M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

A TEST BED FOR DETECTION OF BOTNET INFECTIONS
IN LOW DATA RATE TACTICAL NETWORKS

by
Russell W. Becker

September 2009

Thesis Advisor: John McEachen
Co-Advisor: Murali Tummala
Second Reader: Vicente Garcia

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2009 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Test Bed for Detection of Botnet Infections in Low
Data Rate Tactical Networks

6. AUTHOR(S) Russell W. Becker

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING

ADDRESS(ES) AGENCY REPORT NUMBER
N/A

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

The propagation of bots into a botnet, and the various malicious
activities that could be carried out from within a tactical network, poses a
significant threat to network security and tactical operations. This thesis
presents a network architecture with the objective of near real-time detection
of malicious activity and its propagation within a data rate (bandwidth)
limited environment with periodic losses of connectivity without adding
significant burden to the network.

A test bed is constructed that makes use of an iIntrusion detection system
driven correlation tool, BotHunter, focused on outbound and inbound
connections, rather than solely on inbound connections and a honeynet located
in a high data rate area of a tactical network. The ability of the proposed
architecture to identify malicious activities is validated when both BotHunter
and the Honeynet successfully detect a bot infection.

14. SUBJECT TERMS 15. NUMBER OF
PAGES
Botnet, Tactical Network, BotHunter, Honeynet, Honeypot, Low Data 79
Rate, Network Security 16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified uu
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

A TEST BED FOR DETECTION OF BOTNET INFECTIONS IN LOW DATA
RATE TACTICAL NETWORKS

Russell W. Becker
Major, United States Marine Corps
B.S., University of Houston, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Russell W. Becker

Approved by: Professor John McEachen
Thesis Advisor

Professor Murali Tummala
Co-Advisor

Vicente Garcia
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and
Computer Engineering

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The propagation of bots iInto a botnet, and the various
malicious activities that could be carried out from within a
tactical network, poses a significant threat to network
security and tactical operations. This thesis presents a
network architecture with the objective of near real-time
detection of malicious activity and its propagation within a
data rate (bandwidth) [limited environment with periodic
losses of connectivity without adding significant burden to

the network.

A test bed 1is constructed that makes use of an
intrusion detection system driven correlation tool,
BotHunter, focused on outbound and inbound connections,
rather than solely on 1inbound connections and a honeynet
located in a high data rate area of a tactical network. The
ability of the proposed architecture to identify malicious
activities is validated when both BotHunter and the Honeynet

successfTully detect a bot infection.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

l. INTRODUCT EON oot e e e e i e e e e d e e e e aem e eeaaaan 1
A. MOTHVATION .. e e e e e e dccaaacaaaaaaan 2
B. OBJECTIVES . .- e i i e e e i e ecceaaccaaacaaaaaan 3
C. RELATED WORK . oo i i e i e i e e e e e eeaeaaaaaa 5
D. ORGANIZATION .o e e e i e e e c e eaccaaacaaaaaan 6
1. OVERVIEW OF BOTNETS .. oo i i it i e e e e e e aem e aeaaaaes 7
A. CREATING AND MAINTAINING A BOTNET ..o a e a s 7
B. METHODS OF DETECTING, CAPTURING MALICIOUS CODE AND
COMBATING BOTNETS .« o i i it i e i i e e e eeaaaaaaem s 9
1. Use of Antivirus and Firewalls 10
2. Intrusion Detection Systems 10
3. Forensic Analysis of Network Traffic 11
4. Honeypots and Honeynets co.oaoo... 11
5. Correlation tools 12
T O I s = 15
A. RELATIONSHIP OF TEST BED TO TACTICAL NETWORK
ARCHITECTURE . .o o e e i i e e i i e e ccaaaceaaaans 15
B. TEST BED IMPLEMENTATION . ..ot i i i i e e e aaaaa s 19
IV. TEST BED IMPLEMENTAION RESULTS ci i i i i e i e e a 23
A. TRAFFIC STATISTICS .« . i e e e e e e accaann 23
B. HONEYWALL RESULTS . ..o i e e e e e ee e e 26
1. Initial Infection iiaoao... 27
2. Secondary Infection 35
3. Malicious Activities i ieaaaaan- 35
4. MaintenancCe i e 36
5. Honeywall Analysis 38
C. BOTHUNTER RESULTS ... i e e e e aaaam s 41
D. HONEYNET AND BOTHUNTER RESULTS COMBINED 44
V. CONCLUSIONS .ot e it e i e e e e e e e ae e e e aeaaaaaan 47
A. SIGNIFICANT RESULTS ..ot e e e e e e 47
B. FUTURE WORK . . i i e i i i e i i c e e ccacaceaaacann 48
1. Employ a Honeynet Consisting of a Homogenous
Network of Honeypots 49
2. Position BotHunter Between Subnets 49
3. Addition of a Malware Collection Tool 50
APPENDIX. EQUIPMENT AND SOFTWARE SETTINGSo .. 51
A. HONEYWALL . - oo i i e i e e i e e i i e e i ceeacceaacaaaannan 51
1. Honeywall CDROM Root Install __.......... 51
B. HONEYPOTS oo e i e e e e i i e e c e eccecacaaaaan 53
1. Windows 2000, Service Pack 3 53

Vil

a. Wipe Hard Drive i aeaaann

b. Insert and Run Install of Win2k SP3

C. Sebek Install e eaa

2. Windows XP, Service Pack 2o o....

a. Wipe Hard Drive i iaa..

b. Insert and Run Install of WinXP SP2

C. Sebek Install i eaa

C. BOTHUNTER . . oo e mmeeemmeana

LIST OF REFERENCES . . . i i e e e i i e e e cmccceacecaaaaaann

INITIAL DISTRIBUTION LIST

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10.

LIST OF FIGURES

Typical Tactical Network Architecture With
Addition of a Honeynet in the Dashed Box........ 16
Test Bed Developed to Emulate the Low Data Rate
Side of a Tactical Network and Detect bot
infections (After [11]) - i e e e 18
Gross Traffic Statistics With Sebek Packets
Included on the Left Side and Filtered Out on
the Right. i e eeaaaaan 24
Il1lustration of Significant Protocols and Ports
Used by the Honeypots (1P Addresses
63.205.26.90 and 63.205.26.94) and the
63.205.26.67, Described as an IP Address of
Interest. e e e e eaa e 25
First Sign of ARP Cache Poisoning or MAC
Spoofing Involving Honeypot 63.205.26.94 and
Collected by the Honeywall. 29
Mac Spoof with packet numbers in fTirst column
to i1llustrate multiple occasions spread across
the collection period and could be indicative
of a communication Channel or an attack......... 32
Honeywall Packet Captures Showing [Initial
Attack via Buffer Overflow, Sebek captures on
honeypot 63.205.26.90 and Initiation of Egg
Download. - ... i i i e e eaeeaaaaa 34
Honeywall Captured Packets Show Egg Download
Completion, DNS Query and Response to Resolve
an IP Address for ninjawarlord.com in Order to
Establish Command and Control, and Initiation
of 63.205/16 Network Scanning.......... 37
Results of Wireshark’s Conversations Function
Performed on All Packets Captured Limited to a
Minimum of 4 Packets Per Conversation for
Inclusion with Sebek Packets and Standard DNS

Queries Blocked Out.o ioieoieaaeaaaann 40
BotHunter Screen Shot Illustrating Multiple
Detections of a Bot on 63.205.26.90............. 43

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.

LIST OF TABLES

Phases of Bot Infection of Win2K (63.205.26.90)
Honeypot as Identified From Honeywall and
BotHUuNter e

THIS PAGE INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

The propagation of bots, drone computers (processes)
characterized by a command and control architecture and
controlled by a bot controller, into an army of computers, a
botnet, and the various malicious activities that could be
carried out from within a tactical network poses a
significant threat to network security and tactical

operations.

The objectives of this work are near real-time
detection of malicious activity and its propagation within a
data rate (bandwidth) [limited environment with periodic
losses of connectivity without adding significant burden to

the network.

This thesis assembles a test bed to emulate part of a
tactical network architecture with Jlow data rate and
periodic losses of connectivity. The architecture makes use
of an intrusion detection system driven correlation tool,
BotHunter, focused on outbound rather than i1nbound
connections and a honeynet to validate the BotHunter.
BotHunter is placed in a position to experience losses in
connectivity, as i1t will observe all inbound network
traffic, but will be limited In 1ts visibility of outbound
traffic by the honeynet’s connection limiting rules. The
honeynet”s honeywall i1s iIn a position to observe and record
all network traffic.

The test bed architecture as a means of detecting
botnet infections in low data rate tactical networks 1is
validated. BotHunter continued to detect the bot infection

after the periodic loss of connections caused by the
xiii

honeynet. The BotHunter detected bot infection that
initially attempts to propagate prior to establishing
command and control, a behavior that makes it particularly
hazardous to tactical networks. The origination of the bot
secondary infection and its malicious action of performing a
Class B network scan were detected within a matter of
minutes of the infection on a network limited to a bandwidth
of 180 kbps.

Traffic analysis of all packets captured by the
honeywall allowed determination of the network cost in terms
of malicious traffic generated in the test bed by the single
bot infection. The traffic cost for the bot infection
captured in this work was measured to be 112 Bytes per

second.

The requirement for positioning of a honeynet or
honeynets within the test bed network architecture 1is
validated by BotHunter’s failure to capture all of the bot
behavior, such as the attacking IP address.

While the concept was validated, three modifications
are recommended for future work. A malware collection tool
should be i1mplemented 1i1n conjunction with BotHunter to
enable collection, reporting and analysis. Placement of an
instance of BotHunter between separate honeynets, without
direct connectivity outside of the network, will test its
effectiveness i1n iInternal bot propagation detection.
Implementation of a honeynet that 1includes multiple
instances of exactly the same operating system version will
enable better observation of botnet propagation as it is
likely to occur in a tactical network.

ACKNOWLEDGMENTS

I thank Professor’s McEachen and Tummala for allowing me
infinite latitude in exploring. Many thanks to Donna Miller
for her support early on and for being a sounding board.
Robert “Bob” Broadston cannot be thanked enough for all of
his technical assistance and words of wisdom and for all of
the operating systems he allowed me to corrupt in the
process.

To Robert McMillen of the Honeynet Organization, fellow
NPS graduate and Marine, | extend my deepest appreciation
for all your help steering a Noob out of the woods.

I cannot say enough about the support of my parents,
Albert and Sandra Becker, who have supported me throughout
my life, career and especially during my time at NPS. 1 am
also grateful for the support of my siblings, Monte, Ronald,
Kayse, and Karen, as well as their spouses and families.
The whole family has supported me so that 1 might enjoy the
luxury of continuing to serve.

I want to thank my wife, Hana, for her support through
all the craziness that is school and the five deployments
prior. And for my beautiful little daughters, Veronika and
Mikaela, 1 am especially thankful for their Ilove and
affection.whatever time daddy got home.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XV1

1. INTRODUCTION

Commercial, governmental and personal reliance on the
Internet has reached a point that a vast majority in the
developed world, and much of the rest of the world, is
interconnected. Almost every long distance call, banking
transaction, as well as national infrastructure, can be
adversely affected by losses of Internet connectivity or by
the malicious acts of individuals, organizations, or states
that use the Internet. One kind of network exploitation is
a “botnet.” The use of botnets allow for an individual or
organization to harness and mass the computing power and

bandwidth of large numbers of computers.

A botnet, a network of robot or drone computers
(processes) characterized by the presence of a Command and
Control (C2) channel, 1is a form of malicious software
(malware) that is capable of self-propagation and can be
controlled by a botmaster [1,2,3,4], unbeknownst to the
computer’s owner. Frequently the botmaster will use the
botnet for such purposes as conducting distributed denial of
service (DDOS) attacks, collecting confidential information

or for financial scams.

