

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MAINTAINING HIGH AVAILABILITY IN DISTRIBUTED
MOBILE SYSTEMS

by

Brad P. Boitnott

September 2009

 Thesis Co-Advisors: Gurminder Singh
 John H. Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Maintaining High Availability in Distributed Mobile
Systems
6. AUTHOR(S) Brad P. Boitnott.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Distributed Mobile Systems often require the ability to continue working, even when a major system

component fails or there is a fault in the system. In some situations when a distributed mobile system is
used, the difference between success and failure could mean the difference between life and death.
Therefore, distributed mobile systems that require a high availability must be able to survive faults and
resist failures.

A user of a distributed mobile system depends on the ability of the system to share information
between the other users of the system. The information and its delivery may be the most important parts
of the system, whether it is a data file, picture, or instant message.

A survey will be conducted of the different failsafe and fault-tolerant techniques available then
grouped for potential effectiveness and cost efficiency. An experiment with a distributed mobile system
and different combinations of failsafe and fault-tolerant techniques will be used to validate the effectiveness
of the techniques. The expected result of the experiments is a higher availability rating than the system
had before the experiments. TwiddleNet, a distributed mobile system with a high availability requirement,
will be used as the platform for experimentation.

15. NUMBER OF
PAGES

73

14. SUBJECT TERMS High Availability, Failsafe, Fault-tolerant, Distributed Mobile System,
TwiddleNet

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

MAINTAINING HIGH AVAILABILITY IN DISTRIBUTED MOBILE SYSTEMS

Brad P. Boitnott
Major, United States Marine Corps

B.A., Saint Leo University, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Brad P. Boitnott

Approved by: Gurminder Singh
Thesis Co-Advisor

John H. Gibson
Thesis Co-Advisor

Dr. Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Distributed Mobile Systems often require the ability to continue working,

even when a major system component fails or there is a fault in the system. In

some situations when a distributed mobile system is used, the difference

between success and failure could mean the difference between life and death.

Therefore, distributed mobile systems that require a high availability must be able

to survive faults and resist failures.

A user of a distributed mobile system depends on the ability of the system

to share information between the other users of the system. The information and

its delivery may be the most important parts of the system, whether it is a data

file, picture, or instant message.

A survey will be conducted of the different failsafe and fault-tolerant

techniques available, then grouped for potential effectiveness and cost efficiency.

An experiment with a distributed mobile system and different combinations of

failsafe and fault-tolerant techniques will be used to validate the effectiveness of

the techniques. The expected result of the experiments is a higher availability

rating than the system had before the experiments. TwiddleNet, a distributed

mobile system with a high availability requirement, will be used as the platform

for experimentation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. FAILSAFE.. 2
B. FAULT TOLERANT ... 2
C. OBJECTIVE ... 3
D. SCOPE... 4
E. ORGANIZATION.. 4

II. BACKGROUND.. 5
A. HIGH AVAILABILITY DISTRIBUTED MOBILE SYSTEM 5
B. AVAILABILITY... 5

1. MTBF... 6
2. MTTR... 8
3. Calculating System Availability.. 8

C. TWIDDLENET OVERVIEW.. 11
1. Client/Handheld ... 12
2. Portal .. 12
3. Command Post .. 13

D. TWIDDLENET OPERATION.. 13
1. Order of Operation... 13
2. Continued Operation ... 15

E. CHAPTER SUMMARY... 15

III. PREVENTION METHODS.. 17
A. SOFTWARE... 17

1. Requirements Generation... 17
2. Coding Language with Subsets ... 18
3. Source Code Auditing ... 20

B. HARDWARE REDUNDANCY.. 22
C. DATA REDUNDANCY... 27
D. CHAPTER SUMMARY... 28

IV. METHOD COMBINATIONS AND RESULTS ... 29
A. CURRENT TWIDDLENET SYSTEM DIAGRAM................................ 29
B. SOFTWARE DEVELOPMENT... 30
C. HARDWARE REDUNDANCY.. 32
D. DATA REDUNDANCY METHOD 1.. 36
E. DATA REDUNDANCY METHOD 2.. 39
F. DATA REDUNANCY METHOD 3 .. 43
G. NETWORK REDUNDANCY .. 46
H. RESULTS... 46
I. CHAPTER SUMMARY... 47

V. CONCLUSION AND FUTURE WORK.. 49
A. CONCLUSION ... 49

 viii

B. FUTURE WORK... 49
1. Software Development .. 49
2. Network Devices .. 50
3. Handheld Devices.. 50
4. Data Redundancy .. 51
5. System Design ... 51

LIST OF REFERENCES.. 53

INITIAL DISTRIBUTION LIST ... 57

 ix

LIST OF FIGURES

Figure 1. The Bathtub Curve (From Wilkins, 2002) ... 7
Figure 2. Formula for Availability of an individual component (From

EventHelix.com, Reliability and Availability Calculation, n.d.)............... 9
Figure 3. Formula for Availability of components in series (From

EventHelix.com, Reliability and Availability Calculation, n.d.)............... 9
Figure 4. Formula for Availability of components in Parallel (From Shooman,

2002) .. 10
Figure 5. Determining System Availability with Serial and Parallel

Components ... 10
Figure 6. TwiddleNet Order of Operation (From Glidden, 2009)........................ 14
Figure 7. Availability equation for an n node system with s spares (From

Highleyman, 2006) ... 24
Figure 8. RAID Level Decision Flow Chart (From Hewlett-Packard

Development Company, 2002)... 26
Figure 9. TwiddleNet system with red circles indicating single points of failure. 29
Figure 10. TwiddleNet System Design with XPC Shuttle with RAID.................... 34
Figure 11. TwiddleNet System Design with redundant PCs and backup

databases... 35
Figure 12. Block distribution, retrieval, reconstruction, and sending.................... 38
Figure 13. Content Location File Flow during failed Portal scenario.................... 41
Figure 14. The Receiver-based Discovery Control (RDC) Algorithm (From

Huang, Hsu, & Hsu, 2005).. 44
Figure 15. Identical File Matching flowchart (From Huang, Hsu, & Hsu, 2005) ... 45

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Table of Availability and associated Downtime (From
EventHelix.com, Reliability and Availability Basics, n.d.)...................... 9

Table 2. List of questions for Project Managers and Programmers (From
Cullyer, 1991) ... 19

Table 3. RAID Levels and descriptions (From Gatan Inc., 2006) 25

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

 First, I would like to thank my family for supporting me through this

rigorous endeavor. Your understanding of the late nights and early mornings

helped me accomplish this goal and I could not have done it without you.

 Secondly, I would like to thank my thesis advisors, Dr. Gurminder Singh

and Professor John H. Gibson, for their continuous support and guidance. Your

feedback on my writing and recommendations on where to go when I was stuck

was instrumental to my finishing this thesis.

 I would also like to thank Dr. Richard Riehle for lending me access to his

extensive library. The books that you gave me access to helped me

tremendously.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Distributed mobile systems are in use by military forces, fire departments,

law enforcement agencies, emergency medical services, and in private

organizations all across the world for reporting pertinent information between

entities and nodes on that system. The information generated on these systems

becomes vital to the success of the mission the system is supporting. The

availability of that information could be the difference between life and death, for

either the system users or the populace they support or defend. “Improving

communications and providing critical information to emergency responders

helps save lives,” asserts Richard Mirgon, vice president of the Association of

Public-Safety Communications Officials (APCO) (Vilaboy, 2009). APCO and

Motorola cosponsored a survey that identified better communications, availability

of data, and portable devices as a few of the greatest needs for first responders

(Vilaboy, 2009).

A user of a distributed mobile system depends on the ability of the system

to share information with the other users of the system, as well as with other

interconnected systems. The information and its delivery certainly are the most

important parts of the system, whether it is a data file, picture, or instant

message. The availability of the system components may dictate the success or

failure of the distributed mobile system. As an FDNY chief in the North Tower

during 9/11 commented, “One of the most critical things in a major operation like

this is to have information. Unfortunately, we didn’t have a lot of information

coming in” (Roemer, 2005). The limitations of the distributed mobile system used

during 9/11 significantly affected the responders’ abilities to coordinate actions to

contain damage.

The availability of these distributed mobile systems are affected by the

failures and faults attributed to the components, both software and hardware. By

increasing the fault tolerance and failure prevention of the devices in a system,

the availability of the data will increase and allow first responders to more

 2

efficiently execute their mission and potentially reduce damage and save more

lives. This thesis will survey the different failsafe and fault-tolerant techniques

available and then group them for potential effectiveness and cost efficiency. An

experiment with a distributed mobile system configured with different

combinations of failsafe and fault-tolerant techniques will validate the

effectiveness of the techniques. It is expected that the experiments will

demonstrate a higher availability rating than the system had before the proactive

measures were implemented. TwiddleNet, a distributed mobile system with a

high availability requirement, will be used as the platform for experimentation.

A. FAILSAFE

To define failsafe for this thesis, it will first be defined what it means for a

system to fail. If a failed component prevents a system from completing its

purpose, then the entire system has failed. An example is a system that

consolidates all of its data in one database, on one server, and that server

crashes. This becomes a failed system because there is no access to that

information; therefore, the purpose of that system is lost. A failsafe is required to

ensure that the systems purpose is not lost (Storey, 1996).

