
 

  
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 

Approved for public release; distribution is unlimited 

A TEST BED FOR DETECTION OF BOTNET INFECTIONS 
IN LOW DATA RATE TACTICAL NETWORKS 

 
by 
 

Russell W. Becker 
 

September 2009 
 

 Thesis Advisor:   John McEachen 
 Co-Advisor: Murali Tummala 
 Second Reader: Vicente Garcia 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per 
response, including the time for reviewing instruction, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden, to Washington headquarters Services, Directorate 
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) 
Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2009 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
A Test Bed for Detection of Botnet Infections in Low 
Data Rate Tactical Networks 
6. AUTHOR(S)  Russell W. Becker 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 

N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and 
do not reflect the official policy or position of the Department of Defense or the U.S. 
Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 

The propagation of bots into a botnet, and the various malicious 
activities that could be carried out from within a tactical network, poses a 
significant threat to network security and tactical operations.  This thesis 
presents a network architecture with the objective of near real-time detection 
of malicious activity and its propagation within a data rate (bandwidth) 
limited environment with periodic losses of connectivity without adding 
significant burden to the network.   

A test bed is constructed that makes use of an intrusion detection system 
driven correlation tool, BotHunter, focused on outbound and inbound 
connections, rather than solely on inbound connections and a honeynet located 
in a high data rate area of a tactical network.  The ability of the proposed 
architecture to identify malicious activities is validated when both BotHunter 
and the Honeynet successfully detect a bot infection.  

 
15. NUMBER OF 
PAGES  

79 

14. SUBJECT TERMS  
 
Botnet, Tactical Network, BotHunter, Honeynet, Honeypot, Low Data 
Rate, Network Security 16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
A TEST BED FOR DETECTION OF BOTNET INFECTIONS IN LOW DATA 

RATE TACTICAL NETWORKS 
 

Russell W. Becker 
Major, United States Marine Corps 
B.S., University of Houston, 1992 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2009 

 
 
 

Author:  Russell W. Becker 
 
 

Approved by: Professor John McEachen 
Thesis Advisor 

 
 
 

Professor Murali Tummala 
Co-Advisor 

 
 
 

Vicente Garcia 
Second Reader 

 
 
 

Jeffrey B. Knorr 
Chairman, Department of Electrical and 
Computer Engineering 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

The propagation of bots into a botnet, and the various 

malicious activities that could be carried out from within a 

tactical network, poses a significant threat to network 

security and tactical operations.  This thesis presents a 

network architecture with the objective of near real-time 

detection of malicious activity and its propagation within a 

data rate (bandwidth) limited environment with periodic 

losses of connectivity without adding significant burden to 

the network.   

A test bed is constructed that makes use of an 

intrusion detection system driven correlation tool, 

BotHunter, focused on outbound and inbound connections, 

rather than solely on inbound connections and a honeynet 

located in a high data rate area of a tactical network.  The 

ability of the proposed architecture to identify malicious 

activities is validated when both BotHunter and the Honeynet 

successfully detect a bot infection.   



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION ............................................1 
A. MOTIVATION .........................................2 
B. OBJECTIVES .........................................3 
C. RELATED WORK .......................................5 
D. ORGANIZATION .......................................6 

II. OVERVIEW OF BOTNETS .....................................7 
A. CREATING AND MAINTAINING A BOTNET ..................7 
B. METHODS OF DETECTING, CAPTURING MALICIOUS CODE AND 

COMBATING BOTNETS ..................................9 
1. Use of Antivirus and Firewalls ...............10 
2. Intrusion Detection Systems ..................10 
3. Forensic Analysis of Network Traffic .........11 
4. Honeypots and Honeynets ......................11 
5. Correlation tools ............................12 

III. TEST BED ...............................................15 
A. RELATIONSHIP OF TEST BED TO TACTICAL NETWORK 

ARCHITECTURE ......................................15 
B. TEST BED IMPLEMENTATION ...........................19 

IV. TEST BED IMPLEMENTAION RESULTS .........................23 
A. TRAFFIC STATISTICS ................................23 
B. HONEYWALL RESULTS .................................26 

1. Initial Infection ............................27 
2. Secondary Infection ..........................35 
3. Malicious Activities .........................35 
4. Maintenance ..................................36 
5. Honeywall Analysis ...........................38 

C. BOTHUNTER RESULTS .................................41 
D. HONEYNET AND BOTHUNTER RESULTS COMBINED ...........44 

V. CONCLUSIONS ............................................47 
A. SIGNIFICANT RESULTS ...............................47 
B. FUTURE WORK .......................................48 

1. Employ a Honeynet Consisting of a Homogenous 
Network of Honeypots .........................49 

2. Position BotHunter Between Subnets ...........49 
3. Addition of a Malware Collection Tool ........50 

APPENDIX. EQUIPMENT AND SOFTWARE SETTINGS ...................51 
A. HONEYWALL .........................................51 

1. Honeywall CDROM Root Install .................51 
B. HONEYPOTS .........................................53 

1. Windows 2000, Service Pack 3 .................53 



 viii

a. Wipe Hard Drive .........................53 
b. Insert and Run Install of Win2k SP3 .....53 
c. Sebek Install ...........................53 

2. Windows XP, Service Pack 2 ...................54 
a. Wipe Hard Drive .........................54 
b. Insert and Run Install of WinXP SP2 .....54 
c. Sebek Install ...........................55 

C. BOTHUNTER .........................................55 

LIST OF REFERENCES ..........................................57 

INITIAL DISTRIBUTION LIST ...................................61 

  



 ix

LIST OF FIGURES 

Figure 1. Typical Tactical Network Architecture With 
Addition of a Honeynet in the Dashed Box........16 

Figure 2. Test Bed Developed to Emulate the Low Data Rate 
Side of a Tactical Network and Detect bot 
infections (After [11]).........................18 

Figure 3. Gross Traffic Statistics With Sebek Packets 
Included on the Left Side and Filtered Out on 
the Right.......................................24 

Figure 4. Illustration of Significant Protocols and Ports 
Used by the Honeypots (IP Addresses 
63.205.26.90 and 63.205.26.94) and the 
63.205.26.67, Described as an IP Address of 
Interest........................................25 

Figure 5. First Sign of ARP Cache Poisoning or MAC 
Spoofing Involving Honeypot 63.205.26.94 and 
Collected by the Honeywall......................29 

Figure 6. Mac Spoof with packet numbers in first column 
to illustrate multiple occasions spread across 
the collection period and could be indicative 
of a communication Channel or an attack.........32 

Figure 7. Honeywall Packet Captures Showing Initial 
Attack via Buffer Overflow, Sebek captures on 
honeypot 63.205.26.90 and Initiation of Egg 
Download........................................34 

Figure 8. Honeywall Captured Packets Show Egg Download 
Completion, DNS Query and Response to Resolve 
an IP Address for ninjawarlord.com in Order to 
Establish Command and Control, and Initiation 
of 63.205/16 Network Scanning...................37 

Figure 9. Results of Wireshark’s Conversations Function 
Performed on All Packets Captured Limited to a 
Minimum of 4 Packets Per Conversation for 
Inclusion with Sebek Packets and Standard DNS 
Queries Blocked Out.............................40 

Figure 10. BotHunter Screen Shot Illustrating Multiple 
Detections of a Bot on 63.205.26.90.............43 

 



 x

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi

LIST OF TABLES 

Table 1. Phases of Bot Infection of Win2K (63.205.26.90) 
Honeypot as Identified From Honeywall and 
BotHunter.......................................28 

 



 xii

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii

EXECUTIVE SUMMARY 

The propagation of bots, drone computers (processes) 

characterized by a command and control architecture and 

controlled by a bot controller, into an army of computers, a 

botnet, and the various malicious activities that could be 

carried out from within a tactical network poses a 

significant threat to network security and tactical 

operations.   

