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ABSTRACT 

 

The presence of noise and coherent returns from clutter often confounds efforts to 

acoustically detect and identify target objects buried in inhomogeneous media.  Using 

iterative time reversal with a single channel transducer, returns from resonant targets are 

enhanced, yielding convergence to a narrowband waveform characteristic of the 

dominant mode in a target’s elastic scattering response.  The procedure consists of 

exciting the target with a broadband acoustic pulse, sampling the return using a finite 

time window, reversing the signal in time, and using this reversed signal as the source 

waveform for the next interrogation.  Scaled laboratory experiments (0.4-2 MHz) are 

performed employing a piston transducer and spherical targets suspended in the free field 

and buried in a sediment phantom.  In conjunction with numerical simulations, these 

experiments provide an inexpensive and highly controlled means with which to examine 

the efficacy of the technique.  Signal-to-noise enhancement of target echoes is 

demonstrated.  The methodology reported provides a means to extract both time and 

frequency information for surface waves that propagate on an elastic target.  Methods 

developed in the laboratory are then applied in medium scale (20-200 kHz) pond 

experiments for the detection of a steel shell buried in sandy sediment. 



vii 

 

Contents 

List of Tables                  ix 

 

List of Figures                  x 
 

1  Introduction................................................................................................................... 1 

2  Theory of Acoustic Time Reversal and Resonance Scattering ............................... 11 

2.1 Theory of Single-Channel Acoustic Time Reversal ......................................... 12 

2.1.1 Single-channel, Iterative Time Reversal (ITR)......................................... 12 

2.1.2 Time Reversal in the Presence of Noise ................................................... 17 

2.2 Review of Acoustic Scattering Theory ............................................................. 20 

2.2.1 Acoustic Scattering from Spheres............................................................. 21 

2.2.2 Resonance Identification........................................................................... 40 

 

3  Methodology ................................................................................................................ 60 

3.1 Experimental Setup........................................................................................... 61 

3.2 System Calibration............................................................................................ 67 

3.3 Transducer Characteristics................................................................................ 74 

3.3.1 Range Dependence.................................................................................... 74 

3.3.2 Angle Dependence .................................................................................... 79 

3.4 Target Characterization..................................................................................... 83 

3.5 Sediment Phantom Characterization................................................................. 92 

 

4  Free Field Results...................................................................................................... 103 

4.1 Resonant Target Echo Enhancement .......................................................... 104 

4.2 Time Reversal in the Presence of Stochastic Noise.................................... 107 

4.3 Isolation of Surface Elastic Waves and Scattering Resonances ................. 117 

4.4 Time Reversal with Multiple Targets Present ............................................ 134 



viii 

 

 

5  Buried Target Results............................................................................................... 139 

5.1 Sediment Loaded Target Response................................................................. 140 

5.2 Buried Target Echo Enhancement .................................................................. 147 

5.3 Sliding Window Study.................................................................................... 149 

5.4 Convergence with Target Depth ..................................................................... 152 

5.5 Multiple Resonance Isolation ......................................................................... 156 

5.6 Comprehensive Parameter Investigations....................................................... 160 

5.6.1 Overview – Sensitivity to Incident Angle............................................... 160 

5.6.2 Normal Incidence Angle ......................................................................... 165 

5.6.3 10-Degree Incidence Angle .................................................................... 168 

5.6.4 20-Degree Incidence Angle .................................................................... 174 

5.6.5 Summary of Parameter Investigation...................................................... 178 

5.7 Target Selectivity ............................................................................................ 180 

 

6 Pond Experiments...................................................................................................... 186 

6.1 Experimental Setup and Methodology............................................................ 187 

6.2 Target Response.............................................................................................. 193 

6.3 Free Field Results ........................................................................................... 197 

6.4 Buried Target Results ..................................................................................... 200 

 

7  Summary and Conclusions ...................................................................................... 206 

 

A  Additional Scattering and Wave Propagation Theory ......................................... 216 

A.1      Acoustic Scattering from an Elastic Sphere.................................................... 216 

A.2 Resonance Scattering Theory - Solid Stainless Steel Sphere ......................... 222 

A.3 Scattering from an Elastic Cylindrical Shell Filled with an Elastic Medium. 228 

A.4      Lamb Waves…………………………………………………………………238 

 

B  Why Time Reverse? ................................................................................................. 243 



ix 

 

 

List of Tables 

2.1  Material properties used in the analytical prediction of the aluminum spherical shell’s 

monostatic farfield form function. ............................................................................ 38 

 

2.2  List of resonance ka  locations (center frequency of resonance) for each partial wave 

of the 0a − , 0a + , and 0s  Lamb type wave resonances in the purely elastic response of 

the standard shell target. ........................................................................................... 54 

 

2.3 Comparison of predicted and measured echo delays, with respect to the specular echo, 

of symmetric, 0s , and an antisymmetric, 0a − , Lamb waves propagating on the 

standard spherical shell target.  Predicted values assume a frequency of 0.8 MHz. 59 

 

3.1 Material properties used in the analytical prediction of the monostatic farfield form 

function of the aluminium spherical shell target....................................................... 85 

 

4.1 Wave types and their center frequencies, measured arrival times, and predicted arrival 

times for the 5 sµ  duration time reversal window shifting experiment.................. 125 

 

4.2 Comparison of echo delays of 0a −  antisymmetric Lamb waves measured using the 

single-channel time reversal technique to those predicted by resonance scattering 

theory.  The values in this table are determined from waveforms at the relative 

window times highlighted in Figures 4.15c to 4.15h.  The normalized root mean 

square error between the measured and predicted echo delay is presented in the last 

column of the table.................................................................................................. 133 

 

5.1 Comparison of convergence frequencies observed for different target burial depths in 

experiments and through application of the buried target scattering simulation. ... 153 

 

6.1 Summary of field experiments conducted at the Naval Surface Warfare Center – 

Panama City Division.  The date and a summary of each experiment are provided.

................................................................................................................................. 186 

 

6.2 Material properties used in form function calculations for the stainless steel shell 

target employed in field experiments...................................................................... 194



x 

 

 

List of Figures 

1.1  Schematic of array based time reversal, part I.  A point source emits a pulse of 

acoustic energy that travels through the propagation medium and is received by each 

element of a time reversal mirror (array). ................................................................... 3 

 

1.2  Schematic of array based time reversal, part II.  Signals received at the array are time 

reversed and retransmitted resulting in a focusing of energy back on the location of 

the point source. .......................................................................................................... 4 

 

2.1   Schematic of the iterative, single-channel time reversal procedure ......................... 16 

 

2.2  Schematic of the geometry for the scattering of a plane acoustic wave by a fluid-

filled elastic spherical shell submerged in an infinite fluid medium. ....................... 25 

 

2.3  Magnitude of the monostatic farfield acoustic form function for a rigid sphere plotted 

versus the dimensionless Helmholtz number, ka , the number of wavelengths that fit 

around the circumference of the sphere; (a.) 0 1ka≤ ≤   (b.) 0 30ka≤ ≤ ................. 35 

 

2.4  Scattered pressure fields from a rigid sphere (real part) under steady state driving 

with (a.) ka = 1, (b.) ka = 20.  The horizontal and vertical axes are normalized and 

presented in units of the sphere's radius, a.  The sphere’s location is depicted by the 

black circle at the center of the image.  The intensity value of the pixels in the 

images represents the pressure amplitude at that location, normalized to the 

maximum pressure amplitude in the image.  The plane wave insonifying the sphere 

approaches from the left side of each figure. ............................................................ 36 

 

2.5  Magnitude of the monostatic farfield acoustic form function for a 6.35 mm outer 

diameter hollow aluminum spherical shell plotted versus frequency, assuming a 

vacuum filled interior (solid line) and an air-filled interior (dashed line). ............... 37 

 

2.6  Form function of the aluminum spherical shell target between 550-650 kHz where 

the density of the fluid external to the sphere is varied 5%±  from its nominal value.

................................................................................................................................... 39 

 

2.7  Form function of the aluminum spherical shell target between 550-650 kHz where 

the sound speed of the fluid external to the sphere is varied 5%±  from its nominal 

value. ......................................................................................................................... 39 



xi 

 

 

2.8 Theoretical time trace, normalized amplitude versus time, of a backscattered 

waveform from the standard hollow aluminum shell target, given a 2 cycle 1 MHz 

sine wave interrogation pulse.  A specular return and three surface elastic wave 

(SEW) returns are identified with arrows. ................................................................ 41 

 

2.9 Schematic depicting the types of waves scattered from an elastic spherical shell 

excited by a plane wave of infinite extent. ............................................................... 41 

 

2.10 Magnitude of the far-field monostatic form function for a solid stainless steel sphere 

plotted versus the dimensionless parameter ka. ........................................................ 42 

 

2.11 Far-field acoustic form function of the standard aluminum spherical shell target 

decomposed into the individual components of its partial wave series solution.  (a.) 

Magnitude of the far-field acoustic form function versus frequency. (b.)-(l.) Partial 

waves n = 0 to n = 10, magnitude versus frequency.  The vertical axis is normalized 

and presented on the same scale for all figure panels.  The gray shaded region 

depicts the frequency range of interest for the current work. At the right of panels b-l 

is plotted the angular dependence of each partial wave............................................ 51 

 

2.12 Far-field acoustic form function of a rigid sphere decomposed into the individual 

components of its partial wave series solution.  (a.) Magnitude of the far-field 

acoustic form function versus frequency. (b.)-(l.) Partial waves n = 0 to n = 10, 

magnitude versus frequency.  The vertical axis is normalized and presented on the 

same scale for all figure panels.  The gray shaded region depicts the frequency range 

of interest for the current work.  At the right of panels b-l is plotted the angular 

dependence of each partial wave. ............................................................................. 52 

 

2.13 Far-field acoustic form function of the standard aluminum spherical shell target 

decomposed into the individual components of its partial wave series solution after 

subtraction of the partial waves from a rigid sphere.  (a.) Magnitude of the far-field 

acoustic form function versus frequency. (b.)-(l.) Partial waves n = 0 to n = 10, 

magnitude versus frequency, after background subtraction.  The vertical axis is 

normalized and presented on the same scale for all figure panels.  The gray shaded 

region depicts the frequency range of interest for the current work.   At the right of 

panels b-l is plotted the angular dependence of each partial wave.  In (f.) resonance 

types are identified with arrows. ............................................................................... 53 

 

2.14 Dispersion curves of symmetric, 0s , and asymmetric, 0a + , Lamb waves that 

propagate on a plate and on the standard spherical shell target.  The waves’ phase 

velocity is normalized by the sound speed of water, 1479c = m/s, and plotted 

versus ka .  Dispersion curves for plate waves are presented as solid lines and their 



xii 

 

types are labeled accordingly.  Phase velocities of symmetric and asymmetric Lamb 

waves on the spherical shell are shown as squares and circles, respectively. .......... 55 

 

2.15 Plot depicting the displacement (from equilibrium) of the standard spherical shell’s 

inner and outer surfaces at 2.6083ka = .  The 4n =  term in the partial wave series 

solution of the target’s response under steady state forcing is shown.  The infinite 

plane wave exciting the target approaches from the left.  The arrows are vectors 

showing the displacement of each surface of the shell from their un-deformed 

positions.  The solid lines indicate the position of the shell’s surfaces at the 

maximum deflection amplitude.  The shell’s displacement is scaled so that it is 

clearly visible for demonstrational purposes. ........................................................... 56 

 

2.16 Plot depicting the displacement (from equilibrium) of the standard spherical shell’s 

inner and outer surface at 39.3559ka = .  The 10n =  term in the partial wave series 

solution of the target’s response under steady state forcing is shown.  The infinite 

plane wave exciting the target approaches from the left.  The arrows are vectors 

showing the displacement of each surface of the shell from their un-deformed 

positions.  The solid lines indicate the position of the shell’s surfaces at the 

maximum deflection amplitude.  The shell’s displacement is scaled so that it is 

clearly visible for demonstrational purposes. ........................................................... 57 

 

2.17 Phase and group velocities of symmetric, 0s , and antisymmetric, 0a − , Lamb waves 

that propagate on the standard spherical shell target.  The wave velocities are 

normalized by the sound speed of water, 1479c = m/s, and plotted versus frequency 

over a range relevant to the current work.  Phase velocities of symmetric and 

antisymmetric Lamb waves on the spherical shell are shown as squares and circles, 

respectively.  The phase velocity results are interpolated with a solid line. ............. 58 

 

2.18 Echo delay with respect to the specular return versus frequency, of symmetric ( 0s , 

square) and antisymmetric ( 0a − , circles) Lamb waves that circumnavigate the 

spherical shell target.  The delays for both the first and second circumnavigations of 

the 0a −  wave are shown. ........................................................................................... 59 

 

3.1   Picture of experimental setup.  In the foreground is the steel test tank in which time 

reversal experiments are carried out.  The tank is surrounded by an aluminum frame 

to which positioning equipment is mounted.  In the background, behind the tank, is 

the electronic instrumentation rack and computer workstation controlling the 

experimental system.................................................................................................. 64 

 

3.2  Picture of the aluminum spherical shell target suspended in the free field, at the 

center of the test tank.  The target is positively buoyant and is held in place by a 



xiii 

 

layer of ~ 0.5 mµ  Scotch 3170 polypropylene packing tape that spans the width of 

the tank.  The tape is clamped in place with manually fashioned acrylic holders. ... 65 

 

3.3  Picture of the standard aluminum spherical shell target free-standing (to the right) 

and wrapped in a thin layer of nylon netting that is secured using a piece of 

monofilament line. .................................................................................................... 65 

 

3.4 Diagram of experimental instrumentation used in time reversal experiments.  

Experiments are performed both with targets suspended in the free field beneath a 

layer of transparent tape and buried in a container filled with a sediment phantom.  

This illustration depicts the configuration used for buried target experiments. ....... 66 

 

3.5  System diagram for generation of the calibration filter used in scattering and time 

reversal experiments. ................................................................................................ 71 

 

3.6   Waveforms and associated spectra from tests of the normalization procedure for the 

Panametrics V-303 unfocussed broadband, Q~2, piston transducer nominally 

centered at 1 MHz.  (a.) Linear chirp driving voltage sent to the transducer in which 

the transmitted pulse is directed normally at the pressure release water surface.  (b.) 

Magnitude spectrum of (a).  (c.) Transducer voltage for the first reflection from the 

pressure release tank surface.  (d.) Solid line is the magnitude spectrum of (c) and 

the dashed line is the magnitude response of the inverse filter used in the transducer 

calibration procedure.  (e.) Waveform (c) after application of the inverse filter.  (f.) 

Magnitude spectrum of (e).  The amplitude in all subplots is normalized to the 

maximum value and plotted on a linear scale. .......................................................... 72 

 

3.7  Response of the system calibration filter used in time reversal experiments plotted 

versus frequency.  (a.) The thin dashed line is the magnitude response of the Weiner 

filter.  The thick solid line is the magnitude response of the final calibration filter 

designed using the Yule Walker method.  (b.)  Same as (a) but the phase response of 

the Yule Walker filter is plotted over the same frequency range.  (c.) The phase 

delay and group delay of the Yule Walker filter.  The solid gray box in both subplots 

shows the full bandwidth of interest. ........................................................................ 73 

 

3.8  Magnitude of the pressure field radiated from a circular baffled piston for a driving 

frequency of 1.6 MHz.  The piston is 6.35 mm in radius, the same radius as the 

Panametrics V-303 transducer used in time reversal experiments.  (a.) Magnitude of 

the pressure field as a function of axial and radial distance from the center of the 

piston.  Thin black lines represent contours of constant pressure magnitude, marking 

relative values of 0.5, 0.25, and 0.125.  Vertical white lines intersect the on-axis 

location of the nearfield distance, the standing distance used in experiments, and the 

Rayleigh distance of the piston; the positions of these lines all scale linearly with 

frequency (see equation (3.76)).  (b.) The solid black line represents the magnitude 

of the pressure distribution along the central axis of the piston.  Circles represent 



xiv 

 

measured values, normalized to the mean value of the predicted pressure at the same 

axial standing distance.  The piston is positioned at the left side of each figure.  

Predicted values in both plots are normalized to their respective maximum value.. 78 

 

3.9  Magnitude spectra of waveforms backscattered from the free water surface given a 

linear chirp spanning 0.4-1.6 MHz, the useable bandwidth of the calibrated 

transducer.  The standing distance between the transducer’s face and the free water 

surface is varied in steps of 0.5 cm between 8 cm and 12 cm. ................................. 79 

 

3.10 Magnitude spectra of waveforms backscattered from the free water surface given a 

linear chirp spanning 0.4-1.6 MHz, the useable bandwidth of the calibrated 

transducer.  The transducer is positioned at a standing distance of 10 cm and angles 

of incidence range from 0-20 degrees....................................................................... 81 

 

3.11 Transducer directivity factor as a function of angle for frequencies of 0.4, 1, and 1.5 

MHz. ......................................................................................................................... 82 

 

3.12 Magnitude spectra of waveforms backscattered from the glass bead simulated 

sediment surface given a linear chirp spanning 0.4-1.6 MHz, the useable bandwidth 

of the calibrated transducer. The transducer is positioned at a standing distance of 10 

cm and angles of incidence range from 0-20 degrees............................................... 82 

 

3.13 Waveforms and associated spectra from the target characterization experiment.  (a.) 

Magnitude of the calculated monostatic far-field form function for the aluminum 

spherical shell target used in time reversal experiments versus ka.  (b.) The dashed 

line is the magnitude spectrum of the return from the target in which a linear chirp 

spanning 0.5 to 2 MHz is used for interrogation.  The solid line is the magnitude 

spectrum of the response of the target generated from a numerical simulation.  Both 

spectra are normalized to their respective values at 800 kHz.  (c.)  The dashed and 

solid lines are the time domain waveforms associated with the spectra in (b) of 

experiment and simulation, respectively.  Both waveforms are normalized to their 

maximum value......................................................................................................... 88 

 

3.14 Additional time traces from the target characterization experiment.  Measured 

results are shown as dashed lines while those generated from numerical simulation 

are presented as a solid line.  (a.) Return from the standard spherical shell target 

given a 2 cycle, 1 MHz sine wave incident waveform. (b.) Return from the target 

given a 23 sµ  duration linear frequency modulated (LFM) chirp spanning 0.4-1.6 

MHz used as an incident waveform.  (c.) Return from the target given a 45 sµ  

duration LFM chirp spanning 0.4-1.6 MHz used as an incident waveform. ............ 89 

 

3.15 Normalized mean squared error between a measurement and simulation of the target 

response over the 650-1650 kHz frequency range.  The density of aluminum 3003 



xv 

 

used in the simulation is varied within its measured uncertainty.  The vertical dashed 

line marks the density value reported by the supplier of the target. ......................... 90 

 

3.16 Normalized mean squared error between a measurement and simulation of the target 

response over the 650-1650 kHz frequency range.  The elastic modulus of aluminum 

3003 used in the simulation is varied 5%±  from its nominal value, which is marked 

by the vertical dashed line......................................................................................... 91 

 

3.17 Picture of the setup used in sediment phantom characterization experiments.  Two 

Panametrics V-305 unfocussed piston transducers are press-fit into steel baffles.  

They are aligned axially at normal incidence on either side of a sample of the 

sediment phantom described in section 3.1.  The separation distance between the 

two baffles can be varied precisely, for one is mounted with sleeve bearings to rods 

that run the length of the rig...................................................................................... 97 

 

3.18 Diagram of experimental instrumentation used to characterize the acoustic 

properties of the sediment phantom used in time reversal experiments. .................. 98 

 

3.19 Sound speed in distilled water as a function of frequency.  The solid line is the speed 

predicted from a measurement of the water temperature.  Small dots depict values 

estimated through time of flight measurements.  The normalized root mean square 

error between the predicted and measured results is reported on the figure............. 99 

 

3.20 Magnitude of the pressure field radiated from a circular baffled piston submerged in 

water as a function of axial and radial position.  The piston is 19.05 mm in diameter, 

the same diameter as the Panametrics V-305 transducers used in sediment 

characterization experiments.  Thin black lines represent contours of constant 

pressure magnitude and mark relative values of 0.5, 0.25, and 0.125.  The thick 

vertical black lines in each figure represent the aperture over which pressure is 

numerically integrated to generate the correction factor used in attenuation 

measurements.  The piston is positioned at the left side of each figure.  Predicted 

values in both plots are normalized to their respective maximum value................ 100 

 

3.21 Magnitude ratio of pressure averaged over a receiving aperture placed 10 cm away 

from a radiating piston, divided by the pressure magnitude at 8 cm.  The solid line 

represents the result predicted from numerical simulations.  The small dots represent 

measured values.  The normalized root mean square error between the predicted and 

measured results is reported on the figure. ............................................................. 101 

 

3.22 Dilatational wave speed in the sediment phantom as a function of frequency.  Small 

dots depict values estimated through time of flight measurements. ....................... 102 

 

3.23 Attenuation of dilatational waves in the sediment phantom as a function of 

frequency.  Small dots depict values estimated via through-transmission 



xvi 

 

measurements.  The solid lines represent error bounds generated from uncertainty 

over multiple measurements, in the estimation of the diffraction correction, and in 

the separation distance. ........................................................................................... 102 

 

4.1 Backscattered returns from the spherical shell target suspended in the free field 

through multiple iterations of the time reversal procedure.  Vertical lines in (a)-(c) 

depict the position of a 20 sµ  long time reversal window.  (a.) The first 

backscattered return, iteration 0, where a 2 cycle 1 MHz sine waveform is used for 

interrogation. (b.) Backscattered return at iteration 10 of the time reversal procedure.  

(c.) Backscattered return at iteration 35 of the time reversal procedure. (d.) Waterfall 

plot of magnitude spectra of signals within the time reversal window for iterations 0 

through 50 normalized to the maximum spectral magnitude at the final iteration.  

The spectra from (a)-(c) are highlighted with color lines. ...................................... 106 

 

4.2  Target returns given a 20- sµ  duration linear frequency modulated chirp 

interrogation waveform.  Returns are generated in the presence of varying levels of 

additive Gaussian white noise.  Panels (a.)-(d.) are time domain returns for signal to 

noise ratios of infinity, 15 dB, 12 dB, and 6 dB, respectively.  The vertical dashed 

lines in each figure panel denote the position of a 20 sµ  receive window.  The 

horizontal white dashed lines indicate the root-mean-square amplitude of the noise.  

Panels (e.)-(h.) present the magnitude spectrum of signals within the receive window 

in (a)-(d).  The vertical dashed lines in these figure panels indicate the half-power 

bandwidth of the dominant target resonance present.............................................. 112 

 

4.3   Target returns after 50 iterations of time reversal given a 20- sµ  duration linear 

frequency modulated chirp interrogation waveform used for the initial interrogation.  

Returns are generated in the presence of varying levels of additive Gaussian white 

noise.  Panels (a.)-(d.) are time domain returns for signal to noise ratios of infinity, 

15 dB, 12 dB, and 6 dB, respectively.  The vertical dashed lines in each figure panel 

denote the position of a 20 sµ  receive window.  The horizontal white dashed lines 

indicate the root-mean-square amplitude of the noise.  Panels (e.)-(h.) present the 

magnitude spectrum of signals within the receive window in (a)-(d).  The vertical 

dashed lines in these figure panels indicate the half-power bandwidth of the 

dominant target resonance present.......................................................................... 113 

 

4.4   Magnitude spectrum of the numerically generated noise used in simulations of target 

scattering. ................................................................................................................ 114 

 

4.5  Selected performance curves comparing the efficacy of a single linear frequency 

modulated (LFM) chirp waveform, 10 iterations of time reversal, and 10 averages of 

returns from using a LFM chirp interrogation.  The percentage of correct dominant 

target resonance identifications out of 300 trials is presented for signal-to-noise 



xvii 

 

ratios ranging from 0-36 dB.  The thick solid black lines near the bottom of the 

figure indicate the number of correct calls without a target in place...................... 114 

 

 

4.6 Performance curves for the single-channel time reversal technique utilizing 0-19 

iterations.  The percentage of correct dominant target resonance identifications out 

of 300 trials is presented for signal-to-noise ratios ranging from 0-36 dB.  The thick 

solid black lines near the bottom of the figure indicate the number of correct calls 

without a target in place. ......................................................................................... 115 

 

4.7  Performance curves for the technique where 0-19 coherent averages are performed 

on target returns given a 20- sµ  duration linear frequency modulated chirp.  The 

percentage of correct dominant target resonance identifications out of 300 trials is 

presented for signal-to-noise ratios ranging from 0-36 dB.  The thick solid black 

lines near the bottom of the figure indicate the number of correct calls without a 

target in place. ......................................................................................................... 115 

 

4.8  Performance surface generated by subtracting the percentage of correct calls via the 

averaging technique from the percent correct calls observed through time reversal.  

Contours are drawn along values of -10%, 1%, 10% and 20%. ............................. 116 

 

4.9 Schematic of how the relative window time,
r

t , is defined in time reversal 

experiments.  
trigger

τ  is the time at which a trigger event occurs.  
window

τ  is the 

duration of the time reversal window.  
t arg et

τ  is the time at which a transmitted wave 

will interact with the target.  (a.) A 3 cycle sine wave is transmitted at a scattering 

target and the echo is received. (b.) Returns from arbitrarily shaped transmissions 

appear to be centered within the time reversal window.......................................... 118 

 

4.10 Echo spectral magnitude versus frequency and time from a numerical experiment 

where the center of a 5 sµ  duration time reversal window is shifted in steps of 

0.5 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ .  Spectra from iteration 0 

and iteration 50 are shown in (a) and (b), respectively.  The intensities in each are 

normalized to the maximum value in (b).  Wave packets are labeled according to 

their type.  Incident waves approach the target from the left side of the figure. .... 122 

 

4.11 The black solid line represents the maximum spectral magnitude recorded at each 

relative window time in Figure 4.10b, iteration 50.  The solid gray line presents the 

same results for Figure 4.10a, iteration 0.  Both results are normalized to the 

maximum value at iteration 50.  Vertical dashed lines highlight the time locations of 

local maxima.  The relative time between maxima is also presented. .................... 123 

 



xviii 

 

4.12 Waveforms from iteration 50 of time reversal appearing at relative window times, 

r
t , marked by vertical dashed lines in Figure 4.11.   The vertical dashed lines in (a)-

(f) outline the location of a 5 sµ  duration time reversal window.  Panels (g)-(l) 

present the magnitude spectra of signals within the time reversal window in (a)-(f).  

Vertical dashed lines in these figure panels mark the location of the peak spectral 

magnitude.  The vertical axes in time and frequency domain waveforms are 

presented in arbitrary units on the same scale. ....................................................... 124 

 

4.13 Echo spectral magnitude versus frequency and time from a laboratory tank 

experiment where the center of a 5 sµ  duration time reversal window is shifted in 

steps of 0.5 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ .  Spectra from 

iteration 0 and iteration 50 are shown in (a) and (b), respectively.  Wave packets are 

labeled according to their type.  Incident waves approach the target from the left side 

of the figure............................................................................................................. 125 

 

4.14 Echo spectral magnitude versus frequency and time where the center of the time 

reversal window is shifted in steps of 0.5 sµ  from relative window times, 
r

t , of 

30 sµ−  to 60 sµ .  Panels (a)-(h) present results for window sizes ranging from 

5 40 sµ− .  Data is normalized to the maximum value within each figure panel.  

Incident waves approach the target from the left side of the figure........................ 130 

 

4.15 The maximum spectral magnitudes recorded at each relative window time in 

corresponding panels from Figure 4.14.  Vertical dashed lines highlight the time 

locations of local maxima of interest.  Results are normalized to the maximum value 

within each figure panel.  The letters superimposed on the dashed lines in (d) are 

associated with the corresponding panels in Figure 4.16. ...................................... 131 

 

4.16 Waveforms from iteration 50 of time reversal appearing at relative window times, 

r
t , marked by vertical dashed lines in Figure 4.15d.  The vertical dashed lines in (a)-

(f) outline the location of a 5 sµ  duration time reversal window.  Panels (g)-(l) 

present the magnitude spectra of signals within the time reversal window in (a)-(f).  

Vertical dashed lines in these figure panels mark the location of the peak spectral 

magnitude.  The vertical axes in the time and frequency domain waveforms are 

presented in arbitrary units on the same scale. ....................................................... 132 

 

4.17 Schematic of the physical setup for time reversal experiments with multiple targets 

present.  The schematic is not drawn to scale. ........................................................ 137 

 

4.18 (a) Magnitude of the calculated monostatic far-field form function for the aluminum 

spherical shell target used in time reversal experiments versus frequency.  (b) 

Magnitude of form function of the solid stainless steel sphere plotted versus 

frequency................................................................................................................. 137 



xix 

 

 

4.19 Echo spectral magnitude versus frequency and time, where the center of the time 

reversal window is shifted in steps of 0.5 sµ  from relative window times,
r

t , of 

30 sµ−  to 60 sµ .  Panels (a)-(d) present results at iteration 0 for window sizes 

ranging from 5 20 sµ−  with both the aluminum shell target and solid sphere targets 

both in place.  Panels (e)-(h) are the same as (a)-(d) but show iteration 50.  Panels 

(i)-(l) present results at iteration 50 with only the solid stainless steel target in place.  

Data is normalized to the maximum value within each panel except (a)-(d) which are 

normalized to the maximum values in (e)-(h), respectively. .................................. 138 

 

5.1  (a.) Magnitude of the calculated monostatic far-field form function for the aluminum 

spherical shell target used in time reversal experiments versus frequency.  (b.) 

Magnitude of calculated form function of the aluminum shell target when loaded 

with the properties of the glass bead sediment.  The shaded gray region highlights 

the frequency bandwidth of the time reversal system............................................. 144 

 

5.2 Schematic of the assumed configuration of for buried target transient scattering 

simulations.  The schematic is not drawn to scale. ................................................. 145 

 

5.3  Experimentally generated waveform received after interrogating the 2 cm deep 

buried aluminum shell target with a 2 cycle 1 MHz sine wave.  Arrows highlight 

various types of returns.  The return from the sediment surface is clipped so that 

target returns are clearly visible. ............................................................................. 146 

 

5.4 Waveform generated from the buried target numerical scattering simulation by 

interrogating the 2 cm deep buried aluminum shell target with a 2 cycle 1 MHz sine 

wave.  Arrows highlight various types of returns.  The return from the sediment 

surface is clipped so that target returns are clearly visible. .................................... 146 

 

5.5   Convergence plot for the standard shell target buried 2 cm beneath the surface of the 

sediment through successive iterations of the time reversal procedure.  The 

transducer is at normal incidence to the surface of the sediment.  Vertical lines in 

(a)-(c) depict the position of a 20 sµ  long time reversal window.  (a.) The first 

backscattered return, iteration 0, where white noise 20 sµ  in duration is used for 

interrogation.  (b.) Backscattered return at iteration 10 of the time reversal 

procedure.  (c.) Backscattered return at iteration 35 of the time reversal procedure.  

(d.) Waterfall plot of magnitude spectra of signals within the time reversal window 

for iterations 0 through 50 normalized to the maximum spectral magnitude at the 

final iteration.  The spectra from (a)-(c) are highlighted. ....................................... 148 

 

5.6  Signal to noise ratio of returns within a 20 sµ long time reversal window as a 

function of relative window time,
r

t , where white noise 20 sµ  in duration is used to 



xx 

 

initiate the process.  The black solid and blue dashed lines, representing iteration 0 

and iteration 50, respectively, are computed over a frequency band of 0 to 2 MHz, 

encompassing the full bandwidth of the transducer used.  The solid red line is 

computed from iteration 50 over a frequency band of 0.75 MHz to 1.2 MHz within 

which lies the dominant resonant wave mode of the buried target......................... 151 

 

5.7  Experimentally generated returns from iteration 50 of the time reversal procedure 

with the target buried at different depths in the glass bead sediment.  The vertical 

dashed lines depict the position of a 20 sµ long time reversal window.  (a) – (d) 

Time domain returns with center of the target buried at 1.5 cm, 2 cm, 2.5 cm, and 4 

cm depths, respectively. (e) Return at iteration 50 with no target in place.  Time 

domain waveforms are normalized to the peak amplitude in (d) and are all presented 

on the same scale.  (f) – (j) Fourier transforms of signals within the time reversal 

window from (a) – (e).  Frequency domain results are normalized to the peak 

spectral magnitude in (f) and are all presented on the same scale. ......................... 154 

 

5.8   Numerically generated returns from iteration 50 of the time reversal procedure with 

the target buried at different depths in the glass bead sediment.  The vertical dashed 

lines depict the position of a 20 sµ long time reversal window.  (a) – (d) Time 

domain returns with center of the target buried at 1.5 cm, 2 cm, 2.5 cm, and 4 cm 

depths, respectively. (e) Return at iteration 50 with no target in place.  Time domain 

waveforms are normalized to the peak amplitude in (d) and are all presented on the 

same scale.  (f) – (j) Fourier transforms of signals within the time reversal window 

from (a) – (e).  Frequency domain results are normalized to the peak spectral 

magnitude in (f) and are all presented on the same scale. ...................................... 155 

 

5.9   Results from an experiment where the center of the time reversal window is shifted 

in steps of 1 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ  over the standard 

shell target buried at 2 cm depth.  The intensity along the vertical axis represents the 

magnitude spectrum of the signal within the time reversal window.  (a)-(d) present 

results at iteration 0 for window sizes of 8, 14, 20, and 26 sµ .  (e)-(h) present the 

same results but for iteration 50.  Data is normalized to the maximum value for 

25 s
r

t µ>  within each row.  The transducer is aligned at normal incidence to the 

surface of the sediment and incident waves approach the target from the left side of 

the figure. ................................................................................................................ 159 

 

5.10 Physical setup for time reversal experiments where the angle of incidence is varied.  

(a.) Picture of the physical setup showing the transducer aligned over the sediment, 

within which the standard shell target is buried. (b.) Schematic showing the cross-

section of the sediment and target.  The schematic is not drawn to scale............... 163 

 

5.11 Time traces and spectra at iteration 50 of time reversal for incident angles of 0, 10, 

and 20 degrees.  Vertical lines in the time traces highlight the location of the time 



xxi 

 

reversal window.  Spectra are computed from the signal within the window and are 

normalized to the maximum value in (b). ............................................................... 164 

 

5.12 Magnitude spectra of reflections from the surface of the sediment for incident angles 

of 0, 10, and 20 degrees.  A long linear chirp spanning the full system bandwidth is 

as the transmitted waveform in each case............................................................... 164 

 

5.13 SNR plot summarizing the results of a window parameter study conducted with the 

transducer at normal incidence.  In the first two rows, the intensity of pixels is 

proportional to the square root of the energy within the time reversal window over 

the specified frequency band specified at the top of each column.  The bottom row 

the pixel intensity is proportional to the signal-to-noise ratio observed.  The vertical 

axis in each figure panel corresponds to the window size.  The horizontal axes 

correspond to the relative window time.................................................................. 167 

 

5.14 Results from an experiment where the center of the time reversal window is shifted 

in steps of 1 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ  over the standard 

shell target buried at 2 cm depth.  The intensity along the vertical axis represents the 

magnitude spectrum of the signal within the time reversal window.  (a)-(d) present 

results at iteration 0 for window sizes of 8, 14, 20, and 26 sµ .  (e)-(h) present the 

same results but for iteration 50.  Data is normalized to the maximum value for 

25 s
r

t µ>  within each row.  The transducer is aligned at 10 degree incidence to the 

surface of the sediment and incident waves approach the target from the left side of 

the figure. ................................................................................................................ 171 

 

5.15 SNR plot summarizing the results of a window parameter study conducted with the 

transducer at 10 degree incidence.  In the first two rows, the intensity of pixels is 

proportional to the square root of the energy within the time reversal window over 

the specified frequency band specified at the top of each column.  The bottom row 

the pixel intensity is proportional to the signal-to-noise ratio observed.  The vertical 

axis in each figure panel corresponds to the window size.  The horizontal axes 

correspond to the relative window time.................................................................. 172 

 

5.16 Convergence plot for the standard shell target buried 2 cm beneath the surface of the 

sediment through successive iterations of the time reversal procedure.  The 

transducer is at 10 degree incidence to the surface of the sediment.  Vertical lines in 

(a)-(c) depict the position of a 20 sµ  long time reversal window.  (a.) The first 

backscattered return, iteration 0, where white noise 20 sµ  in duration is used for 

interrogation.  (b.) Backscattered return at iteration 10 of the time reversal 

procedure.  (c.) Backscattered return at iteration 35 of the time reversal procedure.  

(d.) Waterfall plot of magnitude spectra of signals within the time reversal window 

for iterations 0 through 50 normalized to the maximum spectral magnitude at the 

final iteration.  The spectra from (a)-(c) are highlighted with solid black lines. .... 173 



xxii 

 

 

5.17 Results from an experiment where the center of the time reversal window is shifted 

in steps of 1 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ  over the standard 

shell target buried at 2 cm depth.  The intensity along the vertical axis represents the 

magnitude spectrum of the signal within the time reversal window.  (a)-(d) present 

results at iteration 0 for window sizes of 8, 14, 20, and 26 sµ .  (e)-(h) present the 

same results but for iteration 50.  Data is normalized to the maximum value for 

25 s
r

t µ>  within each row.  The transducer is aligned at 20 degree incidence to the 

surface of the sediment and incident waves approach the target from the left side of 

the figure. ................................................................................................................ 175 

 

5.18 Convergence plot for the standard shell target buried 2 cm beneath the surface of the 

sediment through successive iterations of the time reversal procedure.  The 

transducer is at 20 degree incidence to the surface of the sediment.  Vertical lines in 

(a)-(c) depict the position of a 20 sµ  long time reversal window.  (a.) The first 

backscattered return, iteration 0, where white noise 20 sµ  in duration is used for 

interrogation.  (b.) Backscattered return at iteration 10 of the time reversal 

procedure.  (c.) Backscattered return at iteration 35 of the time reversal procedure.  

