harris [8]) to both images 
results in a bag of corner points for each image. Armed with these, the next step 
involves matching corner points between the two images, which is performed by 
extracting small representative regions of pixels surrounding each corner point and 
comparing their values. So for example, for a given corner point in the first frame, a 
small region of RGB pixels surrounding the point is extracted and their values 
compared with those corresponding to the same-sized regions surrounding the corner 
points of the second image. This process is repeated for all corner points in the first 
image, until the majority have been paired. The expectation is that the set of matched 
corner points should then represent the spatial displacement of the most salient points 
in the scene between the two frames, resulting from the camera motion occurring 
during the interval between them. Armed with a set of matched corner points, these 
are fed into an optimisation algorithm [9], which attempts to derive a geometric 
transform, i.e. a 3x3 planar homography matrix [10], which is a standard projective 
transformation for mapping points from one plane (scene) to another plane (scene). It 
is the homography (3x3 matrix) that represents the camera motion modelled between 

                                                 
# Corner points are typically well defined, and are thus considered a sound basis for modelling the 
spatial characteristics of images. In fact, the topic of corner-point detection has been well researched in 
the field of image analysis, with a variety of different approaches advocated [7]. 



the two images. Once again, the camera modelling process outlined above is 
performed in the visible domain only, since this exhibits higher resolution images and 
captures considerably more spatial area than the infrared stream, and therefore offers 
more scope for scene-to-scene matching. Note, inaccurate or unsuccessful camera 
model extraction may result from (i) insufficient corner point detections, (ii) 
insufficient corner point matches, (iii) the optimisation algorithm settling at local 
minima. 
 
 
3.2. Vehicle Detection  
 
The following describes the implementation of the vehicle detection algorithm 
deployed in the system. 
 Recall from Section 2.3.1, the approach to detecting a newly appearing vehicle 
in an I-frame of a UAV-captured video sequence (e.g. iframei) exploits corresponding 
I-frames iframew

i±x (x=1,2,3), which are warped versions of the original images that 
have been spatially aligned to iframei using their respective camera models. In fact, 
all I-frames concerned are first converted to single channel luminance images (based 
on a standard RGB-to-greyscale formula), following which the warping takes place 
(i.e. in the luminance domain). Ultimately, this results in a greyscale version of 
iframei and, greyscale versions of iframew

i±x for each interval x (=1,2,3). 
The next step in the process relates to image differencing (see Section 2.3.2.). 

That is, for iframew
i±x its respective (luminance) pixels values are differenced from 

those of iframei, resulting in two separate (single channel) ‘difference images’, where 
the regions of high pixel intensity correspond to the regions of disparity between the 
two images. As described earlier, the expectation is that these should correspond to 
areas of the scene affected by moving vehicles. To explicitly demarcate these regions 
(separate them from the noise floor), the difference images are then thresholded#, 
resulting in binary images where only the most intense difference regions are 
highlighted and the noise floor suppressed. Fig. 3.1 illustrates a sample result 
corresponding to the movement of a single vehicle, where threshDiffImage1 
represents the thresholded difference between iframei and iframew

i-x, and 
threshDiffImage2 represents same between iframei and iframew

i+x. Note that in 
threshDiffImage1 there are in fact two distinct highlighted regions, corresponding to 
two separate regions of disparity between iframei and iframew

i-x. These relate to 
regions of pixel difference between iframei and iframew

i-x that correspond to the 
previous (P1) and new (N1) positions of the vehicle. Similarly, in threshDiffImage2, 
there are two separate regions of pixel disparity existing due to previous (P2) and new 
(N2) locations relating to the movement of the vehicle within the interval between 
iframei and iframew

i+x. Note, the true location (L) of the vehicle in iframei is clearly 
the common highlighted area between threshDiffImage1 and threshDiffImage2, 
and may be determined by a logical AND between the two images, as shown in Fig. 
3.1. Hence the reason for the bi-directional differencing, i.e. to enable the elimination 
of ‘ghost’ difference regions associated with changes in pixel values corresponding to 
the previous/new positions of the vehicle in the scene.   