The objectives of this work are near real-time 

detection of malicious activity and its propagation within a 

data rate (bandwidth) limited environment with periodic 

losses of connectivity without adding significant burden to 

the network.   

This thesis assembles a test bed to emulate part of a 

tactical network architecture with low data rate and 

periodic losses of connectivity.  The architecture makes use 

of an intrusion detection system driven correlation tool, 

BotHunter, focused on outbound rather than inbound 

connections and a honeynet to validate the BotHunter.  

BotHunter is placed in a position to experience losses in 

connectivity, as it will observe all inbound network 

traffic, but will be limited in its visibility of outbound 

traffic by the honeynet’s connection limiting rules.  The 

honeynet’s honeywall is in a position to observe and record 

all network traffic. 

The test bed architecture as a means of detecting 

botnet infections in low data rate tactical networks is 

validated.  BotHunter continued to detect the bot infection 

after the periodic loss of connections caused by the 



 xiv

honeynet.  The BotHunter detected bot infection that 

initially attempts to propagate prior to establishing 

command and control, a behavior that makes it particularly 

hazardous to tactical networks.  The origination of the bot 

secondary infection and its malicious action of performing a 

Class B network scan were detected within a matter of 

minutes of the infection on a network limited to a bandwidth 

of 180 kbps. 

Traffic analysis of all packets captured by the 

honeywall allowed determination of the network cost in terms 

of malicious traffic generated in the test bed by the single 

bot infection.  The traffic cost for the bot infection 

captured in this work was measured to be 112 Bytes per 

second. 

The requirement for positioning of a honeynet or 

honeynets within the test bed network architecture is 

validated by BotHunter’s failure to capture all of the bot 

behavior, such as the attacking IP address.   

While the concept was validated, three modifications 

are recommended for future work.  A malware collection tool 

should be implemented in conjunction with BotHunter to 

enable collection, reporting and analysis.  Placement of an 

instance of BotHunter between separate honeynets, without 

direct connectivity outside of the network, will test its 

effectiveness in internal bot propagation detection.  

Implementation of a honeynet that includes multiple 

instances of exactly the same operating system version will 

enable better observation of botnet propagation as it is 

likely to occur in a tactical network. 

 



 xv

ACKNOWLEDGMENTS 

I thank Professor’s McEachen and Tummala for allowing me 

infinite latitude in exploring.  Many thanks to Donna Miller 

for her support early on and for being a sounding board.  

Robert “Bob” Broadston cannot be thanked enough for all of 

his technical assistance and words of wisdom and for all of 

the operating systems he allowed me to corrupt in the 

process.   

To Robert McMillen of the Honeynet Organization, fellow 

NPS graduate and Marine, I extend my deepest appreciation 

for all your help steering a Noob out of the woods. 

I cannot say enough about the support of my parents, 

Albert and Sandra Becker, who have supported me throughout 

my life, career and especially during my time at NPS.  I am 

also grateful for the support of my siblings, Monte, Ronald, 

Kayse, and Karen, as well as their spouses and families.  

The whole family has supported me so that I might enjoy the 

luxury of continuing to serve.  

I want to thank my wife, Hana, for her support through 

all the craziness that is school and the five deployments 

prior.  And for my beautiful little daughters, Veronika and 

Mikaela, I am especially thankful for their love and 

affection…whatever time daddy got home. 



 xvi

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION  

Commercial, governmental and personal reliance on the 

Internet has reached a point that a vast majority in the 

developed world, and much of the rest of the world, is 

interconnected.  Almost every long distance call, banking 

transaction, as well as national infrastructure, can be 

adversely affected by losses of Internet connectivity or by 

the malicious acts of individuals, organizations, or states 

that use the Internet.  One kind of network exploitation is 

a “botnet.”  The use of botnets allow for an individual or 

organization to harness and mass the computing power and 

bandwidth of large numbers of computers. 

A botnet, a network of robot or drone computers 

(processes) characterized by the presence of a Command and 

Control (C2) channel, is a form of malicious software 

(malware) that is capable of self-propagation and can be 

controlled by a botmaster [1,2,3,4], unbeknownst to the 

computer’s owner.  Frequently the botmaster will use the 

botnet for such purposes as conducting distributed denial of 

service (DDOS) attacks, collecting confidential information 

or for financial scams.  

The botnet C2 architecture is the primary means by 

which it is classified [4] and distinguishes it from other 

malware such as viruses or worms.  The most prevalent type 

of botnet C2 uses Internet relay chat (IRC).  This is a 

centralized C2 architecture with the bots logging into a 

central IRC channel to receive commands and updates from the 

botmaster; however, this architecture has a significant 

weakness.  It presents a single point of failure.  If the 



 2

IRC server is taken off line, there is no longer a botnet 

but a number of individual bots without direction.  In order 

to increase the survivability and hide the size of their 

botnets, botmasters have used other C2 architectures such as 

peer-to-peer (P2P), Hypertext Transfer Protocol (HTTP) and 

fast-flux networks [4].  P2P botnets come at a cost of 

increased latency in net response to commands, loss of 

definitive message acknowledgment, and increased complexity 

[5].  In recent research, Holz et al. met with some success 

in disrupting the communications of a P2P botnet [6].  Fast-

flux is a more sophisticated approach to HTTP as a C2 

architecture in an effort to increase the survivability of 

the network.  In fast-flux networks, the botmaster uses a 

fully qualified domain name but rapidly changes the IP 

address the name resolves to by changing the DNS A records, 

and in some cases the authoritative name service records as 

well [7].  All of the above mentioned methods of C2 are 

further complicated by the use of encryption. 

Bots are further characterized in [8] as Type I or Type 

II.  A Type I bot first attempts to self-propagate prior to 

establishing communications with the C2, whereas the Type II 

does the opposite. 

A. MOTIVATION 

The protection of tactical networks that support the 

warfighter is predominantly reactive in nature, using 

definition driven IDS and IPS focused on preventing known 

attacks and located at the network perimeter.  As well, they 

rely heavily on antivirus network scans, definition updates 

and propagation.  The results are numerous alerts and alarms 

for information assurance and network administrators to dig 



 3

through and analyze along with network traffic for signs of 

malicious activity.  This leaves the subordinate or remote 

locations that may have rate limited transmission paths and 

limited training and without tools to detect and self 

diagnose a previously undefined botnet infection. An 

infection can propagate throughout the local area network 

and beyond its perimeter to a trusted adjacent unit or 

higher before it ever trips a perimeter security defense 

mechanism.   

Due to most network defense systems being primarily 

focused on intrusion prevention and detection, there is a 

real question as to the ability to detect an infection that 

has bypassed those perimeter defenses and is either calling 

outbound or propagating within in order to mount some sort 

of attack from within, such as a DDOS.  As of this writing, 

the author is not aware of any framework or architecture 

fielded that is aimed at supporting the signals or 

communications officer at the ship, regiment/brigade or 

lower level with detection and collection of malware. 

B. OBJECTIVES 

The overarching goal of this thesis is to assemble an 

architecture that increases the security of tactically 

deployed networks, enabling the detection of botnets that 

may have evaded the firewall, and to a lesser extent to 

capture copies of the malware code for reporting and 

analysis. 

The primary objectives are near real-time detection of 

malicious activity and its propagation within a data rate 

(bandwidth) limited environment with periodic losses of 



 4

connectivity without adding significant burden to the 

network.  An additional topic to be explored in preparation 

for follow on research is the capture of malware for 

reporting and analysis.  

The preponderance of intrusion detection system (IDS) 

and antivirus solutions are heavily definition driven with 

some heuristic components [9].  However, they are still 

reactive in nature, meaning that new threats may not be 

discovered unless they match a definition of a previously 

known threat.  This presents the obvious question of how to 

respond to and stop the next generation of attacks.  The 

first step is detection.   

