

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IMPLEMENTING REMOTE IMAGE CAPTURE/CONTROL IN A
WIRELESS SENSOR NETWORK UTILIZING THE IEEE 802.15.4

STANDARD

by

Daniel E. Krehling

September 2009

 Thesis Co-Advisors: John Gibson
 Gurminder Singh

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this c ollection of information is estimat ed to avera ge 1 hour p er
response, including the time for reviewing instruction, searching existing data sour ces, gathering
and maintaining the data needed, and completing and reviewing the collec tion of info rmation. Send
comments regarding this burden estimate or any other aspect of this collection of information ,
including suggestions for reducing this burden, to Washington headquarters Services, Director ate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Implementing Remote Image
Capture/Control in a Wireless Sensor Network Utilizing
the IEEE 802.15.4 Standard
6. AUTHOR(S) Daniel E. Krehling

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Today’s warfighter requires an in-depth view of the battle space in order to best

plan for future operations, assess the current operating environment, and prevent or
respond to attacks. The deployment and use of wireless sensor devices could serve as a
force multiplier by enhancing a commander’s security posture, providing a view of t he
current environment, and gathering intelligence for analysis. The use of low- power
imaging devices, coupled with the flexibility provided by a wire less sensor network,
could provide such enhancements.

The objective of th is research was to explore the feasibility of remote
management and control of a low-power/low- cost wireless sensor network by implementing
a point-to-point wireless network utilizing IEEE 802.15.4 equipped devices to control,
capture, and transfer image data from a remote sensor node to the controlling host.
This platform was used to test the viability of the system at various ranges and
operating environments. The results demonstrated that the IEEE 802.15.4 compliant
devices used in this research are able to operate over long distances (1000 meters) , in
harsh RF environments, with a high degree of reliability.

15. NUMBER OF
PAGES

99

14. SUBJECT TERMS IEEE 802.15.4, Wireless Sensor Network, Remote
Imaging, Wireless

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPLEMENTING REMOTE IMAGE CAPTURE/CONTROL IN A WIRELESS
SENSOR NETWORK UTILIZING THE IEEE 802.15.4 STANDARD

Daniel E. Krehling
Captain, United States Marine Corps

B.S., University of South Alabama, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Daniel E. Krehling

Approved by: John Gibson
Thesis Co-Advisor

Gurminder Singh
Thesis Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Today’s warfighter requires an in-d epth view of the

battle space in order to best plan for future operations,

assess the current operating enviro nment, and prevent or

respond to attacks. The deployment and use of wireless

sensor devices could serve as a force multiplier by

enhancing a commander’s security posture, providing a view

of the current environment, and gathering intelligence for

analysis. The use of low-power imaging devices, coupled

with the flexibility provided by a wireless sensor network,

could provide such enhancements.

The objective of this research was to explore the

feasibility of remote management and control of a low-

power/low-cost wireless sensor network by implementing a

point-to-point wireless network utilizing IEEE 802.15.4

equipped devices to control, capture, and transfer image

data from a remote sensor node to the controlling host.

This platform was used to test the viability of the system

at various ranges and operating environments. The results

demonstrated that the IEEE 802.15.4 compliant devices used

in this research are able to operate over long distances

(1000 meters), in harsh RF environments, with a high degree

of reliability.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. MOTIVATION ...1
B. PROBLEM DESCRIPTION2
C. THESIS ORGANIZATION3

II. BACKGROUND ..5
A. WSN ORIGIN ...5
B. RECENT USES / APPLICATIONS7

1. Glacier Monitoring7
2. Grape Vineyard Monitoring10

C. THE IEEE 802.15.4 STANDARD13
1. PHY Layer16
2. MAC Layer21
3. IEEE 802.15.4 Summary29

III. TECHNICAL APPROACH31
A. SYSTEM OVERVIEW31
B. HARDWARE DESCRIPTION AND DISCUSSION32

1. Hewlett Packard hw6945 Pocket PC32
2. OOPic Microcontroller33
3. E-flite Digital Servo34
4. C328R JPEG Camera36
5. XBee Pro IEEE 802.15.4 Transceiver40

C. SOFTWARE DESCRIPTION AND DISCUSSION44
1. PDA Software44
2. Servo Control Software46

IV. RESULTS ..49
A. SYSTEM DESIGN AND CONGIGURATION49
B. RANGE AND RELIABILITY TESTING51

1. Range Testing52
2. Reliability Testing55

C. SLEEP CYCLE POWER ANALYSIS57
D. IMAGE RETRIEVAL / SERVO CONTROL60

V. CONCLUSIONS AND FUTURE WORK63
A. SUMMARY ...63
B. CONCLUSIONS63
C. FUTURE WORK65

1. Use of the API Mode to Interface XBee Motes ..65
2. Extend Access to the System via the Internet .66
3. Investigate Multi-hop Devices66

APPENDIX A. REMOTE CAM SOFTWARE67
APPENDIX B. SERVO CONTROL SOFTWARE77

 viii

LIST OF REFERENCES ..79
INITIAL DISTRIBUTION LIST83

 ix

LIST OF FIGURES

Figure 1 WSN Composition..................................5
Figure 2 Sensor Network Components [From:[7]].............7
Figure 3 Glacsweb System Overview [From:[8]]..............8
Figure 4 Probe Sensors [From:[8]].........................9
Figure 5 Vineyard WSN Architecture.......................11
Figure 6 Vineyard Sensor Nodes [From:[10]]...............11
Figure 7 Wireless Standard Comparison [From:[11]]........14
Figure 8 Seven-Layer OSI vs IEEE 802 Model [From:[11]]...15
Figure 9 Star and Peer-To-Peer Topology [From:[12]]......16
Figure 10 IEEE 802.15.4 Frequency Channels [From:[13]]....18
Figure 11 IEEE 802.15.4 PHY Protocol Data Unit

[From:[13]].....................................20
Figure 12 MAC and PHY Frame Structure [From:[13]].........20
Figure 13 MAC layer Superframe [From:[14]]................23
Figure 14 IEEE 802.15.4 MPDU [After:[13]].................26
Figure 15 Star Topology Data Transfer Protocol for Beacon

and Nonbeacon Modes.............................28
Figure 16 IEEE 802.15.4 Image Capture/Control System

Diagram...31
Figure 17 Hewlett Packard hw6945 [From:[15]]..............32
Figure 18 OOPIC Microcontroller...........................33
Figure 19 E-flite Digital Servo...........................34
Figure 20 Generic Servo Control Signal....................35
Figure 21 C328R JPEG Camera Module........................36
Figure 22 C328R Command Set [From:[18]]...................38
Figure 23 C328R Sequence of Operations [From:[18]]........39
Figure 24 XBee Pro IEEE 802.15.4 Transceiver [After:[19]].40
Figure 25 XBee Form Factor [From:[19]]....................41
Figure 26 XBee Transmit Request Frame [From:[19]].........43
Figure 27 Remote Camera GUI Design........................45
Figure 28 Range Testing Application.......................53
Figure 29 Range Test Results..............................54
Figure 30 Bit Error Rate Client Application...............55
Figure 31 Competing IEEE 802.11 Devices...................56
Figure 32 Associated XBee Four Second Sleep Cycle.........57
Figure 33 Wake Portion of Four Second Sleep Cycle.........58
Figure 34 Sample Captured Images..........................60

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1 IEEE 802.15.4 Frequency Band and Modulation
Parameters [From:[11]]..........................17

Table 2 Battery Life Estimate for Associated XBee
Module..59

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

The navigation of this difficult task would not have

been possible without the help, guidance, and moral support

of faculty, friends, and most importantly, my family. To

Professors Gurminder Singh and John Gibson, thanks for

giving me the opportunity to investigate a topic for which

I possess a great deal of interest. The journey has been

challenging, enlightening, and above all, rewarding.

Furthermore, thank you for your time, knowledge, and

consideration in the development of this thesis.

To my family, especially my wife, Cookie, thank you

for your support, inspiration, and most of all, your

understanding in the accomplishment of this task. The late

nights, short weekends, and weeks apart while I worked

towards my goal are a testament of your love and devotion.

Finally, your tolerance of an impatient boss while marking

100 meter increments with a GPS in one hand, a cell phone

against your ear, and a XBee radio on a pole in your other

hand, demonstrates your can-do mentality and willingness to

get the job done. I am forever grateful.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

The past decade has seen an explosion in the research,

development, and deployment of devices for use in wireless

sensor networks (WSN). In the February 2003 edition of

Technology Review, WSNs were listed as one of the top ten

emerging technologies poised to dramatically influence the

field of computing [1]. These networks include both the

sensors that detect aspects of the physical environment, as

well as the devices that perform the routing of the

captured information in the network to the desired

destination. WSNs have been around for many years, however,

renewed interest has resulted from the popularity of

wireless local area networks and their underlying

technologies, such as 802.11(a), (b), and (g). Advances in

integrated circuit design and microprocessor technologies,

along with advanced routing algorithms and low-power

operation, have propelled WSNs into the twenty-first

century. These devices are quickly becoming a ubiquitous

part of our environment as the cost and power requirements

continue to fall and the processing and overall

functionality continue to rise. WSNs can be found in a

myriad of places, including industrial and home automation,

workplace safety, consumer electronics, healthcare

monitoring, agricultural control, and military applications

[2].

The military as a whole relies on actionable, reliable

information for the formulation and conduct of their

concept of operations. The deployment and use of wireless

 2

sensor devices could serve as a force multiplier by

enhancing a commander’s security posture, providing a view

of the current operating environment, and gathering

intelligence for analysis. The use of low-power imaging

devices coupled with the flexibility provided by a wireless

sensor network could provide such enhancements.

B. PROBLEM DESCRIPTION

Wireless sensor networks allow us to monitor, evaluate,

and control aspects of our environment. They allow us to

capture portions of our physical world that in the past

were impossible or difficult at best to detect and monitor

without highly specialized and costly equipment. Aspects

of the environment that are desirable to monitor include:

magnetic, seismic, acoustic, motion, and imagery just to

name a few [3]. In the realm of wireless sensor networks,

small devices that can operate on relatively low bandwidth

levels and small amounts of power for extended periods of

time with little or no maintenance is a key characteristic.

A large majority of the sensors available for use today are

easily geared to match these requirements. However, unlike

many of the other sensors that can be deployed, remote

imaging can weigh heavily on the resources available in a

sensor network. Image sensors tend to consume large

amounts of power with an even greater need for bandwidth to

transfer the smallest of image data. Fortunately, with

advances in semiconductor technology and compression

algorithms, low-power and low-bandwidth image sensors are

becoming a reality. This capability combined with the low-

power, low-data rate, ad hoc wireless nodes allows a

developer to create robust remote image sensing

 3

applications that can be easily deployed and utilized. This

opens the door to the following hypothesis and underlying

topic of this thesis research:

Use of IEEE 802.15.4 enabled devices, coupled with

image compression techniques at the sensor node, allow for

efficient image capture and device control in a wireless

sensor network.