The approach outlined above for iframei and iframew
i±x is performed for 

x=1,2, and 3, resulting in three separate images highlighting the locations of detected 
vehicles estimated across the intervals specified. As alluded to in Section 2.3.2, these 
                                                 
# Using the adaptive Kapur threshold [11] 
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Fig. 3.1. Bi-directional thresholded difference images. Logical AND operation isolates 

true vehicle location (L). 
 
 
 
individual results for each interval are merged (using a logical-OR operation), 
culminating in a single combined detected-region result for iframei, thus maximising 
the potential for detection across various altitudes and/or vehicle velocities#. 

Once the set of candidate detections have been finalised for iframei, they are 
filtered such that only those conforming to a set of vehicle-style criteria are retained. 
These criteria are as follows: 

 

(i) Size: Candidate regions must exhibit an overall pixel area that lies 
within the bounds specified*. 

                                                 
# Note, if RGBI-based analysis is invoked, the vehicle detection process outlined for the visible-
luminance (L) space is repeated verbatim in the I-feature space. The individual L and  I results are then 
merged via a logical OR operation.   
* Maximum/minimum candidate region sizes are specified manually on a sequence-by-sequence basis, 
however, subject to further system development, perhaps these parameters could be automatically self-
tuned based on access to real-time data pertaining to UAV altitude and camera zoom length.  



(ii) Solidity: Regions must exhibit a solidity factor (scalar representing 
the proportion of the pixels in the convex hull that are also in the 
region) of at least 0.65. 

(iii) Aspect ratio: Regions must exhibit an aspect ratio (major-axis 
length ÷ minor-axis length) between 1.0 and 3.5. 

 

All candidate detections satisfying these criteria are considered detected vehicle 
regions for iframei. 

N.B. Unsuccessful vehicle detection may result from (i) poor (visible) contrast 
between foreground object and background resulting in weak pixel difference 
intensity (which will get suppressed by thresholding), (ii) inaccurate camera 
modelling resulting in poor spatial alignment of I-frames, (iii) stationary or very 
slowly moving vehicles. In addition, false detections do feature, and whilst naturally 
safeguarded against, may arise due to (i) inaccurate camera modelling (poor spatial 
alignment of I-frames) resulting in multiple difference regions unrelated to vehicle 
positions, (ii) other non-vehicle objects moving within the scene. 
 
 
3.3. Vehicle Tracking  
 
The following outlines the implementation of the vehicle-tracking algorithm 
(incorporating adaptive feature weighting) as deployed in the system. 
 Given vehicleV detected in framef (position known), a rectangular bounding-
box is fitted around the corresponding pixel ‘region’ (regionV), and an 8-bin 
spatiogram-bank (SV) is extracted based on the corresponding pixel values. Note, SV 
is either of dimension 3 or 4, depending on whether purely visible (RGB-based) 
analysis or combined visible-infrared (RGBI-based) analysis is invoked. Either way, a 
corresponding n-dimensional feature weight vector (weightsV) is then initialised with 
equal weights in each dimension that sum to unity (i.e. for n=4; weightsV = [0.25, 
0.25, 0.25, 0.25], for n=3; weightsV = [0.33, 0.33, 0.33]). 
 Tracking vehicleV from framef to framef+1 proceeds as follows. Starting at 
the framef position of regionV in framef+1, a matching process is initiated, which 
(using weightsV to bias the feature contribution to the overall similarity score – see 
Eq. 2) compares SV to the spatiogram-banks extracted for the set of candidate clips 
corresponding to a shift in the position of regionV of ±15 pixels in both the horizontal 
and vertical directions*. Depending on the magnitude of the best match similarity 
score, the object is then (i) deemed to have been either successfully tracked to a new 
location in framef+1, or (ii) deemed to have departed from the scene (in which case 
the tracker is expunged)#. 
 If adaptive feature weighting is activated, the constituent values of the 
weightsV vector are then updated according to how well the individual features 
separate the object’s true location from other potential background ‘distractors’ – see 
Section 2.3.2.3. This is done by computing feature-wise object-to-distractor ratios, a 
process that is outlined in Appendix C. Note, if the mechanism is deactivated the 
values in weightsV remain unchanged from their initial uniform values. 