(d.) Waterfall plot of magnitude spectra of signals within the time reversal window 

for iterations 0 through 50 normalized to the maximum spectral magnitude at the 

final iteration.  The spectra from (a)-(c) are highlighted with solid black lines. .... 176 

 

5.19 SNR plot summarizing the results of a window parameter study conducted with the 

transducer at 20 degree incidence.  In the first two rows, the intensity of pixels is 

proportional to the square root of the energy within the time reversal window over 

the specified frequency band specified at the top of each column.  The bottom row 

the pixel intensity is proportional to the signal-to-noise ratio observed.  The vertical 

axis in each figure panel corresponds to the window size.  The horizontal axes 

correspond to the relative window time.................................................................. 177 

 

5.20 Plot summarizing the results of a window parameter studies for all angles of 

incidence investigated. The pixel intensity in all figures is proportional to the signal-

to-noise ratio observed. ........................................................................................... 179 

 

5.21 Wave mode images generated from raster scanning the transducer at normal 

incidence over an area of sediment containing an aluminum spherical shell (located 

at [ , ] [15,30]x y =  mm) as well as a solid stainless steel sphere of the same diameter 

(located at [ , ] [30,15]x y =  mm).  Pixels in the images represent the energy within 

the time reversal window, at a specified transducer position, over a band-limited 

frequency range.  Figures (a)-(d) are generated from the backscattered returns at 

iteration 0 over the full system bandwidth, shifting the time reversal window in 

2 sµ  steps from 23 sµ to 29 sµ  relative to the specular return from the sediment 



xxiii 

 

surface.  Figures (e)-(h) are generated from backscattered returns after 50 iterations 

of the time reversal procedure, at the same relative window times as in Figures (a)-

(d).  Figures (i)-(l) and (m)-(p) are the same as in (e)-(h), but are defined over a band 

limited frequency range of 500-600 kHz and 750-1200 kHz, respectively.  The 

energies displayed in all images are normalized to the maximum value in (n) and are 

presented on the same linear scale where white represents values greater than or 

equal to the maximum and black represents zero. .................................................. 184 

 

5.22 Wave mode images at iteration 50, generated from the same conditions as in Figure 

8n, but with only the aluminum spherical shell target in place.  The energy in (a) is 

band-limited to a frequency range of 750-950 kHz and (b) encompasses the 750-

1200 kHz frequency range. ..................................................................................... 185 

 

5.23 Energy spectra from data obtained along slices taken from the x-axis of Figure 9b at 

a transducer position of 22 mm for iteration 0 (Figure 10a) and iteration 50 (Figure 

10b).  The intensities in each image are normalized to their respective maximum 

values.  In the images, white represents the maximum value and black represents the 

minimum value. ...................................................................................................... 185 

 

6.1 Schematic of the electronic instrumentation and configuration used in field 

experiments.  The target is positioned on the axis of the projector and hydrophone 

with the weights on either side of the target as shown.  Separate transmit and receive 

paths are shown with solid and dashed lines, respectively. .................................... 190 

 

6.2   Picture of the experimental apparatus employed in field experiments. (a.) Sawhorse 

shaped stand on which the projector and hydrophone are mounted.  The test pond is 

visible in the background. (b.) Stainless steel spherical shell target used in 

experiments.  Weights are clamped to eyehooks located at the poles of the sphere.

................................................................................................................................. 191 

 

6.3   Waveforms and associated spectra from tests of the calibration procedure for the 

system employed in field experiments. (a.) Linear chirp driving voltage sent to the 

projector in which the transmitted pulse is directed normally at the sediment surface 

and is received at mid-path by the hydrophone.  (b.) Magnitude spectrum of (a).  (c.) 

Voltage of the received waveform  (d.) Magnitude spectrum of (c).  (e.) Waveform 

in (c) after application of the calibration filter.  (f.) Magnitude spectrum of (e).  The 

amplitude/magnitude in all subplots is in arbitrary units........................................ 192 

 

6.4   Scattering responses of the spherical shell of the same size and composition as the 

target used in field experiments (a.) Magnitude of the calculated monostatic far-field 

form function for the target loaded with water.  (b.) Magnitude of calculated form 

function of the steel shell when loaded with the properties of water saturated 

medium grained sand, treated as a fluid.  Both form functions are shown over the 

frequency bandwidth of the calibrated system used in experiments....................... 195 



xxiv 

 

 

6.5   Echo delay with respect to the specular return versus frequency, of symmetric, 0s , 

Lamb waves that circumnavigate the spherical shell.  The delays for both the first 

and second circumnavigations of the waves are shown.  The solid lines and dashed 

lines correspond to cases where the target is loaded with water and sediment, 

respectively. ............................................................................................................ 196 

 

6.6   Convergence plot for the shell target in the free field through successive iterations of 

the time reversal procedure.  The window is located at the expected position of the 

first 0s  Lamb wave circumnavigation.  Vertical lines in (a)-(c) depict the position of 

a 60 sµ  long time reversal window. (a.) The first backscattered return, iteration 0. 

(b.) Backscattered return at iteration 4 of time reversal. (c.) Backscattered return at 

iteration 14 of the time reversal procedure.  (d.) Waterfall plot of magnitude spectra 

of signals within the time reversal window for iterations 0 through 14 normalized to 

the maximum spectral magnitude at the final iteration.  The spectra from (a)-(c) are 

highlighted with lines of the same shading............................................................. 198 

 

6.7   Convergence plot for the shell target in the free field through successive iterations of 

the time reversal procedure.  The window is located at the expected position of the 

second 0s  Lamb wave circumnavigation.  Vertical lines in (a)-(c) depict the position 

of a 60 sµ  long time reversal window. (a.) The first backscattered return, iteration 0. 

(b.) Backscattered return at iteration 4 of time reversal. (c.) Backscattered return at 

iteration 11 of the time reversal procedure.  (d.) Waterfall plot of magnitude spectra 

of signals within the time reversal window for iterations 0 through 11 normalized to 

the maximum spectral magnitude at the final iteration.  The spectra from (a)-(c) are 

highlighted with lines of the same shading............................................................. 199 

 

6.8  Convergence plots without and with the shell target buried at 6 inches.  The window 

is located at the expected position of the first 0s  Lamb wave circumnavigation.  

Vertical lines in (a-c) & (e-g) depict the position of a 60 sµ  long time reversal 

window. (a,e.) The first backscattered return, iteration 0. (b,f.) Backscattered return 

at iteration 4 of time reversal. (c,g.) Backscattered return at iteration 18 of the time 

reversal procedure.  (d,h.) Waterfall plot of magnitude spectra of signals within the 

time reversal window for iterations 0 through 18 normalized to the maximum 

spectral magnitude at the final iteration.  The spectra from (a-c) & (e-g) are 

highlighted with lines of the same shading............................................................. 202 

 

6.9 Magnitude and phase response of the high pass filter applied to returns in select 

buried target field experiments. .............................................................................. 203 

 

6.10 Convergence plots without and with the shell target buried at 6 inches with 

application of the high pass filter.  The window is located at the expected position of 



xxv 

 

the first 0s  Lamb wave circumnavigation.  Vertical lines in (a-c) & (e-g) depict the 

position of a 60 sµ  long time reversal window. (a,e.) The first backscattered return, 

iteration 0. (b,f.) Backscattered return at iteration 4 of time reversal. (c,g.) 

Backscattered return at iteration 18 of the time reversal procedure.  (d,h.) Waterfall 

plot of magnitude spectra of signals within the time reversal window for iterations 0 

through 18 normalized to the maximum spectral magnitude at the final iteration.  

The spectra from (a-c) & (e-g) are highlighted with lines of the same shading. .... 204 

 

6.11 Plots showing time traces at the final iteration for buried target time reversal 

experiments where the high pass filter is employed.  (a.)-(c.) Results generated 

without a target in place. (d.)-(f.) Results generated with the target buried at 6 inch 

depth. In each row, the position of the time reversal window is highlighted with a 

solid gray box.  From the top row to the bottom row, window positions correspond 

to the expected time location of the specular return, the first 0s  Lamb wave 

circumnavigation, and the second 0s  Lamb wave circumnavigation.  Convergence 

frequencies are given in each plot........................................................................... 205 

 

A.1  Schematic of the geometry for the scattering of a plane acoustic wave by an elastic 

sphere submerged in an infinite fluid medium. ...................................................... 217 

 

A.2  Far-field acoustic form function of the solid stainless steel target decomposed into 

the individual components of its partial wave series solution after subtraction of the 

partial waves from a rigid sphere.  (a.) Magnitude of the far-field acoustic form 

function versus frequency. (b.)-(l.) Partial waves n = 0 to n = 10, magnitude versus 

frequency, after background subtraction.  The vertical axis is normalized and 

presented on the same scale for all subfigures.  The gray shaded region depicts the 

frequency range of interest for the current work.   Within subfigures b-l is plotted the 

angular dependence of each partial wave.  In (d.) resonance types are identified with 

arrows...................................................................................................................... 224 

 

A.3  Phase and group velocities of Rayleigh ( )1l =  and whispering gallery ( )2l =   

waves that propagate on a solid stainless steel target.  The wave velocities are 

normalized by the sound speed of water, 1476c = m/s, and plotted versus frequency 

over a range relevant to the current work.  Phase velocities of the Rayleigh wave and 

the first whispering gallery wave are shown as circles and squares, respectively.  

The phase velocity results are interpolated with a solid line. ................................. 226 

 

A.4 Echo delay with respect to the specular return versus frequency, of the first 

circumnavigation of Rayleigh ( )1l =  and whispering gallery ( )2l =  waves that 

circumnavigate the solid stainless steel target. ....................................................... 227 

 



xxvi 

 

A.5  Schematic of the geometry for the scattering of a plane acoustic wave by an elastic 

sphere submerged in an infinite fluid medium. ...................................................... 228 

 

A.6  Schematic depicting a flat plate in vacuo relevant to the calculation of Lamb wave 

dispersion curves..................................................................................................... 238 

 

A.7  Dispersion curves for the phase velocity of Lamb waves on a plate.  Symmetric 

Lamb waves are presented as solid lines whereas asymmetric Lamb waves are 

presented as dashed line.  The phase velocity is normalize to that of water with 

1479c = m/s and plotted versus the dimensionless parameter kh . ......................... 242 

 

B.1  Schematic of a thought experiment where a windowed target echo is retransmitted 

with and without performing a time reversal operation. (a.) A short pulse centered at 

a delay equal to one half the length of the receive window is transmitted.  The 

receive window is positioned with the echo at the rightmost side of the window. (b.) 

Retransmission of the windowed echo without time reversal. (c.) Retransmission of 

the echo after a time reversal operation has been performed.................................. 245 

 

B.2  Results of a window shifting simulation with and without performing a time reversal 

operation.  The receive window is shifted from relative window times of  30 sµ−  to 

60 sµ .  The average power within the time reversal window is computed at iteration 

50.  The numerical experiment is repeated for receive window sizes ranging from 

4 sµ  to 60 sµ .  (a.) Results generated from application of a time reversal operation.  

(b.) Results generated without performing a time reversal operation.  The intensity 

within each subfigure is scaled to the maximum value recorded in (b).................. 246 

 

 

 

 

 

 



1 

 

 

 

Chapter 1  
 

Introduction 

“Nothing has such power to broaden the mind as the ability to investigate 

systematically and truly all that comes under thy observation in life.” 

 Marcus Aurelius Antoninus, Meditations 

 

 

It is well known that resonance frequencies of oscillation are observed in many natural 

and manmade systems.  Perhaps the earliest recorded discussion of a resonant system is 

that of Galileo Galilei who, in 1602, wrote a letter within which he hypothesized the 

isochronous motion of a pendulum [1].  When a mechanical system is driven at 

resonance, the energy stored within the system dissipates slowly over time.  This results 

in the system responding with maximal amplitudes of oscillation, a phenomenon that is 

exploited in many fields of science and engineering.  A number of examples within the 

realm of acoustics are especially noteworthy.  For example, in ultrasonic sensing and 

imaging applications, bubbles driven at or near resonance can be used to enhance the 

scattering contrast of tissue [2].  Acoustically exciting the resonance response of 

landmines, and the layer of soil beneath which they are buried, can significantly improve 
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the probability of detection [3].  In the realm of underwater acoustics, if the resonance 

response of a structure is excited using SONAR (Sound NAvigation and Ranging) 

signals, it can lead to a marked effect on the scattered field, making it easier to identify 

the structure.  This is true for target objects in the free field [4] and also for those buried 

in sediment at the ocean bottom [5-7], the latter of which are especially difficult to 

characterize. 

 In shallow water coastal regions (< 60 meters depth), the turbulent nature of 

waves and tidal currents can lead to the burial of targets resting on the seafloor.  Using 

current technology, these buried targets are especially difficult to detect and identify due 

to strong returns from the water-sediment interface, attenuation of sonar signals in the 

sediment, and the presence of coherent returns from clutter in the ocean bottom [8].  

Therefore, novel techniques are needed to extend the maximum detection depth and 

improve target identification.  Recent advances in the field of time reversal acoustics 

show promise as a possible solution. 

Time reversal in acoustics has its foundation based on the principle of reciprocity, 

described by Lord Rayleigh in the second volume of his The Theory of Sound.  If sound 

waves are excited at a point A, the resulting velocity potential at a second point B is the 

same both in magnitude and phase, as it would have been at A, had B been the source of 

sound [9].  The wave equation is a second order partial differential equation in both space 

and time, and thus its solution is valid for positive and negative values of the time 

variable.  The most common example of acoustic time reversal, depicted schematically in 

Figures 1.1 and 1.2, is based on an extension of these two principles.  A point source and 
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an array of transducers, also called a “phase conjugate array” or “time reversal mirror”, 

are located some distance apart in the free-field, which can consist of either a 

homogeneous or inhomogeneous medium.  A two-step process ensues.  First, the point 

source emits a wave that travels through the medium and is received by the array, as in 

Figure 1.1.  The temporal order of the signal received by each element of the array is then 

reversed and re-transmitted.  The re-transmitted waves then travel through the medium, 

interfere constructively and destructively, and converge upon the location of the point 

source, as in Figure 1.2.  If the point source were to be replaced with a small scattering 

object, time reversal and retransmission of received signals scattered from the object will 

result in a similar focusing effect.  This can lead to significant improvements in the 

signal-to-noise ratio of scattered returns. 

 

 

Figure 1.1: Schematic depiction of array based time reversal, Step I.  A point source 

emits a pulse of acoustic energy that travels through the propagation medium and is 

received by each element of a time reversal mirror (array).   
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Figure 1.2: Schematic depiction of array based time reversal, Step II.  Signals received at 

the array are time reversed and retransmitted resulting in a focusing of energy back on the 

location of the point source. 

 

The first application of time reversal in acoustics is credited to Antares Parvulescu 

[10], who performed pioneering work in the mid 1960’s and developed the matched 

signal (MESS) processing technique.  Through correlation measurements Parvulescu 

attempted to distinguish between changes in the ocean’s time varying response due to 

environmental fluctuations and those resulting from instability in measurement platforms 

due to drift, pitch, roll, and yaw.  The advantage of Parvulescu’s matched signal 

technique over numerical methods was that the cross-correlation of the ocean’s impulse 

response at two different times could be measured directly from a hydrophone.  

Evaluating the cross-correlation between two signals would have, at the time, required 

days of computation.   

Parvulescu’s technique consisted of the following steps.  The impulsive excitation 

of a source resulted in transmission of a waveform through the ocean.  The impulse 
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response 1( )h t  was then recorded at the location of a receiver.  The temporal order of the 

received impulse was reversed to produce what Parvulescu refers to as the matched 

signal 1( )h t− .  The matched signal was sent from the source at some later time and 

propagated through the ocean which would then have an impulse response 2 ( )h t .  The 

second received signal, ( )r τ , is a convolution of the matched signal with the new impulse 

response of the oceanic propagation path, 

 1 2( ) ( ) ( )r t h t h t dtτ= − −∫  (1.1) 

This signal is equivalent to the cross-correlation of 1( )h t with 2 ( )h t and is obtained directly 

as a signal output from a hydrophone.  If the ocean environment is stationary, the receiver 

would measure the autocorrelation of 1( )h t .  Measuring the cross-correlation of impulses 

sent between a source and receiver at different times yielded a method of tracking 

changes in the ocean’s impulse response.  Out of a necessity to perform correlation 

measurements quickly, Parvulescu employed acoustic time reversal for the first time. 

 Widespread application of time reversal was first observed in the field of optics 

where phase-conjugate mirrors redirect a beam of light diverging from a point source to 

form a wave that retraces the path of the incident wave and converges upon the exact 

location of the source [11].  The details of optical phase conjugation are beyond the scope 

of this investigation and the reader is referred to reviews presented in Refs. [11] and [12] 

for further information.  What is important to note is that acousticians realized great 

potential for the application of phase conjugation and sought to apply the technique in 

their own field of study. 
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In 1991, Jackson and Dowling [13] discussed the potential application of time 

reversal mirrors in underwater acoustics and provided an examination of the theory 

involved, focusing mainly on continuous “arrays”.  In the same year Prada, Wu, and Fink 

[14] reported further theoretical work on time reversal mirrors along with three 

fascinating experimental results.  Using a time reversal mirror consisting of 64 transducer 

elements in concave alignment, they demonstrated that time reversing and re-transmitting 

signals emitted by a hydrophone, located a distance away from the array, resulted in in-

phase focusing at the location of the hydrophone; this effect is equivalent to that 

described in Figures 1.1 and 1.2.  A second experiment demonstrated that iteratively time 

reversing signals backscattered by two thin wire targets resulted in spatial focusing on the 

larger and more reflective of the two.  Their final experiment showed that focusing is 

achieved through time reversal, even in the presence of an aberrating layer positioned 

between the array and hydrophone.  These three experiments demonstrated the potential 

of time reversal to achieve spatial focusing, selectively illuminate targets, and increase 

signal-to-noise in transmissions through an inhomogeneous environment.  Many 

subsequent time reversal experiments consist of extended applications of these three 

canonical examples.  A further discussion of the general principles of time reversal is 

presented by Fink et al. in a set of papers [15, 16] and in a review letter [17]. 

Iterative time reversal has been extensively studied by Prada who began with an 

investigation of its property to focus on the most reflective scatterer in a multiple target 

environment [18].  She then developed the DORT method, which stands for 

“Decomposition of the Time Reversal Operator.”  For a scattering field with multiple 
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targets present, the DORT method can selectively focus on any specified target, not only 

the most reflective one as with iterative time reversal [19].  The method is based on a 

matrix formulation of the inter-element response between transducers in the time reversal 

mirror when subject to the scattering environment.  The matrix is diagonalized and 

eigenvectors corresponding to non-zero eigenvalues can be used to focus on different 

targets in the scattering medium.  Since the development of the DORT method, it has 

been applied to characterize Lamb waves in a cylindrical shell suspended in water [20], 

to selectively focus on targets in a waveguide [21, 22], and to characterize sub-

wavelength scatterers [23, 24].  A disadvantage of the DORT method is due to the time 

consuming experimental procedure for determining the inter-element response of the 

array.  Other investigations have presented alternative methods to achieve selective 

focusing.  These methods use techniques to eliminate the response of stronger scatterers 

once they have been characterized [25-27].  The most recent advance in iterative time 

reversal schemes is through the application of Krylov methods to achieve convergence 

and the isolation of multiple targets much quicker than methods employing power 

iterations [28]. 

In addition to investigations in biomedical acoustics such as the tracking of 

kidney stones [17, 29] and for the focusing of acoustic waves inside the human skull [30], 

time reversal has been applied extensively in underwater acoustics.  In 1998, Kuperman 

et al. implemented a time reversal mirror in the oceanic waveguide and obtained spatial 

focusing between a source and an array separated by a distance of over 6 kilometers [31].  

In a second set of experiments, they were able to achieve spatial focusing over a distance 
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of 30 km and showed, by successfully refocusing old probe pulses to their original 

location, that time reversal invariance of the waveguide existed for as long as 1 week 

[32].  Since these groundbreaking experiments, further developments have been made, 

especially in the field of underwater acoustic communications [33-36].   

Regarding the application of time reversal for the detection and identification of 

targets submerged in the oceanic waveguide, several investigations have been carried out 

using array based techniques.  Carin et al. demonstrated a wideband time reversal 

technique used to image targets resting on the ocean bottom [37].  This imaging 

technique requires an accurate forward propagation model of the waveguide.  A 

subsequent set of experiments were conducted by Gaumond et al. [38] where the DORT 

method was used to focus on and estimate the location of an echo-repeater suspended in 

shallow water during the TREX-04 experiments.  Experiments utilizing the DORT 

technique have also been conducted by Prada et al. to isolate submerged targets [39] and 

to characterize elastic targets in a laboratory scale waveguide [40].  Finally, time reversal 

has also been shown to enhance the detection of proud (resting on the sediment surface) 

and partially buried targets through a passive implementation used to generate reflectivity 

maps of the ocean bottom [41].   

In the current investigation, echo enhancement for buried targets is investigated 

using iterative time reversal with only a single channel time reversal mirror.  Previous 

investigations of single-channel time reversal include the focusing of energy in elastic 

solids [42] and in cavities [43, 44] as well as in acoustic communications [45].  In the 

current work, the iterative single-channel time reversal technique consists of exciting a 
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target with a broadband pulse, digitizing the time-gated return, reversing the signal in 

time, and using this reversed signal as the source waveform for the next interrogation 

pulse.  As will be seen, the technique automatically generates a matched filter for the 

spectral response of a buried resonant object and does not rely on spatial focusing to 

generate an enhancement in return levels.  In an experimental study utilizing this 

technique, Pautet et al. [46] demonstrated enhancement of the spectral response of returns 

from elastic targets suspended in the free field. 

The current work, motivated in part by the work of Pierson [47], is primarily 

concerned with the efficacy of the single channel time reversal technique for the 

detection and identification of deeply buried targets, i.e. greater than flush buried.  

Previously, Ref. [47] predicted an increase in the signal-to-noise ratio of returns from a 

buried target through iterative retransmission of its echo.  This work, however, did not 

consider echo enhancement in the context of resonance scattering.  Resonance in acoustic 

scattering occurs when the harmonic oscillation of a target yields an enhancement in the 

amplitude of the received echo.  In this work, resonance enhancement is reported for a 

spherical target object located in the free field and fully buried in a sediment phantom 

consisting of water saturated glass beads.  The methodology presented offers a 

straightforward and inexpensive alternative to array based schemes for isolation of the 

dominant resonance in the response of a target-object. 

In Chapter 2, the theory of acoustic time reversal and resonance scattering is 

reviewed.  Results of system characterization are then presented in Chapter 3; this 

includes a discussion of methods for transducer calibration, confirmation of the scattering 
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response of the target employed, and characterization of the acoustic properties of the 

sediment phantom within which targets are buried.  With an understanding of the types of 

waves that propagate on the targets of interest and a well-characterized system, it is then 

possible to embark on a comprehensive investigation of the time reversal technique.  

Chapter 4 presents results from numerical simulations and experiments where time 

reversal is applied to enhance the scattering response of targets suspended in the free 

field.  Chapter 5 presents results for targets buried in a sediment phantom.  Finally, in 

Chapter 6, results from field experiments are reviewed, where the insight gained in 

laboratory experiments is applied to detect a stainless steel shell buried in sandy sediment 

between frequencies of 20-200 kHz.  Conclusions are drawn in Chapter 7, which also 

provides suggestions for future study. 
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Chapter 2  
 

 

 

Theory of Acoustic Time Reversal 

and Resonance Scattering 
 

 

“Happy the man who could search out the causes of things.” 

 Virgil, Georgics 

 

In the first section of this chapter, the theory behind iterative, single-channel time 

reversal is presented.  The time reversal technique is shown to automatically select the 

appropriate driving frequency with which to excite the dominant resonance in the 

scattering response of a target object.  This section is concluded with a comparison of the 

time reversal technique and an autocorrelation technique in the presence of stochastic 

noise.  Section 2.2 of this chapter is devoted to a review of relevant acoustic scattering 

theory; no new theory is presented in this Section.  The scattering response of a fluid-

filled spherical shell is derived; this is the type of target primarily used in this work.  

Resonance scattering theory is then used to identify various features in a target’s 
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scattering response and to identify the types of resonances on which the time reversal 

technique operates. 

2.1 Theory of Single-Channel Acoustic Time Reversal 

2.1.1 Single-channel, Iterative Time Reversal (ITR) 

 

In this section, a description of the iterative, single-channel time reversal technique is 

presented in the context of buried object identification.  Shown in the first panel of Figure 

2.1 is a schematic of an unfocussed piston transducer positioned normally incident to an 

inhomogeneous medium, within which is buried a scattering target.  For the purpose of 

demonstration, here it is assumed that the location of the target relative to the medium’s 

surface is known a priori.  The procedure is initiated by interrogating the target with a 

broadband pulse and waiting for the arrival of a backscattered return.  The backscattered 

waveform consists of a return from the surface of the inhomogeneous medium and a 

return from the scattering target, as shown schematically in the second panel of Figure 

2.1.  The portion of the return associated with the scattering target is then selected with a 

shaded time-gate window and filtered in order to normalize the frequency response of the 

transducer.  The temporal order of this windowed signal is then reversed.  As shown in 

panel 3 of Figure 2.1, this new time-reversed signal is then transmitted where the output 

signal amplitude is set to a predefined maximum value.  Repeating this process iteratively 

results in convergence of the output waveform to a monotonic signal, characteristic of the 

dominant resonance in the target’s scattering response.  Here, the general procedure is 

summarized with the following steps: 
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1) Interrogate the target with a broadband pulse. 

2) Sample a portion of the returned signal using a time-domain window. 

3) Filter the returned signal to account for the frequency response of the system, 

which is determined separately via a calibration procedure. 

4) Reverse the temporal order of the windowed and filtered signal. 

5) Transmit the new, time-reversed signal, where the transmit signal amplitude is 

normalized to a predefined maximum value. 

6) Repeat steps 2-5 iteratively.   

During this procedure, the time reversal window is maintained at the same space-time 

position as successive iterations are carried out.  In order to search for a target whose 

location is unknown, an additional window-shifting procedure is carried out.   This 

process consists of adjusting the time delay of the time reversal window in discrete steps 

with respect to a trigger event.  At each step, with the window’s position stationary, 

several iterations of the time reversal procedure are carried out.  If the target’s location is 

known, this same window-shifting procedure can also be used to selectively enhance 

different parts of its echo. 

 The convergence to a single resonance can be understood by the following 

simplified analysis carried out in the frequency domain for a target in the free field.  

Assuming that the system under investigation is linear and time invariant, the output 

waveform at the receiver (i.e. backscattered returns from the target) can be calculated 

from the product of the input waveform and the system’s frequency response (here the 

target’s scattering response).  In the following analysis, the transmit-receive response of 
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the transducer used and the bandwidth limitation of the finite window size are neglected.  

Under these assumptions, the first backscattered return from the target is, 

 ( ) ( ) ( )1R G Eω ω ω=  (2.1)

where ω  is the angular frequency, ( )G ω  is the target’s scattering response, and ( )E ω  is 

the waveform initially used to interrogate the target.  Subsequently, the first backscattered 

return will be referred to as iteration zero of the time reversal procedure.  A time reversal 

operation, i.e. reversing the temporal order of a signal, is equivalent to phase conjugation 

in the frequency domain, and thus,  

 ( ){ } ( ) ( ) ( )1 1 * * *TR r t R G Eω ω ω⇒ =  (2.2) 

Upon transmission of this time reversed signal, the second backscattered return is,  

 ( ) ( ) ( ) ( ) ( ) ( )2 1 * * *R G R G G Eω ω ω ω ω ω= =    . (2.3) 

One notes here that if the interrogation waveform, ( )E ω , is de-convolved from the result, 

the second return is equivalent to an autocorrelation of the target’s response.  Third and 

fourth returns will be of the form, 

 ( ) ( ) ( ) ( ) ( )3 *R G G G Eω ω ω ω ω=     (2.4) 

and 

 ( ) ( ) ( ) ( )
2

4 * *R G G Eω ω ω ω=    , (2.5) 

respectively.  Finally, the results can be generalized as  

 ( ) ( ) ( ) ( ) ( )
1

2 1

n

n
R G EG Gω ωω ω ω

−∗
− =     (2.6) 

for odd numbered returns and  
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 ( ) ( ) ( ) ( )2

∗∗ =  
n

n
R EG Gω ωω ω  (2.7) 

for even numbered returns where 1, 2,...,n N= .  As evident in equations (2.6) and (2.7), 

successive iteration of the time reversal procedure raises the target’s spectral response to 

a value proportional to the iteration number.  This process results in convergence to a 

narrowband waveform that is characteristic of the dominant resonance in the 

backscattering response of the target [46-48].  For a discussion of the importance of the 

time reversal operation, the curious reader is referred to Appendix B. 

This approach is best at sensing targets possessing a well-delineated resonance 

response.  For the technique to successfully isolate a target of interest, the dominant 

spectral peak in its response must be greater in amplitude than those generated by 

interfaces, clutter, or other false targets in its vicinity.  Practically speaking, many 

commonly encountered manmade objects possess geometrical symmetries that lead to 

resonances in their scattering response [5-7, 49].  Other objects that do not possess these 

symmetries will likely have a more broad spectral response.  Thus, the time reversal 

technique will serve to automatically tailor waveforms that preferentially excite manmade 

targets of interest. 
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Figure 2.1: Schematic of the iterative, single-channel time reversal procedure
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2.1.2 Time Reversal in the Presence of Noise 

At this point, one might remark that iterative (active) retransmission of signals is 

unnecessary.  One can simply transmit a single waveform, wait for the arrival of a 

backscattered return, de-convolve the outgoing waveform from the return, and multiply 

the result with a phase conjugated version of itself.  This process is equivalent to 

computing the autocorrelation of the target’s response, 

 ( ) ( ) ( )*A G Gω ω ω= . (2.8) 

Subsequently raising equation (2.8) to a power proportional to the number of time 

reversal iterations would provide a comparable result to that achieved in equations (2.6) 

and (2.7), via application the time reversal procedure, 

 ( ) ( ) ( ) ( )*
n n

n
R A G Gω ω ω ω∝ =       . (2.9) 

Thus, only a single transmission is required to obtain the same information gained via 

application of the time reversal technique.  However, while this is indeed true under ideal 

operating conditions, it will not necessarily be the case in the presence of noise. 

Given the same operating conditions as in Section 2.1.1, but now with noise 

added at the output of the system, the first received signal, given an initial outgoing pulse 

( )E ω , will be of the form 

 ( ) ( ) ( ) ( )1 1R G E Nω ω ω ω= + . (2.10) 

( )G ω  is the frequency response of the environment, ( )E ω  is an arbitrary waveform 

used for interrogation, and ( )1N ω  is a term used to model additive noise.  Here, the noise 



18 

 

is assumed to be stochastic in nature, that is, it is nondeterministic and uncorrelated with 

the response of the environment.  Coherent noise sources are assumed to be a part of the 

system's frequency response, ( )G ω .  The passive autocorrelation procedure described at 

the end of Section 2.1.1 is then applied to equation (2.10) without de-convolution of the 

input waveform, resulting in the following: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )
2 2

1 1 1 1* 2ReA R R G E G E N Nω ω ω ω ω ω ω ω ω= = + + .(2.11) 

If instead, a time reversal operation (phase conjugation) is carried out on equation 

(2.10), it results in a new time reversed waveform, 

 ( ) ( ) ( ) ( )1 1R G E Nω ω ω ω∗ ∗ ∗ ∗= + . (2.12) 

This is used as the source waveform for a second interrogation.  The second return will 

be of the following form: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2 1 2

1 2 .

R G R N

G G E G N N

ω ω ω ω

ω ω ω ω ω ω

∗

∗ ∗ ∗

= +

= + +
 (2.13) 

Subsequent time reversal and retransmission results in a third return, 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

*

3 2 3

* * *

1 2 3

R G R N

G G G E G G N G N N

ω ω ω ω

ω ω ω ω ω ω ω ω ω ω

= +

 = + + + 
,(2.14) 

and finally a fourth return, 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

*

4 3 4

2
* * * *

1

* *

2 3 4

R G R N

G G E G G G N

G G N G N N

ω ω ω ω

ω ω ω ω ω ω ω

ω ω ω ω ω ω

= +

   = + +   

 + + + 

�

�

. (2.15) 
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Through induction, the results can be generalized as follows, for even returns, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )}

1
* * *

2 2 1
0

*

2
                ; 1, 2,...,

n
n m

n n m
m

m

n m

R G G E G G G N

G G N n N

ω ω ω ω ω ω ω ω

ω ω ω

−

− −
=

−

   = + +   

 + = 

∑ �

�

(2.16) 

and for odd returns, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )}

1
1

* *

2 1 2 1
0

*

2
                            2

n
n m

n n m

m

m

n m

R G G G E G G N

G G G H n m N

ω ω ω ω ω ω ω ω

ω ω ω ω

−
−

− − −
=

−

   = + +   

 + − − 

∑ �

�

(2.17) 

where m  is an index, 1, 2,...,n N=  is proportional to the iteration number, and ( )H x  is 

the Heaviside step function defined as 

 ( )
0,  0

1,  0

x
H x

x

<
= 

≥
. (2.18) 

 It is now possible to compare the waveforms generated via the autocorrelation 

technique and the time reversal technique.  If the result of the autocorrelation procedure, 

equation (2.11), is subsequently raised to the power n , it results in an expression 

containing the product of the noise term with itself.  The procedure amplifies the level of 

the noise at a similar rate as it amplifies the level of the target’s response.  Thus, the 

dominant target response frequency will only be selected if it is above the level of the 

noise on the first transmission.  In contrast, with the time reversal procedure of equations 

(2.16) and (2.17), the terms including noise are incoherent and, as they are combined, 

will not be amplified as rapidly as the coherent target response.  Therefore, for some 

range of operating conditions, the active time reversal technique should be more robust 

than the autocorrelation technique at increasing the ratio between the level of the target’s 
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spectrum and the noise.  This hypothesis will be investigated subsequently through the 

use of numerical simulations. 

2.2 Review of Acoustic Scattering Theory  

The study of sound propagation in the ocean and scattering from submerged objects is a 

rich field that burgeoned during World War II, when submarines became a prominent 

force in naval operations [50].  Manmade targets of interest in the ocean typically consist 

of a shell encasing some other medium, for example, an air filled cavity as in the case of 

a submarine, or a solid as in the case of a naval mine.  Shell targets are known to exhibit 

distinctive resonance signatures that can be exploited in detection and identification 

efforts [5-7, 49].  In this work, an air-filled aluminum spherical shell is used as the 

primary target for scattering experiments.  The choice of this target is based on the strong 

resonant nature of its elastic scattering response over the operational frequency range of 

scaled laboratory experiments.  The types of resonances present in this target are relevant 

to ongoing efforts in the development of sonar systems and identification schemes.  As 

will be seen, using iterative time reversal with a single-channel transducer, features in the 

time domain echo return that are associated with specific resonances can be isolated and 

enhanced to improve efforts in target identification.  In this section, the scattering 

response of a spherical shell target is derived.  Resonance scattering theory is then 

applied to determine the origin of wave mode resonances of the target on which the time 

reversal technique operates.  
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2.2.1 Acoustic Scattering from Spheres 
 

The scattering of plane waves from spherical objects has been extensively studied, 

mainly due to analytical tractability and the insight it lends to more complicated 

problems.  The curious reader is referred to Ref. [51] for a historical survey of early 

studies.  The first treatment of sound scattering from a sphere was presented by Lord 

Rayleigh in 1872 in a paper [52] and subsequently in the second volume of The Theory of 

Sound [52].  Rayleigh considered the interaction of a plane acoustic wave with a rigid 

immovable sphere at low frequencies, where the wavelength of the incident wave is much 

larger than the size of the sphere.  Scattering from spheres in this regime is now 

commonly referred to as Rayleigh scattering.  Following World War II, a number of 

papers began to appear in the literature regarding the scattering of sound from penetrable 

objects, that is, objects that allow the incident sound wave to propagate/couple into their 

interior.  For most practical objects of interest in the ocean, this consideration is 

especially important, for an incident sound wave can excite the vibratory response of the 

object, leading to a marked effect on the scattered field.  In 1950, Anderson first detailed 

an exact solution for sound scattering from a fluid sphere, valid for all frequencies [53, 

54].  Subsequently, in 1951, Faran took shear into account and determined systems of 

equations describing the field scattered from solid elastic spheres and cylinders [55].  

These early papers are followed by a rich body of literature consisting of theoretical and 

experimental studies of additional complexity.  A partial summary of subsequent 

investigations includes detailed studies of sound scattering from solid elastic spheres [56-
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60] and cylinders [61-64], evacuated (hollow) or fluid-filled shells [65-71], and from 

suspensions of scatterers [72, 73]. 

The following analysis considers the scattering of a plane acoustic wave from a 

fluid-filled elastic spherical shell submerged in an infinite fluid medium.  It follows the 

works of both Gaunaurd and Uberall [58] and Faran [55].  The elastic wave equation, 

 ( ) ( ) ( )
2

2
2

u
u u

t
ρ λ µ µ
 ∂

= + ∇ ∇ ⋅ − ∇× ∇× 
∂ 
�

� � � � � �
, (2.19) 

where ρ is density and u
�

is the displacement, governs the propagation of waves within this 

medium. The constants λ and µ are Lamé’s coefficients that describe the elastic 

properties of the medium, under the assumption that stress is linearly proportional to 

strain.  Taking the divergence of both sides of (2.19) results in the following equation, 

 ( ) ( )
2

2

2

2
,u u

t

λ µ

ρ

∂ +
∇ ⋅ = ∇ ∇ ⋅

∂ � � � � �
 (2.20) 

which describes the motion of waves that are irrotational and referred to as longitudinal, 

dilatational, or P waves [74].  These waves propagate with a speed, 

 
2

d
c

λ µ

ρ

+
= , (2.21) 

and are characterized by particle displacement in the direction of a wave’s propagation. 

In contrast, taking the curl of both sides of equation (2.19), results in the following 

equation, 

 ( ) ( )
2

2

2
,u u

t

µ

ρ

∂
∇× = ∇ ∇×

∂ � � � �
 (2.22) 
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which describes the motion of waves that are referred to as shear, transverse or S waves 

[74].  These waves propagate with a speed, 

 
s

c
µ

ρ
= , (2.23) 

and are characterized by particle displacement that is perpendicular to a wave’s direction 

of propagation.  Solutions of equation (2.19) are found by assuming that the displacement 

in the medium can be expressed in terms of scalar and vector potential functionsϕ and Ψ
�

, 

respectively, such that  

 u ϕ= ∇ + ∇× Ψ
�� � �

. (2.24) 

Substituting this expression into equations (2.20) and assuming an i t
e

ω−  time harmonic 

convention (where ω  is angular frequency and t  is time) demonstrates that the scalar 

potential satisfies the Helmholtz equation,  

 2 2 0
d

kϕ ϕ∇ + =  (2.25) 

where /
d d

k cω= is the wave number for dilatational waves. This relationship will be 

subsequently useful in resolving the relevant components of stress in the system. 