C. THESIS ORGANIZATION

Chapter II of this thesis provides a broad overview of

the early history of wireless sensor networks. It also

discusses the recent applications of WSNs and the renewed

interest in the technologies that led to the creation of

the IEEE 802.15.4 standard. The discussion continues with

a detailed description of the standard itself and concludes

with current and future uses of the technology.

Chapter III explores the technical approach used to

enable the control of and image capture by an imaging

sensor via the use of IEEE 802.15.4 enabled devices. This

chapter begins with a discussion of the individual hardware

components and ends with a description of the software

components that were developed to enable the desired

functionality.

Chapter IV describes the results of the overall system

architecture and its operation, as well as the lessons

learned in the process. Likewise, the results of range and

reliability testing are provided as proof of concept.

Chapter V surveys the entire area of study.

Conclusions of the proposed hypothesis, system design and

approach are discussed and followed by a description of

future work that could further propel the technology.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. WSN ORIGIN

Wireless sensor networks were conceived and

implemented in the late seventies, as a result of military

research and development at Defense Advanced Research

Projects Agency (DARPA). As shown in Figure 1 a wireless

sensor network is a wireless network consisting of

spatially distributed autonomous devices that utilize

sensing, computing, and communication to cooperatively

monitor and report on conditions in the surrounding

environment [4, 5].

Figure 1 WSN Composition

As such, one of the earliest predecessors to the (WSN)

came into existence during the Cold War and was coined the

Sound Surveillance System (SOSUS). SOSUS was a system of

underwater acoustic sensors that were placed at strategic

 6

locations to detect, track, and monitor Soviet submarines.

The information gathered by the string of sensor arrays was

sent to an individual collection node, such as NAVFAC Point

Sur south of Monterey, CA, where the data was processed and

observed by specialists who were trained to identify the

presence of a submarine in the output data. Pertinent

information was then relayed to higher echelons. The system

is still in use today; however, its mission has changed

from military use to an environmental role in monitoring

oceanic events for the National Oceanographic and

Atmospheric Administration [6].

DARPA continued to pursue its research in the sensor

network field in the early eighties with the launch of the

Distributed Sensor Networks (DSN) program. Several

participating research laboratories, including MIT Lincoln,

and Carnegie Mellon University (CMU), set out to test the

plausibility of incorporating the communications techniques

used in the Arpanet (predecessor of the Internet) to sensor

networks themselves. As a result, MIT Lincoln developed a

wireless sensor network prototype that tracked low-flying

aircraft by the use of acoustic sensors. The sensor array

consisted of nine microphones arranged in concentric

triangles and was attached to a PDP11/34 computer for

signal processing. Target processing at the node consisted

of three MC68000 processors with 256kB memory, 512kB shared

memory, and a custom operating system. Communication to

the other participating nodes was achieved by Ethernet and

microwave radio [7] . The equipment used to create the WSN

components (acoustic array, mobile node, equipment rack) in

Figure 2 consisted of custom-built components. The size,

 7

as well as the cost of these components, was quite large

but typical for such state of the art equipment of the time.

Figure 2 Sensor Network Components [From:[7]]

The system was one of the first to adhere to the

defined WSN principles of sensing, computation, and

(wireless) communication. The signal s from the acoustic

array were sent to the mobile node where they were

processed and ultimately broadcast to other participating

nodes for their tracking and processing needs.

B. RECENT USES / APPLICATIONS

The past decade and a half has yielded a number of

advances in the WSN field and as such has enabled the

technology to blossom across a wide gamut of applications.

While military applications dominated the space and fueled

continued research, WSNs were soon expanded to

environmental, industrial, agricultural, and home

automation applications.

1. Glacier Monitoring

One such implementation of a modern day WSN was the

use of the technology to monitor and report on the sub-

 8

glacier environments in Briksdalsbreen, Norway in order to

gain a better understanding of the effects of climate

change [8]. The underlying problem space represents a

perfect use-case for the deployment of WSN technology;

devices need to be deployed in harsh operating

environments, for long periods of time, on a finite source

of energy, with a low-level data rate. Figure 3

illustrates the system configuration where the sensor

devices in Figure 4 are placed in holes drilled into the

glacier and the earth below the ice.

Figure 3 Glacsweb System Overview [From:[8]]

 9

Figure 4 Probe Sensors [From:[8]]

When commanded, the sensors measure pressure,

temperature, and orientation of the probe and report this

information to a central base station at the top of the

glacier. The sensor probe itself is comprised of a 173 MHz

transceiver, a PIC based microcontroller for control and

signal processing, analog components for sensor input

interfacing, the temperature, pressure, and position

sensors, and six lithium thionyl chloride cells for the

energy source; a great amount of functionality housed in a

container the size of a palm-sized stone.

Communication between the sensors and the base station

was performed via the use of the 173 MHz transceiver as the

low-level radio hardware. Considering the possibility of

changing radio hardware, the design team opted for a custom

built communications protocol. The protocol for the system

was based on a master-slave approach in order to reduce

complexity, collisions, and power consumption while

 10

avoiding the use of MAC protocols. The sensor probes

remained in a passive state until polled by the base

station at the top of the glacier.

The base station consisted of an ARM-based, single-

board computer (BitsyX, an embedded Linux machine), GPS,

weather instruments, radio modem, and lead acid batteries

refreshed by a wind generator and solar panels. The base

station subsequently communicates the retrieved probe

information via a wireless point-to-point (PPP) link to the

main collection facility. The base station also serves as

a gateway to the probe’s firmware. Users are able to log

into the base station via telnet and make changes to the

base station and probe’s operating parameters and user

space scripts.

2. Grape Vineyard Monitoring

Another well-defined problem space that is well-suited

for the deployment of a WSN is in the use of the technology

to monitor the environmental aspects of a grape vineyard

[9]. Researchers wanted to determine the viability of

ubiquitous computing in the agricultural domain. The site

of the WSN application was located in a vineyard where the

sensor nodes would measure and report on temperature

variations. The gathered data would then be used to

determine the optimum period for grape harvesting, the

prevention of potential diseases (powdery mildew), as well

as the prevention of crop damage due to the rapid onset of

low temperatures.

The system architecture, as depicted in Figure 5 , is

a preconfigured (known routes), multi-hop WSN consisting of

 11

a gateway node, sixteen backbone nodes, and three leaf

nodes per backbone node for a total of sixty-five nodes.

Figure 5 Vineyard WSN Architecture

The backbone and leaf nodes in Figure 6 are spread

strategically over a two-acre area of the vineyard. Leaf

nodes are typically no more than fifteen meters from their

respective backbone node, while each backbone node is

within twenty-five meters of its neighboring backbone node.

Figure 6 Vineyard Sensor Nodes [From:[10]]

 12

The network operates based on synchronization signals

sent out from the gateway to the backbone, and

subsequently, the leaf nodes. After synchronization, each

leaf node reports its data to the respective backbone node

during its prescribed time slot. Each backbone node then

sends the collected data to two (redundancy) of the

upstream nodes (maximum of eight hops) until the data

reaches the gateway. When the data transfer is complete,

the leaf, as well as the backbone nodes, go back to sleep

until the next cycle, which occurs every five minutes.

The design and deployment of the WSN in this

particular regime allowed the researchers to collect

relatively high resolution data from the two acre test

site. The results from the data shattered previously

accepted heuristics that had been in place to help

determine crop maturation and disease incubation; namely,

that elevation was a predictor of temperature and a two-

acre block was assumed to have similar growing conditions.

However, the findings showed that temperature hotspots

across the vineyard varied from day-to-day. Furthermore,

the elevation, as per the diurnal data, was not a valid

predictor of temperature.

The WSNs of late were subject to a number of

characteristics that hampered their performance and,

therefore, their viability and adoptability into mainstream

computing. Rudimentary power-management schemes or the lack

there of, bulky and unintegrated electrical components, and

nonstandardized communication protocols that were often

overkill for the size and scope of the application, or had

to be custom-built, plagued early system integration.

 13

While Moore’s law was chipping away at several of the

aforementioned issues by shrinking the size and power

requirements of the WSN devices, the lack of a viable

communications standard for WSNs in general sparked the

debate for the development of such a standard in 2000;

enter the 802.15 Working Group.

C. THE IEEE 802.15.4 STANDARD

The 802.15 Working Group was sanctioned in March 1999

in an effort to design a standard for wireless personal

area networks (WPAN). The working group was focused on the

creation of the 802.15.1 standard that was based on

Bluetooth technology. However, during their collaboration

members of the group soon realized that their dream of

ubiquitous, untethered, short-range communications could be

further divided into three distinct standards: the original

802.15.1 standard, 802.15.3 for high-speed media devices,

and the IEEE 802.15.4 standard for low-rate WPANs. As such,

the IEEE 802.15.4 Task Group was commissioned in December

2000 and tasked to define a standard that would provide

ultra-low complexity, low-cost, and low-power wireless

communications for inexpensive fixed, portable, and moving

devices [11].

Several years after the commissioning of the working

group, the IEEE 802.15.4 standard was finally published in

October of 2003. The new standard defined what would

become known as low-rate wir eless personal area networks

(LR-WPAN) where applications could be developed to function

with low-data rates and relaxed latency and quality of

service (QOS) requirements. Moreover, the standard was

designed with simplicity in mind and subscribed to the

 14

premise of low-power functionality. Figure 7 highlights

the standard’s power, data rate, and complexity

characteristics as compared to the other wireless standards.

Figure 7 Wireless Standard Comparison [From:[11]]

The wireless protocol standard defines the lower two

layers (Data Link and Physical) of the traditional Open

System Interconnection (OSI) reference model: the medium

access control (MAC) and the physical (PHY) layers. The

upper layers (Network, Transport, etc.) are not defined by

the standard and thus are implementation independent.

However, other standards such as the ZigBee standard have

been developed to provide added functionality at the upper

layers to include security and ad-hoc routing mechanisms.

Figure 8 shows the standard as it relates to the seven

layer OSI model.

 15

Figure 8 Seven-Layer OSI vs IEEE 802 Model [From:[11]]

In general, the IEEE 802.15.4 standard sets forth the

operation of two types of devices: full function (FFD) and

reduced function (RFD) [12]. Full function devices are

able to operate over the full range of MAC layer services

allowing them to function as network coordinators, as well

as network devices. Conversely, the reduced function

devices operate over a restricted set of the MAC layer

services, thus, allowing them to maximize power savings and

minimize complexity. The use of these two device types

allows for the creation of two possible network topologies:

star and peer-to-peer, as shown in Figure 9 The

coordinator, a FFD, is responsible for the creation and

maintenance of a given network where other FFDs and RFDs

are allowed to join and depart the network. Moreover, the

 16

coordinator can serve as a gateway to an external host, or

more importantly, as a bridge to a disparate network such

as the Internet.

Figure 9 Star and Peer-To-Peer Topology [From:[12]]

RFDs communicate only with their respective network

coordinator while FFDs can communicate with other in-range

FFDs in the network, as well as with the PAN coordinator.

Finally, the standard specifies the three working frequency

bands, 868MHz, 915MHz, and the 2.4GHz industrial scientific

and medical (ISM) band, as well as the respective data

rates achievable in each band.

