
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release, distribution is unlimited 

LONG-RANGE ATMOSPHERE-OCEAN FORECASTING IN 
SUPPORT OF UNDERSEA WARFARE OPERATIONS IN 

THE WESTERN NORTH PACIFIC 
 

by 
 

Sarah L. Heidt 
 

September 2009 
 

 Thesis Co-Advisors: Tom Murphree 
  Rebecca E. Stone 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2009 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  Long-range Atmosphere-Ocean Forecasting in 
Support of Undersea Warfare Operations in the Western North Pacific 
 
6. AUTHOR(S)  Sarah L. Heidt 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 
Skillful long-range forecasts of acoustic variables have the potential to be very useful in planning Navy 
undersea warfare operations.  Our study assessed the potential to predict sonic layer depth (SLD) in the 
western north Pacific at lead times of one to several months.  We conducted correlations between SLD and 
remote climate system variables, and identified a high potential for skillful long-range forecasts of SLD in 
the western north Pacific using sea surface temperature in equatorial and south Pacific as predictors.  We 
used tercile matching and composite analysis forecast (CAF) methods to develop hindcasts and forecasts 
of SLD based on SST predictors at lead times of one to four months.  Our forecast verification metrics 
show that the resulting long lead probabilistic forecasts are a clear improvement over presently available 
long term mean climatology products.  We also used conditional compositing techniques to create mean 
and environmental threshold probability products based on the long lead forecasts.   

Our results indicate that the support of USW operations by the Navy meteorology and 
oceanography community could be improved by the use of advanced climate data sets, climate analysis, 
and long-range forecasting methods. 
 

15. NUMBER OF 
PAGES  

99 

14. SUBJECT TERMS Sonic Layer Depth, Undersea Warfare, USW, Military Operations, 
Planning Timeframe, Anti-Submarine Warfare, ASW Western North Pacific, Climate, 
Climatology, Climate Analysis, Climate Prediction, Smart Climatology, Conditional 
Climatology, Long-range Forecast, Statistical Forecast, Simple Ocean Data Assimilation, 
SODA, Meteorology, Oceanography 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98) 
 Prescribed by ANSI Std. Z39.18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release, distribution is unlimited 
 
 

LONG-RANGE ATMOSPHERE-OCEAN FORECASTING IN SUPPORT OF 
UNDERSEA WARFARE OPERATIONS IN THE WESTERN NORTH PACIFIC 

 
 

Sarah L. Heidt 
Lieutenant, United States Navy 

B.S., United States Naval Academy, 2002 
 
 

Submitted in partial fulfillment of the 
requirements for the degrees of 

 
 

MASTER OF SCIENCE IN PHYSICAL OCEANOGRAPHY 
and 

MASTER OF SCIENCE IN METEOROLOGY 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2009 

 
 
 

Author:  Sarah L. Heidt 
 

Approved by:  Tom Murphree 
Thesis Co-Advisor 
 
Rebecca E. Stone 
Thesis Co-Advisor 
 
Jeffrey Paduan 
Chairman, Department of Oceanography 
 
Philip Durkee 
Chairman, Department of Meteorology 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

Skillful long-range forecasts of acoustic variables have the potential to be 

very useful in planning Navy undersea warfare operations.  Our study assessed 

the potential to predict sonic layer depth (SLD) in the western north Pacific at 

lead times of one to several months.  We conducted correlations between SLD 

and remote climate system variables, and identified a high potential for skillful 

long-range forecasts of SLD in the western north Pacific using sea surface 

temperature in equatorial and south Pacific as predictors.  We used tercile 

matching and composite analysis forecast (CAF) methods to develop hindcasts 

and forecasts of SLD based on SST predictors at lead times of one to four 

months.  Our forecast verification metrics show that the resulting long lead 

probabilistic forecasts are a clear improvement over presently available long term 

mean climatology products.  We also used conditional compositing techniques to 

create mean and environmental threshold probability products based on the long 

lead forecasts.   

Our results indicate that the support of USW operations by the Navy 

meteorology and oceanography community could be improved by the use of 

advanced climate data sets, climate analysis, and long-range forecasting 

methods. 
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I. INTRODUCTION 

A. BACKGROUND 

The mission of the Navy’s meteorology and oceanography (METOC) 

community is to provide critical atmospheric and oceanographic information that 

will enhance commanders’ awareness of the operational environment and the 

ability to exploit that awareness to gain an advantage across the range of military 

operations (Joint Staff 2008).  This mission is particularly important when 

planning and executing undersea warfare (USW) operations and exercises, 

where small changes in the atmospheric and oceanic environment can have 

large impacts on acoustic sensor performance.  Correctly forecasting the 

atmosphere and ocean at long lead times is imperative for the successful 

planning of operations in USW.  Giving commanders a more realistic 

characterization of the battle space will allow for more informed decision making. 

Understanding Earth’s climate system is a critical factor in improving long-

range forecasts (LRFs, forecasts with lead times of two weeks or longer).  While 

the civilian community has taken many steps toward understanding climate 

variations and developing new forecasting technology, the Department of 

Defense (DoD) currently uses legacy climate products based on long term 

means (LTMs).  Research by LaJoie (2006), Vorhees (2006), Hanson (2007), 

Moss (2007), Twigg (2007), Turek (2008), Crook (2009), and Ramsaur (2009), 

have all demonstrated the significance of using advanced climate data sets and 

methods to increase awareness at long lead times, of potential climate impacts 

on military operations.  Several of these studies have led to the development of 

advanced forecasting techniques and resulted in viable LRFs of operationally 

significant regions (e.g., Iraq and Afghanistan). 

This study will further explore how state of the science datasets, and 

advanced analysis and forecasting methods can be used to generate skillful 

LRFs for USW operations in the western north Pacific (WNP). 
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B. EXISTING OPERATIONAL CLIMATE MONITORING AND FORECAST 
PRODUCTS FOR USW 

1. DoD Products 

a. Navy Climatology 

The Navy currently uses a LTM based, global ocean climatology 

database called Generalized Digital Environment Model (GDEM), in tactical 

decision aid (TDA) software, such as the Navy’s Personalized Curriculum for 

Interactive Multisensor Analysis Training (PC-IMAT), to provide long lead tactical 

outlooks of the ocean environment for USW planning.  GDEM climatology is 

derived using temperature and salinity profiles from the Modular Ocean Data 

Assimilation System (MODAS), which uses optimum interpolation and statistical 

regression to generate synthetic temperature and salinity profiles from remotely 

sensed sea surface temperature (SST) and height (SSH) and from in situ 

measurements extracted from the Master Oceanographic Observational Data Set 

(Carnes 2003; Fox et al., 2002).  GDEM (V3.0) consists of monthly climatologies 

of temperature, standard deviation of temperature, salinity, and standard 

deviation of salinity, at ¼–degree horizontal resolution with 78 vertical depths 

from the surface to 6600 meters (Carnes 2003).  LTM based climatology 

datasets, like GDEM, are common, and very useful, but by the nature of their 

definition, many important temporal aspects of the climate system, such as 

trends and oscillations (e.g., El Nino and La Nina), are invariably smoothed out.  

Since LTM based climatologies cannot account for climate system variations, 

using them for long-range forecasting and operational planning in regions and 

periods where such variations occur can be problematic.  Refer to Turek (2008) 

for further information on GDEM and PC-IMAT. 

b. Navy LRF and Planning Products for USW Operations 

In recent USW exercises, Navy planning briefs tend to lack 

extensive climate analysis in the form of environmental characterization at lead 

times of two weeks or more.  The USS John C Stennis USWEX 09 planning brief 
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provided sonic layer depth (SLD) and cut-off frequency (COF) LTM climatology 

plots using MOODS data for the month of operation (February).  Additional 

probability of detection (POD) plots for various sensors at predetermined target 

depths and frequencies were generated using the Navy Coastal Ocean Model 

(NCOM) with valid times of 11 January 2009 @ 0000Z (John C Stennis 2009).  

These products provide standardized and familiar visualizations to the 

commander, but the combination of LTM climatology for February and snapshots 

of current model conditions (11 January) for an exercise occurring in one month 

is not optimal when we know the effects of monthly variability that can exist in the 

climate. 

The critical features assessment brief for the FOAL EAGLE 09 

exercise described SLD, COF, and depth excess (DE) in broad general 

statements with minimal reference as to where this information was derived.  

Additional figures displaying consolidated bottom loss upgrade (CBLUG) and 

high frequency bottom loss (HFBL) for the region of interest were presented; but, 

again, with minimal reference to the source or the forecast valid time (Foal Eagle 

2009).  These statements are not intended to claim that current long-range 

support is not helpful for USW planning purposes, but are intended to point out 

shortcomings in long lead DoD climate support that can be readily addressed. 

c. Navy SRF Planning Products for USW Operations 

While there is much to be done in the development of better long-

range planning support for USW operations, extensive work has been done to 

develop advanced short range forecasts for use within 72 hours of the start of 

operations.  For both exercises previously mentioned, USWEX 09 and FOAL 

EAGLE 09, explicit short range forecasts out to 72 hours, based on NCOM were 

issued.  NCOM provides ocean nowcasts and forecasts at a range of lead times 
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and horizontal resolutions (72 hours and 1/8–degree)  Figure 1 and Figure 2 

show examples of short range NCOM products, produced by the Naval 

Oceanographic Office (NAVO), of derived acoustic variables for a specific USW 

exercise region. 

a b

 

Figure 1.  Sonic layer depth (ft): (a) analysis valid 00Z, 27 July 09, and (b) 
72-hour forecast valid 00Z, 30 July 09.  Black areas indicate a lack of 
valid data.  Images from the Naval Oceanography Portal, July 2009. 

a b

 

Figure 2.  Depth excess (fathoms): (a) analysis valid 00Z, 27 July 09, and 
(b) 72-hour forecast valid 00Z, 30 July 09.  Images from the Naval 
Oceanography Portal, July 2009. 
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d. NAVO Experimental Climatology Products 

The Navy is aware of the shortcomings in their current long-range 

USW support products and NAVO has taken the initiative to expand and develop 

new products, using new technology and analysis methods.  Figure 3 shows an 

example of experimental acoustic parameter climatology (APC) products created 

at NAVO.  These products are derived from individual in situ MOODS profiles.  

For locations with a sufficient number of profiles, various long-term monthly mean 

statistical quantities are calculated at ¼ degree resolution for SLD, mixed layer 

depth (MLD), below layer gradient (BLG), deep sound channel axis, and critical 

depth (Krynen 2009). 

a b

 

Figure 3.  Sonic layer depth (ft) analysis from MOODS for: (a) March upper 
bound of the mean (95% confidence), and (b) March mean.  Upper 
and lower bound of the mean are determined using the bootstrap 
method (e.g., Wilks 2006).  Images from Krynen (2009). 

APC database files are accessible to METOC support personnel, 

and APC products similar to those in Figure 3 have been included in long-range 

planning products for some USW exercise planning conferences and in new 

sensor development by the Office of Naval Intelligence (ONI) (Krynen 2009). 

2. Non-DoD Datasets and Methods 

Civilian agencies, such as the National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center (CPC), and Earth System 
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Research Laboratory (ESRL) have surpassed the Department of Defense in their 

use of state of the science technology to develop advanced datasets and 

methods to analyze and forecast the climate system.  In many cases, this 

technology is freely available to the public.  However, the Navy has adapted and 

used very little of this technology to advance Navy climate prediction capabilities.  

ESRL provides public access to a number of climate datasets through their 

interactive, web-based plotting and analysis tools.  These tools, and an 

atmospheric reanalysis dataset developed by the National Centers for 

Environmental Prediction (NCEP) and the National Center for Atmospheric 

Research (NCAR), were extensively used in our study and will be further 

discussed in Chapter II. 