In spherical coordinates, the gradient and curl operators are as follows: 

 
1 1

ˆ ˆ ˆ
sin

r
e e e

r r r
θ φ

ϕ ϕ ϕ
ϕ

θ θ θ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂� � � �
 (2.26) 

 

( )

( ) ( )

1
ˆsin

sin

1 1 1
ˆ ˆ .
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r

r r

e
r

r e r e
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θ
φ

φ θ θ φ

ψ
ψ θ

θ θ φ

ψ ψ
ψ ψ

θ φ θ

 ∂ ∂
∇× Ψ = − + 

∂ ∂ 

 ∂ ∂∂ ∂ 
+ − + −   

∂ ∂ ∂ ∂  

�
�� �

�
� �

 (2.27) 
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Here, one notes that for scattering from a sphere there will be no dependence on φ  and 

only one of the shear potential’s components contributes, ( )0,0, φψΨ =
�

.  Substituting 

equations (2.26) and (2.27) into equation (2.24) yields the components of displacement in 

spherical coordinates, 

 
cot 1

r
u

r r r

φ
φ

ψϕ θ
ψ

θ

∂∂
= + +

∂ ∂
 (2.28) 

 
1

u
r r r

φ φ
θ

ψ ψϕ

θ

∂∂
= − −

∂ ∂
 (2.29) 

 0uφ = . (2.30) 

The constitutive relation, between the component of radial stress and displacement, can 

be expanded as [55] 

 

( )

22
2

2 2 2

2

cot cot 1 1
2 .

r
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d

u
u

r

k
r r r r r r r
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φ

τ λ µ
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θ θ

∂ 
= ∇ ⋅ +  

∂ 

 ∂ ∂ ∂∂ 
= − + + − + − 

∂ ∂ ∂ ∂ ∂  

� �

 (2.31) 

where, making use of the identity 2u ϕ ϕ∇ ⋅ = ∇ ⋅∇ = ∇
� � � �

, equation (2.25) is substituted for 

the divergence term.  The component of stress tangential to the sphere’s surface is  

 

( )
2

2

2

1

1
2

r
r

s

u u u

r r r

r k
r r r

θ θ
θτ µ

θ

ψ
µ ϕ ψ

θ θ

∂ ∂ 
= − + 

∂ ∂ 

 ∂  ∂ ∂  ∂ 
= + +   ∂ ∂ ∂ ∂   

 (2.32) 
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where /
s s

k cω=  is the wave number for shear waves.  With the displacements and 

constitutive relations defined, it is now possible to proceed with solution of the boundary 

value problem of interest. 

A spherical shell, of outer radius a and inner radius b , is located at the origin of an 

infinite space consisting of a fluid medium of density 1ρ  and dilatational wave speed 1d
c .  

A schematic is presented in Figure 2.2.  The shell, filled with a fluid of density 3ρ  and 

dilatational wave speed 3d
c , consists of an elastic solid with density 2ρ , dilatation wave 

speed 2d
c , and shear wave speed 2s

c .  An infinite plane acoustic wave is incident upon the 

shell and approaches from the negative ˆ
z

e
�

direction.   

 

Figure 2.2: Schematic of the geometry for the scattering of a plane acoustic wave by a 

fluid-filled elastic spherical shell submerged in an infinite fluid medium. 
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It is then necessary to express the pressure of the incident plane wave as a sum of 

spherical harmonic functions [75].  Assuming an i t
e

ω−  time harmonic convention, the 

pressure of the incident wave,
i

p , can be written  

 ( ) ( ) ( )1 cos

0 0 1

0

cos
i t k r i t

i n n n

n

p p e p j k r P e
ω θ ωα θ

∞
− + −

=

= = ∑  (2.33) 

where 0p is the pressure amplitude, 1 1/
d

k cω=  is the wave number in the medium 

external to the sphere, ( )1nj k r is a spherical Bessel function, (cos )
n

P θ is a Legendre 

polynomial, and the
n

α are unknown coefficients.  A Neumann function is not included in 

(2.33) to ensure that the solution remains bounded at the origin; the value of Neumann 

functions approaches infinity as their argument approaches zero.  In order to determine 

the 
n

α coefficients, one notes the orthogonality property of Legendre polynomials [76], 

 ( ) ( )
1

1

0

2
.

2 1

n m

n m

P P d
n m

n

µ µ µ
−

≠


= 
= +

∫  (2.34) 

Both sides of (2.33) are multiplied by ( )cosmP θ and are then integrated, 

 ( ) ( ) ( ) ( )1

1 1

cos

1

1 1

cos cos cos cos cos
ik r

m n n n m
e P d j k r P P d

θ θ θ α θ θ θ
− −

=∫ ∫ . (2.35) 

Making use of (2.34), the solution is non-trivial only when n m= and thus,  

 ( ) ( )1

1

cos

1

1

2
cos cos

2 1

ik r n
n n

e P d j k r
n

θ α
θ θ

−

=
+∫ . (2.36) 

The Bessel function in (2.36) is substituted with the identity [77], 
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( )
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( )

( )
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n
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e P d
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θ θ
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−
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−
=

∫

∫

 (2.37) 

resulting in the relationship, 

 ( )
( )

( )1 1

1 1

cos cos

1 1

cos cos cos cos .
2 1

n

ik r ik r

n n n

i
e P d e P d

n

θ θθ θ α θ θ
− −

−
=

+∫ ∫  (2.38) 

After simplification, the solution for the
n

α coefficients is 

 ( )2 1 .n

n i nα = +  (2.39) 

Therefore, the expression for the incident plane wave expanded in terms of spherical 

harmonics is 

 ( ) ( ) ( )0 1

0

2 1 cos .i t n

i n n

n

p p e i n j k r P
ω θ

∞
−

=

= +∑  (2.40) 

The pressure scattered from the sphere,
s

p , can be expressed as  

 ( ) ( ) ( ) ( )1

0 1

0

2 1 cosi t n

s n n n

n

p p e i n a h k r P
ω θ

∞
−

=

= +∑  (2.41) 

where 
( ) ( )1

1nh k r  is a spherical Hankel function of the first kind. The ( )0 2 1n
p i n + term is 

included for convenience and it is assumed that the
n

a  coefficients absorb the appropriate 

factors to account for this substitution.  The total pressure in the fluid external to the 

sphere is equal to the sum of the incident and scattered pressures, 

 ( ) ( ) ( ) ( ) ( )1

1 0 1 1

0

2 1 cos .i t n

i s n n n n

n

p p p p e i n j k r a h k r P
ω θ

∞
−

=

 = + = + + ∑  (2.42) 
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It is also necessary to determine the radial displacement, 1r
u , in the fluid external to the 

sphere.  This is accomplished through use of the linearized momentum equation [78] 

where 

( ) ( ) ( ) ( ) ( )101
1 1 1 1 12 2

01 1

1
2 1 ' ' cosi t n

r n n n n

n

pp
u e i n k j k r a k h k r P

r

ω θ
ρ ω ρ ω

∞
−

=

∂  = = + + ∂
∑ .(2.43) 

Expressions for the potential functions in the shell material are 

 ( ) ( ) ( ) ( ) ( )2 0 2 2

0

, , 2 1 cosi t n

n n d n n d n

n

r t p e i n b j k r c n k r P
ωϕ θ θ

∞
−

=

= + +  ∑ , (2.44) 

 ( ) ( ) ( ) ( ) ( )2 0 2 2

0

, , 2 1 cosi t n

n n s n n s n

n

d
r t p e i n d j k r e n k r P

d

ωψ θ θ
θ

∞
−

=

= + +      ∑ . (2.45) 

The potential functions in the filler fluid are 

 ( ) ( ) ( ) ( )3 0 3

0

, , 2 1 cosi t n

n n d n

n

r t p e i n f j k r P
ωϕ θ θ

∞
−

=

= +   ∑  (2.46) 

 ( )3 , , 0r tψ θ =  (2.47) 

where the Neumann function in equation (2.46) is excluded to ensure that the solution 

remains bounded at the origin of the coordinate system, located at the sphere’s interior.   

  The six unknown coefficients,
n

a ,
n

b ,
n

c ,
n

d ,
n

e , and
n

f  are determined by 

matching the boundary conditions for displacement, normal stress, and transverse stress 

at the internal and external surfaces of the sphere.  On the sphere’s external surface, 

r a= , 

     1 ,2rr
p τ= −  (2.48) 

     ,1 ,2r r
u u=  (2.49) 
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 ,2 0
rθτ =  (2.50) 

and on the internal surface, at r b= , 

     ,2 ,3rr rr
τ τ=  (2.51) 

      ,2 ,3r r
u u=  (2.52) 

   ,2 0
rθτ = . (2.53) 

Application of the boundary conditions results in a set of linear equations that are 

presented here in matrix form as, 

 

11 12 13 14 15 16 1

21 22 23 24 25 26 2

31 32 33 34 35 36 3

41 42 43 44 45 46 4

51 52 53 54 55 56 5

61 62 63 64 65 66 6

n

n

n

n

n

n

d d d d d d a A

d d d d d d b A

d d d d d d c A

d d d d d d d A

d d d d d d e A

d d d d d d f A

     
     
     
      

=    
    
    
    
         

 (2.54) 

where,  

( ) ( )12

11 1nd a h k a=  

( ) ( ) ( ) ( ) [ ] ( )
2

12 2 2 2 2 2 2 2 22 2 1 4 'd n d d n dd k a n n j k a k a j k aλ µ µ µ = − + + + −
 

 

( )( ) ( ) ( ) [ ] ( )
2

13 2 2 2 2 2 2 2 22 2 1 4 'd n d d n dd k a n n n k a k a n k aλ µ µ µ = − + + + −
 

 

( ) ( ) ( ) ( )14 2 2 2 2 22 1 2 1 '
n s s n s

d n n j k a n n k a j k aµ µ= + − +        

( ) ( ) ( ) ( )15 2 2 2 2 22 1 2 1 '
n s s n s

d n n n k a n n k a n k aµ µ= + − +        

16 0d =  

( )2

1 1nA a j k a= −  
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ρ ω

−
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[ ] ( )22 2 2'd n dd k a j k a=  
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n s
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n s
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( )1
2 12
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n
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A j k a

ρ ω
=  

31 0d =  

( ) [ ] ( )32 2 2 22 2 'n d d n dd j k a k a j k a= − +  

( ) [ ] ( )33 2 2 22 2 'n d d n dd n k a k a n k a= − +  

( ) ( ) ( ) ( )
2

34 2 2 2 22 2 1 2 's n s s n sd n n k a j k a k aj k a = − + + +
 

 

( ) ( ) ( ) ( )
2

35 2 2 2 22 2 1 2 's n s s n sd n n k a n k a k an k a = − + + +
 

 

36 0d =  

3 0A =  

41 0d =  

( )( ) ( ) ( ) [ ] ( )
2

42 2 2 2 2 2 2 2 22 2 1 4 'd n d d n dd k b n n j k b k b j k bλ µ µ µ = − + + + −
 

 

( )( ) ( ) ( ) [ ] ( )
2

43 2 2 2 2 2 2 2 22 2 1 4 'd n d d n dd k b n n n k b k b n k bλ µ µ µ = − + + + −
 
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( ) ( ) ( ) ( )44 2 2 2 2 22 1 2 1 '
n s s n s

d n n j k b n n k b j k bµ µ= + − +        

( ) ( ) ( ) ( )45 2 2 2 2 22 1 2 1 '
n s s n s

d n n n k b n n k b n k bµ µ= + − +        

( )2 2

46 3 3 3d n d
d k b j k bλ  =    

4 0A =  

51 0d =  

[ ] ( )52 2 2'd n dd k b j k b=  

[ ] ( )53 2 2'd n dd k b n k b=  

( ) ( )54 21
n s

d n n j k b= − +    

( ) ( )55 21
n s

d n n n k b= − +    

( )56 3 3'd n dd k bj k b=  

5 0A =  

61 0d =  

( ) ( )62 2 2 22 2 'n d d n dd j k b k bj k b= − +  

( ) ( )63 2 2 22 2 'n d d n dd n k b k bn k b= − +  

( ) ( ) ( )2 2

64 2 2 2 22 2 1 2 '
s n s s n s

d n n k b j k b k bj k b = − + + +   

( ) ( ) ( )2 2

65 2 2 2 22 2 1 2 '
s n s s n s

d n n k b n k b k bn k b = − + + +   

66 0d =  

6 0A = . 
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Note that only first order derivatives of the spherical Bessel functions are present in the 

above coefficients.  Bessel’s equation in spherical coordinates [77] 

 ( )2 2'' 2 ' 1 0z w zw z n n w + + − + =   (2.55) 

is used to determine expressions for the second derivatives of spherical Bessel functions 

in terms of first derivatives only, as 

 
( )

2

12
'' ' 1

n n
w w w

z z

+ 
= − + − 

 
 (2.56) 

where w is a spherical Bessel function of the first, second, or third kind and z is the 

Bessel function’s argument.  In addition, Legendre’s equation, 

 ( )
2

2
cot 1n n

n

d P dP
n n P

d d
θ

θ θ
= − − +  (2.57) 

is used to expand the second derivatives of Legendre polynomials, which arise in stress 

terms that include a shear potential. 

To determine the coefficients of the scattered field, the system of equations (2.54) 

is solved for 
n

a  through the method of Gaussian elimination [79].  The computer 

program used for this calculation is written in MATLAB
®

.  Spherical Bessel functions, 

solved numerically, are calculated from their ordinary counterparts according to the 

following relationships [78]: 
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 (2.58) 

A Bessel function’s first derivative is calculated through the following identity [76]: 

 ( ) ( ) ( ) ( )1 1

1
1

2 1
n n n

d
j z nj z n j z

dz n
− += − +  +

. (2.59) 

  For distances far away from the sphere (usually taken as 10>  sphere diameters), 

the Hankel function in equation (2.41)  takes on an asymptotic form [56], 

 ( ) ( )
1

1

1
1

1

lim .
ik r

n
n

k r

e
h ik r

k r

− +

→∞
→  (2.60) 

Equation (2.41) for the scattered field can then be reduced to the following expression, 

 ( ) ( ) ( )1
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01
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.2 1 cos
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p p b P en
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∞
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= + 

 
∑  (2.61) 

The quantity inside the brackets, is referred to as the bistatic far-field acoustic form 

function, f∞ .  The factor of 2 is included so that the form function for a rigid sphere 

asymptotically approaches unity for large values of ka .  The target’s form function in the 

monostatic, 180θ = ° , backscattered direction is  

 ( ) ( ) ( )1

0 01

2
1 2 1

n

n n

n n

f f k a n b
ik a

∞ ∞

∞
= =

= = − +∑ ∑ . (2.62) 

A target’s form function is a standard means of depicting its scattering response as a 

function of frequency.  The analytical solution above will be used subsequently to 
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identify resonances in targets of interest.  Appendix A includes additional derivations 

used to determine the field scattered from fluid and solid spheres and cylinders. 

2.2.1.1 Rigid Sphere 

 

The monostatic form function for a rigid sphere is depicted in Figure 2.3.  The response is 

plotted against the dimensionless quantity 2 /ka aπ λ= , the number of wavelengths that 

fit around the circumference of the sphere.  This result is calculated by setting the density 

of the shell material in equations (2.54) to be many orders of magnitude greater than the 

external fluid density, allowing the sphere to be moveable.  A similar calculation can also 

be performed by setting the velocity at the sphere’s surface identically equal to zero, 

resulting in the response of a rigid immovable sphere.   

For a rigid sphere, the range where ka  approaches zero, is referred to as the 

Rayleigh scattering region [53] where the wavelength of the incident acoustic wave is 

much larger than the radius of the sphere.  In this regime, shown approximately in the 

left-most part of Figure 2.3a, the form function is proportional to ( )
2

ka .  In optics, this 

type of scattering is primarily responsible for the daytime color of the sky being blue; 

particles in the air preferentially scatter light at the higher frequency (shortest 

wavelength) end of the visible spectrum.  This phenomenon was famously postulated by 

Lord Rayleigh in 1899 [80] and later confirmed experimentally in 1913 by Jean 

Cabannes [81].  In the rigid target’s response, as ka  increases past unity, the form 

function begins to oscillate and eventually asymptotes to a value of one.  In the limit of 

high frequency, the sphere acts as a plane specular reflector.  The fluctuations in the mid-
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frequency region are associated with waves that circumnavigate the sphere and interfere 

either constructively or destructively with the specular portion of the scattered field.  

These types of waves, referred to as creeping or Franz waves [82], are purely diffractive 

and travel slower than the ambient sound speed.  So that the reader may obtain a 

qualitative idea of the scattered field for incident waves of both low and high frequency, 

plots of the pressure field scattered by a rigid sphere for 1ka =  and 20ka =  are presented 

in Figure 2.4a and Figure 2.4b, respectively. 

 

 

 

Figure 2.3: Magnitude of the monostatic farfield acoustic form function for a rigid sphere 

plotted versus the dimensionless Helmholtz number, ka , the number of wavelengths that 

fit around the circumference of the sphere; (a.) 0 1ka≤ ≤   (b.) 0 30ka≤ ≤ . 
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Figure 2.4: Scattered pressure fields from a rigid sphere (real part) under steady state 

driving with (a.) ka = 1, (b.) ka = 20.  The horizontal and vertical axes are normalized and 

presented in units of the sphere's radius, a.  The sphere’s location is depicted by the black 

circle at the center of the image.  The intensity value of the pixels in the images 

represents the pressure amplitude at that location, normalized to the maximum pressure 

amplitude in the image.  The plane wave insonifying the sphere approaches from the left 

side of each figure. 

 

2.2.1.2 Spherical Shell Target 

 

The target primarily used in this work, and subsequently referred to as the ‘standard 

spherical shell target’, is a 6.35 mm outer diameter air-filled spherical shell made of 

aluminium 3003 with a nominal ratio of inner radius to outer radius of 0.91.  The 

monostatic form function for this target is calculated from the solution presented in 

Section 2.2.1, using the properties shown in Table 2.1.  The result is depicted by the 

dashed line in Figure 2.5.  The target’s response exhibits a number of resonance peaks 

associated with different wave modes in the target’s scattering response; the origin of 

these peaks will be discussed subsequently in Section 2.2.2. 
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The circles in Figure 2.6 are generated from a solution that assumes the shell is 

filled with a fluid, more specifically air.  However, originally in this work a classic 

solution for the scattered pressure, developed by Goodman and Stern [65] and 

reformulated by Hickling [66], was used to calculate the form function of the standard 

shell target.  This solution assumes a vacuum filled interior for the shell.  It was of 

interest as to whether this solution is also valid for the standard shell target.  

Superimposed on Figure 2.5, as a solid line, is the form function calculated from the 

solution assuming a vacuum filled interior.  Clearly there is no discernable difference 

between the air-filled interior and evacuated interior solutions.  Thus, the vacuum interior 

solution accurately predicts the behaviour of the scattered field.  This formulation 

requires the solution of fewer boundary conditions and can be used in cases where 

computation time is of importance.  The solution obtained by assuming a fluid-filled shell 

is however more general, and will be valid in cases where the shell’s impedance is not 

sufficiently high relative to the interior fluid’s impedance. 

 

 

Figure 2.5: Magnitude of the monostatic farfield acoustic form function for a 6.35 mm 

outer diameter hollow aluminum spherical shell plotted versus frequency, assuming a 

vacuum filled interior (solid line) and an air-filled interior (dashed line).  
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Table 2.1: Material properties used in the analytical prediction of the aluminum spherical 

shell’s monostatic farfield form function.  

Shell outer radius 3.182 mm  

Shell inner radius 2.892 mm 

External fluid density, water 998 kg/m
3 

External fluid sound speed, water 1483.8 m/s 

Density, aluminum 3003 2680 kg/m
3
  

Dilatational wave speed, aluminum 3003 6171.8 m/s 

Shear wave speed, aluminum 3003 3108.9 m/s 

 

 

 

2.2.1.3 Effect of External Loading 

 

The physical properties in the medium external to the sphere also affect the target’s 

scattering response.  Shown in Figure 2.6 is the form function for the aluminium shell 

target, zoomed on the resonance peak centered at 600 kHz.   Within this figure, the 

density of the fluid external to the shell is varied 5%±  from its nominal value.  

Increasing the density of the fluid results in a shift in the center of the resonance from 

higher to lower frequency.  In contrast, increasing the sound speed in the external 

medium results in an upward shift in the resonance frequency, as observed in Figure 2.7 

where the sound speed is varied 5%±  from its original value.  This simple analysis 

demonstrates that it is not always obvious how the resonance frequencies will change as 

the external medium is switched to one possessing a higher density and higher sound 

speed. 
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Figure 2.6: Form function of the aluminum spherical shell target between 550-650 kHz 

where the density of the fluid external to the sphere is varied 5%±  from its nominal 

value. 

 

 

Figure 2.7: Form function of the aluminum spherical shell target between 550-650 kHz 

where the sound speed of the fluid external to the sphere is varied 5%±  from its nominal 

value. 
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2.2.2 Resonance Identification 

The form function of the standard spherical shell target, described in Section 2.2.1.2 and 

depicted in Figure 2.5, consists of a number of resonance peaks that are characteristic of 

different wave modes in the target’s scattering response.  Depicted in Figure 2.8 is the 

theoretical time trace of a typical backscattered return from this target, given a short 

broadband (here a 2-cycle, 1-MHz sine wave) incident waveform.  The return consists of 

four consecutive wave packets, located between 150-175 µs.  The first wave packet, 

whose center is located at 153 µs, is associated with a specular return from the proximal 

face of the target.  A target’s specular return does not exhibit resonance behavior and, for 

short pulses, the waveform shape is typically a replica of the incident pulse shape (i.e. the 

pressure of the incident acoustic wave and not the transmitted voltage).  Following the 

specular return, at times of approximately 157 µs, 163 µs and 174 µs, are wave packets 

associated with ‘surface elastic waves’.  As depicted schematically in Figure 2.9, surface 

elastic waves circumnavigate the shell on its surface and are radiated into the external 

medium as they propagate.  The objective of this section is to identify the resonances 

appearing in the standard spherical shell target’s scattering response through the use of 

resonance scattering theory and analysis drawn from papers by Kargl and Marston [83] 

and Sammelmann et al. [84].  This is done in order to determine the types of waves upon 

which the time reversal procedure operates. 
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Figure 2.8: Theoretical time trace, normalized amplitude versus time, of a backscattered 

waveform from the standard hollow aluminum shell target, given a 2 cycle 1 MHz sine 

wave interrogation pulse.  A specular return and three surface elastic wave (SEW) returns 

are identified with arrows. 

 

 

 

Figure 2.9: Schematic depicting the types of waves scattered from an elastic spherical 

shell excited by a plane wave of infinite extent. 
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Resonance scattering theory (RST) is a method through which the elastic 

components of a target’s scattering response can be isolated and subsequently identified.  

The general technique has its origin in investigations of nuclear scattering [85, 86] and 

was first applied to acoustic scattering problems in 1978 [87].  Extensive reviews of the 

theory are found in Refs. [88] and [89].  In this work, the technique is employed to isolate 

resonances in the standard shell target’s response. 

The fundamental principle of RST is that the scattering response of a target can be 

decomposed into a purely elastic response and a background response.  For example, 

Figure 2.10 presents the form function of a solid stainless steel sphere submerged in 

water.  In the region 0 5ka< < , the target’s response is identical to that of a rigid sphere; 

see Figure 2.3.  However, for higher ka  values, a number of peaks, valleys, and sharp 

dips in the response are apparent.  These characteristics are attributed to eigenmodes 

(resonances) of vibration of the target, when driven by an incident acoustic wave.  These 

resonances appear to be superimposed on top of a rigid ‘background’ response that is 

attributed to purely diffractive scattering phenomena. 

 

Figure 2.10: Magnitude of the far-field monostatic form function for a solid stainless steel 

sphere plotted versus the dimensionless parameter ka.   
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In RST, either a rigid or soft (pressure release) background is subtracted from an 

elastic target’s response to isolate its purely elastic response.  A rigid background is 

appropriate for solid targets and shell targets with a wall thickness normalized to the 

outer radius ( ) / 0.01t a b a= − ≥ .  A soft background is appropriate for shell thicknesses 

0.001t ≤  [89].  For shells of wall thickness lying between these two limits, it was 

originally proposed that it would be appropriate to subtract an intermediate background 

[90].  However, subsequent investigations showed that there is no way to determine an 

appropriate intermediate background a priori and that a rigid background is suitable for 

most metallic shells of practical interest [89]. 

Presented in Figure 2.11 is the monostatic far-field acoustic form function for the 

standard spherical shell target decomposed into the individual terms in its partial wave 

series solution; see equation (2.62).  In Figure 2.11a is shown the magnitude of the 

complete form function, normalized and plotted versus frequency, identical to Figure 2.5.  

The shaded gray region depicts the frequency range of interest for the current work.  In 

Figure 2.11b to Figure 2.11l, partial waves 0n =  to 10n = are shown individually, 

normalized to the same scale as Figure 2.11a.  Also shown at the right of each figure 

panel is the angular dependence of each partial wave.  In Figure 2.12, equivalent results 

are presented for a rigid sphere submerged in water. 

It is clear from Figure 2.12 that each partial wave of the rigid sphere’s response 

consists of a number of broad peaks that are uniformly distributed across frequency.  

These peaks are attributed to purely diffractive scattering effects where the waves may 

circumnavigate the sphere but do not penetrate its interior.  These peaks, associated with 
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diffraction, are also seen in the standard spherical shell's partial waves in Figure 13. Of 

greater interest however, are the sharp peaks and dips superimposed on these.  They are 

attributed to the elastic nature of the target, where the incident wave field penetrates the 

shell material and excites its vibratory response.  To isolate the elastic modes of the 

standard spherical shell target, the rigid sphere’s response is subtracted from the shell’s 

elastic response.  The results of this procedure are presented in Figure 2.13b to Figure 

2.13l.  The peaks in each of these sub-figures represent wave resonances attributed to the 

spherical shell’s purely elastic scattering response.  For reference, the total far-field form 

function of the target is repeated in Figure 2.13a, without background subtraction. 

It is clear from Figure 2.13b that the monopole ( 0n = ) mode of the standard shell 

target does not contribute significantly to the scattered field, as its magnitude is relatively 

small in comparison with the other partial waves.  As one examines higher partial wave 

numbers, three distinct resonance peaks become visible.  This is especially evident in 

Figure 2.13f, where each peak is pointed out with an arrow and labeled according to its 

type.  As will be seen, these resonances correspond to symmetric, 0s , and antisymmetric, 

0a , ‘Lamb-type’ surface elastic waves.  The peak labeled ‘spurious’ was found not to 

correspond directly to any physical wave type and is likely an artifact of the numerical 

computation.  The reader should note that the location of a particular type of resonance 

peak appears to shift from low to high frequency with increasing partial wave number.  

A number of investigations [59, 84] have shown that the phase velocity of the n
th

 

surface elastic wave resonance, 
n

c , normalized by the ambient fluid sound speed is  
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( )

( )1

n n
kac

c n n
=

+
 (2.63) 

where ( )
n

ka  is the location of a particular resonance, n  is the partial wave mode number.  

By manually searching in the purely elastic target’s response for the center frequency of 

resonance peaks up to 80ka = , the phase velocity of a particular wave type is determined 

through equation (2.63).  The ka  locations of resonance peaks for each of the three wave 

types present in Figure 2.13 are given in Table 2.2 for each partial wave number. 

 It is now useful to compare the phase velocity of wave modes in the standard 

spherical shell target to those of a flat plate possessing the same thickness and material 

properties.  In a classic paper [91], Horace Lamb demonstrated that two different types of 

waves propagate on a flat elastic plate in vacuo.  These waves are referred to as 

symmetric and asymmetric Lamb waves.  The name of each wave type is representative 

of the displacement of the plate about the center of its cross-section.  Symmetric Lamb 

waves on a flat plate are typically characterized by motion that is symmetric about the 

center of the plate’s thickness and are dilatational in nature, whereas asymmetric Lamb 

waves are characterized by flexural type displacements that are asymmetric about the 

plate’s center.  A derivation of the dispersion relation for each of these wave types is 

reviewed in Appendix A.   

Dispersion curves for the lowest order Lamb wave modes on a flat plate are 

plotted as solid lines in Figure 2.14.  The shell thickness and material properties of the 

standard spherical shell target are used to produce this result.  For flat plates, a wave’s 
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phase velocity is typically plotted against the product kh , where k  is the wave number 

and h  is the plate’s thickness.  Here, this quantity is scaled as [83] 

 

1

1n
c b

ka kh
c a

−
  

= −   
  

 (2.64) 

so that the dispersion curves can be compared with the wave modes of the standard 

spherical shell target.  Superimposed in Figure 2.14 are the phase velocities of two wave 

modes of the spherical shell target, calculated from equation (2.63) using resonance 

locations listed in the first and second columns of Table 2.2.  The 0s  mode is depicted 

with squares and the 0a +  mode is depicted with circles.  The agreement between the flat 

plate and spherical shell’s dispersion curves indicates that the shell waves are indeed 

analogs to Lamb waves that propagate on a flat plate.  Thus, it is reasonable to assume 

that the waves are confined to the sphere’s surface and that their phase velocity can be 

approximated with equation (2.63).  From this point on, the spherical shell equivalent to 

the asymmetric Lamb wave will be referred to as an antisymmetric Lamb wave, in 

accordance with the nomenclature typically found in the literature. 

 The wave mode listed in the third column of Table 2.2, is similar in nature to the 

0a + antisymmetric Lamb wave and is typically referred to either as an 0a − antisymmetric 

Lamb wave [84], an A  wave, or a Scholte-Stoneley wave [92].   It arises from a 

bifurcation of the spherical shell’s 0a  Lamb wave mode when the shell is loaded with 

fluid [5, 84, 93] (the shell’s 0a  wave equivalent splits into distinct 0a +  and 0a −  waves).  

For manmade targets of interest that become buried in the ocean, at standard operational 

frequencies (2-20 kHz) this wave typically provides the strongest contribution to the 
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scattered field[5].  In the current work, the frequencies and target size have been scaled 

approximately to this range.  Extensive research has been carried out investigating the 

0a −  wave type and the reader is referred to Refs. [5, 84, 92-94] for further information 

regarding its properties and relevance.   

 To further confirm the nature of a particular resonance type, the displacement at 

the internal and external surfaces of the spherical shell is calculated.  Equations (2.28) 

and (2.29) are expanded to determine exact expressions for the displacement of the shell 

material in the radial and tangential directions, respectively, where the sphere is excited 

at steady state by an infinite plane acoustic wave.  The radial displacement is of the form, 
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and displacement in the tangential direction is  
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First order derivatives of Legendre polynomials are determined through numerical 

differentiation and the second order derivatives are determined through equation (2.57).   
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The displacement at the external ( )r a=  and internal ( )r b=  surfaces of the 

sphere is calculated as a function of θ  for a specific partial wave index, n , and ka  value.  

Figure 2.15 depicts these results for a cross section of the spherical shell target given a 

partial wave index of 4n =  and 2.6083ka = ; these are parameters for the location of an 

antisymmetric Lamb wave resonance (see Table 2.2).  The solid line shows the location 

of the internal and external surfaces of the shell at their maximum displacement 

amplitude.  The arrows are displacement vectors that depict the deformation of the shell 

from its at-rest equilibrium state.  The displacement amplitudes have been scaled by a 

large linear factor to make the sphere’s deformation visible.  One can clearly see from the 

figure that the displacements at the internal and external surfaces of the sphere are in 

phase with one another and that the deformation of the shell is indeed flexural in nature.  

This is the behavior one would expect for an antisymmetric Lamb wave resonance.  

Figure 2.16 presents similar results but for 10n =  and 39.3559ka = , the expected 

location of a symmetric Lamb wave resonance.  The results in this Figure indicate that 

the internal and external surfaces of the shell are moving out of phase with one another 

and that the displacement is ‘dilatational’ in nature, as expected from Lamb wave theory. 

The remainder of this work focuses only on the spherical shell’s 0s  and 0a −  

waves because the 0a +  wave does not contribute significantly to the scattered field over 

the frequency range of interest.  In Figure 2.17, the phase velocity of 0s  and 0a −  waves 

are plotted as squares and circles, respectively, fit with a solid line.  Also plotted is the 

group velocity of these waves; that is, the speed at which the envelope of a wave packet 
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travels.  The group velocity is determined from the phase velocity using the following 

expression [83]: 

 
( )( )

1

1
1

ngn

nn

cc
ka

dc d kac ka

−
 

−= −  
 

. (2.67) 

Finally, from the group velocity, the delay between the specular echo and the ( )1m +  

circumnavigation ( )0,1,2,...m =  of a Lamb wave around the shell, as it would appear in a 

scattered signal’s time trace, is [83] 

 ( ) ( )1 12 1 cos
n gn n

t a c c mϑ π ϑ π− − ∆ = − + − +   (2.68) 

where  

 1sin .n

n

c

c
ϑ −  

=  
 

 (2.69) 

The 
n

ϑ  term is the angle at which the incident acoustic wave couples into the shell 

material – note that this angle has a value of zero at 180θ = ° .  Equation (2.69) is a trace 

velocity matching condition, which assumes that the surface wave phase velocity is 

greater than the ambient fluid sound speed, 
n

c c> .  This is not always the case and for 

surface wave phase velocities slower than the ambient sound speed, where
n

c c< , 

equation (2.69) yields a non-real result.  Under this circumstance, the coupling angle is 

approximated to be 90
n

θ = ° .  Calculated echo delays for the spherical shell’s symmetric 

and antisymmetric Lamb waves are plotted versus frequency in Figure 2.18. 

 The time trace presented in Figure 2.8 is now re-examined in order to compare the 

echo delay of wave packets in the experimentally measured return to the predicted Lamb 
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wave propagation times.  In the second column of Table 2.3 are listed the expected echo 

delays for the first circumnavigation of an 0s  Lamb wave and the first two 

circumnavigations of an 0a −  Lamb wave for wave frequencies of 0.8 MHz.  Although the 

incident waveform has a center frequency of 1 MHz, as the surface waves circumnavigate 

the shell, a downshift in the wave’s frequency is typically observed.  This is due to 

radiation damping, where higher frequencies are radiated more strongly into the 

surrounding fluid than lower frequencies.  The 0.8 MHz frequency is selected based upon 

spectral analysis of the first antisymmetric Lamb wave echo.  Measured echo delays 

listed in the third column of Table 2.3 correspond to the three wave packets following the 

specular return in Figure 2.8.  These results clearly show reasonable agreement with the 

predicted Lamb wave arrival times.  Having confidently identified the dominant 

resonances in the standard spherical shell’s response, similar analysis can be used 

subsequently to determine the types of waves on which the time reversal technique 

operates. 
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Figure 2.11: Far-field acoustic form function of the standard aluminum spherical shell 

target decomposed into the individual components of its partial wave series solution.  (a.) 

Magnitude of the far-field acoustic form function versus frequency. (b.)-(l.) Partial waves 

n = 0 to n = 10, magnitude versus frequency.  The vertical axis is normalized and 

presented on the same scale for all figure panels.  The gray shaded region depicts the 

frequency range of interest for the current work. At the right of panels b-l is plotted the 

angular dependence of each partial wave. 



52 

 

 

 

 

 

 

Figure 2.12: Far-field acoustic form function of a rigid sphere decomposed into the 

individual components of its partial wave series solution.  (a.) Magnitude of the far-field 

acoustic form function versus frequency. (b.)-(l.) Partial waves n = 0 to n = 10, 

magnitude versus frequency.  The vertical axis is normalized and presented on the same 

scale for all figure panels.  The gray shaded region depicts the frequency range of interest 

for the current work.  At the right of panels b-l is plotted the angular dependence of each 

partial wave. 
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Figure 2.13: Far-field acoustic form function of the standard aluminum spherical shell 

target decomposed into the individual components of its partial wave series solution after 

subtraction of the partial waves from a rigid sphere.  (a.) Magnitude of the far-field 

acoustic form function versus frequency. (b.)-(l.) Partial waves n = 0 to n = 10, 

magnitude versus frequency, after background subtraction.  The vertical axis is 

normalized and presented on the same scale for all figure panels.  The gray shaded region 

depicts the frequency range of interest for the current work.   At the right of panels b-l is 

plotted the angular dependence of each partial wave.  In (f.) resonance types are 

identified with arrows. 
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Table 2.2: List of resonance ka  locations (center frequency of resonance) for each partial 

wave of the 0a − , 0a + , and 0s  Lamb type wave resonances in the purely elastic response 

of the standard shell target. 

 Resonance ka  Location 

n 0s  0a +  0a −  

1 ----- ----- ----- 

2 10.2810 ----- 1.6882 

3 13.7534 ----- 2.1442 

4 17.3697 ----- 2.6083 

5 21.0341 ----- 3.1683 

6 24.7145 ----- 3.8804 

7 28.3948 ----- 4.7485 

8 32.0672 ----- 5.7526 

9 35.7196 ----- 6.8647 

10 39.3559 ----- 8.0568 

11 42.9643 ----- 9.3129 

12 46.5407 ----- 10.6091 

13 50.0850 ----- 11.9772 

14 53.5814 ----- 13.4573 

15 57.0297 ----- 14.8655 

16 60.4300 20.1460 16.1376 

17 63.7624 22.5303 17.3057 

18 67.0227 24.6585 18.4178 

19 70.2070 26.8187 19.4739 

20 73.3113 29.0029 20.5141 

21 76.3036 31.2031 21.5462 

22 ----- 33.3553 22.5463 

23 ----- 35.5396 23.5544 

24 ----- 37.7318 24.5545 

25 ----- 39.9400 25.5546 

26 ----- 42.1402 26.5547 

27 ----- 44.3484 27.5468 

28 ----- 46.5727 28.5389 

29 ----- 48.7809 29.5310 

30 ----- 50.9971 30.5231 

31 ----- 53.2213 31.5232 

32 ----- 55.4375 32.5073 

33 ----- 57.6618 33.4993 

34 ----- 59.8780 34.4914 

35 ----- 61.9262 35.4835 

36 ----- 64.3184 36.4836 

37 ----- 66.5347 37.4677 

38 ----- 68.7589 38.4598 

39 ----- 70.9671 39.4519 

40 ----- 73.1833 40.4440 

41 ----- 75.3115 41.4361 

42 ----- 77.5998 42.4282 

43 ----- ----- 43.4203 

44 ----- ----- 44.4124 
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Figure 2.14: Dispersion curves of symmetric, 0s , and asymmetric, 0a + , Lamb waves that 

propagate on a plate and on the standard spherical shell target.  The waves’ phase 

velocity is normalized by the sound speed of water, 1479c = m/s, and plotted versus ka .  

Dispersion curves for plate waves are presented as solid lines and their types are labeled 

accordingly.  Phase velocities of symmetric and asymmetric Lamb waves on the spherical 

shell are shown as squares and circles, respectively.   
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Figure 2.15: Plot depicting the displacement (from equilibrium) of the standard spherical 

shell’s inner and outer surfaces at 2.6083ka = .  The 4n =  term in the partial wave series 

solution of the target’s response under steady state forcing is shown.  The infinite plane 

wave exciting the target approaches from the left.  The arrows are vectors showing the 

displacement of each surface of the shell from their un-deformed positions.  The solid 

lines indicate the position of the shell’s surfaces at the maximum deflection amplitude.  