1. PHY Layer

The physical layer is composed of the three

aforementioned frequency bands that are subsequently

grouped into the following categories: low-band and high-

band. The 868/915MHz bands fall into the low-band

category, while the 2.4GHz band is considered high-band.

 17

Both categories use direct sequence spread spectrum (DSSS)

for digital signal transmission but separate modulation

techniques; the low-band uses binary phase-shift keying

(BPSK) and the high-band uses offset quadrature phase-shift

keying (O-QPSK). The bit rates provided by the three bands

are as follows: 20 Kbps for 868 MHz over a single channel,

40 Kbps for 915 MHz over ten channels and 250 Kbps for

2.4GHz over sixteen possible channels [12]. The MAC layer

makes use of only a single channel at a time, as it is not

a multichannel protocol. Table 1 summarizes the highlights

of the PHY layer frequencies while Figure 10 provides a

graphical representation of the 27 channels for the high

and low bands defined in the standard.

Band Frequency Band Bit Rate Symbol Rate

DSSS Spreading Parameters

Modulation Chip Rate

868 MHz 868‐868.6 MHz 20 Kbps 20 ksymbols/s
Binary Phase Shift
Keying (BPSK)

300 Kchips/s

915 MHz 902‐928 MHz 40 Kbps 40 ksymbols/s
Binary Phase Shift
Keying (BPSK)

600 Kchips/s

2.4 GHz 2.4‐2.4835 GHz 250 Kbps 62.5 ksymbols/s
Offset Quadrature
Phase Shift Keying
(O‐QPSK)

2 Mchips/s

Table 1 IEEE 802.15.4 Frequency Band and Modulation
Parameters [From:[11]]

 18

Figure 10 IEEE 802.15.4 Frequency Channels [From:[13]]

The PHY layer, in general terms, is responsible for

the establishment of RF communications between devices, the

modulation and demodulation of the bit stream,

transmitter/receiver synchronization, and packet level

synchronization. The PHY layer provides this functionality

through six delineated services and their underlying

primitives or functions. The six services are as follows:

Transceiver Activation/Deactivation, Energy Detection, Link

Quality Indication, Channel Selection, Clear Channel

Assessment, and the Transmission and Reception of data

packets [12].

• Transceiver Activation/Deactivation: this service

is responsible for the actual power-up / power-

down of the transceiver. This action allows for

low-power operation by controlling the duty cycle.

• Energy Detection (ED): ED is used to estimate the

RF energy that exists in the environment on the

current channel. This service is intended to be

 19

used by a network layer (undefined upper layer)

as part of a channel selection algorithm.

• Link Quality Indication (LQI): LQI is an

assessment of the quality of a received packet

that is provided to the MAC sublayer for every

received packet. The LQI is provided for use as

a service to upper layers, such as network or

application, which are not defined by this

standard.

• Channel Selection: this service is provided as a

means to select the individual channel that will

be used for operation as commanded by the MAC

layer.

• Clear Channel Assessment (CCA): CCA is the

service that is used by the CSMA/CA protocol to

check for competing devices that are transmitting

on the same operating frequency. The service

enables the receiver, monitors the medium,

disables the receiver, and finally, reports the

status of the medium to the MAC layer.

• Transmission and Reception of data packets: this

service is responsible for the encapsulation of

the MAC sublayer frame withi n the PHY Protocol

Data Unit (PPDU), shown in Figure 11 and the

subsequent transmission of the PPDU over the

wireless medium. Conversely, this service is

also responsible for the reception of raw bits

from the medium, the packaging of the bits into

the PPDU frame structure, and making the

 20

encapsulated data available to the MAC layer for

extraction. Figure 12 highlights the

encapsulation of the MAC sublayer frame within

the PPDU.

Figure 11 IEEE 802.15.4 PHY Protocol Data Unit [From:[13]]

Figure 12 MAC and PHY Frame Structure [From:[13]]

 21

The IEEE 802.15.4 standard also defines some of the

operating characteristics as they apply to the radio

transceiver at the PHY layer to include output power,

receiver sensitivity, and range [11, 13]. In regards to

output power, the standard allows for a wide power range

that is bound on the lower side by a minimum transmitter

output of -3 dBm (.5 mW). The upper bound is governed by

the regulatory agency for the country where the device is

in use. For receiver sensitivity, the standard states that

the device must be able to correctly decode a signal with

an input power of -85 dBm or more for the high band (2.4

GHz), while the low-band receiver’s sensitivity is set at

-92 dBm or more. The range is a factor of the output power

and the receiver sensitivity, as well as the type of

antenna in use and the overall cleanliness of the RF

operating environment. That being said, a 1 mW device

should be expected to operate over a range of ten to twenty

meters. However, commercial devices do exist that have

power output of up to 100 mW and receiver sensitivities

that exceed those specified in the standard. Such devices

could be expected to operate at ranges well over 1000

meters.

2. MAC Layer

The MAC sublayer of the IEEE 802.15.4 specification,

along with the IEEE 802.2 logical link control (LLC)

sublayer, comprise the Link layer equivalent of the ISO OSI

seven-layer model. In general terms, the MAC itself

provides reliable data delivery and access to the shared

wireless medium in the PHY layer [11]. These two

generalized services provided by the MAC are further

 22

expanded into several functions to include the following:

beacon management, channel access, guaranteed time slot

management, frame validation, acknowledged frame delivery,

association/disassociation, and a set of hooks for

implementing security at the upper layers [12]. The MAC

provides the mechanisms by which simple, yet efficient LR-

WPAN network topologies can be constructed and controlled,

most notably star and peer-to-peer configurations. More

advanced topologies (mesh, multi-hop) are possible but

require implementation in the upper layers, as they are not

defined in this standard.

Along with the flexibility provided by the various

topologies, the MAC layer also allows for two operating

schemes in the organization and deployment of the FFD and

RFDs in the network: beacon mode and nonbeacon mode. These

two modes define the operating characteristics of the

established LR-WPAN in terms of quality of service (QOS),

latency, and power efficiency.

In the beacon mode of operation, the PAN coordinator

provides a means of synchronization to the other

participating devices in the network by means of a time

specific beacon in what has been coined a Superframe, as

shown in Figure 13 As seen in the diagram, the Superframe

is divided into active, as well as inactive blocks that are

bound by the actual beacon time slots. Simply stated, the

inactive period (optional depending on configuration) is a

time slot where network devices including the coordinator

can turn off their transceivers and enter a low-power

state. The only caveat is that these devices must wake

just prior to the start of the next beacon in order to

maintain their synchronization.

 23

Figure 13 MAC layer Superframe [From:[14]]

Conversely, the active period is composed of a

Contention Access Period (CAP) followed by an optional

Contention Free Period (CFP) [14]. The CAP is a

programmable period of time between bounding beacons where

devices can perform such functions as request to join the

network, poll the coordinator for queued data, and exchange

data with the coordinator. Communication during the CAP is

performed via a slotted CSMA-CA mechanism. Since the

devices in the beacon enabled mode are synchronized, the

standard enhances the CSMA-CA protocol in use during the

CAP by dividing the CAP into time slots called backoff

periods. Each backoff period is equivalent to twenty

channel symbol times. These backoff periods in the CAP are

the slots used by the slotted CSMA-CA protocol. When a

device desires to transmit a frame, it waits for the next

slot boundary and draws a random integer r. The random

integer is bound by interval [0,2 macMinBE -1], where macMinBE

is the minimum backoff exponent with a range of zero to

eight and a default value of three. The device waits for r

backoff periods and checks the medium and if idle, waits

for the next backoff period and senses the medium again.

If both checks show the medium as idle, the device

 24

concludes that it has won contention and starts the data

transmission. On the other hand, if the channel was busy

in any of the sensing operations, the backoff exponent and

the number of backoffs that have occurred are incremented.

If the number of backoffs is below the threshold, the

device repeats the operation. However, if the threshold is

passed, the device drops the frame and declares a failure.

Devices that choose to communicate during the CAP must

complete the exchange prior to the beginning of the

optional CFP or the beginning of the next beacon in the

case that a CFP is not in use.

However, the configuration of the network may be such

that a device in the topology needs a specific amount of

bandwidth or lower level of latency. In such cases, the

MAC can be configured to provide Guaranteed Time Slots

(GTS) for those devices requesting such service [12]. The

GTS, up to a maximum of seven, can be provided by the

coordinator upon request and collectively form the CFP. The

GTSs are fixed in size and governed by the coordinator in

both the allocation and de-allocation of the time slot.

Moreover, any device wishing to utilize the GTS mechanism

requests the service during the CAP. The coordinator, upon

approval, sends an acknowledgement to the device and

subsequently sends the GTS parameters to the device in the

follow-on beacon frames. These parameters include the

specific time slot given to the device, as well as the

number of contiguous time slots awarded; a device can

request more than one GTS. Devices that are allowed to use

the GTS must ensure that they have completed their exchange

prior to the end of their GTS or the end of the CFP.

 25

Unlike the operation of the Beacon mode, the Nonbeacon

Mode eliminates the use of the beacon and the Superframe

mechanisms. Instead, this simplified mode relates closely

to the operation of the aforementioned CAP where devices

compete openly for use of the medium with the only

difference being the use of an un-slotted CSMA-CA protocol

for the detection of competing nodes. If upon successful

testing of the medium, the device simply infers success and

immediately begins to communicate with the destination

device. One of the major drawbacks to this configuration

is that the coordinator must remain switched on constantly

to monitor requests from joining or departing nodes as well

as communication requests from currently configured

devices. End devices, however, can follow their own sleep

cycle, thus preserving the low-power premise of the

standard.

Central to the functionality provided by the MAC layer

is the MAC protocol data unit (MPDU). The MPDU is the

frame structure that encapsulates the payload data from the

upper layers and provides a set of fields that are used to

facilitate such functions as addressing, acknowledgements,

security, and error correction. A generic MPDU is composed

of three sections: the MAC header (MHR), the MAC service

data unit (MSDU), and the MAC footer (MFR). All three

sections can be further divided depending on the type of

frame in use. Ultimately, the generic MPDU, shown in

Figure 14 is passed to the PHY layer where it is packaged

inside the PHY protocol data unit and sent out over the

wireless medium.

 26

Figure 14 IEEE 802.15.4 MPDU [After:[13]]

The standard defines four distinct frame types for the

MAC sublayer: beacon frame, data frame, acknowledgment

frame, and MAC command frame [12]. The beacon and data

frames contain information from the upper layers while the

acknowledgment and MAC command frames are generated by the

MAC itself. The MHR contains the information that

inherently defines the remainder of the frame, especially

the type of frame to be used. This section contains

information regarding acknowledgements, as well as the

addressing information and scheme in use (16 or 64 bit

address format). The MSDU is a variable length field that

contains the data from the upper layers or data generated

by the MAC sublayer itself in the case of a MAC Command

frame. However, the standard defines the maximum length of

a complete MAC frame to be 127 bytes. The final section of

every frame type is the frame footer, MFR. This section is

a sixteen bit number called the frame check sequence (FCS)

and is an International Telecommunication Union –

Telecommunication Standardization Sector (ITU-T) cyclic

redundancy check (CRC) [11]. The FCS is used to detect

errors in each and every frame.

