

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

TEMPO SOFTWARE MODIFICATIONS
FOR SEVER EVALUATION

by

Ronald F. Clemens

September 2009

 Thesis Advisor: Gary O. Langford
 Second Reader: Rodney W. Johnson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
TEMPO Software Modification for SEVER Evaluation

6. AUTHOR(S) Ronald F. Clemens

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

In this thesis, we present a software package update facilitating the evaluation of the Systems Engineering Value
Equation with Risk (SEVER) using the TEMPO Military Planning Game originally developed by General Electric in
the 1960’s. Currently it is used by Naval Postgraduate School to train future military decision makers in making
critical resource allocation decisions. The intent of this development facilitates creating a software decision tool
adaptable to different software-based resource allocation models such that decision makers are presented with
customized, relevant information for both ‘satisfaction’ and ‘optimization’ decisions along with a probability of
successful outcome prior to executing the decision and observing the effects. The software package development
(identified as TEMPO Version 3) involved porting software code from C++ into Visual Basic.NET, integrating
MATLAB code for numerical strategy execution, and allowing for future strategy generation and statistical analysis
to compare against SEVER-predicted outcomes. SEVER is the algorithm proposed by Langford and Hyuhn (2006)
that facilitates Systems Engineering decision making. TEMPO Version 3 is the particular software application
proposed to evaluate the SEVER algorithm once it is developed into a software package. SEVER was not
implemented; however, it was considered during the development of the updated software package.

15. NUMBER OF
PAGES

131

14. SUBJECT TERMS
Decision, Decision Analysis, Decision Process, System Engineering Tool, SEVER, resource
allocation, military planning, software tool, strategy evaluation

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

TEMPO SOFTWARE MODIFICATIONS FOR SEVER EVALUATION

Ronald F. Clemens
Systems Engineer, Naval Undersea Warfare Center, Division Newport, VA

BSME, Cornell University, 2003
M.Eng, Cornell University, 2004

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Ronald F. Clemens

Approved by: Gary O. Langford
Thesis Advisor

Rodney W. Johnson
Second Reader

David Olwell, PhD
Chairman, Department of Systems Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In this thesis, we present a software package update facilitating the evaluation of

the Systems Engineering Value Equation with Risk (SEVER) using the TEMPO Military

Planning Game originally developed by General Electric in the 1960s. Currently, it is

used by Naval Postgraduate School to train future military decision makers in making

critical resource allocation decisions. The intent of this development facilitates creating a

software decision tool adaptable to different software-based resource allocation models

such that decision makers are presented with customized, relevant information for both

‘satisfaction’ and ‘optimization’ decisions along with a probability of successful outcome

prior to executing the decision and observing the effects. The software package

development (identified as TEMPO Version 3) involved porting software code from C++

into Visual Basic.NET, integrating MATLAB code for numerical strategy execution, and

allowing for future strategy generation and statistical analysis to compare against

SEVER-predicted outcomes. SEVER is the algorithm proposed by Langford and Hyuhn

(2006) that facilitates Systems Engineering decision making. TEMPO Version 3 is the

particular software application proposed to evaluate the SEVER algorithm once it is

developed into a software package. SEVER was not implemented; however, it was

considered during the development of the updated software package.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. BACKGROUND ..2
C. PURPOSE...8
D. SCOPE ..9
E. FUTURE WORK...11
F. DOCUMENT ORGANIZATION...11

II. MODEL DESCRIPTIONS ...13
A. TEMPO MILITARY PLANNING GAME ...13

1. Description (from “TEMPO Military Planning Game,
Explanation and Rules for Players,” p. 15–21)14
a. Objective ..14
b. Overview ..15
c. Scoring...18
d. Game Play ...19
e. Probability and Results of War...19
f. Budget..19
g. Intelligence ..19
h. Counterintelligence...20
i. Acquisition...20
j. Operations ...20

2. User Interface Evolution ...20
B. SYSTEMS ENGINEERING VALUE EQUATION WITH RISK

(SEVER)..26

III. DEVELOPMENT METHODS...29
A. APPROACH...30

1. Decomposed for TEMPO Application ...31
a. Derivation of Taguchi Loss Function....................................33
b. Commentary ..34

B. EVALUATION ..35

IV. DEVELOPMENT, RESULTS, AND RECOMMENDATIONS37
A. OVERVIEW OF THE SOFTWARE PACKAGE......................................37
B. DEVELOPMENT CHALLENGES ...43
C. TEMPO.NET DEVELOPMENT ...46
D. MATLAB STRATEGY PACKAGE DEVELOPMENT............................50

1. Strategy Development..51
a. Strategy #1a: True Random..54
b. Strategy #1b: Smart Random..55
c. Strategy #2: Probability of War ..56
d. Strategy #3: Priority ..57

 viii

e. Strategy #4: Weapon Type (Offensive or Defensive).............58
f. Strategy #5: Intelligence ...59

E. MATLAB ANALYSIS PACKAGE DEVELOPMENT61
1. Strategy Testing ...61

a. True Random ..62
b. Smart Random ..64

2. Measures of Performance..66
F. INTEGRATING SEVER AND TEMPO...68
G. RESULTS AND DISCUSSION ..69
H. CONCLUSIONS AND RECOMMENDATIONS.......................................75

APPENDIX A. VALUE SYSTEMS ENGINEERING (GARY LANGFORD).......79
A. FUNCTION ..79
B. VALUE..80
C. PERFORMANCE..81
D. QUALITY...82
E. WORTH..82
F. WORTH ACTIVATION FUNCTION ..83
G. RISK..83
H. DECISIONS BASED/CAPTURED BY SEVER...85
I. RAPID SYSTEMS ENGINEERING ...85

APPENDIX B. AN EXAMPLE APPLICATION OF SEVER.................................87

APPENDIX C. SERVER APPLIED TO TEMPO FUNTIONAL
DECOMPOSITION...89

APPENDIX D. VERIFICATION MATRICES FOR EACH STRATEGY............99

APPENDIX E. SOFTWARE PACKAGE INSTALLATION INSTRUCTIONS.101

LIST OF REFERENCES..111

INITIAL DISTRIBUTION LIST ...115

COMPACT DISC. TEMPO VERSION 3 AND ASSOCIATED DATA…..ENCLOSED

 ix

LIST OF FIGURES

Figure 1. Implementation of Diminishing Returns (From: TEMPO Instructions)..........17
Figure 2. Original TEMPO User Interface..21
Figure 3. Updated TEMPO Graphical User Interface...22
Figure 4. Breakout of Existing Environment Information Display on the Updated

TEMPO GUI..23
Figure 5. Breakout of Existing Weapon System Information on the Updated TEMPO

GUI ..24
Figure 6. Breakout of Decision Execution Interfaces on the updated TEMPO GUI25
Figure 7. Breakout of Decision Evaluation Information on the Updated TEMPO

GUI ..26
Figure 8. Generic Representation of Quality as a Function of Performance34
Figure 9. TEMPO Version 2 XML Log File–First Year...39
Figure 10. TEMPO Version 3 XML Log File–First Year...40
Figure 11. TEMPO Version 2 XML Log File–Last Year ...41
Figure 12. TEMPO Version 3 XML Log File–Last Year ...42
Figure 13. 'Tempo.tmp'..44
Figure 14. 'Tempo.str'..44
Figure 15. TEMPO Version 3 Configuration Setup..46
Figure 16. TEMPO Version 3 Startup Dialog Box ...47
Figure 17. TEMPO Version 3 Main User Interface ..47
Figure 18. TEMPO Version 3 Strategy Selection Dialog Box..48
Figure 19. TEMPO Version 3 Strategy Menu Options ...48
Figure 20. TEMPO Version 3 Analysis Menu Options ..49
Figure 21. TEMPO Version 3 Calculated Values ...49
Figure 22. TEMPO Version 3 Score Display..50
Figure 23. True Random Strategy Verification Graph..63
Figure 24. Smart Random Strategy Verification Graph..64
Figure 25. Probability of War, Priority, and Weapon Type Strategy Verification

Graph..65
Figure 26. Intelligence Strategy Verification Graph ...66
Figure 27. SEVER Place-Holder Features ..69
Figure 28. Histogram of 'War Occuring' Year ..73
Figure 29. Box Plots of Player TNO utils when War Occurs (per Strategy).....................74
Figure 30. Top Level Functional Decomposition ...90
Figure 31. Functional Decomposition for 'Gather Data' Function91
Figure 32. Functional Decomposition for 'Breakdown Data' Function.............................92
Figure 33. Functional Decomposition for 'Develop Information' Function93
Figure 34. Functional Decomposition for "Evaluate Information" Function....................94
Figure 35. Functional Decomposition for "Play Game" Function95
Figure 36. Install MATLAB Component Runtime (MCR) Screenshot101
Figure 37. MATLAB Component Runtime Installation Screenshot...............................102
Figure 38. MCR Installation Data Required Screenshot...102

 x

Figure 39. MCR Installation Complete Screenshot...103
Figure 40. Install Microsoft’s .NET 3.0 Framework Screenshot103
Figure 41. Microsoft's .NET 3.0 Framework… Downloading... Screenshot104
Figure 42. Microsoft's .NET 3.0 Framework Installation Complete Screenshot105
Figure 43. TEMPO.NET Installation Complete Screenshot ...105
Figure 44. Run TEMPO Screenshot..106
Figure 45. Game Startup Screenshot...107
Figure 46. 'Start a New Game' Options Screenshots...107
Figure 47. TEMPO.NET Directory Removal Screenshot...109

 xi

LIST OF TABLES

Table 1. Test Case Category Matrix ..62
Table 2. Function Descriptions ..96
Table 3. Tested Categories for all Strategies Except ‘Intel’ ..99
Table 4. Tested Scenarios for 'Intel' Strategy...100

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

It is difficult for me to express how appreciative I am for the support and

encouragement I have received from my family, friends, and colleagues throughout the

past few years. First, I have to thank Joseph Ho for his software expertise in Visual

Basic.NET and C++. Without his technical support and positive conversation, the effort

presented within this thesis would have, at best, been a far-fetched dream.

I would also like to thank all my colleagues at the Naval Undersea Warfare,

Division Newport—most importantly, my supervisor, Robert Chaves—for their

understanding and acceptance while I worked on this thesis alongside my daily tasking.

(And thank you for the funding, too!) I admit my patience wore thin at times from

“burning the candle at both ends,” but your encouraging thoughts and words soothed

things on a daily basis.

My advisors, Gary Langford and Rod Johnson deserve special thanks for the

many teleconference sessions they held with me over the past few years. These sessions

provided most of the technical content for me to understand SEVER and update the

software successfully. Their support was critical in executing this work and keeping me

on the right track. A special thanks to Gary for walking me through discussions on the

details of SEVER for hours at a time. Your expertise and willingness to discuss this

certainly did not go unnoticed.

I would also like to thank my mother, Judilyn; my stepfather, Steve; my sister,

Amilyn; and my grandparents, Jim and Judy. Without all your support and faith in me, I

would not have the frame of mind to succeed today.

Lastly, I have to thank my wife, Monica, for sacrificing so much of her time so

that I could perform this work. Without her support in just being here for me, my

perspective on the life/work balance would have been lost.

Thank you everybody!

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

In light of today’s fast-paced and dynamic global environment, it is imperative for

United States Department of Defense (DoD) decision makers to evaluate and execute

critical strategic decisions efficiently. Among the most important of these decisions are

managing current assets, funding development of promising future technologies,

converting state-of-the-art technologies into war-fighting applications, and inserting

Commercial-off-the-Shelf (COTS) technology into military systems. Understanding the

factors involved in making these decisions can be complex and convoluted. Simplifying

and clarifying the interactions between these factors would benefit decision makers at

every level. Decision support systems exist within the DoD to guide the decision maker

in making a proper decision.

According to the Defense Acquisition Guidebook published in 2003 (updated in

2008), the DoD has three principal decision support systems in place. These are the

Planning, Programming, Budgeting and Execution (PPBE) Process, Joint Capability

Integration and Development System (JCIDS), and the Defense Acquisition System. The

PPBE process is used to craft plans and programs that satisfy the demands of the National

Security Strategy within resource constraints. The JCIDS provides a systematic method

established by the Joint Chiefs of Staff for assessing gaps in military joint warfighting

capabilities and recommending solutions to resolve these gaps. The Defense Acquisition

System is a management process by which the DoD acquires weapon systems and

automated information systems. Together, the three systems provide an integrated

approach to strategic planning, identification of needs for military capabilities, systems

acquisition, and program and budget development.

Decisions are frequently outcomes of trade studies. A trade study, or trade-off

study, is the activity of a multidisciplinary team to identify the most balanced technical

solutions among a set of proposed viable solutions (Federal Aviation Administration

[FAA], 2006). Identifying ‘the most balanced technical solution’ involves clearly

 2

understanding the set of multiple, competing criteria and subsequently ranking their

importance. For the purposes of this research, decisions and trade studies are considered

synonymous. Both decisions and trade studies involve evaluating the pros and cons, or

risks and rewards of possible outcomes. If all options constituting a decision’s outcome

could be analyzed thoroughly (e.g., through some inductive or deductive process), such

that the risks and rewards for each were objectively defined and understood, we surmise

that the possible outcomes of a decision could be evaluated objectively. And, just as

importantly, if this risk/reward analysis could be automated for a given situation, perhaps

the time to make that decision could be reduced. Then the focus would center on

increasing a decision maker’s effectiveness in evaluating the possible outcomes. By

assessing the likelihood and consequences of outcomes and decreasing the time to make a

decision, the risks of making the wrong decision at the wrong time could be diminished.

However, if information on the interacting factors that confound a decision is

incomplete or unorganized, the limited time in which to make a decision could be wasted

through physically and mentally organizing the information. Disorganization could result

in inaccurate assessment of an outcome’s consequence. Coupling today’s powerful

computational processing with a new, innovative methodology based on a total systems

perspective to organizing information, the author posited that a decision evaluation tool

which bridges the gap between ‘satisfaction decisions’ and ‘optimization decisions’ could

be developed to help increase performance and quality of a decision maker’s execution.

The research and development presented in this thesis developed the groundwork

for incorporating and testing an algorithm that is the core of such a software tool. This

algorithm is currently known as the Systems Engineering Value Equation with Risk

(SEVER), and was originally derived by Gary Langford in 2006.

B. BACKGROUND

“Decision” is a common term used in the English language covering a variety of

topics. In sports, a decision means a win or loss. In law, a decision determines a person’s

guilt or innocence. Regarding this thesis, a decision is a position or opinion or judgment

reached after consideration (American Heritage Dictionary, 2004). Every day, people

 3

must make decisions. The impacts of these decisions directly reflect the amount of time

required to spend considering outcomes prior to making that decision, or deciding. There

are many areas of research relating to analyzing and forecasting a decision’s potential

impact or outcome. If the decision warrants the effort, decision theory can be applied.

Resnik (1987) states:

Decision theory is the product of the joint efforts of economists,
mathematicians, philosophers, social scientists, and statisticians toward
making sense of how individuals and groups make or should make
decisions. The applications of decision theory range from very abstract
speculations by philosophers about ideal rational agents to practical advice
from decision analysts trained in business schools.…It is thus usual to
divide decision theory into two main branches: normative (or prescriptive)
decision theory and descriptive decision theory. Descriptive decision
theorists seek to find out how decisions are made—they investigate
ordinary mortals; their colleagues in normative decision theory are
supposed to prescribe how decisions ought to be made—they study ideally
rational agents.

This thesis focused on normative decision theory. Further, two classes of

normative decisions were considered: ‘satisfaction’ and ‘optimization’ decisions. Let a

satisfaction decision be defined as achieving the highest expected utility under a given

situation. According to Bernoulli (1738), the determination of the value of an item must

not be based on its price, but rather on the utility it yields. The price of the item is

dependent only on the thing itself and is equal for everyone; the utility, however, is

dependent on the particular circumstances of the person making the estimate. Thus, the

best outcome of a satisfaction decision is one that reflects the highest expected utility.