The botnet C2 architecture 1i1s the primary means by
which 1t i1s classified [4] and distinguishes it from other
malware such as viruses or worms. The most prevalent type
of botnet C2 uses Internet relay chat (IRC). This 1s a
centralized C2 architecture with the bots logging into a
central IRC channel to receive commands and updates from the
botmaster; however, this architecture has a significant

weakness. It presents a single point of failure. IT the
1

IRC server is taken off line, there is no longer a botnet
but a number of individual bots without direction. 1In order
to increase the survivability and hide the size of their
botnets, botmasters have used other C2 architectures such as
peer-to-peer (P2P), Hypertext Transfer Protocol (HTTP) and
fast-flux networks [4]. P2P botnets come at a cost of
increased latency 1iIn net response to commands, loss of
definitive message acknowledgment, and increased complexity
[5]- In recent research, Holz et al. met with some success
in disrupting the communications of a P2P botnet [6]. Fast-
flux is a more sophisticated approach to HTTP as a C2
architecture in an effort to increase the survivability of
the network. In fast-flux networks, the botmaster uses a
fully qualified domain name but rapidly changes the 1IP
address the name resolves to by changing the DNS A records,
and In some cases the authoritative name service records as
well [7]. All of the above mentioned methods of C2 are
further complicated by the use of encryption.

Bots are further characterized in [8] as Type 1 or Type
I1. A Type | bot first attempts to self-propagate prior to
establishing communications with the C2, whereas the Type 11
does the opposite.

A. MOTIVATION

The protection of tactical networks that support the
warfighter 1is predominantly reactive 1iIn nature, using
definition driven IDS and IPS focused on preventing known
attacks and located at the network perimeter. As well, they
rely heavily on antivirus network scans, definition updates
and propagation. The results are numerous alerts and alarms

for information assurance and network administrators to dig
2

through and analyze along with network traffic for signs of
malicious activity. This leaves the subordinate or remote
locations that may have rate limited transmission paths and
limited training and without tools to detect and self
diagnose a previously undefined botnet infection. An
infection can propagate throughout the local area network
and beyond its perimeter to a trusted adjacent unit or
higher before it ever trips a perimeter security defense

mechanism.

Due to most network defense systems being primarily
focused on intrusion prevention and detection, there 1s a
real question as to the ability to detect an infection that
has bypassed those perimeter defenses and is either calling
outbound or propagating within in order to mount some sort
of attack from within, such as a DDOS. As of this writing,
the author is not aware of any framework or architecture
fielded that 1is aimed at supporting the signals or
communications officer at the ship, regiment/brigade or
lower level with detection and collection of malware.

B. OBJECTIVES

The overarching goal of this thesis 1s to assemble an
architecture that increases the security of tactically
deployed networks, enabling the detection of botnets that
may have evaded the firewall, and to a lesser extent to
capture copies of the malware code for reporting and

analysis.

The primary objectives are near real-time detection of
malicious activity and its propagation within a data rate

(bandwidth) limited environment with periodic Hlosses of

3

connectivity without adding significant burden to the
network. An additional topic to be explored in preparation
for follow on research is the capture of malware for

reporting and analysis.

The preponderance of iIntrusion detection system (IDS)
and antivirus solutions are heavily definition driven with
some heuristic components [9]. However, they are still
reactive in nature, meaning that new threats may not be
discovered unless they match a definition of a previously
known threat. This presents the obvious question of how to
respond to and stop the next generation of attacks. The

first step is detection.

Tactical networks, or shipborne networks, are data rate
limited. While most researchers using honeypots have
implemented some sort of data rate limiting to mitigate the
ability of theilr research computers being used by a
botmaster to propagate an attack, this 1is a specific
requirement that must be strongly considered in developing
any network architecture for the study of tactical networks.

A test bed-defined here as a monitored and controlled
environment designed to emulate a part or all of an actual
network—can be used to establish conditions similar to those
seen In tactical networks iIn order to Tfacilitate
understanding.

IT a previously unidentified Type 1 bot infects the
network, such as via a USB device, It may propagate within
the local network and not be seen by the TfTirewall or
antivirus until 1t has spread extensively through the
network and attempts a call home. This presents a
significant problem.

In order to effectively combat a new bot variant, It is
essential to capture the malware code for further analysis.
While this is not a primary objective of this thesis, it is
explored in this work in preparation for follow on research

where it may be incorporated.
C. RELATED WORK

The body of work is rapidly growing as are the threats.
The Honeynet Project has developed numerous tools and
architectures designed for research in botnet tracking [1]
and collection [9, 10], with Nepenthes [11] capable of
collecting unknown exploits of old vulnerabilities.
BotHunter [3] appears to be the Tirst effort to use IDS type
technology looking at outward traffic, rather than the
customary 1i1nward, and using correlation to detect bots.
BotHunter also allows for collaboration, with automated
reporting back to SRl International. From a different
perspective, [12] discusses a botnet communication model to
evade detection by one of the tools used in this thesis,
BotHunter, by grouping bots into local networks and
subordinating them to a single controller bot within a
switched network. The controller bot would then be tasked
to manage the other bots and be the sole point of contact iIn
and out of the compromised network.

All of the above were tested on large data rate
networks or small stable, reliable networks. This thesis
differs from previous research by focusing on bot/botnet
detection iIn tactical networks, characterisized by low data

rate connections and intermittent connectivity.

D. ORGANIZATION

Chapter 11 describes the process of creating and
maintaining a botnet and covers a range of methods for
detecting and capturing bots and combating botnets. Chapter
11l addresses the test bed design and how 1t fits into a low
bandwidth tactical network. The results and analysis follow
in Chapter 1V. Chapter V provides conclusions, addresses
the effectiveness of the test bed network architecture and
offers suggestions for future research.

11. OVERVIEW OF BOTNETS

This chapter begins with the phases of creating and
maintaining a botnet and follows with an introduction to

different tools used to detect, capture and combat botnets.
A. CREATING AND MAINTAINING A BOTNET

There are generally four phases of creating and
maintaining a bot: 1) 1initial infection, 2) secondary
injection, 3) malicious activities, and 4) maintenance and
upgrade [4]. It i1s quite common for the phases to be spread
among different bots or groups of bots.

The i1nitial infection can be accomplished in any of a
number of methods [4]:

a) It could be an active exploit, initiated with some
level of network enumeration and or vulnerability
scanning. Upon locating a computer that meets the
profile of a known vulnerability, the attacker will
attempt an exploit tailored to the vulnerability.

b) While surfing the web, malware could be
automatically downloaded. This may or may not
require the user to actively click on 1links to
initiate the malware download.

c) SPAM/email attachments are cleverly social
engineered to deceive the user to open an
attachment, resulting 1In automatic download and

execution of the binary.

d) USB autorun. Conficker [13] uses the USB autorun
for the malicious activities phase to further

propagate.

All windows operating systems have specific ports for
resource sharing-Ports 445/TCP, 139/TCP, 137/UDP and 135/TCP
are discussed in detail in [1]-and these ports are credited
for being a major mechanism through which bots are spread.
These resource-sharing ports are trusted ports. Many
computers are still left exposed to the Internet without a
firewall, giving attackers easy access. Even with a
firewall, there are other methods by which the attacker can
gain a foothold in a network. Then, the bots can propagate
within the network wusing the same resource sharing
vulnerabilities. In addition to these, several other common
vulnerabilities and ports are further discussed in [1] and

will be observed and discussed in later sections.

The secondary injection, also known as the egg
download, occurs when the +full binary for the bot is
downloaded. 1t will include all the tools required for the
bot to continue exploitation and propagation. The egg
download can come from the same IP address as the initial
infection or a different IP address. In some cases, the egg
download may occur at the same time as the initial
attack/infection. One example of this would be Conficker,
when i1ntroduced via a USB device.

Malicious activities can include further propagation,
searching the machine for passwords, personal information,
etc.

Maintenance and upgrade 1includes activities such as

improving or adding to the bot’s toolkits, establishing a
8

backdoor, patching the same vulnerability that allowed the
original infection iIn an effort to prevent others from
gaining control of the bot and changing the communications

channel.

The botnets have become modular [1], with plug-and-play
attributes, and show signs of collaborative effort in their
design. Conficker was observed in [14] using a Metasploit
modulle to spread itself. The SDBot possesses source code

commenting that indicates multiple authors [5].

Bot creators are able to plug in modules to reduce the
chances of detection with scripts to detect VMware based
honeypots [1, 4]. Botmasters may have bots use low numbers
of interactions reaching out to the controller, separate the
infection phase from the other phase by time, or use long
sleep or dormant cycles to avoid detection by traffic

analysis.

Having described how bots and botnets are developed, it
is time to discuss methods for learning more about them and
combat them.

B. METHODS OF DETECTING, CAPTURING MALICIOUS CODE AND
COMBATING BOTNETS

Methods of detecting and preventing infection from
botnets have included use of antivirus software, firewalls,
and Intrusion Detection Systems (IDS). |In order to capture
malicious code and 1i1mprove the combat of botnets,
researchers and security experts have progressed to the use

or incorporation of honeypots and/or correlation tools.

1. Use of Antivirus and Firewalls

Antivirus software and Tfirewalls rely heavily on a
priori knowledge of the threats. Antivirus solutions scan
the host for malicious software and remove patch or delete
it. Firewalls can be preventative-blocking ports, IP
addresses, and previously known attack patterns-but
essentially they use Tilters that operate on rule sets,
making them reactive iIn nature. IT some knowledge of a
specific threat i1s not known, then they will likely not be
effective. Another issue with firewalls i1s that they are
designed TfTor perimeter security. Once an attacker has
gotten past the perimeter, their effectiveness In preventing
further proliferation within a LAN is almost non-existent.
Conficker disables antivirus and Tfirewall software and
prevents the host computer from accessing security update
Web sites [15].

2. Intrusion Detection Systems

IDS alone generally operate on signhature or anomaly
recognition; however, IDS predominantly look at inbound
packet flows for signs of attacks. The IDS may detect and
signal numerous attacks, but do not do well at
discriminating between successftul and unsuccessftul
intrusions [3]. The obvious gap in this approach comes from
infections initiated by user actions or from an infection
that begins internally and initiates outbound connections
[3, 15].-

10

3. Forensic Analysis of Network Traffic

Forensic analysis of network traffic can be a lengthy
process and generally necessitates knowledge of an infection
to justify the investment. [In addition, it can include the
use of tools to analyze router statistics.

4. Honeypots and Honeynets

A honeypot i1s defined by Spitzner as “an information
system resource whose value lies iIn unauthorized or illicit
use of that resource” [16]. A honeynet i1s defined as a type
of honeypot, made up of a network of computers deliberately
designed to be attacked and closely monitored behind a
honeywall to capture all network activity. The honeywall is
a type of firewall that performs a bridging function and is
designed to permit intrusion, but limit outbound
connections. The bridging function decreases the likelihood
of detection by an attacker by allowing the honeywall to
receive, record and drop or forward packets based upon a
specified rule set without changing the packets [11]. If
researchers want to tailor the honeynet to receive a
particular type of attack, the honeywall can be configured
to drop or ignore inbound packets that do not meet the
established criteria. The outbound connection limiting is
performed by simply having the honeywall drop the packets
after the recording step. A honeypot or honeynet
complements a network security plan, because it provides

information in one or all of the following scenarios:

a) A previously unknown attack penetrates the

firewall and propagates.

11

b) Either a Type | or Type Il bot is introduced
behind the firewall.