 A failsafe for a computer system is an automatic protection from failure of

hardware or software that allows the system to continue with minimal

interruption. Making a computer system failsafe can be accomplished in many

ways, and it is not only when dealing with computers. However, for this thesis,

the concentration will be on techniques for making computer systems failsafe.

B. FAULT TOLERANT

A fault tolerant system is a system that requires the ability to handle faults

in the system while maintaining the purpose of the system, albeit at a potentially

degraded state, often referred to as graceful degradation. This fault may be

caused by the independent failure of a specific component such as a handheld

 3

device or wireless access point, but the purpose of the distributed system is

unaffected. Fault tolerance methods can be implemented to handle the faults

and ensure the mission success.

Fault tolerance built into a system will ensure that most users continue to

benefit from the performance of the system. Assuming that due diligence was

done during the coding and testing phases, a deployed system can accomplish

fault tolerance by a system design that minimizes single-points-of-failure using

fault detection followed by targeted redundancy. Redundancy can be

accomplished through hardware or software techniques, but since software fault

tolerance cost can be comparatively quite costly, hardware redundancy is usually

the best choice (Storey, 1996).

Hardware fault tolerance is required because component failure can

happen at any time without warning. What are the primary reasons components,

such as CPUs, hard drives, and power supplies fail? What is their failure rate?

Answering these questions will provide a targeted list of components or

additional resources that systems should apply to ensure fault tolerance in their

systems.

C. OBJECTIVE

The objective of this thesis to identify and test methods for increasing the

availability of distributed mobile systems. The following research questions will

be addressed:

1) What are the different techniques for making a distributed mobile

system more available?

2) What combination of techniques offers the best value and highest

availability for a distributed mobile system with respect to cost, size, complexity,

employment, and availability rating?

 4

D. SCOPE

The scope of this thesis work is limited to failsafe capabilities for

distributed mobile systems that utilize a database. The purpose is to develop a

cost-efficient failsafe-design that meets the requirements of a distributed mobile

system.

E. ORGANIZATION

The organization of the rest of this thesis is as follows: Chapter II–

Background, Chapter III–Prevention Methods, Chapter IV–Method Combinations

and Availability Ratings, and Chapter V–Conclusions and Future Work. Chapter

II will discuss faults, failures, and system availability more thoroughly and

introduce TwiddleNet as the test platform. Chapter III will discuss the methods

for achieving a more failsafe or fault tolerant system with associated pros and

cons. Chapter IV will discuss implementing the methods in combinations to

determine the most cost-effective implementation. Finally, Chapter V will provide

a conclusion and recommendations for future work.

 5

II. BACKGROUND

A. HIGH AVAILABILITY DISTRIBUTED MOBILE SYSTEM

A High Availability Distributed Mobile System is a system that requires 24

hours/7 days a week of operating time over a given period. The critical period for

the system may range from as little as 10 minutes for a short burst of activity, to

an extended time, depending on mission needs, and the system must be

available during that critical period. The system may be critical to protecting

property and saving lives; without the system, a first responder may not be able

to complete the mission. The users that require this type of sophisticated

communications capability typically perform the roles of first responders,

including law enforcement agencies, military forces, fire fighters, and emergency

medical crews. While not essential to life or limb, other organizations and

individuals, such as financial institutions or distribution management entities, may

require 24/7 access to their data and peers for which they are willing to pay.

B. AVAILABILITY

Availability is a critical characteristic for determining whether a system is

going to meet operational requirements. In other words, is it going to be ready

when needed most? Because it can mean the difference between life and death,

system availability is very important to first responders, who rely heavily on the

situational awareness that a highly available system provides. Banking and

business operations also need high-availability systems to prevent a financial

crisis and revenue loss. For example, eBay suffered an outage that lasted

almost 22 hours in June 1999 and cost the company approximately $5 million in

revenues for that quarter and countless subscribers, which equates to untold

future profits (Kawamoto, 1999).

The availability of a system as a function of time, A(t), is the probability

that the system is operational at the instant of time t. If the limit of this function

exists as t goes to infinity, it expresses the expected fraction of time that the

 6

system is available to perform useful work (Siewiorek, 1998). The formula for

determining a probability of availability uses the Mean-Time-Between-Failure

(MTBF) and the Mean-Time-To-Repair (MTTR) values, either estimated or

experimental.

1. MTBF

The Mean Time Between Failures is the average of the lengths of time

between consecutive failures, under stated conditions, for a stated period in the

life of a functional unit. A more simplified MTBF definition for reliability

predictions can be stated as the average time (usually expressed in hours) that a

component works without failure (Relex, Reliability Prediction). The MTBF for

hardware and software can only be an estimate if it is a new piece of hardware or

a new software program. The manufacturer usually provides an MTBF by

making an estimate from past performance of similar components—for

hardware—but an actual MTBF calculation requires information gathered from

reported failures of a particular component within a specific period.

In the real world, failure numbers are not steady over the lifetime of a set

of devices. Hardware components tend to experience a high failure rate during

an initial burn-in period. During this period, manufacturing defects lead to a large

number of early system failures. During the operational lifespan of a set of

devices, the MTBF numbers improve. Failures become much more rare as the

systems experiencing early failure have been repaired or replaced. Eventually,

the devices will begin to wear out. MTBF numbers will steadily grow worse until

the devices are replaced with new equipment. (www.tech-faq.com, n.d.)

Hardware component failures typically follow a “bathtub curve” like the one

depicted in Figure 1. Failure frequency may also increase outside of the

estimated MTBF by mishandling hardware or using them in harsh conditions

outside of normal operating parameters, such as in first-responder situations and

military uses.

 7

Figure 1. The Bathtub Curve (From Wilkins, 2002)

A Software MTBF is different from Hardware MTBF because software

does not wear out as hardware does. The software MTBF rating is the result of a

lot of analyzing, testing, and debugging during the software life cycle, to include

the requirements phase and the design phase. Faults or “bugs,” which are

missing, extra, or defective code, accumulate in software programs and can

potentially cause a failure (Friedman, Tran, & Goddard, 1992). Therefore, the

majority of faults and bugs must be removed before releasing the software. It is

almost impossible to remove all faults because some are revealed by events that

happen over large periods and are not obvious to human evaluators. An

estimate MTBF will be set after testing and debugging, but the final MTBF will be

set after a reliability demonstration test (Darroch, 2006).

 8

2. MTTR

MTTR (Mean Time To Repair) is the most common measure of

maintainability. It is the average time required to perform corrective maintenance

on all of the removable items in a product or system. This kind of maintainability

prediction analyzes how long repairs and maintenance tasks will take in the

event of a system failure (Relex, 2001).

Maintenance tasks can range from removing and replacing components to

just rebooting a system. Additionally, the type of system oversight, whether it is

onsite monitoring for 24 hours a day or remotely monitored from 8 a.m. to 5 p.m.,

makes the MTTR rating better to worse, respectively, as this oversight

methodology impacts the responsiveness of outage reporting and maintenance

queuing.

3. Calculating System Availability

Availability is a percentage of uptime in a given year while considering

planned and unplanned maintenance. Planned maintenance is any maintenance

that requires the system to be unavailable. However, it takes into account how it

will affect users and is typically scheduled for low usage times. Unplanned

maintenance is any maintenance that must be performed but was not expected.

It generally involves removing and replacing hardware components or restarting

software modules; nonetheless, it is seldom at an opportune time for the user.

Calculating an availability score using the MTBF and the MTTR from above

creates a percentage of time the system is operable. This is often referred to as

the number of “nine’s” it produces, as depicted in Table 1.

 9

Availability Downtime
90% (1-nine) 36.5 days/year
99% (2-nines) 3.65 days/year
99.9% (3-nines) 8.76 hours/year
99.99% (4-nines) 52 minutes/year
99.999% (5-nines) 5 minutes/year
99.9999% (6-nines) 31 seconds/year

Table 1. Table of Availability and associated Downtime (From EventHelix.com,
Reliability and Availability Basics, n.d.)

Individual component availability must be determined before system

availability can be projected. Figure 2 illustrates the formula for determining the

availability of an individual hardware component. Note that the operational

availability also considers the delay in return to service due to logistics or

administrative activities.

Figure 2. Formula for Availability of an individual component (From
EventHelix.com, Reliability and Availability Calculation, n.d.)

Once the availability is determined for a given hardware component, the

value can be used with other component values to determine the availability of a

series of components that are dependent on each other. Components that are in

series actually reduce the availability of a system because each component must

be operational for the system to be so. Figure 3 illustrates the formula for

determining the availability of components in a series. The A represents the

System Availability and AX and Ay represent the components in the system.

Figure 3. Formula for Availability of components in series (From
EventHelix.com, Reliability and Availability Calculation, n.d.)

Components that are in parallel are usually components of the same

type of equipment and generally support the same functions in a system. By

 10

supporting the same function and being in parallel, the availability of the system

will actually increase with parallel components. This method adds a bit of fault

tolerance at the hardware level. Figure 4 illustrates the formula for components

in parallel. The formula calculates the availability of a module that is composed

of two like entities in parallel. It can be extended, however, to reflect any number

of entities operating in parallel, whether or not they are identical.

Figure 4. Formula for Availability of components in Parallel (From Shooman,
2002)

Once the serial availabilities and parallel availabilities are determined, the

system availability can be derived by taking the rolled up availabilities and

calculating them together. After parallel components are calculated, they can be

referred to as one component for calculation purposes; therefore, to determine

the final system availability, use the equation for serial components, see Figure

3. Figure 5 serves as an example of determining system availability with serial

and parallel components.