In the other decision type, ‘optimization,’ decisions are based on optimization

theory. According to Jongen et al. (2004), optimization theory is the mathematical study

of problems that ask for minimal or maximal values of an objective function on a given

domain. Considering this definition, let an optimization decision be defined as finding the

minimum or maximum values (i.e., maximizing or minimizing) for a pre-defined,

representative mathematical model of the situation (i.e., the objective function). Further,

the subject of multiple criteria optimization is the selection of good decisions from a set

of alternatives with respect to multiple criteria or objective functions (Steuer, 1986).

 4

These types of decisions usually revolve around conflicting objective functions in which

Pareto-efficient solutions exist. In general, Pareto efficiency, or Pareto optimality, is

easily described with respect to a game: An outcome of a game is Pareto efficient if there

is no other outcome that makes every player at least as well off and at least one player

strictly better off (Gametheory.net, n.d.). In the case of multiple criteria optimization, the

solution is Pareto efficient if there is no solution for which a particular criterion’s solution

can be improved without simultaneously degrading another. At the point of Pareto-

efficiency, the decision maker’s discretion is required to make the ultimate decision, as

the existing Pareto-solutions are independently optimal against the conflicting objective

functions. The methods used to solve multiple objective optimization problems include

Markov Decision Processes (Bellman, 1957) through dynamic programming and

reinforcement learning (Sutton & Barto, 1998), multi-attribute utility theory (MAUT)

(Keeney & Raiffa, 1976), and evolutionary algorithms (Abraham, Jain, & Goldberg,

2005), to name a few. Each of these methods requires the situation to be represented in

the form of a mathematical relationship, or objective equation, in order to execute these

numerical methods. A quick summary of each follows.

According to Howard (1960):

A Markov Process is a mathematical model that is useful in the study of
complex systems. The basic concepts of the Markov process are those of
“state” of a system and state “transition.”…A graphic example of a
Markov process is presented by a frog in a lily pond. As time goes by, the
frog jumps from one lily pad to another according to his whim of the
moment. The state of the system is the number of the pad currently
occupied by the frog; the state transition is of course his leap. ...If we
focus our attention on the state transitions of the system and merely index
the transitions in time, then we may profitably think of the system as a
discrete-time process….To study the discrete-time process, we must
specify the probabilistic nature of the state transition.

This method is difficult to implement without accurate knowledge of the

probabilistic nature state transitions. Many decisions are not consistently encountered, or

have previously been statistically modeled.

 5

According to Sutton and Barto (1998), reinforcement learning is learning what to

do—how to map situations to actions—so as to maximize a numerical reward signal. The

learner is not told which actions to take, as in most forms of machine learning, but instead

must discover which actions yield the most reward by trying them.

MAUT is a special case of the Unidimensional Utility Theory involving more

than one utility function (Keeney & Raiffa, 1976). Keeney and Raiffa (1976) summarize

Unidimensional Utility Theory as follows:

A decision maker must choose among several alternatives…each of which
will eventually result in a consequence describable in terms of a single
attribute. The decision maker does not know exactly what consequence
will result from each of the various alternatives, but he can assign
probabilities to the various possibilities that might result from any course
of action.…If an appropriate utility is assigned to each possible
consequence and the expected utility of each alternative is calculated, then
the best course of action is the alternative with the highest expected utility.

The difference between unidimensional utility theory and MAUT is contained

within the number of attributes against which the decision maker must evaluate a

decision’s outcome. MAUT usually involves multiple optimum solutions, since in most

cases the optimization of each individual attribute does not lead to the optimization of all

considered attributes. Performing trade studies and considering personal preferences are

necessary to evaluate which decision is best once the Pareto-efficient solutions are

computed.

Krantz and Kunreuther (2007) developed a subjective expected multi-attribute

utility theory (SEMAUT), based on the determination that goals are deemed stable, and

therefore the tradeoffs among the different goals can be approximately represented by a

multi-attribute utility function. In the case of TEMPO, two constructs distinguish it from

the commonly held notion that MAUT has not been associated with prescriptive

approaches

1. The notion that preferences are revealed rather than constructed is an
important distinction. SEMAUT’s frame is in sharp contrast to the idea
that preferences are constructed rather than revealed (Tversky, Sattath &
Slovic (1988); Tversky, Slovic & Kahneman (1990); Chapman & Johnson

 6

(1995); Slovic (1995)). In the prescriptive paradigm, one concentrates on
improving the choice process for a particular context given an
understanding of how the computer behaves. Prescriptions should be
formed on rules or norms which are constructed rather than designed
through preference. SEMAUT focuses on values or utilities and decision
weights rather than subjective probabilities, and

2. The notion that there is a multitude of frameworks underscores
prescriptive thinking. One must consider the correct temporal framing,
how to commit resources to meet a goal, how should the decision-
weighting process be enacted, and how to set the goals correctly in the
context of the previous play.

Evolutionary algorithms are based on the following three methods: genetic

algorithms, evolution strategies, and evolutionary programming (Baech et al., 2000). In

general, Baech et al. (2000) explain evolutionary algorithms as:

[Those that] utilize the collective learning process of a population of
individuals.1 Usually, each individual represents a search point in the
space of potential solutions to a given problem. Additionally, individuals
may also incorporate further information; for example, strategy parameters
of the evolutionary algorithm.

Each of these methods is mentioned as a potential way to solve certain types of

problems involving decision outcomes. The intent of this discussion is to provide

background information on other methods available, not on the details of their

effectiveness or whether one method is preferred.

Regarding ‘satisfaction decisions,’ a proper framework is required to understand

the decision at hand in better detail (i.e., the information is presented in a hierarchical

fashion to facilitate comparison between the alternatives) so that an educated decision can

be made. These methods propose to decompose the decision such that the decision maker

has a more objective dataset in order to make the most satisfying choice. Analytic

network/hierarchy processes (ANP/AHP), both proposed by Saaty in 2001, and decision

trees are two methods that establish a hierarchical view of a particular situation.

1 The term ‘individual’ refers to a single member containing a chromosome or genome that usually

contains at least a representation of a possible solution to the problem being tackled. Other information
such as certain strategy parameters and the individual’s fitness value are usually also stored in each
individual.

 7

Generally, two perspectives exist in solving problems: “top-down” and “bottom-

up” (Lakatos, 1978). According to Blanchard and Fabryky (2006). A top-down approach

views the system as a whole, understanding how the system components effectively

perform together. In contrast, a bottom-up approach refers to viewing a system by

focusing on the lowest level system components and assembling upward. In general,

Decision Theory methods such as the Markov Decision Process and MAUT rely on a

bottom-up approach. That is, they require a numerical/mathematical model with assigned

probabilities of the situation in order to compute the optimal outcome. These methods

are concerned with solving an optimization decision problem. In cases based on laws of

physics or proven empirical relationships, those methods work because software can be

used to perform the intense computations. In these cases, parameter relationships through

equations are derived, random inputs are provided, and computations or simulations are

performed to provide the absolute range of possible outcomes as a probability

distribution. The solution with the highest expected value, or utility, is considered the

best. These models account for uncertain conditions by tuning particular parameters to

calculate a new cumulative probability distribution for each case. In this sense, lower

level model parameters are updated and give rise to a new system-level outcome.

Many other methods, one being ANP/AHP, are more robust because they are

typically applied in a top-down manner. The importance of each parameter in a decision

varies from person to person. These methods allow the decision maker to provide custom

criteria importance values in the form of criteria weighting, which more accurately

represents the human behavioral aspect of decision making.

SEVER is an algorithm that is most useful when applied in a top-down manner,

yet is built on a bottom-up framework. SEVER is both an algorithm and a mathematical

method used to capture and decompose a situation, or system, down to its lowest level

elements. In fact, it is a Systems Engineering (SE), top-down, approach that provides a

system-level view of the implications of executing a certain decision from the basic

elements upward. Because of its SE approach, uncertainty is considered an input to

SEVER in the form of risk. With respect to ‘satisfaction decisions,’ SEVER provides a

decomposition framework in which to view a particular situation. With respect to

 8

‘optimization decisions,’ SEVER provides the mathematical framework for comparing

different potential outcomes so the optimal outcome for that situation can be discovered.

One particular application of interest to the DoD involves training future program

managers with the skill of allocating resources efficiently. A game has existed since the

1960s to train students at the Naval Postgraduate School in this skill. It was originally

developed by General Electric’s TEMPO Think Tank as a military budget allocation

game and is known as the TEMPO Military Planning Game. TEMPO is a two-player

game consisting of allocating finances on certain available weapon systems. Each

weapon system provides a different level of military performance for a defined cost. Each

player’s objective is to win a war based on the operating performance of particular

inventoried weapons. The game has been modified from its original, paper-based version

to a computer command console version to a spreadsheet-based version to its current

Microsoft Windows form-based version. Through these evolutions, updates have been

made to the game; however, the general intent of the game has remained the same just as

has the skill it allows its users to hone: Allocate finances for particular weapon systems in

order to win a war against your enemy.

TEMPO was used to implement the constructs to support SEVER. TEMPO was

modified to allow real-time feedback on allocation decisions made by the user. Once

real-time feedback is integrated, SEVER will be capable of scoring the effectiveness of a

decision in real time if the model. Many different strategies can be used during game

play; SEVER was the tool used to analyze, or score, each strategy.

C. PURPOSE

This document describes the adaptation and update of the TEMPO Military

Planning Game, developed by General Electric in the 1960s, to automatically execute a

set of rule-based strategies. Further, a trial set of 1000 runs was executed for each

strategy. The results of these trial sets are provided. TEMPO was updated to lay the

groundwork for the future implementation of SEVER. Also, this work attempted to

improve the TEMPO user interface.

 9

By implementing rule-based strategies against the computer’s coevolutionary

rule-based strategies and recording the outcomes, evaluation of the main tool of the Value

Systems Engineering process, SEVER, will be possible (Langford, 2006). For the

formative purposes of this thesis, five major strategy types have been designed and

implemented: 1. allocate randomly, 2. allocate based on reported probability of war, 3.

allocated based on user-defined priority, 4. allocate based on offense or defensive

preference, 5. allocate based on intelligence received. Of these, 10 particular (subset)

strategies were tested. These strategies are subsets of the strategy types from changing

certain parameters. These 10 strategies were executed and their comparative results are

described. The methods used to compare these strategies serve as the foundation to

evaluate SEVER.

In summary, the work presented in this thesis creates a model on which to

perform resource allocation trials based on strategies so that a statistical evaluation of the

SEVER algorithm is possible. The TEMPO Military Planning Game (TEMPO) is the

model selected to facilitate the evaluation of SEVER. MATLAB was used to create the

strategy and analysis capabilities. The entire development is integrated as one software

package that is user installed and executed. From this point forward, this software

development is referred to as the ‘TEMPO Version 3.0.’ This software package can

continue to be updated to include SEVER, when appropriate.

The particular research question on which the work presented in this thesis is

focused is: Can TEMPO be updated and modified to accommodate SEVER? What is

required? How can this be achieved?

D. SCOPE

This thesis provides a development description of a decision model capable of

both human (manual mode) and computer (automatic mode) execution in order to

accommodate SEVER. The model (TEMPO) is designed such that a large number of

trials (or ‘games’) can be executed, and the results recorded, to evaluate the player’s

performance against the computer. The assimilation of SEVER and its evaluation is

planned as a follow-on effort and is not discussed in this write-up.

 10

TEMPO updates provide:

 a mechanism to run a user-defined number of games with various user-
selected rule-based strategies

 a means to implement the SEVER evaluation algorithm via a Graphical
User Interface (GUI)

 an enhanced the user interface

 a means to graphically present the previous turn’s decision results

This thesis also presents the development and performance of 10 particular

strategies autonomously played (i.e., computer versus computer) in order to validate

TEMPO Version 3. Performance of each strategy is presented statistically.

The scope of the work performed and presented concludes with the ability of

TEMPO to record and present performance results of human player and computer

automated strategies. This thesis does not present results comparing the actual

performance results of these strategies against those predicted by SEVER—only results

of the 10 currently coded strategies against each other. The strategy performance results

are recorded by automatically executing a select number of trials of a particular user-

selected strategy and saved within Extensible Markup Language (XML) log files.

A software development effort was necessary to update the existing TEMPO

model from a grid-style interface to a more user-friendly Graphical User Interface (GUI).

This development also included preliminary placeholder code so that SEVER can be

implemented on the GUI along with special functions (coded in MATLAB) to analyze

and present resource allocation results, where appropriate. Special attention was paid to

the user interface to facilitate quick learning and reduce the effort required to understand

and play the game. Previously, TEMPO was not capable of automatically playing a set

number of games. During this thesis work, the software was modified and recoded to

collect data for a particular user-selected strategy for a user-specified number of games.

The updated software is capable of comparing actual performance of all types of logical

rule-based strategies in addition to a player’s strategy. Further, a software framework to

 11

develop and execute additional strategies in MATLAB was designed. The updated GUI

allows human research on executing a strategy under time constraints to be possible, both

with and without SEVER.

E. FUTURE WORK

Plans for future work include updating the preliminary placeholder code with the

actual SEVER engine and applying the SEVER implementation to other numerical-based

models. Particular future work for TEMPO and SEVER implementation will build upon

the current strategies with new rule-based strategies, create a graphical user interface to

streamline the post-processing and analysis of game log files, and perform a formal

statistical analysis using the MATLAB Statistical Toolbox functions.

Future work regarding other models useful for SEVER could be a project

schedule modeled in Microsoft Project© software where both financial and temporal

decisions are required to successfully complete a project within given management

time/budget constraints. The model would be of the software schedule created in

Microsoft Project, and exported in an XML file format. Inputs to the SEVER algorithm

include decisions regarding the tasks to perform versus the budget and time available.

The output of the algorithm would be the risk, as a percentage, that scheduled project

would not be successfully completed within the estimated timeframe and budget.

F. DOCUMENT ORGANIZATION

Chapter I contains the motivation and background necessary to understand the

work presented within the thesis.

Chapter II contains the background on both TEMPO and SEVER necessary for

the reader to understand the subsequent software development effort.

Chapter III contains two subsections. The first section presents the planned

software development in order to answer the research question presented. The second

section presents the statistical method used to evaluate the performances of each strategy.

 12

Chapter IV describes the software package development, the methods involved in

the strategy performance verification, and results of implementing each strategy into

TEMPO. Further, it summarizes the software package development and draws

conclusions from development of TEMPO’s updates and the rule-based strategies to

answer the proposed research questions in Chapter I. Also, future development work and

research based on the limitations within this thesis are suggested.

The appendices provide more detailed information about TEMPO, SEVER,

methods to integrate them, a description of the developed code (i.e., Visual Basic.NET

and MATLAB), software installation procedures, and game play instructions and

features. A CD is packaged with this publication and contains all the software required to

reproduce these results.

 13

II. MODEL DESCRIPTIONS

In order to understand the purpose and results presented within this thesis, the

reader requires a sufficient understanding of the model and algorithm used. This chapter

is broken into two major sections. The first section focuses on the description and game-

play rules for TEMPO. The second section provides an overview of the SEVER

algorithm and the method of applying this algorithm to TEMPO.

A. TEMPO MILITARY PLANNING GAME

According to Johnson et al.:

In the early 1960s, the Department of Defense created a management
system, the Planning, Programming, and Budgeting System (PPBS) of
considerable complexity to rationalize its resource allocation problems
(during a short range timeframe (1–5 years). A major training program
was instituted to teach the PPBS and a “game” was created by General
Electric’s “TEMPO Think Tank” to train people in the use of the new
system. (2005)

This training program comes in the form of a symmetric two-sided game. Teams

of players compete in allocating limited resources to build up force structures consisting

of notional weapon systems. The game consists of a number of turns, each turn

representing one year. At the start of each “year,” each side receives a budget, which it

may allocate to acquisition and operation of various weapon systems and to other

categories such as “intelligence” and “counterintelligence.” Each year, conflict with the

enemy becomes more probable, until a “war” occurs. At this point, each player’s force

structure is matched against the opponent’s. Based on certain game rules, the more

effective allocation wins.