                                                 
* Coarse-to-fine search, where ±15 pixels represents a trade-off between processing intensity and the 
likely bound on the potential frame-to-frame displacement of vehicleV. 
# i.e. a threshold of 0.85 is set - a value which the combined spatiogram similarity score must reach in 
order for the object to be deemed re-located. 



Subsequent tracking of vehicleV from framef+1 to framef+2 proceeds in a 
similar fashion, i.e. by centring a best-match spatiogram-bank search around the 
region in framef+2 that corresponds to the framef+1 position of vehicleV. Once 
tracked, if adaptive weighting is activated, the weightsV vector is then again updated 
prior to subsequent tracking, based on the object-to-distractor ratios associated with 
the framef+2 tracking result. The process then proceeds in a similar fashion for 
tracking vehicleV in subsequent frames. 
 
 
 
4. EXPERIMENTS & RESULTS 
 
4.1. Experimental Corpus  
 
Towards evaluating the performance of the system developed, twelve appropriately 
selected, ground-truthed sequences were selected from the DTO VACE 2005 dataset. 
The sequences were chosen such that they (i) exhibited significant levels of multi-
vehicle movement, (ii) exhibited significant levels of camera movement, (iii) were 
captured from various levels of UAV altitude and/or camera zoom, and (iv) exhibited 
(intra-sequence) road-surface variance. The video files corresponding to each 
Sequence ID (given) are listed in Table 4.1. 
 
 
 

Table 4.1. Sequence IDs and corresponding video files. 
 

Sequence ID Video Files 
03_019_07 V4V10003_019.mpg, V4V30003_019.mpg 
05_020_18 V4V10005_020.mpg, V4V30005_020.mpg 
05_023_20 V4V10005_023.mpg, V4V30005_023.mpg 
07_004_26 V4V10007_004.mpg, V4V30007_004.mpg 
07_006_28 V4V10007_006.mpg, V4V30007_006.mpg 
07_006_29 V4V10007_006.mpg, V4V30007_006.mpg 
07_007_24 V4V10007_007.mpg, V4V30007_007.mpg 
07_007_25 V4V10007_007.mpg, V4V30007_007.mpg 
07_017_33 V4V10007_017.mpg, V4V30007_017.mpg 
12_046_38 V4V10012_046.mpg, V4V30012_046.mpg 
13_053_44 V4V10013_053.mpg, V4V30013_053.mpg 
14_060_47 V4V10014_060.mpg, V4V30014_060.mpg 

 
 
 
The ground-truths corresponding to these sequences dictate the entry/exit points (I-
frame numbers) of the analysis in each case. These are listed in Table 4.2, alongside 
their corresponding frame-span counts. Note, the total number of frames involved in 
the experiments amounted to 11’520, corresponding to approximately seven minutes 
of UAV-captured footage analysed*. 
 
                                                 
* While this may seem meagre, the limits imposed on the experimental dataset size relate to the 
enormous manual effort involved in ground-truth creation. 



 
Table 4.2. Analysis entry/exit point (& corresponding frame-span) for each sequence. 
 

Sequence ID Analysis Entry/Exit (I-frames) Span (frames) 
03_019_07 0 – 1776 1776 
05_020_18 3588 – 3780 192 
05_023_20 4644 – 4836 192 
07_004_26 3144 – 3336 192 
07_006_28 1788 – 2664 876 
07_006_29 5688 – 5880 192 
07_007_24 3600 – 4932 1332 
07_007_25 5388 – 7140 1752 
07_017_33 0 – 180 180 
12_046_38 6300 – 7200 900 
13_053_44 5004 – 6840 1836 
14_060_47 0 – 2100 2100 

      Total: 11520 
 
 
 
4.2. Performance Metrics & Results  
 
During the analysis of each sequence, for each I-frame, the locations of each tracked 
vehicle were compared against the actual vehicle locations contained in the ground-
truth. In each case, Precision and Recall statistics were calculated corresponding to 
the extent of the agreement/disagreement. Specifically, for vehicle detection in a 
given image, the Recall (R) measure was implemented as the number of true-positive 
pixels expressed as a fraction of the total number of true pixels in the ground-truth, 
whilst the Precision (P) measure was implemented as the ratio of true-positive pixels 
to the total number of (true and false) positive pixels detected. 