Figure 5. Determining System Availability with Serial and Parallel
Components

 11

The availability of a complex system is a little bit harder to determine

because it is a marriage between a hardware system and specially created third-

party software application, usually not specifically designed to work with each

other. Together, the two make up the complex system, as the application cannot

run by itself, nor will the hardware perform the required functions without the

application. TwiddleNet, for example, is a complex system of software modules

loaded onto hardware devices. Currently, the software is loaded on the

hardware, mentioned in Section C, but the availability could change for better or

worse when the two systems are combined. Additionally, the complex system

availability may be higher or lower than the previous complex system availability

if hardware components are changed. The availability of the new components

may be different. To get the new availability, the hardware availability is

multiplied with the application availability and the new complex system availability

is created. Additional outside factors may affect overall complex system

availability like network congestion but that is outside the scope of this thesis.

C. TWIDDLENET OVERVIEW

TwiddleNet is a distributed mobile system that has enormous potential.

Professor Gurminder Singh (2008) states that TwiddleNet:

… harnesses the power of pervasive edge devices, primarily smart
phones, to enable 1) instant content capture and publish; 2) full
owner control of content; and 3) search, view and download of
content which was previously inaccessible. It exploits the multiple
communication modalities available in modern smart phones
(GSM/CDMA, GPRS/EDGE, Wi-Fi, Bluetooth—all in a single
device) to provide a fail-safe and rapidly-deployable infrastructure
which is so critical to first responders. (p. 1).

TwiddleNet is designed to serve the information sharing needs of first

responders. It is a system of different components, hardware and software. The

following is a description of the components and of the TwiddleNet operations.

 12

1. Client/Handheld

The TwiddleNet Client/Handheld device is a Hewlett-Packard iPAQ

hw6945 Smartphone. This device has a built-in camera for capturing events or

actions that can be shared across its multiple communications options. The

hw6945 has the ability to communicate via Wi-Fi on 802.11b, via a Personal Area

Network using Bluetooth, or via GSM (Global System for Mobile

Communications). It is also a very powerful device running on a Windows Mobile

5.0 operating system with a 416 Mhz Intel PXA270 processor and 64MB of RAM.

The TwiddleNet Client Software is loaded on the handheld device to

enable the connectivity between that device and the other components in the

system. The handheld software allows the device to be assigned to a user group

to specify the information to be received.

The Client/Handheld has three primary functions: 1) to create metadata for

new content captured and notify the Portal of its availability 2) to provide an

interface for the user to discover and download new content and 3) to serve

content to other Clients’/Handhelds (Glidden, 2009).

2. Portal

The TwiddleNet Portal is the brain of the entire TwiddleNet distributed

mobile system. It is run on an OQO Ultra portable PC with a Windows operating

system. This type of PC provides a highly mobile capability and helps to ensure

a smaller footprint of equipment. This small but powerful PC has a 1.86 Ghz Intel

processor and 2 GB of memory but has a very small display. It has the

TwiddleNet Portal software installed as an application.

The purpose of the Portal is to handle the connectivity and the sharing of

metadata that describes the content that the users have captured. It serves to

notify users of newly captured content, provides links for downloading this

content from the Clients, and allows users to search for specific content (Glidden,

2009).

 13

3. Command Post

The TwiddleNet Command Post runs on a regular PC or laptop without

special configurations. It contains the Command Post software that performs

functions that are similar to the functions of the TwiddleNet Client Software but

programmed to run on a PC instead of a handheld device.

The primary function of the Command Post is to receive alerts and

download the content of each alert into a repository for future use. The content

can be viewed via Web pages created by a Web server and data may be

searched by keywords or phrases for specific content. “The Command Post is

envisioned to be used at a command center or headquarters. It is intended to

serve as a situational awareness tool providing real-time information to the

commander of an operation to facilitate timely decision making” (Glidden, 2009).

D. TWIDDLENET OPERATION

1. Order of Operation

The mission of TwiddleNet is to allow clients to share information as soon

as it is created or search and retrieve information when it is desired. The

following is a detailed order of operation for TwiddleNet, which will be referred to

later to identify single points of failure and potential fault locations. These single

points of failure or fault locations could create a failure in the TwiddleNet system,

rendering the system useless or, at the very least, extremely degraded.

The following operations are performed when setting up the TwiddleNet

system, but some of them can be done concurrently. The administrator will

create a database for the user groups and user names with their passwords on

the Portal; this will allow the users to log in to the system and share the content

they capture. Once the database is complete, the users can log in when

necessary and share content. If a connection is lost during operation, the user

will have to log in again to gain access to the content on the other clients, Portal,

and Command Post.

 14

The Command Post will also have to be set up to allow for the collection of

content in a secondary location other than the clients. The Web server must be

running on the Command Post to ensure that the content is saved for its users.

The Command Post will also serve as the Dynamic Host Configuration Protocol

(DHCP) Server for the devices on the network, if running a wireless local area

network.

Once the users have logged in, they can start capturing content. When a

user captures content and chooses to share it, the client automatically creates a

notification message with the metadata describing the content and sends it to the

Portal (Figure 5, Step 1). The Portal then sends a notification message to all

clients in the originator’s user group and the Command Post (Figure 5, Step 2).

If the clients choose to download the content, the file will be downloaded directly

from the originating client via an HTTP GET method (Figure 5, Step 3). The

Command Post will also perform an HTTP GET method to download the content,

store it, and make it available in the future to clients.

Figure 6. TwiddleNet Order of Operation (From Glidden, 2009)

 15

2. Continued Operation

The TwiddleNet System can continue operating as long as there are

clients connected to the Portal and the Portal and Command Post are operating

correctly. However, a Client/Handheld can suffer a failure, but the result will be

isolated and not affect the rest of the system. To resume operation, the user will

have to get a new Client/Handheld then rejoin the system. Any content that has

not been uploaded to the portal or to another device will be lost, however. The

client software has some fault tolerance capabilities built into it, such as a battery

level module that monitors the battery strength. As it decreases to a certain

level, an automatic content push to the Command Post may be executed.

The Portal is a different story than the Client/Handhelds. If the Portal

experiences enough faults, there could be a system failure because, without the

Portal, the Clients’/Handhelds cannot connect with each other to share content.

The current configuration of the Portal does not include any kind of failsafe or

fault tolerant capability to prevent system failure.

The Command Post can suffer some faults but must continue to serve its

mission. Like the Portal, the Command Post does not include any kind of failsafe

or fault tolerant capability to prevent system failure. The DHCP Server requires

redundancy, as does the data on the server. The failure of some of the other

functions of the Command Post can be treated as just faults to the TwiddleNet

System.

E. CHAPTER SUMMARY

To get to the optimal availability, software developers and hardware

manufacturers must use techniques to limit the amount of faults and failures

attributed to their components. The advances of fault-tolerant techniques have

spread from the military and space sector to almost all commercial sectors.

These techniques are used in individual modules and collectively in systems.

Some advanced systems have hardware in triplicate to ensure fault-tolerance,

some have software that monitors the health of systems with checks and

 16

balances to detect erroneous outputs, and others have a combination of

techniques. The most popular fault-tolerant techniques for making software and

hardware more reliable will be discussed in the next chapter.

 17

III. PREVENTION METHODS

Fault-tolerance techniques have been developed since the 1960s and

1970s. Fault-tolerant computing is a generic term describing redundant design

techniques with duplicate component or repeated computations enabling

uninterrupted (tolerant) operations in response to component failure (faults)

(Shooman, 2002). The following techniques may be used alone or combined

within a system to produce the desired level of reliability or tolerance. The

required availability level can consequently have a major impact on development

costs; therefore, in some systems the developers must balance the cost between

software techniques, hardware techniques, and added availability.

A. SOFTWARE

1. Requirements Generation

The prevention of software faults starts long before any coding gets done.

It starts during the first meeting to discuss what the system is going to do and

what the availability of that system needs to be. Safety must be designed into a

system and dangers must be designed out; careful consideration of requirements

is critically important (Bowen & Stavridou, 1993). The requirements generation

for a safety-critical system is crucial to success of the system because it is where

the capabilities are coupled with their criticality. For example, a system

requirement may be able to print reports to show how many planes landed

between 4 p.m. and 5 p.m., but the criticality for that requirement is low. On the

other hand, the requirement to track planes as they are on approach to land is

very critical and if this requirement fails, the system fails.

A preliminary hazard analysis should be conducted to identify all of the

requirements that pose a hazard to the safety of the data or users (Information

Processing Limited, 1997). If it is a system like a child’s computer game, then

the hazard analysis may be less complicated. However, a preliminary hazard

analysis on a safety-critical high availability system should produce a list all of the

 18

components that need fault-tolerant techniques to protect them. Once the

analysis is complete, a prioritized list should be generated in order to identify the

requirements that are to be protected first, which will allow management to

choose which lower priority requirements may go un-protected.

There are two philosophies when it comes to specifying and developing

safety-critical systems. The first philosophy is that the specification and design

will be correct the first time and no further changes will be required. Basically, a

perfect program will be created without faults and can be tested and proven to be

so. Although this could very well happen, generally a small, non-complex

program—a category into which most safety-critical programs don’t fall—is

created. The second philosophy is that a very good specification and design will

be created with no illusions of it being fault-free. There are expectations that

faults may be present; therefore, error detection and recovery capabilities are

included in the code (Information Processing Limited, 1997).