 27

The MAC sublayer with its simplified frame structure

and small, efficient protocol definition provides reliable

data communications through the use of a simple, full-

handshake mechanism. The communications process is based

on three distinct transaction types: data transfer to a

coordinator where the end device transmits the data, data

transfer from a coordinator where the end device receives

the data, and data transfer between two peer devices.

These three data transfer schemes are performed in both the

Beacon and Nonbeacon modes of operation. Figure 15 (a)

represents Beacon mode data exchange with data transfer

from a coordinator and data transfer to a coordinator,

respectively. Similarly, Figure 15 (b) depicts the

Nonbeacon mode data exchange with data transfer from a

coordinator followed by data transfer to a coordinator from

the end device.

 28

Coordinator End Device

Beacon

Data

Acknowledgement

Data Request

Acknowledgement

Coordinator End Device

Data

Acknowledgement

Data Request

Acknowledgement

Coordinator End Device

Beacon

Acknowledgement

Data

Coordinator End Device

Acknowledgement

Data

(a) Beacon Mode Communication Model

(b) Nonbeacon Mode Communication Model

Figure 15 Star Topology Data Transfer Protocol for Beacon
and Nonbeacon Modes

 29

The reliable data communications protocol is made

possible by the use of a simple acknowledgement scheme [12].

Acknowledgement frames, one of the four defined frame types,

are sent immediately in response to data, as well as MAC

command frames—Beacon and acknowledgement frames are never

acknowledged. Since the acknowledgement frames are sent

immediately following the associated frames, the CSMA

mechanism is not employed. Acknowledgement frames are sent

after successful reception and validation of the FCS field

in the received frame and simply carry the frame sequence

number of the successfully received frame. The originating

device MAC looks for the arrival of an acknowledgement and

continues with the next frame, resends the previous frame

if no ACK was received, or ultimately terminates the

transaction in the case of several failed transmissions.

3. IEEE 802.15.4 Summary

The goal of the IEEE 802.15.4 Task Group was to define

a wireless standard that was simple, inexpensive, and would

provide low-power / low-data rate communications to fixed,

as well as mobile devices. The resulting standard of 2003,

along with the refinements published in 2006, paved the way

for low-rate personal area networks that have found their

way into many aspects of the computing environment, to

include environmental, industrial, home automation, and

military applications. Moreover, due to advances in chip-

manufacturing techniques, which have led to the production

of a single, low-power, integ rated, wireless device, the

standard is being propelled even further in applications

 30

such as parking lot management, vehicle-to-vehicle

communications, humanitarian relief applications, and image

capture and control.

By limiting the standard to the definition of only the

MAC and PHY layers, the Task Group ensured the low-

complexity premise, while allowing for the development of

robust applications engineered in the upper layer of the

OSI model. The low-power characteristic of the standard is

achieved through mechanisms geared to control the duty

cycle of the associated devices. For example, a

coordinator and its connected devices could be configured

in a manner where all participants sleep for a period of

four minutes, wake to check for potential data exchange and

return to the sleep state until the next iteration.

Furthermore, a device that requires a fixed slice of

bandwidth or a low-latency level can request and be

configured to operate with some assurance through the use

of a guaranteed time slot.

The standard was also developed with worldwide use in

mind through the use of public-frequency bands, especially

those in the 2.4 GHz ISM band. Therefore, by making use of

multiple channels that employ robust modulation and

spreading techniques, the standard ensures interoperability

in environments where the medium is bombarded by competing

technologies such as Bluetooth, 802.11, and cordless

phones. The standard’s energy scan and clear channel

assessment mechanisms allow a coordinator to dynamically

switch the operating channel for the entire network to one

that falls below some predetermined energy level.

 31

III. TECHNICAL APPROACH

A. SYSTEM OVERVIEW

The underlying theme of this thesis research was to

design, implement, and test the use of the IEEE 802.15.4

standard as an effective means to capture and control

images in a wireless sensor network. The operable system

would need to be able to send command information to a

remote system and in turn receive and process the incoming

data stream. Conversely, the remote end of the system

would have to receive and parse the incoming system

commands, execute as commanded, and subsequently provide

image data, as well as correctly position the camera by way

of a digital servo. System hardware, shown in Figure 16

included a Pocket PC PDA, a C328R JPEG camera, a digital

servo, a servo controller, and most importantly, the IEEE

802.15.4 transceivers and their associated carrier boards.

Figure 16 IEEE 802.15.4 Image Capture/Control System
Diagram

 32

B. HARDWARE DESCRIPTION AND DISCUSSION

1. Hewlett Packard hw6945 Pocket PC

The hw6945, displayed in Figure 17 is a Windows Mobile

5.0 device that has been incorporated into the system

design and serves as the host controller for the WSN [15].

The PDA runs the software that allows the user to interact

with the remote camera module over the IEEE 802.15.4 link

and ultimately display the image on the TFT display.

Figure 17 Hewlett Packard hw6945 [From:[15]]

Specifications:

• Intel PXA270 Processor 416 MHz

• 64 MB SDRAM for running applications

• 45 MB persistent user storage

• 3.0” TFT Display (240x240 resolution)

• Lithium-ion 1200 mAh rechargeable battery

• RS232 Port for serial communications

 33

2. OOPic Microcontroller

The OOPic, shown in Figure 18 is a PIC-based

(Microchip Technology Inc.) device that provides a

multitude of functions, particularly pulse width modulation

(PWM) [16]. Programmable PWM is the mechanism by which the

servo is positioned. The device is programmed by way of an

integrated development environment that allows the user to

develop the code in several different languages including

C, Java, and Basic.

Figure 18 OOPIC Microcontroller

Specifications:

• 5 VDC operation

• 20 MHz clock (5 MHz effective) speed

• 31 General Purpose Input/Output Pins

• 4 Analog to Digital converters

• Asynchronous Serial Communications Port

• 2 Pulse width modulation channels

 34

The OOPic microcontroller (MCU) is used solely to

position the camera module as commanded by the user. In

order to determine the position of the camera, the MCU’s

universal asynchronous receiver transmitter (UART) was

configured to monitor the incoming byte stream for a

predefined command sequence. Upon recognizing the command

sequence, the MCU extracts the servo position information.

Finally, the MCU uses the servo position information as an

input parameter to the pulse width modulation object that

subsequently drives the servo to the correct position.

3. E-flite Digital Servo

The E-flite digital servo, Figure 19 is a sub-micro

servo device that operates at 5 VDC and provides 180

degrees of rotation [17]. It interfaces directly with the

OOPIC MCU from which it receives the servo position signals.

Figure 19 E-flite Digital Servo

Specifications:

• 4.8 – 5.3 VDC operation

• Sub-micro, high-speed/high torque

• 17.2 oz/in of torque @ 4.8 VDC

 35

• Digital operation

• .11 sec/60 deg @ 4.8 VDC travel speed

In the design of the system, the servo is used to

slave the camera module through 180 degrees of rotation.

The camera module is mechanically attached to the servo

control platform. Pulse width modulated signals from the

MCU are fed directly to the signal control line of the

servo. The servo in turn drives the output shaft in

accordance with the duty cycle of the input signal. Figure

20 provides a graphical representation of the PWM signals

generated by the MCU as input to the digital servo.

Duty Cycle: 25%

50%

75%

Period

Figure 20 Generic Servo Control Signal

The primary characteristic that controls the position

of the servo is the signal’s duty cycle where duty cycle

can be defined as:

duty cycle D = (on-time / period) * 100

From the diagram above, a duty cycle of 50 percent

could represent the center position of the servo while duty

 36

cycles of 25 and 75 percent could represent the left and

right limits of the servo, respectively.

4. C328R JPEG Camera

The strength of the C328R camera module and the reason

for its use in the system design centers on the module’s

ability to capture and subsequently compress an image prior

to transfer over the medium. The C328R, depicted in Figure

21 is a compact VGA camera mod ule that can perform as a

standalone, JPEG-compressed, still camera [18]. It

operates at 3.3 VDC and consumes a maximum of 60 mA. The

device communicates with a host controller by way of a UART

at rates of up to 115.2 Kbps and provides a set of user

friendly commands for host control of the camera functions.

JPEG images can be delivered at various resolutions: 80x64,

160x128, 320x240, and 640x480.

Figure 21 C328R JPEG Camera Module

Specifications:

• VGA resolution, down sample to QVGA or CIF

• 3.3 VDC operation

• 60 mA low-power consumption

 37

• UART rates of up to 115.2 Kbps

• 100 µA standby power consumption

• Predefined commands for camera operation

The ability to control the image resolution is

instrumental for the use of the technology in a wireless

sensor network. As stated in the specifications, the

module is controlled through the use of a series of

predefined commands that are stored in the module’s onboard

memory, as shown in Figure 22 Each command is six bytes in

length and follows a structured format. These commands are

issued by the host in a particular order and processed by

the camera module. Confirmation of receipt between the

host and camera are carried out via a series of ACK and NAK

data packets. The general flow of events, Figure 23 that

have to be performed in order to capture an image includes

the following: Synchronize host to camera at 9600 baud, set

the image resolution (JPEG at 320x240), set the size of the

packets that will be used to return the image data (512

bytes), capture and store the image, and finally, retrieve

image data from the camera module.

 38

Figure 22 C328R Command Set [From:[18]]

 39

Figure 23 C328R Sequence of Operations [From:[18]]

 40

5. XBee Pro IEEE 802.15.4 Transceiver

The XBee Pro transceiver, depicted in Figure 24 is an

IEEE 802.15.4 compliant device engineered to meet the needs

of low-cost, low-power wireless sensor networks [19]. The

modules are instrumental in the development and deployment

of peer-to-peer and point-to-multipoint applications. They

provide a wide array of operating characteristics that

enable the devices to be tailored to specific design

constraints, such as low-power operation, operation in the

2.4 GHz ISM band, small form factor, and user control of

the transceiver’s operating parameters. Figure 25

highlights the module’s compact design characteristics.

Figure 24 XBee Pro IEEE 802.15.4 Transceiver [After:[19]]

Specifications:

• 2.8 – 3.4 VDC supply voltage

• 215 mA transmit current (max)

• 55 mA idle/receive current

• 10 µA power-down current

• 100 m/1500 m indoor/outdoor range

• 60 mW (18 dBm) transmit power output

 41

• -100 dBm (1% packet error rate) receiver

sensitivity

• 250,000 bps raw RF data rate

• 1200-115,200 bps serial interface rate

• 12 DSS channels in the 2.4 GHz band

• 1.5 dBi monopole whip antenna

Figure 25 XBee Form Factor [From:[19]]

In the design of the system, the XBee devices serve as

the transport medium for the data exchange between the host

and the remote camera/servo module. While the XBee module

is IEEE 802.15.4 compliant, the device does not incorporate

the Beacon-enabled mode discussed in the section describing

the IEEE 802.15.4 wireless standard. Instead, this

hardware version incorporates the Non-Beacon-enabled mode

where associated devices in the network compete

individually for use of the medium. In addition, the

devices can be configured to operate in a network with or

without the use of a network coordinator. A network

 42

without a coordinator defines a peer-to-peer topology,

while the use of a coordinator defines a point-to-

multipoint topology.