The shell’s displacement is scaled so that it is clearly visible for demonstrational 

purposes. 
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Figure 2.16: Plot depicting the displacement (from equilibrium) of the standard spherical 

shell’s inner and outer surface at 39.3559ka = .  The 10n =  term in the partial wave 

series solution of the target’s response under steady state forcing is shown.  The infinite 

plane wave exciting the target approaches from the left.  The arrows are vectors showing 

the displacement of each surface of the shell from their un-deformed positions.  The solid 

lines indicate the position of the shell’s surfaces at the maximum deflection amplitude.  

The shell’s displacement is scaled so that it is clearly visible for demonstrational 

purposes. 
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Figure 2.17: Phase and group velocities of symmetric, 0s , and antisymmetric, 0a − , Lamb 

waves that propagate on the standard spherical shell target.  The wave velocities are 

normalized by the sound speed of water, 1479c = m/s, and plotted versus frequency over 

a range relevant to the current work.  Phase velocities of symmetric and antisymmetric 

Lamb waves on the spherical shell are shown as squares and circles, respectively.  The 

phase velocity results are interpolated with a solid line. 
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Figure 2.18: Echo delay with respect to the specular return versus frequency, of 

symmetric ( 0s , square) and antisymmetric ( 0a − , circles) Lamb waves that circumnavigate 

the spherical shell target.  The delays for both the first and second circumnavigations of 

the 0a −  wave are shown. 

 

 

Table 2.3. Comparison of predicted and measured echo delays, with respect to the 

specular echo, of symmetric, 0s , and an antisymmetric, 0a − , Lamb waves propagating on 

the standard spherical shell target.  Predicted values assume a frequency of 0.8 MHz. 

Wave Type Predicted Delay ( sµ ) Measured Delay ( sµ ) 

0s  - 1
st
 circumnavigation 3.7 4 

0a −  - 1
st
 circumnavigation 9.5 10 

0a −  - 2
nd

 circumnavigation 19.9 21 
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Chapter 3  
 

 

 

Methodology 
 

 

“It doesn’t matter how beautiful your theory is, it doesn’t matter  

  how smart you are.  If it doesn’t agree with experiment, it’s wrong.” 

 Richard P. Feynman 

 

This chapter is devoted to a detailed description of the system employed in scaled 

laboratory experiments.  In Section 3.1, an overview of the experimental setup is 

provided, detailing the physical setup as well as the electronic instrumentation.  In order 

to ensure that the time reversal procedure is free to isolate resonances in the 

backscattering response of a target, any resonances present in response characteristics of 

the transducer or electronics employed must be equalized.  A filter designed to account 

for the resonant response of the transducer and the electronics is described in Section 3.2.  

The sensitivity of this calibration filter to range and angle of incidence is investigated in 

Section 3.3.  The response of the standard spherical shell target is measured 

experimentally in Section 3.4.  The results of this measurement are compared to a 
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simulated result generated from the partial wave series model described in Chapter 2.  

Finally, the acoustic properties of the sediment phantom are characterized in Section 3.5.   

3.1 Experimental Setup 
 

Scaled time reversal experiments are conducted in a water-filled test tank located in the 

Underwater Sound Laboratory at Boston University.  Monostatic pulse-echo experiments 

are conducted, in which the same transducer is used for the transmission and reception of 

acoustic energy.  The transducer used is a 12.7 mm diameter Panametrics V-303 

unfocussed broadband piston transducer.  It possesses a nominal center frequency of 1 

MHz with a quality factor of approximately 2. The transducer is mounted at the center of 

a 7 x 7 cm square acrylic baffle that is 12.7 mm thick.  Metallic spheres and spherical 

shells are used as scattering targets and are either suspended in the free field, at the center 

of the tank, or buried within a sediment phantom, described below.  A picture of the 

experimental setup is shown in Figure 3.1.  The test tank is made of galvanized steel and 

has internal dimensions 0.75 m wide x 2.40 m long x 0.57 m deep.  The tank is 

surrounded by a custom built aluminum frame to which a 3-axis positioning system is 

affixed.  The positioning system affords control of the transducer’s location in the 

vertical, and two orthogonally aligned horizontal directions.  Both manually controlled 

micrometers and computer controlled Zaber T-LA Series linear actuators are used 

interchangeably for position control, depending on whether automated positioning is 

necessary for a particular experiment. The tank’s water is filtered and degassed nightly 

using a particulate filter and pinhole degasser [95]. 
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The primary target used in all experiments, the ‘standard spherical shell target’, is 

a 6.35-mm outer diameter air-filled spherical shell made of aluminium 3003.  Several of 

these spheres were procured from the McMaster-Carr supply company.  The target 

possesses a nominal inner to outer radius ratio of 0.91.  It is positively buoyant and, for 

free field experiments, is suspended beneath a horizontal strip of ~ 0.5 mµ thick Scotch 

3170 polypropylene packing tape, which spans the width of the tank.  The tape is 

determined to be acoustically transparent through pulse-echo measurements.  A 

photograph of this target configuration is presented in Figure 3.2.  Targets are positioned 

at a distance of 10 cm from the transducer’s face; justification for this standing distance is 

discussed subsequently in Section 3.3. 

For buried target experiments, the sphere is wrapped in a thin layer of nylon 

netting and secured using a piece of monofilament line to the bottom of a cubic acrylic 

container, 10 cm on a side with a wall thickness of 2 mm.  A close up photograph of the 

target with and without the nylon netting is depicted in Figure 3.3.  The container is filled 

with a sediment phantom consisting of a consolidation of spherical soda lime glass beads, 

such that the target’s center is buried at a depth varying from 1 cm to 4 cm.  Samples of 

oceanic sediment with grain sizes a fraction of the smallest wavelength of interest were 

not readily available and thus, the glass bead consolidation is used as a substitute.  In this 

document it is referred to as a glass bead sediment phantom or more simply a sediment 

phantom.  A sieve analysis performed on a 250 mL sample of the beads revealed sizes 

ranging from 75 to 200 mµ in diameter, with a mean diameter of 128 mµ ; the mean grain 

size corresponds to approximately 1/10 of the smallest wavelength in the frequency range 
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of interest.  The sediment phantom is initially prepared by slowly pouring the glass beads 

into degassed water and allowing the sample to sit, submerged within the test tank, for an 

extended period of time before scattering experiments are conducted.  Subsequent 

observations show that the test tank and sediment sample are sufficiently gas free to 

eliminate any detectable echo returns from trapped gas pockets. 

The transducer is positioned normally incident to the surface of the sediment at a 

standing distance of 10 cm.  Scattering experiments from the sediment without a target in 

place indicate that reflections from the sides of the container are not present in 

backscattered returns and that the container is deep enough to allow time gate rejection of 

reflections from its bottom.  To align the transducer, the spherical shell is unburied and 

the amplitude of the specular echo from the target is maximized.  The target is then 

carefully reburied in the same position and the surface of the sediment is scraped flat. 

A schematic of the experimental system in its buried target configuration is 

depicted in Figure 3.4.  The thick solid line connecting instruments shows the path 

through which signals are transmitted.  Software is used to generate all outgoing 

waveforms and is interfaced with a GAGE CompuGen 4300 D/A board.  Once a 

waveform is loaded to the D/A board it is passed through an AR Model 25A250 power 

amplifier, routed through a Ritec RDX-6 passive diplexer, and sent to the transducer. The 

diplexer also contains a diode clamp, which prevents high amplitude signals from 

entering the preamplifier in transmit mode, and a diode expander, which limits 

interference from noise generated at the power amplifier in receive mode.  The thick 

dashed line in Figure 3.4 displays the path through which received signals are routed.  
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Received signals are low pass filtered below 2 MHz using an active Krohn Hite 3905B 

filter/preamplifier, monitored in real time using a Tektronix 2465 analog oscilloscope, 

and acquired with a GAGE Compuscope 14200 A/D board with 14 bit dynamic range.  

The dotted line in Figure 3.4 displays paths over which signals are sent to control the 

timing of electronic instrumentation.  A function generator is used to trigger both the D/A 

and A/D boards at a pulse repetition frequency of 100 Hz.  The A/D board is operated at 

a sampling rate of 25 MHz and supplies a clock signal at the same frequency to the D/A 

board. 

 

Figure 3.1: Picture of experimental setup.  In the foreground is the steel test tank in which 

time reversal experiments are carried out.  The tank is surrounded by an aluminum frame 

to which positioning equipment is mounted.  In the background, behind the tank, is the 

electronic instrumentation rack and computer workstation controlling the experimental 

system. 

 

 



65 

 

 

 

Figure 3.2: Picture of the aluminum spherical shell target suspended in the free field, at 

the center of the test tank.  The target is positively buoyant and is held in place by a layer 

of ~ 0.5 mµ  Scotch 3170 polypropylene packing tape that spans the width of the tank.  

The tape is clamped in place with manually fashioned acrylic holders.  

 

 

Figure 3.3: Picture of the standard aluminum spherical shell target free-standing (to the 

right) and wrapped in a thin layer of nylon netting that is secured using a piece of 

monofilament line. 
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Figure 3.4: Diagram of experimental instrumentation used in time reversal experiments.  

Experiments are performed both with targets suspended in the free field beneath a layer 

of transparent tape and buried in a container filled with a sediment phantom.  This 

illustration depicts the configuration used for buried target experiments. 
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3.2 System Calibration 

 

For the iterative time reversal process to be free to converge without bias to any target 

resonance within the bandwidth of the transducer, the response of the transmit-receive 

system must be flat within this bandwidth.  Since no real transducer possesses this 

specification, a digital filter is designed to flatten the combined transmit-receive 

response.  The filter design procedure is similar to the ones employed in Refs.[96, 97].  A 

system diagram that summarizes the design of this filter is given in Figure 3.5.  Under the 

assumption that scattering experiments are linear and time invariant, the measured return 

from a scattering target in the frequency domain is of the form 

 ( ) ( ) ( ) ( ) ( ) ,t rR K K G Eω ω ω ω ω=  (3.70) 

where ( )tK ω [Pascal/volt] and ( )rK ω [volt/Pascal] are the frequency responses of the 

transducer upon acoustic transmission and reception, respectively, ( )G ω is the 

backscattering response of the target, and ( )E ω is the driving signal sent to the 

transducer.  To determine the combined transmit-receive response, ( ) ( )t rK f K f , the 

transducer is pointed vertically up at the free-water surface, which is taken to be a flat 

pressure-release surface.  A pulse, ( )0e t , is then transmitted and a pulse, ( )0r t , reflected 

from the surface is received.  The Fourier transforms of the transmitted pulse and surface 

return are ( )0E ω  and ( )0R ω , respectively. 

The transmitted waveform, shown in Figure 3.6a in the time domain and Figure 

3.6b in the frequency domain, is a 100 sµ  duration linear frequency modulated chirp 
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sweeping frequencies 10 2200 kHz− .  This frequency range encompasses the full 

bandwidth of the transducer used.  The waveform is designed such that its magnitude 

spectrum is flat over the ~ 400 1600−  kHz band.  Returns from the free-water surface are 

coherently averaged 2000 times.  The resulting averaged waveform is shown in the time 

and frequency domains in Figures 3.6c and 3.6d, respectively.  This waveform is 

characteristic of the frequency response of the V-303 transducer, with a center frequency 

of 1 MHz, and a quality factor of ~2.  The reader should note that it is especially 

important to allow the tank water to sit undisturbed for an extended period of time, such 

that oscillations of its surface reach a low amplitude steady state.  In these experiments 

the tank is not perfectly isolated from vibrations of the laboratory floor and very low 

frequency oscillations of the water surface pervade the measurements.  However, with 

averaging, the free-surface reflections are found to be sufficiently coherent for 

application of the calibration technique.  An inverse filter ( )H ω  can then be generated 

using the transmitted and received waveforms by taking their reciprocal, 

 ( )
( )
( )

0

0

E
H

R

ω
ω

ω
= − ,  (3.71) 

where the negative sign accounts for the 180° phase shift at the pressure release surface.    

However, in order to avoid singularities in the inverse filter’s response due to 

small values of ( )0R ω at certain frequencies, it is constructed using a Weiner filter [98] 

such that  

 ( )
( ) ( )

( )
0 0

2

0

,
E R

H
R

ω ω
ω

ω ε

∗−
=

+
 (3.72) 
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where ( )
2

0Rε ω�  within the frequency of range of interest.  For the calibration 

procedure described here, a value of 61 10ε −= ×  is used.  The magnitude response of the 

filter generated by equation (3.72) is shown as a dashed line in Figure 3.7a.  This type of 

filter is typically sufficient to equalize transducer resonances.  However, the time reversal 

procedure is extremely sensitive to the system response and a number of experiments 

show that the large peaks on either side of the transducer’s bandwidth (see Figure 3.7a) 

have the effect of introducing false resonances into the system.  That is, without a target 

in place, the time reversal procedure spuriously converges to one of these peaks. 

In order to mitigate this effect, a polynomial fit of the Weiner filter response is 

performed over the 0.4-1.6 MHz frequency band shown by the shaded grey regions in 

Figure 3.7.  The ‘windowed’ fit is then exponentially extrapolated outside this frequency 

range with a function proportional to ( )1 e ηω−− .  The exponent, 61 10η −= × , is specified 

manually so that the extrapolated response is smoothly varying over the entire frequency 

range.  A Yule-Walker recursive digital filter design function [99, 100] then operates on 

the polynomial fit to generate the coefficients of an infinite impulse response filter of 

order 50.  The filter is then applied to return waveforms via a direct form II transposed 

implementation.  The magnitude response and phase responses of this filter are presented 

as a thick solid lines in Figures 3.7a and 3.7b, respectively.  These are both smoothly 

varying over the entire frequency range shown.  The filter’s phase delay and group delay 

are shown in Figure 3.7c.  The group delay of a filter approximately represents the 

amount of time the envelope of a signal will shift upon application of the filter.  Although 
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the calibration filter possesses nonlinear phase, the maximum group delay is less than 1 

sµ  over the useable bandwidth.  This is a fraction of the smallest window size studied in 

the current work and observations show that application of the filter does not 

significantly distort return signals.  Finally, an additional low pass filter (not shown in 

Figure 3.7) is applied to help improve the fit between the ‘Yule Walker’ response and the 

Weiner filter response toward the high frequency end of the useable system bandwidth 

(see the right side of the shaded gray box in Figure 3.7a). 

The resonances of the transducer are then removed from measured echoes through 

application of the inverse filter, where now calibrated returns are of the form 

 ( ) ( ) ( ) ( ) ( ) ( ).t rR K K H G Eω ω ω ω ω ω=  (3.73) 

Since ( )H ω  and ( ) ( )t rK Kω ω  are inverses within the frequency range of interest, the 

calibrated return is simply a product of the responses of the outgoing pulse and the 

scattering response of the target. This allows the iterative time reversal technique to be 

free to converge without bias to the dominant backscatter mode(s) of the target. 

 The inverse filter is tested by pointing the transducer at the free-water surface and 

transmitting the linear frequency modulated chirp depicted in Figure 3.6a in the time 

domain and in Figure 3.6b in the frequency domain (this is the same waveform used to 

generate the filter).  Again, the backscattered return from the free-water surface, depicted 

in Figures 3.6c and 3.6d as a solid line, is characteristic of the transducer’s resonant 

response.  The magnitude response of the generated calibration filter is presented as a 

dashed line in Figure 3.6d.  When applied to the free surface return, the inverse filter 

normalizes the transducer’s response, resulting in the waveform presented in Figures 3.6e 
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and 3.6f.  As observed in these figures, this calibrated waveform is a relatively accurate 

replica of the initial outgoing pulse.  Therefore, it is now safe to assume that the system 

response has been successfully normalized and that the transducer’s resonances will not 

interfere with convergence of the time reversal procedure to a resonance in the scattering 

response of a target.  As evident in Figure 3.6f, the usable bandwidth of the system is 

between approximately 0.4-1.6 MHz.  The magnitude of the calibrated system response 

varies by less than 10% from its mean value over this frequency range.  As a final note, to 

be discussed in further detail in the next section, the reader should be aware that, if a flat 

system response is desired, any subsequent scattering experiments should be carried out 

at the same standing distance and angle of incidence at which the calibration is 

performed.  

 

 

Figure 3.5: System diagram for generation of the calibration filter used in scattering and 

time reversal experiments. 
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Figure 3.6: Waveforms and associated spectra from tests of the normalization procedure 

for the Panametrics V-303 unfocussed broadband, Q~2, piston transducer nominally 

centered at 1 MHz.  (a.) Linear chirp driving voltage sent to the transducer in which the 

transmitted pulse is directed normally at the pressure release water surface.  (b.) 

Magnitude spectrum of (a).  (c.) Transducer voltage for the first reflection from the 

pressure release tank surface.  (d.) Solid line is the magnitude spectrum of (c) and the 

dashed line is the magnitude response of the inverse filter used in the transducer 

calibration procedure.  (e.) Waveform (c) after application of the inverse filter.  (f.) 

Magnitude spectrum of (e).  The amplitude in all subplots is normalized to the maximum 

value and plotted on a linear scale. 
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Figure 3.7: Response of the system calibration filter used in time reversal experiments 

plotted versus frequency.  (a.) The thin dashed line is the magnitude response of the 

Weiner filter.  The thick solid line is the magnitude response of the final calibration filter 

designed using the Yule Walker method.  (b.)  Same as (a) but the phase response of the 

Yule Walker filter is plotted over the same frequency range.  (c.) The phase delay and 

group delay of the Yule Walker filter.  The solid gray box in both subplots shows the full 

bandwidth of interest. 
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3.3 Transducer Characteristics 
 

Ultrasonic piston transducers are known to generate pressure fields that exhibit 

complicated spatial variability.  In this section, the sensitivity of the calibrated system is 

investigated with respect to range and angle of incidence.  A model of sound radiation 

from a baffled piston is used to verify experimental observations and to determine 

constraints that must be imposed on the operational configurations of the system.  An 

understanding of these effects will be important subsequently in guiding the 

interpretation of results from time reversal experiments. 

3.3.1 Range Dependence 

 

An analytical prediction of the pressure field radiated by a baffled circular piston 

provides a reasonable model for the field generated by the Panametrics V-303 transducer 

used in time reversal experiments.  This field is classically modeled by the Rayleigh 

integral [78], 

 ( ) 0 0 0, , ,
2

i t ikR

S

ik c u e e
p x y z t dS

R

ωρ

π

−−
= ∫ , (3.74) 

where 0ρ  is the density of propagation medium, 0c  is the sound speed, k  is the wave 

number, 0

i t

pu u e
ω−=  is the velocity of the piston face, and R  is the distance from a point 

on the piston’s face to a point in the field.  Equation (3.74) is analytically tractable for 

only a small number of special cases.  One such case is for the pressure distribution along 

the axis of a piston, which reduces to  

 ( ) ( ) ( ) ( )2 2

02 sin / 2
i kr t

p r i P k r a r e
ξ ω+ − = − + −

  
. (3.75) 
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0P  is the driving pressure amplitude, r  is the axial distance from the face of the piston, a  

is the piston radius, and ( )2 22 k r a rξ = + −  is a phase term.  In cases where equation 

(3.74) is not analytically tractable it is solved numerically as, for example, in Refs. [101, 

102]. 

Using the formulation in Ref. [102], the pressure field radiated by a 12.7 mm 

diameter piston driven at 1.6 MHz is calculated.  This is the highest operational 

frequency of the calibrated transducer and is thus the frequency at which diffraction is 

most likely to impact the transmit/receive beam pattern at ranges of interest.  The 

magnitude of the calculated pressure field, normalized to the maximum value, is 

presented in Figure 3.8a up to an axial distance of 150 mm and a radial distance of 12.5 

mm.  The magnitude of the on-axis pressure distribution, calculated from equation (3.75), 

is plotted in Figure 3.8b.  Superimposed on Figure 3.8a are vertical lines at axial positions 

of 43 mm, 100 mm, and 137 mm.  These lines intersect the on-axis location of the 

piston’s nearfield distance, the standing distance used in time reversal experiments, and 

the Rayleigh distance of the piston, respectively.  The Rayleigh distance of a baffled flat 

piston transducer, defined as [78] 

 
2

0
2

ka
R =  (3.76) 

specifies the approximate distance to the “farfield”.  Beyond this distance, the pressure 

field can be considered to be spherically spreading, that is, it’s amplitude decays with a 

dependence of 1/ r .  In addition, the pressure field in this region is, in general, smoothly 

varying spatially, as observed in Figure 3.8. 



76 

 

 The nearfield distance is defined here as the location of the last peak in the on-

axis pressure distribution.  As evident in both subplots in Figure 3.8, the spatial pressure 

distribution within the nearfield is characterized by a complicated interference pattern, 

possessing a large number of peaks and nulls.  Experiments conducted within this region 

are extremely sensitive to spatial misalignment and would be ill-suited for the current 

work.   As observed in Figure 3.8, the spatial pressure distribution between the Rayleigh 

distance and the nearfield distance is relatively smoothly varying.  As such, a nominal 

standing distance of 10 cm between the face of the transducer and the closest target of 

interest is selected for all experiments performed in this work.  This distance is selected 

because the amplitude of measured target echoes is found to be sufficiently high.  The 6-

dB beamwidth of the transducer at a driving frequency 1 MHz is 7° .  This results in 

insonification of a circular area that is approximately 1.2 cm in diameter at the 10 cm 

standing distance. 

 A study of the sensitivity of the system response to variations in range is 

conducted for standing distances near 10 cm.  The same linear chirp shown in Figure 3.6a 

is transmitted at the free-water surface of the tank with the transducer aligned at normal 

incidence.  A bubble level temporarily placed on the face of the transducer is used to 

confirm the angle of incidence, as the free-water surface is always level.  For standing 

distances ranging from 8 cm to 12 cm in steps of 0.5 cm, Figure 3.9 shows the magnitude 

of the Fourier transform of scattered returns after calibration.  As evident from this figure, 

the shape of the system response does not vary appreciably as the standing distance is 

varied over this range.  This indicates that small errors in aligning the standing distance 
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of the transducer should not introduce an undesired bias in the frequency response of the 

system.   

The circles superimposed on Figure 3.8b indicate the spectral magnitude taken 

from each trace in Figure 3.9 at a frequency of 1.6 MHz.  The axial location of each data 

point in Figure 3.8b is twice the value of the range value stated in Figure 3.9.  This is 

because the total distance traveled by received waveforms is equal to twice the range 

value.  The values of the measured data are normalized so that the mean value over all 

measurements is equal to the mean value of the predicted response over the same axial 

range.  The trend of both the measured and predicted pressure magnitudes shows cursory 

agreement, decreasing as the standing distance is increased.  However, there are 

significant discrepancies between the measured and predicted values.  To determine 

whether these are associated with error in the range setting, error bounds for the 

measured data (not shown in Figure 3.8) are generated by predicting the possible 

variation in pressure magnitude due to uncertainty in the range.  Error bounds generated 

from uncertainties as high as ± 1 cm, an overly conservative estimate, do not fully 

account for the discrepancies between the predicted and measured axial pressure 

distribution.  Therefore, variations in this data are likely due to angular misalignment of 

the transducer, a parameter to which the system response is especially sensitive, as will 

be seen in the next section.  This is also confirmed upon examination of Figure 3.9 in 

which the pressure magnitude observed fluctuates more noticeably at higher frequencies, 

where the beam is narrower and thus the pressure scattered from the flat surface is more 

sensitive to angular misalignment. 
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Figure 3.8: Magnitude of the pressure field radiated from a circular baffled piston for a 

driving frequency of 1.6 MHz.  The piston is 6.35 mm in radius, the same radius as the 

Panametrics V-303 transducer used in time reversal experiments.  (a.) Magnitude of the 

pressure field as a function of axial and radial distance from the center of the piston.  

Thin black lines represent contours of constant pressure magnitude, marking relative 

values of 0.5, 0.25, and 0.125.  Vertical white lines intersect the on-axis location of the 

nearfield distance, the standing distance used in experiments, and the Rayleigh distance 

of the piston; the positions of these lines all scale linearly with frequency (see equation 

(3.76)).  (b.) The solid black line represents the magnitude of the pressure distribution 

along the central axis of the piston.  Circles represent measured values, normalized to the 

mean value of the predicted pressure at the same axial standing distance.  The piston is 

positioned at the left side of each figure.  Predicted values in both plots are normalized to 

their respective maximum value. 
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Figure 3.9: Magnitude spectra of waveforms backscattered from the free water surface 

given a linear chirp spanning 0.4-1.6 MHz, the useable bandwidth of the calibrated 

transducer.  The standing distance between the transducer’s face and the free water 

surface is varied in steps of 0.5 cm between 8 cm and 12 cm. 

 

3.3.2 Angle Dependence 

 

In order to examine the dependence of the system’s frequency response on the angle of 

incidence, the transducer is initially positioned normally incident to the tank’s free water 

surface at a distance of 10 cm.  A linear chirp spanning 0.4-1.6 MHz, the useable 

bandwidth of the calibrated transducer, is transmitted and a backscattered waveform is 

received.  This process is repeated at incident angles of 1-5 degrees, in steps of 1 degree, 

as well as at 10, 15, and 20 degrees.  A 10 cm standing distance between the center of the 

transducer’s face and the free water surface is maintained at all angles of incidence. 

In Figure 3.10, the magnitude spectrum of the waveform backscattered from the 

free water surface is presented for each angle of incidence, after application of the 

calibration filter.  Each result is normalized to the maximum amplitude recorded among 

all angles.  At an incident angle of 0 degrees, the response is flat over the entire system 
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bandwidth.  However, as the transducer is rotated to larger angles of incidence, a bias 

towards lower frequencies appears in the system response.  This is because the calibration 

filter does not take into account the frequency dependence of the transducer’s beam 

pattern. 

The angular dependence of the transducer’s beam can be modeled by an analytical 

prediction of the farfield directivity factor for a baffled vibrating piston, 

 
( )12 sin

( )
sin

J ka
D

ka

θ
θ

θ
= . (77) 

Here, 1J is a Bessel function of the first kind and order 1, k is the acoustic wavenumber 

in water, a is the radius of the piston, andθ  is the angle from an axis extending from the 

center of the transducer’s face.  The directivity is plotted in Figure 3.11 for driving 

frequencies of 0.4, 1, and 1.5 MHz.  For a driving frequency of 1.5 MHz, at incident 

angles greater than 5 degrees, the directivity of the transducer’s main lobe is less than 

10% of its maximum value.  A similar decrease is observed for a 1 MHz driving 

frequency at angles greater than 7 degrees and for a 0.4 MHz driving frequency at angles 

greater than 18 degrees.  These predictions show qualitative agreement with the results 

presented in Figure 3.10.  The effect is especially apparent for an incident angle of 10 

degrees.  At this angle, the system’s response consists of a peak centered at 0.4 MHz.  At 

1 and 1.5 MHz the response from the free water surface is negligible.  At an incident 

angle of 20 degrees, the backscattering response from the surface is negligible at all 

frequencies.  In these experiments, the directivity of the transducer acts as an additional 

filter that modifies the total response of the system.   
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 The angular dependence of the system response is then examined with the 

transducer positioned at a standing distance of 10 cm over the surface of the glass bead 

sediment phantom.  The results, presented in Figure 3.12, are qualitatively similar to 

those in Figure 3.10 but with a slightly larger bias toward lower frequency occurring at 

all angles of incidence.  Whereas the free water surface acts as a perfect specular 

reflector, returns from the sediment include contributions from volume scattering and 

surface roughness.  Because the calibration procedure is performed with the transducer 

facing the free water surface, it does not take into account these additional effects, and 

thus the system response is further shifted towards lower frequency, where these surface 

features are less influential.  As will be seen in subsequent experiments, due to the 

sensitivity of the time reversal procedure to the system response, an understanding of the 

effects of angular alignment is especially important when operating at non-normal angles 

of incidence. 

 

 

Figure 3.10: Magnitude spectra of waveforms backscattered from the free water surface 

given a linear chirp spanning 0.4-1.6 MHz, the useable bandwidth of the calibrated 

transducer.  The transducer is positioned at a standing distance of 10 cm and angles of 

incidence range from 0-20 degrees. 
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Figure 3.11: Transducer directivity factor as a function of angle for frequencies of 0.4, 1, 

and 1.5 MHz. 

 

 

 

 

 

Figure 3.12: Magnitude spectra of waveforms backscattered from the glass bead 

simulated sediment surface given a linear chirp spanning 0.4-1.6 MHz, the useable 

bandwidth of the calibrated transducer. The transducer is positioned at a standing 

distance of 10 cm and angles of incidence range from 0-20 degrees.   
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3.4 Target Characterization 
 

To test further the system calibration and to find the free-field resonances of the standard 

spherical shell target, an experimental measurement of the backscatter response of the 

target is compared with an analytical model.  To measure the response of the target 

experimentally, it is suspended in the free field and interrogated with a 100 sµ  linear 

chirp spanning 0.4 to 1.6 MHz.  The backscattered return is then calibrated.  The result is 

presented as a dashed line in Figure 3.13b in the frequency domain, normalized to its 

value at 800 kHz, and in Figure 3.13c in the time domain, normalized to its maximum 

amplitude.  The response in Figure 3.13b is proportional to the magnitude of the 

monostatic far-field form function of the target band limited by the frequency response of 

the measurement system. 

 The form function of the target is computed using the formulation presented in 

Chapter 2.  Form function calculations are sensitive to the geometric and material 

properties of a target as well as the ambient medium properties.  As such, several of these 

properties are carefully measured.  The procedures for estimation of the target parameters 

are presented first.  A Fowler model A193 micrometer with 0.001 mm resolution is used 

to measure the outer diameter (radius) of the target.  Fifty measurements, performed by 

manually rotating the sphere within the micrometer between measurements, reveal an 

outer radius of 3.182 mm (3.179-3.184; 95%).   

A nominal density of 2740 3kg/m  for aluminum 3003 is reported by the purveyor 

of the target spheres.  The density of the target material is measured with a Mettler 

AT200 scale that allows one to take advantage of Archimede’s principle.  That is, by 
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measuring the mass of a sample material in air, 
dry

m , and also when submerged in water, 

wet
m , the density can be determined as,  

 
( )

2dry H Odry

dry wet

mm

V m m

ρ
ρ = =

−
. (3.78) 

Here, 
2H O

ρ  is the density of water and V  is the volume of the material sample.  Four 

targets, shipped in the same package as the target used in the acoustic response 

measurement, are cut open so that the inner cavity is exposed.  The dry mass of each 

sample is then measured on the scale 30 times.  A sample of water that is allowed to 

degas for several hours is then poured into a container within which the scale is 

suspended.  From a measurement of the water temperature, 24.4 C° , the water density is 

calculated to be 997.2 3kg/m  [103].  Repeated measurements show that the temperature 

does not shift significantly over the period of time in which mass measurements are 

performed.  Samples of the target material are then submerged in the water and placed on 

the scale.  Observations show that the material wets readily.  Any bubbles persisting on 

the surface of the material are removed physically by scraping.  Thirty mass 

measurements are performed on each of the four samples when submerged.  Applying 

equation (3.78) to the measured data, the density of the shell material is determined to be 

2725.1 3kg/m  (2586.0-2857.0; 95%).   

 The wall thickness of the shell target used in the acoustic response measurement 

is then determined by assuming that the inner and outer surfaces of the shell are perfectly 

spherical.  The narrow range of uncertainty in outer diameter measurements (5 mµ ) 
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shows that this is a valid assumption for the outer surface.  Examining the four targets cut 

open for density measurements reveals that this should be a reasonable assumption for 

the inner surface as well.  The dry mass of the target is measured to be 90.2 mg (89.6-

90.8; 95%).  The wall thickness is then calculated as 

 

1
3

3

2

3

4

m
t a a

πρ

 
= − − 

 
  (3.79) 

where a  is the outer radius of the target, m  is the mass of the target and ρ  is the 

measured material density.  The inner radius of the target is then determined by 

subtracting the wall thickness value from the outer radius, b a t= − . 

 The value of the elastic modulus of aluminum 3003 is taken as that reported by 

the manufacturer of the target, 68.9E = GPa.  The value of Poisson’s ratio is taken as 

0.33σ = [78].  These two values are used to calculate the dilatational wave speed and 

shear wave speed of the material, along with both Lamè coefficients.  For quick 

reference, the material properties of aluminum used in form function calculations are 

summarized in Table 3.1.   

Table 3.1: Material properties used in the analytical prediction of the monostatic farfield 

form function of the aluminium spherical shell target. 

 
ρρρρ  

( )3kg/m  

dc  

( )m/s  

sc  

( )m/s  

E  

( )GPa  
σσσσ  

λλλλ  

( )GPa  

µµµµ  

( )GPa  

Al 3003 2680.0 6171.8 3108.9 68.9 0.33 50.3 25.9 

Water 998.1 1483.8 ----- ----- ----- ----- ----- 

Air 1.0 340 ----- ----- ----- ----- ----- 
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Also provided in this table are the density and sound speed of air, the interior fluid of the 

target, taken from tabulation [104].  The density and sound speed of the tank water are 

determined from calculations making use of a temperature measurement of 20.5 C°  [103, 

105]. 

The form function prediction is found to be convergent in the frequency range of 

interest upon summation over 44 modes, following the convention in Ref. [106]; partial 

wave series models typically converge through summation over ( )
max

~ 1.6 ka  modes.  A 

frequency spacing of 3052 Hz in the calculation provided adequate resolution.  

Decreasing the spacing does not reveal additional structure in the calculated form 

function up to 2 MHz.  To generate a waveform for comparison with the experimentally 

measured target response, the analytically predicted form function, f∞ , is substituted in 

equation (3.73) for the target’s backscattering response, ( )G ω , along with the 

transducer’s measured transmit-receive response, ( ) ( )t rK Kω ω  shown in Figure 3.6d.  

The magnitude of the Fourier transform of the simulated return after calibration is 

presented as a solid line in Figure 3.13b.  It is normalized to its value at 800 kHz for 

comparison with the experimental result.  The time domain response, shown as a solid 

line in Figure 3.13c, is calculated through an inverse Fourier transform and is normalized 

to its maximum amplitude.  A cross-correlation between the simulated and measured 

target responses is used to determine the appropriate delay for the simulation and align 

the waveforms for comparison.  
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Agreement between the experimentally measured and simulated responses in both 

Figures 3.13b and 3.13c indicates that the inverse filter used for calibration does 

effectively account for the transducer’s response.  Additional time traces shown in Figure 

3.14 demonstrate further agreement between predicted and measured returns.  A 

numerical routine that calculates the error between the measured and simulated responses 

reveals that through variation of the shell density within its measured uncertainty to a 

value of 2680.0 3kg/m , a minimum normalized mean squared error (NMSE) of 4.54% is 

obtained.  The grey shaded region in Figure 3.13b shows the 650-1650 kHz frequency 

range over which the error is computed.  The NMSE is presented in Figure 3.15 as a 

function of density with a vertical dashed line marking the density value reported by the 

supplier of the target.  Subsequent error minimization is performed by varying the elastic 

modulus of the target material 5%±  from its nominal value while fixing the density at 

2680.0 3kg/m .  This reveals that the reported value is sufficiently accurate; variation 

yields a less than 1% improvement in NMSE as observed in Figure 3.16.  Subsequent 

references to numerical scattering simulations in this work make use of the technique 

used to generate the simulated returns shown in this section. 
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Figure 3.13: Waveforms and associated spectra from the target characterization 

experiment.  (a.) Magnitude of the calculated monostatic far-field form function for the 

aluminum spherical shell target used in time reversal experiments versus ka.  (b.) The 

dashed line is the magnitude spectrum of the return from the target in which a linear chirp 

spanning 0.5 to 2 MHz is used for interrogation.  The solid line is the magnitude 

spectrum of the response of the target generated from a numerical simulation.  Both 

spectra are normalized to their respective values at 800 kHz.  (c.)  The dashed and solid 

lines are the time domain waveforms associated with the spectra in (b) of experiment and 

simulation, respectively.  Both waveforms are normalized to their maximum value. 
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Figure 3.14: Additional time traces from the target characterization experiment.  

Measured results are shown as dashed lines while those generated from numerical 

simulation are presented as a solid line.  (a.) Return from the standard spherical shell 

target given a 2 cycle, 1 MHz sine wave incident waveform. (b.) Return from the target 

given a 23 sµ  duration linear frequency modulated (LFM) chirp spanning 0.4-1.6 MHz 

used as an incident waveform.  (c.) Return from the target given a 45 sµ  duration LFM 

chirp spanning 0.4-1.6 MHz used as an incident waveform. 
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Figure 3.15: Normalized mean squared error between a measurement and simulation of 

the target response over the 650-1650 kHz frequency range.  The density of aluminum 

3003 used in the simulation is varied within its measured uncertainty.  The vertical 

dashed line marks the density value reported by the supplier of the target.   
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Figure 3.16: Normalized mean squared error between a measurement and simulation of 

the target response over the 650-1650 kHz frequency range.  The elastic modulus of 

aluminum 3003 used in the simulation is varied 5%±  from its nominal value, which is 

marked by the vertical dashed line. 
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3.5 Sediment Phantom Characterization 
 

The speed and attenuation of dilatational waves that propagate in the sediment phantom 

are characterized by through-transmission experiments.  A photograph of the physical 

setup is presented in Figure 3.17.  Two Panametrics V-305 unfocussed piston transducers 

are press-fit into steel baffles.  The transducers are 19.05 mm in diameter and possess a 

nominal center frequency of 2.5 MHz.  They are aligned axially at normal incidence on 

either side of a sample of the glass bead sediment described in Section 3.1.  The 

separation distance between the two baffles can be varied precisely, for one is mounted 

with sleeve bearings to rods that run the length of the test rig.  This apparatus was 

designed for and employed in previous attenuation measurements conducted in Ref. 

[107].  The setup of electronic instrumentation is depicted in Figure 3.18.  It is 

qualitatively similar to the setup used in time reversal experiments, except here separate 

transducers are used to transmit and receive. 

 The speed of sound of dilatational waves is determined by transmitting a signal 

from one transducer and digitizing the waveform received at the other.  By cross-

correlating the transmitted and received waveforms and searching for the location of the 

maximum value, a time of flight is determined.  From the time of flight, the sound speed 

can be calculated, assuming that the propagation distance is known. 

The following analysis details how values of the attenuation are determined.  If a 

voltage ( )E ω  is sent to the transmitter, the waveform measured at the receiver will be of 

the form 
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,

d

d r rR K K G d E e
α ωω ω ω ω ω −

= . (3.80) 

Here, ( )tK ω  and ( )rK ω  represent the electroacoustic responses of the transmitter and 

receiver, respectively, ( )α ω  is the attenuation of the sample, and d  is the separation 

distance between the transducers.  ( ),G dω  is a term that accounts for diffractive effects, 

i.e. the spatial variability in the beam pattern of the transmitter.  By measuring received 

waveforms at two separation distances, 1d  and 2d , the absolute value of the attenuation 

can be determined as  
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1 2

1 2

,
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R G d

d d

ω ω

ω ω
α ω

 
 
 =

−
. (3.81) 

Here, the ratio of the ( ),G dω  terms is referred to as a diffraction correction.  It is 

especially important to take into account when performing measurements of attenuation 

at short standing distances in the ultrasonic regime [108].  In the current work, each term 

in the ratio is determined by a theoretical approximation similar to that described in Ref. 