The TEMPO Military Planning game is an important training tool, enabling future

military decision makers to simulate making critical resource allocation decisions within

an uncertain finite timeline. In courses given by the Defense Resource Management

Institute for more than 40 years, more than 20,000 students from 125 countries have

played the game as part of their training.

 14

The research reported by Johnson et al. (2005) was aimed at applying computing

power to resource allocation in a competitive environment. They undertook to develop a

computer program capable of playing the TEMPO game (in a somewhat simplified

version) against human opponents. By using a coevolutionary algorithm, they were able

to create such a program based on a small set of fuzzy-logic decision rules. According to

Johnson et al. (2005), coevolutionary algorithms consist of individuals against other

individuals, each competing for resources in an environment that, in itself, poses its own

threats. Competing individuals use random variation and selection to seek out survival

strategies that will give them an edge over their opposition. (Johnson et al. 2005). These

survival strategies were formulated on the principles of fuzzy logic, originally introduced

by Zadeh (1965) through fuzzy set theory. According to Zadeh (1965), more often than

not, the classes of objects found in the real physical world do not have precisely defined

criteria of membership…clearly, “the class of beautiful women,” or “the class of tall

men”…are imprecisely defined classes. The imprecise classes provide for a framework

that uses imprecise criteria to make decisions.

Johnson et al. (2005) claim near human-level performance for the program on the

grounds that it was able to beat one of its developers on the first several tries. In what

follows, TEMPO refers to this computerized version of the game.

1. Description (from “TEMPO Military Planning Game, Explanation
and Rules for Players,” p. 15–21)

a. Objective

Player wins a war by having more Total Net Offensive (TNO) utils (see

below for description) than the opponent. War can occur in any given year with

increasing probability of occurrence each year the game continues. TNO utils are only

calculated if war occurs.

 15

b. Overview

Weapon systems are grouped as follows:

 Type: Offensive (O) or Defensive (D)

 Class: A or B

 Level: 1, 2, 4, or 4

Weapon systems can take any combination of the above three levels of

classification. For example, OA2, DB3, etc., are each valid weapon systems. Each

weapon system produces an output of military capability that is valued in “UTILS.” The

UTIL is a measure of effectiveness used to simplify game playing and scoring. Although

determining the effectiveness of weapons is often the most difficult part of military

planning, this simplification permits the player to concentrate on the budget allocation

problem. The player’s goal is to allocate each weapon type so when war occurs they have

more TNO utils than the opponent. Details on how this is accomplished follow.

There are four categories of actions the player can execute for each turn:

 ACQUIRE new weapon systems

 OPERATE existing inventory of weapon systems

 Purchase INTELligence

 Purchase COUNTER-INTELligence

An execution stage follows calculating and implementing these four

decisions. The “execution stage” is defined as confirming all currently allocated decisions

displayed on the screen and continuing to the next turn (i.e., next year). This execution

stage is controlled by pressing the ‘Commit’ button.

(1) Operate. This function is how military performance is

calculated (in the form of UTILS). Operating existing inventory results in a number of

UTILS multiplied by the number of units within inventory operated. There are penalties

for operating too much of any single system, in the form of diminishing returns, which

 16

are discussed later. By operating a particular weapon, the inventory for that weapon

remains for the next year. This is one method to ensure there are enough units for next

year.

(2) Acquire. In order to OPERATE, units must exist in inventory.

This is the other method to ensure there are enough units contained within inventory for

the next year. Each year, a fixed amount of all available weapons are available to acquire.

(3) General. Only weapons existing in the inventory in the current

year can be operated. Therefore, if the player decides not to operate any units in a given

year, only those weapons the player acquires that year will be available within the

inventory the next year. All other pre-existing weapon inventories are lost.

Only operating force units produce military capability and hence

utils. New weapon systems do not necessarily replace existing systems; they might be

additions to force structure. Util values for weapon systems remain constant throughout

the game. Although util values per unit remain constant, if currently operated units in any

one system produce more than 2000 utils, further utils are subject to “diminishing

returns” on a sliding scale (see Figure 1). Costs remain constant during procurement and

operation of a given system.

 17

Figure 1. Implementation of Diminishing Returns (From: TEMPO Instructions)

Defensive weapon systems only defend against the opponent’s

offensive weapon systems of the same Force Unit Type; your DA weapons defend

against only the enemy’s OA weapons, and your DB weapons defend only against the

enemy’s OB weapons. These weapon systems cannot result in positive TNO utils.

 18

Therefore, any DA system counts against any OA system of the enemy, and likewise for

B systems, i.e., utils from operating DB2 defend against OB1, OB2, etc. However, once

all OB1 utils are defended, the extra utils are useless. In other words, no credit is given

for “overdefending” in a Force Unit Type category.

c. Scoring

A team’s TNO utils for a particular year are calculated as follows:

 _
1 1

1 1

_ _ _

_ _

n n

UTILS j i i
i i j

n n

i i
i i j

HUM TNO HUM OA COMP DA

HUM OB COMP DB

 

 

 

  
 
 

 

 
 (2.1)

 
 

_
1 1

1 1

_ _ _

_ _

n n

UTILS j i i
i i j

n n

i i
i i j

COMP TNO COMP OA HUM DA

COMP OB HUM DB

 

 

 

 

 

 
 (2.2)

where prefixes HUM and COMP denote ‘human’ and ‘computer,’ respectively.

jUTILSTNO _ is the number of TNO Utils after year j. OAi is the amount of utils derived

from the type: offensive (O) weapon system class: A, level: i. OBi, DAi, and DBi are

similarly defined. In this game, i ranges from 1–4.

As mentioned previously, no credit is given for “overdefending” For

example, if 


n

i
iDAHUM

1

_ is greater than 


n

i
iOACOMP

1

_ (both from first term in (2.2))

there is no additional benefit. In mathematical terms:

1 11

_ min _ _,
n

i

i

n

i

i

n

i
iHUM DA is replaced with HUM DA COMP OA

 

 
 
 

   (2.3)

To win a war,

 19

 _ _ _
_ _

UTILS j UTILS j j WAR YEAR
HUM TNO COMP TNO


 (2.4)

d. Game Play

Normally, the game is played for several “years.” War is inevitable and

will eventually “break out.” The amount of years before war occurs depends on a

probability of war occurring. Each year this probability increases.

e. Probability and Results of War

The probability of war is announced at the beginning of each year and is

for that year only. If war occurs, it only will happen after the budget decisions for that

year have been completed but before the next year begins. Neither team can declare a

war. If war occurs, the results of (2.1) and (2.2) will be computed, and the condition

described in (2.4) will be evaluated. At this point the game ends and a winner is declared.

f. Budget

Each side has a finite budget. This budget increases each year by a random

rate of increase. Mathematically, this is represented as:

  1 1j jBUDGET r BUDGET    (2.5)

where r > 0 is the random rate increase each year. Within the code, the randomized range

of r is [0, 0.1]. 0jBUDGET = $8,000. This budget expires at the end of each year similar

to the DoD PPBS. There are four ways to allocate budget: (1) buy intelligence, (2) buy

counter-intelligence, (3) acquire available weapon systems and (4) operate available

inventory of weapon system.

g. Intelligence

Intelligence is divided into offensive and defensive intelligence. Offensive

intelligence purchased in year j allows knowledge of the computer’s offensive weapon

 20

systems adjusted utils of year j (displayed prior to year j+1 commitment).

Mathematically, these values are shown as:
j

n

i
iOACOMP 







1

_ and
j

n

i
iOBCOMP 







1

_ .

Similarly, defensive intelligence purchased allows knowledge of

j

n

i
iDACOMP 







1

_ and
j

n

i
iDBCOMP 






1
_ .

h. Counterintelligence

Counterintelligence ensures that if the computer buys intelligence, the

information provided to them about the human player is less precise.

i. Acquisition

A team may acquire additional units of any system already in the

inventory at any time. Units of any new system may be acquired when force information

sheet indicates they are available and in any turn thereafter. In one or two (exceptional)

cases you may get an initial inventory free of charge when the system first becomes

available. The maximum annual acquisition rate for any particular system is stated.

j. Operations

A team may operate any or all forces in inventory at the start of a year.

Operation is not mandatory for any of the systems. One cannot “mothball” units. Existing

force units not operated in any one year are lost from inventory. Units acquired in one

year cannot be operated until the following year.

2. User Interface Evolution

Figure 2 displays the original TEMPO user interface. The original TEMPO user

interface was a command console where each allocation was required to be submitted one

at a time. This method did not accommodate a change of mind—once an allocation was

entered on a weapon type, it was unchangeable. This makes it difficult to properly plan

the budget.

 21

Figure 3 through Figure 7 display and describe the modified TEMPO user

interface. This version relied on Active Template Library (ATL) code. The code

associated with this version developed a grid Microsoft Component Object Model

(COM) Object as the interface, which was loaded within Microsoft’s Internet ExplorerTM.

This modified TEMPO version allows the user to make decisions, determine impacts on

cost and utils, and change things prior to committing the budget. This is a major

enhancement to implementing a realistic application of the resource allocation process;

however, this TEMPO version still retains many limitations along with the original

TEMPO command console interface for successful SEVER implementation. These

limitations are discussed further in the next chapter.

Figure 2. Original TEMPO User Interface

 22

Figure 3. Updated TEMPO Graphical User Interface

 23

Figure 4. Breakout of Existing Environment Information Display on the Updated TEMPO GUI

 24

Figure 5. Breakout of Existing Weapon System Information on the Updated TEMPO GUI

 25

Figure 6. Breakout of Decision Execution Interfaces on the updated TEMPO GUI

 26

Figure 7. Breakout of Decision Evaluation Information on the Updated TEMPO GUI

B. SYSTEMS ENGINEERING VALUE EQUATION WITH RISK (SEVER)

SEVER was derived and first implemented by Langford (2006) under the process

of ‘Rapid Systems Engineering,’ Now termed Value Systems Engineering. Value

Systems Engineering is a scenario-driven approach that attempts to reduce the degree of

uncertainty in predicting business success by structuring and analyzing the interplay

between alternative business models, competitive strategies, and their resultant product

Evaluation Ratios
• Utils/Acq Cost
• Utils/Op Cost
• Utils/(Acq Cost + Op Cost)
• Etc.

 27

alternatives. It is a bottom-up, systematic, and highly iterative approach relating

competitive strategies to alternative business requirements and conditions for stakeholder

success (Langford, 2006). Langford (2006) utilizes SEVER as the fundamental tool to

quantitatively predict success of particular businesses. SEVER is closely related to Value

Analysis and Engineering (Miles 1972). Both view a system as a collection of functions

arranged in a hierarchical fashion. Details on Value Systems Engineering are located in

Appendix A.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

III. DEVELOPMENT METHODS

In order to address the fundamental research question in this thesis, both a

thorough understanding and detailed decomposition of the TEMPO model and the

SEVER algorithm were required. Specifically, once this decomposition process began,

the challenge undertaken was how to properly represent TEMPO output variables as

SEVER input variables. Once achieved, more detailed questions surfaced. Answers to

some of these questions were provided through actual software development. These

questions include:

What is required?

 Represent performance, investment, function, and quality, as defined by
SEVER, from TEMPO variables.

 Determine weapon availability patterns.

 Understand pWar and the value it provides. Is this realistic?

 Characterize the computer’s weapon allocation decisions. Are these
decisions consistent for each year from one game to the next?

 Identify TEMPO software modifications required to incorporate the
SEVER outputs.

How can this be achieved?

 Conduct many trials of the game.

 Capture each trial’s output permanently.

 Develop particular strategies to play against the computer.

 Post-process trial data to determine the effectiveness of certain strategies
(used to compare against the predicted SEVER value for each strategy,
once implemented).

Where possible, the answers to these questions are provided in this chapter. Other

questions that could not be answered provide the framework for future work.

 30

This thesis describes the SEVER algorithm, yet no formal execution of the

algorithm or related software execution is presented. The work presented is only for a

software package that will be used in the future to evaluate SEVER.

A. APPROACH

SEVER in its entirety is reformulated for each function and represented as:

Risk Vulnerability Performance Quality

Threat Investment


 
 (3.1)

All terms are consistent with the definitions previously given. Regarding the units

of each variable, performance is expressed in the same units as 1/threat (i.e., for TEMPO,

‘Utils’). Quality is expressed as the same units of investment (i.e., for TEMPO, ‘$’).

Vulnerability is a probability without units. This defines the expression
Risk

Threat
in units of

performance (i.e., for TEMPO: ‘Utils’). In plain English, this representation states the

ratio of the risk to all threats that would prevent the performing a particular system

function is equivalent to (all else remaining constant):

1. How vulnerable is the function to the composite threat—if the function is
invulnerable to the threat, the risk of any threat to eliminate it is negligible

2. How well the function performs—if the function does not perform well, the
risk of any threat to eliminate it is negligible

3. How much of a value is the function to society—if the function’s quality
(i.e., value to society) is high, the risk of any threat to eliminate it is high

4. How inexpensive was the function to develop—if the function was cheap to
develop and implement, the risk of any threat to eliminate it is low since it
can:

a. be developed or implemented again

b. provided redundantly

In order to calculate the total system value, each function’s value must be

quantitatively derived. Thus, applying SEVER to a system involves a top-down system

 31

decomposition (collected using the functional decomposition method) and a bottom-up

calculation of each function’s value. The final product is a summation of all the system’s

function values.

According to Langford (2006), combined with the investment made by a

stakeholder, functions, performance, and quality requirements determine the operational

capability of the product or service. Thus, considering a product or service as a system,

the framework for calculating a system’s value is represented as the system’s operational

capability given a certain required investment. Multiple systems attempting to achieve the

same end goal can be compared using this framework. The system’s operational

capability, or worth, is based on its functional view and is quantitatively measured in the

same units as performance.

Further, this framework can be extended to evaluate strategic decisions, or more

appropriate for this thesis, a strategy. If a strategy is thought of as a system (i.e., the

output of a particular strategy provides more value to society than others—society in this

case is the player), the value of one strategy against another can be compared analogously

to products and services using SEVER.

1. Decomposed for TEMPO Application

The following decomposition explains the how the calculation of consequence

within the context of TEMPO is captured. By more formally representing investment

algebraically as:

 Total
unit

c
I T

t

 
  
 

 (3.2)

where c is the incremental unit cost, tunit is the smallest applicable increment measure of

time, and TTotal is a total aggregate measure of time for a function, value per function can

now be expressed as:

 32

 incremental
Total

Total
unit

PV
Q

cF T
t

 
 
 
 
  




 (3.3)

In TEMPO,
1

i

n

unit Total
i

t T


 . tunit represents one year and TTotal represents the total

duration of the game. Units for I are ‘$.’ Rearranging terms and multiplying by PTotal /

PTotal yields:

 incremental Total Total

Total Total

unit

P P QV
cF T P

t

 
     
     
     
  

  (3.4)

Pincremental represents the performance for a function per year, where PTotal

represents the total performance over the course of the game. Similarly, QTotal is

measured as the total quality of the function over the course of the game. This is the

representation currently considered for use with TEMPO. It consists of a product of three

major terms to align with the particular outputs expected from TEMPO. V/F is calculated

in the same units of P, Utils.

Q is a quality function measured as a loss to society (Taguchi, 1990) represented

by (o.10) below. The units of Q are the same as I: ‘$’.

    nQ P L P  (3.5)

where  nL P represents the loss function. Typically, quality as a function of performance

is estimated using a quadratic loss function. A deviation from the optimal performance

results in a loss equivalent to that deviation squared. See Figure 8 for the relationship

between quality and performance. Qualitatively, is the maximum theoretical measure

of quality corresponding to the optimal performance level. This value represents both the

developer and the user.