The modules offer a high degree of customization

through the use of simple “AT” commands familiar in digital

communications equipment. This provides a mechanism by

which a user can read/set operating parameters within the

radio such as destination node address, transmit output

power, operating channel, number of ACK failures, and sleep

mode characteristics. Configuration parameters can be

changed statically, but more importantly, programmatically

as the result of a change in the operating environment.

The XBee devices also provide two modes of operation:

transparent and application programming interface (API)

mode. The transparent mode provides the user with a simple

yet effective means of data communication with a remote

device. In essence, the transparent mode serves as an

abstraction of a serial data line; raw data supplied to the

serial port for transmission is packaged into IEEE 802.15.4

frames, sent to the destination device, unpackaged by the

remote device, and made available to the user at the other

end in the same raw format. Conversely, the API mode of

operation provides the user with a wide range of

functionality. In this mode, data has to be formatted

specifically to match the defined frame types used in the

transmission and reception of messages. Figure 26 depicts

the structure of one of the frame types, namely a transmit

request, used by the XBee transceiver in API mode.

 43

Figure 26 XBee Transmit Request Frame [From:[19]]

While the API mode is more complex, its use provides

the user with a wide array of information and increased

flexibility. For example, upon the transmission of the

frame depicted above, the user is provided with a transmit

status frame in return. This frame alone alerts the user

to the status of the sent message: successful transmission,

no ACK from destination device, or CCA failure. With this

information, an application could be programmed to respond

accordingly. In addition, receive data frames contain

their own unique segments of information beyond the

encapsulated data. Information such as the received signal

strength (RSSI) and CRC information are carried in each

frame and add to the richness of the API operating mode.

The last point of interest is the XBee’s ability to

operate in a low-power configuration. While the transmit

output power can be modified programmatically, greater

power efficiency can be attained by capitalizing on the

device’s ability to sleep for a maximum period of 268

seconds when associated with a network coordinator. A

sleeping device would systematically wake at the end of the

defined sleep period and poll the coordinator for any

stored messages. If no messages exist, the device reenters

the sleep state for another cycle. On the other hand, if

 44

the coordinator has information to pass, message transfer

operation is initiated and continued until no more data

exists to be exchanged. The remote device subsequently

returns to the sleep cycle. Since the transceiver consumes

less than 10 µA in the sleep state, compared to 55 mA in

the idle/receive state, signi ficant power savings can be

attained by incorporating such a configuration.

C. SOFTWARE DESCRIPTION AND DISCUSSION

The software component for th e remote camera system

consists of two distinct modules. The primary module is

the software that controls the graphical user interface

(GUI) and the underlying communication protocol on the PDA.

This software enables the user to connect with the remote

camera via the XBee modules and issue camera, as well as

servo position commands. Furthermore, the software is

configured to receive the packets of image data, arrange

the packets in order, and finally, display the image to the

user on the PDA screen. The second software module was

developed to run on the servo controller board. This

module simply monitors the byte stream for servo-specific

commands. Embedded commands are parsed and used in the

positioning of the servo motor.

1. PDA Software

The GUI and underlying code for the PDA was developed

in Microsoft Visual Studio 2008 in the C# language. The

GUI was designed to be simple yet functional in the small

amount of screen real estate provided by the HP hw6945.

Figure 27 depicts the GUI software, as rendered by the

device emulator.

 45

Figure 27 Remote Camera GUI Design

This basic functionality includes a 234x162 region to

display the image, a track-bar to control the servo

position, a single command button to trigger the image

capture, a text area to display the system status, and

finally a progress bar to show the status of the image

download operation. The majority of the underlying code

revolved around the passing and parsing of six-byte camera

commands that are required for image capture and retrieval.

The commands are based on the detailed datasheet provided

by the camera manufacturer and are listed in Figure 22 The

camera commands are sent and received through the use of a

serial port object in the application where it operates at

9600 baud. The most complex operation in the application

is the retrieval of the image information stored in the

remote camera system. Upon initialization, the camera is

instructed to return the image data in packets of a

 46

specific size, ranging from 64 to a maximum of 512 bytes.

The application was fixed at a packet size of 100 bytes to

match the maximum packet size specified by the IEEE

802.15.4 standard. As such, the software was coded to

receive each 100-byte packet, append it to the previously

received packet, acknowledge receipt to the camera and

prepare for the next, if available packet. The cycle is

repeated until the image download is complete.

2. Servo Control Software

The code for the servo controller was developed for

the OOPic Version C microcontroller using the proprietary

IDE and compiler. The first task in the code design for

the servo controller was to develop a specific control

protocol. Since the control protocol for the camera was

well-defined, a simple three-byte protocol was formed that

alerted the servo controller that servo position

information would follow, {2F, 2F, x} in hexadecimal, where

x is the servo position with a value ranging from 1 to 63

decimal that corresponds to the left and right limits of

the servo respectively. The servo controller had to listen

to the same serial traffic as that of the camera module.

That being the case, the servo controller code would have

to parse the incoming traffic, and if it did not begin with

the servo control specific string, ignore the information

and look at the next available string. If and when the

controller encountered a valid contr ol string, it simply

extracted the servo position byte (value 1 to 63) from the

stream and passed it to the servo object for position

handling.

 47

The final stage of the hardware and software

discussion was the integration of all the components into a

functional system that could be used to assess the

feasibility of the underlying wireless technology. Custom

cables were constructed to gain access to the PDA’s serial

port and the interface pins of the XBee device. A simple

project case was arranged to house the remote XBee device,

servo controller, the servo, and the camera module. The

components were connected electrically and battery power

was made available as needed. The system was now ready to

be tested for range, reliability, and overall functionality.

 48

THIS PAGE INTENTIONALLY LEFT BLANK

 49

IV. RESULTS

A. SYSTEM DESIGN AND CONGIGURATION

The key to the design, and ultimately the feasibility

of this system, is the flexibility provided by the IEEE

802.15.4 enabled XBee transceivers. As stated earlier, the

devices provide a large number of configurable parameters

that enable the developer to customize the devices to meet

very specific operating characteristics. The ability to

control the output power, interface data rate, network

topology, and the sleep cycle are crucial factors in the

design of the system.

• Network Topology: In this design, the network

topology that emerged was the point-to-

multipoint configuration. This topology

resulted from the use of a network coordinator

that was ultimately responsible for the

management of associated devices. By using the

network coordinator configuration, the system

was then able to capitalize on the power savings

capabilities made available through the sleep

cycle functionality.

• Data Transfer Mode: The Xbee transceivers are

designed to operate in both transparent (serial

line replacement) and API m odes. For this

design, it was decided to implement the radios

in the transparent mode. This allowed for a

less complex programming paradigm of the

underlying serial communications process. The

API mode would have provided a greater degree of

 50

information and control. However, the

functionality inherent in the camera module

itself, specifically the communication ACKs and

NAKs, suffice in the creation of a robust

communication scheme.

• Transceiver Output Power: A large factor in the

feasibility of the IEEE 802.15.4 standard is the

power consumed by a given device. The power

output for the XBee transceivers is configurable

from a range of 10 dBm up to the highest output

of 18 dBm. This system was designed with the

output power fixed at the highest level in an

attempt to maximize communications range and

error free data exchange with the network

coordinator. Power savings would come from the

sleep cycle scheme.

• Interface Data Rate: While the Xbee transceivers

communicate with each other at the fixed, IEEE

802.15.4 defined rate of 250 kbps, connected

hosts and/or sensors are able to communicate

with the XBees at a rate determined by the

developer (1200 up to 115200 baud). In order to

accommodate the associated devices (PDA, camera

module, servo controller) as well as negate the

need for flow control, it was decided to

communicate with the XBee modules at the

standard rate of 9600 baud, with 8 data bits, no

parity, and 1 stop bit. Although relatively

slow, the lower data rate prevented buffer

 51

overruns at the XBees and allowed for image

retrieval in approximately four seconds based on

an average image size of 5 kB.

• Sleep Mode Configuration: Establishing a

topology with a network coordinator allowed the

system to be designed to take advantage of the

power saving sleep cycle. The XBee modules can

be configured to remain “always on” or sleep

from a range of 1 up to 268 seconds. In order

to maintain a relatively responsive yet power

efficient system, the modules were configured to

sleep for a period of four seconds when

associated with the coordinator. In this

configuration, the module wakes from a sleeping

state and polls the coordinator for queued

commands. If no messages are pending, the

module returns to the sleep state for another

four seconds. Conversely, if a command is

pending, the module remains awake and completes

the data exchange with the coordinator. Upon

completion, the module reenters the sleep state.

The use of the sleep cycle greatly enhances the

low-power characteristics of the XBee modules.

B. RANGE AND RELIABILITY TESTING

In order for the IEEE 802.15.4 standard to be

considered a viable solution for its use in wireless sensor

networks, the technology must be subjected to a series of

tests that can demonstrate its operational capabilities.

Most important to an image capture / control system is the

range at which the radios can operate and the reliability

 52

of the data exchanged between the sensors and the host

controller. Consequently, range and bit error rate tests

were conducted in an attempt to validate the technology.

1. Range Testing

In order to conduct the range tests, a custom

application was constructed that simply transmitted a data

packet to the remote device. The remote device would in

turn send the received packet back to the originating

device. Upon reception, the originating device would

inspect the data for errors and extract the signal strength

of the received packet. A packet that did not match the

sent packet was considered an error packet. If a timeout

occurred, the packet was considered a dropped packet. The

range and the signal strength of the packet were recorded

in a comma separated file. Figure 28 depicts the range

test application that was created to conduct and record the

results of the testing process while providing the user

with feedback on the current operation. The application

allowed for a wide range of settings; however, tests were

conducted in a manner that closely resembled the operation

of the remote camera system; packets were set at 100 bytes

each and a total of 10 packets were sent in a given series.

 53

Figure 28 Range Testing Application

Range testing was conducted in three, RF-distinct

areas: an urban corridor, an urban park, and a remote

stretch of beach. The urban corridor was a constricted,

yet clear line-of-sight area surrounded by concrete

buildings and vegetation. While the length of the corridor

provided just over 350 meters, the width was constricted to

at most 15 meters. The area was chosen for its high level

of RF interference from other 2.4 GHz devices. Also to

note was the existence of two large electrical transformers

approximately 150 meters down the length of the corridor.

The urban park was an area void of buildings but moderately

populated by vegetation. The park was surrounded by urban

housing and commercial buildings that provided a moderate

level of RF interference. The rural stretch of beach was

void of buildings, vegetation, and most importantly, RF

interference. Figure 29 provides a visual representation

of the range test results in terms of the transceiver’s

 54

signal strength. The range was recorded in 100 meter

intervals up to the point where packets were dropped.