The requirements generation process can be a very trying process, as all

sponsors of specific functionalities feel that their requirement is critical. A

balance must be maintained between critical requirements and non-critical

requirements because as the number of critical requirements rises so does the

cost and complexity. Some systems, like flight control systems and space

navigation systems, need to be extremely resistant to faults and a lot of money is

spent to ensure it. However, even if a developer had all of the money required to

cover the costs, the complexity of the system may be so severe that it will be

practically impossible to determine the actual availability.

2. Coding Language with Subsets

Just as the foundation of a house is the most important part of the house,

so is the coding language for a software program. The historical choice has

been to use the programming language ADA because of its ability to make

coding of safety-critical systems easier by removing the harmful functions and

keeping sufficient. Experts agree that unsafe constructions exist in all known

 19

assembly and higher order languages; therefore, Table 2 is provided to prompt

questions that a project manager and programmer should ask when choosing a

programming language.

1. Wild jumps: can it be shown that the program cannot jump to an arbitrary
store location (i.e., can the control flow be totally determined)?

2. Overwrites: are there language features which prevent an arbitrary store
location from being overwritten?

3. Semantics: are the semantics of the language defined sufficiently for the
translation process needed for static code analysis to be feasible?

4. Model of maths: is there a rigorous model of both integer and floating point
arithmetic within the language standard?

5. Operational arithmetic: are there procedures for checking that the
operational program obeys the model of the arithmetic when running on the
target processor?

6. Data typing: are the means of data strong enough to prevent misuse of
variables?

7. Exception handling: if the software detects a malfunction at runtime, do
mechanisms exist to facilitate recovery? (e.g., global exception handlers,
which may in themselves introduce hazards if used unwisely.)

8. Safe subsets: does a subset of the language exist that is defined to have
properties that satisfy these requirements more adequately than the full
language?

9. Exhaustion of memory: are there facilities in the language to guard against
running out of memory at runtime? (e.g., to prevent stack or heap overflow.)

10. Separate compilation: does the language provide facilities for separate
compilation of modules, with type checking across the module boundaries?

11. Well understood: will the designers and programmers understand the
programming language sufficiently to write safety-critical software?

Table 2. List of questions for Project Managers and Programmers (From Cullyer,
1991)

According to Brosgol (2009):

The language should not contain ‘traps and pitfalls,’ and it should
provide features that promote early error detection (at compile time,
if possible). The language should have an unambiguous definition
so that the effect of any program is predictable (thus, no features
with unspecified semantics). Further, the language features should
facilitate automated analysis techniques through which the
developer can show that the program does what it is suppose to do
and does not do what it shouldn’t. (para. 2)

 20

Out of all the questions, it is the subsets that are offered by some

languages that make them the better choice for safety-critical systems requiring

high availability.

Creating subsets is the perfect means for taking powerful and dynamic

programming languages with extensive libraries down to a reliable and

analyzable language. Numerous languages have done this, like a subset for

ADA called SPARK and a subset for C/C++ called MISRA C/C++. The subsets

are meant to remove the complexity that some programs claim as a benefit but

can be detrimental to the analysis and auditing of a safety-critical system.

3. Source Code Auditing

Another important method in preventing faults and failures is to perform

audits and inspections of the source code. Since the majority of responsibility for

software reliability is entirely in the hands and conscience of the software

developers, third-party auditing tools are used to assist in auditing (Information

Processing Limited, 1997). There are two general types of inspections to

accomplish this: static and dynamic testing. No matter which one a team does,

or if they do both, the process will work to improve the reliability and availability of

a high available system.

Static code analysis is the analysis of program source code before it is

executed. The method itself can employ other methods too, like using human

analysis to gain program understanding and/or automated analysis using

software tools. Human analysis is a necessary step in the full understanding of

the code but the analyzer must know the requirements of the code as well to

ensure proper analysis. The use of software tools can provide an insight into the

program code that a human could never achieve.

Software tools statically analyze the code more thoroughly using

mathematical techniques through semantic and interpretation modeling. This

means that the checking is done using rigorous mathematical methods which are

significantly more successful at catching errors than the human analysis. It also

 21

provides an unbiased examination of the source code. This thesis will not go into

the different types of analysis because it is beyond the scope, but two such tools

are SPARK Examiner for ADA code and Malpas. Malpas has five analyzers that

check code for general problems like bad structure and inconsistent data, as well

as pinpointing specific errors such as incorrectly implemented algorithms or

inconsistencies with the specification. It supports the following languages: C,

ADA, PL/M, ASM, and PowerPC assembly language (Atkins Limited, 2006).

Even with the advances in technology and software programming, it is still

an “undecidable” problem to determine if a software program can detect if

another software program is going to fail with 100% accuracy. This statement is

backed by the works of Alan Turing, Alonzo Church, and Kurt Gödel in the

1930s. However, a significant increase in the level of assurance that the system

will not fail is gained by the use of tools during validation.

Dynamic testing is the process of testing the program code while the code

is executing. It is the mainstay of verification, extending from testing of individual

units of code in isolation from the rest of the software, through various levels of

integration, to system testing (Information Processing Limited, 1997). The only

caveat to the dynamic testing is that the test must take place in the target

environment to produce acceptable results, good or bad.

There are numerous tools that conduct various checks during testing,

Insure++ and Holodeck, for example, help to prevent some common errors.

They check for memory leaks, memory corruption, race conditions, and other

errors. Some tools even produce sequence diagrams for the tester after

conducting the testing. The profiling that these tools perform help to identify

where a programmer should focus his time in repairing, replacing, or optimizing

the code. Sometimes the tool can actually update the source code so that the

programmer doesn’t have to go back into the code. Once the cycle of test-fix-

test has proven no adverse results, the system can then be submitted for

certification.

 22

B. HARDWARE REDUNDANCY

When it comes to making the hardware portion of a system more reliable,

which increases its availability, there are two general ways to do it: 1) purchase

the components with the highest availability/reliability rating on the market (higher

reliability is generally accompanied by higher cost) or 2) use redundancy of the

critical components to increase reliability and availability (using lower end

components may reduce costs and increase availability). Each method is

situational dependant so the solution that is chosen must meet the requirements

of the system.

Many systems have been developed with a narrow view of all of the

potential pitfalls of that system. One major problem for most systems is the lack

of forethought as to what may happen if something stops working in the system.

When a single integral component, usually hardware, of a system unexpectedly

stops working and causes the entire system to fail, single point of failure has

been encountered.

The removal of a single point of failure can be accomplished by

redundancy within the system. Redundancy means that there is more than one

way to complete a requirement of a system. For example, a system with only

one power supply may lose total functionality if the power supply fails, while a

redundant power supply would allow the system to continue operating after

failover.

One of the most common redundancy solutions is to simply double the

instances of the required component. This technique has its drawbacks because

the introduction of more hardware into a system means that the size or “footprint”

of that system will get larger and the cost will rise.

Constraints may require the purchase of expensive components. For

example, a flight control system may have a weight restriction on the component

you are working on. The restriction requires a power supply with a high

availability rating, but the space allocated for the power supply is limited to the

 23

size of just one unit. Similar requirements force developers to choose the higher

cost method to meet the constraints and satisfy the design.

If there were no constraints, a project manager would still need to make a

decision as to which method to choose by analyzing the data. The following

example (Data Center Design, 2007) will illustrate the decision making dilemma

between the two methods:

-Choice number 1 consists of 4 servers using cheap hardware with
no internal redundancy. Each server costs $3,000. You estimate
the availability of each server to be 75%.

-Choice number 2 consists of 2 servers using expensive hardware
with redundant hard drives and power supplies. Each server costs
$20,000. You estimate the availability of each server to be 99%.

-Additional information–you estimate the cost of downtime to be
$500/hour, and you expect these servers to support your site load
with a single server for the next three years, after which they will be
replaced.

-Details–using the above numbers, Solution #1 has an expected
availability of 99.6% (obtained by the calculation 1-(1-availability)s+1,
where s=number of spares), at a cost of $12,000. Solution #2 has
an expected availability of 99.99% (same formula) at a cost of
$40,000. Solution #1 would experience 34 hours/year, or 102
hours over three years of downtime more than Solution #2. Over
three years, this extra downtime would cost $51,000. So, by
spending an additional $28,000 upfront for Solution #2, you would
get a three year return on investment of 182%. Note that the model
is only as good as your estimates. If the servers in Solution #2 only
had 95% availability, then their combined availability would be
99.75%, which would only provide 13 hours less downtime per
year. In this case, you would save $20,000 in downtime over three
years for your $28,000 investment, so you would be better off with
Solution #1.

The formula used in the above example was complete for the example but

has additional capabilities. The complete formula actually includes the number of

ways a component can fail, given the number of required nodes to be operational

and the given number of spares. The complete formula is in Figure 7, where A is

 24

the availability score, f is the number of ways there are for s+1 nodes to fail, and

a is the estimated availability of the component.

A = 1 – f(1 – a)s -1

Figure 7. Availability equation for an n node system with s spares (From
Highleyman, 2006)

Another method for creating redundancy includes hardware and data

redundancy. RAID technology allows users to capitalize on the use of low-cost

and possibly less-reliable hard drives configured in a set to protect against failure

and data loss. As RAID levels increase, the capabilities and features they offer

also increase, creating a more robust and secure data storage. However,

specific RAID levels may be more suited to some than others and the higher the

level the more the implementation cost, as is generally the case.