 33

a. Derivation of Taguchi Loss Function

Consider a representation of quality as shown in (3.6):

  m TQ L Y B  (3.6)

where B is the maximum quality, Qm is the measured quality, and LT(Y) is the Taguchi

Loss function, as stated in (3.7),

    2

TL Y k Y m  (3.7)

where k is the loss factor (derived empirically), Y is the individually measured

performance, and m is the ideal target performance. k is further decomposed as:

2

A
k


 (3.8)

where A is the average cost of each unit returned/reworked and is the range of

variability in performance:

   / 2UL LL   (3.9)

UL and LL are the upper and lower limits away from the ideal target performance, m,

expected.

 34

Quality vs. Performance

0

200

400

600

800

1000

1200

1400

1500 2000 2500

Performance (Utils)

L
o

ss
 (

$)

LT(P)

Max QT (i.e. )

QM

- +
m

A

Figure 8. Generic Representation of Quality as a Function of Performance

Thus, quality is represented completely as shown in (3.10):

  2

2

2

T

A
Q Y m

UL LL
  

 
 
 

 (3.10)

b. Commentary

From this point, properly deriving the quality of each decision in the

TEMPO game requires empirical effort based on statistical data. TEMPO Version 3 is

 35

now capable of performing the groundwork analysis to derive the quality of each

decision. This empirical analysis to further define quality of each decision remains a

future effort.

TEMPO Version 3 involved the following development:

 Creating an automatic gameplay feature that allows a defined
number of games to be played with particular strategies.

 Developing the rule-based resource allocation strategies

 Updating the GUI to include SEVER outputs

 Conducting many games to prove the output of pWar is accurate

These new capabilities enabled TEMPO to automatically conduct a user-

defined number of trials for SEVER to be statistically evaluated. The variables required

for SEVER can now be empirically derived and calibrated to prove that the value

determined by SEVER is accurate for a particular resource allocation strategy employed.

The TEMPO Version 3 software development effort is described in greater detail in the

next chapter.

B. EVALUATION

Based on this research, the method incorporated to perform preliminary testing

included coding rule-based strategies to capture a more detailed understanding of

TEMPO and its potential application to SEVER. The ultimate goal is to allow SEVER to

score each resource allocation decision ‘on-the-fly’ prior to the player committing his/her

decisions. This can only be accomplished once the value and risks for a given decision

are understood and quantified.

Six different rule-based strategy types were developed. Of those, a total of 10

individual strategies were executed. Turn-by-turn data was collected for each execution

for a total of 1000 trials. Each strategy was stored as a separate MATLAB workspace

file. A MATLAB function, “collectStats.m” collected, organized, and stored these

separate workspace files. The MATLAB function, “compOutput.m” computed the output

graphs for each strategy used to compare the results for each strategy. The philosophy in

 36

developing this code, along with the previously described MATLAB software, is to

design in the flexibility to implement, run, and evaluate new strategies as they are

derived.

A box plot is used to present a high-level comparison between each strategy. The

MATLAB function, ‘boxplot.m’ (part of the Statistics Toolbox) was used within the

‘compOutput.m’ function to generate Figure 29, page 74. This plot displays each

strategy’s “player net utils when war occurs” over 1000 trails. Values above 0 are player

wins. Values below 0 are computer wins. From this plot, a statistical comparison of each

strategy’s performance is presented. The data is represented in a box and whisker format.

The box represents the 25th to 75th percentiles; the line within the box represents the

median; the whiskers represent the rest of the data not considered outliers; and the

individual plotted points (+’s) represent outliers, as determined by the MATLAB

function.

 37

IV. DEVELOPMENT, RESULTS, AND RECOMMENDATIONS

This chapter describes the development of the software. A functional description

of the new software package is provided. This description is separated into six major

sections: an overview of the software package, the software integration challenges,

TEMPO Version 3 development from TEMPO Version 2, MATLAB strategy

development, the MATLAB analysis development, and the total integration. New

features were considered and implemented based upon the inputs required by the SEVER

algorithm, the existing capabilities of TEMPO, and the measurable outputs required by

MATLAB to run the rule-based strategies and analyze all strategies.

A. OVERVIEW OF THE SOFTWARE PACKAGE

The new software consists of code written in both TEMPO.NET and MATLAB.

This software package was designed to execute particular strategies within TEMPO.NET

and capture/present the results for a defined number of trials. Executing a strategy

consists of the user selecting a desired strategy and number of trials to execute. Capturing

the resulting output data required a TEMPO.ATL model update and MATLAB software

development.

There were two major features required for TEMPO to gather the appropriate

measures to implement SEVER. The first feature was for TEMPO to automatically write

an output log file at the end of each game so this data could be permanently stored. The

second feature of TEMPO.NET is the ability to automatically play a defined number of

games.

The first feature already existed in the existing TEMPO ATL version. A log file

for each game was provided in an eXtensible Markup Language (XML) format.

Examples of this log file for a typical game’s first year is presented in Figure 9 and for a

typical game’s last year is presented in Figure 11. The highlighted fields are those that

required modification. In order to store the appropriate data for analysis, some

modifications to the data output in this file were required. All weapon inventories and

 38

maximum numbers to purchase were incorrectly listed. For example, Year n+1 data was

listed where Year n data should be. This is believed to be a bug in the existing ATL

version and was updated by: (1) storing the previous year’s weapon data, (2) executing

that year’s turn, and (3) writing the stored ‘inventory/maximum acquisition’ (or, weapon

availability) data to the log file (along with the current year’s allocations) after

committing to those weapon allocation decisions. Without incorporating this fix,

comparison between weapon availability data and the allocation decision for every year

would not be possible. The data associated with the first year’s weapon availability is lost

and the data associated with the year that war occurred is unnecessary as it reflects

weapon availabilities after war already occurred.

The second update was implemented to facilitate data analysis, but it was not

mandatory. It consisted of displaying the budget left after the turn was executed, rather

than the original budget for the start of the turn. This was convenient for the MATLAB

analysis tool, as the actual budget left is considered important rather than the starting

budget. In either case, the starting budget could be calculated assuming the weapons

operated and acquired for that turn were accurate (as accomplished by the first update) or

vice versa. Associated samples of the new log file are shown in Figure 10 and Figure 12,

for a typical game’s first and last year, respectively. The modified fields are highlighted

for clarity.

 39

Figure 9. TEMPO Version 2 XML Log File–First Year

 40

Figure 10. TEMPO Version 3 XML Log File–First Year

 41

Figure 11. TEMPO Version 2 XML Log File–Last Year

 42

Figure 12. TEMPO Version 3 XML Log File–Last Year

 43

This second feature required a major update to the existing TEMPO.ATL.

Previously, an automatic play feature was unnecessary. In order to execute automatic

strategies, TEMPO.ATL required:

1. Capture of the current year’s environment

2. Capture of the current year’s weapon availabilities

3. Capture of intelligence data, if purchased

4. An algorithm to analyze the captured data

5. An algorithm to provide the weapon operation list and weapon purchase
list

6. A method to commit the weapon operation and purchase lists

Items 1–3 were implemented by developing a turn-by-turn ‘interface file.’ Items 4

and 5 were implemented by executing the specific rule-based strategies (discussed in the

‘MATLAB Strategy Package Development’ section). Item 6 was implemented by

designing TEMPO to read the interface file data and executing the weapon allocation

decisions automatically. Visual Basic.NET was selected as the desired development

environment for the TEMPO update (hence TEMPO.NET) because user interfaces can be

quickly prototyped and it is a versatile, yet simple language to use. MATLAB was used

to execute the rule-based strategies since it is a software language specifically designed to

perform mathematical functions. However, using two different software development

environments presented some unique challenges.

B. DEVELOPMENT CHALLENGES

Interfacing data between MATLAB and Visual Basic.NET development

environments presented the most difficult challenge. Due to a lack of programming

experience, the simplest method—transferring weapon data through reading and writing

of plain text files—was chosen. For any given turn (i.e., year of play) the overall

approach is the same. First, TEMPO.NET creates a plain text file—tempo.ini’—listing

which strategy the user requires. This is a simple text file that the MATLAB executable

application eventually requires to execute the appropriate strategy. Next, TEMPO.NET

 44

creates a plain text interface file—‘tempo.tmp’—with the year’s environment and

weapon availability data, and intelligence purchased, if applicable. TEMPO.NET then

calls a previously compiled MATLAB standalone executable program

(‘runStrategyExe.exe’) to read the data within these two plain text files, execute the

strategy, and output the strategy results into a similar plain text file—‘tempo.str.’ Figure

13 displays a sample ‘tempo.tmp’ file from TEMPO.NET read by MATLAB.

Figure 13. 'Tempo.tmp'

‘runStrategyExe.exe’ executes the strategy and writes a new text file (‘tempo.str’)

to the same directory with the appropriate ‘operate’ and ‘buy’ lists. Figure 14 displays the

MATLAB-modified input text file, ‘tempo.str’.

Figure 14. 'Tempo.str'

 45

Once complete, TEMPO.NET then imports this information back into the

appropriate text boxes and the commits the weapon and intelligence allocation. This

process repeats for every year until war occurs. The most difficult challenge involved

timing TEMPO.NET to allow time for the MATLAB strategy to execute without

overwriting files in the process. In order to do so, multi-thread execution was added to

TEMPO.NET. One thread executes game play while the other continuously monitors for

the ‘input file.’ Due to this implementation, the execution of the game in automatic mode

updates the user interface unpredictably, so it is difficult to watch a game being played.

Although not ideal, this solution provided the necessary functionality to support a

consistent information exchange between TEMPO.NET and the MATLAB executable

program. A more elegant solution would have been to compile a Dynamic Link Library

(DLL) containing all the MATLAB functions for Visual Basic to call. This could also

improve performance, as the current solution takes a considerable amount of time to

execute (approximately 7 seconds per turn). Unfortunately, lack of programming

experience rendered the DLL option too time consuming.

The second major challenge was verifying the MATLAB strategy execution

performance. Verification was required in order to ensure proper results from the

automated trials were captured. However, many possible situations could occur during

each turn. The verification approach was to categorize all possible situations into a test

case category. A manually edited text file was produced to represent each test case. The

verification of a strategy is successful once it passes all test case categories. These test

case categories are described in Section 0.

Ultimately, integrating SEVER and TEMPO is the objective. Therefore, SEVER

requirements were also considered during all model and strategy software updates and

development. The rest of this chapter describes SEVER, TEMPO, an example

implementation of SEVER, and preliminary application of SEVER to TEMPO, to

enhance the reader’s understanding of the SEVER algorithm and its application.

 46

C. TEMPO.NET DEVELOPMENT

These considerations constitute the basis for this publication. They are entrance

criteria (essentially, requirements) that must be met prior to embarking on SEVER’s

software development.

 TEMPO—Include method to perform automated data entry.

 TEMPO—Speed up player data input for more efficient human trials

 TEMPO—Capture turn-by-turn data to evaluate real-time decision
impacts (necessary for future SEVER implementation)

 MATLAB—Analyze large numbers of game performance logs by
decomposing performance measures to present those measures statistically
based on the implemented strategy.

Figures 15 through 22 display the various features of TEMPO Version 3. These

figures are intended to be self-explanatory.

Figure 15. TEMPO Version 3 Configuration Setup

 47

Figure 16. TEMPO Version 3 Startup Dialog Box

Figure 17. TEMPO Version 3 Main User Interface

 48

Figure 18. TEMPO Version 3 Strategy Selection Dialog Box

Figure 19. TEMPO Version 3 Strategy Menu Options

 49

Figure 20. TEMPO Version 3 Analysis Menu Options

Figure 21. TEMPO Version 3 Calculated Values

 50

Figure 22. TEMPO Version 3 Score Display

D. MATLAB STRATEGY PACKAGE DEVELOPMENT

Rule-based strategies were necessary to automate the TEMPO execution. These

strategies are also necessary to evaluate SEVER. Four main strategy types were derived.

They are:

 Strategy 1—Random choice to Acquire/Operate

 Strategy 2—Acquire/Operate based on Pwar

 Strategy 3—Concentrate on one type of force

 Strategy 4—Invest in decisions based on INTEL gathered

Strategy types 1 and 3 contain sub-strategies that the user can further tailor. For

example, in strategy type 1, there are two possibilities to choose randomly how many

weapons to operate and buy. The first establishes a random number for all weapons

available. The second attempts to establish a random number for all weapons and also use

 51

the entire available budget for that year. Strategy type 3 can be tailored to focus on

operating/buying either offensive or defensive forces. In other cases, it can be tailored to

prioritize investing in each particular weapon system based on user preference. Thus,

Strategy type 3 contains many strategies within, as each possibility is a permutation of a

user-defined priority.

Once SEVER, TEMPO, and all interfaces were well understood, development

followed. The first challenge was determining which software packages to use. The

current version of TEMPO is a C++ ATL version. In order to input and extract data

dynamically (i.e., turn by turn) modifying this code was required. However, the

spreadsheet user interface, although a vast improvement over the command console text-

based user interface, still lacked simple presentation that a novice user could quickly

learn to use. To improve both the user interface, and control of the code, the entire

TEMPO model was ported to Visual Basic.NET. All functions were transferred and much

testing was performed to ensure the porting successfully captured all critical features

available in the C++ ATL version.

In order to execute strategies, MATLAB was selected because of its capability to

perform mathematical and numerical manipulation and analysis. It contains many

toolboxes to use for analysis and strategy computation. One of interest is the Markov

Decision Processes toolbox. Future research could incorporate functions of these

toolboxes to improve on the strategies provided within this thesis or generate new

strategies to test against TEMPO’s coevolutionary code.

1. Strategy Development

The work in this thesis involved updating the existing model to incorporate user-

defined strategies, creating those strategies, and providing a capability for the updated

TEMPO to accept these strategies. In order to test strategies, it was also required to

update the TEMPO model to provide the capability to perform a user-defined number of

automatic games (or trials). Data from these trials must be able to be captured and

statistically evaluated.

 52

To evaluate performance of each strategy, the strategies must automatically

integrate with TEMPO. Six different strategies were coded using the MAThematics

LABoratory (MATLAB)TM programming language. A custom MATLAB function was

compiled using the MATLAB compiler as a standalone executable file

(‘runStrategyExe.exe’). During an automatic game, TEMPO calls this function prior to

each turn rather than waiting for human input. On the TEMPO side, during initial

automatic game setup, the user is able to select the type of strategy and the number of

games played (“trials”) desired. The interface between TEMPO and MATLAB occurs via

three different text files—one to output the human and computer environments from

TEMPO, a second to identify to the strategy executable program which strategy was

requested by the user, and a third to import into TEMPO the weapon allocation choices

executed by the given strategy. These files are named ‘tempo.tmp,’ ‘tempo.ini,’ and

‘tempo.str,’ respectively.

Once all trials have completed, a post-processing tool is used to capture

performance data for the strategy. This post-processing application,

‘AnalyzeStrategy.exe,’ was developed to capture and present the data associated with all

the trials run, also using the MATLABTM programming language. The data is read from

the XML log files created by TEMPO, parsed and sorted into weapon allocation variables

for human and computer, separately, and output into the MATLAB workspace. Specific

plots relating to the performance measures required (see next section) are displayed to

visually compare strategies.

A third MATLAB standalone executable file was developed to interact with the

user in manual mode on a turn by turn basis. This file, ‘graphStrategy.exe’ was originally

developed to test that each strategy executed by ‘runStrategyExe.exe’ correctly executed

(i.e., applicable budget was used, and proper weapons were operated and purchased based

on those available). Through subsequent debugging efforts, the tool can now be used by

the player to graphically display the results of the past turn's strategy execution.

The strategies considered to test are described below in algorithmic form. All

strategies assume offensive and defensive intelligence is always purchased, however, for

this thesis, the only strategy to use this information is the ‘Intelligence’ strategy. Also, a

 53

strategy does not necessarily use the entire budget available each turn. Due to the rules of

TEMPO, this unused budget is lost for each subsequent turn. The strategies that do use

the entire budget are described as such. The strategies are:

 True Random—Allocation determined randomly

 Smart Random—Allocation determined randomly until total possible
budget available is used

 Probability of War—Allocation based on probability of war.