The critical piece iIn any of these cases is the bots
propagating at Jleast behind the Ffirewall. Because any
activity on a honeypot is malicious by nature, the honeypot
provides a means of alarm and information collection to
analyze the infecting malware [1]. The honeynet used in
this thesis also includes a rootkit, Sebek, which is
installed as a client on the individual honeypots. The
rootkit hides in the kernel of the honeypot operating system
(0S), acting as a keystroke logger and reports activity via
UDP packets to the Sebek server that resides on the
honeywall [10, 11]. Sebek bypasses the TCP/IP stack, going
directly to the Ethernet card, to generate the UDP packets.
This prevents the 0S from being aware of the packets being
sent. As long as every honeypot has Sebek running on iIt, it
is blind to the Sebek packets sent by another Sebek client.
The Sebek packets are pushed out onto the local area network
(LAN) and are picked up and recorded by the Sebek server at
the honeywall [10].

Yet another type of honeypot is a low interaction
honeypot called Nepenthes that is specifically designed to
acquire executable malware binary for further investigation

[9]-
5. Correlation Tools

The introduction of correlation engines into botnet
research brought a powerful tool to the effort of detection
of individual bots and botnets. The challenge for

commercial and DoD networks 1is discovering, retarding or

12

stopping and ultimately preventing a previously unknown
method of attack. Several research tools including
BotHunter, Botsniffer and Botminer attempt the discovery of
previously known and unknown bots and botnets with the use
of correlation algorithms [3, 17, 18]. BotHunter uses a
combination of botnet behaviors but appears to be the first
that includes outbound traffic in its correlation algorithm
[3]- Specifically, BotHunter establishes a correlation model
that attempts to identify a relationship between intrusion
alarm log entries based upon detection of bot infection
characteristics, including: inbound scanning, inbound
exploit, outbound connections for secondary infection
download, outbound attempts to establish command and
control, and outbound infection scanning [3]. A correlation
score base upon detection and sequencing together of bot
infection behavior is generated in order to yield a relative
confidence level. The confidence level of a bot detection
increases as the correlation engine is able to sequence
together more bot intrusion related events. However, bot
detection does not require sequencing together or
observation of all the bot infection characteristics [3].

While the BotHunter correlation model includes outbound
communications patterns, it stands to reason the model
should meet with comparable success i1t the application is
run at the gateways of subnets of a larger architecture.
For example, tactical networks frequently have a Tirewall
performing perimeter defense, but not between trusted
adjacent units. Infection of a Type 1 bot, attempting to
propagate throughout all IP addresses beginning with the
same 16 bits (/16 network), could potentially thoroughly

infect the network and adjacent units and may even initiate
13

a DDoS before it ever attempts to communicate through one of
the firewalls. This leads to the need to consider placement
of correlation tools like BotHunter between subnets of a LAN

in order to discover bot activity early.

This chapter covered the four phases of creating and
maintaining a bot, as well as methods of propagating and
controlling a group of bots to form a botnet. It then
addressed common approaches to discovery of bots and
botnets. This leads to the next step of outlining the model

design for this thesis.

14

111. TEST BED

This chapter will present a tactical network
architecture and explain how the proposed test bed is
intended to represent parts of the tactical network. The
second section of the chapter will give specific details of

the test bed implementation.

A. RELATIONSHIP OF TEST BED TO TACTICAL NETWORK
ARCHITECTURE

The test bed in this thesis 1s built to address each of
the requirements outlined in Section B, Chapter 1. In some
cases, a requirement cannot be fTully achieved, so risk 1is
accepted and discussed. The overarching objective 1i1s to
establish an architecture to look at vulnerabilities of what
tends to be a homogeneous network. The honeypots built for
the test bed network are comprised of Windows operating

systems (0S), albeit different versions.

Figure 1 presents a typical network diagram with an
addition of the honeynet shown iIn the dashed box. Ideally
honeypots would be dedicated to IP addresses across the
architecture and all data redirected and tunneled to a
central honeynet below the honeywall, as shown within the
dashed box iIn Figure 1. Honeypots called Collapsar and
Potemkin have been developed by the Honeynet Project to
implement these types of architectures [9]. Both appear
unreasonable to implement on a tactical network either in
terms of a significant bandwidth cost or a coordination

challenge due to the increased routing complexity.

15

For Collapsar, packets are sent across a link twice
before arriving at or leaving a honeypot. In addition,
there is an increase to the packet size as the packet has
headers affixed to it in order to effect tunneling. The
storm of packets that could follow an infection multiplied
by two because of the tunneling architecture could

unintentionally assist the malware iIn creating a denial of
service attack.

1%t level subprdinate unit
Firgwall
. Altennate
Link (i) Link A" Command unit e
1.3/24 Unit (I} Low Bandwidth connection Alternate |I) 'E
o X.¥.1.0/24 Command Unit {| -
1.4/24 2 Le?vel Firewall |||I
subordinate . \
unit 15t Ligve Link C |
- - Link il subordinate uni |'|'|
Unit (i) Unit (i) Low Bandwidth connection XY.N18 Link B f
client client X.Y.2.0024 in I
|
|
I_____'______i
N\ ' |
2.4/24 : |
Unit (ii)
sapa 2" Level : : Command Unit
subtﬁr:;tnate | : Command Unit
I Honeywall | Firewall
|
|
Unit i) Unit i) } |
client i
client | X.Y.1.10124 |
| Xyzi024
' |
' |
' |
| Unit (i) |
| Client Unit (i) |
| Honeypot Client |
e Honeypot,

Figure 1. Typical Tactical Network Architecture With
Addition of a Honeynet in the Dashed Box

16

With Potemkin, each router would require routing leaks
to be created in order to make the packets destined for IP
addresses that should be out at the far left of the
architecture directed to behind the honeywall before they
ever pass down Link (i) or Link (ii). While this may be
detected easily by a traceroute, the real issue that makes
this choice undesirable is the complexity of implementation

and maintenance on a dynamically changing tactical network.

The test bed network architecture built closely follows
that of [11] and is depicted in Figure 2. The test bed is
intended to closely resemble a trusted low bandwidth link
much like Link (i) or Link (if) in Figure 1. BotHunter is
run on what would appear as a production computer in [11]
and not behind a Ffirewall; however, this 1is actually
intended to allow BotHunter to sniff traffic that might be
transmitted between trusted subnets. Multiple instances of
BotHunter could be run on almost any link, at either end or
both ends of a long haul transmission path. Likewise, a
single instance could be monitored by administrators at
either or both ends.

17

internet

NS

180 kbps

°

S

63.205.26.77
BotHunter
Monitoring

63.205.26.90

63.205.26.94

63.205.26.87

@ |
1&&&4%——E$SED B |

switch NAT Router

Ubuntu machine

10.9.8.40
Honeywall Remote control station with GUI
Ubuntu

63.205.26.90
Win2K SP3
Sebek 63.205.26.94
WinXP SP4

Sebek

Figure 2. Test Bed Developed to Emulate the Low Data Rate
Side of a Tactical Network and Detect bot infections
(After [11])

The test bed architecture built also attempts to
address the iIntermittent connectivity by the use of
connection rate limiting In the Honeywall rules. As it is
common for a tactical network to have losses of connectivity
do to relocation or technical problems, the connection
limiting performed by the Honeywall will force any bot to
perform whatever routines it would do in such an iInstance.
It will also test whether or not BotHunter is able to
determine if a bot is still active upon reestablishment of
network connectivity. Placement of BotHunter along the low

bandwidth links gives an easily administered system that

18

combines the advantages of an IDS with the correlation
capability to give a higher probability of detecting and
alerting to infection by a previously undefined bot. There
is almost no cost In bandwidth efficiency with the exception
of Snort updates, which can be scheduled for off-peak times
[19].- On the high bandwidth end, placement of a honeynet
within the parts of the network with high bandwidth between
trusted connections gives an advantage of advanced detection
within more stable areas of the network and allows for more
complex honeynet design. In these areas of the network,

redirecting and tunneling Is an option.

The Internet access from a local Internet service
provider is rate limited to no more than 180 kbps and not
firewalled, as shown In Figure 2. This resembles a tactical
network in data rate, but does not resemble a comparable
load due to the lack of machines, services and users. Its
raw exposure to the Internet iIs an attempt to accommodate
this lack of load and to resemble the internal activity
behind a firewall 1n a homogenous network. If any machine
succumbs to an attack and i1s turned into a Type 1 bot,
almost all machines in the network are equally likely to be
compromised and become a Type 1 botnet before detection.
This concern holds regardless of the method of initial

infection.

Now that test bed’s relationship to a tactical network
architecture has been explained, the specifics of the test
bed implementation will be detailed next.

B. TEST BED IMPLEMENTATION

The hardware and software to support the test bed

pictured in Figure 2, and as described in the previous
19

section, are outlined in this section. Specific 0S and

software settings are detailed in the Appendix.

A Linksys Etherfast 10/100 MBps hub (model EFAHO8W
version 2.0) is used to allow monitoring of all traffic in
and out of the honeynet by both the honeywall and BotHunter.
The choice of a hub with data collision control was made to
reduce the loss of packets with a lower cost than a managed

switch.

The BotHunter is run on a Dell desktop machine with 2
Gigbytes of RAM. An instance of BotHunter was installed and
run on an Ubuntu 8.04 LTS Desktop operating system. The
BotHunter version 1.0.2 software download [20], User’s
manual [21], and Graphical User Interface manual [22], were

all obtained from SRI International’s www.bothunter.net Web

site. All BotHunter settings are located in the Appendix.
BotHunter was placed outside of the honeywall in order to
allow i1t to get Snort updates and to report to SRI
International without affecting the honeywall”s connection
lLimiting functionality. |If placed behind the honeywall, the
Snort updates and SRI International connections would have
counted against the total allowed in and out of the
honeynet.

The Honeywall is run on a Dell 2650 with 4 Gigabytes of
RAM, 2.4 GHz processor, and three network interface cards
(NICs). The Honeywall CDROM, Edition roo, was downloaded
from the Honeynet Project and installed as described in
[23]- As specified in [23], Ethernet Port 0O faces the
Internet and Ethernet Port 1 faces the honeypots i1n Figure
2. Ethernet Port 2 i1s assigned an IP address iIn order to
enable i1t to get Snort updates and to send alert messages

20

and is positioned behind a firewalled Network Address
Translation (NAT) router in order to add a level of
protection. A remote control station was also used on a
Gateway laptop running Ubuntu and connected behind the
firewalled NAT router. Specific settings are shown in the

Appendix.

The Honeypots consist of two Dell desktop systems with
operating systems (0Ss) and Sebek client installed on each.
The first system is a Dell Dimension 8100 with 512 MB RAM,
and 40 GB hard drive. The operating system installed is
Windows 2000 Professional with service pack 1 (Win2K SP1).
The second honeypot is a Dell Dimension 8400 with 512 MB
RAM, and 70 GB hard drive. The operating system installed
is Windows XP with service pack 2. In each case, the
systems 0Ss were installed and network addresses assigned
prior to Sebek being installed. Sebek was run on each
machine, but never saved on the machine to make It more
difficult for a bot or bot controller to discover i1t. All
specific settings for the honeypots are iIn the Appendix but
are modeled closely after [10].

A Netgear 6 port 10/100 Mbps dual speed hub, Model
DS106, 1i1s used to allow monitoring of all traffic between
honeypots by the Honeywall. There is a risk of collisions;
however, the Ulikelihood of a bot resending or sending
additional packets and still being detected i1s good. An
oversight 1in the network design 1is the possibility of
collisions of Sebek packets with other packets while in
route to the Sebek server i1n the honeywall. The Sebek
packets are UDP based packets and are therefore unreliable.

21

This necessitates a managed switch or hub that can manage

data collisions in order to avoid losing packets.