The basics behind RAID are to combine two or more hard drives in a

single system to provide a more capable storage system or a back-up to the

primary hard drive. This provides a redundancy benefit for the hardware and

more reliability in the data, too. This combination of benefits has made RAID

configurations, not including RAID 0 (simply striping or logical combination of

smaller memory devices into a single larger virtual device), a popular security

feature for users. Table 3 is a list of the RAID levels and a description of the

services they provide.

 25

Table 3. RAID Levels and descriptions (From Gatan Inc., 2006)

 26

Table 3 details the highlights of the RAID Levels but does not indicate all

of the levels. Levels 2, 3, and 4 have become obsolete because their capabilities

have been consumed by RAID Level 5. Furthermore, there are some non-

standard RAID Levels also not listed that are generally promoted by independent

vendors but are not standardized. By analyzing Table 3, a program manager can

quickly determine which RAID level his system fits into or which level within

which he would like it to operate. Another helpful tool is the RAID level decision

flow chart in Figure 8. This chart actually walks a person through the decision

process and offers choices. Some of the choices are a little dated but, generally,

all recommendations for Levels 2,3, and 4 can be replaced with Level 5.

Figure 8. RAID Level Decision Flow Chart (From Hewlett-Packard
Development Company, 2002)

 27

Unfortunately, with redundancy comes an increase in complexity since

there must be a mechanism for switching from failed component to back-up

component. The mechanism can be in the form of an observer or watch officer

who switches it over manually or a “watchdog” program that switches it over

automatically. The watchdog program would perform the same functions as a

human but would not tire nor require bathroom breaks. Balancing the system

complexity, redundancy, and acceptance of risk will allow the system owner to

come up with a combination of components he needs to ensure availability of the

system.

C. DATA REDUNDANCY

Data availability is an essential element in most distributed mobile

systems and that is one of the reasons why these systems require high

availability. The system facilitates the sharing of the information, whether it is a

banking system that allows its users to withdraw monies from two different ATMs

in near simultaneous transactions or a military officer seeking up-to-date enemy

intelligence. A lot of times, the information is perishable. Often, it is impossible

for a user to recreate the information, so data redundancy techniques are

paramount to mission success.

Many systems employ a database to store, manage, and organize their

data so that users may find information more easily. However, if the database

crashes, all the information may be lost. Database replication is a technique that

can be used to back-up the data to prevent the loss of information. Database

replication employs at least two servers, master and slave, and when data writes

are sent to the master database server they are automatically replicated to the

slave database server.

With database replication using a master and slave database server, a

system may choose to make the slave database server a back-up server. When

or if the master database fails or is taken offline for maintenance, the backup

server will come online, perhaps automatically, and take over functions of the

 28

master database server. This process is called failover. This scenario illustrates

components in parallel and makes the entire system more available and reliable.

Numerous database providers, such as Oracle, MySQL, and Microsoft, offer the

features necessary to allow database replication and failover.

RAID systems also work to create data redundancy, either by mirroring

the contents of one drive onto another or adding error recovery capability through

parity-like check bits. This creates a virtual back-up of the data and accessible

during a hard drive failure. Additionally, RAID Levels 3 through 7 (Level 5 being

the most popular) include parity checking to allow the controller to determine the

missing data block through an XOR computation in the case of a disk failure.

Once the missing file is determined, the controller can actually rebuild the

missing data but this takes considerable computing power from the processor.

Both mirroring and striping have pros and cons associated with their

implementation but the system administrator must decide what is in the best

interest of his system: RAID 1–mirroring with full redundancy but potential higher

cost due to reduced drive space, or RAID 5 (since it is most popular)–striping

offers better performance but has high computing power requirements.

D. CHAPTER SUMMARY

The methods and techniques for creating a high availability and reliable

system, like the availability rating process for software and hardware modules,

work together in serial and parallel to create a better, more available system.

The techniques were listed singularly but a combination of techniques is often the

best method to achieve a successful implementation for a high-availability

system. In Chapter IV, combinations of the techniques will be applied to the

TwiddleNet System to try and elevate its inherent availability level.

 29

IV. METHOD COMBINATIONS AND RESULTS

The most important trait of the TwiddleNet system is data availability. This

chapter will discuss methods detailed in Chapter III, and how the combination of

appropriate methods increases the availability level of the TwiddleNet system.

A. CURRENT TWIDDLENET SYSTEM DIAGRAM

The current TwiddleNet system is the result of graduate research and, as

is typical in research projects, it also did not follow rigorous software engineering

methods for its development. The results of many theses have commented on

the single points of failures, but prior to the research presented in this thesis, no

work was done to prevent them. Figure 9 is a diagram of the TwiddleNet system

design before implementing any redundancy techniques. The items with the red

circles around them represent the single points of failure for the system. If any of

these items fail, then the TwiddleNet system will fail.

Figure 9. TwiddleNet system with red circles indicating single points of failure

 30

The failure of any of the components circled in red in Figure 9 will result in

a failure of the system. Additionally, there are sub-systems in those components

that will cause a system failure as well, for example, the user database on the

Portal. The wireless access point in Figure 9 can be substituted with which ever

wireless means of communication is being used, but that, too, can be a single

point of failure. The handheld devices are not considered a single point of failure

because they are considered individual components of the system with a very

low probability that all of the handheld devices fail at the same time. The

Command Post is not considered a single point of failure because as long as the

rest of the system is working properly, the Command Post is not needed for

minimum functionality.

B. SOFTWARE DEVELOPMENT

The software development history of TwiddleNet does not lend well to

developing a highly available system. Currently, there is very little documentation

of historical lessons learned or requirements that show where tests were done to

ensure proper development. TwiddleNet originated as a graduate research

project and hence, did not follow a typical software development process

followed in products. The developers of TwiddleNet were graduate-level

computer science students, across multiple graduating classes who debugged

the code as bugs were found and extended code to add new features to the

system. There is no list of current bugs that still to be fixed or a list of bugs that

has been fixed. Lists like these are paramount for retracing changes to find new

bugs that may have been introduced, like the current memory leak in the Portal

software. This is not to diminish the work that the students did, but to illustrate

what should have been done for a high-availability system.

A product version of TwiddleNet must be created and maintained within a

typical software product development cycle. The software development cycle is

the application of a systemic, disciplined, quantifiable approach to development,

operation, and maintenance of software which starts with the requirements

 31

generation. Once the requirements are determined and the proper

documentation has been created, the process continues to follow specific

software development models like the Waterfall Model, Interactive “Chaotic”

Model, and/or Spiral Model.

A very important decision in the creation of a high availability system is the

language that is chosen with which to create the system. TwiddleNet is written in

C# (C Sharp), which provides strong type checking, array bounds checking,

detection of attempts to use uninitialized variables, and automatic garbage

collection. The C# software language was reviewed against Table 2 in Chapter

III and was found to meet the majority of the questions that program managers

should ask prior to choosing a language. The most notable capabilities of the C#

language are strong type checking, automatic memory management, and an

easily understood language. Furthermore, it was designed specifically for use in

Windows platforms but can work across platforms for Dynamic HTML, or in

specific runtimes for Linux, Solaris, MAC OS X, and Windows, and on Microsoft

Silverlight.

Source code analysis must be completed as part of the software

development process to ensure that TwiddleNet meets the required specification

and requirements. Past releases of TwiddleNet only saw static self-evaluation of

the software code due to the sensitive nature of thesis work and the limited time

available for student work. Future releases of this system software should

include thorough static and dynamic testing to ensure compliance with

requirements and testing for functionality. Maybe if more funding and time are

available, some dynamic testing tools could be purchased for future projects and

testing.

The rest of the methods will discuss combining techniques to make a

system more reliable and available. A strong software development program is

essential to meeting high reliability and availability; therefore, each of the

following methods will assume a proper software validation and verification was

 32

done prior to fielding. The current software components of the system can only

realize a better availability score by maintaining a strict software version control

program.

C. HARDWARE REDUNDANCY

The first piece of hardware to make redundant is the handheld devices.

The handheld device is the key piece of equipment for the first responders in the

field and they must be responsive and durable. The most vulnerable part of the

HP iPAQ HW6945 is the battery life. The best way to combat a poor battery life

is to minimize the use of the extra features like the camera and wireless radio but

those are the principal functionalities of TwiddleNet and the reasons the

smartphone is the best choice. Therefore, the procedures must be employed to

mitigate battery life limitations. Additionally, there has been work with backpack

solar cell technology that could be used to recharge backup batteries on the go

but that technology will not be discussed in this thesis.

A standing operating procedure (SOP) needs to be in place to dictate that

handheld devices get recharged whenever not in use and the user carry an

additional battery. If the battery should die during operation, no data will be lost

unless the user was in the middle of creating it, but depending on the situation,

the recreation of non-instantaneous events may be possible at that time.

Unfortunately, the current handheld device only provides an approximate 4-hour

battery life without using the camera and wireless radio (Ableitor, 2008). Dirk

Ableitor studied the life of mobile handheld batteries and how they suffer greatly

as more transmissions are made with high files sizes (Ableitor, 2008).

The latest generations of smartphones are significantly better than the HP

IPAQ HW6945 used in TwiddleNet. These newer devices come equipped with

better batteries, more advanced power management, and lower power

consuming hardware components such as displays, processor, and memory. By

 33

porting the mobile client to the newer smartphones, the operational life of the

client device on a single charge can be extended. This would also make the

system faster.