[109].  With knowledge of the sound speed of the medium of interest, the pressure field 

radiated by the transmitter is calculated over two dimensions using the Rayleigh integral 

computation described in section 3.3.1.  The predicted pressure magnitude is then 

numerically integrated over an aperture of the same size and position as the receiving 

transducer.  The face of the aperture is divided into N  concentric annuli and the pressure 

is assumed to be constant over each.  An average pressure is then calculated from 
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where ( ),iP dω  is the pressure at the center of the th
i  annulus, a  is the radius of the 

aperture, 
i

r  is the radial location of each annulus, and dr  is the width of each annulus.  In 

the current work, the average pressure is found to converge upon summation over 32 

annuli.  The theoretically predicted diffraction correction, 
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is then substituted in equation (3.81).  The reader should note that the attenuation values 

reported include losses due to intrinsic absorption, volume scattering, and the conversion 

of dilatational waves to shear waves. 

Measurements are first conducted in water to verify the experimental procedure.  

The plastic tank, within which the transducer rig is placed, is completely filled with 

distilled water that is allowed to degas overnight.  Transducers at separation distances of 

8 cm and 10 cm are utilized throughout the following experiments.  Monotonic signals 20 

cycles in duration are transmitted with frequencies ranging from 0.3-2 MHz in steps of 

0.025 MHz.  A pulse repetition frequency of 100 Hz allows enough time for the signals to 

decay between bursts.  One hundred coherent averages of received waveforms are 

performed at each measurement frequency.  The temperature of the tank water is 

measured as 20.5 C° , yielding a predicted sound speed of 1483.8 m/s [105] for the water.  

The temperature is found not to vary significantly over the time in which acoustic 
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measurements are conducted.  Sound speeds determined from the cross-correlation 

procedure are shown as small dots in Figure 3.19.  The measured and predicted sound 

speeds show agreement over the entire frequency range with a normalized root mean 

square error (NRMSE) of 0.28%. 

For measurements performed in water, if the attenuation is assumed to be 

negligible over the frequency range of interest, equation (3.81) reduces to  
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ω ω
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= . (3.84) 

The ratio of waveform amplitudes measured at the two receiver standing distances should 

agree directly with an analytical prediction of the pressure field at those locations.  

Predicted pressure distributions for driving frequencies of 0.5, 1, 1.5, and 2 MHz are 

shown in Figure 3.20.  The vertical solid lines in each figure panel represent the receiving 

aperture positioned at the two standing distances used in the experiment.  It is clear, 

especially from Figure 3.20d, that the receiver is located within the nearfield of the 

transmitter for some operational frequencies.  Thus, accounting for the spatial 

dependence of the pressure field in equation (3.81) is of paramount importance.  The 

theoretically predicted pressure ratio is presented as a solid line in Figure 3.21.  The 

results of the experiment are, presented as small dots in the same figure, are generated by 

computing the ratio of the received signal spectral magnitude measured at each separation 

distance.  Agreement between the experimental measurements and the theoretical 

predictions, to a NRMSE of 2.55%, indicates that this technique provides a reasonable 

correction for diffractive effects. 
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 Dry soda lime glass beads are then slowly poured into the degassed water, making 

an effort to not entrain air.  The sample is then allowed to sit submerged overnight.  

Observations show that the sample is sufficiently gas free.  The same experimental 

procedure employed for measurements in water is then repeated with the sediment 

phantom in place.  Twenty independent measurements are conducted at each separation 

distance.  In between measurements, the sample is mixed with a large spoon and allowed 

to settle for at least 30 seconds.  The results of sound speed measurements are shown in 

Figure 3.22.  Between frequencies of 0.3-0.925 MHz, the sound speed is approximately 

constant at 1730 m/s.  Above 0.925 MHz, the sound speed exhibits negative dispersion, 

decreasing to a value of 1600 m/s at 2 MHz.  As observed in Figure 3.23, the attenuation 

increases nonlinearly with frequency, ranging from 4 Nepers/m at 0.3 MHz to 59 

Nepers/m at 2 MHz.  The solid lines in Figure 3.23 represent error bounds generated 

from the uncertainty over multiple measurements, in the estimation of the diffraction 

correction, and in the separation distance.  The results show qualitative agreement with 

those presented in Ref. [110] for medium grained sand at similar frequencies.  

Subsequently, they will be used as an input to numerical scattering simulations to help 

draw conclusions about buried target scattering experiments. 
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Figure 3.17: Picture of the setup used in sediment phantom characterization experiments.  

Two Panametrics V-305 unfocussed piston transducers are press-fit into steel baffles.  

They are aligned axially at normal incidence on either side of a sample of the sediment 

phantom described in section 3.1.  The separation distance between the two baffles can be 

varied precisely, for one is mounted with sleeve bearings to rods that run the length of the 

rig. 
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Figure 3.18: Diagram of experimental instrumentation used to characterize the acoustic 

properties of the sediment phantom used in time reversal experiments.   
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Figure 3.19: Sound speed in distilled water as a function of frequency.  The solid line is 

the speed predicted from a measurement of the water temperature.  Small dots depict 

values estimated through time of flight measurements.  The normalized root mean square 

error between the predicted and measured results is reported on the figure. 
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Figure 3.20: Magnitude of the pressure field radiated from a circular baffled piston 

submerged in water as a function of axial and radial position.  The piston is 19.05 mm in 

diameter, the same diameter as the Panametrics V-305 transducers used in sediment 

characterization experiments.  Thin black lines represent contours of constant pressure 

magnitude and mark relative values of 0.5, 0.25, and 0.125.  The thick vertical black lines 

in each figure represent the aperture over which pressure is numerically integrated to 

generate the correction factor used in attenuation measurements.  The piston is positioned 

at the left side of each figure.  Predicted values in both plots are normalized to their 

respective maximum value. 
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Figure 3.21: Magnitude ratio of pressure averaged over a receiving aperture placed 10 cm 

away from a radiating piston, divided by the pressure magnitude at 8 cm.  The solid line 

represents the result predicted from numerical simulations.  The small dots represent 

measured values.  The normalized root mean square error between the predicted and 

measured results is reported on the figure. 
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Figure 3.22: Dilatational wave speed in the sediment phantom as a function of frequency.  

Small dots depict values estimated through time of flight measurements. 

 

 

 

 

 

Figure 3.23: Attenuation of dilatational waves in the sediment phantom as a function of 

frequency.  Small dots depict values estimated via through-transmission measurements.  

The solid lines represent error bounds generated from uncertainty over multiple 

measurements, in the estimation of the diffraction correction, and in the separation 

distance. 
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Chapter 4  
 

 

Free Field Results 
 

 

 

“The only source of knowledge is experience.” 

 Albert Einstein  

 

 

 

 

This Chapter presents results from experiments conducted with targets positioned in the 

free field.  In the first Section, the single-channel time reversal technique is used to 

isolate the dominant resonance in the scattering response of an elastic target.  The effects 

of stochastic noise are studied in Section 4.2.  The time reversal technique is then shown, 

in Section 4.3, to isolate surface elastic waves that propagate around the target and also 

multiple resonances in the target’s scattering response.  Finally, the ability of the 

technique to distinguish between targets of differing type is investigated in Section 4.4. 
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4.1 Resonant Target Echo Enhancement 
 

The Panametrics V-303 transducer is aligned to face the standard spherical shell target 

suspended in the free field at the center of the test tank.  In Figure 4.1 are shown the 

results of an experiment where 50 iterations of the time reversal procedure are performed 

with the time reversal window centered on returns from the target.  Time domain 

waveforms for iteration 0, iteration 10, and iteration 35 are shown in Figures 4.1a, 4.1b, 

and 4.1c, respectively.  The two vertical dashed lines in each time trace specify the 

position of a 20 sµ long time reversal window.  Figure 4.1d presents the magnitude 

spectrum of the signal within the time reversal window for successive iterations.  Results 

in the frequency domain are normalized to the peak spectral magnitude at the final 

iteration. 

To initiate the time reversal procedure, the target is insonified with a 2-cycle 1 

MHz sine wave with temporal center located 10 sµ following the trigger event, which 

defines time zero.  The echo for iteration 0, shown in Figure 4.1a, consists of a specular 

return located at 153 sµ , which is a reflection from the surface of the target closest to the 

face of the transducer.  Within the time reversal window, the specular return is followed 

by two surface elastic wave returns, one centered at 157 sµ  and the other at 163 sµ .  

Referring to the resonance scattering analysis performed in Section 2.2.2, it is determined 

that these returns correspond to 0s  symmetric and 0a −  antisymmetric Lamb waves, 

respectively.  In the frequency domain, as seen in Figure 4.1d, at iteration 0 there are a 

number of peaks present in the spectrum of the echo.  These correspond to combinations 
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of different wave modes in the scattering response of the target.  As evidenced in Figure 

4.1b and Figure 4.1d, after 10 iterations of time reversal an 800 kHz monotonic signal 

begins to fill the time reversal window.  After 35 iterations, the return from the target 

completely fills the time reversal window, as in Figure 4.1c, and has fully converged to 

the 800 kHz frequency.  The resonance centered at this frequency is the dominant mode 

in the experimentally measured target response shown in Figure 3.13.  It corresponds to 

an 0a −  antisymmetric Lamb wave.  The fluctuations observed in the frequency domain 

magnitude between even and odd iterations are due to changes in phase of the 

backscattered returns through iteration of the time reversal procedure as in equations 

(2.6) and (2.7). 

The time reversal technique automatically tunes in to the frequency characteristic 

of the dominant wave mode resonance in the backscattering response of the target.  The 

spectral magnitude of the 800 kHz target return increases by a factor of 6.6, or 16.4 dB, 

from iteration 0 to iteration 50.  Transmitting average power equivalent to that present 

within the window at the last iteration at an arbitrarily chosen frequency would not lead 

to the same results unless one by chance guessed the proper frequency a priori.   

In this experiment, and in many of the other experiments discussed in this work, 

50 iterations of the time reversal procedure are conducted in order to ensure that the 

process fully converges.  This is very likely a prohibitively large number of transmissions 

for practical applications.  However, as evident from Figure 4.1, only a few iterations are 

necessary to obtain a significant enhancement in the spectral response.  As a final note, in 

this example the signal-to-noise ratio of target returns is high enough to select the 
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optimum driving frequency after only a single transmission.  This will not necessarily be 

true, however, in the presence of noise. 

 

 

 

 

 

 

 

 

Figure 4.1: Backscattered returns from the spherical shell target suspended in the free 

field through multiple iterations of the time reversal procedure.  Vertical lines in (a)-(c) 

depict the position of a 20 sµ  long time reversal window.  (a.) The first backscattered 

return, iteration 0, where a 2 cycle 1 MHz sine waveform is used for interrogation. (b.) 

Backscattered return at iteration 10 of the time reversal procedure.  (c.) Backscattered 

return at iteration 35 of the time reversal procedure. (d.) Waterfall plot of magnitude 

spectra of signals within the time reversal window for iterations 0 through 50 normalized 

to the maximum spectral magnitude at the final iteration.  The spectra from (a)-(c) are 

highlighted with solid black lines. 
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4.2 Time Reversal in the Presence of Stochastic Noise 

 

The detection and identification of targets by acoustic scattering is often complicated by 

the presence of noise.  For the purposes of the following discussion, the noise is divided 

into two categories.  The first type is deterministic, that is, noise from other real scatterers 

which interferes with the backscattering response in a coherent way throughout 

successive receptions.  This type of noise can arise from sources such as volume 

scattering, reverberation, or the presence of false targets.  The second type of noise is 

stochastic in nature; its phase and amplitude varies non-deterministically throughout 

successive receptions.  This type of noise can arise from the electronic instrumentation 

employed and often sets the threshold for the smallest signal detectable.  Also, transient 

events can arise which are not coherent from throughout successive receptions, such as an 

object moving past the transducer or drift in waveforms due to the motion the transducer 

itself.  For the purposes of this study, these noise sources are considered to be stochastic 

as well. 

In this Section, the simulation of target scattering introduced in Section 3.4 is 

used to investigate the performance of the time reversal technique in the presence of 

stochastic noise, using numerics.  Deterministic noise sources, which are not as 

straightforward to simulate numerically, will be considered experimentally in subsequent 

Sections.  The performance of the time reversal technique is judged through quantitative 

comparison with the results of a simple autocorrelation operation performed on the first 

return signal.  For these simulations, successful performance is defined as having 

successfully identified the dominant resonance in the response of the standard spherical 
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shell target.  The first transmission consists of a standard interrogation waveform, 

specifically a linear frequency modulated (LFM) chirp that sweeps through the entire 

frequency bandwidth of the system.  The energy in this waveform is evenly distributed 

among all frequencies. 

As depicted in Figure 4.2a, a 20- sµ  long receive window is centered on returns 

from the target, at approximately 8 sµ  following the specular return.  A window with 

these parameters encompasses a strong resonant portion in the response of the target.  

Because the strength of resonances in received waveforms is dependent upon the size and 

location of the window, the resonance to which the system converges under noise free 

conditions is defined as the dominant resonance.  Under the selected operating 

conditions, this is the resonance centered at 800 kHz in the steady state response of the 

target.  The half-power bandwidth of this resonance spans from 773.1 kHz to 836.2 kHz.  

If the maximum value in the spectral magnitude of a windowed received waveform lies 

within this bandwidth, the interrogation is considered to be a ‘correct call’. 

Figure 4.2a and 4.2e present, in the time and frequency domains respectively, the 

waveform received after interrogating the target with a 20- sµ  duration LFM chirp that 

spans the full system bandwidth.  Figures 4.3a and 4.3e show the waveform that results 

after performing 50 iterations of the time reversal procedure.  The vertical dashed lines in 

Figures 4.2a-4.2d and 4.3a-4.3d indicate the location of the receive window, while those 

in Figures 4.2e-4.2h and 4.3e-4.3h indicate the half-power bandwidth of the 800 kHz 

dominant resonance.  In both Figures 4.2e and 4.3e, the maximum value in the spectral 
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magnitude of returns lies within the frequency window of the dominant resonance.  Thus, 

the result in both cases is considered as a ‘correct call’. 

Noise is then added to the scattering simulation as follows.  A signal-to-noise 

ratio (SNR) is defined as,  

 10SNR 20log max

noise

S

σ

 
=  

 
 (4.1) 

where 
max

S  is the maximum amplitude of the first backscattered return and 
noise

σ  is the 

standard deviation (root mean square amplitude) of the noise.  A pseudorandom number 

generating function is used to create a set of double precision floating point (16 decimal 

digit) numbers ranging from zero to one and possessing an amplitude distribution that is 

Gaussian.  The Fourier transform of this signal is then computed and the spectrum is 

filtered using the magnitude response of the calibrated system.  Figure 4.4 shows the 

magnitude spectrum of the noise after filtering.  The spectral density is flat over the entire 

system bandwidth, and thus the noise is approximately white.  Computing the inverse 

Fourier transform of the filtered noise signal yields a waveform that can then be added to 

a simulated target return.  The rms-amplitude of this noise waveform is scaled to achieve 

a desired SNR value. 

 In noise-free conditions, depicted in Figure 4.2e, the dominant spectral peak in the 

response of the target is identified through only a single transmission.  If this is always 

the case, there is no need to perform the time reversal procedure.  Noise is then added to 

the system and new target returns are generated.  The bottom three rows in Figures 4.2 

and 4.3 show representative examples of noisy target returns for varying SNR’s.  The 
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LFM chirp achieves a correct call for a SNR of 15 dB, while the time reversal technique 

is successful at a SNR of 15 dB and 12 dB.  Both methods fail for a SNR of 6 dB.  These 

specific examples show that in some cases, waveforms generated via the time reversal 

technique outperform the LFM chirp. 

In order to quantitatively estimate performance, a numerical experiment is 

conducted where the number of correct calls is recorded over 300 trials.  This numerical 

experiment is conducted both with and without a target in place for SNR’s ranging from 

0-36 dB in steps of 1 dB.  Selected performance curves resulting from this experiment are 

presented in Figure 4.5.  The solid black circles correspond to results generated from 

using a single LFM chirp interrogation.  This waveform is also used to initiate the time 

reversal procedure.  The data shown by white circles are generated from 10 iterations of 

the time reversal procedure.  The solid black lines towards the bottom of the figure are 

generated by running the same numerical experiments without the target in place.  These 

lines, with an average value of ~5%, indicate the percentage of times a dominant spectral 

peak falls within the frequency window randomly, by chance.  As observed in this figure, 

for SNR’s greater than approximately 10 dB, the time reversal technique outperforms the 

LFM chirp.  The maximum improvement occurs at a SNR of 17 dB, where time reversal 

accurately identifies the dominant resonance of the target 60% more frequently than an 

autocorrelation of the first return.  However, as shown by the gray data in Figure 4.5, 

coherent averaging of returns improves the performance of the LFM chirp.  Here, 

performing the same number of averages as time reversal iterations reduces the maximal 

difference in performance to only 18.5% at an SNR of 15 dB.   
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 In Figures 4.6 and 4.7, performance curves for both techniques are presented for a 

variety of iterations/averages up to a maximum of 19.  It is clear from these figures that 

the performance of both techniques depends on both the SNR and the number of 

transmissions employed.  As expected, because the same LFM chirp is used for the initial 

interrogation in both cases, the statistical properties at iteration/average 0 are 

approximately identical.  In general, the time reversal technique possesses better 

performance for SNR’s between ~15-35 dB, while the averaging technique performs 

better for SNR’s less than 15 dB.  For SNR’s greater than 35 dB, both techniques identify 

the dominant resonance approximately 100% of the time.  To summarize the comparison, 

a performance surface is generated.  For each SNR and number of iterations/averages, the 

percentage of correct calls obtained via averaging is subtracted from the percentage 

correct calls observed through time reversal.  The results of this subtraction are presented 

in Figure 4.8.  Contours are drawn along values of -10%, 1%, 10% and 20%.  The light 

shaded region (positive percentages), indicates the parameters for which the time reversal 

technique outperforms averaging returns from LFM chirp interrogation.  In contrast, the 

dark shaded region indicates the parameters for which the averaging technique is more 

effective.   

The results presented in this Section show that for some operational conditions, 

single-channel iterative time reversal yields an improvement over a more standard 

method in the identification of a dominant target response frequency.  However, in order 

for the time reversal technique to outperform coherent averaging of returns given a LFM 

chirp interrogation, received signals must possess a minimum SNR.  For the simulation 
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conditions studied, this is approximately 15 dB.  The time reversal technique does not 

reduce the level of incoherent noise, as averaging does, it simply enhances the dominant 

spectral component present in a return signal.  A decision to utilize the technique will 

depend upon a number of factors that may vary depending upon the system in use and the 

operating conditions.  While the experiments conducted here only apply directly to the 

specific set of instrumentation, target, and window parameters employed, it is expected 

that the general properties observed should extrapolate to other operational scenarios. 

 

 

 

 

Figure 4.2: Target returns given a 20- sµ  duration linear frequency modulated chirp 

interrogation waveform.  Returns are generated in the presence of varying levels of 

additive Gaussian white noise.  Panels (a.)-(d.) are time domain returns for signal to noise 

ratios of infinity, 15 dB, 12 dB, and 6 dB, respectively.  The vertical dashed lines in each 

figure panel denote the position of a 20 sµ  receive window.  The horizontal dashed lines 

indicate the root-mean-square amplitude of the noise.  Panels (e.)-(h.) present the 

magnitude spectrum of signals within the receive window in (a)-(d).  The vertical dashed 

lines in these figure panels indicate the half-power bandwidth of the dominant target 

resonance present. 
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Figure 4.3: Target returns after 50 iterations of time reversal given a 20- sµ  duration 

linear frequency modulated chirp interrogation waveform used for the initial 

interrogation.  Returns are generated in the presence of varying levels of additive 

Gaussian white noise.  Panels (a.)-(d.) are time domain returns for signal to noise ratios of 

infinity, 15 dB, 12 dB, and 6 dB, respectively.  The vertical dashed lines in each figure 

panel denote the position of a 20 sµ  receive window.  The horizontal white dashed lines 

indicate the root-mean-square amplitude of the noise.  Panels (e.)-(h.) present the 

magnitude spectrum of signals within the receive window in (a)-(d).  The vertical dashed 

lines in these figure panels indicate the half-power bandwidth of the dominant target 

resonance present. 

 

 



114 

 

 

 

 

 

Figure 4.4: Magnitude spectrum of the numerically generated noise used in simulations 

of target scattering. 

 

 

 

 

Figure 4.5: Selected performance curves comparing the efficacy of a single linear 

frequency modulated (LFM) chirp waveform, 10 iterations of time reversal, and 10 

averages of returns from using a LFM chirp interrogation.  The percentage of correct 

dominant target resonance identifications out of 300 trials is presented for signal-to-noise 

ratios ranging from 0-36 dB.  The thick solid black lines near the bottom of the figure 

indicate the number of correct calls without a target in place. 
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Figure 4.6: Performance curves for the single-channel time reversal technique utilizing 0-

19 iterations.  The percentage of correct dominant target resonance identifications out of 

300 trials is presented for signal-to-noise ratios ranging from 0-36 dB.  The thick solid 

black lines near the bottom of the figure indicate the number of correct calls without a 

target in place. 

 

 

Figure 4.7: Performance curves for the technique where 0-19 coherent averages are 

performed on target returns given a 20- sµ  duration linear frequency modulated chirp.  

The percentage of correct dominant target resonance identifications out of 300 trials is 

presented for signal-to-noise ratios ranging from 0-36 dB.  The thick solid black lines 

near the bottom of the figure indicate the number of correct calls without a target in 

place. 
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Figure 4.8: Performance surface generated by subtracting the percentage of correct calls 

via the averaging technique from the percent correct calls observed through time reversal.  

Contours are drawn along values of -10%, 1%, 10% and 20%. 
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4.3 Isolation of Surface Elastic Waves and Scattering 

Resonances 
 

Results presented in the previous Sections of this Chapter demonstrate that the iterative 

single-channel time reversal technique yields an enhancement of the dominant resonance 

in the scattering response of a target.  However, in practical applications, the isolation of 

only a single resonance is typically not enough to confirm positive identification.  As 

such, the remainder of this Chapter investigates whether the technique can be used to 

isolate both surface elastic wave returns and multiple resonances in the scattering 

response of the target. 

4.3.1 Window Timing Definition 

 

In order to isolate and identify resonance features present in the extended echo return 

from a target, precise knowledge of the location of the time reversal window is crucial.  

To track the position of the time reversal window with respect to returns from a target, a 

reference time is defined as shown schematically in Figure 4.9.  Before time reversal 

experiments are conducted, a 3 cycle, 1 MHz sine wave is transmitted with a delay such 

that its center lies at a time equal to one half of the duration of the time reversal window, 

0 5
window

. τ .  The transmitted pulse interacts with the scattering target at a time equal to 

t arg et
τ , as depicted in Figure 4.9a.  Because these experiments are monostatic, the center 

of the specular echo from the target will then arrive at the transducer at a time equal to 

2
t arg et

τ .  The time of flight of the center of the received wave packet is then manually 

recorded and defined as a relative window time of 0
r

t = .  For free field experiments, this 
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reference time is set as the center of the specular return from the front face of the target.  

In buried target experiments, because it is difficult to accurately isolate the specular 

return from a target, the reference time is set as the center of the return from the surface 

of the sediment phantom.  As depicted in Figure 4.9b, when the center of the time 

reversal window is located at time 0
r

t = , specular returns generated by transmitting 

arbitrarily shaped pulses at the target appear to be centered within the window.  Because 

the reference time is specified manually, there is some variability throughout successive 

experiments.  In this work it is estimated that the central position of the window is known 

to within approximately 1 sµ± . 

 

 

Figure 4.9: Schematic of how the relative window time,
r

t , is defined in time reversal 

experiments.  
trigger

τ  is the time at which a trigger event occurs.  
window

τ  is the duration of 

the time reversal window.  
t arg et

τ  is the time at which a transmitted wave will interact 

with the target.  (a.) A 3 cycle sine wave is transmitted at a scattering target and the echo 

is received. (b.) Returns from arbitrarily shaped transmissions appear to be centered 

within the time reversal window. 
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4.3.2 Isolation of Surface Elastic Wave (Lamb Wave) Returns 

 

In order to determine whether surface elastic wave returns from the standard spherical 

shell target can be isolated in both time and frequency, a 5 sµ  long time reversal window 

is shifted from relative window times of 30 sµ−  to 60 sµ  in steps of 0.5 sµ .  Here, the 

numerical target scattering simulation is employed to generate results.  At each relative 

window time, 50 iterations of the time reversal procedure are performed.  White noise 

5 sµ  in duration is used for the first interrogation at each window location.  Figure 4.10 

presents the results from this simulation in a format similar to a spectrogram.  The 

horizontal axis in each figure panel indicates the relative window time.  At each relative 

window time, the magnitude spectrum of the signal within the time reversal window is 

computed and plotted along the vertical axis.  Before a spectrum is computed, a cosine 

squared envelope is applied to 20% of either side of the window.  The intensity in both 

figure panels of Figure 4.10 is normalized to the maximum value in Figure 4.10b. 

At iteration 0, the target is barely visible, as evident in Figure 4.10a.  However, 

after 50 iterations of the time reversal technique, multiple discrete returns in time are 

present.  The reader should note that the word “returns” is used loosely here. While 

Figure 4.10b is indeed reminiscent of a spectrogram, it is not generated from a single 

waveform.  It is generated from 181 separate waveforms (one for each 0.5 sµ  time step 

from 30 sµ−  to 60 sµ ), the spectra of which form the intensities recorded along each 

vertical axis.  In order to determine the relative time spacing between each packet of 

energy in Figure 4.10b, a profile of the figure is created.  In Figure 4.11, the maximum 

spectral magnitude recorded at each relative window time is plotted.  The reader should 
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note that again, as in Figure 4.10a, it is difficult to discern discrete returns at iteration 0.  

At iteration 50, however, there are a total of six broad local maxima, each of which is 

highlighted at its center with a vertical dashed line.  The relative spacing between each 

peak is indicated. 

In this simulation, the specular return is centered at 1 s
r

t µ= − , due to a slight 

error in defining the reference time.  The time reversal window first interacts with the 

target at a window location approximately 5 sµ  prior to the center of the specular return, 

a relative time equal to the width of the window.  This phenomenon is consistent 

throughout all free field simulations and experiments and is expected based upon how the 

window reference time is defined (see Figure 4.9). The 5 returns following the specular 

return are then identified.  The relative time between each wave packet correlates 

approximately to the echo delay predicted in Chapter 2 (see Figure 2.18 in that Chapter) 

for circumnavigations around the shell target of 0a −  antisymmetric Lamb waves. 

Plotted in Figure 4.12 are the waveforms and spectra at iteration 50 for relative 

window times marked in Figure 4.11.  In Figures 4.12a-4.12f, vertical dashed lines 

highlight the location of the time reversal window.  For each relative window time 

shown, the reader should note that a wave packet appears to be centered within the 

window.  Figures 4.12g-4.12l present the spectra of these windowed signals.  The center 

frequency and relative window time from each figure panel are recorded in the second 

and third columns of Table 4.1, respectively.  Using these values, the theoretically 

predicted echo delays of the first five 0a −  antisymmetric Lamb wave circumnavigations 

are computed using equation (2.68).  These predicted times are presented in the fourth 
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column of Table 4.1.  The normalized root mean square error between the measured and 

predicted times is presented in the final column of Table 4.1.  The measured and 

predicted echo delays show good agreement, with a maximum error of 3.4%.  Therefore, 

identification of the 0a −  antisymmetric Lamb wave is confirmed.   

The downshift in the convergence frequency as the window passes the target is 

due to radiation damping; that is, high frequencies radiate more strongly into the ambient 

fluid and are thus attenuated more after each circumnavigation around the sphere.  A 

1.212 MHz convergence frequency is observed when the window is centered on the 

specular return.  This is higher than the 1 MHz frequency that would be expected with a 

specular reflector.  This occurs because the cross-section of the target is smaller than the 

spot size illuminated on the free-water surface during calibration.  Therefore, less low 

frequency energy is backscattered and a bias toward higher frequencies is introduced in 

what is otherwise a nominally flat response.   Also, a 0s  symmetric Lamb wave, with a 

circumnavigation time of 4 s~ µ , is mixed with the specular return. 

To verify the numerical results, a laboratory tank experiment is conducted.  Figure 

4.13 presents the results, which are qualitatively similar to those in Figure 4.10.  

However, the fifth Lamb wave circumnavigation is not detected and the other returns are 

more damped than in the numerical results.  In the numerical simulation, the returns 

could be stronger because the surface elastic waves are assumed to propagate along the 

surface of the shell unimpeded.  In the physical experiment, the polypropylene tape 

beneath which the target is suspended may extract energy from the surface waves, 

damping their response.   



122 

 

Although an inverse problem is not explicitly solved here, it is expected that time 

and frequency information obtained using this methodology could possibly be useful for 

the purpose of target identification.  Previous studies have shown that multiple surface 

elastic waves can be isolated in time and frequency using array based time reversal [20, 

111].  The single-channel time reversal technique presented here could provide a simple 

and inexpensive alternative to these array based techniques. 

 

 

 

 

 

Figure 4.10: Echo spectral magnitude versus frequency and time from a numerical 

experiment where the center of a 5 sµ  duration time reversal window is shifted in steps of 

0.5 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ .  Spectra from iteration 0 and 

iteration 50 are shown in (a) and (b), respectively.  The intensities in each are normalized 

to the maximum value in (b).  Wave packets are labeled according to their type.  Incident 

waves approach the target from the left side of the figure. 
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Figure 4.11: The black solid line represents the maximum spectral magnitude recorded at 

each relative window time in Figure 4.10b, iteration 50.  The solid gray line presents the 

same results for Figure 4.10a, iteration 0.  Both results are normalized to the maximum 

value at iteration 50.  Vertical dashed lines highlight the time locations of local maxima.  

The relative time between maxima is also presented. 
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Figure 4.12: Waveforms from iteration 50 of time reversal appearing at relative window 

times, 
r

t , marked by vertical dashed lines in Figure 4.11.   The vertical dashed lines in 

(a)-(f) outline the location of a 5 sµ  duration time reversal window.  Panels (g)-(l) present 

the magnitude spectra of signals within the time reversal window in (a)-(f).  Vertical 

dashed lines in these figure panels mark the location of the peak spectral magnitude.  The 

vertical axes in time and frequency domain waveforms are presented in arbitrary units on 

the same scale. 
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Table 4.1: Wave types and their center frequencies, measured arrival times, and predicted 

arrival times for the 5 sµ  duration time reversal window shifting experiment. 

Wave Type 
Frequency 

(MHz) 
r ,measured

t  

( sµ ) 

r , predicted
t  

( sµ ) 

NRMSE 
(%) 

Specular / 0s  1.212 -1 ------- ------- 

0a − , 1
st
 Circ 0.842 8.5 8.3 1.9 

0a − , 2
nd

 Circ 0.640 20 19.8 0.9 

0a − , 3
rd

 Circ 0.568 32.5 32.2 1.0 

0a − , 4
rd

 Circ 0.513 45.5 45.5 0.1 

0a − , 5
th

 Circ 0.482 57.0 59.0 3.4 

 

 

 

 

 

Figure 4.13: Echo spectral magnitude versus frequency and time from a laboratory tank 

experiment where the center of a 5 sµ  duration time reversal window is shifted in steps of 

0.5 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ .  Spectra from iteration 0 and 

iteration 50 are shown in (a) and (b), respectively.  Wave packets are labeled according to 

their type.  Incident waves approach the target from the left side of the figure. 
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4.3.3 Window Size Study (Multiple Resonance Isolation) 

 

The 5 sµ  window size employed in the previous Section is small enough to isolate 

individual surface elastic waves in time.  However, there is a tradeoff between time 

resolution and frequency resolution.  The frequency resolution of a square window is 

inversely proportional to the window length.  Thus, a 5 sµ  long window possesses a 

frequency resolution of approximately 0.2 MHz.  That is, the center frequencies of 

resonances appearing within a spectrum must be separated by greater than 0.2 MHz to be 

resolved from one another.  The spacing of resonances in the steady state form function 

of the standard spherical shell target is approximately 0.1 MHz.  Therefore, with a 5 sµ  

window size it is not possible to confidently resolve individual resonances in the 

frequency domain.  In order to do so, the duration of the time window must be expanded. 

As such, the numerical window shifting simulation conducted in the previous 

Section is repeated using larger time windows.  “Spectrograms” resulting from this 

analysis are presented in Figure 4.14 for window sizes ranging from5 40 sµ− .  It is 

evident from this figure that as the window size is increased, the bandwidth encompassed 

by any individual resonance is decreased.  For example, in Figure 4.14a where a 5 sµ  

long window is employed, the energy packet centered at 0.800 MHz possesses a half-

power bandwidth of approximately 0.250 MHz.  The bandwidth of this energy packet 

decreases to 0.110 MHz in Figure 4.14b, where a 10 sµ  time window is employed.  

Energy packets that are smeared across frequencies in Figure 4.14a, appear to become 

more distinct and narrow in Figure 4.14b.  However, for some wave packets, the energy 
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is still distributed over a frequency band that encompasses two or more resonances in the 

scattering response of the target.    When the window size is expanded to 15 sµ , as in 

Figure 4.14c, the bandwidth of the 0.800 MHz energy packet decreases to 0.065 MHz.  

This is less than the 0.1 MHz spacing of resonances in the scattering response of the 

target.  Therefore, individual resonances can now be confidently identified; this is also 

true for larger time windows.  The improvement in frequency resolution is achieved, 

however, at the expense of temporal resolution. 

 It is apparent from Figure 4.14, that for window sizes larger than 10 sµ  it is not 

possible to isolate individual surface elastic waves in time.  However, although individual 

returns are not separated, evidence of them is still apparent in the data.  For example, 

consider Figure 4.15.  In this figure, for the corresponding window sizes shown in Figure 

4.14, the peak spectral magnitude recorded at each relative window time is plotted.  In 

Figure 4.15, for window sizes greater than or equal to15 sµ , there is a broad peak upon 

which are superimposed a number of sharp local maxima.  Select local maxima are 

marked with vertical dashed lines. 

To investigate the origin of these maxima, the waveforms recorded at the relative 

window times highlighted in Figure 4.15d (corresponding to a 20 sµ  window size) are 

examined.  These waveforms are presented in Figure 4.16.  For this window size, the 

global maximum spectral amplitude is observed at a relative window time of 8 sµ .  The 

convergence frequency at this window location (see the second row of Figure 4.16) 

matches that of the 0a −  antisymmetric Lamb wave resonance centered at 0.800 MHz in 

the steady state form function of the target.  The convergence frequencies observed for 
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the smaller peaks on either side of the main peak in Figure 4.15d are also due to this 0a −  

wave resonance (see the first and third rows of Figures 4.16).  The remaining peaks in 

Figure 4.15d display a downshift in convergence frequency (see the bottom 3 rows of 

Figures 4.16) due to radiation damping, as discussed previously in Section 4.3.2.  Results 

generated using larger window sizes exhibit similar characteristics. 

The time spacing between the local maxima highlighted in Figures 4.15c to 4.15h 

is then investigated to determine whether further information about the target response 

can be extracted.  At the relative window times highlighted in each figure panel, the 

dominant frequency of the measured waveform is recorded.  This frequency is then used 

to estimate the group velocity and echo delay for a single circumnavigation around the 

target of an 0a −  Lamb wave, following the methodology presented in Chapter 2.  The 

results of this analysis are reported in Table 4.2.  The first column of the table presents 

the relative window times of local maxima highlighted in Figure 4.15.  The dominant 

frequency component in waveforms recorded at these locations is then given in the 

second column.  The third column of the table presents the relative time delay measured 

between each local maximum while the fourth column presents the theoretically 

predicted delay.  Finally, the normalized root mean square error between the measured 

and predicted delays is presented in the last column of the table. 

The numerical results indicate that using the single-channel time reversal 

technique with a shifting time window and searching for the frequency location of 

dominant spectral peaks, it is possible to isolate, in frequency, up to 4 resonances in the 

scattering response of the target for the window sizes employed in this investigation.  It is 
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also possible to roughly extract propagation times for 0a −  surface elastic waves even 

when the window size is larger than the characteristic circumnavigation time.  This is 

evident from column 5 of Table 4.2 where the error between predicted and measured 

circumnavigation times is less than approximately 10%.  The reader should be cautioned 

that the larger windows employed here encompass multiple surface elastic wave 

circumnavigations and thus the computed delay times will only be approximate. 

The efficacy of the technique will vary depending upon the target of interest and 

the operating conditions.  It will be especially difficult to characterize targets possessing 

aspect dependence.  However, the methodology reported here provides a unique means 

with which to extract both time and frequency information for surface waves that 

propagate on an elastic target.  With a large enough time window, it is possible to identify 

in the frequency domain a number of resonances in the scattering response of the target 

while at the same time retaining temporal information. 
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Figure 4.14: Echo spectral magnitude versus frequency and time where the center of the 

time reversal window is shifted in steps of 0.5 sµ  from relative window times, 
r

t , of 

30 sµ−  to 60 sµ .  Panels (a)-(h) present results for window sizes ranging from 5 40 sµ− .  

Data is normalized to the maximum value within each figure panel.  Incident waves 

approach the target from the left side of the figure. 
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Figure 4.15: The maximum spectral magnitudes recorded at each relative window time in 

corresponding panels from Figure 4.14.  Vertical dashed lines highlight the time locations 

of local maxima of interest.  Results are normalized to the maximum value within each 

figure panel.  The letters superimposed on the dashed lines in (d) are associated with the 

corresponding panels in Figure 4.16. 
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Figure 4.16: Waveforms from iteration 50 of time reversal appearing at relative window 

times, 
r

t , marked by vertical dashed lines in Figure 4.15d.  The vertical dashed lines in 

(a)-(f) outline the location of a 5 sµ  duration time reversal window.  Panels (g)-(l) present 

the magnitude spectra of signals within the time reversal window in (a)-(f).  Vertical 

dashed lines in these figure panels mark the location of the peak spectral magnitude.  The 

vertical axes in the time and frequency domain waveforms are presented in arbitrary units 

on the same scale. 
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Table 4.2: Comparison of echo delays of 0a −  antisymmetric Lamb waves measured using 

the single-channel time reversal technique to those predicted by resonance scattering 

theory.  The values in this table are determined from waveforms at the relative window 

times highlighted in Figures 4.15c to 4.15h.  The normalized root mean square error 

between the measured and predicted echo delay is presented in the last column of the 

table. 
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4.4 Time Reversal with Multiple Targets Present 
 

Previously, Pautet et al. [46] conducted an experiment where three targets possessing 

different scattering responses were aligned along the axis of a single-channel transducer.  