 Priority—Allocation based on concentration of forces of a user-selected
order or priority (i.e, Offense A, then Offense B, then Defense A, and
lastly Defense B) until the entire budget is used.

 Weapon Type (Offensive or Defensive)—Allocation based on offensive or
defensive forces only. Only those weapon types are operated and bought.

 Intelligence—Allocation based on a martingale-style rule to forecast
future computer weapon choices.

All strategies are executed through a pre-processing function,

‘runStrategyExe.m.’ This file accepts two inputs: 1. the ‘output file’ directory location,

and 2. the sub-function directory to call those sub-functions as required. For every

strategy, this function:

1. Checks for an existing version of ‘tempo.str’ in the interface directory and
‘tempo.mod’ in the temporary write directory. Deletes each, if applicable.

2. Parses ‘tempo.tmp’ from the interface directory into the appropriate
MATLAB workspace variables.

3. Calls the strategy requested by the strategy initialization file, ‘tempo.ini.’

4. --- Executes appropriate strategy as defined below ---

5. Writes the ‘tempo.str’ file to a temporary directory within the interface
directory from the MATLAB workspace variables ‘buyList’ and ‘opList.’

6. Writes the ‘tempo.str’ file to the interface directory.

 54

To ensure consistency between the many strategies, a common MATLAB

strategy-call function structure was established. The general function structure for all

strategies is:

[intelList,opList,buyList] = A_strategyName(weaponData,pWar,availBudget,oppData)

In some cases, additional information was required based on the type of strategy.

This information is passed first. For example, the ‘priority’ strategy required the priority

of weapons in addition to the other input data. Therefore, its function structure is:

[intelList,opList,buyList] = A_priority(priority,weaponData,pWar,availBudget,oppData)

The data on the right side of the assignment contains all parsed variables passed

via ‘runStrategyExe.m.’ Data on the left side are the outputs of the strategy algorithm,

written by ‘runStrategyExe.m’ into ‘tempo.str.’ Some variables are not used throughout

the strategy execution; however, this common format allows for future customizing with

minimal updates required to the ‘runStrategyExe.m’ functions.

Please note, text below in bold indicates the specific function within the TEMPO-

SEVER application-specific functional decomposition satisfied by the particular step in

the strategy algorithm. The TEMPO-SEVER application-specific functional

decomposition is presented in Appendix B for information.

a. Strategy #1a: True Random

(1) Description. The simplest (to implement) of all potential

strategies, the ‘True Random’ strategy assigns values for the buy and op lists generated

using a uniform random number generator. The algorithm creates a 12 x 2 matrix of

random numbers between 0 and 1. It then filters ‘available’ weapons by multiplying the

randomly generated 12 x 2 matrix with the binary ‘available’ vector. Simultaneously, it

multiplies the matrix by the inventory and maximum acquisition-able values as reported

by TEMPO.NET. These values must range from zero to the number of available

‘inventory’ and ‘maximum acquisition-able’ weapons. The end result is a 12 x 2 matrix,

 55

where one column is the ‘opList’ and one is the ‘buyList,’ rounded to the nearest integer

ranging from 0 to ‘invent’ or ‘maxAcq,’ respectively.

(2) Algorithm.

1. Generate 12 x 2 matrix of random numbers to serve as ‘opList’
and ‘buyList.’ (1.3 Develop Information)

2. Generate ‘opList’ and ‘buyList’

a. Multiply this matrix by the binary vector of weapons
available. This filters out the unavailable weapons.

b. Multiply this matrix by the inventory and maximum
acquisition-able values for all weapons

3. Check to ensure the random allocations for all weapons is
within the available budget. If not, regenerate random numbers
in same order and execute steps 1 through 3 again. Loop until
all allocations are less than the available budget. (1.3 Develop
Information)

4. Provide results as ‘opList’ and ‘buyList’ to
‘runStrategeExe.exe’ which outputs to the ‘tempo.str’ file. (1.6
Provide Recommendations)

5. TEMPO.NET then executes the turn with those weapon
allocations. (2.1 Provide Defense, 2.2 Provide Offense)

b. Strategy #1b: Smart Random

(1) Description. This algorithm is considered ‘smart’ because it

attempts to use as much budget as possible, while still randomly allocating weapon

choices. In the case when the budget available is greater than the sum cost of operating

and purchasing all available weapons, all units will be operated/ purchased.

NOTE: For the first turn of any strategy (including ‘True

Random’) in an automatic game, this strategy is invoked. This ensures the computer

cannot falsely win based on a sub-optimal first turn weapon allocation (since all available

weapons can be operated and purchased with the available budget). Instead, a tie always

results and the next year begins.

 56

The algorithm executes weapon allocation decisions in a pre-

determined randomized order calculated by ‘sequenceOrder.m.’ It then randomly assigns

the operate/purchase sequence so that for every application of this strategy a different

order of weapons is allocated each turn. This ‘randomized order’ ensures a truly random

allocation despite the looping algorithm structure.

(2) Algorithm.

1. Gather ‘current environment state’ variable values (weapons
Available and associated cost/performance data, probability of
war, available budget, and computer utils from last turn if
intelligence was purchased). (1.1 Gather Data)

2. Determine, randomly, which order weapon systems will be
operated (ref. ‘sequenceOrder.m’). (1.3 Develop Information)

3. Generate this list of random numbers within ranges of
inventory available (for weapon operation) and maximum
acquisition-able (for weapon purchase) for all available units,
respectively in the order determined from ‘sequenceOrder.m.’

4. Buy/Operate weapons one at a time, in sequence and random
numbers previously generated, until the available budget is
used (always operating first then buying for each weapon in the
order determined by ‘sequenceOrder.m’).

5. Provide results as ‘opList’ and ‘buyList’ to
‘runStrategeExe.exe’ which outputs to the ‘tempo.str’ file. (1.6
Provide Recommendations)

6. TEMPO.NET then executes the turn with those weapon
allocations. (2.1 Provide Defense, 2.2 Provide Offense)

c. Strategy #2: Probability of War

(1) Description. As PWAR increases, weapon allocation shifts from

acquire to operate for the highest performing weapons. This value is pre-set as the PWAR

threshold. Currently, ‘threshold’ is not settable from the TEMPO.NET interface similar to

how the priority and weapon type strategies require additional user input.

 57

(2) Algorithm.

1. Gather ‘current environment state’ variable values (weapons
available, associated cost/performance data, probability of war,
available budget, and computer utils from last turn if
intelligence was purchased). (1.1 Gather Data)

2. Determine weapon allocation based on a threshold probability
of war occurring. (1.3 Develop Information)

3. Establish performance rankings for all available weapons.
Operation and acquisition of a single weapon are treated as two
separate weapons since they have two separate costs.
Performance is based solely on the ratio of Util/$ (ref.
‘rank.m’).

4. Establish probability of war threshold value to switch between
operating existing forces and increasing force levels.

5. If the probability of war is less than the threshold, buy or
operate units (using ‘activateWeapon.m’) depending on the
performance rankings established in 3.

6. Continue operating if probability of war threshold is greater
than threshold value, or operate/buy, depending on
performance rank, until all available budget is used if
probability of war threshold is less than threshold value.

7. Provide results as ‘opList’ and ‘buyList’ to
‘runStrategeExe.exe’ which outputs to the ‘tempo.str’ file. (1.6
Provide Recommendations)

8. TEMPO.NET then executes the turn with those weapon
allocations. (2.1 Provide Defense, 2.2 Provide Offense)

9. Repeat from Step 1 for next year.

d. Strategy #3: Priority

(1) Description. The user establishes a weapon ‘order of

preference’: i.e., (OA, then OB, then DA, then DB). Based on available weapons, the

strategy always operates, then buys the maximum amount always considering this order

of preference until the available budget is depleted.

 58

(2) Algorithm

1. Gather ‘current environment state’ variable values (weapons
available and associated cost/performance data, probability of
war, available budget, and computer utils from last turn if
intelligence was purchased). (1.1 Gather Data)

2. Determine weapon allocation based on user-defined priority of
weapons to operate and/or buy. (1.3 Develop Information)

3. Convert priority user input strings into binary ID’s (i.e., OA =
[0,0]; DA = [1,0]; OB = [1,0]; DB = [1,1])

4. For all available weapons, operate first, and then buy the
highest priority weapon. Weapon allocation execution occurs
by weapon type order (i.e., OA1, OA2, then OA3, if all are
currently available).

5. Continue operating, then buying weapons until no more budget
available (using ‘activateWeapon.m’)

6. Provide results as ‘opList’ and ‘buyList’ to
‘runStrategeExe.exe’ which outputs to the ‘tempo.str’ file. (1.6
Provide Recommendations)

7. TEMPO.NET then executes the turn with those weapon
allocations. (2.1 Provide Defense, 2.2 Provide Offense)

e. Strategy #4: Weapon Type (Offensive or Defensive)

(1) Description. Selection of operate and acquire is focused on

one type of offensive weapon system (Offensive or Defensive). This algorithm calculates

the best performing weapons (highest Util/$ ratio) and operates them, then purchases,

based on the priority given to either Offensive, or Defensive weapons.

(2) Algorithm.

1. Gather ‘current environment state’ variable values (weapons
Available and associated cost/performance data, probability of
war, available budget, and computer utils from last turn if
intelligence was purchased). (1.1 Gather Data)

 59

2. Determine weapon allocation based on user-defined preference
for ‘offense’ first, or ‘defense’ first. (1.3 Develop
Information)

3. Sort all available weapons into Offensive and Defensive
weapons.

4. Calculate performance measure (Util/$) for all available
weapons using ‘calcEffRatio.m.’

5. Rank operating and purchasing offensive weapons by
previously calculated performance measures.

6. Rank operating and purchasing defensive weapons by
previously calculated performance measures.

7. Operate, or buy preferred weapon type in order of performance
rank. Other weapon preference never gets operated.

8. Provide results as ‘opList’ and ‘buyList’ to
‘runStrategeExe.exe’ which outputs to the ‘tempo.str’ file. (1.6
Provide Recommendations)

9. TEMPO.NET then executes the turn with those weapon
allocations. (2.1 Provide Defense, 2.2 Provide Offense)

f. Strategy #5: Intelligence

(1) Description. Determine weapon allocation based on

martingale theory. Paraphrasing Doob (1935), a sequence is called a martingale if each

sample, xn, has an expectation, and if for m < n the expected value of xn given the past up

to time m is xm. That is, the predicted sample’s expected value is the previous sample’s

value (Doob, 1935). Thus, this algorithm bases the expected value of opponent utils for

the future turn on the utils reported by intelligence. Then, this rule extrapolates a new util

value for the computer based on a linear scaling factor. The scaling factor is called the

‘buffer’ and is required as an input to this algorithm. If the ‘buffer’ is currently coded as

0.10, then the expected value of opponent utils for the future turn are forecasted at 10%

above the utils from the last turn.

Based on both the rank of performance measures for each weapon

type along with the number of utils forecasted, allocate weapons to cover forecasted utils

 60

until all the available budget has been used. (If not all available budget is used and all

forecasted utils are operated, continue buying the highest performing offensive weapons.

If the entire budget is used prior to completely operating all forecasted utils, the order of

operation is DA, DB, OA, OB – the static order is a current limitation of the strategy)

(2) Algorithm.

1. Gather ‘current environment state’ variable values (weapons
Available and associated cost/performance data, probability of
war, available budget, and computer utils from last turn if
intelligence was purchased). (1.1 Gather Data)

2. Allocate weapons based on a forecast of the number of
opponent Utils using the ‘buffer.’ (1.3 Develop Information)

3. Calculate the forecasted opponent’s utils. (Note: these values
for each weapon type are calculated previously to this function
call in ‘runStrategyExe.exe’ and are passed as an input.)

4. Calculate performance measure (Util/$*number available) for
all available weapons. This is the utilRatio.

5. Filter the utilRatio, inventory available, and maximum
available to purchase into separate variables based on weapon
type (i.e., OA, DA, OB, DB).

6. Calculate number of Utils required based on the forecasted
opponent’s data.

7. Defend up to number of forecasted utils, then operate highest
ranking weapons with remaining budget.

8. Provide results as ‘opList’ and ‘buyList’ to
‘runStrategeExe.exe’ which outputs to the ‘tempo.str’ file. (1.6
Provide Recommendations)

9. TEMPO.NET then executes the turn with those weapon
allocations. (2.1 Provide Defense, 2.2 Provide Offense)

 61

E. MATLAB ANALYSIS PACKAGE DEVELOPMENT

The first step to generate this analysis package was to determine what was

required to be verified. At this point in time, verification was only required for the

strategy output. In future versions of the package, verification will include the analysis

and assessment of SEVER.

Assessment of SEVER would be focused on a set of experiments comparing

several automated strategies against the computer. A set number of trials with each

strategy would be executed and the outcome captured. SEVER would evaluate each

strategy as they execute. The hypothesis could be that the predicted SEVER value

calculations for each turn correlate with the statistical performance results of each

strategy. Further research could combine the output of SEVER into an additional

strategy. This thesis presents the analysis on six general strategies coded in MATLAB.

The analysis process can be repeated when the time comes to analyze the SEVER

algorithm when executing these six strategies.

But how are the strategies verified to produce consistent, re-producible buy and

operate lists? This section focuses on the testing process for each strategy.

1. Strategy Testing

Verification of each strategy involved passing all test case categories. The

standard TEMPO.NET output file (‘tempo.tmp’) was manually edited to create that case

and the strategy under test was executed. A graph of the strategy’s output for each

weapon for each test case was developed to prove verification. Table 1 summarizes the

extreme cases tested for all strategies. If the results were consistent with those expected,

under all categories, the strategy was verified and a check was placed in the box for that

case.

 62

Table 1. Test Case Category Matrix

Weapons
available

Max Budget Available No Budget Available

Enemy

Purchased…2
No Intel

Enemy
Purchased… 2

No Intel

All    
None    
OA    
OB    

Offensive    
DA    
DB    

Defensive    

The MATLAB standalone executable ‘graphStrategy.exe’ captures a graphical

output of the strategy executed for the latest input file, ‘tempo.tmp.’ This executable was

run for each modified ‘tempo.tmp’ file for a total of 16, or 32, test runs depending on the

strategy. The output of this function was an allocation graph focused on that particular

strategy’s goal. Details on each strategy’s verification are located in Appendix C. A

general description of the verification particulars of each strategy are described below.

a. True Random

This strategy is the simplest of all strategies. Verifying this function meant

ensuring all available weapons, over a large number of ‘True Random’ executions would

generate a uniform distribution of allocation between 0 and the total number of weapons

available for operate and purchase for that turn (see Figure 23). The execution of this

verification was to run, for each turn, a user-defined number of trials (100) ensuring that

any value between 0 and the maximum (for both operating and purchasing all available

weapons) was executed. No attention was paid to budget used, except to note that the

strategy did not provide an allocation that would result in using more than the available

budget.

2 This case only applies to strategies making use of the Intelligence gathered.

 63

Figure 23. True Random Strategy Verification Graph

 64

b. Smart Random

This strategy built upon the previous strategy by randomly allocating

values until all budget was used. The verification for this strategy was focused on

ensuring all budget was used until no more available weapons could be

operated/purchased (see Figure 24). This was verified by performing a user-defined

number of trials (100) for each turn. A bar plot (budget vs. trial) then displayed the results

of each trial performed. If any budget remained that could have purchased or operated

another weapon, that trial’s bar was flagged red. Otherwise, it was green. Thus, the

strategy was verified to operate correctly when all bars were green.