This chapter covered the test bed built for this
thesis, the relationship of the test bed to a tactical
network architecture and the specific software, operating
systems and software settings utilized. The test bed design
was tied to a portion of a tactical network as it
transitions from high to low bandwidth connections on
trusted links behind the network Tfirewalls. The risks
associated with the test bed design were also discussed.
This leads to the next chapter, which will cover the

results.

22

IV. TEST BED IMPLEMENTAION RESULTS

The intent of this chapter is to provide a proof of
concept rather than present experimental results. The
results demonstrate the effectiveness of the model design in
a live environment. A botnet attack was detected by both
the Honeynet and the BotHunter, proving the effectiveness of

the design.

This chapter presents the results iIn four sections.
Some overall traffic statistics are presented in Section A.
Section B discusses the results from the honeynet,
specifically data as captured by the Honeywall. Given the
Honeywall captured all packets passing through 1it, the
Honeywall data 1is wused to provide forensic analysis.
Section C presents the results as seen from BotHunter.
Section D brings together and discusses the two previous
sections. Although BotHunter and the Honeywall did not use
the same time reference, all times are presented in or will

include conversions to Coordinated Universal Time (UTC).
A. TRAFFIC STATISTICS

This section is intended to give some gross traffic
statistics collected from the test bed (see Figure 2). It
will separate the Sebek packets, as well as point out the
common ports and connection types used.

Figure 3 1s a screen capture from Ethereal showing the
time frame of data collection results with the total amount
of data collected at the top. The bottom half gives traffic
statistics with Sebek packets and with Sebek packets

23

filtered out in order to give a perspective of the traffic
without the artificial inflation of traffic generated by
Sebek.

Fila
Mame; C:\Documents and Settings'packnet\Desktop 1249404375 complete data set May 27 to May 29.pcap
Length: 43920511 bytes
Format: libpcap (kepdump, Ethereal, etc.)

Packet size limit: 65535 bytes

Time
First packet: 2009-05-27 11:33: 18
Last packet: 2009-05-29 16:59:24
Elapsed: 02 days 05:25:035

ERapy Sebek packets
Display filter: ip.dst 1= 63 205.26.2 D a— filtered out.
Marked packets: 0O

Traffic Captured Displayed

Between first and last packet 192365, 789 sec 192365.789 sec

Packats S05282 339459

Avg. packets faar 2827 1. 765

Avg. packet size 79.000 bytes 63.941bytes
Bwtes 40405975 21705359
Avg. bytesfsec 210.048 112,334
Avg. MBIt oeC 0.002 0.001

Figure 3. Gross Traffic Statistics With Sebek Packets
Included on the Left Side and Filtered Out on the Right

The data collection period was over 2 days, 5 hours, 26
minutes, with the first packet being collected at 11:33 on
May 27, 2009 (19:33 UTC) and the last at 16:59 on May 29
(00:59 on May 30 UTC), 2009. A total sent or received in or
through the honeynet with Sebek packets fTiltered, as
indicated under the column labeled Displayed in the bottom
of Figure 3 was 339,459 packets or 21.7 megabytes.

24

Figure 4 is another Ethereal screen capture showing the
destination ports for packets coming primarily from the
honeypots with the Sebek packets filtered out. The
exception is 63.205.26.67, which is not in the honeynet, but
is later noted as an IP address of interest. The boxes

direct attention to the more significant ports used.

l= £3.205.26.2 = Destinations with filtor: ip.dst 1= 63,200,326,

| {3 Depstinaticens with filter: ip.cst |= 63, 205, 26,2

Confirmed bot

0.0 0%
& Q000000 .00%
0000000 8.00¢

Figure 4. Il1lustration of Significant Protocols and Ports
Used by the Honeypots (IP Addresses 63.205.26.90 and
63.205.26.94) and the 63.205.26.67, Described as an IP
Address of Interest

The top center box shows some use of Port 13500/TCP and
4545/TCP packets and almost 329,000 Port 445/TCP packets.

This heavy use of Port 445/TCP represents approximately 98
25

percent of total Sebek excluded traffic. IT the Port 445
traffic 1i1s eliminated, the other ports of iInterest are
139/17CP, 137/UDP, 138/UDP and Port 135/TCP. This is
consistent with the Tfindings described in [1], although
findings from the test bed show a more heavy weighting of
Port 445/TCP traffic. The box at top of the right column
shows traffic from 63.205.26.94, with interest in UDP Ports
137, 138, and 5355. Although 63.205.26.94 does not trigger
a bot alert, the UDP/5355 traffic does suggest possible

infection but is inconclusive.

This section has introduced some network traffic
statistics and briefly looked at packets and ports used.
The Honeywall results in the next section will address a
more detailed examination of packets coming to and from the

honeynet.
B. HONEYWALL RESULTS

The Honeywall’s position, i1llustrated iIn Figure 2, 1iIn
front of the honeypots and on the hub beside BotHunter
allowed 1t to capture all inbound and outbound traffic, as
well as the traffic between honeypots. The exception would
be any case where a UDP packet collided with another packet.
In such an instance, the UDP packet would be lost due to the
unreliable nature of UDP. The results presented here show
the initial infection or attack, the egg download and other

malicious activity.

The Bot phases, as they were detected and alerted on by
the Honeywall and BotHunter, are presented in Table 1 for
reference in this and following sections. The table

differentiates Honeywall results as alerts generated or

26

discovery by forensic analysis. Time is given in UTC and
slight variances, less than two minutes, between Honeywall

and BotHunter times should be seen as insignificant.
1. Initial Infection

While the Honeywall recorded the initial infection
packets, i1t did not signal an alert. The absence of an
alert i1s a function of the Honeywall’s purpose. It 1s
intended to allow attacks in, while recording their actions,
and to alert on and slow the outbound propagation of

infections.

Figure 5 1is a Wireshark screen capture marked to
highlight the first instance of a discrepancy in physical
address for the WinXP honeypot IP address for the duration
of that iInstance.

Closer inspection of the packets captured shows
immediately after an Address Resolution Protocol (ARP)
request to resolve the MAC address for |IP address
63.205.26.90, the Win2K honeypot, a TCP request is sent from
58.169.17.85 to the WinXP honeypot, IP address 63.205.26.94,
with a MAC address of 00:21:9b:79:1d:cl (pictured in Figure
5 as Dell _79:1d:cl). This MAC address does not belong to
the WinXP (63.205.26.94) honeypot and i1s not used by any
other machine in the Honeynet or Bothunter.

27

Honeywall BotHunter
Time
(UTC) Phases Alert Sent Forensic Analysis
Initial infection
58.169.17.85 ARP
poisoning use
19:08 Inbound Scan 63.205.26.94 as proxy
attempted 63.205.26.90
connect to
19:09 63.205.26.67
63.205.26.90 buffer
overflow from
23:54 Exploit 63.218.98.110
Secondary infection
63.205.26.90 HTTP .exe | 63.205.26.90 HTTP
Sebek captures egg | download from | _.exe download from
23:54 Egg Download download command 212.95.32.104 212.95.32.104
Malicious activities
Honeywall msg 63.205.26.90
outbound connection | 63.205.26.90 start | outbound scan
23:54 Outbound Scan limit reached 63.205/16 scan detected /24
Maintenance
Sebek captures | 63.205.26.90 bot TCP
connect to | connect with
23:54 C2 Traffic ninjawarlord.com ninjawarlord.com
Peer Coordination
Attack Preparation
Honeywal 1 msg 63.205.26.90
outbound connection determined to be
23:55:46 Declare Bot limit reached bot
report generated,
23:57:41 Generated Report 63.205.26.90 bot
Table 1. Phases of Bot Infection of Win2K (63.205.26.90) Honeypot as ldentified From

Honeywall and BotHunter.

28

physical address (BAC) for 94 honeypot as
it should be.

_ souree Destingtion Proteged frdf Srg Mag Ot MAC
- L3694 63, 205_ 26. 90 LAMMAN NetServerEmm? Request, Print Queuve Server aco-_::'?;l’ Del'lcuqlr o Fg,
20 63, 205 26. 4 LANMAN NETSErverEnma RESponse el lcomp_ g I‘9 &2 Jcom c3iffzas
o 53. 205. 26. 90 S4B Logoff ands RequestT Dellcomp_eF :f9:
. 90 63. 205 26.94 SME Logoff AndX Response N'ch-n_ﬂ F'i' L] Jcom_ch:ffza8
., 90 63. 205. 26. 94

Tree Oiscomnect Besponse De'l]cunn_e:’:FB:ez 31:0-_4:5:?1‘:«;.8 :

63. 205. 53.205. 26. 90 1adl = netbios-ssn DellComp_eF :F9:

ad .ucl:] seq-gm .u:k-ws rln-sauz tm-n
63.205.26.94 52, 205- 26.95 BROWSER HOST Announcement 5 ke k Eroadcast
63.205. 26. ﬁ 5;. ﬁs. 26.95 BROWSER Domain/workgroup re2 Br oﬂut
&3.205.26. 63. 205. 26.95 NENS Name query KB WOR . rel Broadcast
63.205.26. 90 63, 205_ 26. 95 MHENS Name qu¢r¥ WB MMAC address for .94 15 altered for the a2 Er oadcast
63.205. 26. 90 53. 205. 26.95 HENS Name query Kb L Te] Broadcast
63205, 26.90 63. 205. 26. 95 BEOWSER Local Master firzst time. 1ol Broadcast
63 En!. E 63. 205 26.95 BROWSER HOAL mnnuncuent Eroadcast
63.205. 63. 205. 26.95 pomain, work WY workstation, Domain Dellcomp. Broadcast

9'2!
C‘ii'l:l;l_'l:‘-.fﬁ

Broadcast

S0y 260

.'I- b B

who has &3.
Name gQuery KB b

ARE Huely LB <Ll

ARNOUNCERENT
05 24 P07 Tell 63.205.26.