In this study, it is important to differentiate between a state of the science 

reanalysis dataset and a LTM-based climatology dataset.  In our study, we used 

the NCEP/NCAR atmospheric reanalysis dataset and the Simple Ocean Data 

Assimilation (SODA) ocean reanalysis dataset.  Unlike LTM based climatology 

datasets (e.g., GDEM), reanalysis datasets are constructed by integrating 

observations obtained from numerous data sources together within a numerical 

prediction model, through a process called data assimilation (CCSP 2008).  The 

result is a continuous and spatially uniform, reconstructed analysis of past 

atmospheric and/or oceanic conditions, typically spanning 30 years or longer. 

Ocean reanalysis datasets, like SODA, have significant advantages over 

LTM based datasets, like GDEM, because of their explicit representation of 

atmospheric and ocean dynamics, and their much higher temporal resolution that 

can capture climate variations and other temporal fluctuations of the atmosphere 

and ocean.  While GDEM uses statistical analysis methods to fill in data gaps in 

space and time, SODA resolves data gaps in a dynamically consistent and more 

realistic manner (Turek 2008).  More information on SODA and the use of it in 

our study will be discussed in Chapter II. 
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3. Smart Climatology 

The smart climatology concept, developed by Dr. Tom Murphree and Rear 

Admiral David Titley, uses state of the science basic and applied climatology to 

directly support DoD operations (Murphree 2008).  Smart climatology uses state 

of the science climatology datasets (e.g., NCEP/NCAR and SODA reanalyses) 

and methods (e.g., conditional compositing, teleconnection analyses, statistical 

and dynamical prediction systems) to analyze, monitor, and forecast the climate 

system (Murphree 2008).   

A number of smart climatology studies conducted at the Naval 

Postgraduate School have demonstrated that significant improvements could be 

made in METOC support for Navy operations by adapting advanced datasets 

and methods.  These include studies by Turek (2008) and Ramsaur (2009) that 

identified smart climatology improvements in climate scale support for USW 

operations in the WNP.  Several of these studies have developed and tested 

systems for producing operational long-range forecasts of the environment, and 

of radar and sonar performance, in areas of high priority for the DoD, such as 

Iraq (Hanson 2007; Crook 2009), Afghanistan (Moss 2007), Korea (Tournay 

2007), the Indian Ocean (Twigg 2007), the North Atlantic (Raynak 2009), and the 

WNP (Mundhenk 2009; Ramsaur 2009).  In all of these studies, smart 

climatology has proven to be a viable concept for improving METOC support at 

long lead times across a variety of military operations. 

In this study, we have extended the research done by Turek (2008) in 

which he compared smart ocean climatologies with traditional Navy climatologies 

including comparisons of their impacts on long-range predictions of acoustic 

variables and sonar performance.  Turek (2008) determined that there was a 

high potential for smart climatology to improve such long-range predictions, but 

he did not actually develop and test a long-range prediction system.  In our study, 

we built upon the findings of Turek (2009) and used state of the science 
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datasets, analysis, and LRF methods, to develop and test techniques for 

operationally generating feasible and tactically significant LRF products in 

support of USW operations in the WNP. 

C. HOW CAN THE NAVY ATTAIN THE USW ADVANTAGE? 

Locating a submarine in the Pacific Ocean has often been described as 

trying to find a needle in a haystack.  Stealthy tactics of an adversary, a noisy 

medium, and limited U.S. capabilities, put USW operators at a significant 

disadvantage when it comes to detecting subsurface targets.  Thus, it is 

imperative that the Navy design, develop, test, and produce concepts and 

products that can give USW operators the best chance at successfully 

accomplishing their mission.  This section outlines ideas for how this can be 

achieved. 

1. Exploit the Battlespace on Demand Concept 

The Battlespace on Demand (BonD) concept developed by the 

Commander, Naval Meteorology and Oceanography Command (CNMOC) 

presents a strategy for achieving decision superiority for the warfighter through 

the exploitation of information about the battlespace environment (Evans 2008).  

The BonD concept has four tiers, as depicted in Figure 4.  Tier zero represents 

observations, consisting of environmental data from an array of sources (e.g., in 

situ and remote measurement systems).  Tier one represents analyses and 

predictions of the environment based on data from tier zero.  Tier two represents 

predictions of how environmental conditions described in tier one affect the 

performance of military equipment (e.g., sensors, communication, and weapons 

systems).  Tier three represents recommendations on how to best exploit 

environmental opportunities and mitigate environmental risks. 

The BonD concept was originally developed to help improve short range 

environmental support for warfighters.  However, the concept applies equally well 

to long-range support.  The blue text boxes in Figure 4 identify smart climatology 

products we associate with each of the four BonD tiers.  In this study, we have 
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applied advanced climate datasets and methods at the tier zero level to develop 

LRFs for USW at the tier one level.  These LRFs form the foundation for the 

subsequent development of long-range support at the tier two and three levels. 

Smart climatology datasets

Smart climatological analyses & forecasts

Smart climatological performance surfaces

Smart climatology based decision surfaces

 

Figure 4.  Battlespace on Demand (BonD) concept of operations for the 
Navy meteorology and oceanography community.  Blue boxes 
describe smart climatology support products for each of the four 
BonD tiers.  Adapted from Murphree (2008) and Evans (2008). 

2. Re-evaluate Levels of Effort in USW Support 

In an anti-submarine warfare (ASW) coordination and concept of 

operations brief given in March 2005, CAPT Best (then the CNMOC Director for 

ASW) and CDR Gurley (then the CNMOC Deputy Director for ASW) described 

the present levels of METOC effort in support of planning and execution of ASW 

operations, and the resulting levels of impact.  This is depicted in Figure 5 in 

which the blue line represents the level of effort for METOC support at lead times 

of years to hours and the red line represents the level of impact this support has 

on overall operations.  Notice that, in this ASW example, relatively little effort is 

spent on METOC support at lead times of one week to two months (i.e., 

intraseasonal climate support).  This large dip in METOC support occurs when 

ASW commanders are making major operational decisions regarding resources, 
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platform assignments, deployment load-outs, and training (Murphree 2008).  This 

is when large amounts of money are allocated for operations, and this is where 

the greatest opportunity exists for long-range METOC support products to 

significantly contribute to the success of ASW operations.  The implication of the 

analysis by Best and Gurley shown in Figure 5 is that skillful LRFs of the 

environment and equipment performance could significantly improve METOC 

support, and the impacts of that support, at weekly to seasonal lead times when 

major ASW decisions are being made. 
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Figure 5.  Schematic representation of the present level of METOC effort in 
support of ASW planning and execution.  Adapted from Murphree 
(2008) and based on a figure developed by J. Best and V. Gurley in 
2005. 

3. Understand Planning Objectives and Timelines 

In order to give timely and accurate long-range forecasts to USW 

planners, forecasters must first understand what types of decisions are made at 

long lead times, and how their LRF products can best support those decisions 



 11

and overall mission objectives.  Typical mid-phase planning conference 

discussions for USW related operations occur three to six months prior to the 

start of operations and include: friendly asset assignments, target asset 

discussions, expected atmospheric and oceanic conditions, environmental 

characterization, sensor deployment, sensor performance, and active/passive 

SONAR ranges.  Knowing this, Navy forecasters must strive to provide forecasts 

at lead times of three to six months that will enable decision makers to better 

understand the operational environment, including environmental uncertainties, 

and make decisions that will maximize sensor performance, give friendly forces 

the acoustic advantage, and give the high value unit (HVU) maximum 

defensibility.  A major goal of our study was to develop and test techniques for 

generating such long-range forecasts.  

D. RESEARCH MOTIVATION AND SCOPE 

1. Prior Work 

A major motivation for conducting our research on climate analyses and 

long-range forecasting for USW operations in the WNP was the research 

completed by Turek (2008) and preliminary research conducted in NPS 

climatology courses.  Turek (2008) showed that smart climatology processes 

could be used to significantly improve the climatological characterization of the 

ocean environment for tactical exploitation.  Figure 6 and Figure 7 show results 

from Turek (2008) that indicate a strong relationship between surface winds and 

SLD in the WNP, in particularly in the East China Sea (ECS).  Notice that higher 

(lower) surface meridional wind speeds tend to be associated with deeper 

(shallower) SLDs.  Turek (2008) demonstrated that these wind-driven differences 

in SLD lead to tactically significant variations in sonar performance.  
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a b

 

Figure 6.  Conditional composites of October mean surface vector wind (10 
m level, in m/s) for the five years during 1970–2006 with the: (a) 
highest surface meridional wind speeds in the East China Sea, and 
(b) lowest surface meridional wind speeds in the East China Sea.  
From Turek (2008). 

a b

 

Figure 7.  Conditional composites of October mean SLD (m) for the five 
years during 1970–2006 with the: (a) highest surface meridional wind 
speed in the East China Sea; and (b) lowest surface meridional wind 
speed in the East China Sea.  Comparison of Figures 6 and 7 shows 
that higher (lower) meridional wind speeds tend to be associated with 
deeper (shallower) SLD.  From Turek (2008). 

Though Turek (2008) did not investigate long lead forecasting, our 

preliminary research showed significant correlations between SST in the 

equatorial Pacific and winds in the ECS region (Figure 8) at lead times of several 
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months, and suggested there was a high potential for skillful long-range 

forecasting of SLD using SST as a predictor.  In this study, we explored that 

potential. 

a b

c d

 
 

Figure 8.  Correlations between October 850 hPa meridional wind speed in 
the East China Sea and SST throughout the ocean at lead times of: 
(a) zero months, October wind with October SST; (b) one month, 
October wind with September SST; (c) two months, October wind 
with August SST); and (d) three months, October wind with July SST, 
based on reanalysis data from 1970–2006.  Correlations with 
magnitudes greater than 0.314 are significant at the 95% level.  Note 
the strong negative correlation in the Nino 4.0 index region (red box) 
at all lead times.  Images created at ESRL web site, March 2009. 

2. Research Questions 

This study explored the viability of using smart climatology datasets and 

methods to skillfully forecast atmospheric and oceanic conditions at long lead 

times, in order to provide warfighters with significantly enhanced capabilities for 

exploiting the environment as they plan and conduct USW operations.  This 

study focuses primarily on investigating the following questions: 
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1)  What atmospheric and oceanic variables in the WNP are both 

operationally significant and predictable at long lead times? 

2)  What atmospheric and oceanic variables are the most viable predictors 

of climate variations in the WNP, and can these variables be used to skillfully 

predict oceanic conditions at long lead times? 

3)  What are the skill and operational value of LRFs in planning, 

supporting, and conducting USW operations in the WNP? 

3. Thesis Organization 

In order to answer these research questions, we focused on a systematic 

approach to conducting climate analysis, and to developing long-range 

forecasting products for USW operations in the WNP. 

Chapter II begins by defining the study region and period of interest, and 

then provides an overview of the two reanalysis datasets used in this study, as 

well as the methods and analysis tools used to develop and test LRFs in support 

of USW operations in the WNP.  Chapter III provides an overview of seasonal 

variations in SLD and outlines results for two specific forecast regions, chosen 

based on scientific and operational factors.  Chapter IV provides a summary of 

our results and conclusions, and offers suggestions for future research. 
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II. DATA AND METHODS 

A. REGION AND PERIOD OF FOCUS 

1. Region 

We chose the western north Pacific (WNP) region shown in Figure 9 as 

our focus region in this study.   

 

Figure 9.  Western north Pacific region of interest.  This region is bounded 
by 0°–50°N and 100°–150°E.  Image from Google maps [accessed 
online at http://maps.google.com/maps, July 2009. 