Figure 24. Smart Random Strategy Verification Graph

B
ud

ge
t R

em
ai

ni
ng

 (
$)

Sample Trial Number

Cost of cheapest
weapon to Operate
or Acquire

 65

(1) Probability of War, Priority, Weapon Type. Each of these

strategies was verified using the same method. The weapons available and their

operate/purchase maximum quantities were recorded. Given these values, for each

strategy, the proper allocations for each weapon subtype (i.e., OA1, DB2, etc.) was

recorded and coded into the ‘graphStrategy.exe’ function. Next, the actual strategy was

executed. Results were stored by the function. Finally, for each strategy separately, the

graph displayed predicted and actual on a grouped bar chart side by side (see Figure 25).

Many different scenarios were tested by modifying the ‘tempo.tmp’ file to create peculiar

situations per Table 1. Once the actual results matched the predicted results for all

scenarios attempted the strategy performance was successfully verified.

Figure 25. Probability of War, Priority, and Weapon Type Strategy Verification Graph

(2) Intelligence. This strategy was verified using the method

described above for Probability of War, Priority, and Weapon Type except for verifying

 66

one additional feature: the use of the opposition’s data when purchasing intel. Both the

‘Weapons’ and ‘OppData’ sections within ‘tempo.tmp’ were modified to capture each

different case per Table 1. This resulted in more trials performed in order to verify proper

strategy execution, but the verification methodology remained consistent. Also, to

facilitate verification, the graphical output also displayed the intelligence reported for

quick reference between the weapons operated/purchased and the intelligence values

captured. See Figure 26 for the intelligence verification graph.

Figure 26. Intelligence Strategy Verification Graph

2. Measures of Performance

These consist of two categories, “per game” and “per turn” measures of

performance. Ultimately, SEVER helps evaluate a given strategy’s effectiveness at

meeting the top-level function “Win game.” However, because the game has random

 67

variables (i.e., available budget) associated that could potentially provide an advantage to

either the player, or computer, a more detailed analysis provides insight into the

shortcomings of implementing SEVER.

In this implementation, each strategy was analyzed per each weapon and per total

weapons. These measures were also filtered into a per-game outcome and per-turn

outcome. This analysis is executed at the lowest level resolution possible by the game.

Therefore, for future evaluation using SEVER, it will be possible to answer any potential

questions of a particular game or turn. Further research could build upon these

performance measures to somehow incorporate these measures as a collective output for

use by SEVER.

Per Turn:

 Outcome of each turn (1 for win, 0 for lose)

 Total performance at end of turn (# of util difference)

 Weapon-type performance at end of turn (# util difference)

 Total Efficiency of strategy (# Wasted Utils)

 Weapon-type efficiency of strategy (# Wasted Utils for each weapon type)

Per Game:

 Outcome of each game (1 for win, 0 for lose)

 Performance at end of game (# of util difference)

The performance measures described above are those presented in this thesis.

However, because all relevant environment and weapon allocation data for both player

and computer is captured turn by turn in the XML performance log files, it is possible to

perform post-processing to glean any desired performance measures at time of analysis.

The first research questions state: “Can TEMPO be updated and modified to

accommodate SEVER? What is required? How can this be achieved?” In order to

 68

evaluate these questions, the development of the TEMPO Version 3 software package

commenced. Out of this development effort, more focused questions were derived. These

questions include:

 Are there consistent, predictable patterns for which weapons the computer
is likely to operate/buy?

 Is the TEMPO-reported probability of war each turn truly accurate?

 Is the computer smart enough to change its strategy significantly given a
certain number of trials against a rule-based player?

The answers to these questions will help determine if TEMPO Version 3, as it

stands, is adequate to evaluate SEVER. These questions will be answered in Section G.

 Results and Discussion

F. INTEGRATING SEVER AND TEMPO

This section describes the general process attempted to apply SEVER to TEMPO.

Hypothetical, but realistic cases are presented to establish the envisioned information

exchange between TEMPO and SEVER. Work in this thesis does not reflect a complete

integration of SEVER and TEMPO since SEVER’s notion of ‘quality’ was not captured.

However, TEMPO.NET does include features to facilitate TEMPO-SEVER integration

once ‘quality’ can be properly represented. These are the current SEVER place-holder

features:

 Per weapon graphical ‘stop-light’ icons—Display value as calculated by
SEVER as ‘high,’ ‘medium,’ or low depending on the user weapon
decisions of ‘operate’ and ‘buy’ for each that weapon (see Figure 27).

 Per weapon-type interactive track bar—Allows user to select a
weight/priority for each weapon type that allows SEVER to dynamically
calculate the overall value for the displayed weapon allocations (see
Figure 27).

 Per turn total SEVER output—Displays the probability of ‘Win game’
given ‘War Occurs’ with the allocations listed at the time. Updates in real-
time when allocations are changed to allow the user to affect the
probability of success ‘on the fly.’

 69

Figure 27. SEVER Place-Holder Features

G. RESULTS AND DISCUSSION

All the results stated in this section focus on answering the original thesis

questions: Can TEMPO be updated and modified to accommodate SEVER? What is

required? How can this be achieved? As mentioned at the end of Section 0, detailed

questions were derived to help answer these questions. The detailed questions are:

1. Are there consistent, predictable patterns for which weapons the computer
is likely to operate/buy?

2. Is the TEMPO-reported probability of war each turn truly accurate?

3. Is the computer smart enough to change its strategy significantly given a
certain number of trials against a rule-based player?

In order to answer these questions, TEMPO Version 3 commenced so that the

applicable data could be captured. This software development effort included the

following updates to original code:

Stop Light
Icons

Interactive
Track bars

SEVER
Output

 70

 Created an automatic game-play feature that allows a defined number of
games to be played with particular strategies

 Developed the rule-based resource allocation strategies

 Updated the GUI to include SEVER outputs

 Conducted many games (trials) to prove the output of pWar is accurate
and characterize performance of the computer opponent

The rule-based strategies were verified and compared against one another to

demonstrate the statistical evaluating capability of the MATLAB software package. Since

all data is captured within MATLAB workspace variables, any desired data analysis can

be performed either during, or after all trials and strategies have executed. This allows the

user to execute a particular strategy for a defined number of trials and perform

performance analysis on those trials without having to see each trial performed. TEMPO

Version 3 allows a user-defined data set to be created. For previous TEMPO versions,

constructing such a dataset required the user to laboriously perform each trial according

to certain rules and extract the data manually into a storage database. This method was

extremely time consuming and prone to human error.

After development of TEMPO Version 3 and verification of each rule-based

strategy, a data set of 1000 trials was collected for each of 10 sub-strategies. This data set

was analyzed to answer the detailed questions stated earlier: Can TEMPO be updated and

modified to accommodate SEVER?

What is required?

In order to evaluate this question, the TEMPO Version 3 software development

effort was executed. Three questions from the TEMPO Version 2 analysis which are

important to the updated development:

 Are there consistent, predictable patterns for which weapons the computer
is likely to operate/buy?

 Is the TEMPO-reported probability of war each turn truly accurate?

 Is it possible to present performance statistics for each strategy and
compare them?

 71

To answer each of these three questions, a determination if TEMPO Version 2

performance and game parameters could be captured and modeled for statistical analysis.

By capturing data about each turn of each game including both player’s decisions,

environmental parameters, and outcome for every turn of every game, the data set would

be complete to answer the three questions posed above. Based on the work performed in

this thesis, it was determined that TEMPO Version 2 could be updated in such a way to

capture all the required data.

How can this be achieved?

TEMPO Version 3 was developed with two premises: creating particular strategy

datasets and capturing all decision data, environmental data, and outcome data for every

turn of every game for any strategy employed. In order to create this data, an interface

between TEMPO and MATLAB was constructed. Automatically, strategies were

executed by MATLAB and imported back into TEMPO. Also, the normal (manual)

game-play mode was retained with the same data capture and analysis features as for

automatic mode. Further, a flexible software architecture to allow for future strategy

development was implemented since incorporating SEVER would be performed in a

phased approach.

In order to capture the data, the TEMPO Version 2 XML log files were exploited.

These log files contain all the required information for every turn of every game. A

MATLAB function was created to parse the XML log files output by TEMPO and store

the data permanently in MATLAB workspaces. Post-processing is now possible on all

existing log files, either game-by-game, or dataset-by-dataset. Also, during manual game-

play a feature was added to facilitate the player’s decision making by exploiting this

MATLAB XML post-processing analysis package and analyzing the interfacing

‘tempo.str’ file. Regarding SEVER, this feature is very important. SEVER attempts to

score a particular decision in real-time. Therefore, TEMPO Version 3 must be able to

evaluate data turn-by-turn as well as after a game is over so that this data can be

compared against the SEVER-predicted data for both turn-by-turn and game-by-game

evaluation of SEVER. Also, this feature could be used for future decision-making

research as alluded to earlier.

 72

Understanding what is required to accommodate SEVER into TEMPO Version 2

involves understanding the questions detailed below:

Are there consistent, predictable patterns for which weapons the computer is

likely to operate/buy?

In 2005, Johnson, Melich, et al. performed work to adapt the computer strategy by

implementing an iterative, coevolutionary learning approach whereby many different

decision rules were used by two computer players against each other. Poor performers

were eliminated and good performers were retained to give rise to new decision rule sets

by “copying,” “mutation,” and “crossover.” Further research could be conducted to

implement the same effort with the existing strategies coded into the MATLAB software.

Thus, the computer opponent does, indeed, operate and buy with consistent patterns.

Characterizing these patterns will help to evaluate the effectiveness of SEVER.

Is the TEMPO-reported probability of war each turn truly accurate?

The true calculation of the “probability of war” value displayed by TEMPO

represents the number of games with war in year n divided by the number of games

reaching year n. After all trials were performed, the data were captured to determine after

exactly which years war occurs, given the particular year each trial reaches. The resulting

calculation is shown in Figure 28. It is evident that there is an anomaly with the

‘probability of war’ output by TEMPO Version 2, and also TEMPO Version 3 (as this

function was directly ported from the Version 2 code). This value is planned to be used

by SEVER and therefore must be accurate in order to evaluate the output from SEVER

properly.

Is it possible to present performance statistics for each strategy and compare

them?

Yes, this is possible since the existing software contains a feature that records the

outcome of each game with all the environmental data and allocation decision data for

both players. These performance statistics will be used as the baseline statistics against

which the predicted SEVER output is evaluated.

 73

As an example, Figure 29 displays the performance of each strategy based on

number of TNO utils. The red line represents the average value of all data. The blue box

represents 95% of the data. SEVER would not be used to predict the actual TNO utils as

displayed in the chart, but rather the probability of winning the game for a given strategy

as demonstrated by the boxes on the plot.

Figure 28. Histogram of 'War Occuring' Year

 74

Figure 29. Box Plots of Player TNO utils when War Occurs (per Strategy)

Regarding SEVER, one important question still must be answered to properly

integrate with TEMPO—how can the SEVER-defined quality be properly represented by

the TEMPO variables? The answer to this question is the last item required before

TEMPO can be used to evaluate SEVER as a strategy-scoring and prediction algorithm.

However, all efforts performed to this point indicate that TEMPO can, and should be

used to accommodate SEVER. The TEMPO Version 3 software includes many new

features that are conducive for SEVER to function as developed by Langford (2006).

Now that datasets can be captured and stored in MATLAB workspaces, all

features of the TEMPO version 2 log files can be used to characterize game parameters

statistically. For example, computer decisions for any given turn can be estimated. Also,

impacts of a player’s strategy can be analyzed for any turn in any game. This allows

SEVER’s quality variable for a given decision to be successfully modeled.

 75

H. CONCLUSIONS AND RECOMMENDATIONS

Evaluation of SEVER is now possible using TEMPO Version 3. TEMPO Version

3 allows a defined number of trials to be conducted. These results can be plotted in box

plot format. There are dedicated areas within the GUI to incorporate SEVER outputs.

Any type of strategy can be coded and executed on the TEMPO Version 3 platform. Post-

processing of any game variable is available within the GUI. Post-processing of any turn

weapon allocation is available, but not yet within the GUI. These new features

significantly enhance and automate the type of analysis that can be performed turn-by-

turn, game-by-game, and strategy-by-strategy. These enhancements now allow the

predicted strategy value determination of SEVER to be compared against actual data.

In summary, the work presented in this thesis confirms the answers to the research

questions:

1. Can TEMPO be updated and modified to accommodate SEVER? Yes.

2. What is required? Further questions were derived. In addition to the
answers to these questions, it was required to update TEMPO Version 2 to
create strategy datasets and capture all data.

a. Are there consistent, predictable patterns for which
weapons the computer is likely to operate/buy? Yes, there are.

b. Is the TEMPO-reported probability of war each turn truly
accurate? At this time, it has not been confirmed that these values
are truly accurate. Evaluation of this aspect of the TEMPO Version
3 VB.NET code is required for future integration and evaluation of
SEVER.

c. Is it possible to present performance statistics for each
strategy and compare them? Yes. This is demonstrated in Figure
29.

3. How can this be achieved? Further questions were derived. Answers to

these questions summarize how it is possible to accommodate SEVER into

TEMPO Version 2.

a. How should TEMPO Version 2 be modified? Create a capability to
run strategies automatically and store all environmental data,
player and opponent data, and per-game outcome data. Design in

 76

the flexibility to add strategies to the software to further
characterize the computer’s performance so that the SEVER
representation of quality can be incorporated. Currently, this
feature is only implemented via MATLAB text-based functions
run on a particular MS Windows Explorer folder containing the
XML log files. There is a placeholder for this feature, as shown in
Figure 20. (ref. ‘The Game’). Also, allow turn-by-turn analysis to
be executed since SEVER can be used to evaluate a single turn’s
weapon allocation strategy along with a particular game’s overall
allocation strategy. This feature is also implemented via
MATLAB, but can be activated through the TEMPO Version 3
interface as shown in Figure 20 (ref. ‘This Turn’)

b. Can the TEMPO game be modified to evaluate game play resource
allocation decisions while the game is played (i.e., in ‘real-time’)?
Yes, this is possible with the use of ‘tempo.str’ as the data for
analysis rather than the XML game log file. As previously
mentioned, this feature can be found in the software as shown in
Figure 20.

Other than the required update to incorporate SEVER: characterize the TEMPO

performance to evaluate quality, the author suggests some software improvements. The

following software improvements are suggested to increase the time it takes the in-game

strategy and analysis functions to execute:

 Replace MATLAB standalone executable called from TEMPO.NET with
a MATLAB DLL containing all associated functions and code directly
into TEMPO.NET. This would eliminate the continuous search loop
required to scan for ‘input files.’

 Create the GUI for the MATLAB analysis code for the XML Log file to
streamline the post-processing and analysis of game log files.

 Create a GUI for the MATLAB analysis code independent of the TEMPO
GUI so that post-processing can be executed simply.

 Perform true statistical analysis using the MATLAB Statistics Toolbox on
the existing, and future, strategies.

These suggestions are intended to improve upon the features and capabilities that

already exist in TEMPO Version 3. The new features of TEMPO Version 3 are the first

step in improving the human’s decision process. These features are an attempt to consider

a high-level management resource allocation decision (in this case, budget) and provide a

 77

total systems approach to collect, organize, and summarize the impacts in an automated

fashion using today’s powerful computational processing. This saves the user time

because he/she does not have to physically and mentally organize this information

himself/herself. Therefore, more effort can be spent on assessing a particular outcome’s

consequence. Based on the user’s preference, select information can be accessed in real-

time to allow quicker understanding of a given decision’s impacts just after it is executed.

If successful, the incorporation of SEVER will further build on this capability by being

able to predict the outcome prior to executing the decision.

Ultimately, the goal is to automate a DoD resource allocation decision process

based on SEVER-predicted outcomes and applicable presentation of the right information

at the right time. Whether the decision is a “satisfaction” decision involving, strategically,

how forecasted budget should be allocated toward future versus current military

capabilities, or an “optimization” decision involving what the optimal tactical force

structure is required in a certain forecasted conflict, the software tool presented in this

research, along with the SEVER algorithm, can one day be adapted to present the

required information at the right time to the eventual decision maker.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

APPENDIX A. VALUE SYSTEMS ENGINEERING (GARY
LANGFORD)

Appendix A was prepared and written by Professor Gary Langford, my
advisor at the Naval Postgraduate School. It summarizes the metrics of
Value Systems Engineering, in so far as it relates to a framework that can
be used to further the evaluation of SEVER as a game theoretic. The
included references cite works that are integral to Value Systems
Engineering which form the foundation of this thesis.