Cisco_c9:fs

« B

EBroadcast

il 1 T Broadcast who has 63.205.26.657 Tell &3. (duplicate use of L
63,205, 26. 94 53, 205. 26.95 KENS Namg query NB TSATAP-<O0 : pell_7
oell_79:1d:c1 Broadcast ARP who has 63.205.26.657 Tell 63.205.26.9¢ (duplicare use of 63.2 pelli_7
63.205.26. 94 63. 205. 26.95 NENS registration B JIM-PC<00> Dall_7T
63.205,.26.94 63. 205 2695 HENS REGiStration NE WORKGROUP<O0> pell_7
63.205. 26, 91 63. 205. 26.95 NENS registrarion NE JIM-PC<20> oell_7
63205, 26,94 63. 205. 26. 95 NENS Name query KB ISATAP<(Q> oell_78:
63,2035, 26: 224.0.0.252 LLMNR andard - IIM=FC Dell_? mCast_00:00
oel Broadcast ARP who has 63.205.26.657 Tell 63.205.26.94 (duplicate use of 63.2 Dell_79: Br oadcast
Broadcast ARP who has 83-205.26.657 Tell 63.205.26.94 (duplicate use of $3.2 Dell_7 Broadcast
EFOAECASE ARP Wha has B1.205.26.657 Tell 61.205.26.04 (duplicare use of 61.2 pell_T Brosdeast
63.205.26, 224,0.0.252 LLMNR Standard quiery ANY JIM-PC o jeald = = oello ~IPvamcast 0000
&3, 205,26, M 53. 205. 26.95 MENS Ragistration K8 JIM-PC<I0> Da Broadcast
63.205.26. 94 53. 205. 26.95 HENS registration w8 WwORKGROUP<OO> Eroadcast
63.205.26. 94 63. 205. 26. 95 NENS registration Wi JIM-PC<00> Broadcast
Dell_79:1d:c1 Broadcast ARF who has 63.3205.26.657 Tell 63205 26.94 (duplicate use of 3.2 1 Broadcast
63. 205, 26. 94 224.0.0.252 LLMNR Standard query ANY JIM-PC = - o es— oell_79:idrel T.00:00
De¥l_79:1d:<cl Broadcast ARP who has £3.205.26.657 Tell 63.205.26.94 (duplicate wse of £3.2 pell_79:1d:cl Broadcast
63.205. 26,94 224.0.0.252 LLMNE STandard query A fsat R e e 11_72:1d:cl IPFvimcast _00:00
Dell_79:1d:cl Broadcast ARF who has 63.205.26. EE'J Tell 63.205.26.94 (duplicare use of 63.2 pel]l_79:1d:cl Broadcast
63,205, 26. 94 224.0.0.252 LLMNR Standard guery AMY J S NS Ch e = B - T H - 100
Dell_79:1d:c1 Eroxdcast ARP who has 63 205, 26. 657 rﬂl 63.205.26.94 (duplicate use of 63.2 pell_79:1d:cl Eroadcast
63.205,.26.94 224.0.0.252 LLMNR “Srandard guery A isatap 11d: - 100
63- 205, 26. 94 3. 205. 26. 95 NENS Namg query NB TSATAP<O0= Broadcast
61.205.26. 94 B3. 205_ 26.95 NEMNS NARE Auery NB ISATAPL(0= Broadcast
63. 205,26, 94 63, 205. 26. 95 NENS Name query HNB ISATaP <00 Broadcast
B3. 205, 26. 94 224.0.0.252 LLMNR Standard guery A wpad 100
63_205,.26.54 224.0.0.252 LLMNE Srandard query A wpad Irvdmcast_00:00
63.205.26. 94 63. 205. 26.95 NENS Name guery WB wWPAD<OO> F9ld: Broadcast
B3, 205. 26. 94 63. 205 26.93 MENS Name query KB WPAD-cOO> pell_78:id: l:l Br oadcast
63.205.26. 91 63. 205. 26.95 NENS NAmE guery NB WPAD-<O0> pell_7T9:1d:cl Broadcast
Figure 5. First Sign of ARP Cache Poisoning or MAC Spoofing Involving Honeypot

63.205.26.94 and Collected by the Honeywall

29

However, the MAC address used for the WinXP honeypot is
different from the actual MAC address of 00:60:08:c5:ff:a8.

This appears to be a MAC spoofing or ARP cache poisoning.

A description of ARP cache poisoning and MAC spoofing
is briefly described below. In the iInterest of network
speed and reduced -congestion, the majority of network
devices maintain a cache of ARP results identifying the
assignment of a MAC address to a specific IP address.
Regardless of the IP address assigned to the packets, the
MAC address is the next physical destination of the packets
in its route. ARP cache poisoning is the process of sending
false information In order to replace or submit false MAC
addresses for an IP address [24]. MAC spoofing is sending
packets with a false or created MAC address that 1is
different from the actual MAC address of the sending machine
or receiving machine, thus allowing the machine to

impersonate another machine [24].

Different from Figure 5, Figure 6 shows the ARP
poisoning occurred on several occasions throughout the
experiment. The First column shows the packet numbers, and
the second column gives the time of the occurrence of ARP

poisoning.

Figure 6 shows the suspicious flow starting at packet
number 197. A device masquerading as the WinXP machine with
IP address 63.205.26.94, normally MAC address 3com _c5:ff:a8,
is sending broadcast messages from MAC address
Dell_79:1d:cl. This use of the MAC address for the WinXP
honeypot is repeated several times as shown in Figure 6. It
should be noted the Honeywall 1s preventing most of these

30

packets from getting out. Therefore, there will be a large

volume of connection attempts that go without response.

31

LN Tt Source DeEnaton Frofeos Inin Zre MAL Jai MALC
L]
[
Irrelevant Packets blocked out. C
F3 LU 390, FERNT fid. 20%. 26, =0 63 . 20, Db AT lu.-l qunlr:.- rl:p-a-nu M {-3 203, 26, 0 pel 1Comp_e7: Fdoel pell_T@:ldicl
o ART 12T15:0L. D T B0 1% 17T LGE 0 B3 T0%.T0.8E 5 TEn | ———— — S CafoocRofesfd peli_Teildiel
TR _ TALAE > Smtp (Svi) SeocD MINA3000 LEN-O MSS-IASD €1 tite pell_7wila
- e O UM P T L O L T L RO A L I N 1
1208 14381 30, GHIEHG 211,50 24 . 47 &3, 205, Db 9 pi= ko !-" FepsesT Cisco_cPrtbfd pall ildicl
1208 14:38:33. 1224569 T11. 80 2. 4T 63,705, Dh. 5 TGP Icho {ping) reguest Clsco_cP:fhifd el 7@ildicl
1260 145552 BITETL 41.130.1L. &8 63 205, Dh. 8L [5-d CSpurce portl adapt-sma Destinatfon port: ms-sgl-s Cisco_cPrfEifd el T9:1d il
IHEL 15560000012 113.272.253. 000 63.T05. D6, 94 (R Sowrce poril acobeserver-1 DEstinadion portc 24055 Cisco_corfEifd o)1 79:11d L
L1900 17100019, 957382 216.33.37.50 B3 205 DE. 0L (5= - SR Tt p-mc-gikreag Oestination poro: Cisro _c9: D | sidicl
AS4E98 L7119 36978046 122,237 45,02 63,205, D6 TCP htip = L7EH -[!.'l'H.. ACK] Segel ACk=0 Wir=65335 I.I'l-ﬂ m-unu Listo c9: \‘I:If-l o]l _79:0d1cl
B3, 205 16, 54 I!I-H'Itulp_e:" Fi- &2 pell_ '-'w Ldrel

161807 173123134, 364673
| »] e b

53. 205, 24, S0

rhlu qucr-..- u:p-n-n.u we ﬁ! zm 16, W

339 11:29:30. 811234 :
[i_Notice packet numbers from
as high as 209690 and several different source
IP addresses between the arrows.

as early as 197 and

207 1010918 T20103 B3 20526 W et M e LMl Srandard guary ANY JIM.RC 1 —’ el _T9:ldicl IPvimcast, 00
241 LR D9:16. B3, 205 26 4 0.0, 252 Liknill Standard guery AMY JIMs@d el _79rldicl IPvdecast (0007
206 1010917 095869 =205, 2E 84 240 0L 252 Likwi Standard quary asy JEM=i el _79:1dicl IPvidec st 00: 00
ZLE LLIDBCAT 192793 03203 Id 54 22406 0. 232 Limsl Stammlard guery s Dsaag 17 il Il a0 G0
230 10:09:17. 20321F 63, 205,74 54 4. 0. 0252 L bl Srandard '—'; ANy DM ol _TRrldicl IPvdmc eyt 00
22F 1010917 FOGEED 3. 205, 6. 224.0.0, 252 Lkl Sytandard guiry & 1satap Dl _Torld:icl IPvincast 00001
238 18:09: 70 . 558119 205 26,5 40 0252 L bl CSvandard quary & wpad bl 70rld:cl IPvimcast o001
22T s B3 20525 M J24.0. 0, 252 LLkME - Standard cuiry & wpad el _79rldicl IPEE BT M O]
3 10120022.016380 63.205.26.04 T34 0.0 252 LLENR . STaNdard Quiry A 15atap oall_Tdrldicl IPvdacasT 00:00]
36 1R129:27. 124850 205, CTRA 00 252 Likwi Standard quary A 1satap ol 79rld:cl Irvdecast 000001

R e e e N T LR S A P bell7oidicl 00 0

MAC spoof shown —
between both
sets of arrows

Figure 6. Mac Spoof with packet numbers in first column to illustrate multiple occasions
spread across the collection period and could be indicative of a communication

Channel or an attack

32

One possible reason for this 1is that the machine
sending is not 63.205.26.94 but instead another machine on
the LAN subnet is MAC spoofing as 63.205.26.94 in an attempt
to get past the firewall or to use the MAC address as a
communications channel.

Another unusual behavior not shown in Figure 5 or 6 was
recorded In packet 249 in which 63.205.26.90 initiates a
connection with 63.205.26.67. Prior to this line, there is
no known communication between 63.205.26.67 and the
honeypots (63.205.26.90 or 63.205.26.94). There 1s no
reason for the honeypots to have knowledge of the existence
of 63.205.26.67. They have both sent multiple broadcasts
but do not appear to have received any responses from the
production side of the honeywall (to include 63.205.26.67).

Figure 7 shows the Tfirst clearly observed phase, the
initial infection. The initial infection is achieved through
an exploit of a wvulnerability, which forced a buffer
overflow. A buffer overflow and initiation of a subsequent
egg download are captured and shown in Figure 7. The buffer
overflow exploits a software vulnerability by inputting more
data than intended to be received and causing the excess
data to be placed into another buffer. This can lead to an
attacker gaining access to what would otherwise be
restricted code or processes on the computer [24].

Infection of the Win2K honeypot occurs at approximately
2357 UTC on May 27, 2009 (see Figure 7). The attack
originates from IP address 63.218.98.110 and is attempted a
few times before succeeding.

33

®. Tme F— [fa—
0.0 e e L o e T e A O o
foap 1 icate wie of &1 305, Fe. 8
i

L i i N e

. = AN | L. ke Pty
1HEY = netbiod-s3n [afe] Seqel sckel wired333) Len=0
TESSTon reguest, To "URELEivER«I0x From B TecoDems
Fas i lve Beillor FEEpoTEe
£ Frofodd] ot
Frofodal

W €.
e L
TS .
FITE L g, NTLEESF s COTRATE
FEL T o, Wgapeonaa, STIELSR Cma LGl . STLRESF Cman g iwdl, Drror
HA2ETH T 1 i
i e)
o8,
|3 .
T
pdrs T3313
(Ril} NS
B4 50 b ool B0 M. 28,
(E1:8 | el 1 MLA. « 131 BIRE2 DAL O81F <0udS- 2rda- BOT oo MH
e 150061 111 & $12 byTes
(7] 0. 111819 L LB000 bves at offaee O
14 (0L 11N 2%) mAn_fecwi A7H
L% i Sdsedle [3
e (0L T4 - % DL O bytes
LAET 130488 Y &1 Pl A] SegeIl8Y ACESEIO) wieeSdZ1E
_’-“JI.IIZII SITI 6D, . 3 T e
Lagw EATEMG ED. MO 28, St wInmfA2E0 Lar=d FES=E480

va ba

But
ETE
85588
14
g

1 500
L ElgEie T1d, e, 0
B2 33 E1E1Y 8N oL de.
BKI N EOY. 2.
BCE 152500 PPLAS PR TR
129533104
6. MO 26, 90
192017 712983310
a2 12108
B0 00, 36,90
RIS INT
B ffer overfl ows from Zebek facke: reveds crod to Eag dowml oad narmed
63.2153.98. 110 IITTRA212.95.22.104 10z exebegias.

Figure 7. Honeywall Packet Captures Showing Initial Attack via Buffer Overflow,
Sebek captures on honeypot 63.205.26.90 and Initiation of Egg Download

34

2. Secondary Infection

Upon success of the buffer overflow, Sebek captures and
reports a command for the honeypot to establish an http
(Port 80) connection with IP address 212.95.32.104. This
download is an executable named 10x.exe and 1s shown iIn

Figure 7.

Figure 8 shows the completion of the egg download
followed by the beginning of the new bot’s malicious
activity. Approximately 6-7 seconds after the download is
complete, the honeypot begins what will be a complete Class
B (63.205/16) scan.