‐110

‐100

‐90

‐80

‐70

‐60

‐50

100 200 300 400 500 600 700 800 900 1000 1100

S
i
g
n
a
l

S
t
r
e
n
g

t
h

R
S
S
I

Range in Meters

XBee Pro Range Performance

Rural Area Urban Corridor Urban Park

Figure 29 Range Test Results

The XBee devices performed exceptionally well in the

rural environment and provided error-free operation up

through 1100 meters. Conversely, operation in the urban

corridor suffered a significant setback in terms of the

maximum range. This outcome followed as expected due to

the high degree of competing 2.4 GHz devices as well as the

potential interference from the closely located, power

transformers. Error-free operation occurred up through 275

meters but quickly deteriorated to a fifty percent drop

rate at 300 meters. The final test results from the urban

park faired significantly better than the urban corridor.

Error-free operation was recorded up through 500 meters.

 55

2. Reliability Testing

In order to conduct the bit error rate (BER) testing,

another custom-built application had to be constructed. It

is a client / server application where one module runs on a

PC (client) and the other runs on a PDA (server). The goal

was to create a testing environment where the server, upon

request from the client, would send a series of pre-defined

data packets (300 packets at 100 bytes per packet with a

100 ms delay between packets) in a given time period to the

client. The client, upon receipt of each packet, would

inspect the contents of each packet for integrity. A

packet that failed the overall integrity check was further

scrutinized on a byte-by-byte basis in order to count the

individual bit errors that had occurred. This operation was

repeated once each minute over the course of six hours in a

known hostile environment. Figure 30 shows the operation

of the client application near the midpoint of the test run

and Figure 31 depicts the potential RF interference caused

by 802.11 devices in operation at the time.

Figure 30 Bit Error Rate Client Application

 56

Figure 31 Competing IEEE 802.11 Devices

The datasheet for the XBee device claims a one percent

error rate at the bottom end of the receiver’s sensitivity

rating of -100 dBm. The tests were purposefully conducted

in a noisy environment to stress the capabilities of the

wireless devices. Figure 31 clearly demonstrates the high

levels of RF interference present during the test run. At

the conclusion of the six-hour test period, 100 percent of

the 108,000 packets sent by the server had been received by

the client. More importantly, none of the packets received

were received in error; a testament to the reliability of

the underlying MAC layer defined by the IEEE 802.15.4

standard.

 57

C. SLEEP CYCLE POWER ANALYSIS

One of the primary attributes of the IEEE 802.15.4

standard is its ability to operate in a manner that allows

a device to remain deployed for long periods of time on a

simple battery powered configuration. This power saving

characteristic was incorporated in the design of the system

through the use of the sleep-cycle mechanism described in

the system design and configuration section. Although the

network coordinator has to r emain “always on” (nonbeacon

mode), the associated end devices are able to take

advantage of the low-power operation based on the four-

second sleep cycle, shown in Figure 32.

Figure 32 Associated XBee Four Second Sleep Cycle

The diagnostic graphic above represents the current

consumption exhibited by a remote device that has been

successfully associated with a network coordinator. The

current was measured by using the following equipment:

 58

TDS3012B oscilloscope, A6302 current probe, and an AM503A

current probe amplifier. The diagram clearly shows the

four-second sleep period followed by a short burst of

transceiver activity. The power-on portion of the waveform

is magnified in Figure 33

Figure 33 Wake Portion of Four Second Sleep Cycle

This graphic clearly depicts the activity performed by

an associated device during the power-on portion of the

sleep cycle: switch transceiver to idle mode (55 mA), poll

the coordinator for queued data (215 mA), listen for a

reply from the coordinator (55 mA), and finally return to

the sleep state if no data is pending (10 µA). In the

current version of the XBee hardware, the sleep period can

be varied from 0 (always on) to 268 seconds. In each

setting, excluding always on, the power-on portion of the

signal remains the same in amplitude and duration.

Therefore, an estimate of the battery life can be

 59

calculated to demonstrate the value of the sleep cycle as

it relates to device deployment longevity. Table 2

represents several sleep profiles based on the

aforementioned signal analysis; a remote device that

remains associated with a network coordinator and no data

exchange occurs. The baseline calculation represents the

profile where a device has been configured to operate

continuously in the idle mode. As Table 2 shows, the

device could operate for a period of 2.27 days. Conversely,

a device configured to sleep for the maximum period of 268

seconds could theoretically operate for 227 months.

Finally, the four-second sleep profile implemented in the

design of the camera system yields a battery life of more

than seven months. These estimates exclude typical battery

decay over time.

Profile
Always On
(idle) 1 sec 2 sec 4 sec 8 sec 20 sec 50 sec 100 sec 200 sec 268 sec

Sleep Period (in sec) 0 1 2 4 8 20 50 100 200 268
Battery life in hours 54.55 1481.34 2902.86 5705.66 11155.56 26357.89 58176.74 97433.77 147082.35 168927.73
Life in days 2.27 61.72 120.95 237.74 464.81 1098.25 2424.03 4059.74 6128.43 7038.66
Life in months 0.07 1.99 3.90 7.67 14.99 35.43 78.19 130.96 197.69 227.05
*Calculations based on 3000 mAh battery at 3.3 volts, 10 uA sleep current, 55 mA idle current, and 215 mA transmit current

Table 2 Battery Life Estimate for Associated XBee Module

The tradeoff between a short sleep cycle and a long

sleep cycle, excluding current consumption, is the

responsiveness of the overarching system. At the maximum

sleep period of 268 seconds, an application would have to

wait up to 268 seconds, worst case, before any data

exchange could occur. Nevertheless, this behavior may be

acceptable, even desirable, in a system that has a low-

utilization rate, i.e., one that captures a picture once

per day.

 60

D. IMAGE RETRIEVAL / SERVO CONTROL

The final stage of testing centered on the performance

of the image capture/control system as a whole. The remote

camera module was placed at a distance of 300 meters from

the host controller in an urban setting with a moderate

degree of 2.4 GHz interference. The goal of the test was

simply to issue a number of servo position commands

followed by an image retrieval command. The cycle was

repeated for several series to note the performance of the

system. Figure 34 depicts the images captured during the

test scenario.

Figure 34 Sample Captured Images

The overall system performed as expected. To note was

the potential four-second (maximum) delay that could occur

depending on the exact moment the user issued the snapshot

or servo position commands. Simply put, the user could

have to wait at most four seconds before the system

responded; a characteristic of the system design

implemented to preserve power. The servo operated in

conjunction with the camera without interference. The

foreign servo commands were ignored by the camera module

 61

and simply discarded without putting the camera in an

unstable state. Similarly, the servo controller was not

affected by foreign-looking camera commands. The captured

images ranged in size from nine to ten KB and varied

according to the amount of available light. The image

transfer took approximately ten seconds to complete with

the default packet size of 100 bytes. Finally, while the

quality was marginal at best, the images are quite

sufficient to be used in a security application. The

underlying IEEE 802.15.4 protocol provided the mechanism

for reliable image data and servo control and at the same

time did so in a power efficient manner.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

V. CONCLUSIONS AND FUTURE WORK

A. SUMMARY

This thesis conducted a feasibility study of the IEEE

802.15.4 wireless standard as the communications medium for

a remote image capture / control system. The key

characteristics touted in the IEEE 802.15.4 standard

include a low-data rate, extremely low-complexity, low-

cost, and most importantly, low-power consumption. By

integrating the strengths of this technology, along with

other off-the-shelf sensors and digital control mechanisms,

it was postulated that a robust security application could

be constructed to validate the technology as a whole. The

hardware that was selected to provide the underlying IEEE

802.15.4 technology was the XBee Pro series transceivers,

while the camera system was composed of the C328R camera

module, the E-flite digital servo, and the OOPic

microcontroller. Accompanying the integration of these

components into a functioning system was a series of

applications that were designed to facilitate the remaining

battery of tests: range testing, bit error rate testing,

and power consumption analysis of an associated device.

B. CONCLUSIONS

It was determined through the initial testing that the

IEEE 802.15.4 technology is feasible for use in a remote

image capture/control application in a wireless sensor

network. The simplicity promulgated in the standard allows

for the rapid development and deployment of a system that

provides reliable data communication. The range,

reliability, and the power-saving mechanisms provided by

 64

the modules, even in hostile RF environments, makes this

platform nearly ideal in this application. Although the

range was significantly decreased in an environment plagued

by competing RF devices, the ability of the module to

automatically switch to a clear or at least less noisy

channel, coupled with a multi-hop configuration capability,

could easily allow the technology to maintain a long-range

data link. Finally, the ability to control the sleep cycle

period greatly enhances the low-power characteristic of the

standard. A mere four-second sleep cycle allows a device

that was previously configured to remain “always on” to

extend its battery life from 54 hours to well over seven

months.

The use of this technology in a military setting could

prove invaluable to the warfighter. Consider the

possibilities where such a system was deployed as a means

of an early warning or perimeter security application at a

remote forward operating base (FOB). The system could be

easily expanded to include dozens of remote sensors

tethered to a centralized network coordinator by way of the

wireless medium. The host controller could be configured

to capture updated image data from each sensor in a

predetermined manner. More interesting would be the

addition of seismic and infrared sensors coupled to the

image sensor and IEEE 802.15.4 device, thus providing a

means intrusion or suspect behavior detection. The

capability reported in this thesis has great potential to

serve the warfighter. Further investigation is warranted.

Some potential areas for further study follow.

 65

C. FUTURE WORK

The research conducted in this thesis should be

considered an initial investigation into the use of the

technology as the backbone for wireless sensor network

applications in the realm of image capture / control. As

the technology continues to mature, other options become

available that can be used to enhance or extend the system.

For example, at the time of the research, the XBee devices

in use only incorporated the nonbeacon mode in the IEEE

802.15.4 standard. Later stage devices now incorporate the

beacon and nonbeacon modes, as well as multi-hop and

security related features. Several areas for further

investigation are described in the following section.

1. Use of the API Mode to Interface XBee Motes

In the design of the current system, the decision was

made to programmatically interface the XBee devices by

using the transparent mode of operation. This method

provides a simple, high-level mechanism to transfer

information to and from the remote transceiver. While

simple, this mode does not give the developer access to

several key-performance characteristics on the fly, such as

the signal strength of the last received packet and more

importantly the status of the previously sent packet. The

API mode provides data that could then be used by the

developer to enhance the performance of the system. For

example, instead of relying on a timeout at the application

layer, the use of the message status could be used to

quickly determine whether or not a remote transceiver

received a given packet.

 66

2. Extend Access to the System via the Internet

In the current design of the system, the user controls

the camera system by way of the PDA host controller. In an

effort to extend the functionality of the system, the host

controller could be programmed to act as an Internet

gateway to the camera system. A simple client/server

application could be developed where the PDA serves as a

conduit to the remote camera module by using the PDA’s

internal 802.11 and networking capabilities.

3. Investigate Multi-hop Devices

Although the IEEE 802.15.4 standard does not directly

specify a multi-hop configuration, mechanisms are in place

for the development of such functionality at higher layers

(network and application). Later stage XBee devices now

incorporate this added functionality in the realm of multi-

hop and mesh configurations. The system implemented in

this thesis could be expanded to take advantage of this

later stage technology and tested to determine its

adherence to the low-power / low-data rate premise of the

standard and its operability with the C328R image sensor

and servo controller.