A time reversal experiment was conducted with the targets well separated so that the time 

reversal window encompassed returns from only a single target at any given time.  They 

demonstrated that single-channel time reversal can automatically select the proper 

interrogation frequency for a given target, even though other targets were proximal to the 

face of the transducer and interfered with the incident sound waves.  In this Section, the 

time reversal technique is applied to two targets positioned in proximity to one another on 

the axis of the transducer employed.  The window shifting procedure employed in 

Section 4.3 is used to search for and isolate returns from both targets. 

A solid stainless steel sphere is placed closest to the transducer front of the 

standard aluminum shell target.  The steel sphere possesses the same outer diameter as 

the aluminum target.  To position both targets at the center of the test tank, a layer of the 

polypropylene packing tape is positioned so that the sticky side is facing upwards.  The 

targets are then gently adhered to the upper surface of the tape.  The tape is stretched 

taught so that it deforms only minimally when the targets are resting upon it.  The targets 

are positioned on the axis of the V-303 transducer as depicted in Figure 4.17, not to scale.  

The center of the stainless steel target is 9.5 cm from the face of the transducer.  The 

center of the standard aluminum shell target is positioned 1.5 cm behind the stainless 

steel target. 
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The backscattering form functions of both targets are presented in Figure 4.18.  

Results of resonance scattering analysis performed on the steel sphere are presented in 

Appendix A.2.  A few notes are made here regarding the types of waves that propagate 

on the steel target.  Below 0.4 MHz, the response of the steel target is close to that of a 

rigid sphere.  In the frequency bandwidth of the system, shown as a gray patch in Figure 

4.18, Rayleigh waves (a type of surface elastic wave) circumnavigate the target.  Higher 

order Rayleigh waves, commonly referred to as whispering gallery waves [88], also 

contribute to the backscatter, but are not observed in experimental results reported here.  

These surface elastic waves are indicated by sharp dips in the form function of the target 

because at steady state they interfere with the specular portion of the return.  As observed 

in Figure 4.18, the resonant response of the standard aluminum shell target is stronger 

than that of the solid stainless steel target. 

The window shifting experiment is first conducted with both targets in place for a 

range of window sizes.  A relative window time of 0 s
r

t µ=  is defined as the center of the 

specular return from the solid stainless steel sphere target.  Fifty iterations of the time 

reversal procedure are performed at each relative window time where a single cycle 1 

MHz sine wave is used as an initial interrogation.  The results of this experiment for 

iteration 0 and iteration 50 are shown in the first and second columns of Figure 4.19, 

respectively. Window sizes of 2, 5, 10, and 20 sµ  are employed.  The aluminum shell 

target is then removed from the tank and the experiments are repeated with only the solid 

steel target in place.  These results are presented in the third column of Figure 4.19.  In 

Figure 4.19i, three discrete returns in time are observed.  These energy packets 
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correspond to the specular return followed by two Rayleigh wave circumnavigations 

whose predicted echo delays are approximately 7 sµ .  These same returns are observed in 

Figures 4.19a and 4.19e but are followed by returns from the aluminum shell target.  

Qualitatively similar results are observed in the remaining sets of figures.  The quality 

factors of resonances in the response of the steel target are not high enough to obscure 

resonances of the aluminum shell target.  Thus the shell target is revealed even though it 

is partially shielded from incident waves by the solid steel target.  In the second column 

of Figure 4.19, the frequencies of returns associated with the aluminum target at iteration 

50 match those observed in Section 4.3.3.  These frequencies are not readily identified in 

the first column of Figure 4.19 where only a single transmission is employed. 

It is curious to note that for window sizes of 10 sµ  and 20 sµ , when the window 

encompasses returns from the solid steel sphere, a number of spectral peaks are present.  

This is because with 50 iterations, the time reversal procedure has not yet fully 

converged.  Numerical simulations show that for a window size of 20 sµ  convergence to 

the resonance centered at 1.535 MHz is observed after a greater number of iterations. 
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Figure 4.17: Schematic of the physical setup for time reversal experiments with multiple 

targets present.  The schematic is not drawn to scale. 

 

 

 

 

Figure 4.18: (a) Magnitude of the calculated monostatic far-field form function for the 

aluminum spherical shell target used in time reversal experiments versus frequency.  (b) 

Magnitude of form function of the solid stainless steel sphere plotted versus frequency. 
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Figure 4.19: Echo spectral magnitude versus frequency and time, where the center of the 

time reversal window is shifted in steps of 0.5 sµ  from relative window times,
r

t , of 

30 sµ−  to 60 sµ .  Panels (a)-(d) present results at iteration 0 for window sizes ranging 

from 5 20 sµ−  with both the aluminum shell target and solid sphere targets both in place.  

Panels (e)-(h) are the same as (a)-(d) but show iteration 50.  Panels (i)-(l) present results 

at iteration 50 with only the solid stainless steel target in place.  Data is normalized to the 

maximum value within each panel except (a)-(d) which are normalized to the maximum 

values in (e)-(h), respectively. 
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Chapter 5  
 

 

 

Buried Target Results 
 

 

“When beholding the tranquil beauty and brilliancy of the ocean’s skin,  

one forgets the tiger heart that pants beneath it; and would not willingly  

remember that this velvet paw but conceals a remorseless fang.” 

 Herman Melville, Moby Dick, The Gilder 

 

 

Difficulties often arise in the detection and identification of buried targets due to noise, 

attenuation, and the presence of returns from false targets.  This Chapter presents results 

from experiments where the time reversal technique is employed to help mitigate these 

difficulties.  The first section of the Chapter provides a discussion of how the scattering 

response of the standard shell target changes when it is loaded with a fluid possessing the 

same properties as the sediment phantom employed.  It is then demonstrated, in Section 

5.2, that the time reversal technique can be used to enhance echoes from the target when 

it is buried in the sediment phantom.  A sliding window study, the results of which are 

presented in Section 5.3, investigates the sensitivity of the time reversal technique to 

window position and is used to localize the depth of the target.  The convergence 
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properties of time reversal are then examined in Section 5.4 as a function of target burial 

depth.  The ability of the technique to isolate multiple resonances in the response of the 

buried target is demonstrated in Section 5.5.  This property is examined in further detail 

in Section 5.6, which provides results from a comprehensive investigation of the effects 

of window size, window position, and angle of incidence.   Finally, results presented in 

Section 5.7 demonstrate the ability of the technique to distinguish between two buried 

targets of the same size that possess different scattering responses. 

5.1 Sediment Loaded Target Response 
 

In order to confidently identify a target object acoustically, its scattering response must 

first be well understood.  The analysis presented in Chapter 2 demonstrates that the 

response of a target submerged in water can be accurately modeled.  However, predicting 

the response of a target buried in sediment is a much more difficult endeavor.  Over the 

past two decades, significant efforts have been made towards this end  [5, 6, 112-116].  

There are two main complications in these modeling efforts.  The first is in accounting 

for multiple scattering interactions between the target object and the sediment-water 

interface; targets that are only partially buried are especially difficult to characterize 

analytically.  In the current work, targets are assumed to be deeply buried and so any 

interaction with the water-sediment interface is ignored. 

The other complication inherent in modeling arises in determining the appropriate 

acoustic properties and propagation models for the sediment medium, that is, whether to 

assume the sediment is a fluid, an elastic/viscoelastic medium, or a poroelastic medium.  
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In this study, the sediment phantom employed is treated as a fluid.  Its acoustic properties 

are determined through carefully conducted laboratory experiments; see Section 3.5. 

 Measured values of the frequency dependent speed and attenuation of dilatational 

waves in the sediment phantom (see Figure 3.22 and Figure 3.23 in Section 3.5) are fit 

with second order polynomials.  This results in a dependence of 

 ( ) 2480 276 1733 8sedc f f f .= − + +  (5.2) 

for the dilatational wave speed and 

 ( ) 214 6160 3 4825 5 1242sed f . f . f .α = − +  (5.3) 

for the attenuation, where f  is in units of MHz.  The density of water and the sediment 

phantom are assumed to be 
2

3998 kg/mH Oρ =  and 31830 kg/m
sed

ρ = , respectively.  A 

value of 
2

1483 8 m/s
H O

c .=  is assumed for the sound speed of water.  These properties are 

used to compute the scattering response of the standard aluminum shell target when it is 

buried in the sediment phantom.  For convenience, in the remainder of this Chapter, the 

sediment phantom will be referred to simply as ‘sediment.’ 

For reference, the backscattering form function of the water-loaded standard shell 

target is presented in Figure 5.1a.  The form function is then recalculated using an 

effective fluid possessing the same acoustic properties as the the sediment for the 

medium external to the sphere.  Figure 5.1b presents this result.  From this figure, it is 

apparent that the 0a −  Lamb wave resonances in the target response take on a higher 

quality factor when the target is loaded with a fluid the sediment properties.  This is 

because propagating surface waves do not radiate as efficiently into the external medium, 
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i.e. radiation damping of these waves is not at prominent.  This observation is consistent 

with trends observed in another investigation that studied the response of silt-loaded and 

sand-loaded targets; see Figure 6 of Ref. [116].   

 An effort is then made to predict waveforms transiently scattered from the buried 

target by modifying the free field scattering simulation described previously, in Section 

3.4.  Figure 5.2 shows a schematic of the configuration assumed in buried target 

scattering simulations.  The transducer is positioned at a distance of 10 cm from the 

surface of the sediment and is assumed to be in the farfield.  The center of the shell target 

is buried on the central axis of the transducer at a depth D  beneath the surface of the 

sediment.  Plane acoustic waves propagate towards the target from the direction of the 

transducer.   

 Waveforms scattered by the surface of the sediment and the buried target are 

calculated individually.  These two waveforms are then superimposed upon one another 

to form a final scattered return.  The inherent assumption in this is that there is no 

multiple scattering between the target and the interface.  Reflection and transmission 

coefficients computed at the interface are used to determine the amplitude of waves 

scattered from, entering, and leaving the sediment.  Volume scattering from individual 

glass beads in the sediment is ignored.   

 The computation of scattered returns from the target is performed as follows.  

Equation (2.41) is used to compute the steady state scattering response of the buried 

target at a radial distance D  in the monostatic direction.  The location of this field point 

is highlighted in Figure 5.2.  The calculation accounts for the dispersion and attenuation 
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of scattered waves in the sediment as they propagate from the location of the sphere to 

the field point.  Transiently scattered waveforms are predicted in the frequency domain 

by computing the product of an incident waveform with the steady state response of the 

target.  The incident waveform is weighted with a low pass filter possessing a frequency 

dependence of  

 ( ){ }exp sed f Dα− × . (5.4) 

Here, D  is the burial depth and ( )sed fα  is the frequency dependent attenuation of the 

sediment in Nepers/m.  This filter accounts for attenuation of the incident wave in the 

sediment before it interacts with the target.  Finally, the amplitude of the returns from the 

buried target is scaled to account for transmission from the sediment into the water. 

Geometrically spherical spreading of waves scattered from the target location is assumed. 

The simulation of buried target scattering is employed primarily to gain insight 

into the effects of attenuation on convergence of the time reversal procedure and to help 

confirm the types of waves that propagate on the buried target.  Shown in Figure 5.3 is an 

experimentally measured scattered return from the target when its center is buried at a 

depth of 2 cm below the surface of the sediment.  A 2 cycle 1 MHz sine wave is used as 

the waveform for interrogation.  Figure 5.4 shows a return generated from the numerical 

scattering simulation, given the same parameters as in Figure 5.3.  In both figures, a 

strong return from the surface of the sediment arrives earliest in time.  This surface return 

is clipped in the figures so that returns from the target are clearly visible.  A specular 

return from the target arrives after the surface return and is followed by both 0s  and 0a −  

Lamb wave returns.  These are highlighted with arrows and labeled according to their 
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type in both figures.  The arrival times of these surface elastic waves are comparable in 

both the experiment and simulation, although in the experiment the second 0a −  Lamb 

wave circumnavigation arrives earlier than predicted.  Also, although the shape and 

amplitude of the first 0a −  Lamb wave returns are comparable in both figures, subsequent 

circumnavigations are more damped in the experimental measurement.  This is likely 

because the nylon netting, within which the target is wrapped in the physical experiment, 

extracts energy from this wave type, damping its response.  From these results, it is 

apparent that the numerical scattering simulation should provide a means with which to 

estimate returns from the standard shell target when it is buried. 

 

 

 

 

Figure 5.1: (a.) Magnitude of the calculated monostatic far-field form function for the 

aluminum spherical shell target used in time reversal experiments versus frequency.  (b.) 

Magnitude of calculated form function of the aluminum shell target when loaded with the 

an effective fluid possessing the same acoustic properties as the glass bead sediment.  

The shaded gray region highlights the frequency bandwidth of the time reversal system. 
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Figure 5.2: Schematic of the assumed configuration of for buried target transient 

scattering simulations.  The schematic is not drawn to scale. 
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Figure 5.3: Experimentally generated waveform received after interrogating the 2 cm 

deep buried aluminum shell target with a 2 cycle 1 MHz sine wave.  Arrows highlight 

various types of returns.  The return from the sediment surface appears clipped on this 

display scale so that target returns are clearly visible. 

 

 

 

Figure 5.4: Waveform generated from the buried target numerical scattering simulation 

by interrogating the 2 cm deep buried aluminum shell target with a 2 cycle 1 MHz sine 

wave.  Arrows highlight various types of returns.  The return from the sediment surface 

appears clipped on this display scale so that target returns are clearly visible. 
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5.2 Buried Target Echo Enhancement 
 

Armed with an understanding of the types of waves that propagate on the buried target, 

the time reversal technique is tested to determine whether echoes due to these waves can 

be enhanced.  Depicted in Figures 5.5a to 5.5c in the time domain and in Figure 5.5d in 

the frequency domain with iteration number are results from an experiment where the 

time reversal window is centered on the location of returns from the target when buried at 

a depth of 2 cm.  The two dashed vertical lines in each time trace illustrate the position of 

a 20 sµ long time reversal window, at a delay of approximately 25 sµ  following the 

specular return from the surface of the sediment.  Fifty time reversal iterations are 

performed in order to ensure that the procedure fully converges.  This type of plot will be 

referred to subsequently as a “convergence plot.” 

 Figure 5.5a depicts the first backscattered return, iteration 0, where white noise 

20 sµ  in duration is used for interrogation.  The pulse arriving earliest in time, at 135 sµ , 

is a strong specular reflection from the surface of the sediment.  Following the return due 

to the sediment surface, there is no obvious return from the target visible and in Figure 5d 

none of the peaks can be clearly identified as a target response.  After ten iterations of the 

time reversal procedure, the return from the target is enhanced, as seen in Figure 5.5b, 

where a narrowband 1100 kHz pulse following the specular return from the sand surface 

is visible, centered near170 sµ .  As evident in Figure 5.5c and 5.5d, respectively, by 

iteration 35 the location of the target is identified and application of the time reversal 

procedure results in convergence to an 1100 kHz waveform.  Examination of Figure 5.1 
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indicates that this resonance likely corresponds to an 0a −  antisymmetric Lamb wave.  In 

the frequency domain, a factor of 37.6, or 31.5 dB, improvement in the magnitude of the 

target response is observed relative to the first backscattered return.  The time reversal 

procedure picks out the dominant target response frequency, even though the signal is not 

distinguishable from background noise on the first return.  This highlights the ability of 

the active time reversal technique to enhance returns from a target regardless of the 

waveform used for initial interrogation. 

 

 

 

Figure 5.5: Convergence plot for the standard shell target buried 2 cm beneath the surface of the 

sediment through successive iterations of the time reversal procedure.  The transducer is at 

normal incidence to the surface of the sediment.  Vertical lines in (a)-(c) depict the position of a 

20 sµ  long time reversal window.  (a.) The first backscattered return, iteration 0, where white 

noise 20 sµ  in duration is used for interrogation.  (b.) Backscattered return at iteration 10 of the 

time reversal procedure.  (c.) Backscattered return at iteration 35 of the time reversal procedure.  

(d.) Waterfall plot of magnitude spectra of signals within the time reversal window for iterations 

0 through 50 normalized to the maximum spectral magnitude at the final iteration.  The spectra 

from (a)-(c) are highlighted with solid black lines. 
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5.3 Sliding Window Study 
 

In order to understand the sensitivity of single-channel time reversal to window position 

and to localize the depth of the target, experiments are performed to quantify the signal-

to-noise ratio of target returns after application of the technique.  For each experiment, 

the center of the time reversal window is shifted, in steps of 1 sµ , from relative window 

times of 30 sµ−  to 60 sµ .  A relative window time of 0 s
r

t µ=  corresponds to when the 

time reversal window is centered over reflections from the surface of the sediment.  The 

experiment is performed once over the location of the target buried at a depth of 2 cm and 

then again with the transducer shifted to a position over the sediment without a target in 

place.  A signal-to-noise ratio (SNR) is defined by: 
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where ( )S f and ( )N f are the Fourier transforms of signals within the time reversal 

window in experiments with and without the target in place, respectively.  For the 

computation of a particular SNR value, the windows in both experiments are positioned 

at the same relative window time.  The calculated energy is integrated over a manually 

defined frequency bandwidth, where 0f and 1f  define the respective lower and upper limits 

of this frequency band. 

Results are presented in Figure 5.6, where a 20 sµ long time reversal window is 

used and a 50 iteration time reversal sequence is obtained at each window position. A 

waveform, consisting of white noise 20 sµ in duration, is used to initiate the time reversal 
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process at each window location.  White noise is used in order to demonstrate the 

efficacy of the technique even when a sub-optimal waveform is used for the initial 

interrogation.  The black solid and dashed lines, generated from iteration 0 and iteration 

50, respectively, are computed from 0 to 2 MHz, a frequency band encompassing the 

entire bandwidth of the transducer used.  In Figure 5.6, the SNR appears to fluctuate 

randomly for relative window times earlier than 20 sµ− .  These window locations are 

earlier than the sediment return and thus no coherent returns are present within the time 

reversal window.  Therefore, the time reversal procedure acts on incoherent noise.  As the 

relative window time gets larger, between 20 sµ− to 20 sµ , coherent returns from the 

surface of the sediment dominate the measured spectral response for both iteration 0 and 

50 with and without the target in place.  This results in a SNR of 0 dB.  Finally, when the 

time reversal window is delayed such that it encompasses returns from the target and no 

longer includes returns from the sediment surface, an increase in the SNR is observed.  

At iteration 0, the SNR between relative window times of 20 to 40 sµ has a maximum of 

approximately 4 dB.  Fifty iterations of the time reversal procedure result in an 

improvement in the signal to noise ratio of 16 dB when the window is centered at a depth 

of 30 sµ .  As the window is advanced beyond the location of the target to depths greater 

than 40 sµ , the time reversal window no longer encompasses returns from the target and 

the technique does not converge. 

A further improvement in the SNR is achieved by limiting the bandwidth used in 

its calculation to a range of frequencies encompassing only the dominant wave mode 

resonance of the target.  The solid gray line in Figure 7 depicts the signal to noise ratio 
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calculated over a frequency band of 750 kHz to 1200 kHz, within which the dominant 

wave mode in the scattering response of the target lies.  An improvement in the signal to 

noise ratio of 30 dB is observed, relative to iteration 0 calculated over the full band.  

Thus, a priori knowledge of the scattering response of a particular target combined with 

additional signal processing can further improve detection and identification 

 

 

 

 

Figure 5.6: Signal to noise ratio of returns within a 20 sµ long time reversal window as a 

function of relative window time,
r

t , where white noise 20 sµ  in duration is used to 

initiate the process.  The black solid and dashed lines, representing iteration 0 and 

iteration 50, respectively, are computed over a frequency band of 0 to 2 MHz, 

encompassing the full bandwidth of the transducer used.  The solid gray line is computed 

from iteration 50 over a frequency band of 0.75 MHz to 1.2 MHz within which lies the 

dominant resonant wave mode of the buried target. 
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5.4 Convergence with Target Depth 
 

In order to test the convergence properties of the time reversal technique, the experiment 

described in Section 5.1 is repeated with the center of the target buried at nominal depths 

of 1, 2, 3, and 4 cm.  In Figures 5.7a to 5.7d, returns from iteration 50 of the time reversal 

procedure are shown for each target burial depth, where the dashed lines denote the 

position of the time reversal window.  Figure 5.7e shows a similar result that is generated 

without a target in place.  The peak amplitude of these waveforms is normalized to the 

maximum value in Figure 5.7c.  The magnitude spectra of the signals within the time 

reversal window in Figures 5.7a to 5.7e are shown in Figures 5.7f to 5.7j, respectively.  

The frequency domain results are normalized to the peak spectral magnitude in Figure 

5.7g and are all presented on the same scale.  For each experiment, a 2 cycle 1 MHz sine 

wave is used as an interrogation pulse to initiate the time reversal process.   

In the first three rows of Figure 5.7, the time reversal procedure converges to 

frequencies of 1220 kHz, 1100 kHz, 550 kHz, and 420 kHz for target depths of 1, 2, 3, 

and 4 cm, respectively.  Thus, increasing the burial depth of the target leads to a 

downshift in the convergence frequency.  This is due to the increase in attenuation of the 

sediment with frequency.  That is, the layer of sediment above the target acts as a low-

pass filter the strength of which increases with burial depth.  When the target is buried at 

a depth of 4 cm, as in Figure 5.7d, the attenuation is too great for the system to overcome 

and returns from the target are indistinguishable from coherent background noise 

(volume scattering).  This is evident in Figures 5.7e and 5.7j where the rms-amplitude of 
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the windowed return without a target in place is comparable to that of the target buried at 

4 cm depth. 

In order to confirm that attenuation in the sediment is indeed the cause of the 

observed downshift in convergence frequency, a set of numerical simulations are 

conducted using the buried target transient scattering simulation described in Section 5.1.  

The simulation is run for the same set of parameters used to generate the results presented 

in Figure 5.7.  In Figures 5.8a to 5.8c, the time reversal procedure converges to 

frequencies of 1260 kHz, 1170 kHz, 480 kHz, and 500 kHz for target depths of 1, 2, 3, 

and 4 cm, respectively.  Table 5.1 summarizes, for comparison, the convergence 

frequencies observed in experiment and simulation.  Qualitative agreement is found 

between the experimental and numerical results, indicating that attenuation is indeed the 

primary reason for the observed downshift in convergence frequency with burial depth.  

The results of this section demonstrate the strength of iterative time reversal, to 

automatically redirect acoustic energy into the strongest available target resonance.   

 

Table 5.1: Comparison of convergence frequencies observed for different target burial 

depths in experiments and through application of the buried target scattering simulation. 

Target Burial Depth 

Convergence Frequency 

from Experiment  

(kHz) 

Convergence Frequency 

from Simulation  

(kHz) 

1 cm 1220 1260 

2 cm 1100 1170 

3 cm 550 480 

4 cm 420 500 
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Figure 5.7: Experimental results from iteration 50 of the time reversal procedure with the 

target buried at different depths in the glass bead sediment.  The vertical dashed lines 

depict the position of a 20 sµ long time reversal window.  (a) – (d) Time domain returns 

with center of the target buried at 1.5 cm, 2 cm, 2.5 cm, and 4 cm depths, respectively. (e) 

Return at iteration 50 with no target in place.  Time domain waveforms are normalized to 

the peak amplitude in (d) and are all presented on the same scale.  (f) – (j) Fourier 

transforms of signals within the time reversal window from (a) – (e).  Frequency domain 

results are normalized to the peak spectral magnitude in (f) and are all presented on the 

same scale. 
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Figure 5.8: Numerical resultrs from iteration 50 of the time reversal procedure with the 

target buried at different depths in the glass bead sediment.  The vertical dashed lines 

depict the position of a 20 sµ long time reversal window.  (a) – (d) Time domain returns 

with center of the target buried at 1.5 cm, 2 cm, 2.5 cm, and 4 cm depths, respectively. (e) 

Return at iteration 50 with no target in place.  Time domain waveforms are normalized to 

the peak amplitude in (d) and are all presented on the same scale.  (f) – (j) Fourier 

transforms of signals within the time reversal window from (a) – (e).  Frequency domain 

results are normalized to the peak spectral magnitude in (f) and are all presented on the 

same scale. 
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5.5 Multiple Resonance Isolation 
 

Previously, results in Section 4.3 demonstrated that when the standard shell target is 

suspended in the free field, multiple resonances in its scattering response are enhanced 

through application of single-channel time reversal.  The studies made use of a sliding 

time window to search for scattered wave resonances.  In this section, sliding window 

experiments are conducted with the transducer aligned at normal incidence to the surface 

of the sediment, beneath which the standard shell target is buried at a depth of 2 cm.  

Results from these experiments are presented in Figure 5.9 where window sizes of 8 sµ , 

14 sµ , 20 sµ , and 26 sµ  are employed.  The pixel intensity in each plot is given by the 

magnitude of the Fourier transform of the signal within the time reversal window.  

Cosine squared shading with a 20% envelope is applied to signals before Fourier 

transform computations are performed.  The left and right columns of Figure 5.9 show 

results from iteration 0 and iteration 50, respectively.  Plots are all presented on the same 

scale and have been normalized to the peak magnitude observed in returns from the 

target.  Although this normalization has the effect of clipping returns from the surface of 

the sediment, it is performed so that returns attributed to the target are readily visible.  In 

subsequent sections, a number of plots similar to those in Figure 5.9 are presented.  They 

are hereafter referred to as “window shifting plots.” 

 In Figure 5.9, for all window sizes employed, a significant amount of broadband 

energy centered at 0 s
r

t µ=  is observed.  This is attributed to returns from the surface of 

the sediment which, when operating at normal incidence, are always much stronger than 

returns from the target.  At iteration 0, returns from the buried target are detected 
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following returns from the surface of the sediment.  The energy attributed to target 

returns is however smeared across a wide range of frequencies and it is difficult to isolate 

individual wave modes.   In the second column of Figure 5.9, through 50 iterations of 

time reversal, an increase in the magnitude of target returns is obtained and the process is 

shown to selectively enhance specific target resonances.  This is apparent, for example, in 

Figure 5.9e where a white circle outlines returns from the target.  The highlighted energy 

packets are centered at frequencies of 1250 kHz, 850 kHz, and 450 kHz.  These 

frequencies correlate approximately to the locations of 0a −  Lamb wave resonances in the 

response of the buried target; see Figure 5.1.  In Figures 5.9f-5.9h, where larger window 

sizes are employed, these same returns are apparent.  It is interesting to note, however, 

that in some cases all three frequency components appear concurrently.  This is likely 

because the resonances are comparable in strength and the time reversal procedure has 

not yet fully converged. 

In these experiments, it is not possible to isolate individual surface waves in time 

as it is when the target is suspended in the free field (see Section 4.3.2).  When the target 

is positioned in the free field, the amplitude of a propagating surface elastic wave decays 

as the wave circumnavigates the target.  This decay is attributed solely to radiation 

damping.  When the target is buried, attenuation in the sediment accelerates this decay.  

This places a limit upon the maximum relative window time (window depth) at which 

returns from the target will be detected.  The attenuation in the sediment also causes a 

more rapid downshift in the convergence frequency (relative to the free field results of 

Section 4.3) as the window passes the target.  This is attributed to the low pass filtering 
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effect of the attenuation as described in Section 5.1.  Examination of the data indicates 

that, at most, only two Lamb wave circumnavigations are visible in the experimental 

results reported here.   

Finally, one notices that as the window size is increased, returns from the surface 

of the sediment have the effect of masking returns from the target.  For example, in 

Figures 5.9f to 5.9h, when the window size is increased, the energy attributed to surface 

returns expands significantly in time while returns associated with the target do not.  This 

is because, when operating at normal incidence, the surface of the sediment is always the 

dominant scatterer.  Therefore, the window size should be optimized in order to 

maximize target returns, while still retaining the temporal resolution with which to isolate 

the target from the sediment surface.  This will be explored in further detail in Section 

5.6.2.   
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Figure 5.9: Results from an experiment where the center of the time reversal window is shifted in 

steps of 1 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ  over the standard shell target 

buried at 2 cm depth.  The pixel intensity represents the magnitude spectrum of the signal within 

the time reversal window.  (a)-(d) present results at iteration 0 for window sizes of 8, 14, 20, and 

26 sµ .  (e)-(h) present the same results but for iteration 50.  Data is normalized to the maximum 

value for 25 s
r

t µ>  within each row.  The transducer is aligned at normal incidence to the surface 

of the sediment and incident waves approach the target from the left side of the Figure. 
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5.6 Comprehensive Parameter Investigations 
 

In the previous section, using specific examples, it is demonstrated that multiple 

resonances in the response of a buried target are enhanced using single-channel time 

reversal.  The current section provides an examination of this property for a wide-range 

of experimental parameters including window size, window position, and angle of 

incidence.  First, an introduction summarizing the importance of incident angle is 

provided.  The remaining sections detail results from parameter studies carried out at 

incident angles of 0, 10, and 20 degrees.  A recapitulation of general conclusions is then 

provided in the final section. 

5.6.1 Overview – Sensitivity to Incident Angle 

 

In order to investigate the sensitivity of the technique to incident angle, the echo 

enhancement experiment described in Section 5.2 is repeated a number of times.  The 

physical setup of experiments is depicted in Figure 5.10.  Using an angle finding level, 

the transducer is rotated about an axis that passes through the center of the standard shell 

target buried at 2 cm depth.  At incident angles of 0, 10, and 20 degrees, experiments are 

conducted with the time reversal window centered on returns from the target.  The results 

from each experiment are summarized in Figure 5.11.  At normal incidence, in Figure 

5.11a, the technique converges to a resonance centered at a frequency of 850 kHz.  

Although this is a different resonance than the 1100 kHz frequency observed in Section 

5.2, it corresponds to the same 0a −  Lamb wave circumnavigation.  Convergence to this 
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lower frequency arises because the transducer was likely not perfectly aligned over the 

target in the experiment.  For justification of this, the reader is referred to Section 5.7. 

 When the transducer is rotated to an incident angle of 10 degrees, convergence to 

a frequency of 480 kHz is observed, as in Figure 5.11b.  This is markedly different than 

the result at normal incidence.  When the transducer is rotated, a bias towards low 

frequencies is induced in the system response.  This results in convergence of the time 

reversal procedure to a lower frequency target resonance than expected.  The bias arises 

in these experiments due to three effects.  First, Snell’s law dictates that because the 

sound speed in the sediment is higher than that of water, waves entering the sediment will 

be refracted.  In setup shown in Figure 5.10b, this has the effect of shifting the beam of 

the transducer from the center of the target towards its left side (see the refracted ray path 

labeled in Figure 5.10b).  Lower frequencies in the beam of the transducer spread more 

than higher frequencies.  Therefore, the target will be preferentially excited by lower 

frequencies, while higher frequency components pass the target on its left and do not 

interact directly with it.  Simple ray tracing calculations indicate, however, that the 

incident angle of the ray approaching the target shifts by less than ~2% at 10 degrees 

incidence.  Therefore, it is likely that Snell’s law effects cannot fully explain the observed 

downshift in convergence frequency in this experiment.   

The second biasing effect arises as the incident angle is increased, because at 

larger angles, the sound passes through a greater effective thickness of sand which acts as 

a low pass filter as discussed in Section 5.4.  The third biasing effect arises due to 

reflections from the surface of the sediment.  In Section 3.3.2 a downward shift in 
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frequencies reflected from the sediment surface was observed for larger angles of 

incidence.  This is because lower frequencies spread more and, when at non-normal 

incidence, these components are reflected off the sediment-water interface, directly back 

towards the transducer (see the low frequency path labeled in Figure 5.10b).  Higher 

frequencies that are closer to the central axis of the transducer are reflected in the forward 

direction and do not return to the location of the transducer.  For quick reference, the 

surface response of the sediment for 0, 10, and 20 degree incidence is shown in Figure 

5.12.  Clearly, as the incident angle is increased to 10 degrees a bias towards lower 

frequencies is observed. 

Surface returns bias convergence of the time reversal procedure to resonances in 

the response of a target in the following way.  Sometimes, the surface return is 

sufficiently long in time that it overlaps returns from the target.  In such a case, frequency 

responses due to both the target and the surface are effectively added with one another.  

At normal incidence, for example in Figure 5.12, returns from the sediment surface are 

relatively flat in frequency.  Therefore, when the surface response and target response are 

added, no significant bias is imposed upon the frequency response of the target.  

However, at an incident angle of 10 degrees, the surface response is biased towards low 

frequencies.  In this case, the surface response effectively increases the spectral 

magnitude of lower frequency resonances in the response of the target.  Therefore, these 

resonances will be preferentially excited in the frequency domain and, if the bias is strong 

enough, the time reversal procedure will select one of these lower frequency components.  

This occurs only if a portion of the surface return “leaks” into the time reversal window.  
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Observations of this phenomenon are confirmed, in Section 5.6.3, for experiments 

conducted at 10 degrees incidence. 

At 20 degrees incidence, the majority of the transmitted energy is reflected in the 

forward direction (away from the transducer) and the surface response becomes 

negligible.  This is evident in Figure 5.12, in the frequency domain, and also in the time 

domain plot of Figure 5.11c, where the surface return is barely visible.  When time 

reversal is applied to target returns at this angle, it results in convergence to the same 850 

kHz frequency resonance observed at normal incidence, the expected dominant frequency 

component in the response of the target.  In this case, the surface response is of 

sufficiently low amplitude so as to not impose any significant bias upon the response of 

the target.  Therefore, the incident angle can be optimized to minimize the sediment 

surface return while still converging to the expected target resonance frequency. 

 

 

Figure 5.10: Physical setup for time reversal experiments where the angle of incidence is 

varied.  (a.) Picture of the physical setup showing the transducer aligned over the 

sediment, within which the standard shell target is buried. (b.) Schematic showing the 

cross-section of the sediment and target.  The schematic is not drawn to scale. 
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Figure 5.11: Time traces and spectra at iteration 50 of time reversal for incident angles of 

0, 10, and 20 degrees.  Vertical lines in the time traces highlight the location of the time 

reversal window.  Spectra are computed from the signal within the window and are 

normalized to the maximum value in (b).  

 

 

 

 

 

Figure 5.12: Magnitude spectra of reflections from the surface of the sediment for 

incident angles of 0, 10, and 20 degrees.  A long linear chirp spanning the full system 

bandwidth is as the transmitted waveform in each case. 
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5.6.2 Normal Incidence Angle 

 

In a comprehensive investigation of window parameters, the sliding window experiment 

described in Section 5.3 is repeated for window sizes ranging from 4 sµ  to 60 sµ  in 

length.  In this investigation, waveforms are digitized at a sampling frequency of 25 

MHz.  The resulting data sets are too large to store on a personal computer and so all 

stored waveforms are downsampled to 5 MHz.  Results of the study are summarized in 

Figure 5.13.  The first and second rows of the figure present results from experiments 

without and with a target in place, respectively.  The intensity of pixels in these plots is 

proportional to the square root of the energy within the time reversal window.  Intensity 

values are normalized to the maximum value observed for target returns.  This has the 

effect of clipping the energy associated with returns from the surface of the sediment.  

The bottom row presents the signal-to-noise ratio (SNR) calculated from equation (5.5) 

where data from the first two rows of Figure 5.13 is employed.  A vertical dashed line in 

all the figure panels highlights a relative window time of 0 s
r

t µ= .  The first two columns 

of the figure present results over the entire bandwidth of the system for iteration 0 and 

iteration 50, respectively.  The third and fourth columns only present energy contained 

within 750-950 kHz and 400-600 kHz frequency bands, respectively.  These bands are 

selected because they are found to contain energy attributed to target resonances (see, for 

example, Figure 5.9).  In subsequent sections, this type of figure will be referred to as a 

“SNR plot.” 

In the first row of Figure 5.13, generated from experiments where there is no 

target in place, the energy is symmetrically distributed about 0 s
r

t µ= .  This energy is 
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attributed to reflections from the surface of the sediment.  The distribution in time of 

these returns agrees with observations made in Section 5.5 (see Figure 5.9), i.e. as the 

window size increases, so too does the range of relative window times at which the 

returns are observed. 

 In the second row of the figure, generated from experiments with a target in place, 

a significant amount of energy appears at relative window times following those at which 

surface returns are observed.  This energy is attributed to returns from the buried target.  

Using the data in the first two rows, signal-to-noise computations are then carried out.  

These results are presented in the bottom row of Figure 5.13.  In this parameter study, the 

dominant target resonance is found to lie within the 750-950 kHz band most frequently, 

as evident in Figure 5.13k.  At later relative window times, the resonance attributed to the 

400-600 kHz band is observed.  This agrees with observations made from Figure 5.9; 

lower frequency resonances are observed at later relative window times due to radiation 

damping and the frequency dependent attenuation of the sediment.  A maximum SNR of 

35 dB is observed in the 750-950 kHz band-limited data when a 22 sµ  long window is 

used.  Therefore, a window of approximately this size will be the most effective at 

identifying this target resonance at normal incidence.  It is for this reason that a 20 sµ  

long time reversal window is most typically employed in this work.  The results 

presented in this section provide a baseline to which results obtained at non-normal 

incidence can be compared. 
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Figure 5.13: SNR plot summarizing the results of a window parameter study conducted 

with the transducer at normal incidence.  In the first two rows, the intensity of pixels is 

proportional to the square root of the energy within the time reversal window over the 

specified frequency band specified at the top of each column.  The bottom row the pixel 

intensity is proportional to the signal-to-noise ratio observed.  The vertical axis in each 

figure panel corresponds to the window size.  The horizontal axes correspond to the 

relative window time. 
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5.6.3 10-Degree Incidence Angle 

The transducer is rotated to an incident angle of 10 degrees and the window parameter 

study described in the previous section is repeated.  Figure 5.14 presents window-shifting 

plots for selected window sizes.  The results are qualitatively similar to those observed at 

normal incidence (see Figure 5.9) but the convergence frequencies are located at the 

lower end of the system bandwidth.  In Figure 5.14e, where a small 8 sµ  window is used, 

the same three resonances that appear at normal incidence in Figure 5.9e are visible.  

However, for the larger window sizes employed to generate Figures 5.14f-5.14h, only the 

resonance centered at 480 kHz is readily identified.  It is important to note from this 

figure that the convergence frequency observed for returns from the surface of the 

sediment is distinct and lower in frequency than that observed for returns from the target.  

This confirms that a wave resonance of the target is indeed being excited. 