 

R   =   #(true-positive pixels)  ÷  #(true pixels) 
 

P   =   #(true-positive pixels)  ÷  #(positive pixels) 
 

The two separate statistics are complementary in expressing the performance of a 
retrieval system, i.e. whilst Recall measures the fraction of the relevant data retrieved, 
Precision measures the fidelity of that retrieval to the actual true data. 

Table 4.3 presents the average (I-frame) P & R values for each RGB-analysed 
sequence, with adaptive feature weighting disabled, alongside their respective F-
measures#. Table 4.4 presents the corresponding results for the same analysis, but 
with adaptive feature weighting enabled. 

For the case of seven of the twelve test sequences listed in Table 4.1, infrared 
data was processed and included in the analysis, i.e. the experiments were repeated 
with the infrared data constituting a fourth data channel. Table 4.5 presents the results 
for the sequences in question. 

 

                                                 
# Usually, Precision and Recall scores are not discussed in isolation. Instead, either values for one 
measure are compared for a fixed level at the other measure (e.g. Precision at a Recall level of 0.75) or 
both are combined into a single measure, such as the F-measure, which is defined as the weighted 
harmonic mean of Precision and Recall. 



Table 4.3. Sequence-average Precision and Recall statistics for RGB-based analysis 
with adaptive feature weighting disabled. 

 

Sequence ID Pavg Ravg F-measure 
03_019_07 0.21 0.16 0.18 
05_020_18 0.37 0.64 0.47 
05_023_20 0.68 0.46 0.55 
07_004_26 0.68 0.32 0.44 
07_006_28 0.56 0.06 0.11 
07_006_29 0.41 0.48 0.44 
07_007_24 0.65 0.13 0.22 
07_007_25 0.48 0.19 0.27 
07_017_33 0.57 0.48 0.52 
12_046_38 0.72 0.46 0.56 
13_053_44 0.60 0.34 0.43 
14_060_47 0.78 0.19 0.31 
AVERAGE 0.56 (56%) 0.33 (33%)  

 
 
 

Table 4.4. Sequence-average Precision and Recall statistics for RGB-based analysis 
with adaptive feature weighting enabled. 

 

Sequence ID Pavg Ravg F-measure 
03_019_07 0.22 0.17 0.19 
05_020_18 0.37 0.64 0.47 
05_023_20 0.69 0.46 0.55 
07_004_26 0.68 0.32 0.44 
07_006_28 0.56 0.06 0.11 
07_006_29 0.42 0.51 0.46 
07_007_24 0.58 0.13 0.21 
07_007_25 0.50 0.19 0.28 
07_017_33 0.57 0.48 0.52 
12_046_38 0.72 0.47 0.57 
13_053_44 0.60 0.36 0.45 
14_060_47 0.78 0.20 0.32 
AVERAGE 0.56 (56%) 0.33 (33%)  

 
 
 

Table 4.5. Sequence-average Precision and Recall statistics for RGBI-based 
analysis with adaptive feature weighting enabled. 

 

Sequence ID Pavg Ravg F-measure 
05_020_18 0.09 0.69 0.16 
05_023_20 0.16 0.53 0.25 
07_004_26 0.53 0.49 0.51 
07_006_28 0.24 0.07 0.11 
07_006_29 0.41 0.70 0.52 
07_007_24 0.44 0.37 0.41 
07_007_25 0.26 0.36 0.30 

 
 
 



4.3. Discussion of Results  
 
Considering the results presented in Table 4.3 (RGB-based analysis, adaptive feature 
weighting disabled), the F-measures indicate considerable variance in performance 
across the different sequences. Ostensibly, the best performing sequence was 
12_046_38 (F-measure of 0.56), and the worst performing was 07_006_28 (F-
measure of 0.11). Fig. 4.1 plots the F-measures in order of decreasing sequence 
length, and the superimposed line-of-best-fit suggests a slight trend towards superior 
results for the shorter sequences analysed. 