Tactical networks, or shipborne networks, are data rate 

limited.  While most researchers using honeypots have 

implemented some sort of data rate limiting to mitigate the 

ability of their research computers being used by a 

botmaster to propagate an attack, this is a specific 

requirement that must be strongly considered in developing 

any network architecture for the study of tactical networks.  

A test bed—defined here as a monitored and controlled 

environment designed to emulate a part or all of an actual 

network—can be used to establish conditions similar to those 

seen in tactical networks in order to facilitate 

understanding. 

If a previously unidentified Type I bot infects the 

network, such as via a USB device, it may propagate within 

the local network and not be seen by the firewall or 

antivirus until it has spread extensively through the 

network and attempts a call home.  This presents a 

significant problem. 



 5

In order to effectively combat a new bot variant, it is 

essential to capture the malware code for further analysis.  

While this is not a primary objective of this thesis, it is 

explored in this work in preparation for follow on research 

where it may be incorporated. 

C. RELATED WORK 

The body of work is rapidly growing as are the threats.  

The Honeynet Project has developed numerous tools and 

architectures designed for research in botnet tracking [1] 

and collection [9, 10], with Nepenthes [11] capable of 

collecting unknown exploits of old vulnerabilities.  

BotHunter [3] appears to be the first effort to use IDS type 

technology looking at outward traffic, rather than the 

customary inward, and using correlation to detect bots.  

BotHunter also allows for collaboration, with automated 

reporting back to SRI International.  From a different 

perspective, [12] discusses a botnet communication model to 

evade detection by one of the tools used in this thesis, 

BotHunter, by grouping bots into local networks and 

subordinating them to a single controller bot within a 

switched network.  The controller bot would then be tasked 

to manage the other bots and be the sole point of contact in 

and out of the compromised network.   

All of the above were tested on large data rate 

networks or small stable, reliable networks.  This thesis 

differs from previous research by focusing on bot/botnet 

detection in tactical networks, characterisized by low data 

rate connections and intermittent connectivity. 



 6

D. ORGANIZATION 

Chapter II describes the process of creating and 

maintaining a botnet and covers a range of methods for 

detecting and capturing bots and combating botnets.  Chapter 

III addresses the test bed design and how it fits into a low 

bandwidth tactical network.  The results and analysis follow 

in Chapter IV.  Chapter V provides conclusions, addresses 

the effectiveness of the test bed network architecture and 

offers suggestions for future research.  

 

 

 

 

 

 

 

 



 7

II. OVERVIEW OF BOTNETS 

This chapter begins with the phases of creating and 

maintaining a botnet and follows with an introduction to 

different tools used to detect, capture and combat botnets. 

A. CREATING AND MAINTAINING A BOTNET 

There are generally four phases of creating and 

maintaining a bot: 1) initial infection, 2) secondary 

injection, 3) malicious activities, and 4) maintenance and 

upgrade [4].  It is quite common for the phases to be spread 

among different bots or groups of bots.   

The initial infection can be accomplished in any of a 

number of methods [4]:   

a) It could be an active exploit, initiated with some 

level of network enumeration and or vulnerability 

scanning.  Upon locating a computer that meets the 

profile of a known vulnerability, the attacker will 

attempt an exploit tailored to the vulnerability.   

b) While surfing the web, malware could be 

automatically downloaded.  This may or may not 

require the user to actively click on links to 

initiate the malware download.   

c) SPAM/email attachments are cleverly social 

engineered to deceive the user to open an 

attachment, resulting in automatic download and 

execution of the binary.   



 8

d) USB autorun.  Conficker [13] uses the USB autorun 

for the malicious activities phase to further 

propagate.   

All windows operating systems have specific ports for 

resource sharing—Ports 445/TCP, 139/TCP, 137/UDP and 135/TCP 

are discussed in detail in [1]—and these ports are credited 

for being a major mechanism through which bots are spread.  

These resource-sharing ports are trusted ports.  Many 

computers are still left exposed to the Internet without a 

firewall, giving attackers easy access. Even with a 

firewall, there are other methods by which the attacker can 

gain a foothold in a network.  Then, the bots can propagate 

within the network using the same resource sharing 

vulnerabilities.  In addition to these, several other common 

vulnerabilities and ports are further discussed in [1] and 

will be observed and discussed in later sections. 

The secondary injection, also known as the egg 

download, occurs when the full binary for the bot is 

downloaded.  It will include all the tools required for the 

bot to continue exploitation and propagation.  The egg 

download can come from the same IP address as the initial 

infection or a different IP address.  In some cases, the egg 

download may occur at the same time as the initial 

attack/infection.  One example of this would be Conficker, 

when introduced via a USB device. 

Malicious activities can include further propagation, 

searching the machine for passwords, personal information, 

etc. 

Maintenance and upgrade includes activities such as 

improving or adding to the bot’s toolkits, establishing a 



 9

backdoor, patching the same vulnerability that allowed the 

original infection in an effort to prevent others from 

gaining control of the bot and changing the communications 

channel. 

The botnets have become modular [1], with plug-and-play 

attributes, and show signs of collaborative effort in their 

design.  Conficker was observed in [14] using a Metasploit 

module to spread itself.  The SDBot possesses source code 

commenting that indicates multiple authors [5]. 

Bot creators are able to plug in modules to reduce the 

chances of detection with scripts to detect VMware based 

honeypots [1, 4].  Botmasters may have bots use low numbers 

of interactions reaching out to the controller, separate the 

infection phase from the other phase by time, or use long 

sleep or dormant cycles to avoid detection by traffic 

analysis. 

Having described how bots and botnets are developed, it 

is time to discuss methods for learning more about them and 

combat them.  

B. METHODS OF DETECTING, CAPTURING MALICIOUS CODE AND 
COMBATING BOTNETS 

Methods of detecting and preventing infection from 

botnets have included use of antivirus software, firewalls, 

and Intrusion Detection Systems (IDS).  In order to capture 

malicious code and improve the combat of botnets, 

researchers and security experts have progressed to the use 

or incorporation of honeypots and/or correlation tools. 



 10

1. Use of Antivirus and Firewalls 

Antivirus software and firewalls rely heavily on a 

priori knowledge of the threats.  Antivirus solutions scan 

the host for malicious software and remove patch or delete 

it.  Firewalls can be preventative—blocking ports, IP 

addresses, and previously known attack patterns—but 

essentially they use filters that operate on rule sets, 

making them reactive in nature.  If some knowledge of a 

specific threat is not known, then they will likely not be 

effective.  Another issue with firewalls is that they are 

designed for perimeter security.  Once an attacker has 

gotten past the perimeter, their effectiveness in preventing 

further proliferation within a LAN is almost non-existent.  

Conficker disables antivirus and firewall software and 

prevents the host computer from accessing security update 

Web sites [15]. 

2. Intrusion Detection Systems 

IDS alone generally operate on signature or anomaly 

recognition; however, IDS predominantly look at inbound 

packet flows for signs of attacks.  The IDS may detect and 

signal numerous attacks, but do not do well at 

discriminating between successful and unsuccessful 

intrusions [3].  The obvious gap in this approach comes from 

infections initiated by user actions or from an infection 

that begins internally and initiates outbound connections 

[3, 15]. 



 11

3. Forensic Analysis of Network Traffic 

Forensic analysis of network traffic can be a lengthy 

process and generally necessitates knowledge of an infection 

to justify the investment.  In addition, it can include the 

use of tools to analyze router statistics. 

4. Honeypots and Honeynets 

A honeypot is defined by Spitzner as “an information 

system resource whose value lies in unauthorized or illicit 

use of that resource” [16].  A honeynet is defined as a type 

of honeypot, made up of a network of computers deliberately 

designed to be attacked and closely monitored behind a 

honeywall to capture all network activity.  The honeywall is 

a type of firewall that performs a bridging function and is 

designed to permit intrusion, but limit outbound 

connections.  The bridging function decreases the likelihood 

of detection by an attacker by allowing the honeywall to 

receive, record and drop or forward packets based upon a 

specified rule set without changing the packets [11].  If 

researchers want to tailor the honeynet to receive a 

particular type of attack, the honeywall can be configured 

to drop or ignore inbound packets that do not meet the 

established criteria.  The outbound connection limiting is 

performed by simply having the honeywall drop the packets 

after the recording step.  A honeypot or honeynet 

complements a network security plan, because it provides 

information in one or all of the following scenarios:  

a) A previously unknown attack penetrates the 

firewall and propagates.   