3. Malicious Activities

Alerts messages, not shown in Figure 7, sent by the
Honeywall indicate malicious activity 1iIn the form of
multiple outbound connection attempts as early as 2354 UTC
on May 27, 2009. The Honeywall also sent an alert
indicating the maximum number of connection attempts had
been exceeded. Forensic analysis shows the Win2K honeypot
at 63.205.26.90 begins a full Class B (63.205/16) network
enumeration (vulnerability scanning) to include IP addresses
internal and external to the 63.205.26.65/27 network
containing the honeynet. Sebek packets, shown in Figure 8,
also indicated a malicious program on the Win2K honeypot
issuing commands. This confirms the Win2K honeypot 1is

infected.

35

4. Maintenance

Shown in Figure 8, the new bot performs a DNS query to
resolve an IP address for ninjawarlord.com and attempts a
connection with a response from ninjawarlord.com, a command

and control channel for the botmaster.

Not shown in Figure 8, the bot repeats the DNS query
every fTew minutes. In addition, the bot performs a keep
alive messages iIn order to keep a communication channel open
to IP address 63.218.98.110. After completing the 63.205/16
network scan, the bot continues to maintain the keep alive
messages and to perform the DNS query for ninjawarlord.com.
The bot does not appear to meet with any success in
propagating; although, this could be heavily influenced by
the honeywall’s connection limiting function.

The packets captured by the honeywall, covering May 27
to May 29, 2009, give no evidence of further infections.
However, there are numerous additional attempts. The bot’s
assignment may be to perform scanning and report to the

server.

36

No. . Time Source Destination Protocol Info Src MAC

1574 15: 228030 bd. 205, 6. 90 212,95, 32,104 TCP ams > http |ACK] S5Seq=14Y9 ACK=b50.9 Win=b4.40 Len=0 Del IComp_e/:T9Y:
1575 15: .232178 212.95.32.104 63.205.26.90 TCP [TcP segment of a reassembled PDU] Cisco_c9:T6:f4
1576 15: . 334020 212.95.32.104 63.205.26.90 TCP [TCP segment of a reassembled PDU] Cisco_c9:fa:f4
1577 15: .334284 63.205.26.90 212.95.32.104 TCP ams > http [ACK] Seq=149 Ack=67381 wWin=64240 Len=0 DellComp_e7 :f9:

1578 15:
1579 15:
1580 15:
1581 15:

. 3419497 212.95.32.104 63.205.26.90 TCP [TCP segment of a reassembled PDU] Cisco_c9:fe:f4
. 349975 212.95.32.104 63.205.26.90 TCP [TCP segment of a reassembled PDU] Cisco_c9:f6:f4
. 350240 63.205.26.90 212.95.32.104 TCP ams = http [ACK] Seg=149 ack=70301 win=64240 Len=0 pellcomp_e7 :f9:
. 357971 212.95.32.104 ©63.205.26.90 TCP [TCP segment of a reassembled PDU]

1582 15; .358661 212.05.32.104 63.205.26.90 HTTE HTTE/1.1 200 OK (appldcation/x-msdown Egg Download Complete

1583 15: .358811 63.205.26.90 212.95.32.104 TCP ams > http [ACK] Seq=149 Ack=72065 Win=642

1584 15: .508205 63.205.26.90 £3.205. SEBEK SEBEK - pid(420) uid(0) fd(0) cmd:

1585 15: . 508303 63.205.26.90 63. 205. TCP mtgp > microsoft-ds [SYN] Seq=0 Win=64240 Len=0 M55=1460 DellcComp_e7 :f9:
1586 15: .537445 63.205.26.90 63.205. SEBEK SEBEK - pid(420) uid(0) fd(0) cmd: R

1587 15: .537586 63.205.26.90 63.205. Tce sb1 > microsoft-ds [sYn] seq=0 win=d DNS query ninj awarlord.com
1588 15: .561237 63.205.26.90 63.205. SEBEK SEBEK - pid(216) uid(0) fd(0) cmd:

1589 15: . 561432 63.205.26.90 206.13. DNS standard query A ninjawarlord.com <

1590 15: .567470 63.205.26.90 63.205. SEBEK SEBEK - pid(420) uid(0) fd(0) cmd:

1591 15: .567599 63.205.26.90 63.205. ITce danf-ak2 > microsoft-ds [SYN] Seq=0 Win=64240 Len=0 mss=1460| DNS response
1592 15: .575558 206.132.28.12 63.205. DNS standard query response A 75.146.106.201 A 221.143.48.245¢—]

1593 15: .576507 63.205. 63.205. SEBEK SEBEK - pid(420) uid(0) fd(0) cmd: i

1594 15: .57 6. [TCP afrog > Iw-or'll:iscores [SYN] seq—o 'hnn=64240 Len=0 M55—14604—| DellComp_e7 :f9:

e-To
SEBEK -

. 597538 p1d(420) u‘|d(0) fd(O) cmd

Bot attempt to

1597 15: . 597617 63.205.26.90 63.205.102.213 ITCP boinc-client > microsoft-ds [5YN] Seq=0 Win=64240 Len=0 MS:

1598 15: .627534 63.205.26.90 63.205.26.2 SEBEK SEBEK - pid(420) uid(0) fd(0) cmd: contact

1599 15: . 627608 63.205.26.90 63.205.200.105 ITCP deutility > microsoft-ds [SYN] Seq=0 wWin=64240 Len=0 M55=14 - -

1600 15: .657559 63.205.26.90 63.205.26.2 SEBEK SEBEK - pid(420) uid(0) £d(0) cmd: ninjawar lord.com
. 657676 fpitp > microsoft-ds [SYN] Seq=0 Win=64240 Len=0 M55=1460

and response.

. 687623 .205. 26,
687731 63.205.26.90 63.205.140.146
.717705 63.205.26.90 63.205.26.2

1603
1604 15:

eq=0 Win=64240 Len=0 M551
1605 15: g

63.205/16 scan begins
c ?1_1?818 63. 205. 26. 90 63. 205. 238. 38 1:n=64240 Len=0 M55=1460

1606 15:5

Flgure 8- Honeywall Captured Packets Show Egg Download Completion, DNS Query and
Response to Resolve an IP Address for ninjawarlord.com in Order to Establish
Command and Control, and Initiation of 63.205/16 Network Scanning

37

The results of performing Wireshark’s IPv4
Conversations function, shown in Figure 9, on the captured
packets from May 27 to May 29, 2009 yields some information
of interest. The goal was to find or confirm infection
downloads or C2 channels. Figure 9 shows only the two-way
conversations, with the exception of Sebek and broadcast
packets that were left in to give some idea of what would be
expected in the way of return traffic if the honeywall did
not limit the rate of outbound packets. The majority of
packets from the 63.205/16 network scan are one-way and,
therefore, eliminated from the Tfigure. In some cases, a
download or conversation could be one-way and would be
overlooked. Conversations are loosely defined as a packet
sent to a destination and a packet received from that
destination. Some conversations are Tailed attempts of
establishing a connection, whether it be for an exploit, egg

download or C2 channel.
5. Honeywall Analysis

Due to possibly encrypted channels, the author draws
the conclusion that conversations between the confirmed bot
(63.205.26.90) and IP addresses outside of the honeynet
subnet are possibly efforts by the bot to check iInto C2
channels. The expectation for a C2 channel i1s a relatively
low number of outbound (bot initiated) keep alive messages
or some other packets sent periodically, spanning a large
period of time. Due to the outbound connection rate
limitation of the honeywall, a smaller number of responses
would be expected than the number of outbound attempts.
Shown In Figure 9, conversations that appear to meet this C2

channel description are between: a) 63.205.26.90 and
38

63.218.98.110, with 465 packets exchanged in 7 hours (66.4
packets per hour (pph)), b) 63.205.26.90 and 118.123.5.109
with 87 packets across a 19.4 hour period (4.5 pph), and c)
63.205.26.90 attempted connections to ninjawarlord.com which
DNS query resolves to IP addresses 221.143.48.246 and
75.146.106.201 as previously shown in Figure 8.

Vulnerability scanning or attacks could be
characterized by either a barrage of different inbound
connections in search of the correct input to trigger a
desired response such as a buffer overflow, or periodic
inbound unsolicited packets in an attempt to stay below any
detection thresholds. This appears to be the case with
inbound connection attempts between 121.15.245.215 and
63.205.26.90, with 6 packets exchanged during 18.7 hours

(0.32 pph).

An egg download would be characterized by a large
amount of data transferred in a short period of time and
possibly with large packet sizes. An attempt at a buffer
overflow could also be characterized by large packets being
sent. If there are multiple attempts at the buffer overflow
over a long period of time, it could appear similar to an

egg download. An example 1is shown 1iIn Figure 9 by the
63.205.26.90 to 212.95.32.104 conversation, which has
already been 1identified as an egg download. In this

instance, a download of approximately 6390 bytes is carried
out In a conversation that lasts less than 12 seconds.

39

AddessA | AddessB |Pacets | Bytes | Packets A>B | Bytes Ao | Packets A<® | Bytes A< | RelStart | owatior [bosase |besacs

B3 ANG % 50 BO 263 1% 1565 244081 800 21550 1155 162E31 10, FLIT5 3000 306 JM5 16157 N3]
63.005.26.90 63.205.26.94 1034 13780 518 63267 33 74547 1433, 100558000 1905715120 .66 313

63, 505, .50 BE.210.85.234 BIG B3512 285 20052 L5 AIEEY 35495, 595735000 127549 125767 T
[ﬁ.mww' A0 7 3453 36504 EW_‘.E_*E;I
&3, NG I il 53 235 08 180 55 S0aa5 3 333 15373 33 15030 330, 1o 25340 E5 485 o5 |
63.005.26.67 63.205.26.90 30 WM 143 19138 157 20052 T899 10255000 347905084 4,40 461
£330 2650 22114040244 204 17724 208 17670 1 o4 153PE BMOETI000 18100.0456 8,77 HjA
ELINGI600 75 J46 J06.20] J46 15778 743 15066 3 167 197955 S0 [5011.0%04 7.53 0.08 |
£3.105.26.90 1181135109 &7 [FEEE 3326 Ed T BSRLAT0112000 59583.141 0.3 .82

BN, S, 0 1255 3 W 85 A 31 2004 4 THAs 19 L AT LL.TH0L 1. T Fli4z.21

.

3.5, %90 1365 11L17T 33 Ex] 13 1212 2158 198, SEETI000 15,4347 380.31 7653

G205 2690 93.43.146.218 & i 158 4316009103000 1. 744 823.18 90547

3 3
63.205.26.90 118.160.239.123 & 356 3 150 3 L SEOT. MGIIS000 1.3961 103145 146583
BA205.2690 121.15.245215 & Ex] 2 120 4 216 I3STE MMS2000 67186203 0.01 0.03
33203 2%, %0 173, 70,63, 33 -] e L 1z - % FHLOIMO00CD L9309 Ll i I 203
BILI05. 2690 212.62.102.221 & k] c | 180 3 LBE 25T ROSAE000 5.0852 158.73 L6407
60.15. 477165 63.205.26.%0 5 170G 3 1426 2 et 36345 ITROMGN00 19419,3022 Q.59 012
§3.205. 25,90 &3.205.53.55 5 2 4 248 t o4 JE559.331609000 3832 TEl DLEZ M
53.205.26.90 53,205, 1085 5 a2 4 2498] o4 251, 0653000 92656250 oLzl h‘.'l'ﬂ.
63.205.26.90 ARLM5.15312 13 TS 12 744 i 54 HNE5T.TRA550000 11848.5296 0.50 hl;'ﬁn.
B0 15177165 AR 205 26.90 11 =)] [2258 1 B3 T41%.404854000 29M.2888 a2 156
E3.205. 2650 EIIDLELAED 7 550 8 435 1 = IIE15.E17014000 97136504 D41 HfA
63205 26.% 63057153 9 550 | 456 1 b 27156.801530000 6491700 D.61 M,
60.15.177. 162 63.205. 26,90 7 1546 4 1456 3 350 LBA59. M4G0000 17999, 501 0,66 0.16
a3, 203, 2%, = LI L, 193, T3, 05 T 3% i L] L] 3z L1903, OFRII000 03033007 NAA Q.0
61.221.45.7 6.3, 205.26.90 B 366 3 186 3 180 4TI 454665000 2.2285 667.70 G5, 16
BO.E34. 196. 115 63.205. 26,90 % 300 2 150 3 150 25357.919661000 0,270 4353.3 435338
RIS 1T WRR R NS R a0 4 1417] 1342 1 il RN SNMTHNNY ARROD MR 018 L1
Figure 9. Results of Wireshark”s Conversations Function Performed on All Packets Captured

Limited to a Minimum of 4 Packets Per Conversation for Inclusion with Sebek Packets
and Standard DNS Queries Blocked Out

40

The downloaded packets were reassembled using Wireshark
and submitted to Symantec Corporation’s online malware

evaluation(https://submit.symantec.com/websubmit/retail.cgi)

system to determine if it is a previously known threat.
When scanned by Symantec Anti-Virus software, the file is

determined to be the W32.Randex worm.