The next step in making TwiddleNet more available is to increase the data

availability with hardware by using a redundant data capability through a RAID

setup on the Portal. The Command Post would benefit from a RAID setup as

well. The current configuration only employs a single hard drive setup in each

computer; which creates a single point of failure at each hard drive. By setting

up a RAID service, whether it is a RAID 1 or RAID 5, the redundancy of the drive

and data will create a higher availability score and provide piece of mind in the

redundancy of the data.

In the current hardware configuration, the only computer of the two that

can introduce a RAID system is the Dell Latitude, which the Command Center is

running on. Being a mobile handheld PC, the OQO on the Portal does not have

the space or external connections for a RAID setup. To setup a RAID system on

the Command Center laptop, an external Serial ATA drive will be used in either a

RAID-1 or a RAID-5 setup to increase the availability of the data. Unfortunately,

the introduction of a RAID system is overshadowed by the poor availability rating

of the Dell Latitude. An increase would be realized but it would not be significant

by itself.

The TwiddleNet system availability would increase with the addition of a

RAID setup on the Command Center PC but purchasing new computers would

be the easiest technique to employ. The current configuration employs an ultra

portable PC as the Portal and a Dell Laptop as the Command Center, both of

which have an availability rating of 76% over a one-year period (Panasonic,

2008). Purchasing desktop computers like the XPC Shuttle P2 4800E, which can

be preconfigured for RAID-1 or RAID-5, may also be a good solution. It includes

2 eSATA connections for additional drives and makes a perfect choice because

of its high reliability and the RAID is built in. Unfortunately, they would each

require a monitor so that increases the cost of the system.

 34

In Figure 10, the addition of the new computers has made the components

more reliable, which means they will be more available. The dotted red circle

around the Portal means that a subcomponent of the Portal, the system

database, can still fail and cause a system failure. The RAID system provides

redundancy for the drives and the data on the drive but only changes drives

during a failure and not during a database crash.

Figure 10. TwiddleNet System Design with XPC Shuttle with RAID

To save on size and cost, more robust computers could be purchased to

replace the Portal OQO and the Command Center Dell Latitude. These

computers come with higher availability scores, e.g., Panasonic Toughbook, has

a 97% availability score (Panasonic, 2008).

A more costly solution, which may generate the highest availability score

of all of the configurations, is to purchase primary and backup Panasonic

Toughbooks for the Portal and potentially for the Command Post, too. This

solution doesn’t require an eSATA RAID solution because the redundant

Toughbook acts as a redundant drive.

 35

The primary and back-up computers will be connected via a back channel

connection to pass the computer’s “heartbeat” information and to share data.

This connection can be made via crossover CAT-5 connection between the

unused Ethernet ports since the computers will be on the wireless TwiddleNet

network. The heartbeat report will tell the slave that the master is OK, but if the

heartbeat does not respond within a certain time, the slave will take over primary

functions.

With this setup, the hardware is redundant and the database can be

redundant, too. By having the secondary or slave computer, it provides the

ability for the database to run a Master/Slave relationship to protect the data and

increase the availability. The following setup is depicted in Figure 11. The

database that is running on the TwiddleNet system is a MySQL database and it

provides the ability to replicate data in a Master/Slave replication mode. MySQL

recommends running the databases in a replication ring so that no data is lost if

one database goes down (Dutta, 2005). Additionally, it makes it easier for the

former Master to come back online as a slave.

Figure 11. TwiddleNet System Design with redundant PCs and backup
databases

 36

D. DATA REDUNDANCY METHOD 1

The first type of data redundancy is via the introduction of a RAID setup

on the Portal and potentially the Command Post computer as referred to in

Figure 10. This redundancy does a lot for the redundancy of the data on the

drives; however, if there is a catastrophic event that destroys or even hinders the

Portal in any way, the TwiddleNet system could fail. This catastrophic event

could affect the data on the Portal, so to protect the data, it is better to maintain a

copy off of the Portal, as well. Another method to data redundancy is to spread

the data out across all of the nodes on the system.

The Portal is responsible for numerous functions in the TwiddleNet

system, but minimizing these functions could lessen the impact of failure. It is

responsible for signing in the users and validating that they are authorized to be

on TwiddleNet. This is a key function, and it would be best for it to stay on a

more stable platform, such as a PC versus a handheld device, which may move

in and out of a coverage area. However, an alternate method may be to not

require login to the TwiddleNet system, since the user has already signed on to

the wireless network, but to create an overlay network using a distributed hash

table instead.

Next, currently the Portal creates a Recipients’ Options Configuration that

collects the group assignments and sends them back down to the clients. This

allows the clients to send their information to only their group (default) or to

whom they decide during setup. This includes sending information to the

Command Post and/or all devices currently logged in.

The next two responsibilities may be able to be consolidated at the

handheld device level to minimize Portal responsibilities. They are Notification of

New Content and Alert Generation and Transmittal. The notification of new

content comes from the handheld device that generated the content and the

Portal currently receives it and begins the alert generation and transmittal

process. At the same time, it caches the information for quicker access to the

 37

users and stores the client’s location in its database. Instead of the handheld

device sending the notification of content to the Portal only, it can send the

message to the other users in its group in addition to the Portal.

In this new design, the handheld could actually do more than just send the

data to the users in its group; it could actually distribute chunks of the data to the

other users to store for redundancy. This procedure would use an erasure

encoding scheme, potentially a Hamming or Reed-Solomon encoding scheme,

that would break the file into blocks. The scheme will pad the file to make it

divisible by the distribution scheme. For example, if the distribution scheme was

(7,5), then the file would need to be evenly divisible by five. Then it would

distribute the blocks over seven different nodes, repeating some nodes, if

necessary, to ensure recall but not placing more than two on any one node.

Distribution scheme (7,5) means that the recall procedure only needs to find any

five of the distributed seven blocks to recreate the file. The distribution scheme

and locations of the blocks of the file are placed in a seed file called an .erasure

file. The .erasure file would be stored at the Portal and then executed when the

file needs to be recalled. Figure 12 illustrates the process of block dissemination

and reconstruction. Additionally, the original file is left on the creators handheld

unchanged and it is automatically requested by the Command Post for archiving

when it receives a chunk of new data. This provides three methods for data

retrieval: direct retrieval from the originator, retrieval from the Command Post,

and finally, if all else fails, the data can be recreated by the Portal and hyperlink

can be sent out to the requestor.

 38

Figure 12. Block distribution, retrieval, reconstruction, and sending

The above detailed scheme allows for the failure of two out of three

devices and the data to remain accessible. If the originator handheld fails, the

content can be retrieved from the Command Post and vice versa. If both the

originator handheld and the Command Post fail, the data can still be

reconstructed at the Portal and then sent to the person seeking the data. This

creates a triple redundancy of the data.

The choice to use the Portal as the keeper of the .erasure files was made

to utilize its processing capability during the reconstruction of a file or data and

the database information of the location information for each client. The burden

of reconstruction on the handheld devices may have been too much given their

current duties as clients.

 39

When the client creates the new content and sends it out, it will send the

information and .erasure file to the Portal. The Portal will still provide client

connection information; therefore, routing requests to the proper IP address.

The negative aspect of this scheme is that there are no connection

management or redirection capabilities within the network if the Portal fails. The

users can retrieve archived information from the Command Post but this will

make the Command Post a choke point or bottleneck. Furthermore, a failure of

both the Portal and Command Post would leave the clients without any means of

retrieving information or recreating it from the .erasure files.

E. DATA REDUNDANCY METHOD 2

TwiddleNet utilizes the Portal to maintain all of the connection data for the

handheld devices currently connected to the system and it works really well. It

actually keeps an up-to-date list of the locations of the devices, as some of the IP

addresses may change as devices move through the wireless footprints. When a

device wants a piece of data, it sends a request to the Portal to obtain the

originator’s current IP address so that it may talk to it directly. However, the

Portal is susceptible to failure and if it fails, the entire TwiddleNet system fails.

TwiddleNet employs a centralized and non-redundant data management

system. By instituting a personal mobile Web server on each handheld device,

the TwiddleNet system will gain access and connectivity between its clients and

their data during a failure of the Portal.

The data on the TwiddleNet system is inherently redundant in its current

design because the Command Post retains a copy of all data obtained by each

handheld device. Furthermore, any device that selected the download option on

an alert message also holds a copy. The problem with the current configuration

is that, without the Portal, users are unable to indirectly or directly access the

information contained on other handheld devices. Without the Portal, the system

becomes reduced to a collection of devices operating independently on a

wireless network because nobody knows who else is on the network. Because

 40

each handheld device has its own IP address, one device could communicate

directly with another for the information as long as it knew its address, what data

was on the other device, but only if the device was configured properly. With

minor additions to the Portal software and the handheld device software, this can

be setup to work during the normal operation of the TwiddleNet system.

First, each handheld already publishes its information to the Portal which

keeps track of all handheld connection data in a database. In order to support

operations without the Portal, each handheld device can also send its data

content information with hyperlinks to its data. The Portal can then create a

master file of the data on all the handhelds, with the associated links, and

periodically push that file to each handheld device. This file would be called the

Content Location File. This file would be updated periodically as new data is

created or a change in the handheld devices IP address occurs.