 12

b) Either a Type I or Type II bot is introduced 

behind the firewall.   

The critical piece in any of these cases is the bots 

propagating at least behind the firewall.  Because any 

activity on a honeypot is malicious by nature, the honeypot 

provides a means of alarm and information collection to 

analyze the infecting malware [1].  The honeynet used in 

this thesis also includes a rootkit, Sebek, which is 

installed as a client on the individual honeypots.  The 

rootkit hides in the kernel of the honeypot operating system 

(OS), acting as a keystroke logger and reports activity via 

UDP packets to the Sebek server that resides on the 

honeywall [10, 11].  Sebek bypasses the TCP/IP stack, going 

directly to the Ethernet card, to generate the UDP packets. 

This prevents the OS from being aware of the packets being 

sent.  As long as every honeypot has Sebek running on it, it 

is blind to the Sebek packets sent by another Sebek client.  

The Sebek packets are pushed out onto the local area network 

(LAN) and are picked up and recorded by the Sebek server at 

the honeywall [10]. 

Yet another type of honeypot is a low interaction 

honeypot called Nepenthes that is specifically designed to 

acquire executable malware binary for further investigation 

[9]. 

5. Correlation Tools 

The introduction of correlation engines into botnet 

research brought a powerful tool to the effort of detection 

of individual bots and botnets.  The challenge for 

commercial and DoD networks is discovering, retarding or 



 13

stopping and ultimately preventing a previously unknown 

method of attack.  Several research tools including 

BotHunter, Botsniffer and Botminer attempt the discovery of 

previously known and unknown bots and botnets with the use 

of correlation algorithms [3, 17, 18].  BotHunter uses a 

combination of botnet behaviors but appears to be the first 

that includes outbound traffic in its correlation algorithm 

[3]. Specifically, BotHunter establishes a correlation model 

that attempts to identify a relationship between intrusion 

alarm log entries based upon detection of bot infection 

characteristics, including: inbound scanning, inbound 

exploit, outbound connections for secondary infection 

download, outbound attempts to establish command and 

control, and outbound infection scanning [3]. A correlation 

score base upon detection and sequencing together of bot 

infection behavior is generated in order to yield a relative 

confidence level.  The confidence level of a bot detection 

increases as the correlation engine is able to sequence 

together more bot intrusion related events.  However, bot 

detection does not require sequencing together or 

observation of all the bot infection characteristics [3]. 

While the BotHunter correlation model includes outbound 

communications patterns, it stands to reason the model 

should meet with comparable success if the application is 

run at the gateways of subnets of a larger architecture.  

For example, tactical networks frequently have a firewall 

performing perimeter defense, but not between trusted 

adjacent units.  Infection of a Type I bot, attempting to 

propagate throughout all IP addresses beginning with the 

same 16 bits (/16 network), could potentially thoroughly 

infect the network and adjacent units and may even initiate 



 14

a DDoS before it ever attempts to communicate through one of 

the firewalls.  This leads to the need to consider placement 

of correlation tools like BotHunter between subnets of a LAN 

in order to discover bot activity early.   

This chapter covered the four phases of creating and 

maintaining a bot, as well as methods of propagating and 

controlling a group of bots to form a botnet.  It then 

addressed common approaches to discovery of bots and 

botnets.  This leads to the next step of outlining the model 

design for this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15

III.  TEST BED 

This chapter will present a tactical network 

architecture and explain how the proposed test bed is 

intended to represent parts of the tactical network.  The 

second section of the chapter will give specific details of 

the test bed implementation. 

A. RELATIONSHIP OF TEST BED TO TACTICAL NETWORK 
ARCHITECTURE 

The test bed in this thesis is built to address each of 

the requirements outlined in Section B, Chapter I.  In some 

cases, a requirement cannot be fully achieved, so risk is 

accepted and discussed.  The overarching objective is to 

establish an architecture to look at vulnerabilities of what 

tends to be a homogeneous network.  The honeypots built for 

the test bed network are comprised of Windows operating 

systems (OS), albeit different versions. 

Figure 1 presents a typical network diagram with an 

addition of the honeynet shown in the dashed box.  Ideally 

honeypots would be dedicated to IP addresses across the 

architecture and all data redirected and tunneled to a 

central honeynet below the honeywall, as shown within the 

dashed box in Figure 1.  Honeypots called Collapsar and 

Potemkin have been developed by the Honeynet Project to 

implement these types of architectures [9].  Both appear 

unreasonable to implement on a tactical network either in 

terms of a significant bandwidth cost or a coordination 

challenge due to the increased routing complexity.   



 16

For Collapsar, packets are sent across a link twice 

before arriving at or leaving a honeypot.  In addition, 

there is an increase to the packet size as the packet has 

headers affixed to it in order to effect tunneling.  The 

storm of packets that could follow an infection multiplied 

by two because of the tunneling architecture could 

unintentionally assist the malware in creating a denial of 

service attack.   

 

Figure 1.   Typical Tactical Network Architecture With 
Addition of a Honeynet in the Dashed Box 

 



 17

With Potemkin, each router would require routing leaks 

to be created in order to make the packets destined for IP 

addresses that should be out at the far left of the 

architecture directed to behind the honeywall before they 

ever pass down Link (i) or Link (ii).  While this may be 

detected easily by a traceroute, the real issue that makes 

this choice undesirable is the complexity of implementation 

and maintenance on a dynamically changing tactical network.  

The test bed network architecture built closely follows 

that of [11] and is depicted in Figure 2.  The test bed is 

intended to closely resemble a trusted low bandwidth link 

much like Link (i) or Link (ii) in Figure 1.  BotHunter is 

run on what would appear as a production computer in [11] 

and not behind a firewall; however, this is actually 

intended to allow BotHunter to sniff traffic that might be 

transmitted between trusted subnets.  Multiple instances of 

BotHunter could be run on almost any link, at either end or 

both ends of a long haul transmission path.  Likewise, a 

single instance could be monitored by administrators at 

either or both ends.   



 18

 

 

Figure 2.   Test Bed Developed to Emulate the Low Data Rate 
Side of a Tactical Network and Detect bot infections 

(After [11]) 

 

The test bed architecture built also attempts to 

address the intermittent connectivity by the use of 

connection rate limiting in the Honeywall rules.  As it is 

common for a tactical network to have losses of connectivity 

do to relocation or technical problems, the connection 

limiting performed by the Honeywall will force any bot to 

perform whatever routines it would do in such an instance.  

It will also test whether or not BotHunter is able to 

determine if a bot is still active upon reestablishment of 

network connectivity.  Placement of BotHunter along the low 

bandwidth links gives an easily administered system that 

180 kbps



 19

combines the advantages of an IDS with the correlation 

capability to give a higher probability of detecting and 

alerting to infection by a previously undefined bot.  There 

is almost no cost in bandwidth efficiency with the exception 

of Snort updates, which can be scheduled for off-peak times 

[19].  On the high bandwidth end, placement of a honeynet 

within the parts of the network with high bandwidth between 

trusted connections gives an advantage of advanced detection 

within more stable areas of the network and allows for more 

complex honeynet design.  In these areas of the network, 

redirecting and tunneling is an option.   