In terms of Recall performance, from Tables 4.3 and 4.4, we can see the 
average of the Recall values corresponds to 0.33 (identical in both cases). This 
suggests that, in general, the system experienced substantial difficulty in the retrieval 
of all true vehicle locations throughout the sequences (i.e. on average only managing 
a 33% accuracy rate in this regard). Further to this, the tables also agree on an average 
Precision value of 0.56, which suggests that, in addition, a consequence of attaining 
this 33% true-retrieval rate is the retrieval of (on average) 44% noise, indistinctive 
from the true-results. 

Focussing on Table 4.4 (RGB-based analysis, adaptive feature weighting 
enabled), we see the effects of adaptive feature weighting. In five cases (05_020_18, 
05_023_20, 07_004_26, 07_006_28, 07_017_33), enabling this mechanism had 
no effect at all (statistics unchanged from Table 4.3). In six cases (03_019_07, 
07_006_29, 07_007_25, 12_046_38, 13_053_44, 14_060_47) there was a 
positive, albeit minimal, effect (i.e. the maximum F-measure increase was 2%, 
occurring in 07_006_29 and 13_053_44). However, a negative effect was 
experienced in sequence 07_007_24, where a decrease of 7% Precision contributed 
to a F-measure decrease of 1%. Hence, in terms of performance accuracy, it seems 
that, save for this latter outlier, the effects of the adaptive feature weighting on this 
test set were generally positive, albeit quite moderate. 

 Turning to Table 4.5, where the statistics are listed for the seven 
sequences upon which RGBI-based analysis (adaptive feature weighting enabled) was 
performed, we see the effects of adding the infrared signal to analysis alongside the  
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Fig. 4.1. F-measures plotted in order of decreasing sequence length, plus line-of-
best-fit. 



RGB data. Here we can see a marked variation from the corresponding values in 
Table 4.4. Explicitly, apart from one sequence where the F-measure remained 
unchanged (07_006_28), four of the seven sequences analysed exhibited slightly 
improved performances (07_004_26, 07_006_29, 07_007_24, 07_007_25), 
whilst the remaining two sequences (05_020_18, 05_023_20) experienced 
deterioration in performance. Common to all affected sequences was a marked 
improvement in Recall values, and whether or not this improved Recall figure 
resulted in an improved F-measure for a sequence depended on the price paid in 
Precision. That is, clearly some sequences experienced substantial losses in Precision 
accompanying their Recall increases, whilst for other sequences the Precision loss 
was not so significant. Hence the disparity in overall perceived performance based on 
F-measures. In general, it seems that the inclusion of the fourth infrared feature can 
facilitate better retrieval, but at the potential cost of fidelity in the results retrieved. 
 Altogether, whilst the results presented above suggest promise in the 
approaches tested for vehicle detection/tracking in UAV data, the overall performance 
is far from ideal, and an investigation into the underlying reasons for these 
imperfections is due. 
 
 
4.4. Analysis of Results 
 
Given the experimental results discussed above, an exercise in failure analysis was 
initiated, whereby an attempt was made to identify the main causes of imperfections 
in the performance of the system. 
 
4.4.1. Recall Performance 
 

Considering first Recall performance, clearly ideal (100%) Recall would correspond 
to all vehicles within the scenes being first detected, then ‘perfectly’ tracked (i.e. with 
detected bounding-boxes exactly matching those specified in the ground-truth). 

With an average sequence Recall rate of 33%, the performance of the system 
is clearly unsatisfactory in this regard, and upon failure analysis, the root causes of 
Recall deficiency were found to relate to the following: 
 

• Vehicle detection failure. 
• Tracking failure due to distractions. 
• Tracking failure due to object appearance variation. 
• Subjectivity of the ground-truth. 