There were two specific reasons for choosing this region.  First, the WNP 

is a region of large-scale climate variations in both the atmosphere and the 

ocean.  This is largely due to the southwest and northeast monsoon wind 

regimes, illustrated in Figure 10, which dominate the summer and winter months 

respectively.  Second, the WNP and its marginal seas are of great 
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tactical and strategic interest to the United States.  We conducted analyses and 

developed LRFs for the WNP as a whole and for specific regions within the WNP 

based on scientific and operational factors. 

a b

 

Figure 10.  Surface mean winds (m/s) for:  (a) July, and (b) January in the 
WNP for 1970–2006.  Images created at ESRL website, September 
2009. 

2. Period 

This study encompasses a 37 year period from 1970–2006.  This period 

was chosen based on the availability of data from both the NCEP and SODA 

reanalysis datasets.  While data does exist prior to 1970, we chose to maximize 

the positive impacts of satellite data and exclude pre-satellite era years for data 

consistency within this study.  From research by Vorhees (2006) and Ford 

(2000), we also know that this time-period captures a number of intraseasonal to 

interannual climate variations (e.g., Madden-Julian Oscillation, El Nino, La Nina) 

as well as some representation of decadal variations.  We conducted seasonal 

climate analyses for the WNP region based on the months of January (winter), 
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April (spring), July (summer), and October (fall).  We also conducted analyses 

and developed LRFs for specific months (e.g., October, November) based on 

scientific and operational factors. 

B. SONIC LAYER DEPTH 

Undersea warfare depends heavily on knowledge of the ocean acoustic 

environment.  Environmental characterization for USW planning is typically 

based on acoustic variables, such as sound velocity (SV), sonic layer depth 

(SLD), below layer gradient (BLG), in layer gradient (ILG), and cut off frequency 

(COF).  For this study, we chose to focus on sonic layer depth as our predictand 

or forecast variable.  SLD is defined as the near surface level of maximum sound 

velocity, and is highly dependent on ocean temperature.  To have a non-zero 

sonic layer depth generally requires a neutral or positive temperature gradient.  

Turek (2008) showed that sonic layer depth is closely correlated to surface wind 

speed, with deep (shallow) SLDs associated with strong (weak) surface winds.  

This association is due to wind forcing of ocean heat fluxes, mixing, and 

circulations and the resulting impacts on ocean temperature. 

A deep SLD denotes the existence of a surface duct that may be of 

sufficient depth to trap or duct a certain range of acoustic frequencies.  This can 

be beneficial for producing longer detection ranges, particularly for active sonar 

frequencies.  The down side, however, is that the very qualities that allow the 

surface duct to trap sound above the SLD also make it difficult for sound to 

penetrate the SLD from below.  This means that a signal originating from below 

the SLD may be undetectable by sensors deployed above the SLD (Turek 2008).  

Figure 11 shows a sound velocity profile with a positive vertical sound speed 

gradient overlying a negative vertical sound speed gradient; the red line indicates 

the sonic layer depth.  Sound above this layer refracts toward the surface 

creating a surface duct and sound that makes it below this layer refracts 

downward toward minimum sound velocity, producing a shadow zone, depicted 

by the gray region. 
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Figure 11.  Schematic of sound propagation in an ocean environment with a 
positive over negative vertical sound speed gradient.  The depth of 
the near surface maximum sound speed is called the sonic layer 
depth (red line).  Image adapted from (FAS), July 2009. 

There are instances in which the maximum near surface sound velocity is 

at the surface and the formation of a surface duct is not possible.  In this 

situation, a negative vertical sound velocity gradient exists with a SLD at zero 

depth, and all sound refracts downward towards regions of minimum sound 

velocity.  This type of acoustic environment is typically associated with 

decreasing temperature with depth, which often occurs in summer months when 

winds are calm and turbulent mixing is minimal (Turek 2008).  Initially, one might 

think this would be ideal for detecting subsurface targets, but as sound 

propagates downward and bends toward minimum sound velocity, a near surface 

shadow zone is created (see Figure 12). 
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Figure 12.  Schematic of sound propagation in an ocean environment with a 
negative vertical sound speed gradient and a sonic layer depth of 
zero.  Image adapted from (FAS), July 2009. 

C. DATASETS AND SOURCES 

1. Simple Ocean Data Assimilation (SODA) Reanalysis  

SODA is a global retrospective analysis of ocean variables that extends 

from January 1958 to within a few years of the present (Carton et al., 2000).  

SODA was created to reconstruct historical ocean climate variability on space 

and timescales similar to those captured by the NCEP/NCAR atmospheric 

reanalysis project.  For this study, we used SODA reanalysis output variables 

from version 2.0.2 for years 1970–2001, and version 2.0.4 for years 2002–2006.  

Both versions have an identical temporal resolution of five days, a global domain 

covering 72.25°S–89.25°N and 0°–360°E, and 40 vertical levels between 5 and 

5374 meters in depth (Table 1).  The SODA output variables for these two 

versions are temperature (°C), salinity (psu), sea surface height (m), zonal and 

meridional ocean velocity (m/s), and wind stress (N/m2).  These variables are 

available in various forms from the Asia Pacific Data Research Center (APDRC 

2009a,b). 
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Table 1.   Vertical levels (meters) analyzed by the Simple Ocean Data 
Assimilation (SODA) model. 

SODA DEPTHS (meters)

5 129 729 3124

15 148 918 3374

25 171 1139 3624

35 197 1378 3874

46 229 1625 4124

57 268 1875 4374

70 317 2125 4624

82 381 2375 4874

96 465 2624 5124

112 579 2874 5374
 

The SODA ocean reanalysis uses a numerical model, driven by 

observation based surface forcing, to provide a first guess of the evolving ocean 

state.  At assimilation time, a set of error estimation equations are used to correct 

the first guess.  The general circulation model used by the SODA system is 

based on Parallel Ocean Program (POP) numerics, with displaced poles, to allow 

for resolution of arctic processes.  The model uses 1/30° bathymetry analysis; K-

profile parameterization for diffusion of momentum, heat, and salt; daily surface 

winds provided by the ECMWF-40 reanalysis; and surface freshwater fluxes 

provided by the Global Precipitation Climatology Project (Carton and Giese 

2008). 

The in situ observational data used to develop the SODA reanalysis 

include almost all available hydrographic profile data, as well as ocean station 

data, moored temperature and salinity time series, and surface temperature and 

salinity observations of various types.  Two-thirds of this data was obtained from 

the World Ocean Database 2001 but also included are observations from the 

National Oceanographic Data Center (NODC)/NOAA temperature archive; the 
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Tropical Atmosphere-Ocean/Triangle Trans-Ocean buoy Network (TAO/TRITON) 

mooring thermistor array; ARGO (Advanced Research and Global Observation) 

drifter data from Woods Hole Oceanographic Institute (WHOI); and bucket 

temperatures from the Comprehensive Ocean-Atmosphere Data Set (COADS).  

To account for nonrandom errors, a series of quality control filters are applied to 

temperature and salinity profiles; observations exceeding the analysis by up to 

three standard deviations are rejected (Carton and Giese 2008). 

The satellite data used to develop the SODA reanalysis includes 

NOAA/National Aeronautics and Space Administration (NASA) Advanced Very 

High Resolution Radiometer (AVHRR) operational SST measurements.  Only 

nighttime retrieval data is used in order to reduce error associated with skin 

temperature affects.  Satellite altimetry data are used in SODA versions 1.4.3 

and higher, and QuickSCAT wind data are used in SODA version 2.0.4 (Carton 

and Giese 2008). 

For this study, we used SODA monthly mean output values of temperature 

and salinity for the years 1970–2006 to derive corresponding acoustically 

relevant variables of interest for USW operations.  Sound velocity was calculated 

using the nine-term McKenzie (1981) sound velocity equation from SODA depth, 

temperature, and salinity variables.  Sonic layer depth was calculated using a 

MATLAB function created by Turek (2008).  Once SLD was calculated uniformly 

across all years of interest, we calculated LTM, standard deviation, and 

environmental threshold probabilities using MATLAB.  Our ability to resolve 

vertical variations in temperature, salinity, sound speed, and other quantities was 

constrained by the levels at which SODA variables were available (Table 1).  

Thus, our SLD values were limited to occurring at one of the SODA depths, 

rather than at intermediate depths. 

2. NCEP/NCAR Atmospheric Reanalysis  

The NCEP/NCAR atmospheric reanalysis dataset is the product of a 40-

year global, retrospective analysis of atmospheric fields from January 1948 to 
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present.  The reanalysis uses a spectral statistical interpolation (SSI) analysis 

module and a T62/28-level global spectral model for data assimilation (Kalnay et 

al., 1996).  Observations collected for this reanalysis consist of global 

rawinsonde data, Comprehensive Ocean-Atmosphere Data Set (COADS) 

surface marine data, aircraft data, surface land synoptic data, satellite sounder 

data, Special Sensor Microwave/Imager (SSM/I) surface wind speeds, and 

satellite cloud drift winds.  All data is subject to advanced quality control checks 

and run through an advanced monitoring system (Kalnay et al., 1996). 

NCEP/NCAR reanalysis output is available at a temporal resolution of six 

hours on a uniform horizontal grid with a spatial resolution of 2.5° at all standard 

tropospheric and stratospheric levels, including sea surface temperature (Kistler 

et al., 2001).  We chose to use this dataset for our study based on its ability to 

capture low frequency climate variations; its accessibility; and for the availability 

of NCEP/NCAR’s advanced plotting and data analysis tools.  In our study we 

used data from 1970–2006 to be consistent with data used from the SODA 

ocean reanalysis dataset.  Throughout this study, the NCEP/NCAR reanalysis 

plotting and analysis tools were used to develop predictor and predictand indices, 

and to identify correlations on which to base long-range climate forecasts to 

support USW planning.  Further discussion of how this was accomplished and 

what variables were used from this reanalysis dataset are presented in the 

methodology portion of this chapter. 

D. ANALYSIS AND FORECAST METHODOLOGY 

1. LTM and Standard Deviation of SLD 

Using monthly SODA ocean reanalysis data, the 37-year long term mean 

and standard deviation (STD) of sonic layer depth were calculated for the WNP 

region.  This was done to identify seasonal cycles and to interpret and identify 

processes that might be associated with, or the cause of, seasonal variations in 

sonic layer depths in the WNP region.  These calculations also helped us identify 
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regions of high and low variability, and gave us a better understanding of the 

LTM climatology of operationally significant regions for USW planning.   

2. Environmental Threshold Probabilities 

Environmental thresholds are often used in the military to determine 

whether and how to conduct an operation.  For example, a threshold of 12 foot 

wave heights might be used to determine whether a surface ship can safely and 

effectively conduct an operation.  In our study, we chose to take a similar 

approach to calculate the probability of occurrence of specific SLD values (e.g., 

the probability of SLDs less than 5 m or the probability of SLDs exceeding 70 m).  

We determined these values at each grid point based on the 37 years of SODA 

data and then created SLD threshold probability maps.  The specific thresholds 

were chosen based on the operational implications of SLD and were for up to six 

SLD ranges: (1) less than or equal to 5 m; (2) greater than 5 m and less than 25 

m; (3) greater than 25 m and less than 46 m; (4) greater than 46 m and less than 

or equal to 70 m; (5) greater than 70 m and less than or equal to 112 m; and (6) 

greater than 112 m.  We feel that such probabilistic information is operationally 

relevant for USW planners when long-range decisions are being made about 

platform assignments, sensor placement, and operational area (OPAREA) 

selection. 