The Internet access from a local Internet service 

provider is rate limited to no more than 180 kbps and not 

firewalled, as shown in Figure 2.  This resembles a tactical 

network in data rate, but does not resemble a comparable 

load due to the lack of machines, services and users.  Its 

raw exposure to the Internet is an attempt to accommodate 

this lack of load and to resemble the internal activity 

behind a firewall in a homogenous network.  If any machine 

succumbs to an attack and is turned into a Type I bot, 

almost all machines in the network are equally likely to be 

compromised and become a Type I botnet before detection.  

This concern holds regardless of the method of initial 

infection. 

Now that test bed’s relationship to a tactical network 

architecture has been explained, the specifics of the test 

bed implementation will be detailed next. 

B. TEST BED IMPLEMENTATION 

The hardware and software to support the test bed 

pictured in Figure 2, and as described in the previous 



 20

section, are outlined in this section.  Specific OS and 

software settings are detailed in the Appendix. 

A Linksys Etherfast 10/100 MBps hub (model EFAH08W 

version 2.0) is used to allow monitoring of all traffic in 

and out of the honeynet by both the honeywall and BotHunter.  

The choice of a hub with data collision control was made to 

reduce the loss of packets with a lower cost than a managed 

switch.   

The BotHunter is run on a Dell desktop machine with 2 

Gigbytes of RAM.  An instance of BotHunter was installed and 

run on an Ubuntu 8.04 LTS Desktop operating system.  The 

BotHunter version 1.0.2 software download [20], User’s 

manual [21], and Graphical User Interface manual [22], were 

all obtained from SRI International’s www.bothunter.net Web 

site.  All BotHunter settings are located in the Appendix.  

BotHunter was placed outside of the honeywall in order to 

allow it to get Snort updates and to report to SRI 

International without affecting the honeywall’s connection 

limiting functionality.  If placed behind the honeywall, the 

Snort updates and SRI International connections would have 

counted against the total allowed in and out of the 

honeynet. 

The Honeywall is run on a Dell 2650 with 4 Gigabytes of 

RAM, 2.4 GHz processor, and three network interface cards 

(NICs).  The Honeywall CDROM, Edition roo, was downloaded 

from the Honeynet Project and installed as described in 

[23].  As specified in [23], Ethernet Port 0 faces the 

Internet and Ethernet Port 1 faces the honeypots in Figure 

2.  Ethernet Port 2 is assigned an IP address in order to 

enable it to get Snort updates and to send alert messages 



 21

and is positioned behind a firewalled Network Address 

Translation (NAT) router in order to add a level of 

protection.  A remote control station was also used on a 

Gateway laptop running Ubuntu and connected behind the 

firewalled NAT router.  Specific settings are shown in the 

Appendix. 

The Honeypots consist of two Dell desktop systems with 

operating systems (OSs) and Sebek client installed on each.  

The first system is a Dell Dimension 8100 with 512 MB RAM, 

and 40 GB hard drive.  The operating system installed is 

Windows 2000 Professional with service pack 1 (Win2K SP1).  

The second honeypot is a Dell Dimension 8400 with 512 MB 

RAM, and 70 GB hard drive.  The operating system installed 

is Windows XP with service pack 2.  In each case, the 

systems OSs were installed and network addresses assigned 

prior to Sebek being installed.  Sebek was run on each 

machine, but never saved on the machine to make it more 

difficult for a bot or bot controller to discover it.  All 

specific settings for the honeypots are in the Appendix but 

are modeled closely after [10]. 

A Netgear 6 port 10/100 Mbps dual speed hub, Model 

DS106, is used to allow monitoring of all traffic between 

honeypots by the Honeywall.  There is a risk of collisions; 

however, the likelihood of a bot resending or sending 

additional packets and still being detected is good.  An 

oversight in the network design is the possibility of 

collisions of Sebek packets with other packets while in 

route to the Sebek server in the honeywall.  The Sebek 

packets are UDP based packets and are therefore unreliable.  



 22

This necessitates a managed switch or hub that can manage 

data collisions in order to avoid losing packets.   

This chapter covered the test bed built for this 

thesis, the relationship of the test bed to a tactical 

network architecture and the specific software, operating 

systems and software settings utilized.  The test bed design 

was tied to a portion of a tactical network as it 

transitions from high to low bandwidth connections on 

trusted links behind the network firewalls.  The risks 

associated with the test bed design were also discussed.  

This leads to the next chapter, which will cover the 

results.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23

IV. TEST BED IMPLEMENTAION RESULTS 

The intent of this chapter is to provide a proof of 

concept rather than present experimental results.  The 

results demonstrate the effectiveness of the model design in 

a live environment.  A botnet attack was detected by both 

the Honeynet and the BotHunter, proving the effectiveness of 

the design.   

This chapter presents the results in four sections.  

Some overall traffic statistics are presented in Section A.  

Section B discusses the results from the honeynet, 

specifically data as captured by the Honeywall.  Given the 

Honeywall captured all packets passing through it, the 

Honeywall data is used to provide forensic analysis.  

Section C presents the results as seen from BotHunter.  

Section D brings together and discusses the two previous 

sections.  Although BotHunter and the Honeywall did not use 

the same time reference, all times are presented in or will 

include conversions to Coordinated Universal Time (UTC). 

A. TRAFFIC STATISTICS 

This section is intended to give some gross traffic 

statistics collected from the test bed (see Figure 2).  It 

will separate the Sebek packets, as well as point out the 

common ports and connection types used.   

Figure 3 is a screen capture from Ethereal showing the 

time frame of data collection results with the total amount 

of data collected at the top.  The bottom half gives traffic 

statistics with Sebek packets and with Sebek packets  

 



 24

filtered out in order to give a perspective of the traffic 

without the artificial inflation of traffic generated by 

Sebek.   

 

 

Figure 3.   Gross Traffic Statistics With Sebek Packets 
Included on the Left Side and Filtered Out on the Right 

The data collection period was over 2 days, 5 hours, 26 

minutes, with the first packet being collected at 11:33 on 

May 27, 2009 (19:33 UTC) and the last at 16:59 on May 29 

(00:59 on May 30 UTC), 2009.  A total sent or received in or 

through the honeynet with Sebek packets filtered, as 

indicated under the column labeled Displayed in the bottom 

of Figure 3 was 339,459 packets or 21.7 megabytes. 

Sebek packets 
filtered out. 



 25

Figure 4 is another Ethereal screen capture showing the 

destination ports for packets coming primarily from the 

honeypots with the Sebek packets filtered out.  The 

exception is 63.205.26.67, which is not in the honeynet, but 

is later noted as an IP address of interest. The boxes 

direct attention to the more significant ports used. 

 

 

Figure 4.    Illustration of Significant Protocols and Ports 
Used by the Honeypots (IP Addresses 63.205.26.90 and 
63.205.26.94) and the 63.205.26.67, Described as an IP 

Address of Interest 

The top center box shows some use of Port 13500/TCP and 

4545/TCP packets and almost 329,000 Port 445/TCP packets.  

This heavy use of Port 445/TCP represents approximately 98 

Confirmed bot 



 26

percent of total Sebek excluded traffic.  If the Port 445 

traffic is eliminated, the other ports of interest are 

139/TCP, 137/UDP, 138/UDP and Port 135/TCP. This is 

consistent with the findings described in [1], although 

findings from the test bed show a more heavy weighting of 

Port 445/TCP traffic.  The box at top of the right column 

shows traffic from 63.205.26.94, with interest in UDP Ports 

137, 138, and 5355.  Although 63.205.26.94 does not trigger 

a bot alert, the UDP/5355 traffic does suggest possible 

infection but is inconclusive.   

This section has introduced some network traffic 

statistics and briefly looked at packets and ports used.  

The Honeywall results in the next section will address a 

more detailed examination of packets coming to and from the 

honeynet. 

B. HONEYWALL RESULTS 

The Honeywall’s position, illustrated in Figure 2, in 

front of the honeypots and on the hub beside BotHunter 

allowed it to capture all inbound and outbound traffic, as 

well as the traffic between honeypots.  The exception would 

be any case where a UDP packet collided with another packet.  