The SNR plot of Figure 5.15 exhibits a similar trend.  The first two columns of 

the figure, generated using the full system bandwidth, are similar to those in Figure 5.13, 

the SNR plot for normal incidence.  Energy attributed to target returns is readily visible 

following returns from the sediment surface.  However, the third column of the figure 

indicates that there is very little energy in the 750-950 kHz band for all window sizes 

employed.  The time reversal procedure most frequently converges to the resonance 

located in the low frequency 400-600 kHz band, as observed in the fourth column of the 

figure.  Indeed, it is clear that a bias has been induced in the system response.  Figure 

5.15k helps to confirm that the source of the bias is likely attributed to returns from the 

surface of the sediment.  From this figure, it is clear that the time reversal technique 
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detects energy attributed to the higher frequency target resonance when windows smaller 

than approximately 15 sµ  are employed.  However, this resonance appears to diminish as 

the window size is increased and is only observed at later relative window times.  When 

small time windows are employed, target returns are isolated in time from the surface 

return and the biasing effect described in Section 5.6.1 does not take hold.  As the 

window size is increased, the surface return expands in time and low frequency energy 

enters the time reversal window.  This shifts convergence of the time reversal procedure 

towards a lower frequency target resonance located in the 400-600 kHz band. 

Further evidence that the surface return partially imposes a low frequency bias is 

provided in Figure 5.16, which shows the convergence plot for a 20 sµ  long window 

positioned at a relative window time of 25 s
r

t µ= .  Low frequency components are found 

to slowly enter the time window.  This is apparent when one examines the time domain 

waveforms in Figure 5.16a-5.16c.  In Figures 5.16a and 5.16b, although the sediment 

surface return (centered at approximately 132 sµ  in each figure panel) is clearly of low 

frequency, it is easily distinguished from returns appearing within the time reversal 

window, which consist of a combination of higher frequencies.  However, as successive 

iterations are carried out the low frequency surface return expands in time.  Eventually, as 

in Figure 5.16c, the surface return enters the time reversal window and is not clearly 

separated in time from target returns.  Convergence to a low frequency target resonance 

is then observed.  This helps to confirm that the surface return can indeed enter the time 

reversal window and effectively induce a bias in the system response towards lower 

frequency.  Examination of time domain returns from other experiments at 10 degree 
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incidence indicates that the surface return does indeed overlap target returns when 

convergence to a low frequency target resonance is observed.   
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Figure 5.14: Experimental results where the center of the time reversal window is shifted in steps 

of 1 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ  over the standard shell target buried at 

2 cm depth.  The pixel intensity represents the magnitude spectrum of the signal within the time 

reversal window.  (a)-(d) present results at iteration 0 for window sizes of 8, 14, 20, and 26 sµ .  

(e)-(h) present the same results but for iteration 50.  Data is normalized to the maximum value for 

25 s
r

t µ>  within each row.  The transducer is aligned at 10 degree incidence to the surface of the 

sediment and incident waves approach the target from the left side of the Figure. 
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Figure 5.15: Results of a window parameter study conducted with the transducer at 10 

degrees incidence.  In the first two rows, the intensity of pixels is proportional to the 

square root of the energy within the time reversal window over the specified frequency 

band specified at the top of each column.  The bottom row the pixel intensity is 

proportional to the signal-to-noise ratio observed.  The vertical axis in each figure panel 

corresponds to the window size.  The horizontal axes correspond to the relative window 

time. 
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Figure 5.16: Convergence plot for the standard shell target buried 2 cm beneath the 

surface of the sediment through successive iterations of the time reversal procedure.  The 

transducer is at 10 degree incidence to the surface of the sediment.  Vertical lines in (a)-

(c) depict the position of a 20 sµ  long time reversal window.  (a.) The first backscattered 

return, iteration 0, where white noise 20 sµ  in duration is used for interrogation.  (b.) 

Backscattered return at iteration 10 of the time reversal procedure.  (c.) Backscattered 

return at iteration 35 of the time reversal procedure.  (d.) Waterfall plot of magnitude 

spectra of signals within the time reversal window for iterations 0 through 50 normalized 

to the maximum spectral magnitude at the final iteration.  The spectra from (a)-(c) are 

highlighted with solid black lines. 
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5.6.4 20-Degree Incidence Angle 

 

A final window parameter study is conducted at an incident angle of 20 degrees.  

Window shifting plots are presented in Figure 5.17.  The results are almost identical to 

those for 10 degree incidence (see Figure 5.14) but an 850 kHz convergence frequency is 

observed for target returns.  This is the same target response frequency observed in 

normal incidence experiments.  At 20 degree incidence, the influence of the surface 

return is less marked.  This is confirmed in the convergence plot of Figure 5.18 where 

one notes, from time domain waveforms, that the amplitude of the sediment surface 

return is negligible compared to the amplitude of target returns.  Therefore, the sediment 

surface return exerts less influence at this incident angle.  One also notes that, for 

example in Figure 5.17h, returns from the target are much broader in time than the 

normal incident result in Figure 5.9h.  The SNR plots in Figure 5.19 confirm these trends 

for all window sizes investigated.  At 20 degree incidence, the time reversal procedure 

selects the expected target convergence frequency and does so for a wider range of 

relative window times than in the normal incidence study.  Therefore, operating at such 

an angle would likely increase the probability of target detection and identification. 
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Figure 5.17: Experimental results where the center of the time reversal window is shifted in steps 

of 1 sµ  from relative window times, 
r

t , of 30 sµ−  to 60 sµ  over the standard shell target buried at 

2 cm depth.  The pixel intensity represents the magnitude spectrum of the signal within the time 

reversal window.  (a)-(d) present results at iteration 0 for window sizes of 8, 14, 20, and 26 sµ .  

(e)-(h) present the same results but for iteration 50.  Data is normalized to the maximum value for 

25 s
r

t µ>  within each row.  The transducer is aligned at 20 degree incidence to the surface of the 

sediment and incident waves approach the target from the left side of the Figure. 
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Figure 5.18: Convergence plot for the standard shell target buried 2 cm beneath the 

surface of the sediment through successive iterations of the time reversal procedure.  The 

transducer is at 20 degree incidence to the surface of the sediment.  Vertical lines in (a)-

(c) depict the position of a 20 sµ  long time reversal window.  (a.) The first backscattered 

return, iteration 0, where white noise 20 sµ  in duration is used for interrogation.  (b.) 

Backscattered return at iteration 10 of the time reversal procedure.  (c.) Backscattered 

return at iteration 35 of the time reversal procedure.  (d.) Waterfall plot of magnitude 

spectra of signals within the time reversal window for iterations 0 through 50 normalized 

to the maximum spectral magnitude at the final iteration.  The spectra from (a)-(c) are 

highlighted with solid black lines. 
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Figure 5.19: Results of a window parameter study conducted with the transducer at 20 

degrees incidence.  In the first two rows, the intensity of pixels is proportional to the 

square root of the energy within the time reversal window over the specified frequency 

band specified at the top of each column.  The bottom row the pixel intensity is 

proportional to the signal-to-noise ratio observed.  The vertical axis in each figure panel 

corresponds to the window size.  The horizontal axes correspond to the relative window 

time. 
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5.6.5 Summary of Parameter Investigation 

 

In this section, a brief recapitulation of the conclusions drawn from parameter studies is 

provided.  Figure 5.20 presents the SNR observed for each set of window parameters 

given incident angles of 0, 10, and 20 degrees.  The intensity of pixels in each plot is 

equal to the SNR of target returns, calculated from equation (5.5).  Thus, the light shaded 

regions in this figure indicate the range of parameters for which returns from the target 

are identified.  Results indicate that at 10 degree incidence, reflections from the surface of 

the sediment introduce a bias towards low frequencies in the system response when 

window sizes larger than approximately 15 sµ  are employed.  This results in convergence 

of the time reversal procedure to a lower frequency resonance in the response of the 

target than expected.  Results from experiments conducted at 20 degree incidence 

indicate that there is no bias induced in the system response at this angle; the dominant 

resonance observed is the same as when operating at normal incidence.  Also, comparing 

Figure 5.20k to Figure 5.20c, it is clear that target resonances are confidently identified 

for a wider range of relative window times when operating at 20 degree incidence and the 

SNR values observed at this angle are typically higher.  The diminished amplitude of 

returns from the sediment surface and unbiased convergence indicate that operating under 

such a system configuration should increase the probability of positive target detection 

and identification. 



179 

 

 

 

 

 

 

Figure 5.20: Results of a window parameter studies for all angles of incidence 

investigated. The pixel intensity in all figures is proportional to the signal-to-noise ratio 

observed. 
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5.7 Target Selectivity 
 

The transducer is now mechanically scanned and the single-channel time reversal 

technique is utilized to create 2-D images in order to test the technique’s ability to 

distinguish between buried targets possessing different physical characteristics.  The 

transducer is mechanically raster scanned in steps of 1 mm over a 45 mm by 45 mm area 

of sediment containing the aluminum shell target buried at 2 cm depth.  The scan plane is 

horizontal and parallel to the sediment surface; this axis of the transducer is normal to 

this plane.  A solid stainless steel sphere, with the same outer diameter, is also buried at 2 

cm depth, at a lateral distance of approximately 2 cm from the center of the shell target.  

A 20 sµ  long time reversal window is shifted in 2 sµ  steps between relative window 

times of 23 sµ  to 29 sµ .  For each relative window time and transducer location, a 50 

iteration time reversal sequence is obtained.  Images are generated at each relative 

window time where pixels in the image represent the position of the transducer.  The 

pixels are assigned intensity values based on the energy within the time reversal window 

summed over a band-limited frequency range. 

Figure 5.21 depicts images generated from this experiment.  In these images, the 

aluminum shell target is nominally centered at a (x,y) location of (15,30) mm.  The solid 

stainless steel target is located at a (x,y) position of (30,15) mm.  The images in the left 

column, Figures 8a to 8d, are generated from the energy within the time reversal window 

at iteration 0 over the full system bandwidth, where a 2 cycle 1 MHz sine wave is used 

for the initial interrogation.  The images are presented on the same linear scale as those in 

the second column, Figure 5.21e to 5.21h, which are generated using the backscattered 
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return after 50 iterations of time reversal.  At iteration 50, the backscattered energy is 

significantly greater than that at iteration 0, resulting in the blank appearance of Figures 

5.21a-5.21d.  This is due in part to the increased spectral response of the sediment and 

target through iteration of the time reversal procedure and also greater energy transmitted 

at iteration 50 than at iteration 0.  The images are normalized to the peak intensity value 

in Figure 8n in order to highlight the improvement obtained through application of the 

time reversal procedure.  The signal to noise ratio at iteration 0 is, however, high enough 

for the target to be visible when images 5.21a to 5.21d are normalized to a smaller scale. 

In Figure 5.21e, returns from the target are not distinguishable from reflections off 

the surface of the sediment layer.  However, when the center of the window is shifted to 

relative window times greater than or equal to 25 sµ , the locations of both targets are 

revealed, as seen in Figures 5.21f and 5.21g.  The decrease in target strength as the 

window progresses deeper into the sediment from 25 sµ  to 29 sµ  is attributed to the time 

reversal window shifting past returns from the target. Figures 5.21i-5.21l depict images 

generated from the same experiment, where now the processing bandwidth is narrowed to 

encompass only the 500 to 600 kHz frequency range.  The results are similar to those in 

5.21e-5.21h, but now only the solid stainless steel sphere is visible as in Figures 5.21j and 

5.21k.  Alternately, limiting the bandwidth of investigation to the 750-1200 kHz band 

results in isolation of the aluminum shell target, as evident in Figures 5.21m to 5.21p.  

Figures 5.21i and 5.21m show that, for this experiment, target returns are isolated from 

sediment surface returns through sub-band analysis.  These results demonstrate that the 

time reversal technique automatically selects the proper interrogation frequency for an 
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arbitrary target and can be used to distinguish between targets possessing different 

resonant responses. 

In addition, by further band-limiting the analysis, the technique is seen to isolate 

different resonances within the response of a single target.  This is demonstrated in 

Figure 5.22, where images are presented from a different measurement with the same 

aluminum shell target employed in Figure 5.21, buried alone at 2 cm depth.  Limiting the 

bandwidth to a frequency range of 750-950 kHz results in Figure 5.22a, in which an 

image corresponding to a portion of the target is visible.  Expanding the bandwidth to 

750-1200 kHz, reveals another portion of the target, (see Figure 5.22b).  Figure 5.23 

examines convergence to these resonances as a function of transducer position by 

presenting data obtained along slices taken from the horizontal axes of the image in 

Figure 5.22b at a transducer position of 22 mm.  Figures 5.23a and 5.23b present spectra 

from iterations 0 and 50, respectively, where each image is scaled to its own maximum 

intensity value.  In Figure 5.23b, between transducer positions of 0 to 17 mm and 27 to 

40 mm, broadband energy centered at 425 kHz is observed.  Convergence to this 

frequency was found to be characteristic of backscattered returns from the sediment and 

also occurred in experiments without the target in place. 

In Figure 5.23a, at iteration 0, multiple wave mode resonances in the 

backscattering response of the target are visible between transducer positions of 

approximately 15 to 30 mm.  Through resonance scattering theory, these are found to 

correspond to 0a −  antisymmetric Lamb waves.  The spatial distribution of frequencies 

(i.e. as a function of y-position) is due to the frequency dependent beam pattern of the 
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transducer [78], in which lower frequencies spread more than higher frequencies.  In 

Figure 5.23b the spectral response of the target is apparent between transducer positions 

of 17 to 27 mm.  Two discrete energy bands are present, one centered at 1100 kHz and 

the other at 825 kHz.  As the transducer moves to positions away from the target (towards 

the edges of this figure), the time reversal procedure converges to the lower frequency 

band.  This occurs because the system calibration filter does not take into account the off-

axis spectral response of the transducer, which is biased towards lower frequencies.  

Thus, without using any additional signal processing techniques, two separate resonances 

of the target are revealed. 
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Figure 5.21: Wave mode images generated from raster scanning the transducer at normal 

incidence over an area of sediment containing an aluminum spherical shell (located at 

[ , ] [15,30]x y =  mm) as well as a solid stainless steel sphere of the same diameter (located at 

[ , ] [30,15]x y =  mm).  Pixels in the images represent the energy within the time reversal 

window, at a specified transducer position, over a band-limited frequency range.  Panels (a)-(d) 

are generated from the backscattered returns at iteration 0 over the full system bandwidth, shifting 

the time reversal window in 2 sµ  steps from 23 sµ to 29 sµ  relative to the specular return 

from the sediment surface.  Panels (e)-(h) are generated from backscattered returns after 50 

iterations of the time reversal procedure, at the same relative window times as in Panels (a)-(d).  

Panels (i)-(l) and (m)-(p) are the same as in (e)-(h), but are defined over a band limited frequency 

range of 500-600 kHz and 750-1200 kHz, respectively.  The energies displayed in all images are 

normalized to the maximum value in (n) and are presented on the same linear scale where white 

represents values greater than or equal to the maximum and black represents zero.  
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Figure 5.22: Wave mode images at iteration 50, generated from the same conditions as in 

Figure 5.21n, but with only the aluminum spherical shell target in place.  The energy in 

(a) is band-limited to a frequency range of 750-950 kHz and (b) encompasses the 750-

1200 kHz frequency range. 

 

 

 

 

 

Figure 5.23: Magnitude spectra from data obtained along slices taken from the x-axis of 

Figure 5.22b at a transducer position of 22 mm for iteration 0 (Figure 5.23a) and iteration 

50 (Figure 5.23b).  The intensities in each image are normalized to their respective 

maximum values.  In the images, white represents the maximum value and black 

represents the minimum value. 
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Chapter 6  

 

Pond Experiments 
 

 

In order to test the effectiveness of the single-channel time reversal technique in a more 

realistic setting, 5 field experiments are carried out in test facilities at the Naval Surface 

Warfare Center (NSWC) – Panama City Division.  In this work, the insight gained in the 

laboratory is applied to detect and identify targets buried in medium grained sand.  Table 

6.1 summarizes the dates and objectives of each field experiment.  The experiments were 

designed and conducted in collaboration with Dr. Benjamin Dzikowicz, a physicist at 

NSWC.  In this Chapter, selected results from the field work carried out in January 2008 

are presented; Dr. Dzikowicz generated the results shown in Figures 6.6-6.11.  They are 

discussed here in order to demonstrate that the methodology applied in the laboratory is 

applicable at lower frequency operating conditions. 

Table 6.1: Summary of field experiments conducted at the Naval Surface Warfare Center 

– Panama City Division.  The date and a summary of each experiment are provided. 

Experiment # Date Summary/Objectives 

1 02/2007 System testing, Free field experiments 

2 05/2007 System redesigned, Free field experiments 

3 08/2007 Buried target experiment – Trial 1 

4 11/2007 Buried target experiment – Trial 2 

5 01/2008 Buried target experiment – Trial 3 
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6.1 Experimental Setup and Methodology 
 

Field experiments are conducted in a fresh water test pond facility at NSWC, described in 

Ref. [117].  The test pond is 10.2 m deep and has a 1.5 m thick layer of medium grained 

sand at its bottom.  The experimental apparatus employed is similar in nature to the 

system employed in the scaled laboratory work.  Figure 6.1 presents a schematic of the 

electronic instrumentation and also a depiction of the configuration used in buried target 

studies.  In this setup, a separate projector and receiver are employed.  They are mounted 

to a wooden sawhorse shaped stand depicted in Figure 6.2a.  The projector is affixed to 

the cross-beam of the sawhorse while a 0.635 mm diameter braided line holds the 

hydrophone in place half way between the projector and the sediment surface at a 

distance of 0.78 m from the face of the projector.  The hydrophone is positioned on the 

central axis of the projector in the far field of the projector’s beam. 

 The target employed is a 0.1524-m outer diameter air filled stainless steel 

spherical shell with a 0.95-mm wall thickness.  When the target is submerged in water (or 

sediment) it is positively buoyant.  Therefore, it was necessary to fix two solid steel 

weights to eyehooks located at opposite poles of the shell.  One eyehook is welded to the 

shell while the other is threaded in place.  The weights are oriented with respect to the 

projector as shown in Figure 6.1.  A picture of the target with the weights attached is 

provided in Figure 6.2b.  Divers manually bury the target in the sediment by hand and use 

a marked rod to gauge the burial depth.  A plumb bob temporarily hung from the 

projector is used to align the target. 
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A computer controls the generation and acquisition of all waveforms via two 

digitizing boards.   Waveforms generated by the computer are sent through a power 

amplifier and transmitted to an F-30 projector obtained from the Underwater Sound 

Reference Division at the Naval Undersea Warfare Center – Newport.  The projector 

possesses a frequency bandwidth of approximately 30 kHz to 200 kHz.  The active 

portion of the transducer is a 38.1 mm x 50.8 mm rectangle of lithium sulfate plates. An 

International Transducer Corporation model 1089 hydrophone with a 0.5 inch diameter 

spherical active element is used.  Its response is omnidirectional.  Waveforms received at 

the hydrophone are amplified 20 dB and band-pass filtered between 20-200 kHz before 

they are digitized.  The hydrophone is nominally flat over the entire operational 

bandwidth of the projector and possesses a sensitivity of -215 dB re 1 µV/Pa. 

In order to normalize the combined frequency responses of the projector, receiver, 

and electronic instrumentation, the calibration procedure described in Section 3.2 is 

applied.  The reader should refer to that section for details of how the calibration is 

carried out.  In the field experiments, the waveform received along the direct path from 

the projector to the hydrophone is used whereas in the scaled work, free water surface 

reflections are employed.  Results of the calibration are presented in Figure 6.3.  Figures 

6.3a and 6.3b show a linear frequency modulated chirp in both the time domain return 

and frequency domain, respectively.  The chirp spans the full frequency bandwidth of the 

experimental system.  It is sent to the projector which then transmits a signal in the 

direction of the hydrophone.  The second row of Figure 6.3, presents the waveform 

received at the hydrophone along the direct path from the projector.  This waveform is 
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characteristic of the frequency response of the system.  Its shape is very complicated and 

the frequency domain response appears to possess three distinct modes.   

A calibration filter is then generated from the transmitted voltage and the direct 

path received waveform by employing a Weiner filter.  Yule-Walker estimation is not 

applied in the field work, due to the complicated nature of the system response.  When 

the calibration filter is applied to the received signal, it results in the calibrated return 

shown in the third row of Figure 6.3.  The spectrum of the resulting calibrated return is 

flat over the frequency bandwidth of interest.  This result indicates that the calibration 

filter should effectively normalize resonances present in the response of the system.  

After the calibration filter is applied to received waveforms, these resonances should no 

longer interfere with convergence of time reversal to a resonance in the scattering 

response of the target.  System calibration is performed at the beginning of each day field 

experiments are conducted. 
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Figure 6.1: Schematic of the electronic instrumentation and configuration used in field 

experiments.  The target is positioned on the axis of the projector and hydrophone with 

the weights on either side of the target as shown.  Separate transmit and receive paths are 

shown with solid and dashed lines, respectively. 
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Figure 6.2: Picture of the experimental apparatus employed in field experiments. (a.) 

Sawhorse shaped stand on which the projector and hydrophone are mounted.  The test 

pond is visible in the background. (b.) Stainless steel spherical shell target used in 

experiments.  Weights are clamped to eyehooks located at the poles of the sphere. 
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Figure 6.3: Waveforms and associated spectra from tests of the calibration procedure for 

the system employed in field experiments. (a.) Linear chirp driving voltage sent to the 

projector in which the transmitted pulse is directed normally at the sediment surface and 

is received at mid-path by the hydrophone.  (b.) Magnitude spectrum of (a).  (c.) Voltage 

of the received waveform  (d.) Magnitude spectrum of (c).  (e.) Waveform in (c) after 

application of the calibration filter.  (f.) Magnitude spectrum of (e).  The 

amplitude/magnitude in all subplots is in arbitrary units. 
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6.2 Target Response 
 

The farfield form functions for an air-filled spherical shell loaded with water and water 

saturated medium grained sand (referred to here as sediment) are presented in Figure 6.4.  

The dimensions and composition of the shell are the same as those of the target.  It is 

reasonable to assume that the eye-hooks attached at the target’s poles do not interfere 

significantly with propagating surface elastic waves. Thus, treating the target as a 

spherical shell should provide a model for these effects.  The predicted responses are 

given over 20-200 kHz, the approximate frequency bandwidth of the calibrated system.  

Material properties used in form function calculations are given in Table 6.2.  The 

sediment is treated as a fluid with properties taken from Ref. [118]. 

In both form functions, several evenly spaced sharp dips appear at lower 

frequencies followed by a number of sharp peaks at higher frequencies.  These peaks and 

nulls all correspond to resonances associated with symmetric, 0s , Lamb waves.  At low 

frequencies, these arise as sharp dips in the form function due to interference of the 

backscattered surface wave return with the specular portion of the target return.  Through 

resonance scattering analysis, dispersion curves for this wave type are calculated for both 

the water-loaded and the sediment-loaded case.  A rigid background is used to isolate 

purely elastic modes.  The dispersion curves are used to determine the echo delay at 

which returns attributed to 0s  Lamb waves will arrive with respect to the specular return.  

These results are presented in Figure 6.5.  For details of how the analysis is carried out, 

the reader is referred to Section 2.2.2.   
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One notes that the scattering response of the target does not vary significantly 

between the water-loaded and sediment-loaded cases.  Most importantly, the frequency 

locations of 0s  Lamb wave resonances do not shift significantly in the form functions.  

These waves are relatively insensitive to the properties of the external medium because 

they are most strongly coupled into the shell material and not the external fluid.  The 

antisymmetric Lamb waves observed in the laboratory work are more sensitive to the 

properties of the external medium.  Predicted echo delays given in Figure 6.5 are used in 

the analysis of experimental data to isolate returns attributed to 0s  Lamb waves. 

 

Table 6.2: Material properties used in form function calculations for the stainless steel 

shell target employed in field experiments.  

Material 
Density      

( 3kg/m ) 
Dilatational Wave 

Speed (m/s) 
Shear Wave Speed 

(m/s) 

347 Stainless Steel 8000 5790 3100 

Water 998 1483.8 ----- 

Sediment  

(Medium Grain Sand) 
2000 1714 ----- 



195 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Scattering responses of the spherical shell of the same size and composition 

as the target used in field experiments (a.) Magnitude of the calculated monostatic far-

field form function for the target loaded with water.  (b.) Magnitude of calculated form 

function of the steel shell when loaded with the properties of water saturated medium 

grained sand, treated as a fluid.  Both form functions are shown over the frequency 

bandwidth of the calibrated system used in experiments. 

 



196 

 

 

 

 

 

 

 

 

 

Figure 6.5: Echo delay with respect to the specular return versus frequency, of 

symmetric, 0s , Lamb waves that circumnavigate the spherical shell.  The delays for both 

the first and second circumnavigations of the waves are shown.  The solid lines and 

dashed lines correspond to cases where the target is loaded with water and sediment, 

respectively. 
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6.3 Free Field Results 
 

In order to verify that 0s  Lamb waves do indeed propagate on the target, time reversal 

experiments are conducted with the target positioned in the free field.  In these 

experiments, the location of a 60 sµ  long time reversal window is shifted with respect to 

returns from the target.  Convergence plots with the window positioned over the first and 

second Lamb wave circumnavigations are shown in Figure 6.6 and Figure 6.7, 

respectively.  In the time domain waveforms of Figures 6.6a-6.6c, the 0s  Lamb wave 

return is clearly identified as a discrete wave packet that follows the specular return.  This 

Lamb wave arrives at a time delay of 80 sµ  relative to the specular return.  This is within 

approximately 10% of the predicted delay.  Convergence to a resonance centered at 121 

kHz is observed.  This frequency is very close to the location of a resonance in the free 

field response of the shell at 124 kHz.   

In Figures 6.7a-6.7c the return associated with the second 0s  Lamb wave 

circumnavigation appears.  However, it is not clearly separated from the specular return.  

The appearance of this waveform at the final time reversal iteration (see Figure 6.7c) is 

consistent with observations made in the scaled laboratory experiments; for an example 

of this, the reader is referred to Figure 4.16d located in Section 4.3.3.  The phase of the 

specular return and subsequent Lamb wave circumnavigations matches so that the returns 

appear as one.  The second Lamb wave circumnavigation appears at an echo delay of 

150 sµ  relative to the specular return.  This is approximately 20% sooner than predicted.  

In Figure 6.7, convergence to a resonance centered at 43 kHz is observed.  These results 
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confirm that 0s  Lamb waves are indeed present in the scattering response of the target 

and that they can be isolated through the application of single-channel time reversal 

 

 

 

 

 

Figure 6.6: Convergence plot for the shell target in the free field through successive iterations of 

the time reversal procedure.  The window is located at the expected position of the first 0s  Lamb 

wave circumnavigation.  Vertical lines in (a)-(c) depict the position of a 60 sµ  long time reversal 

window. (a.) The first backscattered return, iteration 0. (b.) Backscattered return at iteration 4 of 

time reversal. (c.) Backscattered return at iteration 14 of the time reversal procedure.  (d.) 

Waterfall plot of magnitude spectra of signals within the time reversal window for iterations 0 

through 14 normalized to the maximum spectral magnitude at the final iteration.  The spectra 

from (a)-(c) are highlighted with lines of the same shading. 
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Figure 6.7: Convergence plot for the shell target in the free field through successive iterations of 

the time reversal procedure.  The window is located at the expected position of the second 0s  

Lamb wave circumnavigation.  Vertical lines in (a)-(c) depict the position of a 60 sµ  long time 

reversal window. (a.) The first backscattered return, iteration 0. (b.) Backscattered return at 

iteration 4 of time reversal. (c.) Backscattered return at iteration 11 of the time reversal procedure.  

(d.) Waterfall plot of magnitude spectra of signals within the time reversal window for iterations 

0 through 11 normalized to the maximum spectral magnitude at the final iteration.  The spectra 

from (a)-(c) are highlighted with lines of the same shading. 

 

 

 

 

 

 



200 

 

6.4 Buried Target Results 
 

In this Section, results from buried target experiments are presented.  The face of the 

target nearest the projector is buried at a depth of 6 inches beneath the surface of the 

sediment.  Sliding window experiments are conducted where a 60 sµ  time reversal 

window is employed.  A computer program automatically controls the number of 

iterations that are carried out, halting the procedure after convergence of received 

waveforms is achieved.  Convergence of the time reversal procedure is determined by 

comparing the most recent backscattered signal to the backscattered signal two iterations 

prior.  Formal convergence is defined when the mean absolute difference between the 

normalized signals is less than 2.5%.   

 The top half of Figure 6.8 shows the convergence plot for an experiment 

conducted without a target in place.  The time reversal window is positioned on the 

expected location of returns from the target.  Convergence to a frequency of 59 kHz is 

observed.  In the experiment with a target in place convergence to a frequency of 45 kHz 

is observed.  This is very close to the 43 kHz frequency observed in free field 

experiments and is different than the convergence frequency observed without a target in 

place.  Although a coherent return is present within the window in both experiments, in 

the case where a target is present, the return is higher in amplitude. 

 A second set of experiments is then conducted where a high pass filter is applied 

to returns between time reversal iterations.  The magnitude and phase response of this 

filter is shown in Figure 6.9.  It is meant to reduce the magnitude of the low frequency 

resonance previously observed and to somewhat account for attenuation in the sediment.  



201 

 

The sliding window experiment is then repeated.  Convergence plots depicting selected 

results are shown in Figure 6.10.  They are much more striking than the results when no 

filter is used.  In the experiment without a target in place, only a very low amplitude, low 

frequency, energy component is observed.  In the experiment with a target in place, there 

is a high amplitude, relatively high quality factor, return visible within the time reversal 

window.  A 105 kHz convergence frequency is observed.  This is markedly different than 

the convergence frequency without a target in place.  The frequency is also very close to 

the 102 kHz center frequency of a 0s  Lamb wave resonance in the sediment-loaded target 

response of Figure 6.4.   

 Figure 6.11 shows return signals at the final iteration for additional window 

locations from this experiment.  Convergence frequencies are reported within each figure.  

The result from Figure 6.10 is repeated in the first row of Figure 6.11.  The second and 

third rows of Figure 6.11 correspond to the expected locations of returns associated with 

0s  Lamb waves.  Convergence frequencies for the experiment with the target in place are 

different than those observed in the experiment without the target in place for all window 

locations.  The frequencies observed in Figures 6.11e and 6.11f, 157 kHz and 187 khz, 

correspond very closely to the center frequencies of resonances in the sediment-loaded 

target response of 156 kHz and 189 kHz.  These results confirm that 0s  Lamb wave 

resonances are indeed being excited through application of the time reversal procedure 

and that techniques applied in the scaled laboratory work should extrapolate to 

experiments conducted at lower frequencies. 
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Figure 6.8: Convergence plots without and with the shell target buried at 6 inches.  The window 

is located at the expected position of the first 0s  Lamb wave circumnavigation.  Vertical lines in 

(a-c) & (e-g) depict the position of a 60 sµ  long time reversal window. (a,e.) The first 

backscattered return, iteration 0. (b,f.) Backscattered return at iteration 4 of time reversal. (c,g.) 

Backscattered return at iteration 18 of the time reversal procedure.  (d,h.) Waterfall plot of 

magnitude spectra of signals within the time reversal window for iterations 0 through 18 

normalized to the maximum spectral magnitude at the final iteration.  The spectra from (a-c) & 

(e-g) are highlighted with lines of the same shading. 
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Figure 6.9: Magnitude and phase response of the high pass filter applied to returns in 

select buried target field experiments. 
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Figure 6.10: Convergence plots without and with the shell target buried at 6 inches with 

application of the high pass filter.  The window is located at the expected position of the first 0s  

Lamb wave circumnavigation.  Vertical lines in (a-c) & (e-g) depict the position of a 60 sµ  long 

time reversal window. (a,e.) The first backscattered return, iteration 0. (b,f.) Backscattered return 

at iteration 4 of time reversal. (c,g.) Backscattered return at iteration 18 of the time reversal 

procedure.  (d,h.) Waterfall plot of magnitude spectra of signals within the time reversal window 

for iterations 0 through 18 normalized to the maximum spectral magnitude at the final iteration.  

The spectra from (a-c) & (e-g) are highlighted with lines of the same shading. 
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Figure 6.11: Time traces at the final iteration for buried target time reversal experiments 

where the high pass filter is employed.  (a.)-(c.) Results generated without a target in 

place. (d.)-(f.) Results generated with the target buried at 6 inch depth. In each row, the 

position of the time reversal window is highlighted with a solid gray box.  From the top 

row to the bottom row, window positions correspond to the expected time location of the 

specular return, the first 0s  Lamb wave circumnavigation, and the second 0s  Lamb wave 

circumnavigation.  Convergence frequencies are given in each plot. 
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Chapter 7  
 

 

 

Summary and Conclusions 
 

 

 

In this work, an iterative, single-channel time reversal technique is applied to study 

scattered returns from resonant objects positioned both in the free field and fully buried in 

inhomogeneous media.  The investigation consists of a three-pronged approach utilizing a 

combination of scaled laboratory experiments, numerical simulations, and field 

experiments.  The current Chapter provides an overview of the work and draws 

conclusions based upon aforementioned results. 

 Theoretical calculations, presented in Section 2.1, illuminate a number of useful 

properties of iterative, single-channel time reversal.  The technique consists of 

insonifying a scattering target with a broadband acoustic pulse, sampling the return using 

a finite time window, reversing the signal in time, and using this reversed signal as a 

source waveform for the next interrogation.  Iteratively repeating the later three steps of 

this process has the effect of raising the spectral response of a target to a value 

proportional to the number of iterations carried out.  In this way convergence to a 

narrowband waveform characteristic of the dominant resonance in the backscattering 

response of the target is achieved.  Theoretical predictions indicate that application of the 
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technique should yield an improvement in the signal-to-noise ratio (SNR) of target 

returns in the presence of stochastic noise.  For the technique to successfully isolate a 

target of interest, however, the dominant peak in its spectral response must be greater in 

amplitude than those from surrounding clutter or false targets in its vicinity.  To 

investigate the properties of the technique, scaled laboratory experiments are designed 

and conducted. 

A number of carefully controlled experiments are first carried out in order to 

characterize the experimental apparatus.  The system employed in the laboratory is 

comprised primarily of an unfocused ultrasonic piston transducer operating in a 

monostatic pulse-echo configuration.  It is well known that the frequency responses of 

acoustic transducers possess distinct resonance characteristics.  In order to ensure that the 

time reversal procedure is free to converge without bias to a target resonance within the 

bandwidth of the transducer, the combined transmit-receive response of the measurement 

system must be flat within this bandwidth.  For this reason, a digital filter is designed to 

equalize the frequency response of the system.   

Application of the filter to returns backscattered from the free-water surface of the 

test tank (a good model of an ideal specular reflector) results in calibrated received 

waveforms that are accurate replicas of initial outgoing waveforms.  This indicates that 

the digital filter does indeed account for any resonances present within the system.  The 

application of such a filter is critical to ensure unbiased convergence of the time reversal 

procedure.  Experiments conducted to probe the sensitivity of the calibrated system to 

various transducer orientations, indicate that the flatness of its frequency response is 
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relatively insensitive to the standing distance but strongly dependent upon the angle of 

incidence. 

 Broadband scattering measurements are then conducted in order to characterize 

the frequency response of the spherical shell target employed in the laboratory work.  

Interrogation of the target with linear frequency modulated (LFM) chirp waveforms, 

which sweep the full system bandwidth, indicates that a number of resonances are present 

within its scattering response.  Verification of the geometric and material properties of 

the target is confirmed by comparing experimentally measured returns with theoretical 

predictions.  By varying the density of the shell material within its measured uncertainty, 

a normalized mean squared error of less than 5% between the measured and predicted 

target response is observed.  This provides further evidence that the system calibration is 

indeed reliable.  Additional measurements confirm theoretical predictions that the 

observed target resonances are primarily attributed to symmetric, 0s , and antisymmetric, 

0a − , Lamb wave returns. 

 A final set of characterization experiments probes the acoustic properties of the 

sediment phantom employed, which consists of a consolidation of water saturated 

spherical glass beads.  Through-transmission experiments are conducted in which the 

sound speed and attenuation of dilatation waves in the phantom are measured.  Both 

properties are found to possess significant frequency dependence, with the sound speed 

decreasing, and the attenuation increasing, as a function of frequency.  The trends 

observed in these measurements exhibit qualitative agreement with those reported in the 

literature.  The measured values are used in a transient scattering simulation to predict the 
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response of the shell target when it is buried and to verify the effects of attenuation on 

convergence of the time reversal procedure. 

 With a well-characterized measurement system and an understanding of the types 

of waves that propagate on the scattering target of interest, it is possible to test the 

efficacy of the single-channel time reversal technique.  Experiments are first conducted 

with the target suspended in the free-field.  Results confirm that application of the 

technique results in convergence to the dominant resonance in the experimentally 

measured target response.  For the target employed, this resonance is attributed to the 

propagation of an 0a −  antisymmetric Lamb wave.  The spectral magnitude at this 

resonance location increases by a factor of 6.6 or 16.4 dB by the final iteration.  

Convergence to this resonance is observed regardless of the waveform used for the initial 

interrogation.  Although fifty iterations of the time reversal procedure are typically 

performed, results from a number of experiments indicate that only a few iterations are 

usually necessary to obtain a significant enhancement in a target’s spectral response.   

  When applied to target returns in the presence of stochastic noise, the time 

reversal technique yields enhanced performance compared to a simple autocorrelation 

performed on the first return signal, given a LFM chirp interrogation.  The time reversal 

technique successfully identifies the dominant resonance in the response of the target a 

maximum of 60% more frequently than the passive autocorrelation technique.  

Coherently averaging returns, however, improves the performance of the autocorrelation.  

In a parameter study, the performance of both techniques is evaluated over a range of 

SNRs where varying numbers of averages/iterations are employed.  Results from the 
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study indicate that the time reversal technique outperforms averaging a maximum of 23% 

of the time, for SNRs greater than 15 dB.  For lower SNR values, averaging outperforms 

time reversal.  This study assumes the perfectly coherent averaging of returns, which is 

not likely possible in applications where the position of the transducer or scattering target 

may shift between transmissions.  It is likely that this effect will reduce the efficacy of 

coherent averaging significantly more than that of single-channel time reversal.  It is also 

possible that, for a given number of transmissions, combining averaging and time 

reversal could yield further enhancements in performance; this is recommended for future 

study. 

 A final set of experiments are conducted in the free field where the time reversal 

technique is employed to isolate multiple resonances in the scattering response of the 

target and to isolate surface elastic wave returns in time. When the window is smaller 

than the characteristic circumnavigation time of these surface waves, the averaged 

normalized root mean squared error (NMRSE) between predicted and measured return 

times is 1.5%.  With small windows, however, it is not possible to isolate individual 

resonances in the frequency domain.  In order to do so, the duration of the time window 

must be expanded.  When larger window sizes are employed, up to four different 

resonances are identified in the frequency domain.  Also, at the same time it is also 

possible to estimate the circumnavigation times of surface waves even though the 

window size is larger than the characteristic circumnavigation time.  This is 

accomplished by tracking the peak spectral magnitude observed at each window location.  