3. Predictands 

The main predictand for our long-range forecasts was area averaged SLD 

for specific months and regions of interest based on operational or tactical 

significance in USW planning and/or scientific assessment.  The main factors we 

considered in selecting the regions were: 

(1)  The need for long-range forecast support in the region 

(2)  The operational and/or tactical significance of the region 

(3)  The spatial patterns of environmental variability in and near the region 

(4)  The long-term mean SLD value in and near the region 
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The predictand is the area averaged value for a specified region.  Thus, 

we chose predictand regions for which the long term mean SLDs and SLD 

standard deviations were similar at all grid points within the region.  This was 

balanced by a need to keep the predictand region small enough that spatial 

smoothing was minimized and the resulting SLD forecast would be useful in 

operational planning.  For our study, we evaluated multiple predictand regions.  

Specific results for two of these predictand regions are presented and discussed 

in Chapter III. 

4. Correlations and Teleconnections 

To identify potential long lead predictors for the predictands, we used the 

NOAA/ESRL mapping and analysis tools, to correlate time series of each 

predictand (e.g., SLD in a portion of the East China Sea) with other 

environmental variables (e.g., winds, SST, temperature, geopotential heights) on 

a global scale, with the potential predictors leading the predictand by zero to four 

months.  Significant correlations occurring on global scales are evidence of long 

distance dynamical interactions within the climate system.  Such interactions are 

called teleconnections.  Our correlations were calculated using monthly means 

from 1970–2006.  Correlations greater than +/- 0.314 were considered 

statistically significant at the 95% confidence interval, based on the standard 

normal distribution of a two-tailed test (Wilks 2006).  In general, the strongest 

correlations at multiple month lead times were between SLD in the WNP and 

SST in the equatorial and southern tropical Pacific (correlation magnitudes 

exceeding 0.5). 

5. Predictors 

In our study, we defined a predictor as a variable with significant long lead 

correlations with a predictand.  The predictors represent area averaged values 

for a region.  Thus, we chose predictor regions for which the correlations with the 

predictor were strong and relatively similar at all grid points within the regions.  

We also considered the dynamical basis for the correlations when selecting 
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predictors, preferring predictors for which plausible dynamical explanations for 

the correlations could be indentified (e.g., explanations based on low frequency 

wave mechanisms that allow climate variations in the tropical Pacific to influence 

the WNP). 

We evaluated multiple variables as potential predictors (e.g., surface air 

temperature, surface wind, geopotential height, sea surface temperature) and 

found many for which significant correlations with SLD in the WNP existed.  We 

selected Pacific SST predictors for the two SLD predictand regions presented in 

Chapter III because its correlations with WNP SLD were stronger and more 

significant at long lead times than those for other potential predictors. 

6. Predictor and Predictand Time series 

Once the main SLD predictands and corresponding SST predictors were 

chosen, we analyzed their time series to identify intraseasonal to decadal 

patterns of variability in the predictors and predictands, and in their correlations 

with each other.  We also used the time series to identify extreme events for use 

in conditional composite analyses and multi-year trends that might influence the 

selection of long-range forecasting methods. 

7. Tercile Matching Forecast Method 

For this study, we used a simple tercile matching method to conduct multi-

year hindcasts and assess the potential value of the predictor-predictand 

relationships in long-range forecasting.  The method is based on grouping the 37 

years of predictand and predictor values into above normal (AN), normal (NN), 

and below normal (BN) terciles, with each tercile representing approximately 13 

years.  The sign of the predictor-predictand correlation was used to determine 

how to use the predictor to produce a LRF of the predictand values for any given 

year.  For example, we identified a positive correlation between equatorial-

dateline Pacific SST in July and ECS SLD in October based on data from 1970–

2006.  Thus, we used the occurrence of AN SST in July 1997 to produce a 

hindcast of AN SLD in the ECS in October 1997.  Similarly, BN (NN) SST in July 
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of a given year was used to produce a hindcast of BN (NN) in October of that 

year.  Through this approach, we developed simple deterministic hindcasts of the 

AN, NN, and BN October SLD for all years 1970–2006.  We then verified those 

hindcasts by comparing them to the actual SLD.  The results of the verification 

allowed us to assess the viability of the predictor-predictand pairs and the 

potential benefits of applying more sophisticated long-range forecasting methods.  

The hindcast verification was done using standard three by three 

contingency table methods (cf. Wilks 2006).  We determined the number of hits, 

misses, false alarms (FA), and correct rejections (CR) for AN, NN, and BN 

predictor conditions that occurred at lead times of zero to four months.  For 

example, in Table 2, the value in the hit cell of the table represents the number of 

years in which AN SST occurred in August and AN SLD occurred in the following 

October.  The miss value in Table 2 represents the total number of cases in 

which AN SLD did occur in October, but was not hindcasted due to conditions 

other than AN SST in the preceding August.  The FA value represents the total 

number of cases in which AN SST in the preceding August led to a hindcast of 

AN SLD but AN SLD did not occur.  The CR value represents the total number of 

cases in which conditions other than AN SST in the preceding August led to a 

hindcast of conditions other than AN SLD in October, and AN SLD did not occur.  

Table 2.   Schematic contingency table for hindcasts of AN SLD in October 
using SST in August as the predictor and assuming a positive correlation 
between the predictor and predictand.  Note that hit, miss, FA, and CR 
values would be different for a different predictor and/or different 
predictand (e.g., BN SST predictor and AN SLD predictand). 

Contingency Table for Predictions of AN SLD in October Based on SST Conditions in August

Predictor

Predictand AN SST NN SST BN SST

AN SLD Hit Miss Miss

NN SLD False Alarm Correct Rejection Correct Rejection

BN SLD False Alarm Correct Rejection Correct Rejection
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From our contingency table results, we calculated several verification 

metrics, including: percent correct (PC), false alarm rate (FAR), probability of 

detection (POD), and Heidke skill score (HSS).  See Wilks (2006) for more 

information regarding these metrics (e.g., how they are calculated, their 

strengths, and weaknesses).  We chose to work with several metrics because 

individual metrics do not generally provide enough information to assess a 

forecasting method.  Larger (smaller) values of PC, POD, and HSS indicate more 

skillful forecasts.  The HSS is based on a scale of minus one to plus one, with the 

best HSS equal to one.  A HSS of zero indicates that the forecast has no skill 

with respect to the reference forecast (in this case the LTM), and a HSS less 

than zero indicates that the forecast has less skill than the reference forecast   

The following metrics criteria were used to determine the viability of each 

predictor-predictand pair: 

(1)  Percent correct (hits + correct rejections) greater than 50 percent 

(2)  POD equal to or greater than FAR 

(3)  HSS values greater than 0.3 

If all three criteria were met, we assumed the predictor-predictand pair 

was viable and used it in the composite analysis forecast (CAF) process to 

develop long lead probabilistic forecasts.  If the criteria were not met, we 

repeated the entire process of developing and assessing predictor-predictand 

pairs. 

8. Composite Analysis Forecast 

We used the composite analysis forecast (CAF) process to generate 

probabilistic long-range forecasts based on the conditional probability of a certain 

event occurring (e.g., the probability of AN SLD conditions occurring in the ECS 

in October given the occurrence of AN SST conditions in the equatorial-dateline 

Pacific in August).  The CAF process used in our study is an adaptation of the 

process developed by NOAA (MetEd 2009) and used in previous long-range 
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forecasting studies by Hanson (2007), Moss (2007), and Crook (2009).  The CAF 

process involves a number of steps, including several of the methods described 

in prior sections of this chapter (e.g., selection of predictands and predictors).   

An additional step is the development of composite analyses based on the 

observed frequency distribution of the predictand with respect to the predictor for 

the analysis period, 1970–2006 in our case.  In the original CAF process, 

developed by NOAA, the predictor-predictand relationship is simultaneous (i.e., 

the predictor does not lead or lag the predictand) and the predictor value is a 

prediction of the predictor variable at the valid time.  For example, a prediction of 

October SST issued in August is used, along with the simultaneous predictor-

predictand relationship for October, to produce a LRF for October that is issued 

in August.  This works well if the predictor is a variable for which relatively skillful 

LRFs are available (e.g., LRFs of Nino 3.4 SST available from CPC and other 

operational climate centers).  However, our predictors are carefully selected to 

provide the best correlations with the predictands.  This means that, in general, 

there will not be credible LRFs of the predictors available from other sources 

(e.g., CPC) or that LRFs of the predictors have to be developed.  To overcome 

these complications, we modified the CAF process so that our predictor-

predictand relationships are lagged (predictor leading predictand by one or more 

months) and our predictors are analyzed values for the time that the LRF of the 

predictand is issued.  For example, we use analyzed SST for August as the 

predictor for SLD in the following October. 

To determine whether the results of our composite analysis distributions 

were statistically significant, we performed a risk analysis using the 

hypergeometric distribution method.  For our study, we evaluated the statistical 

significance of our analysis distributions at a 90 percent confidence level (10 

percent significance).  If, for example, the number of AN, NN, or BN SLD 

occurrences during AN (warm), NN (normal), or BN (cool) SST conditions at our 

predictor location were statistically significant, then the SLD predictand and SST 

 



 29

predictor relationship was considered statistically significant and very unlikely to 

be due to chance.  See Wilks (2006) for further information on geometric 

distribution methods. 

If our composite analysis results showed a statistically significant 

relationship, then that relationship was used to develop a long-range probabilistic 

forecast using a modified form of the NOAA CAF equations.  Figure 13 shows 

the three equations used to determine the forecast probability for observed SLD 

in the predictand region to be in the AN, NN, or BN category.  In these equations, 

the P values on the left hand sides of the equations represents the probability of 

AN, NN, and BN predictand conditions occurring, with the predictand condition 

being indicated by the subscript (e.g., AN SLD).  The P values on the right hand 

side of the equations represent conditional probabilities, with the subscript 

indicating the condition (e.g., AN SST) and the superscript indicating the variable 

for which the probability is being determined (SLD in this case).  The full LRF is 

based on all three equations—that is, on a set of three probabilities for the three 

predictand states (AN, NN, and BN). 

   
 

   
 

   
 

 

   
 

   
 

   
 

 

   
 

   
 

   
 

 

AN SLD AN SLD AN SLD

AN SLD AN SST AN SST NN SST NN SST BN SST BN SST

NN SLD NN SLD NN SLD

NN SLD AN SST AN SST NN SST NN SST BN SST BN SST

BN SLD BN SLD BN SLD

BN SLD AN SST AN SST NN SST NN SST BN SST BN SST

P P xP P xP P xP

P P xP P xP P xP

P P xP P xP P xP

  

  

  
 

Figure 13.  Equations from the original NOAA CAF process used to calculate 
long-range forecasts of SLD in a predictand region using SST in a 
specified predictor region.  Adapted from (MetEd), May 2009. 

The equations in Figure 13 include all three predictand categories and all 

three predictor categories as defined by the original NOAA CAF process.  For our 

study, and a prior study by Crook (2009), analyzed predictor (e.g., SST) 

conditions were used versus probabilistic predictions of our predictor.  To adapt 
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the original CAF equations for our study, we used a binary “0” or “1” for predictor 

probabilities, with “1” representing the probability of the actual analyzed SST 

condition.  Figure 14 shows an example of what the modified CAF equations 

would look like for a case in which the analyzed predictor condition was AN SST.  

The resulting long-range probabilistic forecast is constructed from the 

probabilities derived from each equation in Figure 14 yielding a probability of AN, 

NN, and BN conditions occurring for a specified predictand (e.g., SLD in October 

for the East China Sea), given an actual analyses of the predictor (e.g., July SST 

in the equatorial-dateline Pacific).  The sum of each AN, NN, and BN probability 

will always equal 100 percent.  Ideal results would weight one probability greater 

than the others, for example, a probabilistic forecast showing a 15 percent 

probability of BN SLD, a 20 percent probability of NN SLD, and a 65 percent 

probability of AN SLD for a given month.  However, it is possible for the forecast 

to show nearly identical probabilities for each predictand category (e.g., 33 

percent probability of AN, NN, and BN SLD), meaning that chances for each SLD 

occurrence are equally likely. 
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Figure 14.  Equations used in modified CAF process to calculate long-range 
forecasts of SLD in a predictand region using analyzed AN SST 
predictor conditions. 