In such an instance, the UDP packet would be lost due to the 

unreliable nature of UDP.  The results presented here show 

the initial infection or attack, the egg download and other 

malicious activity.   

The Bot phases, as they were detected and alerted on by 

the Honeywall and BotHunter, are presented in Table 1 for 

reference in this and following sections.  The table 

differentiates Honeywall results as alerts generated or 



 27

discovery by forensic analysis.  Time is given in UTC and 

slight variances, less than two minutes, between Honeywall 

and BotHunter times should be seen as insignificant. 

1. Initial Infection 

While the Honeywall recorded the initial infection 

packets, it did not signal an alert.  The absence of an 

alert is a function of the Honeywall’s purpose.  It is 

intended to allow attacks in, while recording their actions, 

and to alert on and slow the outbound propagation of 

infections. 

Figure 5 is a Wireshark screen capture marked to 

highlight the first instance of a discrepancy in physical 

address for the WinXP honeypot IP address for the duration 

of that instance. 

Closer inspection of the packets captured shows 

immediately after an Address Resolution Protocol (ARP) 

request to resolve the MAC address for IP address 

63.205.26.90, the Win2K honeypot, a TCP request is sent from 

58.169.17.85 to the WinXP honeypot, IP address 63.205.26.94, 

with a MAC address of 00:21:9b:79:1d:c1 (pictured in Figure 

5 as Dell_79:1d:c1).  This MAC address does not belong to 

the WinXP (63.205.26.94) honeypot and is not used by any 

other machine in the Honeynet or Bothunter. 

 



 28

 
 Honeywall BotHunter 
Time 
(UTC) Phases Alert Sent Forensic Analysis   
  Initial infection       

19:08   Inbound Scan   

58.169.17.85 ARP 
poisoning use
63.205.26.94 as proxy   

19:09    

attempted 63.205.26.90
connect to
63.205.26.67    

23:54   Exploit   

63.205.26.90 buffer 
overflow from 
63.218.98.110   

  Secondary infection       

23:54   Egg Download 
Sebek captures egg 
download command 

63.205.26.90 HTTP .exe 
download from 
212.95.32.104 

63.205.26.90 HTTP 
.exe download from 
212.95.32.104 

  Malicious activities       

23:54   Outbound Scan 

Honeywall msg 
outbound connection 
limit reached 

63.205.26.90 start 
63.205/16 scan 

63.205.26.90 
outbound scan 
detected /24 

  Maintenance       

23:54   C2 Traffic 

Sebek captures 
connect to 
ninjawarlord.com 

63.205.26.90 bot TCP 
connect with 
ninjawarlord.com   

    Peer Coordination       
    Attack Preparation       

23:55:46 Declare Bot 

Honeywall msg 
outbound connection 
limit reached   

63.205.26.90 
determined to be 
bot 

23:57:41 Generated Report     
report generated,
63.205.26.90 bot 

 

Table 1.  Phases of Bot Infection of Win2K (63.205.26.90) Honeypot as Identified From 
Honeywall and BotHunter. 



 29

 
Figure 5.   First Sign of ARP Cache Poisoning or MAC Spoofing Involving Honeypot 

63.205.26.94 and Collected by the Honeywall



 30

However, the MAC address used for the WinXP honeypot is 

different from the actual MAC address of 00:60:08:c5:ff:a8.  

This appears to be a MAC spoofing or ARP cache poisoning.   

A description of ARP cache poisoning and MAC spoofing 

is briefly described below.  In the interest of network 

speed and reduced congestion, the majority of network 

devices maintain a cache of ARP results identifying the 

assignment of a MAC address to a specific IP address.  

Regardless of the IP address assigned to the packets, the 

MAC address is the next physical destination of the packets 

in its route. ARP cache poisoning is the process of sending 

false information in order to replace or submit false MAC 

addresses for an IP address [24].  MAC spoofing is sending 

packets with a false or created MAC address that is 

different from the actual MAC address of the sending machine 

or receiving machine, thus allowing the machine to 

impersonate another machine [24].   

Different from Figure 5, Figure 6 shows the ARP 

poisoning occurred on several occasions throughout the 

experiment.  The first column shows the packet numbers, and 

the second column gives the time of the occurrence of ARP 

poisoning.   

Figure 6 shows the suspicious flow starting at packet 

number 197.  A device masquerading as the WinXP machine with 

IP address 63.205.26.94, normally MAC address 3com_c5:ff:a8, 

is sending broadcast messages from MAC address 

Dell_79:1d:c1.  This use of the MAC address for the WinXP 

honeypot is repeated several times as shown in Figure 6.  It 

should be noted the Honeywall is preventing most of these 



 31

packets from getting out.  Therefore, there will be a large 

volume of connection attempts that go without response. 



 32

 

 
Figure 6.   Mac Spoof with packet numbers in first column to illustrate multiple occasions 

spread across the collection period and could be indicative of a communication 
Channel or an attack

 

MAC spoof shown 
between both 
sets of arrows 

Notice packet numbers from as early as 197 and 
as high as 209690 and several different source 
IP addresses between the arrows. 

Irrelevant Packets blocked out. 



 33

One possible reason for this is that the machine 

sending is not 63.205.26.94 but instead another machine on 

the LAN subnet is MAC spoofing as 63.205.26.94 in an attempt 

to get past the firewall or to use the MAC address as a 

communications channel.   

Another unusual behavior not shown in Figure 5 or 6 was 

recorded in packet 249 in which 63.205.26.90 initiates a 

connection with 63.205.26.67.  Prior to this line, there is 

no known communication between 63.205.26.67 and the 

honeypots (63.205.26.90 or 63.205.26.94).  There is no 

reason for the honeypots to have knowledge of the existence 

of 63.205.26.67.  They have both sent multiple broadcasts 

but do not appear to have received any responses from the 

production side of the honeywall (to include 63.205.26.67). 

Figure 7 shows the first clearly observed phase, the 

initial infection. The initial infection is achieved through 

an exploit of a vulnerability, which forced a buffer 

overflow.  A buffer overflow and initiation of a subsequent 

egg download are captured and shown in Figure 7.  The buffer 

overflow exploits a software vulnerability by inputting more 

data than intended to be received and causing the excess 

data to be placed into another buffer.  This can lead to an 

attacker gaining access to what would otherwise be 

restricted code or processes on the computer [24]. 

Infection of the Win2K honeypot occurs at approximately 

2357 UTC on May 27, 2009 (see Figure 7).  The attack 

originates from IP address 63.218.98.110 and is attempted a 

few times before succeeding.   



 34

 
Figure 7.   Honeywall Packet Captures Showing Initial Attack via Buffer Overflow, 

Sebek captures on honeypot 63.205.26.90 and Initiation of Egg Download



 35

2. Secondary Infection 

Upon success of the buffer overflow, Sebek captures and 

reports a command for the honeypot to establish an http 

(Port 80) connection with IP address 212.95.32.104.  This 

download is an executable named 10x.exe and is shown in 

Figure 7.   

Figure 8 shows the completion of the egg download 

followed by the beginning of the new bot’s malicious 

activity.  Approximately 6–7 seconds after the download is 

complete, the honeypot begins what will be a complete Class 

B (63.205/16) scan.   

3. Malicious Activities 

Alerts messages, not shown in Figure 7, sent by the 

Honeywall indicate malicious activity in the form of 

multiple outbound connection attempts as early as 2354 UTC 

on May 27, 2009.  The Honeywall also sent an alert 

indicating the maximum number of connection attempts had 

been exceeded.  Forensic analysis shows the Win2K honeypot 

at 63.205.26.90 begins a full Class B (63.205/16) network 

enumeration (vulnerability scanning) to include IP addresses 

internal and external to the 63.205.26.65/27 network 

containing the honeynet.  Sebek packets, shown in Figure 8, 

also indicated a malicious program on the Win2K honeypot 

issuing commands.  This confirms the Win2K honeypot is 

infected.   