This section formulates and applies a simple rootage for Value Systems

Engineering (VSE). This conceptualization of VSE embodies the same general notions of

systems, system elements, functions, performance, and quality, but redacts many of the

fundamental approaches commonly used (Langford & Huynh, 2007) in Systems

Engineering. For example, the essence of a system is a set of elements that are either

dependent or independent but interacting pairwise—temporally or physically—to achieve

a purpose. Elements that only interact directly with other system elements are internal to

the system. Elements that interact with both internal and external elements form the

boundary of the system. We include the permanent and episodic interactions among

elements of a system, systems of systems, and a family of systems. A system thus

includes the lasting and occasional interactions, as well as emergent properties and

behaviors. The interactions between elements effect transfer of energy, e.g., materiel,

data, information, and services. The interactions can be cooperative or competitive in

nature, and they can enhance or degrade the system value, which is defined below.

A. FUNCTION

We define the worth of a system (or product or service) in terms of the system

functions, their performances, and their qualities (i.e., a Taguchi loss function). For

example, a product shall provide a function with specified performance and a delimited

level of quality. A function is an action performed by the system that is required to

 80

achieve a system objective. System functions may change and be added or deleted. The

concepts of performance and quality of a function will be elaborated in the following

discussion.

B. VALUE

Value (V) per function is defined as the ratio of performance (P) to investment (I),

the fundamental premise of Value Engineering (Miles, 1972). Value compares what one

receives with what one has invested. If there are two products with factually comparable

features offered for different prices, the value of the lower-priced product is higher than

that of the other product (Langford, 2006). The value of a system is measured by its

worth (the actual and expected use of a product or service) relative to the investment

made in obtaining the system. The system value may vary with time. To account for

additional investments made during the system lifecycle, the investment can also change

with time. The Value Engineering equation, which relates performance and cost, can be

rewritten to include their implied relationship to the same function(s).

The system value, V(t), is given by

 ()

()
()

()
F t

P t
V t

I t
  (A.1)

where)t(F is a function or non-linear summation of functions that are performed by the

system,)t(P is the performance measure (units of energy) of the function(s))t(F ,)t(I

is the investment (e.g., dollars or other equivalent convenience of assets that are ‘at-risk’)

and the time, t, measured relative to the onset of initial investment in the project. The

investment can be incremental and summed to equal the lifecycle investment or

partitioned and equal to a unit or item investment. The units of V(t) can be expressed in

terms of energy divided by cost. We refer to the delineation of a function in terms of its

performance, and the quality of that performance, as the triadic decomposition of the

function)t(F . The summation in Equation (A.1) is simplified for the purposes of this

discussion, and thus shown over all functions, performances, and investments.

 81

This construct of value is used by Value Engineers to answer the question, “Why

does something increase the cost so much”? Value analysis is a problem-solving system

that assists in the application of better approaches, alternative materials, appropriate

processes, and in identifying the advantages of various suppliers. The point of Value

Engineering is to be more effective in reducing costs without compromising on satisfying

the customer.

C. PERFORMANCE

Performance indicates how well a function is performed by the system.

Performance is an objective measure of its related function. In this general construct and

application for software piracy, quality refers to the consistency of performance (or

designated tolerance that signifies the deviation allocated to the performance

requirement) in reference to the amount of pain or loss that results from the deviation as

described by Taguchi (2005).

The change in performance of a system element due to the transfer of energy from

another element is equal to the work done. Performance is accomplished with reference

to the cost/unit time as well as to the total time over which the performance occurs.

Incorporating the variable of time and then factoring it results in expressing the value

equation in terms of the metric of performance per rate of investment (e.g., spending).

 ()

() 1
() *

() /
F t

P t
V t

I t t t
  (A.2)

In essence, this formulation of Value Systems Engineering implies that functions

result in capabilities; performances differentiate competing products; and quality affects

the lifecycle cost of the product. For each function, there is at least one pair of

requirements―a set of performance requirements for each function and a set of quality

requirements for each performance requirement.

 82

D. QUALITY

The quality requirement indicates the variation and impact of that variation on the

performance requirement of a function. Quality indicates how well a function is

accomplished (through its performance) by the system. It is a measure of the variation

and impacts of the variation of the performance requirement(s), or that performance

achieved by the system, associated with its related function. Additionally, quality is a

measure of the loss due to the performance of the system. The performance requirement

is measurable and testable. The quality requirement derives from the view of the system

throughout its lifecycle and characterizes the system losses due to predetermined

functions, i.e., non-delivery of the system’s functionality, or operations beyond the range

of specified performance tolerances. A system function may thus have any number of

performance parameters and, likewise, several quality requirements associated with a

given level of performance.

E. WORTH

Worth (W) is the use of a product or service as represented by the functions and

their related functional attributes—performance, quality, and investment. Multiplying

Value from Equation (A.2) by Quality is defined as the Worth of)t(F . Additionally,

multiplying the numerator and denominator by P(t) defines the performance metrics and

indicates that quality is a measure relative to performance.

 () *

() () ()
() [() ()] *]

() / ()
F t

P t P t Q t
W t V t Q t

I t t t P t
  (A.3)

where)t(Q is the quality (which can be considered as a tolerance assigned to)t(P).

Stipulating the units of)t(Q to be the same as that of)t(I , determines the unit of W(t) to

be that of)t(P , since)t(F is dimensionless. The summation in (A.3) is simplified for

the purposes of this discussion, and thus shown over all functions, performances, quality,

investments and temporal notions. Equation (A.3) times likelihood is referred to as the

Systems Engineering Value Equation with Risk (SEVER). Risk is discussed in section g.

 83

The interaction between elements transfers a measure of worth (defined as value

convolved with loss) from one element to the other element of the pair of elements. We

term the measure of the transferred worth the Worth Activation Function (WAF).

F. WORTH ACTIVATION FUNCTION

The WAF is a basis for analyzing a system. In control theory, a transfer function is

a mathematical representation of the relation between the input and output of a system. A

WAF between two elements of a system is defined to be the exchange of value between

the two elements. The elements exchange energy and one measures performance. Value

is that performance achieved for a given investment. This exchange necessarily assumes

some measure of risk. Given risk, a WAF can thus be either a manifestation of the state,

(or a change in state of a system) or a tool to evaluate differences between the state of a

system and the state of another system or between the states of two systems in a system

of systems. In essence, the WAF represents various impact(s) on the state(s) of a system.

The WAF can be a nested hierarchy of WAFs, all related through the triadic

decomposition of functions, performance, and quality. Depending on the value ascribed

to each of the WAFs, the state(s) of the system(s) may be impacted to varying degrees.

The result is that a small number of WAFs may be equivalent to a large number of

irreducible WAFs. A small number of highly decomposable WAFs may be equivalent to a

large number of irreducible Worth Activation functions.

G. RISK

Using the logic in from Lowrance (1976), Lewis (2006) defines simple risk as a

function of three variables: threat, vulnerability, and damage. Replacing damage with

worth, Langford and Horng (2007) capture risk through threat, vulnerability, and worth.

An element e of a system is associated with a risk, eR defined by

 (1)e e e e e e eR X U W X a WAF   (A.4)

where, threat, eX , is a set of harmful events that could impact the element; vulnerability,

eU is the probability that element e is degraded or fails in some specific way, if attacked;

 84

worth activation function, eWAF , results from a successful attack on element e ; and

susceptibility, ea , is the likelihood that an asset will survive an attack. eWAF is given by

Equation (A.3). It may be loss of productivity, casualties, loss of capital equipment, loss

of time, or loss of dollars. Susceptibility is the complement of vulnerability.

Susceptibility is loosely defined as the inability of a strategy to avoid being countered in

a game-competitive environment, whereas vulnerability is the inability of the strategy to

withstand countering caused by the threat. Susceptibility and vulnerability can be

measured by the probabilities of these events happening. Therefore, the probability of

strategy surviving a game-competitive environment (strategy survivability) = 1 –

Probability of the strategy being countered (susceptibility) x Probability of the system

succumbing to the effects of the strategy (vulnerability).

Since an element in a system (or network) may be connected to more than one

element, the number of WAFs associated with the element is the degree of the element.

Subscribing to Mannai and Lewis (2007), we obtain the system risk, R , as

1

(1)
n m

i i i i
i

R X a g WAF




  (A.5)

in which n denotes the number of elements, m the number of links or WAFs, and

ig denotes the degree of the thi element. As a result of the WAF between two elements,

1e and 2e , at the moment of their interaction for some elements, we have

 1 2

1 2

e e

e e

WAF WAF

R R
 (A.6)

It is this expression in Equation (A.6) which forms the basis for understanding

transactions between elements (i.e., exchange of energy) that are independent and arms-

length (e.g., buy-sell arrangement between unrelated parties) within a particular system

for which the Worth Activation Function is defined (Langford et al. 2007). Equation

(A.6) is also the basis for defining and evaluating complexity as well as interpreting and

predicting emergent properties of systems. Complexity and emergence are determined by

numbers of elements, their Worth Activations Functions, and probability that the Worth

Activation Functions will be at the Pareto-optimum value(s).

 85

H. DECISIONS BASED/CAPTURED BY SEVER

Decisions (from the perspective of the human game player) are represented in

Equation (A.4) as the set of potential losses, i.e., a reduction in the quality of a follow-on

decision for a given level of the performance achieved as a consequence of a former

decision. For the high quality decisions there are also other losses that accrue, such as

game-play length of time for the turn. From Equation (A.4), the losses from a decision

can be represented as shown in Equation (A.7).

()

()

Q t
Disruption DueTo LowQuality Decision

P t
 (A.7)

These losses are typified by a loss function of a quadratic form for game-

competitive environments. From Equation (A.7), the highest quality decision from the

perspective of the human game player’s value chain is represented without the disruptive

factor, Equation (A.8) as:

 () *

() () ()
[() ()] *]

() / ()
F t

P t P t Q t
HighQuality Decision V t Q t

I t t t P t
  (A.8)

I. RAPID SYSTEMS ENGINEERING

We apply the general methodology of Rapid Systems Engineering (Langford,

2006) to explore the Worth Activation Function’s general utility to characterize software

piracy through its Stakeholder Analysis Methodology. Rapid System Engineering (RSE)

is a scenario-driven approach that attempts to reduce the degree of uncertainty in

predicting enterprise success by structuring and analyzing the interplay between

alternative operational models, competitive strategies, and their resultant product

alternatives. The RSE structure is a bottom-up, systematic, and highly iterative set of

steps that marry competitive strategies to alternative operation’s requirements and

conditions for stakeholder success. Applying RSE to software piracy presupposes that the

four attributes of a software pirate’s successful business operation are satisfied. These

attributes are first, the business value proposition articulated (the reason customers buy

the pirate’s products and compensate the pirate. This could imply the software pirate is in

 86

the business of making a profit of the labors of others or that the software pirate is

satisfied through other means or vicarious extensions. Second, the software pirates have

identified market segment(s) or groupings of customers who are aggregated in a common

distribution channel or some other segmentation that results in an economy of distribution

that is acceptable by the pirate. Third, the structure, activities, and processes that

comprise the pirate’s practices that contribute to the worth are defined. These include the

value chain and its logical relationships of low-order separation. Fourth, the mechanics

and venues of generating revenue are described and tractable.

 87

APPENDIX B. AN EXAMPLE APPLICATION OF SEVER

A company wants to provide an efficient lighting system for office buildings.

From a systems perspective, “providing and efficient lighting system” consists of more

than lighting a building. At a minimum, it consists of:

planning efforts—physical work required to properly design, test, integrate, and

support the system to meet customer expectations

development efforts—physical work to research concepts, communicate ideas,

procure hardware, validate design, and integrate the system

installation efforts—physical work required to package the system, ship the

system, install the system, and test the system

operation effort—daily actions and costs by the consumer to operate the system

maintenance and support efforts—costs and time associated with maintaining the

system, preventing system failures, responding to system failures, and ensuring the

system meets the customer’s daily expectations

disposal efforts—removal costs, environmental impacts, time to dispose,

resources required to dispose

Can this company set themselves up for success? The answer to this question can

be approached by applying SEVER. First a functional decomposition of this business is

performed. To simplify the example, one particular function in the “development efforts”

phase, F1, “Illuminate workspace” is considered. For completeness, the reader should

note that the sum of each function’s SEVER-calculated value is the total system value.

Thus, the following process can be carried out for each function in the functional

decomposition, and a total system value can be calculated. The value of the first function,

F1, is stated, algebraically, as:

 88

 1 1 $F

P Q P
V

P t
t

   (B.1)

The three grouped terms,
$
P

t

,
Q

P
,

P

t
 reflect realistic quantifications of

performance, quality, and investment. P, Q, and I must be determined to properly

calculate the value for function, F1. If P is considered ‘lumens’, $/t can be considered ‘$

paid/hour of operation’. Q/P can then be considered ‘$ lost due to poor quality [during

operation]/lumen’. Lastly, P/t can be defined as ‘Total # lumens operated/total hours of

operation’. The most difficult term to quantify is the quality term. This term is based on

Taguchi’s quality—a loss to society resulting from less-than-optimal quality. In this case,

the poor quality can be represented by: lighting a building without occupants, non-

optimal brightness, flickering lights, and unreliable illumination, to name a few. The

effects on society from these situations are many. A few short-term loss examples include

less than optimal working conditions, disgruntled employees, and wasted electricity. A

few long term examples include an unmotivated workforce and employees requiring

vision insurance. The most important thing to note in this example is the effect of poor

quality, as defined by Taguchi, at some point, affects society as a whole (Taguchi, 1990).

Certainly, a preliminary analysis not considering quality would not have considered a

vision insurance company related to the performance of a lighting system.

Now, the equation reads:

1 1

$ #
$F

lumens lost dueto poor quality Total lumens operated
V

operated lumen total hrs of operation
hour of operation

 
             

 

  (B.2)

The value of this function is represented in units of lumens. This example,

although not a complete technical breakdown of SEVER, illustrates an important feature

of SEVER—the ability to plan and model, from a bottom-up approach, while being able

to ultimately execute the business, or strategy, in a top-down manner.

 89

APPENDIX C. SERVER APPLIED TO TEMPO FUNCTIONAL
DECOMPOSITION

The first level of the functional decomposition (after much iteration) is shown in

Figure 30. The “home plate” symbol represents further decomposition not reflected in the

specific figure. Figures 31–34 represent the further decomposition of function 1.0

Analyze Situation. Figure 35 represents the further decomposition of function 2.0 Play

Game.

Questions that were considered during functional decomposition:

 During gameplay, is it better to consider operating total utils independent
of computer’s number of utils?

 Should the user break down their decision making to concentrate on one
weapon type at a time?

 Should the user consider ‘balancing’ the portfolio of weapon choices or
operate one type in particular?

 Is there a difference between offensive and defensive Utils?

 Does purchasing Intel provide an advantage?

 Does purchasing counter-intel provide an advantage?

 Each weapon type differs in performance (i.e., some offer more utils than
others). Each weapon type also differs in investment required (i.e., some
are cheaper than others). Therefore, the value of each is weapon system is
different. Is value dependent on total amount available to spend?

 Is the goal to distinguish between competing weapons of the same type
(i.e., OA1 vs. OA2 vs. OA3) or competing weapon types themselves (OA
vs. OB, etc.) or both?

 90

Figure 30. Top Level Functional Decomposition

 91

Figure 31. Functional Decomposition for 'Gather Data' Function

 92

Figure 32. Functional Decomposition for 'Breakdown Data' Function

 93

Figure 33. Functional Decomposition for 'Develop Information' Function

 94

Figure 34. Functional Decomposition for "Evaluate Information" Function

 95

Figure 35. Functional Decomposition for "Play Game" Function

 96

Table 2 describes function definitions. Only lowest level functions are defined.