It is important to note that if the composite analysis results do not show a 

statistically significant relationship between the predictor and predictand, a 

probabilistic forecast cannot be generated using the aforementioned modified 

CAF equations.  For more information on the NOAA CAF method and its 
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application in developing long-range probabilistic forecast products for Iraq and 

Afghanistan, see Hanson (2007), Moss (2007), and Crook (2009). 

9. Conditional Composite Climatologies 

We also used conditional composite climatologies to generate long-range 

climate support products for USW planners and decision makers.  If a 

probabilistic forecast was generated using the CAF process, then AN, NN, and 

BN predictor periods were used to create conditional mean and conditional 

environmental threshold probability maps for the predictand.  For example, if a 

probabilistic forecast was generated for October using August SST as a 

predictor, then the AN, NN, and BN years for SST in August were used to create 

conditional mean and conditional environmental threshold probability maps of 

SLD in October.  Similar maps based just on the AN, NN, and BN periods for the 

predictand were also generated.  These maps describe the predictand spatial 

patterns in the predictand region and in surrounding areas that are associated 

with the LRFs of the predictands.  These maps provide a spatial context for the 

LRFs and help make the LRFs more operationally relevant. 

E. SUMMARY OF CLIMATE ANALYSIS AND LONG-RANGE FORECAST 
METHODOLOGY 

Figure 15 is a schematic of the process used in this thesis to analyze 

climate variations and generate long-range forecasting support products for USW 

operations in the WNP.  This process uses state of the science oceanic and 

atmospheric reanalysis data sets, and advanced climate analysis and forecasting 

methods, to develop deterministic and probabilistic long-range forecasts of sonic 

layer depth in specific regions within the WNP.  While this process was 

developed using sonic layer depth as the operational variable of interest, it can 

also be applied to other USW variables of interest (e.g., ILG, BLG, COF).  

Similarly, it can also be applied to other areas of interest besides the WNP. 
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Figure 15.  Flow chart showing main data sets and methods used to conduct 
climate analyses and long-range forecasting for this study. 
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III. RESULTS 

A. SEASONAL VARIATIONS IN THE WNP 

1. Winter 

In the winter season, a strong surface high pressure system, the Asian 

High, develops over much of central Asia.  Anticyclonic winds associated with 

this region of high pressure produce northerly and northeasterly monsoon winds, 

and cold, dry air advection, over the surface of the East Asian marginal seas.  

These winds promote net heat fluxes from the ocean and mixing within the upper 

ocean (Open University 2001), leading to deeper SLDs than at other times of the 

year.  Figure 16 shows the LTM SLD and the standard deviation of SLD in the 

WNP for January.  In general, the shallowest SLDs and lowest SLD variability 

occur in the tropical portions of the WNP, consistent with weaker and more 

persistent surface winds, and lower net heat fluxes from the ocean, in the tropics 

than in the higher latitudes (Open University 2001).  The deepest SLD and the 

greatest SLD variability occur in the northern Sea of Japan, and north and east of 

Hokkaido.  The Kuroshio region east of the East China Sea, and south and east 

of Japan is an area of relatively deep SLD (compare Figures 16a and 17).  

However, the Kuroshio is an area of relatively low variability in SLD, except in a 

small region south of southern Honshu where large fluctuations in the location of 

the Kuroshio occur (compare Figures 16b and 17). 
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Figure 16.  January (a) LTM of SLD (m), and (b) STD of SLD (m) in the WNP. 
The scales are different for this figure than for the corresponding 
figures for the other seasons (Figures 18, 19, and 20). 

 

Figure 17.  (a) Schematic depiction of the Kuroshio and Oyashio depicted by 
black lines.  The broken black line is the 1000 m contour and 
indicates the shelf break.  As the Kuroshio encounters the Izu Ridge 
south of Honshu it negotiates along one of three paths depicted in 
red and green.  (b) Time series indicating the annual variability in the 
Kuroshio paths.  (c) Individual Kuroshio paths observed from summer 
1976 to 1980.  From Tomczak (2003). 
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2. Spring 

In spring, the atmospheric high pressure system over Asia weakens and a 

transition from winter monsoon to summer monsoon conditions occur in the WNP 

region.  Surface wind speeds over the marginal seas of the WNP tend to be 

lower than in winter.  Figure 18 shows the LTM SLD and standard deviation of 

SLD for April.  SLDs in the Kuroshio are deeper than in most other parts of the 

WNP but shallower than in the winter, consistent with the weakening of the 

surface winds.  The relatively deep SLD at about 10–15N is an indication of the 

impacts of the trade winds.  These impacts are more evident in the April figures 

than in those for January; although this is in part a result of the different scaling 

used in the figures for the two months (compare Figures 16 and 18).   

a b

 

Figure 18.  April (a) LTM of SLD (m), and (b) STD of SLD (m) in the WNP.  
The scales are different for this figure than for the corresponding 
figures for January (Figure 16). 

3. Summer 

In the summer, warming of the Eurasian land mass results in low 

pressures in the lower troposphere over Asia, while high pressure prevails over 

the subtropical southern Indian Ocean, and North and South Pacific Ocean.  This 

pressure difference leads to the onset of southwesterly and easterly surface 

winds over much of the tropical and marginal sea regions of the WNP.  These 
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winds enhance mixing of the upper ocean, especially in the South China Sea, 

Philippine Sea, and western equatorial Pacific.  The impacts of these winds are 

evident in the LTM SLD and the standard deviation of SLD for July (Figure 19), 

with SLD variations being largest in the tropical portions of the WNP.  However, 

the July SLD and SLD variations are much smaller than those in January.  This is 

most likely due to differences in the net heat fluxes to the ocean in the WNP, 

which tend to be positive in July but negative in January (Open University 2001).  

These heat fluxes tend to produce negative (positive) sound speed gradients with 

depth and shallow (deep) SLDs in July (January).  This means that in July 

(January), wind forced turbulent mixing tends to force the sound speed gradient 

from negative to neutral (negative to even more negative).  Thus, the July winds 

must work against buoyancy forces and are not able to produce such deep SLDs 

as winds with similar speeds in January.  Note also that in July there is relatively 

little evidence of the Kuroshio in the LTM SLD or SLD standard deviation, unlike 

the situations in January, April, and October (compare Figures 16, 18–20).  This 

is consistent with the relatively large positive net heat fluxes to the ocean in the 

Kuroshio region in July, leading to very shallow SLDs (Open University 2001). 

a b

 

Figure 19.  July (a) LTM of SLD (m), and (b) STD of SLD (m) in the WNP.  
The scales are different for this figure than for the corresponding 
figures for January (Figure 16). 
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4. Fall 

In fall, the Eurasian land mass begins to cool and conditions in the WNP 

region begin to shift back toward those of the winter monsoon regime.  Figure 20 

shows the LTM SLD and the standard deviation of SLD for October.  Note the 

overall similarities between April and October; the two transition seasons 

(compare Figures 18 and 20).  The Kuroshio is evident in the SLD and somewhat 

evident in the SLD variations. 

a b

 

Figure 20.  October (a) LTM of SLD (m), and STD of SLD (m) in the WNP.  
The scales are different for this figure than for the corresponding 
figures for January (Figure 16). 

B. ENVIRONMENTAL FORECAST RESULTS BY REGION 

1. October East China Sea Region 

The East China Sea (ECS) region has a significant amount of upper 

ocean variability associated with seasonal climate variations (see Figures 16,18–

20).  For this reason, and for its strategic significance to the U.S. military, we 

chose multiple predictand regions within the ECS to formulate a process for 

developing long-range USW support products.  The month of October was 

chosen in order to compare our results with those from Turek (2008).  Initial 

analysis of October long term mean sonic layer depth and the standard deviation 

of sonic layer depth (see Figure 20), enabled us to better understand the patterns 
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(e.g., high SLD associated with Kuroshio region) and physical processes (e.g., 

strong northeasterly winds) which drive changes in sonic layer depth for this 

region.  Following the process outlined in Chapter II (see Figure 15) we created 

environmental threshold probabilities for the WNP for the month of October 

based on a 37-year record (Figure 21).  Environmental threshold probabilities 

may be used by military planners and decision makers to identify positive and 

negative conditions for military operations.  The environmental threshold 

probabilities for the Kuroshio region provide an example of what threshold 

probabilities reveal and how they can be used operationally.  Figure 21 shows 

that in most of the Kuroshio region in October, there is a very low probability of 

experiencing SLDs less than 25 m or greater than 70 m, but a high probability of 

SLDs between 25 and 70 m.  In addition, Figure 21 shows nearby regions in 

which other SLD values are probable—for example, regions adjacent to the 

Kuroshio in which shallower or deeper SLDs are probable.  This type of 

information is very relevant for planning USW operations and allows decision 

makers to quickly determine, in a probabilistic way, how the operational 

environment can vary over small spatial scales (e.g., along the edge of the 

Kuroshio).  This information can be crucial in determining platform assignment 

and sensor placement when conducting USW operations. 



 39

a b

c d

e

 

Figure 21.  October SLD environmental threshold probabilities.  Probability of 
SLD: (a) less than or equal to 5 meters; (b) greater than 5 meters and 
less than or equal to 25 meters; (c) greater than 25 meters and less 
than or equal to 46 meters; (d) greater than 46 meters and less than 
or equal to 70 meters; and (e) greater than 70 meters. 
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From our analysis of the LTM and standard deviation of sonic layer depth, 

we chose three potential predictand regions (Figure 22) to develop a long-range 

probabilistic forecast product.  The first region is outlined by the red box in Figure 

22 and is identical to the focus region used in Turek (2008).  The second region 

is outlined in black in Figure 22 and was chosen because it encompasses the 

greatest October LTM SLD values in the Kuroshio region.  The third region 

consisted of the three small blue boxes plus the black box in Figure 22, and was 

chosen to represent a larger region of the Kuroshio focused on the area of 

deepest SLD and largest SLD variation during October (Figure 20b).  

Correlations, hindcasting, and CAF computations were conducted for each 

potential predictand region as described in Chapter II, sections D3–D8.  

However, only the results for the third, multi-box predictand, which we refer to as 

the ECS predictand region, are presented.  The results for this region are broadly 

representative of those for the other two regions. 

 

Figure 22.  October LTM SLD (m) showing three main October predictand 
regions used in this study.  Large SLD potential predictand region 
indicated by red box (20°–28°N, 122°–126°E).  Small SLD potential 
predictand region indicated by black box (25°–26°N, 125°–127.5°E).  
Multi-region SLD potential predictand region indicated by light blue 
and black boxes (22°–24°N, 123°–126°E, 24°–25°N, 124°–127°E, 
25°–26°N, 125°–127.5°E, 26°–27°N, 126°–127.5°E). 
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We correlated the area average SLD for the October ECS SLD predictand 

region with global SST to identify potential predictor regions for this SLD 

predictand.  Figure 23 shows the correlations with SST leading the SLD 

predictand by zero to three months.  Figure 23 (panel a) shows a large area of 

negative correlation at zero lead centered over the predictand region in the 

western WNP, indicating that, in this region, SST is low when SLD is deep, and 

vice versa.  This negative correlation is pronounced at zero lag but much less 

evident at one to three months lead.  This is expected and indicates that when 

SST decreases (e.g., cools due to surface heat fluxes and/or strong cold 

northeasterly winds at the surface causing turbulent mixing), SLD responds 

relatively quickly and increases (deepens).  At all lead times, there is a 

pronounced pattern of negative correlations in the western tropical south Pacific 

and positive correlations in the central tropical Pacific, especially along the 

equator near the dateline.  This is strikingly similar to the correlations between 

ECS surface winds and SST (Figure 8), although the signs are reversed for the 

two sets of correlations.  Thus, Figure 23 extends the findings of Turek (2008) 

and indicates that tropical Pacific SST variations lead to atmospheric circulation 

variations in the ECS that then lead to SLD variations, with SST increases 

(decreases) in the summer being associated with increased (decreased) surface 

wind speeds and SLD in the ECS in the following October.   