This section of the results looked at packets captured
by the honeywall primarily down to the traffic level. It
showed the attack, egg download and the new bot’s network
scanning. The next section will [look at BotHunter’s

results.
C. BOTHUNTER RESULTS

This section presents the results of BotHunter and
discusses the bot findings. The reader should recall that
BotHunter is run in front of the Honeywall and not behind a
firewall. In addition, a correlation score based upon the
detection sequencing together of bot infection behavior is
generated in order to render a relative confidence level. A
score between 0.8 and 3.8 1s required to trigger a bot
declaration, with a higher correlation score indicating
greater confidence [22].

Figure 10 presents a screen shot of the BotHunter GUI,
with multiple declared bots listed under “Victim IP.” The
bots are sorted in order of correlation scores and not with

respect to when they were declared, labeled as “Gen time.”

The Bothunter indicated its Tfirst bot detection at
approximately 2357 UTC on May 27, 2009 on the Win2K (IP
63.205.26.90) honeypot (see Figure 2). The Bot declaration

was based upon detection of a HTTP based executable download
41

(egg download) and subsequent outbound scanning of first 10
and then 21 IP addresses in a /24 network within 5-7 seconds
of the egg dowload. This does not contradict the Honeywall
results above, rather it shows BotHunter’s sensitivity is
high enough that it triggered a bot detection before the
scanning went beyond the first /24 subnet of the larger
63.205/16 network. The egg download was detected coming
from IP address 212.95.32.104 with a correlation score of
1.8. Information about the inbound network scan or type of
exploit used to gain access to the 63.205.26.90 honeypot is
not shown by BotHunter. This is likely due to BotHunter not
being located behind and firewall. During setup, BotHunter
requires a setting to indicate whether or not it is behind a
firewall. When it is not located behind a firewall, its

sensitivity to inbound attacks is decreased.

The second bot declaration is shown with a correlation
score of 1.3 but with less information. Not shown in Figure
10, this declaration is based exclusively on the detection
of iIntense network IP address and port scanning originating
from the 63.205.26.90 honeypot.

42

__ Description Value

ILasl statis 20080629 15:5453 UTC
ISarted [ZOOB052T 1729048 UTC
|Elapsed [32 222547

Memory usage (218 ME

[Lines raad 233

(Lines parsed 233

Local bot profiles [
NetJuery requesiss?
[Metouery respo... |54

[Mesagees quaned (32

(Messages ant [73

Repositary status |disconmected

Iapnection fallure]jaw et HoBoute ToHost Excapt. .
lautiar I !bdzﬁ-mcﬁzn 4Ebi2
lObserver [[p160e6123

Figure

3

& Frofiles

[5core 1.8 (= 0.8}

Infecied Target: §3.205.2590

Infecior Lisl: <unohssrveds

Eqq Sourcs List. 212.05.32.104

IC & C List <inobearved>

Fear Coord, List: <unabsared=

Resourcs Listh <unchssred:=

Iobsarved Starts QS2T2020 23,554,786 UTC
1. Tames O5/2TI2009 235741757 UTC

INBOUND SCAN
< o bsaved =

[EXPLIAT
<unobearved =

B PUAWHLOWD
2 2.65.32.004 (23:55:41.786 UTCH

103%=Bd (23,5541, 784 UTC)
IC and C TRAFFIC

rnt=1:3300003 {tcp} E3lrk] BotHunter HTTP-based .exe Uplad on backdoor port

< Egg Download

= o s rved=

[FEER COORDINATION
o ke rveed =

[OUTEQUND 5CAN

Outbound Scanning observed
within
download

6 seconds of egg

OO (2305545828 UTC)

IATTACK PREF
=unobeerved=

DECLARE BOT
6832004 (2) (2388 48,560 UTS)

Qe (2305545 500 UTC)
(235741767 UTCH

2139532104 Lza.a:u.&:s UTCH
Frenl=77 77777 P TR TR TR e ST

POrT SCUIONTRy o IO PSS T T ¥ PRES ST

tepelice 1243468641 . 786 1 243458541787 inputFilscpd | tepdump -r - 2w cutputFilectcpd ‘*host 63,205,.26.00°

AMEFLI2): 4458

rrent=T7T:0 777008 (2) {wep) EB[bh] Detected intense mabware port scanning of 21 [Ps (20 f24s) (2 pkts SMAOA=370 77020 #8417

10. BotHunter Screen Shot Illustrating Multiple Detections of a Bot on

63.205.26.90

43

Additional bot detections are declared by Bothunter at
00:04 UTC on May 28, 2009 and at approximately 6 minute
intervals thereafter until 00:40 UTC May 28, 2009. Of note,
almost all of the declarations barely meet the 0.80
correlation score. These additional bot detections do not
include the egg download or any other information other than
intense outbound [IP address and port scanning. The
additional bot detections are likely repeat declarations of
the same bot infection, given that the subnets (not shown)
scanned are all within the larger 63.205/16 network. The
absence of peer coordination or C2 information could be a

result of channel encryption.

Albeit brief, this section covered the BotHunter’s bot
detection. The results clearly indicate a single bot
infection and suggest that the additional declarations are
due to additional scanning of subnets within the 63.205/16
network. The next section will combine the results from the
honeynet and BotHunter.

D. HONEYNET AND BOTHUNTER RESULTS COMBINED

This section will focus on the synthesis of an overall
result, using a fusion of BotHunter and honeynet results
from this low data rate network.

The review of traffic and Sebek packets captured by the
honeywall did verify the first bot declaration by BotHunter.
The Sebek packets recovered from the Sebek server on the
honeywall also identified the egg download command and
verified the egg source IP, as reported by BotHunter,
immediately following the buffer overflow that was not
detected by BotHunter.

44

A closer 1look at the packets captured with the
honeywall showed a Tfull 63.205/16 network scan with what
could be multiple attempts at command and control
connections imbedded within the scanning. Although none
were detected by BotHunter, two honeywall results suggested
the existence of C2 channels. The Tfirst suggestion of C2
channels was shown in the keep alive messages to IP address
63.218.98.110, the same IP address that originated the
successftul buffer overflow. As seen iIn Figure 9, this
connection was maintained over a 7 hour period. The second
suggestion of C2 channels 1is seen in several other
conversations, shown in Figure 9, to last over a period of
several hours. Yet another way these C2 channels maybe seen
iIs In the 63.205.26.90 honeypot outbound connection attempts
to IP addresses outside of the 63.205/16 network scan.

In summary, this chapter gives honeynet results,
followed by BotHunter results and then combines the two for
a more complete picture. The honeynet traffic shows a cost
of approximately 100 bytes per second for the bot infection.
A closer look at the packets captured by the honeynet’s
honeywall shows the attack and subsequent egg download,
confirming the egg download and source detected by
BotHunter. It does not provide any clarity for why
Bothunter did not detect the attack. The honeynet traffic
analysis supports the i1dea that the additional BotHunter
declarations with low correlation scores are repeated
detections of the same infection. The need for a honeynet
within higher bandwidth areas of the tactical network 1is
supported by the fact that the honeynet collects all packets
and enables better analysis than BotHunter.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

V. CONCLUSIONS

This thesis developed a test bed for the detection of
botnet infections at the low data rate end of tactical
networks. The test bed was developed with the use of
BotHunter and a honeynet. BotHunter is a tool that employs
a correlation algorithm, intrusion detection system
definitions and characteristics of basic botnet behavior.
The honeynet is included in order to emulate results that
would be seen in parts of a tactical network that operate at
higher data rates. The results of the test bed validated
the effectiveness of BotHunter for botnet detection in low
bandwidth areas of tactical networks and the usefulness of
honeynet employment within tactical networks where

connections with higher data rates exist.
A. SIGNIFICANT RESULTS

The most significant result of the test bed i1s the
successtul validation of the test bed architecture as a
means of detecting botnet infections i1n low data rate
networks such as those found 1iIn tactical environments.
BotHunter continued to detect the bot infection after the
periodic loss of connections caused by the honeynet’s
connection rate limits. In addition, BotHunter detected a
type of bot infection that could be particularly hazardous
to tactical networks. The origination of the bot secondary
infection and its malicious action of performing a Class B
network scan were detected within a matter of minutes.

Traffic analysis of all packets captured by the
honeywall allowed determination of the network cost In terms

47

of malicious traffic caused to the test bed by the single
bot iInfection. The traffic cost for the particular bot
infection captured in this thesis was measured to be 112

Bytes per second.

The requirement for positioning of a honeynet or
honeynets within the test bed network architecture is
validated by BotHunter’s failure to capture all of the bot
behavior, such as the attacking IP address. The honeynet
captured all the bot infection phases, including those not
seen by BotHunter, for a previously known bot infection.
Use of BotHunter does come with some risk of fTailure to
detect a previously unseen bot attack technique. Employment
of a honeynet in the higher data rate areas of a network
mitigate the risk of a missed bot detection by providing
depth and greater information. As explained by Spitzner in
[16], activity on a honeypot is by definition suspicious and

likely to be malicious.

with a relatively low sensitivity setting, BotHunter
successfully detected and reported a bot infection within
six minutes of the initial infection on a data rate limited
connection of 180 kbps. BotHunter Tfurther provided the
ability to detect a bot infection without an additional
traffic cost as seen by use of the rootkit, Sebek, with the
Honeynet.

B. FUTURE WORK

Previous research has looked at bot/botnet detection
within well established high data rate networks; this thesis
differs from previous research by focusing on

characteristics of tactical networks. Tactical networks are

48

characterized by low data rate connections and periodic
losses of connectivity. A progression for future work would
be to add complexity in a manner that more closely resembles

a tactical network.

1. Employ a Honeynet Consisting of a Homogenous
Network of Honeypots

The test bed was designed with a non-homogeneous
honeynet consisting of two honeypots with one of each
operating system, Win2K and WinXP. The method of attack in
the initial infection by a bot is generally based upon a
specific operating system or other software vulnerability
that is likely to change between version releases. A
tactical network would typically have a high degree of
homogeneity, with the majority of computers having the same
operating systems with similar level of updates and
antiviral signatures. The test bed should be modified to
include multiple instances of any operating system (and
other software) versions of iInterest iIn order to observe
propagation of bot iInfections and more closely resemble a

tactical network.
2. Position BotHunter Between Subnets

The BotHunter was positioned outside of the honeynet
and was not behind a firewall. Successful propagation of
the bot i1s not seen by BotHunter. The new location for
BotHunter should be behind a firewall and between trusted
production subnets (with no firewall between them) on a
tactical network or between separate honeynets.