Higher level functions are defined by implementing their respective lower-level

functions.

Table 2. Function Descriptions

Function ID Description
1.0 Analyze Situation

1.1 Gather Data
1.1.1 Record Own Notes

1.1.1.1 List Acquirable Weapon
Systems

The act of recording, in some physical manner, all
available weapon systems that can be bought for
turn n

1.1.1.2 List Weapon Systems that can
be Operated

The act of recording, in some physical manner, all
weapon systems, and the quantities available, that
are currently being stored in inventory to operate
in turn n+1

1.1.1.3 List Environmental Parameters
The act of recording, in some physical manner,
probability of war and budget for turn n

1.1.2 Record Screen Opponent

1.1.2.1 List Offensive Threat Levels
If offensive intel is purchased during turn n-1, the
act of recording offensive intel results for net utils

1.1.2.2 List Defensive Threat Levels
If defensive intel is purchased during turn n-1, the
act of recording defensive intel results for net utils

1.2 Breakdown Data
1.2.1 Formulate Rules

1.2.1.1 Define Elements
List all possible variables within the TEMPO
model that can be represented

1.2.1.2 Define Relationships
List constraining interconnections between
variables (i.e., functions/equations using above
defined variables)

1.2.2 Prioritize Rules

1.2.2.1 Determine Rule Importance
Evaluate possible effects of rule on model outputs
before each turn and calculate relative weights
using pairwise comparison method

1.2.2.2 Compare to Other Rules Ensure complete set of rules exist

1.2.2.3 Rank Rules by Importance
Collect all rules together with weightings and sort
in order of rank

1.2.3 Sequence Rules
Arrange rules in the order that allows the specific
algorithm to be implemented

1.3 Develop Information
1.3.1 Calculate

1.3.1.1 Populate Rules Insert applicable variables into given rules
1.3.1.2 Apply Rules Determine rule outputs with given variable inputs

1.3.1.3 Collect Rule Results
Gather rule outputs to prepare for evaluation and
information generation

1.3.2 Relate Turn-to-turn

 97

Function ID Description

1.4 Collect Historical Game Data
Gather data from environmental and performance
files from previous game outcomes and collate
into organized inputs for comparison

1.5 Evaluate Information
1.5.1 Compare Rule Results

1.5.1.1 Compare to Historical Data
If Historical game data is collected (Function 1.4),
judge performance of each rule against historical
data

1.5.1.2 Compare to Intel Data
If Offensive or Defensive Intel (Function 2.3.3 or
2.3.4) is purchased, judge performance of each
rule against corresponding Intel data

1.5.2 Calculate Algorithm Results
Provide input for 2.3 based on outputs from
1.3.1.3

2.0 Play Game
2.1 Provide Defense

2.1.1 Buy
Select defensive weapon systems to buy based
on output from Function 2.3.1.

2.1.2 Don’t Buy Bypass purchasing this defensive weapon system

2.1.3 Operate
Select defensive weapon system to operate based
on output from Function 2.4.1.

2.1.4 Don’t Operate Bypass operating this defensive weapon system
2.2 Provide Offense

2.2.1 Buy
Select offensive weapon systems to buy based on
output from Function 2.3.2.

2.2.2 Don’t Buy Bypass purchasing this offensive weapon system

2.2.3 Operate
Select offensive weapon system to operate based
on output from 2.4.2

2.2.4 Don’t Operate Bypass operating this offensive weapon system
2.3 Provide ‘Buy’ List

2.3.1 Defense
Based on output from Function 1.5.2, list type and
quantity of defensive weapon systems to acquire

2.3.2 Offense
Based on output from Function 1.5.2, list type and
quantity of offensive weapon systems to acquire

2.3.3 Defensive Intel
Based on output from Function 1.5.2, display
whether defensive Intel shall be purchased

2.3.4 Offensive Intel
Based on output from Function 1.5.2, display
whether offensive Intel shall be purchased

2.3.5 Counter-Intel
Based on output from Function 1.5.2, display
whether counter-intel shall be purchased

2.4 Provide ‘Operate’ List

2.4.1 Defensive
Based on output from Function 1.5.2, list type and
quantity of defensive weapon systems to operate

2.4.2 Offensive
Based on output from Function 1.5.2, list type and
quantity of offensive weapon systems to operate

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

APPENDIX D. VERIFICATION MATRICES FOR EACH
STRATEGY

Verification of each strategy was executed once the first version of each strategy

was coded. It involved decomposing the TEMPO game into multiple worst-case

scenarios and verifying the strategies worked under each. The log tables below display

which strategies worked in which situations. Each strategy not using intelligence is

verified by 16 figures—one for each extreme situation described in Table 3. Currently,

only one strategy was implemented to use the Intelligence reported by TEMPO. This

strategy is verified by 32 figures—one for each extreme situation described in Table 4.

All figures are presented within the ‘Strategy Verification’ on the CD containing the

entire TEMPO Version 3 software package to demonstrate that strategy verification was

performed.

Table 3. Tested Categories for all Strategies Except ‘Intel’

Weapons
available

Max Budget
Available

No Budget
Available

All  
None  
OA  
OB  

Offensive  
DA  
DB  

Defensive  

 100

Table 4. Tested Scenarios for 'Intel' Strategy

Weapons
available

Max Budget Available No Budget Available

Enemy

Purchased… No Intel
Enemy

Purchased…
No Intel

All    
None    
OA    
OB    

Offensive    
DA    
DB    

Defensive    

 101

APPENDIX E. SOFTWARE PACKAGE INSTALLATION
INSTRUCTIONS

For first-time installation:

1. Download file and rename from: ‘TEMPO_Setup.exx’ to:
‘TEMPO_Setup.exe’. This file is 143 MB in size, so it could take some
time depending on your internet connection speed.

a. Double-click ‘TEMPO_Setup.exe’

b. Select ‘Yes’ to install the MATLAB Component Run-time (see
Figure 36).

NOTE: This installation will take from 2 minutes to 10 minutes, depending on

computer.

Figure 36. Install MATLAB Component Runtime (MCR) Screenshot

1. The MCR installer will extract (MCRInstaller.exe). You will then be
prompted to select a language. Continue to install the MATLAB
Component Runtime (see Figure 37).

 102

Figure 37. MATLAB Component Runtime Installation Screenshot

2. Enter appropriate name and organization for your computer. This is
irrelevant to TEMPO operations (see Figure 38).

Figure 38. MCR Installation Data Required Screenshot

 103

3. Continue installation to the default directory (i.e., ‘C:\Program Files\...’)
(Figure 39).

Figure 39. MCR Installation Complete Screenshot

a. Click ‘Yes’ to install Microsoft .NET Framework 3.0 Service Pack
1. Note: By clicking this link you will be directed to a Microsoft
network location (see Figure 40).

Figure 40. Install Microsoft’s .NET 3.0 Framework Screenshot

 104

b. Accept the terms of the license agreement.

2. The installation package will then begin downloading. The total download
size is 58 MB (see Figure 41).

Figure 41. Microsoft's .NET 3.0 Framework… Downloading... Screenshot

a. The installation will automatically occur and complete (see Figure
42). Visit ‘Windows Update’ if you desire to download the latest
service packs and security updates.

 105

Figure 42. Microsoft's .NET 3.0 Framework Installation Complete Screenshot

b. Click ‘Exit’ and the TEMPO.NET installation will continue and
complete (see Figure 43).

Figure 43. TEMPO.NET Installation Complete Screenshot

 106

To run/play TEMPO:

1. To run TEMPO.NET navigate to ‘Start’  ‘All Programs’  ‘NPS
TEMPO’ (see Figure 44).

Figure 44. Run TEMPO Screenshot

2. The ‘Start a New Game’ Window will appear (see Figure 45). If at any
point this window is not visible, click on ‘File’  ‘New Game’. If you are
unable to do so, the window is hidden. To unhide, while focused on the
TEMPO.NET Application, hold the ‘Alt’ key and continue to press ‘Tab’

until the icon is highlighted. When released, the ‘Start a New Game’
window will reappear.

 107

Figure 45. Game Startup Screenshot

3. At this point, the choice to play a ‘Manual’ Game (human vs. computer)
or an ‘Automatic’ Game (strategy vs. computer) is presented. Both screens
are shown below in Figure 46.

Figure 46. 'Start a New Game' Options Screenshots

 108

4. For a ‘Manual’ game, skip to step 5. For an ‘Automatic’ game, first enter
the number of desired trials. Then, select a strategy. In this version, the
user can select any strategy, however, only the first six strategies will
work. Other strategies will cause the application to hang up. Please only
choose one of the first 6 to use.

NOTE: Each trial, takes anywhere between 10 seconds and 2 minutes, depending

on the number of turns executed before war occurs. Please consider this timing when

choosing the number of trials!

5. Once a selection is made, click ‘Play’ to begin!

NOTE: Please be patient. It does take some time for the first run to initialize and

execute after a fresh installation—sometimes as long as 2 minutes. Initialization of the

MATLAB component runtime code causes this significant delay.

6. After play is completed, the associated log file can be viewed. To do so,
navigate to ‘C:\TEMPO\logs’. All applicable log files are stored here, in
XML format.

To uninstall TEMPO:

WARNING: The Uninstallation process will remove ALL TEMPO.NET log files

located within the ‘C:\TEMPO’ directory. If this is undesired, move these files to a

separate folder outside of the ‘C:\TEMPO’ directory structure!

1. There are two methods to uninstall TEMPO.NET. The first method is to
navigate to ‘Start’  ‘All Programs’  ‘NPS TEMPO’ and click
‘Uninstall TEMPO’. The second method is to navigate to ‘C:\TEMPO’
and click the ‘Uninstall TEMPO’ icon. Both will initialize the uninstaller.

a. The user should select whether to remove the MATLAB
component runtime from the machine. Do this only if you do not
plan to run TEMPO.NET again on the machine.

b. If the TEMPO.NET application has not been played after the
installation, the removal will be complete (i.e., all associated files
and directories will automatically be removed). However, if
TEMPO.NET has been executed at least once, the user must
manually delete the ‘C:\TEMPO’ directory. This will be apparent
if a message box appears during the removal process (see Figure
47).

 109

Figure 47. TEMPO.NET Directory Removal Screenshot

c. After deleting ‘C:\TEMPO’ the TEMPO.NET application removal
is complete!

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

LIST OF REFERENCES

Abraham, A. Jain, L. C., & Goldberg, R. (2005). Evolutionary multiobjective
optimization: Theoretical advances and applications. London: Springer-Verlag.

Al Mannai, W. I. & Lewis, T.G. (2007). Minimizing network risk with application to
critical infrastructure protection. Journal of Information Warfare, 6(2), 52–68.

Baeck, T., Fogel, D.B., & Z. Michalewicz, Z. (2000).Evolutionary computation: basic
algorithms and operators. Boca Raton, FL: CRC Press.

Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. (L.
Sommer, Trans). Econometrica, 22(1), 22–36. (doi:10.2307/1909829.) (Original
work published 1738). Retrieved May 30, 2006, from
http://www.math.fau.edu/richman/Ideas/daniel.htm

Chapman, G. B. & Johnson, E. J. (1995). Preference reversals in monetary and life
expectancy evaluations. Organizational Behavior and Human Decision
Processes, 62, 300–317.

DoD Handbook 4245.8. “Value Engineering.” (1986). Authorized by DoD Directive
4245.8. Arlington, VA: Defense Technical Information Center.

Doob, J.L. (1971). What is a martingale? The American Mathematical Monthly, 78(5),
461–473.

Federal Aviation Administration. (2006). Trade studies section 4.6 in System Engineering
Manual Version 3.1. Retrieved May 30, 2006, from
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/opera
tions/sysengsaf/seman/SEM3.1/Ch_1.pdf

Field, K.A. (1999, July). Fast track to management. Design News.

Game Theory. Pareto efficient. Retrieved May 30, 2006, from
http://www.gametheory.net/dictionary/ParetoEfficient.html

Howard, R. A. (1960). Dynamic programming and Markov processes. Cambridge, MA:
MIT Press.

Hubertus, T. J., Meer, K., & Triesch, E. (2004). Optimization theory. New York:
Springer.

 112

Johnson, R.W., et al. (2005). Coevolutionary optimization of fuzzy logic intelligence for
strategic decision support. IEEE Transactions on Evolutionary Computation, 9(6),
682–694.

Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives. Cambridge,
England: Cambridge University Press.

Krantz, D. H., and Kunreuther, H.C. (2007). Goals and plans in decision making.
Judgment and Decision Making, 2 (3), 137–168.

Lakatos, I. (1978). The Methodology of Scientific Research Programmes: Volume 1:
Philosophical Papers. Cambridge, England: Cambridge University Press.

Langford, G., & Huynh, T. (2007, September). A methodology for managing complexity,
systems engineering test and evaluation. Presented at Complex Systems and
Sustainability Conference, Sydney, Australia.

Langford, G.O. (2007). Reducing risk in designing new products using rapid Systems
Engineering Proceedings, Asia-Pacific Systems Engineering Conference, paper
no. 18. Singapore.

Langford, G.O. (2006). Reducing risk of new business start-ups using rapid Systems
Engineering. Proceedings of the Fourth Annual conference on Systems
Engineering Research, paper no. 140, Los Angeles, CA.

Langford, G.O., Franck, R., Huynh, T., & Lewis, I., (2007). Gap analysis: rethinking the
conceptual foundations. (Report No. NPS-AM-07-051). Monterey, CA: Naval
Postgraduate School.

Langford, G. O. (2007, March). Reducing Risk in Designing New Products Using Rapid
Systems Engineering. Paper presented at Asia-Pacific Systems Engineering
Conference, Singapore.

Lewis, T. (2006). Critical infrastructure protection in homeland security. Hoboken, NJ:
John Wiley & Sons.

Lowrance, W. W. (1976). Of acceptable risk. Los Altos, CA: William Kaufman, Inc.

Management Concepts. (2003). Defense acquisition guidebook. (Republished in 2008).
Vienna, VA: Management Concepts Inc.

Miles, L. D. (1972). Techniques for value analysis and engineering (2nd ed.). New York:
McGraw Hill.

 113

Resnik, M. (1987). Choices: An introduction to decision theory. Minneapolis, MN:
University of Minnesota Press.

Saaty, T.L. (2001). The analytic network process: decision making with dependence and
feedback. Pittsburgh, PA: RWS Publications.

Saaty, T.L. (2001). Decision making for leaders: the analytic hierarchy process for
decisions in a complex world. Pittsburgh, PA: RWS Publications.

Slovic, P. (1995). The construction of preference. American Psychologist, 50, 364–371.

Steuer, R.E. (1986). Multiple criteria optimization: Theory, computations, and
application. New York: John Wiley & Sons, Inc.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning: An introduction.
Cambridge, MA: MIT Press.

Taguchi, G. & Chowdhury, S., & Wu, Y. (2005). Taguchi’s quality engineering
handbook. Hoboken, NJ: Wiley-Interscience.

Taguchi, G. (1990). Introduction to quality engineering. Tokyo, Japan: Asian
Productivity Organization.

TEMPO military planning game, explanation and rules for players. (n.d.). Internal
document, Naval Postgraduate School, CA.

Tversky, A., Sattath, S. & Slovic, P. (1988). Contingent weighting and judgment and
choice. Psychological Review, 95, 371–384.

Tversky, A., Slovic, P. & Kahneman, D. (1988). The causes of preference reversal.
American Economic Review, 80, 204–217.

Zadeh, L. (1965). Fuzzy Sets. Information and Control, 8, 338–353.

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Gary O. Langford
Naval Postgraduate School
Monterey, California

4. Rodney W. Johnson
Naval Postgraduate School
Monterey, California

5. Robert J. Chaves
Naval Undersea Warfare Center, Division Newport
Newport, Rhode Island

6. Mark Rodrigues
Naval Undersea Warfare Center, Division Newport
Newport, Rhode Island