 
Considering the first of these, recall that robust vehicle detection relies on (i) the 
integrity of the camera model, (ii) vehicle movement within the scene, and (iii) 
contrast between moving vehicle and its background. Of these, reliable camera model 
extraction proved to be the most challenging aspect of the problem. For instance, in 
many cases the sequences in question exhibited vast scenes of vegetation, which 
presented difficulties for the corner-based scene analysis approach utilized#. Hence 
reliable camera models were not always computable for some extended periods of the 
sequences - rendering vehicle detection non-operational, and thus impacting on the 

                                                 
# Overall, the camera modelling performance proved most robust when processing images from urban-
based scenes. 



Recall rate observed. Furthermore, assuming accurate camera modelling, recall that 
for vehicles to be detected they must exhibit a reasonable level of movement within 
the scene. However, the ground-truth was indiscriminate between moving or non-
moving vehicles within the scene, and hence the non-detection of non-moving 
vehicles in the scene was another source of penalisation in terms of Recall rate. 
Finally, recall that the approach deployed for the detection of moving vehicles 
assumes a level of contrast between the vehicle and its background, which is then 
exploited via image differencing towards highlighting regions of foreground activity 
in the scene. In some cases (e.g. RGB-based analysis) there was little or no contrast 
compared to the level required, thus inhibiting vehicle detection in some cases, and 
therefore again compromising Recall. Note, this latter problem was alleviated 
somewhat by the inclusion of a infrared signal (RGBI-based analysis), but associated 
with this was a typical penalty in Precision. 

The above analysis strives to illustrate how Recall figures were affected by 
failures in the vehicle detection module. In terms of the tracking related causes listed, 
recall that the tracking system is based on extracting a mathematical model 
(spatiogram) of the object, and then comparing this model against those extracted for 
various potential new positions as we move through the subsequent images. 
Distraction is when a tracker (underpinned by such a matching algorithm) loses its 
true target because it gets 'distracted' by another region within the search-space that, 
typically by coincidence, exhibits a closer mathematical ('spatiogrammical') match to 
the original model. This typically results in tracking failure, whereby the moving true 
target travels outside the search-space, and thus is unable to be re-found, whilst the 
tracker remains ‘tracking’ the erroneous group of pixels. Such a scenario obviously 
results in a drop in Recall due to the true target no longer being retrieved (as well as a 
corresponding drop in Precision due to the existence of a tracker following noise – see 
below). Closely related to this concept is tracking failure due to changes in object 
appearance, whereby at some stage during the sequence the object (vehicle) exhibits a 
substantial change in pose, rendering the spatiogram non-representative to the extent 
that the search algorithm matches an erroneous block of pixels rather than the those 
corresponding to the true target, with the same negative consequences for Recall (and 
Precision). These two phenomena account for a significant loss of performance 
accuracy in the system. 
 Finally, the subjectivity of the ground-truth also had some consequence on the 
Recall rates observed. The ground-truth consisted of hand-drawn bounding-boxes 
(rectangles) demarcating the true vehicle locations within the sequence images. 
However, the subjectivity of this process frequently resulted in many bounding-boxes 
exhibiting a greater pixel area than those returned by the automatic analysis of the 
system. Hence, even in cases where the detection/tracking accuracy would be 
classified as close to ‘ideal’ from a human analysis viewpoint, owing to the 
discrepancy in pixel grid overlap between result and ground-truth, corresponding 
Recall figures did not reflect this. Hence, a slight flaw in the evaluation process also 
served to compromise the reflection of the true performance represented via the 
statistical results.    
 
4.4.2. Precision Performance 
 

Ideal (i.e. 100%) Precision corresponds to the retrieval of zero false positives, 
irrespective of Recall performance. 



With an average Precision rate of 56%, the performance of the system is 
clearly unsatisfactory in this regard, and upon failure analysis, the root causes of its 
Precision deficiency were found to relate to the following: 
 

• Camera model inaccuracy. 
• Tracking failures 

 
Considering the former, given an inaccurate camera model, the image differencing 
performed in the camera motion compensated domain can result in multiple 
highlighted regions that correspond to noise rather than true vehicle locations. 
Although many of these may be filtered out via the vehicle-styled criteria that the 
candidate regions characteristics must adhere to (see earlier), many are not, and go on 
to be considered true vehicle locations - subsequently going on to have corresponding 
(false) trackers initiated, and thus compromising the Precision performance of the 
system in doing so. 
 In addition to the above, Precision is also affected by the appearance of 
residual distracted trackers, i.e. trackers who have lost their true target, and who are 
now remain tracking an erroneous group of pixels within the scene. The distracted 
tracker will generally exist until as long as the tracked ‘object’ remains visible in the 
scene, penalising Precision performance throughout. 
 