 67

APPENDIX A. REMOTE CAM SOFTWARE

Appendix A presents the software code for the Remote

Cam host application that runs on the PDA.
//Remote Cam
//By Dan Krehling
//4/22/09
//Code adapted from Serdar Aktas at:
//http://www.electronics123.com/s.nl/sc.5/category.20/ctype.KB/KB.198867/.f
//The Remote Cam application is a program that runs on a Pocket PC WM5 platform that
//allows the user to connect to, control, and retrieve images from the C328R JPEG camera
//module using the cameras serial communications protocol. The software also allows the
//user to slave the camera left and right via control signals that are passed to the
//attached servo motor, which operates independently of the camera module. While the
PDA,
//Camera, and the servo controller can be operated at numerous baud rates, the system
//has been set to operate at 9600 baud.

using System;
using System.IO;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Threading;
using System.Drawing.Imaging;

namespace CameraPDA
{
 public partial class Form1 : Form
 { //6 byte global receive array
 Byte[] RcvBuffer = new Byte[6] { 0, 0, 0, 0, 0, 0 };
 //12 byte global receive array
 Byte[] RcvBuffer12 = new Byte[12] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
 //Sync command string
 Byte[] SYNC_ = new Byte[6] { 170, 13, 0, 0, 0, 0 };
 //Expected response after sync command
 Byte[] SYNC_Resp = new Byte[12] { 170, 14, 13, 0, 0, 0, 170, 13, 0, 0, 0, 0 };
 //BaudRate command string(Default 115200 bit/sec)
 Byte[] Baud = new Byte[6] { 170, 7, 15, 1, 0, 0 };
 //Default init command string(Default 320x240)
 Byte[] Init = new Byte[6] { 170, 1, 0, 7, 0, 5 };
 //Default package command string(Default 100 bytes)
 Byte[] Pack = new Byte[6] { 170, 6, 8, 100, 0, 0 };
 //Snapshot command string
 Byte[] Snap = new Byte[6] { 170, 5, 0, 0, 0, 0 };
 //Getpicture command string
 Byte[] GetPic = new Byte[6] { 170, 4, 1, 0, 0, 0 };
 //Expected response after getpicture command
 Byte[] GetPic_Resp = new Byte[12] { 170, 14, 4, 0, 0, 0, 170, 10, 1, 0, 0, 0 };
 //Default ACK command string
 Byte[] ACK = new Byte[6] { 170, 14, 13, 0, 0, 0 };
 //ACK command string to get all the image data
 Byte[] Jpeg_ACK = new Byte[6] { 170, 14, 0, 0, 0, 0 };
 //50 HZ camera light frequency setting
 Byte[] LFreq50hz = new Byte[6] { 170, 19, 0, 0, 0, 0 };
 //60 HZ camera light frequency setting
 Byte[] LFreq60hz = new Byte[6] { 170, 19, 1, 0, 0, 0 };

 68

 bool Response = false;//Command error checker
 bool LastOperation = false;//operation checker for sync, pack, etc
 Int32[] Supported_Bauds = new Int32[2] { 9600, 9600 };//Baudrates to be checked
 Int32 upperbyte = 0, lowerbyte = 0;//Variables to split value into two bytes
 Int16 i = 0;//Baudrate selector & index holder to cut the unneeded bytes
 Int32 counter = 0, counter2 = 0, x = 0, index = 0;//General use counters
 Int32 bytes = 0;//Value that shows the number of bytes of the picture

 //servo control string of "/ / 32" where the "/" signifies servo command
 // and the int represents the position to move to.
 byte[] ServoControl = new byte[3] { 0x2f, 0x2f, 32 };

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 //Center the image when displayed
 pictureBox1.SizeMode = PictureBoxSizeMode.CenterImage;

 //open the comm port
 Connect();
 }

///
/* Function: Connect
 * usage: used to open the serial port on the PDA
* */
 private void Connect()
 {
 //Check if com port 1 is busy
 if (serialPort1.IsOpen)
 {
 //if busy show it to user
 Result.Text = "Com1 is busy. Close other application...";
 Result.Refresh();
 snapButton.Enabled = false;
 progressBar1.Enabled = false;

 }
 else
 {
 // if not open, open port
 serialPort1.Open();
 Result.Text = "Com1 opened successfully...";
 Result.Refresh();
 snapButton.Enabled = true;
 progressBar1.Enabled = true;
 }
 }

//
/* Function: Sync
* usage: used to synchronize the camera module to the host controller at a specific baud
rate
* (hard coded to 9600 baud in this case)
* */
 private void SYNC()
 {
 //Clear global function checker
 Response = false ;

 //Showing action to the user
 Result.Text = "Checking supported baudrate...";
 Result.Refresh();

 //Sending sync command for supported baudrates

 69

 for (i = 0; i != 2; ++i)
 {
 serialPort1.BaudRate = Supported_Bauds[i];

 for (counter = 0; counter != 100 & Response != true; ++counter)
 {
 //Sending SYNC commands for a few turns and checking if sync acquired
 Response = SYNC_Command();
 }

 if (Response == true)
 { break; }

 }

 //Show the result to user
 if (Response == true)
 {
 //Order the buttons
 Result.Text = "SYNC...";
 Result.Refresh();
 //this operation was successful
 LastOperation = true;

 }
 else
 {
 //if unsuccesfull show the problem to the user
 Result.Text = "Reset the camera or Retry";
 Result.Refresh();
 LastOperation = false;
 }
 }

///
/* Function: SetJPEGSize
 * usage: used to instruct the camera to take a picture of a specific size, (320X240 in
this case)
 * */
 private void SetJPEGSize()
 {
 //Clear global function checker
 Response = false;

 //Sending init command with the default size of 320X240
 Response = Command(Init);

 //Show the result to user
 if (Response == true)
 {
 //if succesful show user that initialization acquired
 Result.Text = "JPEG size set successfully...";
 Result.Refresh();
 //set global to show last op successful
 LastOperation = true;
 }
 else
 {
 //if unsucessfull show user the problem
 Result.Text = "Unable to set the JPEG size...";
 Result.Refresh();
 LastOperation = false;
 }

 }

///
/* Function: SetFrequency
 * usage: used to instruct the camera use a package size of 512 bytes (other sizes are
available)

 70

 * */
 private void PackSize()
 {
 //Clear global function checker
 Response = false;

 //Sending package command
 Response = Command(Pack);

 //Show the result to user
 if (Response == true)
 {
 //if succesful show user that initialization acquired
 Result.Text = "Package size set...";
 Result.Refresh();
 //set global to show last op successful
 LastOperation = true;
 }
 else
 {
 //if unsucessfull show user the problem
 Result.Text = "Unable to set the package size...";
 Result.Refresh();
 LastOperation = false;
 }
 }

///
/* Function: SetFrequency
 * usage: used to instruct the camera to operate at the given light frequency (50 or 60
Hertz)
 * */
 private void SetFrequency()
 {
 //Clear global function checker
 Response = false;

 //set the camera frequency to 60hz
 Response = Command(LFreq60hz);

 //Show the result to user
 if (Response == true)
 {
 //if succesful show user that initialization acquired
 Result.Text = "Light freq set...";
 Result.Refresh();
 LastOperation = true;
 }
 else
 {
 //if unsucessfull show user the problem
 Result.Text = "Unable to set the light frequency...";
 Result.Refresh();
 LastOperation = false;
 }
 }

///
/* Function: SnapShot
 * usage: used to instruct the camera module to take and store a photo in the onboard
memory
 * */
 private void SnapShot()
 {
 //Clear global function checker
 Response = false;

 //Sending snapshot command
 Response = Command(Snap);

 71

 //Show the result to user
 if (Response == true)
 {
 //if succesful show user that initialization acquired
 Result.Text = "Snapshot taken...";
 Result.Refresh();
 LastOperation = true;
 }
 else
 {
 //if unsucessfull show user the problem
 Result.Text = "Unable to take the picture...";
 Result.Refresh();
 LastOperation = false;
 }
 }

///
/* Function: Preview
 * usage: used to instruct the camera module to start transferring the image data to the
 * host.
 * */
 private void Preview()
 {
 Int32 Response = 0;

 Response = Preview_Command();

 if (Response != 0)
 { //if succesful show user that initialization acquired
 Result.Text = "Image Size: " + Response.ToString() + " bytes";
 Result.Refresh();
 Construct_JPEG(Response);

 }
 else
 { //if unsucessfull show user the problem
 Result.Text = "Unable to preview the picture...";
 Result.Refresh();

 }
 //reset and hide the progress bar
 progressBar1.Value = 0;
 progressBar1.Visible = false;

 }

///
 /* Function: SYNC_Command
 * usage: used to acquire synchronization between the c328 camera.Must be used first
 * */
 bool SYNC_Command()
 {
 //Arranging acknowledge
 ACK[2] = SYNC_[1];

 //Sending sync command
 serialPort1.Write(SYNC_, 0, 6);
 Thread.Sleep(50);

 //Checking if receive buffer is empty?
 if (serialPort1.BytesToRead != 0)
 {
 Thread.Sleep(1);
 serialPort1.Read(RcvBuffer12, 0, 12);

 72

 //checking if true response received
 if (RcvBuffer12[0]==SYNC_Resp[0] & RcvBuffer12[1]==SYNC_Resp[1] &
 RcvBuffer12[2]==SYNC_Resp[2] & RcvBuffer12[4]==SYNC_Resp[4] &
 RcvBuffer12[5]==SYNC_Resp[5] & RcvBuffer12[6]==SYNC_Resp[6] &
 RcvBuffer12[7]==SYNC_Resp[7] & RcvBuffer12[8]==SYNC_Resp[8] &
 RcvBuffer12[9]==SYNC_Resp[9] & RcvBuffer12[10]==SYNC_Resp[10] &
 RcvBuffer12[11]==SYNC_Resp[11])
 {
 // if yes sending ack command and returning true
 serialPort1.Write(ACK, 0, 6);
 return true;
 }
 else
 {
 //else sending false
 return false;
 }
 }

 return false;

 }

///
/*Function name :Preview_Command
* usage: used to preview the snapshot picture
* */
 Int32 Preview_Command()
 {

 //Writing getpicture string to com port
 serialPort1.Write(GetPic, 0, 6);
 Thread.Sleep(100);

 //Checking receive buffer
 if (serialPort1.BytesToRead != 0)
 {
 //Reading the receive buffer
 serialPort1.Read(RcvBuffer12, 0, 12);
 }

 //Checking if true response received
 if (RcvBuffer12[0] == GetPic_Resp [0] & RcvBuffer12[1] == GetPic_Resp [1] &
 RcvBuffer12[2] == GetPic_Resp [2] & RcvBuffer12[4] == GetPic_Resp [4] &
 RcvBuffer12[5] == GetPic_Resp [5] & RcvBuffer12[6] == GetPic_Resp [6] &
 RcvBuffer12[7] == GetPic_Resp [7] & RcvBuffer12[8] == GetPic_Resp [8])
 {
 //if yes sending the image data length
 bytes = Convert.ToInt32(RcvBuffer12[11]);
 bytes <<= 8;
 bytes = bytes | Convert.ToInt32(RcvBuffer12[10]);
 bytes <<= 8;
 bytes = bytes | Convert.ToInt32(RcvBuffer12[9]);
 return bytes;
 }
 else
 {
 //else sending zero
 return 0;
 }
 }