 36

4. Maintenance 

Shown in Figure 8, the new bot performs a DNS query to 

resolve an IP address for ninjawarlord.com and attempts a 

connection with a response from ninjawarlord.com, a command 

and control channel for the botmaster.   

Not shown in Figure 8, the bot repeats the DNS query 

every few minutes.  In addition, the bot performs a keep 

alive messages in order to keep a communication channel open 

to IP address 63.218.98.110.  After completing the 63.205/16 

network scan, the bot continues to maintain the keep alive 

messages and to perform the DNS query for ninjawarlord.com.  

The bot does not appear to meet with any success in 

propagating; although, this could be heavily influenced by 

the honeywall’s connection limiting function.   

The packets captured by the honeywall, covering May 27 

to May 29, 2009, give no evidence of further infections.  

However, there are numerous additional attempts.  The bot’s 

assignment may be to perform scanning and report to the 

server.   



 37

 
 
 
 

 
Figure 8.   Honeywall Captured Packets Show Egg Download Completion, DNS Query and 

Response to Resolve an IP Address for ninjawarlord.com in Order to Establish 
Command and Control, and Initiation of 63.205/16 Network Scanning 

Egg Download Complete

DNS query ninjawarlord.com

DNS response

Bot attempt to 
contact 
ninjawarlord.com 
and response. 

63.205/16 scan begins 



 38

The results of performing Wireshark’s IPv4 

Conversations function, shown in Figure 9, on the captured 

packets from May 27 to May 29, 2009 yields some information 

of interest.  The goal was to find or confirm infection 

downloads or C2 channels.  Figure 9 shows only the two-way 

conversations, with the exception of Sebek and broadcast 

packets that were left in to give some idea of what would be 

expected in the way of return traffic if the honeywall did 

not limit the rate of outbound packets.  The majority of 

packets from the 63.205/16 network scan are one-way and, 

therefore, eliminated from the figure.  In some cases, a 

download or conversation could be one-way and would be 

overlooked.  Conversations are loosely defined as a packet 

sent to a destination and a packet received from that 

destination.  Some conversations are failed attempts of 

establishing a connection, whether it be for an exploit, egg 

download or C2 channel.   

5. Honeywall Analysis 

Due to possibly encrypted channels, the author draws 

the conclusion that conversations between the confirmed bot 

(63.205.26.90) and IP addresses outside of the honeynet 

subnet are possibly efforts by the bot to check into C2 

channels.  The expectation for a C2 channel is a relatively 

low number of outbound (bot initiated) keep alive messages 

or some other packets sent periodically, spanning a large 

period of time.  Due to the outbound connection rate 

limitation of the honeywall, a smaller number of responses 

would be expected than the number of outbound attempts.  

Shown in Figure 9, conversations that appear to meet this C2 

channel description are between: a) 63.205.26.90 and 



 39

63.218.98.110, with 465 packets exchanged in 7 hours (66.4 

packets per hour (pph)), b) 63.205.26.90 and 118.123.5.109 

with 87 packets across a 19.4 hour period (4.5 pph), and c) 

63.205.26.90 attempted connections to ninjawarlord.com which 

DNS query resolves to IP addresses 221.143.48.246 and 

75.146.106.201 as previously shown in Figure 8. 

Vulnerability scanning or attacks could be 

characterized by either a barrage of different inbound 

connections in search of the correct input to trigger a 

desired response such as a buffer overflow, or periodic 

inbound unsolicited packets in an attempt to stay below any 

detection thresholds.  This appears to be the case with 

inbound connection attempts between 121.15.245.215 and 

63.205.26.90, with 6 packets exchanged during 18.7 hours 

(0.32 pph). 

An egg download would be characterized by a large 

amount of data transferred in a short period of time and 

possibly with large packet sizes.  An attempt at a buffer 

overflow could also be characterized by large packets being 

sent.  If there are multiple attempts at the buffer overflow 

over a long period of time, it could appear similar to an 

egg download.  An example is shown in Figure 9 by the 

63.205.26.90 to 212.95.32.104 conversation, which has 

already been identified as an egg download.  In this 

instance, a download of approximately 6390 bytes is carried 

out in a conversation that lasts less than 12 seconds. 



 40

 

Figure 9.   Results of Wireshark’s Conversations Function Performed on All Packets Captured 
Limited to a Minimum of 4 Packets Per Conversation for Inclusion with Sebek Packets 

and Standard DNS Queries Blocked Out  



 41

The downloaded packets were reassembled using Wireshark 

and submitted to Symantec Corporation’s online malware 

evaluation(https://submit.symantec.com/websubmit/retail.cgi) 

system to determine if it is a previously known threat.  

When scanned by Symantec Anti-Virus software, the file is 

determined to be the W32.Randex worm.   

This section of the results looked at packets captured 

by the honeywall primarily down to the traffic level.  It 

showed the attack, egg download and the new bot’s network 

scanning.  The next section will look at BotHunter’s 

results. 

C. BOTHUNTER RESULTS 

This section presents the results of BotHunter and 

discusses the bot findings.  The reader should recall that 

BotHunter is run in front of the Honeywall and not behind a 

firewall.  In addition, a correlation score based upon the 

detection sequencing together of bot infection behavior is 

generated in order to render a relative confidence level.  A 

score between 0.8 and 3.8 is required to trigger a bot 

declaration, with a higher correlation score indicating 

greater confidence [22].  

Figure 10 presents a screen shot of the BotHunter GUI, 

with multiple declared bots listed under “Victim IP.”  The 

bots are sorted in order of correlation scores and not with 

respect to when they were declared, labeled as “Gen time.” 

The Bothunter indicated its first bot detection at 

approximately 2357 UTC on May 27, 2009 on the Win2K (IP 

63.205.26.90) honeypot (see Figure 2).  The Bot declaration 

was based upon detection of a HTTP based executable download 



 42

(egg download) and subsequent outbound scanning of first 10 

and then 21 IP addresses in a /24 network within 5-7 seconds 

of the egg dowload.  This does not contradict the Honeywall 

results above, rather it shows BotHunter’s sensitivity is 

high enough that it triggered a bot detection before the 

scanning went beyond the first /24 subnet of the larger 

63.205/16 network.  The egg download was detected coming 

from IP address 212.95.32.104 with a correlation score of 

1.8.  Information about the inbound network scan or type of 

exploit used to gain access to the 63.205.26.90 honeypot is 

not shown by BotHunter.  This is likely due to BotHunter not 

being located behind and firewall.  During setup, BotHunter 

requires a setting to indicate whether or not it is behind a 

firewall.  When it is not located behind a firewall, its 

sensitivity to inbound attacks is decreased. 

The second bot declaration is shown with a correlation 

score of 1.3 but with less information.  Not shown in Figure 

10, this declaration is based exclusively on the detection 

of intense network IP address and port scanning originating 

from the 63.205.26.90 honeypot.  



 43

 

Figure 10.   BotHunter Screen Shot Illustrating Multiple Detections of a Bot on 
63.205.26.90

Egg Download

Outbound Scanning observed 
within 6 seconds of egg 
download 



 44

Additional bot detections are declared by Bothunter at 

00:04 UTC on May 28, 2009 and at approximately 6 minute 

intervals thereafter until 00:40 UTC May 28, 2009.  Of note, 

almost all of the declarations barely meet the 0.80 

correlation score.  These additional bot detections do not 

include the egg download or any other information other than 

intense outbound IP address and port scanning.  The 

additional bot detections are likely repeat declarations of 

the same bot infection, given that the subnets (not shown) 

scanned are all within the larger 63.205/16 network.  The 

absence of peer coordination or C2 information could be a 

result of channel encryption. 