 
4.5. Conclusions 
 
In aiming to draw some conclusions from the analysis presented above, clearly one of 
the main sources of imperfection in the system corresponds to lingering 
distracted/false trackers. Although many safeguards were established to prevent their 
occurrence, complete eradication of these phenomena proved futile. Furthermore, it 
was found that, once occurring, such noise was extremely difficult to eradicate, i.e. 
without detriment to the Recall performance corresponding to the detection/tracking 
of true targets. Given this, it becomes clear why the statistical performance (F-
measure) of each sequence tends to be inversely proportional to sequence length (Fig. 
4.1).  

One of the main safeguards against the profusion of tracker distraction was the 
adaptive feature weighting mechanism, which operated by assigning most influence to 
the best performing feature in a dynamic adaptive fashion. Whilst the average 
Precision/Recall rates were unaffected by the activation of this mechanism (i.e. 
unchanged from Table 4.3 to Table 4.4), on an individual sequence basis there is 
evidence of a slight trend of improvement in performance, suggested by simultaneous 
increases in both Precision and Recall in the majority of cases. However, whilst the 
effects are positive, they are quite moderate (i.e. of the order of 1% or 2%), and in 
situations where processing time is paramount, any delays associated with enabling 
the mechanism (yet to be determined) may render it redundant. 

It was shown that the addition of an infrared signal to the group of visible 
features (i.e. RGBI-based analysis) served to benefit the performance in terms of 
Recall, especially owing to increased effectiveness in vehicle detection (whereby, in 
the main, the true effect of this feature was in overcoming the contrast issues 
associated with the visible spectrum - see earlier). However, benefits (or otherwise) in 
terms of overall performance accuracy (as indicated by the F-measure) seemed to be 



somewhat inconclusive, owing to the spurious fluctuation in Precision typically 
induced by the inclusion of this additional data source. 
 In summary, adaptive feature weighting was shown to offer some 
improvement in performance accuracy, but only minor, whereas the effect of the 
including an infrared signal into the analysis was shown to be beneficial for the 
majority of cases, but with more testing required (non-trivial due to the enormous 
overhead currently associated with manually aligning the visible and infrared streams 
– see Appendix B).   

Overall, towards increased performance accuracy, the recommendation is that 
future work should concentrate on (i) improving the algorithms for camera modelling 
(i.e. towards unrestrained scope for vehicle detection, as well as limiting the number 
of false detections), and (ii) investigating new algorithms for the eradication of 
false/distracted trackers (i.e. where the challenge relates to not compromising the 
tracking of true targets).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX A: Project Milestones (July’08 – July’09) 
 

• July’08: Background research into fields of vehicle tracking and performance 
evaluation. 

 
• August’08: Development of data integrator system, for combining visible and 

infrared video streams. 
 

• September’08: Development of data formatter system, for the appropriate 
configuration and storage of the dataset. 

 
• October’08: Development of preliminary vehicle tracking module. 

 
• November’08: Development of preliminary camera modeling system. 

 
• December’08: Development of preliminary vehicle detection module. 

 
• January’09: Development of preliminary adaptive feature weighting 

mechanism. 
 

• February’09: Refinement of detection module (reduction of false detections). 
 

• March’09: Refinement of tracking module (including improved speed 
performance); Establishment of oriented bounding-box display. 

 
• April’09: Refinement of adaptive feature weighting mechanism; Processing 

and formatting ground-truth; Initial experiments and qualitative evaluations. 
 

• May’09: Further refinement of detection and tracking modules. 
 

• June’09: Quantitative evaluation of system performance; Writing of reports; 
Transfer of software-related deliverables. 