///
/* Function:Construct_JPEG(Response);
* usage: used to build the image from the data returned from the camera
* */
 void Construct_JPEG(Int32 bytes)

 73

 {

 Byte[] Jpeg = new Byte[bytes]; //Null jpeg stream

 //set the upper bound of the progress bar to the value "bytes" passed in above
 progressBar1.Maximum = bytes;
 progressBar1.Value = 0;
 progressBar1.Visible = true;

 //Clearing the global counters
 counter = 0; counter2 = 0; x = 0; index = 0 ;

 //Clearing the upper and lower bytes
 upperbyte = 0; lowerbyte = 0;

 for (;counter != bytes ;) //loop until getting all image data
 {

 Jpeg_ACK[4] = Convert.ToByte(lowerbyte);
 Jpeg_ACK[3] = Convert.ToByte(upperbyte);

 // send the acknowledge command
 serialPort1.Write(Jpeg_ACK, 0, 6);
 //pause while the camera module sends image data to the buffer
 Thread.Sleep(400);
 if ((x = serialPort1.BytesToRead) != 0)
 {
 //read the values
 Byte[] Temp = new Byte[serialPort1.BytesToRead];
 serialPort1.Read(Temp, 0, serialPort1.BytesToRead);

 //control if true package got
 if (Temp[0] == lowerbyte & Temp[1] == upperbyte)
 {
 for (int i = 4 ; i != x - 2; ++i)
 {
 //cut the unused bytes
 Jpeg[index] = Temp[i];
 ++index;
 }

 //set the progress bar
 progressBar1.Value = index;
 }
 else
 {
 // if error occurs show it to user
 Result.Text = "Corruption occurred..";
 Result.Refresh();
 break;
 }

 //arrange the controllers
 counter = counter + x - 6;
 ++counter2;
 upperbyte = counter2 >> 8;
 lowerbyte = counter2 & 0x00FF;
 }

 }

 // Send the last command
 Jpeg_ACK[4] = Convert.ToByte(lowerbyte);
 Jpeg_ACK[3] = Convert.ToByte(upperbyte);
 serialPort1.Write(Jpeg_ACK, 0, 6);

 string fileName = "\\Temp\\PIC" + DateTime.Now.TimeOfDay.Seconds.ToString() +
".jpg";

 74

 //Display the picture
 Stream image = new MemoryStream(Jpeg);
 Stream fs = new FileStream(fileName, FileMode.CreateNew);

 pictureBox1.Image = new Bitmap(image);
 //save the image to the Temp\PIC directory
 pictureBox1.Image.Save(fs,ImageFormat.Jpeg);
 }

///
/* Function: Command
 * usage: used to pass specific commands to the camera module
 * */
 public bool Command(Byte[] Parameter)
 {

 //Arranging acknowledge
 ACK[2] = Parameter[1];

 //Sending parameters to com1
 serialPort1.Write(Parameter, 0, 6);

 //Waiting the device to send response
 Thread.Sleep(400);

 //Checking receive buffer
 if (serialPort1.BytesToRead != 0)
 {
 Thread.Sleep(1);

 //Reading the receive buffer
 serialPort1.Read(RcvBuffer, 0, 6);
 }

 //Show the result to user
 if (RcvBuffer[0] == ACK[0] & RcvBuffer[1] == ACK[1] & RcvBuffer[2] == ACK[2] &
 RcvBuffer[4] == ACK[4] & RcvBuffer[5] == ACK[5])
 {
 return true;
 }
 else
 {
 return false;
 }

 }

///
/* Function: snapButton_Click
 * usage: event that fires when the user clicks the SNAP button on the interface. From
this
 * command, most of the other camera functions are called into action with the result
being
 * the image rendered on the screen.
 * */
 private void snapButton_Click(object sender, EventArgs e)
 {
 snapButton.Enabled = false;
 SYNC();
 if (LastOperation) SetJPEGSize();
 if (LastOperation) PackSize();
 if (LastOperation) SetFrequency();
 if (LastOperation) SnapShot();
 if (LastOperation) Preview();
 snapButton.Enabled = true;

 }

 75

///
/* Function: Form1_Closing
 * usage: closes out the serial port connection when the form is closed
 * */
 private void Form1_Closing(object sender, CancelEventArgs e)
 {
 if (serialPort1.IsOpen)
 {
 serialPort1.Close();
 }
 }

///

/* Function: SetFrequency
 * usage: used to send position information to the servo when the user commands via the
 * track bar on the interface.
 * */
 private void trackBar1_ValueChanged(object sender, EventArgs e)
 {
 ServoControl[2] = (byte)(64 - trackBar1.Value);
 serialPort1.Write(ServoControl, 0, 3);
 Result.Text = "Servo Pos: " + trackBar1.Value.ToString();
 Thread.Sleep(400);
 //clear anything the camera may have returned as a result of this last command
 serialPort1.DiscardInBuffer();
 }

 }//end class Form1

}//end namespace CameraPDA

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

APPENDIX B. SERVO CONTROL SOFTWARE

Appendix B presents the software code for the OOPic

operation of the remote servo.

'This program listens to the serial port traffic
'for a special code sequence "2F,2F, X" hexadecimal
'where the X is a value ranging from 1 to 63. When
'encountered, the program captures the X value and
'positions the servo object to that position.

Dim A As New oSerialPort
Dim B As New oByte
Dim S1 As New oServo

Sub Main()
 A.Baud = cv9600
 A.Operate = cvTrue
 S1.IOLine = 24
 S1.Center = 28
 S1.Value = 32
 S1.Operate = cvTrue

 Do
 If A.Received = cvTrue Then
 B.Value = A.Value
 'look for the first occurrence of "2F" hex
 If B.Value = 0x2f Then
 If A.Received = cvTrue Then
 B.Value = A.Value
 'look for the second occurrence of "2F" hex
 If B.Value = 0x2f Then
 If A.Received = cvTrue Then
 B.Value = A.Value
 'position the servo to the X value
 S1.Value = B.Value
 End If
 End If
 End If
 End If
 End If
 Loop
End Sub

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

LIST OF REFERENCES

[1] W. Roush, A. M. Goho, E. Scigliano, D. Talbot, M. M.
Waldrop, G. T. Huang, P. Fairley, E. Jonietz and H.
Brody, "10 Emerging Technologies," Technol. Rev., vol.
106, pp. 33, 02. 2003.

[2] E. H. Callaway, Wireless Sensor Networks:
Architectures and Protocols. Boca Raton, Fl: CRC Press,
2004,

[3] D. Estrin, D. Culler, K. Pister and G. Sukhatme,
"Connecting the Physical World with Pervasive
Networks," IEEE Pervasive Computing, vol. 1, pp. 59-69,
2002.

[4] T. Haenselmann. "Sensornetworks," An FDL'd Textbook on
Sensor Networks, [Online]. Available:
http://www.informatik.uni-
mannheim.de/~haensel/sn_book/. [Accessed: Mar. 14,
2009].

[5] K. Romer and F. Mattern, "The Design Space of Wireless
Sensor Networks," IEEE Wireless Communications, vol.
11, pp. 54-61, 2004.

[6] J. Pike. "Sound Surveillance System (SOSUS),"
globalsecurity.org, [Online]. Available:
http://www.globalsecurity.org/intell/systems/sosus.htm.
[Accessed: Jan. 25, 2009].

[7] C. Y. Chong, S. P. Kumar and B. A. Hamilton, "Sensor
Networks: Evolution, Opportunities, and Challenges,"
Proc IEEE, vol. 91, pp. 1247-1256, 2003.

[8] K. Martinez, P. Padhy, A. Elsaify, G. Zou, A. Riddoch,
J. K. Hart and H. L. R. Ong, "Deploying a Sensor
Network in an Extreme Environment," IEEE SUTC, vol. 1,
pp. 186–193, 2006.

[9] R. Beckwith, D. Teibel, P. Bowen and I. Res, "Unwired
wine: Sensor networks in vineyards," in Sensors, 2004.
Proceedings of IEEE, 2004, pp. 561-564.

 80

[10] Anonymous "Pervasive 2004, April 18-23, Linz / Vienna,
Austria," Available:
http://www.pervasive2004.org/program_hotspotpapers.php.
[Accessed: May 1, 2009].

[11] J. A. Gutierrez, E. H. Callaway and R. Barrett, Low-
Rate Wireless Personal Area Networks: Enabling
Wireless Sensors with IEEE 802.15.4. New York, NY:
IEEE Press, 2004.

[12] The Institute of Electrical and Electronics Engineers,
Inc, "IEEE Standard for Information technology-
Telecommunications and information exchange between
systems- Local and metropolitan area networks-
Specific requirements Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area
Networks (WPANs)," IEEE Std 802. 15. 4-2006 (Revision
of IEEE Std 802. 15. 4-2003), pp. 1-305, 2006.

[13] E. Callaway, P. Gorday, L. Hester, J. A. Gutierrez, M.
Naeve, B. Heile and V. Bahl, "Home Networking with
IEEE 802.15.4: A Developing Standard for Low-rate
Wireless Personal Area Networks," IEEE Communications
Magazine, vol. 40, pp. 70-77, 2002.

[14] P. Kumar, M. Günes, A. A. B. Al Mamou and J. Schiller.
"Real-time, Bandwidth, and Energy Efficient IEEE
802.15. 4 for Medical Applications," [Online].
Available: http://cst.mi.fu-
berlin.de/publications/pdf/2008-kumar-FGSN.pdf.
[Accessed: Apr. 12, 2009].

[15] Inc Hewlett Packard. "HP iPAQ hw6900 Mobile Messenger
Series," HP.com, [Online]. Available:
http://h20000.www2.hp.com/bizsupport/TechSupport/Docum
ent.jsp?objectID=c00699792&lang=en&cc=us&taskId=101&pr
odSeriesId=1822489&prodTypeId=215348. [Accessed: June
15, 2009].

[16] Inc Savage Innovations. "OOPic Home Page," oopic.com,
[Online]. Available:
http://www.oopic.com/con40.htm#Description. [Accessed:
June 22, 2009].

 81

[17] Inc Horizon Hobby. "E-flite - Advancing Electric
Flight," e-fliterc.com, [Online]. Available:
http://www.e-
fliterc.com/Products/TechnicalSpecs.aspx?ProdID=EFLRDS
75H. [Accessed: June 23, 2009].

[18] COMedia Ltd. "COMedia Website," comedia.com, [Online].
Available:
http://www.comedia.com.hk/fp2008/Spec_PDF/C328R_UM.pdf.
[Accessed: June 17, 2009].

[19] Inc MaxStream. "XBee® & XBee-PRO® 802.15.4 OEM RF
Modules Datasheet," User's Manual, [Online].
Available:
http://ftp1.digi.com/support/documentation/90000982_A.
pdf. [Accessed: June 19, 2009].

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code
C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity
(Attn: Operations Officer)
Camp Pendleton, California