When the window is centered over a surface wave return, a greater spectral magnitude is 
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typically observed.  In this way, the circumnavigation times of 0a −  Lamb waves are 

estimated with an average NMRSE of less than 5%.  These surface waves are isolated on 

the shell target even when a solid stainless steel target of the same size is placed between 

it and the transducer, shielding scattered returns. 

 After having verified the fundamental properties of the technique in the free field, 

a number of experiments are conducted with the shell target buried at various depths in a 

sediment phantom.  The sediment phantom introduces coherent noise to returns in the 

form of volume scattering from individual glass beads and also from returns attributed to 

its surface.  With the target buried at 2 cm depth, convergence to a high Q resonance peak 

is observed through application of the time reversal technique.  Predictions of the target 

response when loaded by a fluid with the same properties as the sediment phantom 

indicate that the resonance is likely attributed to an 0a −  Lamb wave.  An improvement of 

16 dB in the SNR of target returns is obtained, relative to the first backscattered return, 

when the entire system bandwidth is employed in the calculation.  Limiting the SNR 

computation to a band encompassing only the dominant resonance results in an 

improvement of 30 dB. 

 When the target is buried at various depths ranging from 1 cm to 4 cm, the 

convergence frequency is found to shift downwards as the target is buried deeper.  

Numerical simulations confirm that this is due to the frequency dependent attenuation of 

the sediment.  That is, the layer of sediment above the target acts as a low pass filter, the 

strength of which increases with burial depth.  When the target is buried at depths of 4 cm 

or greater, attenuation diminishes returns to an extent that they are indistinguishable from 
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coherent background noise.  The shift in convergence frequency with increased burial 

depth demonstrates the strength of iterative time reversal to automatically redirect 

acoustic energy into the strongest available target resonance.   

 An investigation is then carried out with the target buried at 2 cm depth and the 

transducer oriented at incident angles of 0, 10, and 20 degrees.  Window shifting 

experiments are conducted at each angle where window sizes ranging from 4 sµ  to 60 sµ  

are utilized.  Results indicate that multiple resonances in the response of the buried target 

are isolated.  At normal incidence, the sediment surface is always the dominant scatterer, 

and for large window sizes it can mask returns from the buried target.  Therefore, the 

window size should be optimized in order to maximize the energy attributed to target 

returns, while still retaining the temporal resolution with which to isolate the target from 

the sediment surface.  For this study, a window size of approximately 20 sµ  is found to 

yield the greatest SNR for target returns.  

Operating at 10 degrees incidence results in biased convergence to a lower 

frequency resonance in the response of the target.  A bias arises in the frequency response 

of the system due to mainly to three effects.  The first effect is attributed to the spreading 

of the transducer’s beam.  Refraction of incident waves at the sediment-water interface 

results in the center of the transducer’s beam being shifted to one side of the target.  

Lower frequencies spread more than higher frequencies.  Therefore, the target will be 

preferentially excited by these lower frequencies.  The second biasing effect arises as the 

incident angle is increased, because at larger angles, the sound passes through a greater 

effective thickness of sand which acts as a low pass filter as discussed in Section 5.4.  
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The third biasing effect is attributed to returns from the sediment surface, which can enter 

the time reversal window and interfere with target returns.  If the dominant response 

frequency of the sediment surface is located at low frequencies (which it indeed is at 10 

degrees incidence) application of the time reversal procedure can result in convergence to 

a lower frequency target resonance than expected.  At 20 degree incidence, the majority 

of the energy reflected from the sediment surface propagates in the forward direction and 

does not return to the transducer.  Application of the time reversal procedure at this angle 

results in convergence to the same frequency observed at normal incidence.  Also, returns 

from the sediment surface are barely visible compared to target returns.  Therefore, the 

angle of incidence can be optimized to minimize the sediment surface return while still 

converging to the expected target resonance frequency.   

 Wave mode images are generated by raster scanning the transducer over an area 

of sediment containing two targets of the same size, but possessing different resonance 

responses.  In this way it is possible to isolate the locations of both targets by selectively 

plotting the energy present within different frequency bands.  In addition, two distinct 

resonances in the response of the standard shell target are observed as a function of 

transducer position and processing bandwidth.  This is due to lower frequency excitation 

of the target as the transducer is moved away from the target burial location.  This result 

does not rely on any additional signal processing techniques. 

 Finally, a set of field experiments is conducted in a test pond at the Naval Surface 

Warfare Center – Panama City Division.  In these experiments the insight gained in the 

laboratory work is applied in a lower frequency (20-200 kHz) regime to detect and 
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identify a stainless steel shell target buried in water saturated medium grained sand.  

Results of these experiments indicate that target resonances attributed to 0s  symmetric 

Lamb waves are identified both when the target is suspended in the free field and when it 

is buried in sand at 15.24 cm depth.  The results confirm that 0s  symmetric Lamb waves 

survive burial and that the time reversal technique is indeed applicable at lower frequency 

operating conditions. 

The single-channel technique provides a straightforward and inexpensive 

alternative to array based schemes for isolation of the dominant resonance in the response 

of a target-object.  However, the reader should note that there is no spatial focusing and, 

as the technique requires the use of a time-gate window, it is unable to exploit multi-path 

propagation.  Therefore, array based time reversal will afford an improvement in these 

respects.  An obvious extension of the current work would be to apply the methodology 

presented here in an array-based scheme.  Also, in this work, the location of the 

transducer is stationary as successive iterations of the time reversal technique are carried 

out.  It would be interesting to determine whether an improvement in target detection or 

identification could be achieved by performing time reversal iteratively, while slowly 

translating the position of the transducer.  This would have applications in ocean 

acoustics, where unmanned underwater vehicles autonomously search for scattering 

targets of interest.  Although the work reported in this dissertation is specific to the 

detection of objects buried in sands and sediments, the techniques described can be used 

to isolate acoustic returns from any resonating object imbedded in media possessing high 
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levels of clutter and noise, including applications in biomedical sensing and imaging as 

well flaw detection and material characterization. 
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Appendix A  
 

 

Additional Scattering & Wave 

Propagation Theory 
 

 

This section provides additional analysis regarding the scattering of acoustic waves from 

targets.  Included is a derivation for the scattering response of a solid sphere, fluid sphere, 

elastic cylindrical shell that is filled with an elastic solid, and a solid cylinder.  Resonance 

scattering theory is used to determine the properties of waves that propagate on a solid 

stainless steel spherical target used in some time reversal experiments.  Finally, a review 

of analysis used to determine dispersion curves for Lamb waves on a flat plate in vacuo is 

provided.

A.1 Acoustic Scattering from an Elastic Sphere 
 

A solid sphere, of outer radius a , is located at the origin of an infinite space consisting of 

a fluid medium of density 1ρ  and dilatational wave speed 1d
c .  A schematic is presented in 

Figure A.1.  The sphere consists of an elastic solid with density 2ρ , dilatation wave 

speed 2d
c , and shear wave speed 2s

c .  An infinite plane acoustic wave is incident upon the 

sphere and approaches from the negative ˆ
z

e
�

direction. 
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Figure A.1: Schematic of the geometry for the scattering of a plane acoustic wave by an 

elastic sphere submerged in an infinite fluid medium. 

 

Solutions of the elastic wave equation in terms of displacement 

 ( ) ( ) ( )
2

2
2

u
u u

t
ρ λ µ µ
 ∂

= + ∇ ∇ ⋅ − ∇× ∇× 
∂ 
�
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 (A.1) 

are expressed in terms of scalar and vector potential functionsϕ and Ψ
�

, respectively, such 

that  

 u ϕ= ∇ + ∇× Ψ
�� � �

. (A.2) 

Assuming an i t
e

ω−  time harmonic convention (where ω  is angular frequency and t  is 

time), the scalar potential satisfies the Helmholtz equation,  

 2 2 0
d

kϕ ϕ∇ + =  (A.3) 
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where /
d d

k cω= is the wave number for dilatational waves. This relationship will be 

useful subsequently, in resolving the relevant components of stress in the system. 

In spherical coordinates, the gradient and curl operators are as follows: 
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Here, one notes that for scattering from a sphere there will be no dependence on φ  and 

only one of the shear potential’s components contributes, ( )0,0, φψΨ =
�

.  Substituting 

equations (2.26) and (2.27) into equation (2.24) yields the components of displacement in 

spherical coordinates, 
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 0uφ = . (A.8) 

The constitutive relation, between the component of radial stress and displacement, can 

be expanded as  
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where, making use of the identity 2u ϕ ϕ∇ ⋅ = ∇ ⋅∇ = ∇
� � � �

, equation (2.25) is substituted for 

the divergence term.  The component of stress tangential to the sphere’s surface in the êθ
�

 

direction is  
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where /
s s

k cω=  is the wave number for shear waves.  With the displacements and 

constitutive relations defined, it is now possible to proceed with solution of the boundary 

value problem of interest. 

Assuming an i t
e

ω−  time harmonic convention, where t  is time, the pressure of the 

incident wave,
i

p , expanded in terms of spherical harmonics is   

 ( ) ( ) ( )0 1

0

2 1 cos .i t n
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ω θ
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=

= +∑  (A.11) 

where 0p is the pressure amplitude, 1 1/
d

k cω=  is the dimensionless Helmholtz 

number in the medium external to the sphere, ( )1nj k r is a spherical Bessel function, and 

(cos )
n

P θ is a Legendre polynomial.  The pressure scattered from the sphere,
s

p , can be 

expressed as  

 ( ) ( ) ( ) ( )1
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2 1 cosi t n

s n n n
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p p e i n a h k r P
ω θ

∞
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where
( ) ( )1

1nh k r is a spherical Hankel function of the first kind. The ( )0 2 1n
p i n + term is 

included for convenience and it is assumed that the
n

a  coefficients absorb the appropriate 
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factors to account for this substitution.  The total pressure in the fluid external to the 

sphere is equal to the sum of the incident and scattered pressures, 
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It is also necessary to determine the radial displacement, 1r
u , in the fluid external to the 

sphere.  This is accomplished through use of the linearized momentum equation [78] 

where 
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Expressions for the potential functions in the sphere’s interior are 
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where a Neumann function is excluded in equations (A.15) and (A.16) to ensure that the 

solution remains bounded at the origin of the coordinate system, located at the sphere’s 

interior.   

  The three unknown coefficients,
n

a ,
n

b , and 
n

c  are determined by matching the 

boundary conditions for displacement, normal stress, and transverse stress at the external 

surface of the sphere.  On the sphere’s external surface, at r a= , 

     1 ,2rr
p τ= −  (A.17) 

     ,1 ,2r r
u u=  (A.18) 
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 ,2 0
rθτ =  (A.19) 

Application of the boundary conditions results in a set of linear equations that are 

presented here in matrix form as, 
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where,  
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( ) ( )23 21 n sd n n j k a= +  

( )1
2 12

1

'
n

k a
A j k a

ρ ω
= −  

31 0d =  

( ) [ ] ( )32 2 2 22 2 'n d d n dd j k a k a j k a= − +  

( ) ( ) ( ) ( )
2

33 2 2 2 22 2 1 2 's n s s n sd n n k a j k a k aj k a = − + + +
 
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3 0A =  

The system of equations (2.54) is solved for the coefficients 
n

a  in order to determine the 

frequency dependence of the scattered field.  The computer program used for this 

calculation is written in MATLAB
®

 [119].  If the sphere target of interest consists of a 

fluid instead of an elastic solid, the same system of equations can be used by setting the 

second Lame coefficient in the target medium to 2 0µ = .  

A.2 Resonance Scattering Theory - Solid Stainless Steel 

Sphere 
 

In this section, results of resonance scattering analysis are provided for the 6.35 

mm outer diameter stainless steel sphere target used in some time reversal experiments.  

The reader should refer to the section on resonance scattering theory in Chapter 2 for 

details of how the analysis is carried out.  The parameters used to calculate the stainless 

steel target’s form function, shown in Figure A.2a, are presented in Table A.1.  The 

individual partial waves of the target’s scattering response are presented in Figure A.2b-l.  

Over the depicted frequency range, the response consists of a Rayleigh wave and several 

whispering gallery waves.   

Table A.2 presents the location in ka  of the center frequency of each of the 

resonances for partial wave numbers up to 34n = .  The phase and group velocities of the 

Rayleigh wave ( )1l =  and the first whispering gallery wave ( )2l =  are plotted in Figure 

A.3.  The values of the phase velocity are interpolated with a solid line.  Finally, the echo 
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delay between the specular return and the arrival of each surface elastic wave is plotted in 

Figure A.4. 

 

Table A.1: Material properties used in the analytical prediction of the solid stainless steel 

target’s  monostatic farfield form function.  

Sphere outer radius 3.182 mm  

External fluid density, water 998 kg/m
3 

External fluid sound speed, water 1476 m/s 

Density, SS-316 stainless steel 2680 kg/m
3
  

Dilatational wave speed, SS-316 stainless steel 5380.5 m/s 

Shear wave speed, SS-316 stainless steel 3106.4 m/s 
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Figure A.2: Far-field acoustic form function of the solid stainless steel target decomposed 

into the individual components of its partial wave series solution after subtraction of the 

partial waves from a rigid sphere.  (a.) Magnitude of the far-field acoustic form function 

versus frequency. (b.)-(l.) Partial waves n = 0 to n = 10, magnitude versus frequency, 

after background subtraction.  The vertical axis is normalized and presented on the same 

scale for all subfigures.  The gray shaded region depicts the frequency range of interest 

for the current work.   Within subfigures b-l is plotted the angular dependence of each 

partial wave.  In (d.) resonance types are identified with arrows. 
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Table A.2: List of resonance ka  locations (center frequency of resonance) for each 

partial wave of the Rayleigh ( )1l = , and first three whispering gallery ( )2,3,4l =  type 

wave resonances in the purely elastic response of a 6.35mm diameter solid stainless 

sphere target used in time reversal experiments. 

 Resonance ka  Location 

n 1l =  2l =  3l =  4l =  

1 ----- 7.2007 14.2414 16.2976 

2 5.5206 10.2410 17.5298 20.5781 

3 8.2088 13.5854 20.4260 24.7185 

4 10.5091 16.9617 23.2343 28.5229 

5 12.6733 20.2740 26.0266 31.9392 

6 14.7495 23.4743 28.8509 35.0675 

7 16.7977 26.5467 31.7232 38.0118 

8 18.8179 29.4749 34.6435 40.8601 

9 20.8261 32.2792 37.6038 43.6684 

10 22.8183 34.9715 40.5801 46.4686 

11 24.8025 37.5798 43.5484 49.2689 

12 26.7827 40.1160 46.4766 52.0932 

13 28.7509 42.6043 49.3649 54.9335 

14 30.7231 45.0525 52.1892 57.7978 

15 32.6873 47.4687 54.9415 60.6781 

16 34.6515 49.8530 57.6378 63.5584 

17 36.6117 52.2292 60.2860 66.4306 

18 38.5639 54.5815 62.8783 69.2789 

19 40.5241 56.9177 65.4305 72.0952 

20 42.4762 59.2459 67.9548 74.8635 

21 44.4284 61.5622 70.4470 77.5998 

22 46.3846 63.8704 72.9153 ----- 

23 48.3328 66.1666 75.3595 ----- 

24 50.2850 68.4588 77.7918 ----- 

25 52.2332 70.7431 ----- ----- 

26 54.1814 73.0233 ----- ----- 

27 56.1296 75.2955 ----- ----- 

28 58.0738 77.5598 ----- ----- 

29 60.0220 ----- ----- ----- 

30 61.9662 ----- ----- ----- 

31 63.9104 ----- ----- ----- 

32 65.8586 ----- ----- ----- 

33 67.7988 ----- ----- ----- 

34 69.7430 ----- ----- ----- 
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Figure A.3: Phase and group velocities of Rayleigh ( )1l =  and whispering gallery ( )2l =   

waves that propagate on a solid stainless steel target.  The wave velocities are normalized 

by the sound speed of water, 1476c = m/s, and plotted versus frequency over a range 

relevant to the current work.  Phase velocities of the Rayleigh wave and the first 

whispering gallery wave are shown as circles and squares, respectively.  The phase 

velocity results are interpolated with a solid line. 
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Figure A.4: Echo delay with respect to the specular return versus frequency, of the first 

circumnavigation of Rayleigh ( )1l =  and whispering gallery ( )2l =  waves that 

circumnavigate the solid stainless steel target. 
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A.3 Acoustic Scattering from an Elastic Cylindrical Shell 

Filled with an Elastic Medium 
 

An infinite cylindrical shell, of outer radius a and inner radius b , is located at the 

origin of an infinite space consisting of a fluid medium of density 1ρ  and dilatational 

wave speed 1d
c .  A schematic is presented in Figure A.5.  The shell, filled with a solid of 

density 3ρ , dilatational wave speed 3d
c , and shear wave speed 3s

c  consists of an elastic 

solid with density 2ρ , dilatation wave speed 2d
c , and shear wave speed 2s

c .  An infinite 

plane acoustic wave is incident upon the shell and approaches from the 

negative x
�

direction, as in.  

 

Figure A.5: Schematic of the geometry for the scattering of a plane acoustic wave by an 

elastic sphere submerged in an infinite fluid medium. 

 

Solutions of the elastic wave equation in terms of displacement  
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 ( ) ( ) ( )
2

2
2

u
u u

t
ρ λ µ µ
 ∂

= + ∇ ∇ ⋅ − ∇× ∇× 
∂ 
�

� � � � � �
 (A.21) 

are expressed in terms of scalar and vector potential functionsϕ and Ψ
�

, respectively, such 

that  

 u ϕ= ∇ + ∇× Ψ
�� � �

. (A.22) 

Assuming an i t
e

ω−  time harmonic convention (where ω  is angular frequency and t  is 

time), the scalar potential satisfies the Helmholtz equation,  

 2 2 0
d

kϕ ϕ∇ + =  (A.23) 

where /
d d

k cω= is the wave number for dilatational waves. This relationship will be 

useful subsequently, in resolving the relevant components of stress in the system. 

In cylindrical coordinates, the gradient and curl operators are as follows: 

 
1

ˆ ˆ ˆ
r z

e e e
r r z

θ

ϕ ϕ ϕ
ϕ

θ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂� � � �
 (A.24) 

 ( )
1 1

ˆ ˆ ˆz r z r
r ze e r e

r z z r r r

θ
θ θ

ψψ ψ ψ ψ
ψ

θ θ

∂∂ ∂ ∂ ∂∂     
∇× Ψ = − + − + −     

∂ ∂ ∂ ∂ ∂ ∂    � � � �
 (A.25) 

Here, one notes that for scattering from an infinite cylinder under broadside 

insonification there will be no dependence on z  and only one of the shear potential’s 

components contributes, ( )0,0, zψΨ =
�

.  Substituting equations (2.26) and (2.27) into 

equation (2.24) yields the components of displacement in spherical coordinates, 

 
1

z
r

u
r r

ψϕ

θ

∂∂
= +

∂ ∂
 (A.26) 

 
1

zu
r r

θ

ψϕ

θ

∂∂
= −

∂ ∂
 (A.27) 
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 0
z

u = . (A.28) 

The constitutive relation, between the component of radial stress and displacement, can 

be expanded as  

 

( )

22
2

2 2

2

1 1
2 .

r
rr

z z
d

u
u

r

k
r r r r

τ λ µ

ψ ψϕ
λ ϕ µ

θ θ

∂ 
= ∇ ⋅ +  

∂ 

 ∂ ∂∂
= − + − + 

∂ ∂ ∂ ∂ 

� �

 (A.29) 

where, making use of the identity 2u ϕ ϕ∇ ⋅ = ∇ ⋅∇ = ∇
� � � �

, equation (2.25) is substituted for 

the divergence term.  The component of stress tangential to the sphere’s surface is  

 
22

2 2 2

1

1 1
2 .

r
r

z z z

u u u

r r r

r r r r r r

θ θ
θτ µ

θ

ψ ψ ψφ
µ

θ θ

∂ ∂ 
= − + 

∂ ∂ 

  ∂ ∂ ∂∂  
= + − + +    

∂ ∂ ∂ ∂ ∂    

 (A.30) 

With the displacements and constitutive relations defined, it is now possible to proceed 

with solution of the boundary value problem of interest. 

It is necessary to express the pressure of the incident plane wave as a sum of 

spherical harmonic functions [120].  Assuming an i t
e

ω−  time harmonic convention, where 

t  is time, the pressure of the incident wave,
i

p , expanded in terms of spherical harmonics 

is 

 ( ) ( )0 1

0

cos .i t n

i n n

n

p p e i J k r n
ω ε θ

∞
−

=

= ∑  (A.31) 

where 0p is the pressure amplitude, 1 1/
d

k cω=  is the wave number in the medium 

external to the sphere, ( )1nJ k r is an ordinary Bessel function, and 02
n n

ε δ= −  where  
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 0

1,   if n = 0

0,   if n 0
n

δ


= 
≠

 (A.32) 

is the Kronecker delta function. 

The scattered pressure, 
s

p , can be expressed as  

 ( ) ( ) ( )1

0 1

0

cosi t n

s n n n

n

p p e i a H k r n
ω ε θ

∞
−

=

= ∑  (A.33) 

where
( ) ( )1

1nH k r is a Hankel function of the first kind. The 0

n

n
p i ε term is included for 

convenience and it is assumed that the
n

a  coefficients absorb the appropriate factors to 

account for this substitution.  The total pressure in the fluid external to the cylinder is 

equal to the sum of the incident and scattered pressures, 

 ( ) ( ) ( ) ( )1

1 0 1 1

0

cos .i t n

i s n n n n

n

p p p p e i J k r a H k r n
ω ε θ

∞
−

=

 = + = + ∑  (A.34) 

It is also necessary to determine the radial displacement, 1r
u , in the fluid external to the 

sphere.  This is accomplished through use of the linearized momentum equation [78] 

where 

 ( ) ( ) ( ) ( )101
1 1 1 1 12 2

01 1

1
' ' cosi t n

r n n n n

n

pp
u e i k J k r a k H k r n

r

ω ε θ
ρ ω ρ ω

∞
−

=

∂  = = + ∂
∑ . (A.35) 

Expressions for the potential functions in the shell material are 

 ( ) ( ) ( ) ( )2 0 2 2

0

, , cosi t n

n n n d n n d

n

r t p e i b J k r c N k r n
ωϕ θ ε θ

∞
−

=

= +  ∑ , (A.36) 

 ( ) ( ) ( ) ( )2 0 2 2

0

, , sini t n

n n n s n n s

n

r t p e i d J k r e N k r n
ωψ θ ε θ

∞
−

=

= +  ∑ . (A.37) 

The potential functions in the filler fluid are 
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 ( ) ( ) ( )3 0 3

0

, , cosi t n

n n n d

n

r t p e i f J k r n
ωϕ θ ε θ

∞
−

=

=   ∑  (A.38) 

 ( ) ( ) ( )3 0 3

0

, , sini t n

n n n s

n

r t p e i g J k r n
ωψ θ ε θ

∞
−

=

=   ∑  (A.39) 

where the Neumann function typically found in equations (2.46) and (A.39) is excluded 

to ensure that the solution remains bounded at the origin of the coordinate system.   

  The seven unknown coefficients, 
n

a , 
n

b , 
n

c , 
n

d , 
n

e , 
n

f , and 
n

g  are determined 

by matching the boundary conditions for displacement, normal stress, and transverse 

stress at the internal and external surfaces of the sphere.  On the sphere’s external surface, 

at r a= , 

     1 ,2rr
p τ= −  (A.40) 

     ,1 ,2r r
u u=  (A.41) 

 ,2 0
rθτ =  (A.42) 

and on the internal surface, at r b= , 

     ,2 ,3rr rr
τ τ=  (A.43) 

      ,2 ,3r r
u u=  (A.44) 

 ,2 ,3u uθ θ=  (A.45) 

 

   ,2 0
rθτ = . (A.46) 

Application of the boundary conditions results in a set of linear equations that are 

presented here in matrix form as, 
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11 12 13 14 15 16 17

21 22 23 24 25 26 27

31 32 33 34 35 36 37

41 42 43 44 45 46 47

51 52 53 54 55 56 57

61 62 63 64 65 66 67

71 72 73 74 75 76 77

n

n

n

n

n

n

n

d d d d d d d a

d d d d d d d b

d d d d d d d c

d d d d d d d d

d d d d d d d e

d d d d d d d f

d d d d d d d g

   
   
   
   
   

  
 
 
 
 

  

1

2

3

4

5

6

7

A

A

A

A

A

A

A

 
 
 
 
 

=  
  
  
  
  
  

 (A.47) 

where,  

( ) ( )
2

1

11 1

2

n

a
d H k a

µ
=  

( ) ( ) [ ] ( )
2 2

12 2 2 2 22 2 's n d d n dd k a n J k a k a J k a = − + −
 

 

( ) ( ) [ ] ( )
2 2

13 2 2 2 22 2 's n d d n dd k a n N k a k a N k a = − + −
 

 

( ) [ ] ( )14 2 2 22 2 'n s s n sd nJ k a n k a J k a= − +  

( ) [ ] ( )15 2 2 22 2 'n s s n sd nN k a n k a N k a= − +  

16 0d =  

17 0d =  

( )
2

1 1

2

n

a
A J k a

µ
= −  

( ) ( )11
21 12

1

'
n

k a
d H k a

ρ ω
= −  

[ ] ( )22 2 2'd n dd k a J k a=  

[ ] ( )23 2 2'd n dd k a N k a=  
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( )24 2n sd nJ k a=  

( )25 2n sd nJ k a=  

16 0d =  

17 0d =  

( )1
2 12

1

'
n

k a
A J k a

ρ ω
= −  

31 0d =  

( ) [ ] ( )32 2 2 22 'n d d n dd nJ k a k a J k a= −  

( ) [ ] ( )33 2 2 22 'n d d n dd nN k a k a N k a= −  

( ) ( ) [ ] ( )
22

34 2 2 2 22 2 's n s s n sd n k a J k a k a J k a = − + +
 

 

( ) ( ) [ ] ( )
22

35 2 2 2 22 2 's n s s n sd n k a N k a k a N k a = − + +
 

 

36 0d =  

37 0d =  

3 0A =  

41 0d =  

[ ] ( )42 2 2'd n dd k b J k b=  

[ ] ( )43 2 2'd n dd k b N k b=  

( )44 2n sd nJ k b=  

( )45 2n sd nN k b=  
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[ ] ( )46 3 3'd n dd k b J k b= −  

( )47 3n sd nJ k b= −  

4 0A =  

51 0d =  

( )52 2n dd nJ k b=  

( )53 2n dd nN k b=  

[ ] ( )54 2 2's n sd k b J k b=  

[ ] ( )55 2 2's n sd k b N k b=  

( )56 3n dd nJ k b= −  

[ ] ( )57 3 3's n sd k b J k b= −  

5 0A =  

61 0d =  

( ) ( ) [ ] ( ){ }2 22
62 2 2 2 2

3

2 2 '
s n d d n d

d k b n J k b k b J k b
µ

µ
 = − + −
 

 

( ) ( ) [ ] ( ){ }2 22
63 2 2 2 2

3

2 2 '
s n d d n d

d k b n N k b k b N k b
µ

µ
 = − + −
 

 

( ) [ ] ( ){ }2
64 2 2 2

3

2 '
n s s n s

d n J k b k b J k b
µ

µ
= − +  

( ) [ ] ( ){ }2
65 2 2 2

3

2 '
n s s n s

d n N k b k b N k b
µ

µ
= − +  
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( ) ( ) [ ] ( )
2 2

66 3 3 3 32 2 's n d d n dd k b n J k b k b J k b = − +
 

 

( ) [ ] ( )67 3 3 32 2 'n s s n sd nJ k b n k b J k b= −  

6 0A =  

71 0d =  

( ) [ ] ( )72 2 2 22 2 'n d d n dd nJ k b n k b J k b= −  

( ) [ ] ( )73 2 2 22 2 'n d d n dd nN k b n k b N k b= −  

( ) ( ) [ ] ( )
22

74 2 2 2 22 2 's n s s n sd n k b J k b k b J k b = − + +
 

 

( ) ( ) [ ] ( )
22

75 2 2 2 22 2 's n s s n sd n k b N k b k b N k b = − + +
 

 

( ) [ ] ( ){ }2
76 3 3 3

3

2 '
n d d n d

d n J k b k b J k b
µ

µ
= − +  

( ) ( ) [ ] ( ){ }2 22
77 3 3 3 3

3

2 2 '
s n s s n s

d k b n J k b k b J k b
µ

µ
 = − + −
 

 

7 0A =  

Note that only first order derivatives of the Bessel functions are present in the above 

coefficients.  Recursive relations relate ordinary Bessel functions and their first order 

derivatives [76],  

 ( ) ( ) ( )1 1
2

n n n

z
J z J z J z

n
− += +    (A.48) 

 ( ) ( ) ( )1 1

1

2
n n n

d
J z J z J z

dz
− += −   . (A.49) 
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Using the above expressions, a Bessel function’s second order derivative can then be 

expanded as, 

 ( ) ( ) ( )
2

2

1
'' 1 'n n n

n
J z J z J z

z z

 
= − − 
 

. (A.50) 

This expression is used to reduce the order of Bessel function second derivatives in 

equations (A.47), a procedure that significantly reduces the amount of time required for 

computation. 

To determine the coefficients of the scattered field, the system of equations (A.47) 

is solved for 
n

a  through the method of Gaussian elimination [79].  The computer 

program used for this calculation is written in MATLAB
®

 [119].  Derivatives of ordinary 

Bessel functions are solved numerically. 

 For a solid cylinder, the system of equations that results from the boundary value 

problem can be written in terms of the coefficients listed in (A.47) as follows: 

 

11 12 14 1

21 22 24 2

32 340 0

n

n

n

d d d a A

d d d b A

d d d

     
      
   = 
    
         

 (A.51) 

This system of equations is solved in the same manner as (A.47).   
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A.4 Lamb Waves 

The following analysis follows that of Grisby [121] and Lamb [91].  The geometry for 

this investigation is depicted in Figure A.6.  

 

Figure A.6: Schematic depicting a flat plate in vacuo relevant to the calculation of Lamb 

wave dispersion curves. 

 

A flat plate of thickness h  extends infinitely in the x-direction and z-direction.  The 

relevant displacements for this two-dimensional problem are written in terms of potential 

functions as 

 
∂ ∂

= +
∂ ∂

u
x y

ϕ ψ
 (A.1) 

and  

 
∂ ∂

= −
∂ ∂

v
y x

ϕ ψ
 (A.2) 

where u  and v  are displacements in the x-direction and y-direction, respectively.  The 

relevant components of stress for this problem are in terms of displacement  

 
 ∂ ∂

= + 
∂ ∂ 

xy

v u

x y
τ µ  (A.3) 
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the stress in the x-direction on a plane parallel with the xz-plane (i.e. y-face) and  

 2
 ∂ ∂ ∂

= + + 
∂ ∂ ∂ 

yy

u v v

x y y
τ λ µ  (A.4) 

the stress in the y-direction.  The potential functions of (A.1) and (A.2) satisfy the 

equations 

 

2
2 2

2

2
2 2

2

∂
= ∇

∂

∂
= ∇

∂

d

s

c
t

c
t

ϕ
ϕ

ψ
ψ

 (A.5) 

where 
d

c  and 
s

c  are the dilatational and shear wave speeds in the solid and are expressed 

in terms of Lame coefficients as  

 
2

d
c

λ µ

ρ

+
=  (A.6) 

and 

 .
s

c
µ

ρ
=  (A.7) 

Assuming that wave propagation is time harmonic and periodic in the x-direction, the 

solutions to (A.5) are 

 
( ) ( )

( ) ( )

−

−

=

=

i kx t

i kx t

F y e

G y e

ω

ω

ϕ

ψ
 (A.8) 

Equations (A.8) are then substituted in (A.5) and simplified, resulting in the following 

ordinary differential equations  
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2
2

2

2
2

2

∂
=

∂

∂
=

∂

y

y

ϕ
α ϕ

ψ
β ψ

 (A.9) 

where  

 

2 2
2

2 2

2 2
2

2 2

1

1 .

= − = −

= − = −

d d

s s

c
k k

c c

c
k k

c c

ω
α

ω
β

 (A.10) 

 

The solutions of (A.9) are, in terms of hyperbolic functions, 
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The displacements, u  and v , as well as the relevant components of stress, 
xy

τ  and 
yy

τ  are 

then expanded as follows: 

( ) ( ) ( ) ( ){ } ( )
sinh cosh cosh sinh

−
= + + +      

i kx t
u ik A y B y C y D y e

ωα α β β β (A.12) 

( ) ( ) ( ) ( ){ } ( )
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−
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It is now important to note that there are generally two types of displacement 

characteristic of such a system.  Displacement may be either symmetric or asymmetric 

about the 0=y  plane.  Each type of motion gives rise to what are referred to as 

symmetric and asymmetric Lamb waves.  Upon inspection of equation (A.13) for 

displacement of the plate in the y-direction, we note that if the motion is to be symmetric 

about the 0=y  plane, v  must be an odd function, that is ( ) ( )= − −v y v y , and thus, 

0= =A D  because cosh  is an even function.  For the case of asymmetric displacement, 

v  must be an even function, that is ( ) ( )= −v y v y , and thus, 0= =B C  because sinh  is 

an odd function.  Applying these conditions to the expressions for stress results in two 

independent systems one for the symmetric and asymmetric Lamb waves, respectively.  

For the case of symmetric waves, equations (A.14) and (A.15) reduce to  

 ( ) ( ) ( ){ } ( )2 22 sinh sinh
−

= + +
i kx t

xy
ik B y k C y e

ωτ µ α α µ β β   (A.16) 

 ( ) ( ) ( ){ } ( )2 2 cosh 2 cosh
−

= + −
i kx t

yy
k B y ik C y e

ωτ µ β α µ β β  (A.17) 

At the boundaries of the plate, 
2

hy = ± , the stress vanishes.  The equations for stress can 

then be written in matrix form as 

 
( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2 sinh sinh 0

cosh 2 cosh 0
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ik h k h B
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and are satisfied if the determinant of the matrix on the left hand side of (A.18) is equal to 

zero.  After algebraic manipulation, solution of the determinant results in the following 

frequency equation  
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the real roots of which specify the phase velocity of the symmetric Lamb wave modes.  

Similar analysis, performed for the asymmetric Lamb waves results in the frequency 

equation,  
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( ) ( )

2

2 2

tanh / 2 4
.

tanh / 2

h k

h k

α αβ

β β
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+
 (A.20) 

Although the expressions described in this section are arrived at specifically through 

analysis of a plate in vacuo, the analysis provides the foundation for more complicated 

investigation.  Dispersion curves of the phase velocity for the first three Lamb wave 

modes, calculated from equations (A.19) and (A.20), are presented in Figure A.7 versus 

the dimensionless parameter kh . 

 

Figure A.7: Dispersion curves for the phase velocity of Lamb waves on a plate.  

Symmetric Lamb waves are presented as solid lines whereas asymmetric Lamb waves are 

presented as dashed line.  The phase velocity is normalize to that of water with 

1479c = m/s and plotted versus the dimensionless parameter kh .   
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Appendix B  
 

 

Why Time Reverse? 
 

 

 

The single-channel time reversal technique presented in this work relies upon a time gate 

windowing operation to isolate signals of interest.  Therefore, it is unable to exploit 

multi-path propagation.  Also, there is no spatial focusing achieved as with array based 

time reversal techniques.  The response of a target is enhanced because its spectrum is 

raised to a power proportional to the number of iterations.  As such, one might argue that 

phase information is unimportant and that reversing the temporal order of signals is 

unnecessary.  Comparable results could be obtained through iterative retransmission of 

received signals without applying the time reversal operation.  In this section, the effects 

of the time reversal operation are investigated to ascertain whether it is necessary.  The 

analysis presented implicitly draws upon techniques described in other chapters. 

First, a simple thought experiment is presented schematically in Figure B.1.  In 

Figure B.1a, a pulse is transmitted at a specularly reflecting target.  The receive window 

is positioned such that the echo appears at its rightmost side.  The windowed echo is then 
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retransmitted without performing a time reversal operation.  The result of this 

transmission is presented in Figure B.1b.  The additional time delay imposed on the 

transmitted signal results in the received signal “leaving” the time window.  The receive 

window appears to be empty and successive retransmissions would not reveal the 

location of the scattering target.  However, performing a time reversal operation on 

received signals, as in Figure B.1c, results in echoes remaining within the receive 

window throughout successive iterations.  Therefore, in this case, employing the time 

reversal operation is of paramount importance if the target is to be detected. 

A numerical scattering simulation is then conducted where the standard spherical 

shell is used as a target.  For window sizes ranging from 4 sµ  to 60 sµ , the receive 

window is shifted from relative window times ranging from  30 sµ−  to 60 sµ  in steps of 

0.5 sµ .  Fifty retransmissions (iterations) are performed at each window location with and 

without performing the time reversal operation.  The average power within the receive 

window at a frequency of 800 kHz (the dominant target response frequency) is then 

calculated and recorded at each window location.  A cosine squared shading with a 20% 

envelope is applied to the receive window before conducting Fourier analysis and 

computing the power.   

The results of this simulation are presented in Figure B.2 where the intensity of 

each pixel represents the average power within the receive window.  The vertical dashed 

line at a relative window time of 0 s
r

t µ=  in each subfigure indicates the center of the 

specular return from the target.  For window sizes less than15 sµ , the results are 

comparable.  The 800 kHz resonance is centered at a relative window time of 
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approximately 9 5 s
r

t . µ= , the expected location based upon resonance scattering theory.  

Without application of the time reversal operation the resonance is detected only for 

relative window times 5 sµ±  from its central location, as observed in Figure B.2b.  The 

resonance is detected for a wider range of relative window times when the time reversal 

operation is employed, as in Figure B.2a. 

 

 

Figure B.1: Schematic of a thought experiment where a windowed target echo is 

retransmitted with and without performing a time reversal operation. (a.) A short pulse 

centered at a delay equal to one half the length of the receive window is transmitted.  The 

receive window is positioned with the echo at the rightmost side of the window. (b.) 

Retransmission of the windowed echo without time reversal. (c.) Retransmission of the 

echo after a time reversal operation has been performed. 
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Figure B.2: Results of a window shifting simulation with and without performing a time 

reversal operation.  The receive window is shifted from relative window times of  30 sµ−  

to 60 sµ .  The average power within the time reversal window is computed at iteration 

50.  The numerical experiment is repeated for receive window sizes ranging from 4 sµ  to 

60 sµ .  (a.) Results generated from application of a time reversal operation.  (b.) Results 

generated without performing a time reversal operation.  The intensity within each 

subfigure is scaled to the maximum value recorded in (b). 
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