The correlation patterns in the Pacific in Figures 8 and 23 are similar in 

some respects to the SST anomaly patterns associated with El Nino and La Nina 

events (e.g., the wedge shaped area of positive correlations in the central and 

east Pacific centered on the equator and bounded by negative correlations to the 

west; Ford 2000).  This suggests that an index of El Nino and La Nina events 

might be a predictor of ECS winds and SLD.  However, our results and those of 

Ramsaur (2009) (not shown) indicate that such indices are not as well correlated 

as other tropical Pacific SST predictors.   
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The correlations shown in Figure 23 helped us identify as a potential 

predictor of ECS SLD the SST along the equator just west of the dateline in the 

region bounded by 5°N–5°S, 160°–185°E.  This region has consistently strong 

positive correlations at zero to three month lead times.  This region is also the 

western half of the NINO 4.0 region. 

a b

c d

 

Figure 23.  Correlations between the October ECS SLD predictand and SST 
in:  (a) October; (b) September; (c) August; and (d) July, based on 
data from 1970–2006.  Note the strong positive correlations in the 
central and eastern tropical Pacific.  We chose the area of high 
positive correlations between 5°N–5°S, 160°–185°E (red box) as our 
potential predictor. For the October SLD predictand.  

To better assess the ECS SLD predictand and the potential equatorial-

dateline Pacific SST predictor (e.g., to identify their interannual and longer term 

variations, and potential events for compositing), we created time series showing 

the predictor and predictand values during the study period (Figure 24).  As 

expected, the predictor and predictand generally vary in phase with each other.  

The time series also provided information on multi-year trends in the predictor 

and predictand that we used in developing the long-range forecasting process 

(see discussion of the composite analysis forecasting process later in this 

section).  Figure 24 shows a strong positive correlation between the July and 
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October SST predictor time series, indicating a high degree of persistence in the 

predictor and a high potential for skillful forecasts of the predictand at lead times 

of several months. 
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Figure 24.  Time series of ECS SLD predictand (blue line), October SST 
predictor (red line), and July SST predictor (green line) for 1970–
2006. 

Based on our correlation results, we applied the tercile matching method 

to conduct multi-decadal hindcasts and assess the viability of our selected 

predictor-predictand pair.  In Table 3, columns A, B, C, and D represent the 

number of hits, false alarms, misses, and correct rejections calculated for each 

predictand condition (e.g., AN SLD, BN SLD, and NN SLD) at zero, one, two, and 

three month lead times.  These values were used to calculate four verification 

metrics, percent correct (%Corr), false alarm rate (FARate), probability of 

detection (POD), and Heidke skill score (HSS).  Based on a set of criteria 

described in Chapter II, section D7, we used these metrics to determine whether 

we would use our predictand-predictor pair to create a probabilistic long-range 

forecast.  The results for the equatorial-dateline SST predictor and the October 

ECS SLD predictand (Table 3) show that for many of the predictand terciles and 

lead times our verification metrics criteria were met (e.g., POD greater than 0.50, 
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POD greater than FARate, HSS of 0.3 or greater).  These results gave us 

confidence that this predictor-predictand pair was viable, and could be used in 

the CAF process to generate a skillful long lead probabilistic forecast. 

Table 3.   Contingency table results and verification metrics from hindcasts 
generated using the tercile matching forecast method.  Hindcasts of 1970–
2006 October ECS SLD predictand based on equatorial-dateline SST 
predictor, with predictor leading by zero to three months.  Columns A, B, 
C, and D represent the number of hits, false alarms, misses, and correct 
rejections respectively for AN, BN, and NN SLD values.  See Chapter II, 
section D7, for details on contingency table and verification metrics. 

A B C D VERIFICATION METRICS

Hits FA Misses Corr. Rej. % Corr FA Rate POD HSS

OCT Equatorial‐dateline SST Predictor Index VS. ECS SLD Predictand Index

AN SLD 7 5 5 20 0.730 0.417 0.583 0.425

BN SLD 7 5 5 20 0.730 0.417 0.583 0.425

NNSLD 6 7 7 17 0.622 0.538 0.462 0.248

SEP Equatorial‐dateline SST Predictor Index VS. ECS SLD Predictand Index

AN SLD 7 5 5 20 0.730 0.417 0.583 0.425

BN SLD 6 6 6 19 0.676 0.500 0.500 0.320

NNSLD 5 8 8 16 0.568 0.615 0.385 0.154

AUG Equatorial‐dateline SST Predictor Index VS. ECS SLD Predictand Index

AN SLD 7 5 5 20 0.730 0.417 0.583 0.425

BN SLD 5 7 7 18 0.622 0.583 0.417 0.218

NNSLD 4 9 9 15 0.514 0.692 0.308 0.063

JUL Equatorial‐dateline SST Predictor Index VS. ECS SLD Predictand Index

AN SLD 7 5 5 20 0.730 0.417 0.583 0.425

BN SLD 6 6 6 19 0.676 0.500 0.500 0.320

NNSLD 5 8 8 16 0.568 0.615 0.385 0.154
 

Using our ECS SLD predictand and equatorial-dateline SST predictor we 

developed composite analysis forecasts for the East China Sea in October using 

the CAF process outlined in Chapter II, section D8.  Figure 25 (panel a) shows 

the composite analysis for ECS SLD in October and equatorial-dateline SST in 

July.  The statistically significant results, outlined in black, are for AN SST and 

AN SLD, and BN SST and AN SLD.  In Figure 25 (panel a) we also see a general 

pattern indicating highest (lowest) probability of AN SLD conditions when there 

are AN SST (BN SST) conditions in the predictor region and highest (lowest) 
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probability of BN SLD conditions when there are BN SST (AN SST) conditions in 

the predictor region.  This pattern is consistent with the correlation and hindcast 

results. 
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Figure 25.  (a) Composite analysis for October SLD in the ECS using the 
equatorial-dateline SST predictor in July.  Statistically significant 
results are outlined in black.  (b) Corresponding probabilistic long-
range hindcast of ECS SLD in October based on BN equatorial-
dateline SST predictor in July.  (c) Corresponding probabilistic long-
range hindcast of ECS SLD in October based on AN equatorial-
dateline SST predictor in July.  For July 2009, the SST predictor 
values are AN (see Figure 26).  Thus, our CAF prediction of October 
2009 ECS SLD based on July 2009 equatorial-dateline SST 
conditions would be: probability of above normal SLD—58%; 
probability of near normal SLD—25%; and probability of below 
normal SLD—17%. 

Using statistically significant results from our composite analysis we 

generated two probabilistic long-range hindcasts of sonic layer depth in the East 

China Sea for October (see Figure 25 panels b and c).  These probabilistic long-

range hindcasts indicate that the CAF process may be used to generate skillful 

long-range forecasts of East China Sea SLD in October using July SST 

conditions in our equatorial-dateline predictor region 
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To make a prediction of East China Sea sonic layer depth for October 

2009 we determined that July 2009 SST conditions in our predictor region were 

AN (Figure 26), and applied this information to produce a long-range forecast 

based on the composite analysis results (Figure 25, panel a).  This led to a 

probabilistic long lead forecast, which would be issued at the end of July 2009, 

valid for October 2009 that showed a 58 percent probability of AN, 25 percent 

probability of NN, and 17 percent probability of BN sonic layer depths in the East 

China Sea based on a mean SLD value of 41 meters. 

 

Figure 26.  SST anomalies (°C) for July 2009.  ECS equatorial-dateline SST 
predictor (red box).  NAX south Pacific SST predictor (blue box).  
Image from (ESRL), July 2009. 

We also generated conditional mean and conditional environmental 

threshold probability composites as additional long lead support products for 

military planners and decision makers.  Conditional mean and conditional 

environmental threshold probability composites of AN and BN October sonic 

layer depth in the ECS were calculated using upper and lower tercile July SST 

predictor years from 1970–2006.  These products correspond to what might be 

issued as a forecast product, since they are based on conditions in the preceding 
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July.  For comparison, we also generated the conditional mean and conditional 

threshold probability composites of AN and BN October sonic layer depth using 

upper and lower tercile October SLD predictand years from 1970–2006.  These 

products correspond to what might be issued as part of a verification product, 

since they are based on conditions during the October valid period.  The 

difference between these two products is a measure of the uncertainty in the 

long-range forecasts, for example, a measure of the uncertainty in LRFs of AN 

October SLD based on AN July SST predictor conditions. 

Figure 27 shows examples of these products.  Notice that upper (lower) 

tercile composite means of October sonic layer depth using July SST predictor 

years are very similar to upper (lower) tercile composite means using October 

SLD predictand years.  However, the means based on the October SLD 

predictand years are more extreme (e.g., panels c and d show deep SLDs in the 

Kuroshio region northeast of Taiwan, but panel d shows deeper SLDs in that 

region than panel c).  This indicates that the means based on the July SST 

predictor years include some years that were not among the most extreme years.  

The differences between the corresponding composite means (a and b, c and d) 

occur because, while we have shown that SST is a skillful predictor of SLD, it is 

not the only variable factoring into determination of sonic layer depth in this 

region.  So, while some upper (lower) tercile July SST predictor years are also 

upper (lower) tercile October SLD predictand years, not every AN (BN) July SST 

predictor leads to AN (BN) October SLD predictand conditions. 
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a b

c d

 

Figure 27.  Conditional mean of October SLD based on compositing:  (a) 
lower tercile July SST predictor years; (b) lower tercile October SLD 
predictand years; (c) upper tercile July SST predictor years; and (d) 
upper tercile October SLD predictand years. 

Figure 29 shows upper tercile conditional environmental threshold 

probability composites based on AN July SST predictor years and AN October 

SLD predictand years.  These figures only represent upper tercile comparisons, 

corresponding to our prediction of AN ECS SLD in October 2009 based on AN 

July 2009 SST predictor conditions.  For each of the five threshold comparisons 

between July SST predictor years and October SLD predictand years in Figures 

28 and 29, there is very little difference in the overall probability patterns.  This 

means, for example, that a USW planner could be relatively confident in using 
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the predicted environmental threshold probabilities valid for October 2009 (Figure 

28, panels a and c and Figure 29, panels a, c, and e) issued at the end of July 

2009, to determine platform assignments, sensor placement, and for other 

information on determining the best place to look for a target. 

a b

c d

 

Figure 28.  October SLD threshold probabilities based on upper tercile July 
SST predictor years and upper tercile October SLD predictand years.  
Probability of SLD:  (a) less than or equal to 5 meters using July SST 
predictor; (b) less than or equal to 5 meters using October SLD 
predictand; (c) greater than 5 meters and less than or equal to 25 
meters using July SST predictor; and (d) greater than 5 meters and 
less than or equal to 25 meters using October SLD predictand. 
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c d

e f

a b

 

Figure 29.  October SLD threshold probabilities based on upper tercile July 
SST predictor years and upper tercile October SLD predictand years.  
Probability of SLD:  (a) greater than 25 meters and less than or equal 
to 46 meters using July SST predictor; (b) greater than 25 meters 
and less than or equal to 46 meters using October SLD predictand; 
(c) greater than 46 meters and less than or equal to 70 meters using 
July SST predictor; (d) greater than 46 meters and less than or equal 
to 70 meters using October predictand; (e) greater than 70 meters 
using July SST predictor; and (f) greater than 70 meters using 
October SLD predictand. 
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2. November ANNUALEX Region 

ANNUALEX is a U.S. Navy undersea warfare exercise that occurs every 

year in the western north Pacific.  In 2009, ANNUALEX is scheduled to occur in 

November, and we chose to use the process outlined in Chapter II to develop 

long lead support products for USW planners to use in the mid-phase planning 

aspect of this important naval exercise.  Looking at the LTM and standard 

deviation of SLD in November we see that the Kuroshio is well defined and 

represented by deep sonic layer depths (Figure 30, panels a and b).  This is what 

we expect during the winter season based on enhanced mixing in the upper 

ocean due to the northeasterly monsoon wind regime and net surface heat fluxes 

from the ocean.  Sonic layer depths are relatively shallow near the equator where 

we expect warmer surface waters to cause a negative sound velocity gradient.  