 
• July’09: Writing of reports. Transfer of final documents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX B: Manual Alignment of Visible-Infrared Video 
 
For a given sequence, the temporal discrepancy between its infrared and visible 
streams is typically of the order of one or two seconds, but needs to be estimated as 
accurately as possible (i.e. at frame level) so that the extracted visible-IR video 
images may be precisely aligned. The approach taken here for each sequence is to 
manually traverse the video and pick out time signatures for a handful of 
unambiguous ‘events’ that are evident in both streams. Once this is done, we can 
estimate the temporal discrepancy between the two streams by comparing the relevant 
time signatures for the set of events selected. Given this estimate, we then proceed to 
offset the image set from either the visible or infrared (whichever is relevant) by the 
particular value, thus producing a set of visible and infrared images that are in 
temporal agreement. Note, it is assumed that any temporal discrepancy between 
corresponding visible and infrared streams is a fixed offset, and once determined via 
the method described, doesn’t vary throughout the duration of the sequence. 

There also tends to be a discrepancy between the perspective of the scene 
areas captured by the visual and IR streams, a second consequence of the dual camera 
set-up. Although the cameras are ostensibly positioned side-by-side in the UAV to 
minimize this discrepancy, any slight difference clearly needs to be accounted for. 
The approach undertaken here is as follows. Firstly, it is assumed that the spatial 
discrepancy between the two streams is fixed for each sequence. This is justified on 
the basis of the assumption that two cameras are in a fixed position relative to each 
other within the UAV. Given this, we compute a geometric transform (3x3 planar  

 
 
 

 
 
Fig. B1. Warping of the infrared frames of a sequence so that they are spatially 
aligned with their visible frame counterparts. 



homography matrix) that maps the orientation of the spatial area captured in the IR 
stream frames to that of the visual stream frames. Given the assumption of a fixed 
discrepancy, there should be one unique set of homography values representing this 
transform for an entire sequence. The idea is that we can then use this sequence-level 
homography to warp the images of the IR stream such that they become spatially 
aligned with their visible stream counterparts – see Fig.B1. 

The method by which the abovementioned homography is computed is an 
offline manual calibration step and is outlined as follows: A selection of images from 
the (temporally aligned) visible and infrared streams are juxtaposed on a computer 
screen display. The user then ‘mouse selects’ corresponding points in each image, i.e. 
a point-of-interest in the infrared scene, followed by the corresponding position of 
that point in the visible scene. The user generates several dozen of these ‘anchor 
points’ across several frame pairs of the sequence. These are then fed into an 
optimisation algorithm [9], which attempts to locate the ‘homography of best fit’, 
representing the spatial offset between the two streams. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX C: Algorithm for Adaptive Feature Weighting 
 
The algorithm for the adaptive weighting of features is based on the computation of 
object-to-distractor ratios, and is outlined below. 
 Consider the successful tracking of objecto from its previous position in 
framei-1 to current position in framei in (e.g.) a 4-D feature space based on equal 
weights vector weightso = [0.25 0.25 0.25 0.25]. It is desired that prior to tracking 
objecto from framei to framei+1, the weights be first modified such that they reflect 
the (current) relative performance of each feature in discriminating the object from the 
background. To this end, the area surrounding the current object position is searched# 
for its corresponding ‘distractor’, which is defined as the (same sized) region 
exhibiting the closest ‘spatiogrammatical’ match to that of the object in question. In 
other words, the distractor is defined to represent the region of closest similarity to the 
object (in the vicinity of the object). The distractor is located in the same way the 
object matching is performed, i.e. via a comparison of combined spatiogram similarity 
scores. 

Once the distractor is located for the object, for each feature, an individual 
object-to-distractor ratio (ODR) is computed by calculating the ratio of its 
corresponding object similarity score (relating to the successful tracking of objecto 
from framei-1 to framei) to that of its corresponding distractor similarity score. This 
results in four ODR values corresponding to the four features concerned. The ODR 
values are then normalised such that they sum to unity, upon which they are then 
considered to constitute the new (updated) weights of weightso. In this way when 
tracking objecto from framei to framei+2 the feature exhibiting the highest ODR will 
have an increased influence (to the degree to which its ODR value exceeds that of the 
other features, and so on). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
# To find a set of background candidates, the area around the current object position is sampled at 16 
pre-defined locations corresponding to horizontal and vertical shifts around the true object (region) 
position of ± 0.5*width, ± 0.75*width, ± 0.5*height, and ± 0.75*height. N.B. These are chosen to give 
good overall coverage of potential areas of distraction, without overly expending in computation. 
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