When a handheld receives the new Content Location File via a push or

pull operation, it compares the old data with the new data. All data that was not

updated within a handheld device’s submission is assumed to have been deleted

and is then removed from the content location file. However, if a device does not

submit an update after a significant predetermined period, the Portal will assume

the handheld device has failed and it will configure the hyperlink to the Command

Post. The Portal would update this master file periodically as new data is created

and when connection information changes. This will all be normal operation with

the Portal performing the brunt of the work and being able to handle it better than

the handheld devices.

In a Portal failure situation, a handheld device can now consult the content

location file disseminated by the Portal and request the data directly from the

handheld device that created it. When a handheld device detects that the Portal

is not responding, it will change modes and automatically begin disseminating its

data location file to the other handheld devices on the network. Figure 13 depicts

the flow of the Content Data File and the Master Data File during a failed Portal

situation.

 41

Figure 13. Content Location File Flow during failed Portal scenario

As new handheld devices join the system in this degraded state, it will

transmit a multicast message to all devices on the network with its content

location file so that the others may add its contact information for future

transmissions. This multicast message would also prompt the existing handheld

devices to transmit their data content list immediately to the new device.

Unfortunately, this will create a lag on the system because all handheld devices

will receive a data location file from every other client on the network, but at least

the system will still be operational, albeit degraded. In an effort to reduce traffic

on the network, the transmission time can be set so that a device only sends a

new content location file when a certain amount of new data is created. The

content location file would include the senders name, IP address, group identifier,

 42

and hyperlinks to the data. The most probable format for the content location file

would be an XML format for easy introduction into the current TwiddleNet

system.

This method of communication between handheld devices will continue

until the Portal comes back online. Since this is not the optimal means of

disseminating the information, once the Portal is back online, all traffic will be

routed as previously mentioned.

In order for this type of peer-to-peer communication to work when the

Portal is offline, each handheld device will need to run a personal server

application so that the others can connect directly to it and download the

information. For example, Mobile Web Server 3.0, an application for handhelds

and computers, can be downloaded to each handheld device and configured to

start automatically when the device is powered on (SphinxSoftware). This Web-

frontend interface can display the user’s name and what files it currently has

available for download.

The Mobile Web Server 3.0 offers many advantages, e.g., no special

configuration required, no special programs for access, compatibility with any

type of Web browser, any type of files accepted, and it can also display the

pictures in a gallery for easy viewing in an Active Server Pages Compact

installation. Furthermore, a great feature for first responders that have GPS

location capabilities is the “FindMe” feature. It allows a visitor to your Web site to

click on “FindMe” and view the latitude and longitude coordinates of that device.

This software is for purchase but the functionality may be something that a thesis

student could recreate in a programming project.

Active Server Page is a type of service running on specifically configured

Microsoft-based Web servers, which allows it to perform additional functions over

a Web page. When properly configured and operating, the Web server can

interact with a database or file directory and automatically update the content of a

 43

Web page. This feature should be carefully configured on the handheld devices

in the TwiddleNet system because it can quickly consume the limited resources.

F. DATA REDUNANCY METHOD 3

To survive a failure of the TwiddleNet Portal, the system must have the

ability to retrieve data and connection information without the use of the Portal.

The current functions of the Portal and the TwiddleNet system as a whole may

have to be diminished to achieve a more stable environment. A proposal would

be to adopt a peer-to-peer scheme that focuses more on peer and file discovery.

The system architecture is called WMP2P.

WMP2P is a proposal that claims to enable continuous resource discovery

and file retrieval for mobile users in wireless mobile networks (Huang, Hsu, &

Hsu, 2005). WMP2P tries to protect wireless P2P communications across

different wireless networks but it definitely has the potential to support

TwiddleNet requirements. It uses Mobile IP solutions to cover roaming

customers going from one network to the next but although the connection did

not drop the routing changed.

The shortfall of TwiddleNet with a failed Portal is the discovery and

retrieval of peer information and data files. WMP2P has developed an algorithm

that obtains a fresh status of peers that share files. This indicates that a current

record of peers sharing records must be maintained and TwiddleNet does it at

the Portal. Disseminating this information is key to using this algorithm so a

process must be added to the Portal’s software to send a peer sharing record

down to the peers for archive. The algorithm is called the receiver-driven

discovery control (RDC) algorithm. Figure 14 presents the RDC algorithm.

 44

Figure 14. The Receiver-based Discovery Control (RDC) Algorithm (From
Huang, Hsu, & Hsu, 2005)

The RDC works to find the peers that shared files before and to update

their present location. The algorithm is set in a “while loop,” so it will continue to

search and update until the “DiscoveryTime” runs out. This discovery time is

altered depending on how strong the bandwidth connection was during the

previous selection, longer for stronger and shorter for weaker, which means you

search more often to find a better signal. This feature would help TwiddleNet

when it is in a degraded state, or in a future TwiddleNet edition, to limit the

number of discovery requests sent to lessen bandwidth strain.

 45

File sharing and retrieving is one of the main functions of the TwiddleNet

system and the WMP2P Identical File Matching algorithm can help to ensure

exact matches for the file requested. Figure 15 presents a decision making flow

chart that the algorithm uses when comparing files for identical qualities.

Qualities like filename, size, and CRC-32 value. Understandably, one can

imagine the checking of the name with a secondary factor to insure uniqueness

but just to be sure a CRC-32 value is computed. The cyclic redundancy check is

calculated for a file on the file system it is stored and is consulted during retrieval

as the seeker presents the same number. These factors are primarily used

during interrupted transmissions, but if a peer goes down during an upload,

finding an exact match could be difficult.

Figure 15. Identical File Matching flowchart (From Huang, Hsu, & Hsu, 2005)

The WMP2P scheme could really help the TwiddleNet system with

providing a better identity to the Portal. It would allow the Portal to concentrate

on working with the peers of the network and to act as a super-peer. Super-peer

is defined as a selected node that provides functions for peers to locate a specific

file (Huang, Hsu, & Hsu, 2005). The Portal already does this in one capacity but

as the TwiddleNet peers become many and start to cross networks, the Portal

will talk to other Portals for information.

 46

G. NETWORK REDUNDANCY

Network redundancy is already incorporated into the TwiddleNet system

design because the handheld devices, HP iPAQ HW6945 and HP iPAQ Data

Messenger, both employ multiple radios to connect but primarily Wi-Fi or cellular

radios. The primary mode of operation of TwiddleNet is to be run over a hastily

formed network during emergency situations or disaster relief situations. The

easiest to setup is a wireless network with the appropriate coverage.

The current TwiddleNet system only employs one wireless access point

for the devices to connect to. This is another single point of failure in the system

design as the access point could fail or the user could roam outside of the

coverage footprint. The TwiddleNet software on the handheld device and Portal

helps the user by maintaining connection information so that when the user

comes back into the footprint the connection will automatically be reinstated.

Failure of the access point is the situation that must be remedied by

redundant means. By providing a redundant wireless access point for the

system, the availability for network devices will increase. Cisco Systems has a

feature called access-point hot standby that can handle this situation. The two

devices are configured using the same channel in the same coverage area. With

only one access point active, the passive access point monitors the network and

the primary access point. If the primary fails, the passive access point takes over

to provide the network coverage (Oppenheimer, 2004).

If cellular connectivity is primary means of communication, then a

redundant means could be Wi-Fi, as redundant cellular capabilities is usually out

of the control of the program manager.

H. RESULTS

The results of combining the techniques and methods show potential that

there are true benefits in proper software development and redundancy. The

software development methods and the hardware redundancy methods

undeniably would produce a better TwiddleNet system. These are the easy

 47

aspects of making the system more reliable because they follow a path of

measurable steps and milestones and commercially purchased equipment. The

tricky part is the data redundancy.

The data redundancy methods offer true potential in making the data in

the TwiddleNet system more available. The three methods proposed each

provide advantages and disadvantages to utilizing them in the TwiddleNet

system.

The scheme using the erasure coding scheme offers redundancy and

reliable in the data availability. Integrating its advantages into the existing

TwiddleNet system design may require a significant overhaul of the code and

functionality between the components of the system. Furthermore, the

reconstruction a data file in the erasure scheme can become CPU intensive and

that could seriously drain battery life faster on an already short battery life.

The Mobile Web Server offers the advantage of being a commercial-off-

the-shelf product currently available for download. It is easily integrated into the

current handheld device and worked on the first try. The author was able to

download files off a peer handheld device and carry on a chat conversion as well.

What has not yet been determined is how much strain on the processor and

battery life this may cause and should be considered for future study.

The MWP2P scheme offers great potential, but like the erasure code

requires great work to be integrated. A full software development evolution

would need to be implemented to ensure the proper fusion of technology and

technique. MWP2P, as an underlying scheme to a future TwiddleNet system,

could fill voids in the current system for data availability and peer identification,

but deployment of such a system could be a long way away.

I. CHAPTER SUMMARY

Recommendations for improvements and implementation of

improvements are two very different concepts. For TwiddleNet to become a

 48

more high availability system, drastic measures need to be taken to improve it.

Currently, no significant failures have happened; however, the day that failure

happens may be a critical day for some, like September 11, 2001, and the failed

communications systems (Roemer, 2005). We should follow the motto of the

Boy Scouts of America, and “Be Prepared.”

 49

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION

Our research shows that a distributed mobile system, like TwiddleNet, can

improve its availability by implementing multiple redundancy techniques. The

majority of the techniques should be implemented during the requirements

development process, but hardware redundancy and replacement can be

incorporated as a modification to a system that has already been deployed.