While LTM sonic layer depth along the equator is close to zero, there is a large 

amount of variability associated with interannual climate variations (e.g., El Nino 

and La Nina).  This type of information is very valuable to USW planners.  For 

example, an area that has a deep LTM SLD with little or no variability might be 

an ideal location to plan to conduct operations at long lead times, whereas an 

area with deep LTM SLD and a lot of variability may not be. 

ba

 

Figure 30.  November (a) LTM of SLD (m), and (b) STD of SLD (m) in the 
WNP.  The scales are different for this figure than for the 
corresponding figures for different months (Figures 16, 18–20). 
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LTM SLD environmental threshold probabilities were calculated for USW 

planners to use as long lead planning tools for ANNUALEX 2009 (Figure 31). 

a b

c d

e f

 

Figure 31.  November SLD threshold probabilities showing probability of SLD: 
(a) less than or equal to 5 meters; (b) greater than 5 meters and less 
than or equal to 25 meters; (c) greater than 25 meters and less than 
or equal to 46 meters; (d) greater than 46 meters and less than or 
equal to 70 meters; (e) greater than 70 meters and less than or equal 
to 112 meters; and (f) greater than 112 meters.  Based on ocean 
reanalysis data for 1970–2006. 
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When the exact operating area (OPAREA) for an operation has not been 

pre-determined, support products such as those shown in Figures 30 and 31 may 

be useful to planners in establishing an OPAREA or adjusting it based on the 

expected acoustic environment.  However, for many operations and exercises, 

such as ANNUALEX 2009, the OPAREA is pre-determined at lead times of 

several months or seasons.  In these cases, more focused long lead support 

products can be developed.  Figure 32 shows the November LTM SLD for the 

WNP with the approximate ANNUALEX OPAREA outlined by the black box.  The 

red and green boxes represent sub-regions within the OPAREA that we chose as 

potential SLD predictand regions.  The entire OPAREA and both sub-regions 

were evaluated for their long lead forecast potential, since in many cases it is 

important for USW planners to know how different sub-regions within their 

OPAREA differ from one another.  For example, our LRFs might indicate a 69 

percent probability of having AN SLD conditions in the red sub-region, but only a 

17 percent probability of AN SLD conditions in the green sub-region. 

 

Figure 32.  November LTM SLD (m).  ANNUALEX OPAREA indicated by 
black box (24°–30.5°N, 128.5°–134.5°E).  Red (24°–27°N, 128.5°–
131°E) and green (28.5°–30.5°N, 132°–134.5°E) boxes indicate 
potential SLD predictand regions within the larger ANNUALEX 
region. 
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Using the process outlined in Chapter II, section D3–D8, we developed 

and evaluated correlations, hindcasts, and CAF-based LRFs for each of our 

three potential ANNUALEX SLD predictand regions.  For brevity, only the results 

for the red predictand region, which we will now refer to as the November 

ANNUALEX (NAX) region, are presented. 

Figure 33 shows the correlations between area averaged SLD in the NAX 

predictand region with global SST, with SST leading by zero to four months.  The 

overall patterns are similar to those for October ECS winds and SLD (Figures 8 

and 23), and indicate that climate scale variations in SST may induce low 

frequency atmospheric circulation responses, similar to those associated with El 

Nino and La Nina events, that affect atmospheric conditions in the WNP.  The 

stronger correlations with the south Pacific SST in July than in November may be 

due to the tendency for a stronger response to El Nino and La Nina conditions in 

the winter (e.g., July) than in the summer (e.g., November).  The SST areas with 

the strongest and most persistent correlations are to the east of Australia 

(negative correlations) and in the central south Pacific (positive correlations).  We 

evaluated both of these regions for their potential as predictors using hindcasts 

based on the tercile matching method.  For brevity, only the results from the 

positively correlated region (red boxes in Figure 33), which we will now refer to 

as the south Pacific SST predictor, are presented. 
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a b

c d
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Figure 33.  Correlations between November NAX SLD predictand and SST 
in:  (a) November; (b) October; (c) September; (d) August; and (e) 
July based on data from 1970–2006.  A positively correlated region 
(38°–47°S, 210°–230°E) in the Pacific was chosen as a potential 
predictor (black boxes). 

Figure 34 shows time series of the NAX SLD predictand and the 

corresponding south Pacific SST predictor.  Note that the predictand and 

predictor are generally in phase, as expected from the positive correlations 

shown in Figure 33.  The two SST time series show a moderate amount of 

persistence from July to November, consistent with the persistence in the 

corresponding correlations (Figure 33), and favorable for long lead forecasting 

based on SST in this region.  Notice also that there is significant sea surface 

temperature variation between July, when surface temperatures are cooler in the 

southern hemisphere winter, and November, when surface temperatures are 

warmer in the southern hemisphere summer.  The time series show no strong 
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trend in the predictor or predictand, indicating that trends do not need to be 

accounted for when creating long-range composite analysis forecasts for the 

November 2009 ANNUALEX region.  
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Figure 34.  Time series of November ANNUALEX SLD predictand (NAX, red 
line), November south Pacific SST predictor (light blue line), and July 
south Pacific SST predictor (dark blue line) for 1970–2006. 

Based on our correlation results, we applied the tercile matching method 

to determine the viability of our selected predictor-predictand pair (Table 4).  

Compared to our ECS predictand-predictor pair, the HSS values are not as high, 

but our percent correct for each lead time was greater than 0.50 and increasing 

out to longer lead times.  This gave us confidence that this predictor-predictand 

pair was viable, and could be used in the CAF process to generate skillful long 

lead probabilistic forecasts for the November 2009 ANNUALEX. 
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Table 4.   Contingency table results and verification metrics from hindcasts 
generated using the tercile matching method.  Hindcasts of 1970–2006 
NAX SLD predictand based on south Pacific SST predictor, with predictor 
leading by zero to four months.  Columns A, B, C, and D represent the 
number of hits, false alarms, misses, and correct rejections respectively 
for AN, BN, and NN SLD values.  See Chapter II, section D7, for details on 
contingency table and verification metrics. 

A B C D VERIFICATION METRICS

Hits FA Misses Corr. Rej. % Corr FA Rate POD HSS

NOV South Pacific SST Predictor VS. NAX SLD Predictand Index

AN SLD 5 7 7 18 0.622 0.583 0.417 0.218

BN SLD 6 6 6 19 0.676 0.500 0.500 0.320

NN SLD 5 8 8 16 0.568 0.615 0.385 0.154

OCT South Pacific SST Predictor VS. NAX SLD Predictand Index

AN SLD 6 6 6 19 0.676 0.500 0.500 0.320

BN SLD 6 6 6 19 0.676 0.500 0.500 0.320

NN SLD 4 9 9 15 0.514 0.692 0.308 0.063

SEP South Pacific SST Predictor VS. NAX SLD Predictand Index

AN SLD 9 3 3 22 0.838 0.250 0.750 0.645

BN SLD 8 3 4 22 0.811 0.273 0.667 0.579

NN SLD 8 6 5 18 0.703 0.429 0.615 0.406

AUG South Pacific SST Predictor VS. NAX SLD Predictand Index

AN SLD 8 4 4 21 0.784 0.333 0.667 0.533

BN SLD 9 3 3 22 0.838 0.250 0.750 0.645

NN SLD 7 6 6 18 0.676 0.462 0.538 0.346

JUL South Pacific SST Predictor VS. NAX SLD Predictand Index

AN SLD 6 6 6 19 0.676 0.500 0.500 0.320

BN SLD 9 3 3 22 0.838 0.250 0.750 0.645

NNSLD 4 9 9 15 0.514 0.692 0.308 0.063
 

Figure 35 shows a composite analysis (panel a) and two probabilistic long-

range hindcasts (panels b and c) of sonic layer depth for our chosen sub-region 

of the ANNUALEX OPAREA in November based on our July south Pacific SST 

predictor.  The statistically significant results (outlined in black or indicated by a 

black arrow) are for AN SST and BN SLD, BN SST and AN SLD, and BN SST 

and BN SLD.  In Figure 35 (panel a), we also see a general pattern indicating 

highest (lowest) probability of BN SLD conditions when there are BN SST (AN 

SST) conditions in the predictor region and higher (lower) probability of AN SLD 

conditions when there are AN SST (BN SST) conditions in the predictor region.  

This of course is consistent with the correlations and tercile matching results 
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(Figures 33–34 and Table 4).  The probabilistic long-range hindcasts in panels b 

and c indicate that the CAF process may be used to generate skillful long lead 

probabilistic forecasts of the November ANNUALEX sub-region using July SST 

conditions in the south Pacific predictor region.  Panel b indicates that, based on 

BN July SST conditions, there is a 75 percent probability of BN, 25 percent 

probability of NN, and 0 percent probability of AN SLD conditions in the NAX 

predictand region in November.  Panel c indicates that, based on AN July SST 

conditions there is a 50 percent probability of AN, 50 percent probability of NN, 

and 0 percent probability of BN SLD conditions in the NAX predictand region in 

November.   

Note that a 50 percent probability of AN or NN SLDs indicates a much 

higher probability than normal of these sonic layer depths occurring.  This is 

because in a tercile based analysis and forecasting approach, the normal 

probabilities are 33 percent for each tercile.  To see that this situation is much 

different than normal, note that the probability of BN SLD is much lower than 

normal (zero percent).  For operational use, it would be important for forecast 

users to understand and distinguish between tercile based probabilities for which 

the normal percentages are 33 percent for all categories, and more familiar bicile 

based probabilities (e.g., coin flip probabilities) for which the normal probabilities 

are 50 percent. 
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Figure 35.  (a) Composite analysis for November SLD in ANNUALEX sub-
region (NAX) using the south Pacific SST predictor in July.  
Statistically significant results are outlined in black or indicated by 
black arrows.  (b) Corresponding probabilistic long-range hindcast of 
NAX SLD in November based on BN south Pacific SST predictor 
conditions in July.  (c)  Corresponding probabilistic long-range 
hindcasts of NAX SLD in November based on AN south Pacific SST 
predictor conditions in July.  Thus, our CAF prediction of November 
2009 NAX SLD based on AN July 2009 south Pacific SST conditions 
is: probability of above normal SLD—50%; probability of near normal 
SLD—50%; and probability of below normal SLD—0%.   