This can be done by establishing two honeynets on

separate subnets under a common /16 network, both with
49

separate fTirewalled access to the Internet, with a non-
firewalled link between honeynets. Such a network would
allow for better simulation of a tactical network and to
further test whether BotHunter could be used as an early
warning tool at the low data rate end of the network. In
addition, multiple bot infections could be deliberately
introduced behind the honeynets iIn order to observe bot

behavior.
3. Addition of a Malware Collection Tool

The Honeywall’s use of Sebek for collection of malware
iIs unreliable because Sebek wuses UDP. Without the
reliability, collisions, dropped or missed packets for any
number of reasons can result In a loss of malware binary.
In addition, BotHunter does not provide the capability to
collect the actual malware code/fTiles. To fix this, the
test bed could be modified to include Nepenthes. The reader
is reminded Nepenthes i1s a malware collection tool that can
be setup to collect the malware and pass the malware to a
central collection point for analysis [9].

50

APPENDIX. EQUIPMENT AND SOFTWARE SETTINGS

A. HONEYWALL

1. Honeywall CDROM Root Install

root password: '#79RuuB4me
roo password: Victoryl/5! / 1#79RUUBme5

Note: Port and IP address numbers are separated by

spaces. Do not include colons, semicolons or commas.
TCP allowed out (port numbers): 22 25 43 80 443
UDP allowed out: 53 123
Connection limiting set to: hour
TCP limit: 24 UDP limit: 23
ICMP limit: 57 Other protocols: 14
Honeypot IPs: 63.205.26.90 63.205.26.94
CIDR: 63.205.26.64/27 Broadcast: 63.205.26.95
Management Interface (Walleye) settings
Management Interface I1P: 10.9.8.41
Mask: 255.255.255.0 Default Gateway: 10.9.8.1
System host name: localhost domain name: localdomain
DNS server IPs: 206.13.28.12 206.13.29.12
Configure SSH: yes
Let root login remote: no

Manage intereface allow inbound ports: 443

51

Allow IP to login to management interface: 10.9.8.40
Web interface for analysis: yes

Restrict firewall outbound comm: vyes

SNORT _Inline: yes

Blacklist: (nhone)

Whitelist: (none)

Black/white list filtering enable: Yes

Disable “strict” capture filtering: no

Fencelist location: /etc/fencelist.txt (IP addresses
and CIDR blocks

Enable Fencelist filtering: no

Enable “Roach motel” mode: no

DNS: unlimited

Limit Honeypot unlimited access to DNS: no
Restrict DNS server: no

Email alerts: yes

Email address: 1insert your email address here
Alert start auto @ : yes

SEBEK

Dest IP Sebek packets: 63.205.26.2

Dest Port: 1101

Sebek Var: Accept and Log

Oink Code is needed for Snort. Go to Snort Web site to
login and request an Oink Code. https://www.snort.org/login

52

B. HONEYPOTS

1. Windows 2000, Service Pack 3

a. Wipe Hard Drive

First run Hard Drive wiping utility, such as

Derik’s Boot and Nuke, from http://dban.org iIn order to

clean the hard drive and its boot sectors.
b. Insert and Run Install of Win2k SP3

Delete any partitions

Perform long format

Computer name: Sam

Organization: Sam Group

Product Key: Enter your product key here
Computer Name: Sam-86ST

Admin Password: 1#79R()CK!

Choose Typical settings

Check Workgroup option

IP: 63.205.26.90 Mask: 255.255.255.224
Gateway: 63.205.26.65

DNS: 206.13.28.12 206.13.29.12
C. Sebek Install

Run sebek from disk, so that it is never copied

onto the hard drive.

Driver name: Sebek
53

Destination MAC: (MAC Address of NIC 1, inward
facing NIC of Honeywall) 00:02:B3:CA:D4:EC

IP: 63.205.26.2

Port: 1101

Magic Value: 3289080092

Configuration program name: services25v
Sam”’s dog Password >f1DO! F!dO

Mutt

Unregmp2.exe

Admin Password: 1#79R()CK!

Guest: p@ssing!

2. Windows XP, Service Pack 2

a. Wipe Hard Drive
Perform Hard drive Wipe as In Win2k paragraph 1l.a.
b. Insert and Run Install of WinXP SP2

Delete all partitions
Perform long format

Name: Joe

Organization: Joe Group
Computer Name: JOE-8F60
Admin Password: COrn4@all
Select Typical settings

54

Select Workgroup

Static IP: 63:205.26.94 Mask: 255.255.255.224
Default Gateway: 63.205.26.65

DNS: 206.13.28.12 206.13.29.12

Create users:

Username user type password
Bobby admin Tlght@ss
Sue limited 1L1keU2

C. Sebek Install

Run sebek from disk so that i1t is never copied
onto the hard drive.

Driver name: Sebek

Destination MAC: (MAC Address of NIC 1, inward
facing NIC of Honeywall) 00:02:B3:CA:D4:EC

IP: 63.205.26.2
Port: 1101
Magic Value: 3289080092

Configuration program name: services25v
C. BOTHUNTER

Bothunter is installed per the instructions in [21] and
the graphical user interface (GUI) instructions in [22]. 1In
this configuration, BotHunter is not run behind a firewall,

requiring entry 1into the custom configuration option per

[21].

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

[1]

[2]

[3]

[4]

[5]

[6]1

LIST OF REFERENCES

The Honeynet Project. Know your enemy: Tracking
botnets (accessed January, 2008),
http://www.honenet.org/book/export/html/50, 2005.

A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-scale
botnet detection and characterization.” In Proceedings
of the 1°' Workshop on Hot Topics in Understanding
Botnets, April 2007, Cambridge, MA, USA (accessed
February 19, 2009),
http://www.usenix.org/events/hotbots07/tech/full papers
/karasaridis/karasaridis.pdf.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee,
“Bothunter: Detecting malware infection through i1ds-
driven dialog correlation.” In Proceedings of the 16"
USENIX Security Symposium (Security “07), pp 167-182,
August 2007, Boston, MA, USA, (accessed February 19,
2009),
http://www._usenix.org/events/sec07/tech/full papers/gu/
gu_html/index._html.

Z. Zhu, G. Lu, Y. Chen, Z.J. Fu, P. Roberts, and K_Han,
“Botnet Research Survey.” In Annual IEEE International
Computer Software and Applications Conference, pp 967-
972, July 2008, Turku, Finland.

E. Cooke, F. Jahanian, and D. McPherson, “The zombie
roundup: Understanding, detecting and disrupting
botnets.*“ In 1°* Workshop on Steps to Reducing
Unwanted Traffic on the Internet (SRUTI), pp 39-44,
July 2005, Cambridge, MA, USA (accessed February 19,
2009),
http://www.usenix.org/event/srutiO5/tech/full papers/co
oke/cooke . pdf.

T. Holz, M. Steiner, F. Dahl, E. W. Biersack, And F.
Freiling, “Measurements and mitigation of peer-to-peer-
based botnets: a case study on storm worm.” In
LEET”08: First USENIX Workshop on Large-Scale Exploits
and Emergent Threats, April 2008, San Francisco, CA,
USA (accessed April 2009),
http://www._usenix.org/event/leet08/tech/full papers/hol
z/holz_html/.

57

[7]

&l

9]

[10]

[11]

[12]

[13]

[14]

[15]

The Honeynet Project. Know your enemy: Fast-flux
service networks (accessed July 13, 2009),
http://www.honeynet.org/book/export/html/130.

M. Rajab, J. Zarfoss, F. Monroe, and A. Terzis, “A
multi-faceted approach to understanding the botnet
phenomenon.” In Proceedings of ACM SI1GCOMM/USENIX
Internet Measurement Conference (IMC”06), Brazil,
October 2006.

N. Provos and T. Holz, Virtual Honeypots: From Botnet
Tracking to Intrusion Detection, .Addison-Wesley, Upper
Saddle River, New Jersey, 2008.

The Honeynet Project. Know your enemy: Sebek, A kernel
based data capture tool (accessed July 2009),
http://www._honeynet.org//papers/sebek, November 17,
2003.

The Honeynet Project. Know your enemy: Honeynets
(accessed February 2009),
http://o0ld.honeynet.org/papers/honeynet/, May 31, 2006.

B. Shirley and C.D. Mano, “A model for covert botnet
communication In a private subnet” in NETWORKING 2008,
LNCS 4982, pp. 624-632, 2008.

B. Zdrnja, “Conficker’s autorun and social
engineering,” Handler’s Diary, SANS Internet Storm
Center; Cooperative Network Security Community
(accessed January 15, 2009).
http://isc.sans.org/diary.html?storyid=5695

X. Chen, “Conficker Worm using Metasploit payload to
spread,” Computer Security Research-McAfee Avert Labs
Blog (accessed January 15, 2009),
http://www.avertlabs.com/research/blog/index.php/2009/0
1/.

“The Downadup Codex: A comprehensive guide to the
threat”s mechanics” edition 1.0 In Symantec Security
Response (accessed March 13, 2009).
http://www.symantec.com/content/en/us/enterprise/media/
security response/whitepapers/the downadup codex edl.pd
f.

58

[16] L. Spitzner, “Honeypots: Definitions and value of
honeypots,” http://www.tracking-hackers.com, May 29,
2003 (accessed January 2009), http://www.tracking-
hackers.com/papers/honeypots.html.

[17] G. Gu, J. Zhang, W. Lee, “Botsniffer: Detecting botnet
command and control channles iIn network traffic.” In
Proceedings of the 2008 1SOC Network and Distributed
System Security Symposium, February, 2008, San Diego,
CA, USA (accessed February 19, 2009),
http://www. isoc.org/isoc/conferences/ndss/08/papers/17
botsniffer_detecting_botnet.pdf.

[18] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer:
Clustering analysis of network traffic for protocol-
and structure-independent botnet detection.” In
Proceedings of the USENIX Security Symposium, pp 139-
154, August 2008, San Jose, CA, USA (accessed April
2009),
http://www.usenix.org/events/sec08/tech/full papers/qu/
gu_html/index._html.

[19] Sourcefire Inc. (accessed March 2009),
http://www.snort.org/.

[20] SRI International. BotHunter unix distribution version
1.0.2. (accessed March 2009), http://bothunter.net.

[21] SRI International. BotHunter User Manual, Version
1.0.2, Unix release (accessed March 2009,
http://www.bothunter._net/doc/users guide-UNIX_html.

[22] SRI International. BotHunter Graphical user interface
user manual, Version 1.0.2. (accessed March 2009),
http://www.bothunter._net/doc/gui._html.

[23] The Honeynet Project. Honeywall CDROM Roo 1.2 User’s
Manual (accessed March 2009),
http://yum.honeynet.org/roo/manual/1-overview.html.

[24] Jon Erickson. Hacking: The Art of Exploitation. No
Starch Press, 2nd ed., 2008.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

John G. Kato
Naval Information Operations Command Suitland
Suitland, Maryland

John T. Scott
Naval Information Operations Command Suitland
Suitland, Maryland

Marine Corps Representative
Naval Postgraduate School
Monterey, California

Director, Training and Education
MCCDC, Code C46
Quantico, Virginia

Director, Marine Corps Research Center
MCCDC, Code C40RC
Quantico, Virginia

Marine Corps Tactical Systems Support Activity
(Attn: Operations Officer)
Camp Pendleton, California

Professor John McEachen
Naval Postgraduate School
Monterey, California

Professor Murali Tummala

Naval Postgraduate School
Monterey, California

61