Nonetheless, choosing the best techniques that meet the system’s requirements

can increase a system’s availability.

The benefits of a proper software development program and system

design could address many of the availability requirements mentioned in Chapter

IV. If the techniques were not used during development, determining which is the

best combination of techniques to choose with respect to system and data

availability should be a program manager’s next step. Since no evaluation of a

system can provide the perfect answer to every situation, the program manager

will have to determine if the choice recommended is the best for his system.

B. FUTURE WORK

This thesis highlighted several design limitations in the TwiddleNet

system, which can be remedied by instituting the techniques and procedures

detailed in Chapter IV. The following future work should be completed to create

a TwiddleNet system with a higher availability score.

1. Software Development

The requirements for a high-availability system must be determined at the

beginning of the planning process. After this is completed, the priorities, coding,

and system design can be set to meet the system requirements and ensure a

high availability. Any high-available system would benefit from this process;

furthermore, no mission critical system would be certified without this process.

 50

The TwiddleNet system should be reworked from scratch to cover a

complete system development process. Students from the Software Engineering

department and the Computer Science department at the Naval Postgraduate

School could be the owners of the project. This group could be lead by

professors from both departments and the project could be developed as a class

project in both curriculums.

2. Network Devices

Wireless connectivity is generally the primary means of communication

during an emergency response situation. The wireless access point needs a

redundant capability to ensure the distributed handheld devices have a means to

connect to the Portal, Command Center, and/or other handheld devices.

Future testing at the Naval Postgraduate School can also be performed on

the LTE (Long Term Evolution) equipment being tested by students in the

Computer Science department. LTE technology allows cellular devices to be

added to a network and to share data via a 3G data connection. With this

capability, the other radios on the handheld devices could be tested while

operating the system.

3. Handheld Devices

The current TwiddleNet system handheld devices, HP iPAQ HW6945, are

out of date and have out-of-date battery technology. New devices should be

purchased to take advantage of new battery technology and advance operating

system software. Some new devices (five HP iPAQ Data Messengers) have

previously been purchased, and more handheld devices need to be purchased to

provide redundant devices and back-up batteries.

Additional concentration may be given to backpack portable solar

recharging system. These lightweight man-portable backpack systems have a

solar panel and recharging capability fitting for numerous devices. I recommend

 51

future work take a look into a man-pack system that includes this capability and

extra space that can carry back-up supplies like secondary handheld or batteries.

Battery life and processor strain while running the Mobile Web Server and

the TwiddleNet client at the same time should also be studied.

New TwiddleNet handheld software is being created for employment on

the new handheld devices. Once written, analyzed, and thoroughly tested, the

software can be implemented on the new device. This process should follow the

proper software development process that has been discussed throughout this

thesis.

4. Data Redundancy

The techniques listed in Chapter IV, erasure code schemes and WMP2P

schemes should be evaluated more fully to determine if TwiddleNet can benefit

from their encoding schemes and algorithms. This research may go hand-in-

hand with the software development work that was recommended earlier. If a

requirements generation is performed, then there should be a discussion about

these two techniques.

5. System Design

The TwiddleNet system needs to be designed with redundant capabilities

in place. The result of the combination of techniques illustrates the best method,

that provides the highest availability, is to purchase new robust computers and a

redundant computer for each of the Portal and Command Center. A cheaper

option may be to institute a less expensive solution, such as the small form factor

desktop computer with built-in RAID.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

LIST OF REFERENCES

Ableitor, D. (2008). Smart Caching for Efficient Information Sharing in Distributed
Information Systems . Naval Postgraduate School, Computer Science.
Monterey, CA: Naval Postgraduate School.

Atkins Limited. (2006, January 20). MALPAS in Static Analysis Tools. Retrieved
August 29, 2009, from www.testingfaqs.org: http://www.testingfaqs.org/t-
static.html#Malpas

Bowen, J., & Stavridou, V. (1993, July 01). Safety-critical methods and systems,
formal standards . Retrieved August 29, 2009, from IEEEXplore:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=225554&isnum
ber=5883?tag=1

Brosgol, B. (2009, June 01). When less is more: Programming language
technology for safety. Retrieved August 29, 2009, from VME and Critical
Systems: http://www.vmecritical.com/articles/id/?4030

Cullyer, W. G. (1991, March 01). The Choice of Computer Languages for use in
Safety-Critical Systems. Retrieved August 29, 2009, from IEEEXplore:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=73717&isnumb
er=2482

Darroch, J. (2006). Demonstrating Software Reliability. Madison: Emerson
Network Power.

Data Center Design. (2007, October 29). In Search of Five 9s – Calculating
Availability of Complex Systems. Retrieved August 30, 2009, from
edgeblog: Notes from the edge: http://www.edgeblog.net/2007/in-search-
of-five-9s/

Dowling, J. A. (2007). A Gradient Topology for Master-Slave Replication in Peer-
to-Peer Environments. Dublin: Springer-Verlag Berlin Heidelberg .

Dutta, P. (2005, July 26). MySQL Forums::Replication:: Failover Master Slave
Replication. Retrieved September 17, 2009, from forums.mysql.com:
http://forums.mysql.com/read.php?26,35499,36109#msg-36109

EventHelix.com. (n.d.). Reliability and Availability Basics. Retrieved June 30,
2009, from
http://www.eventhelix.com/realtimeMantra/faulthandling/reliability_availabil
ity_basics.htm

EventHelix.com. (n.d.). Reliability and Availability Calculation. Retrieved June 30,
2009, from
http://www.eventhelix.com/realtimeMantra/faulthandling/system_reliability_
availability.htm

 54

Friedman, M., Tran, P., & Goddard, P. (1992). Reliability Techniques for
Combined Hardware and Software Systems. Rome: National Technology
Information Service.

Gatan, Inc. (2006, January 01). Optimising your PC Hardware for DSV
Recording. Retrieved August 30, 2009, from gatan gets it:
http://www.gatan.com/knowhow/knowhow_15/optimizing.htm

Glidden, T. P. (2009). Privacy for Mobile Networks Via Network Virtualization.
Monterey: Naval Postgraduate School.

Hewlett-Packard Development Company. (2002, January 01). RAID Level
Decision Flow Chart. Retrieved August 30, 2009, from docs.hp.com:
http://docs.hp.com/en/J6173-90007/ch01s04.html?btnPrev=%AB%A0prev

Highleyman, W. (2006, October 01). Calculating Availability – Redundant
Systems. Retrieved August 30, 2009, from the Availability Digest:
http://www.availabilitydigest.com./public_articles/0101/calculating_availabil
ity.pdf

Information Processing Limited. (1997, March 07). An Introduction to Safety
Critical Systems. (I. P. Limited, Ed.) Retrieved August 29, 2009, from
www.iplbath.com: www.iplbath.com/pdf/p0826.pdf

Kawamoto, D. (1999, November 9). eBay spends to eliminate lengthy outages.
Retrieved July 10, 2009, from cNet News: http://news.cnet.com/eBay-
spends-to-eliminate-lengthy-outages/2100-1040_3-232705.html

Oppenheimer, P. (2004). Top Down Network Design Second Edition.
Indianapolis: Cisco Press.

Panasonic. (2008, June 30). Why toughbook: Failure Rates. Retrieved
September 11, 2009, from Panasonic: Ideas for Life:
http://www.panasonic.com/business/toughbook/why-toughbook-failure-
rates.asp

Relex, S. C. (2001). Maintainability - MTTR. Retrieved July 9, 2009, from
http://www.mttr.net/

Relex, S. C. (n.d.). Reliability Prediction. Retrieved July 9, 2009, from
http://www.relex.com/resources/prediction.asp

Rennels, D. A. (n.d.). Fault-Tolerant Computing. Retrieved July 29, 2009, from
UCLA Computer Science Department:
http://www.cs.ucla.edu/~rennels/article98.pdf

Roemer, T. (2005, September 29). Putting First Responders First: Prioritizing
Emergency Communications Spectrum. (H. E. Committee, Interviewer)

Shooman, M. L. (2002). Reliability of Computer Systems and Networks: Fault
Tolerance, Analysis, and Design. New York: John Wiley and Sons, Inc.

 55

Siewiorek, D. P. (1998). Reliable Computer Systems Design and Evaluation
Third Edition. Natick: A K Peters, Ltd.

Singh, D. G. (2008, March 24). Center for the Study of Mobile Devices and
Communications. Retrieved July 13, 2009, from TwiddleNet: Smartphones
as Personal Servers:
http://faculty.nps.edu/gsingh/CMDC/TwiddleNet/TwiddleNet_Page.htm

Storey, N. (1996). Safety-Critical Computer Systems. New York: Addison Wesley
Longman Inc.

Vilaboy, M. (2009, July 7). IP Business News. Retrieved Julu 7, 2009, from
www.ipbusinessmag.com:
http://www.ipbusinessmag.com/departments/article/id/358/communication
s-a-first-priority-for-first-responders

Wilkins, D. J. (2002, November 1). The Bathtub Curve and Product Failure
Behavior. Retrieved July 9, 2009, from Reliability Hotwire:
http://www.weibull.com/hotwire/issue21/hottopics21.htm

www.tech-faq.com. (n.d.). What is MTBF? Retrieved July 27, 2009, from
http://www.tech-faq.com/mtbf.shtml

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
 Camp Pendleton, California