Based on AN July SST anomalies (see Figure 26) in our south Pacific 

predictor region, our probabilistic long-range forecast of November 2009 NAX 

sonic layer depth issued in July 2009 would be similar to the CAF in panel c of 

Figure 35.  Thus, ANNUALEX 2009 planners and decision makers can expect in 

November 2009, in the NAX sub-region (red box in Figure 32) a 50 percent 

probability of AN, 50 percent probability of NN, and 0 percent probability of BN 

sonic layer depths, based on a mean SLD value of 53 meters. 
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Knowing that our predictor-predictand pair is able to provide skillful 

probabilistic forecasts, we compared conditional composites of upper and lower 

tercile July SST predictor years with conditional mean composites of upper and 

lower November SLD predictand years (Figure 36).  Figure 36 shows that the 

results based on using July SST predictor years to composite expected BN 

(lower tercile) and AN (upper tercile) November SLD conditions (i.e., the 

predicted composites) are similar to those based on using November SLD 

predictand years to composite actual BN (lower tercile) and AN (upper tercile) 

SLD conditions (i.e., to generate the actual or validating predictand composites).  

Panels a and b in Figure 36 are composites of lower tercile July SST predictor 

years and November SLD predictand years respectively.  Notice that both panels 

are similar, which means that the years when SST was in the lower tercile for our 

July predictor are nearly the same as the years when SLD for our November 

predictand were in the lower tercile.  The same is true for panel c and d in Figure 

36, which are composites of upper tercile July SST predictor years and 

November SLD predictand years respectively.  Figure 36 supports the use of our 

predictor-predictand pair for long lead SLD prediction. 



 61

a b

c d

 

Figure 36.  Conditional mean of November SLD based on compositing:  (a) 
lower tercile July SST predictor years; (b) lower tercile November 
SLD predictand years; (C) upper tercile July SST predictor years; and 
(d) upper tercile November SLD predictand years. 

Given our probabilistic long lead forecast for AN NAX SLD in November 

2009 based on AN analyzed July 2009 SST in our predictor region, we 

composited upper tercile July SST predictor years to create conditional 

environmental threshold probability maps of SLD for November 2009.  For 

comparison, we did the same for upper tercile November SLD predictand years.  

The results are shown in Figures 37 and 38.  Note that for each threshold 

comparison between July SST predictor years and November SLD predictand 

years, there are only small differences in the overall probability patterns. 
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Figure 37.  November SLD threshold probabilities based on upper tercile July 
SST predictor years and upper tercile November SLD predictand 
years.  Probability of SLD:  (a) less than or equal to 5 meters using 
July SST predictor; (b) less than or equal to 5 meters using 
November SLD predictand; (c) greater than 5 meters and less than or 
equal to 25 meters using July SST predictor; (d) greater than 5 
meters and less than or equal to 25 meters using November SLD 
predictand; (e) greater than 25 meters and less than or equal to 46 
meters using July SST predictor; (b) greater than 25 meters and less 
than or equal to 46 meters using November SLD predictand. 
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Figure 38.  November SLD threshold probabilities based on upper tercile July 
SST predictor years and upper tercile November SLD predictand 
years.  Probability of SLD:  (a) greater than 46 meters and less than 
or equal to 70 meters using July SST predictor; (b) greater than 46 
meters and less than or equal to 70 meters using November 
predictand; (c) greater than 70 meters and less than or equal to 112 
meters using July SST predictor; (d) greater than 70 meters and less 
than or equal to 112 meters using November SLD predictand; (e) 
greater than 112 meters using July SST predictor; and (f) greater 
than 112 meters using November SLD predictand. 
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Figure 37 and Figure 38 support the validity of our predictor predictand 

pair.  However, the small differences between the expected and validating 

threshold probabilities indicate that, while July south Pacific SST is a skillful 

predictor of November WNP SLD in this case, there are other variables factoring 

into the determination of sonic layer depth (e.g., SST in other regions). 

C. LONG-RANGE FORECASTS OF SONAR PERFORMANCE  

The results in the previous section are examples of climate scale tier one 

products in the Battlespace on Demand concept.  These products were 

developed using advanced climate datasets (tier zero), and advanced analysis 

and forecasting methods (tier 1).  Tier one products characterize the analyzed 

and predicted environment, and give decision makers the environmental 

awareness necessary for planning operations.  The next step would be to use 

our long-range forecasts to develop tier two products that predict the 

performance of sonar and other equipment in the forecasted environment. 

In Turek (2008), sonic layer depths for the East China Sea region from 

both GDEM and SODA climatology datasets were input into a Navy tactical 

decision aid to yield sonar performance predictions.  Turek’s results showed that 

climate variations in sound speed profiles and sonic layer depth can have large 

impacts on sonar performance.  Based on Turek’s work evaluating sensor 

performance of individual sonic layer depth profiles, we would expect similar 

impacts from the variations we have analyzed and forecasted.  Future work 

evaluating sonar performance based on results from this study could lead to 

skillful climate scale tier two forecast products for long lead USW planning 

support. 
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IV. CONCLUSION 

A. KEY RESULTS AND CONCLUSIONS 

This study explored the viability of employing advanced climate datasets 

and methods to develop skillful long lead probabilistic forecasts of sonic layer 

depth in the western north Pacific.  The primary focus of this work was to 

generate long lead climate support products for USW operations that offer a 

significant improvement in environmental awareness for Navy planners and 

decision makers. 

Our proposed method (outlined in Chapter II) uses existing, and freely 

available state of the science atmospheric and oceanic reanalysis datasets to 

conduct analyses of long term means and climate variations in sonic layer depth.  

These analyses enabled us to identify intraseasonal to interannual climate 

patterns and processes within the western north Pacific associated with 

variations in sonic layer depth.  Based on U.S. Navy operational interests, we 

selected two sub-regions within the western north Pacific for determination of 

long lead predictability potential.  We correlated each WNP sub-region with 

potential predictor variables, and found sea surface temperature in the equatorial 

and south Pacific to have the strongest teleconnections with sonic layer depth at 

zero to four month lead times.  Using a tercile matching method, we conducted 

hindcasts for 1970–2006 as a test of the viability of the SSTs as predictors of 

SLD in the sub-regions.  If a selected predictor-predictand pair met specific 

criteria (see Chapter II, section D7), then a hypergeometric distribution method 

was used to test for statistical significance.  Statistically significant relationships 

between the predictor and predictands were used to generate long lead 

probabilistic hindcasts.  Based on analyzed sea surface temperature for July 

2009, long lead probabilistic climate forecasts of sonic layer depth were 

generated in August 2009 for the East China Sea and ANNUALEX predictand 

regions in October and November 2009, respectively. 
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Conditional compositing techniques were exploited to develop additional 

long lead climate support products.  Conditional composite means of upper and 

lower tercile predictand and predictor years help quantify the uncertainties in our 

long-range forecasts of sonic layer depth.  Conditional environmental threshold 

probabilities based on long term mean and on upper and lower tercile categories 

provide additional support for long-range USW planning. 

Our results indicate that skillful long-range probabilistic forecasts of sonic 

layer depth in the western north Pacific may be possible via prediction of 

individually identified sea surface temperature predictors within the Pacific (and 

possibly other predictors within other regions).  While our results show a definite 

correlation between sea surface temperature in the equatorial and south Pacific 

and sonic layer depth in the western north Pacific, we suspect that there are 

additional factors and dynamics, which play an important role in the variability of 

sonic layer depth in the WNP.  Our study is meant to highlight the predictive 

potential of our method and to show how using advanced datasets and methods 

to generate long-range forecasts of the ocean, and sonar performance, can 

enhance warfighter awareness and planning. 

B. APPLICABILITY TO DOD OPERATIONS 

The majority of day-to-day military scheduling and planning for USW 

exercises and operations begins several weeks to months prior to 

commencement.  However, the Navy METOC community primarily focuses on 

short range forecasting support (lead times of 72 hours or less).  Very few 

operational DoD products exist to aid USW mission planners in assessing and 

characterizing the likely state of the acoustic environment at lead times of weeks 

to months in advance, except for antiquated LTM based climatologies.  Some 

experimental analysis products are being explored.  But, to the best of our 

knowledge, no true long-range forecasts are available in operational or 

experimental form. 
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The USW planning phase, which occurs many months prior to the start of 

an operation, is arguably the phase when ocean climate support may have the 

greatest positive impact on USW operations, by alerting planners to the potential 

conditions that may impact their operations while there is still time to mitigate 

these impacts and exploit opportunities provided by other environmental 

conditions.  Often times, short range forecasts come too late in the planning 

process to have much influence.  In many of these cases, skillful long-range 

forecasts (e.g., lead times of two weeks or longer) could be very useful in 

exploiting the acoustic environment to give warfighters the USW advantage, such 

as determining when and where to conduct an operation, what sensors to deploy, 

and what tactics to employ.  Additionally, better long-range planning has the 

potential for saving the military time and tax dollars.  

Due to the lack of available long lead forecasting products, it is even more 

important for the Navy METOC community to provide state of the science 

climatology products that provide a comprehensible depiction of ocean climate 

and climate variations.  Traditional LTM climatology datasets, such as GDEM, do 

not accurately depict climate variations, which, if not accounted for during 

planning and decision making phases, can have adverse affects on military 

operations.  The studies by Moss (2007), Hanson (2007), Crook (2009), Tournay 

(2008), Mundhenk (2009), and others, along with results from this study, highlight 

the importance of using advanced climate datasets and methods to provide more 

complete and accurate forecasts than the current practice of using LTM based 

products for long-range military planning. 

C. AREAS FOR FURTHER RESEARCH 

Based on results from this study, it is evident that advanced climate 

datasets and methods can provide an immediate means of improved long lead 

climate support for USW planning and operations.  This section highlights areas 

of future research to support these improvements. 
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1.  The experimental long-range forecasts and other long lead planning 

products developed in this study should be provided to USW METOC support 

staff and USW planners for experimental use in USW planning.  The results of 

that use should be assessed to determine how to improve product content, 

format, delivery, and timing. 

2.  This study focused primarily on using SLD as the predictand.  To 

increase the operational relevance of this research, other predictands should be 

used, including BLG, ILG, and COF. 

3.  The datasets and methods used in this study of the WNP should be 

applied to other tactically significant and strategically important regions of the 

world. 

4.  This study focused primarily on using SST from individual regions as 

the predictor variable.  SST from multiple regions, plus other oceanic variables 

(subsurface ocean temperature) should also be investigated as potential 

predictors. 

5.  This study focused on development of tier one products in the Battle 

Space on Demand concept.  We recommend using the results from this study to 

develop tier two performance predictions and tier three decision 

recommendations for USW operations.  Tier two products might consist of sonar 

performance forecasts based on PC-IMAT, to give USW planners estimated 

sonar ranges based on area of operations, characterization of the environment, 

sensor operating frequencies, and sensor deployment depths.  Tier three 

products might consist of courses of action for USW planners based on 

environmental characterization, battle group assets, sensor deployment, and 

expected enemy actions. 

6.  This study primarily focused on statistical links between acoustically 

derived USW variables of interest and global climate variables.  Future research 

should focus on developing a deeper understanding of the dynamics that cause 
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the teleconnections identified in this study, as done in, for example, Vorhees 

(2006), Hanson (2007), Moss (2007), Twigg (2007), and Crook (2009) . 

7.  Further research should be conducted to verify the composite analysis 

forecast method used to develop long lead probabilistic predictions of WNP sonic 

layer depth in this study.  We recommend verification using extensive hindcasts 

and real forecasts. 

8.  A large amount of time for this study was spent manipulating data into 

a user friendly formats (especially the ocean reanalysis data).  The methods 

used in this study could be applied much more efficiently and quickly if a web-

based application was available for accessing, plotting, and analyzing the 

atmospheric and oceanic reanalysis data, and calculating derived quantities such 

as sound speed, SLD, BLG, etc.  This would make climate datasets and methods 

much more available for research and operations (e.g., for identifying the primary 

long lead relationships for a specific area of interest).  The ESRL applications for 

working with atmospheric reanalysis data are good examples of what is needed 

for all types of climate data. 
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