Albeit brief, this section covered the BotHunter’s bot 

detection.  The results clearly indicate a single bot 

infection and suggest that the additional declarations are 

due to additional scanning of subnets within the 63.205/16 

network.  The next section will combine the results from the 

honeynet and BotHunter. 

D. HONEYNET AND BOTHUNTER RESULTS COMBINED 

This section will focus on the synthesis of an overall 

result, using a fusion of BotHunter and honeynet results 

from this low data rate network. 

The review of traffic and Sebek packets captured by the 

honeywall did verify the first bot declaration by BotHunter.  

The Sebek packets recovered from the Sebek server on the 

honeywall also identified the egg download command and 

verified the egg source IP, as reported by BotHunter, 

immediately following the buffer overflow that was not 

detected by BotHunter. 



 45

A closer look at the packets captured with the 

honeywall showed a full 63.205/16 network scan with what 

could be multiple attempts at command and control 

connections imbedded within the scanning.  Although none 

were detected by BotHunter, two honeywall results suggested 

the existence of C2 channels.  The first suggestion of C2 

channels was shown in the keep alive messages to IP address 

63.218.98.110, the same IP address that originated the 

successful buffer overflow.  As seen in Figure 9, this 

connection was maintained over a 7 hour period.  The second 

suggestion of C2 channels is seen in several other 

conversations, shown in Figure 9, to last over a period of 

several hours.  Yet another way these C2 channels maybe seen 

is in the 63.205.26.90 honeypot outbound connection attempts 

to IP addresses outside of the 63.205/16 network scan.   

In summary, this chapter gives honeynet results, 

followed by BotHunter results and then combines the two for 

a more complete picture.  The honeynet traffic shows a cost 

of approximately 100 bytes per second for the bot infection.  

A closer look at the packets captured by the honeynet’s 

honeywall shows the attack and subsequent egg download, 

confirming the egg download and source detected by 

BotHunter.  It does not provide any clarity for why 

Bothunter did not detect the attack.  The honeynet traffic 

analysis supports the idea that the additional BotHunter 

declarations with low correlation scores are repeated 

detections of the same infection.  The need for a honeynet 

within higher bandwidth areas of the tactical network is 

supported by the fact that the honeynet collects all packets 

and enables better analysis than BotHunter.   



 46

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 47

V. CONCLUSIONS 

This thesis developed a test bed for the detection of 

botnet infections at the low data rate end of tactical 

networks.  The test bed was developed with the use of 

BotHunter and a honeynet.  BotHunter is a tool that employs 

a correlation algorithm, intrusion detection system 

definitions and characteristics of basic botnet behavior.  

The honeynet is included in order to emulate results that 

would be seen in parts of a tactical network that operate at 

higher data rates.  The results of the test bed validated 

the effectiveness of BotHunter for botnet detection in low 

bandwidth areas of tactical networks and the usefulness of 

honeynet employment within tactical networks where 

connections with higher data rates exist. 

A. SIGNIFICANT RESULTS 

The most significant result of the test bed is the 

successful validation of the test bed architecture as a 

means of detecting botnet infections in low data rate 

networks such as those found in tactical environments.  

BotHunter continued to detect the bot infection after the 

periodic loss of connections caused by the honeynet’s 

connection rate limits.  In addition, BotHunter detected a 

type of bot infection that could be particularly hazardous 

to tactical networks.  The origination of the bot secondary 

infection and its malicious action of performing a Class B 

network scan were detected within a matter of minutes. 

Traffic analysis of all packets captured by the 

honeywall allowed determination of the network cost in terms 



 48

of malicious traffic caused to the test bed by the single 

bot infection.  The traffic cost for the particular bot 

infection captured in this thesis was measured to be 112 

Bytes per second. 

The requirement for positioning of a honeynet or 

honeynets within the test bed network architecture is 

validated by BotHunter’s failure to capture all of the bot 

behavior, such as the attacking IP address.  The honeynet 

captured all the bot infection phases, including those not 

seen by BotHunter, for a previously known bot infection.  

Use of BotHunter does come with some risk of failure to 

detect a previously unseen bot attack technique.  Employment 

of a honeynet in the higher data rate areas of a network 

mitigate the risk of a missed bot detection by providing 

depth and greater information.  As explained by Spitzner in 

[16], activity on a honeypot is by definition suspicious and 

likely to be malicious. 

With a relatively low sensitivity setting, BotHunter 

successfully detected and reported a bot infection within 

six minutes of the initial infection on a data rate limited 

connection of 180 kbps. BotHunter further provided the 

ability to detect a bot infection without an additional 

traffic cost as seen by use of the rootkit, Sebek, with the 

Honeynet.   

B. FUTURE WORK 

Previous research has looked at bot/botnet detection 

within well established high data rate networks; this thesis 

differs from previous research by focusing on 

characteristics of tactical networks.  Tactical networks are 



 49

characterized by low data rate connections and periodic 

losses of connectivity.  A progression for future work would 

be to add complexity in a manner that more closely resembles 

a tactical network.   

1. Employ a Honeynet Consisting of a Homogenous 
Network of Honeypots 

The test bed was designed with a non-homogeneous 

honeynet consisting of two honeypots with one of each 

operating system, Win2K and WinXP.  The method of attack in 

the initial infection by a bot is generally based upon a 

specific operating system or other software vulnerability 

that is likely to change between version releases.  A 

tactical network would typically have a high degree of 

homogeneity, with the majority of computers having the same 

operating systems with similar level of updates and 

antiviral signatures.  The test bed should be modified to 

include multiple instances of any operating system (and 

other software) versions of interest in order to observe 

propagation of bot infections and more closely resemble a 

tactical network. 

2. Position BotHunter Between Subnets 

The BotHunter was positioned outside of the honeynet 

and was not behind a firewall.  Successful propagation of 

the bot is not seen by BotHunter.  The new location for 

BotHunter should be behind a firewall and between trusted 

production subnets (with no firewall between them) on a 

tactical network or between separate honeynets.   

This can be done by establishing two honeynets on 

separate subnets under a common /16 network, both with 



 50

separate firewalled access to the Internet, with a non-

firewalled link between honeynets.  Such a network would 

allow for better simulation of a tactical network and to 

further test whether BotHunter could be used as an early 

warning tool at the low data rate end of the network.  In 

addition, multiple bot infections could be deliberately 

introduced behind the honeynets in order to observe bot 

behavior. 

3. Addition of a Malware Collection Tool 

The Honeywall’s use of Sebek for collection of malware 

is unreliable because Sebek uses UDP.  Without the 

reliability, collisions, dropped or missed packets for any 

number of reasons can result in a loss of malware binary.  

In addition, BotHunter does not provide the capability to 

collect the actual malware code/files.  To fix this, the 

test bed could be modified to include Nepenthes.  The reader 

is reminded Nepenthes is a malware collection tool that can 

be setup to collect the malware and pass the malware to a 

central collection point for analysis [9]. 

 

 



 51

APPENDIX. EQUIPMENT AND SOFTWARE SETTINGS 

A. HONEYWALL 

1. Honeywall CDROM Root Install 

root password: !#79RuuB4me 

roo password:  Victory1/5! / !#79RUUBme5 

Note:  Port and IP address numbers are separated by 

spaces.  Do not include colons, semicolons or commas. 

TCP allowed out (port numbers): 22 25 43 80 443   

UDP allowed out: 53 123 

Connection limiting set to:  hour 

TCP limit: 24   UDP limit: 23  

ICMP limit: 57   Other protocols: 14  

Honeypot IPs: 63.205.26.90 63.205.26.94 

CIDR: 63.205.26.64/27  Broadcast: 63.205.26.95 

Management Interface (Walleye) settings 

 Management Interface IP: 10.9.8.41 

 Mask: 255.255.255.0  Default Gateway: 10.9.8.1 

System host name: localhost domain name: localdomain 

DNS server IPs: 206.13.28.12 206.13.29.12 

Configure SSH:  yes 

Let root login remote:  no 

Manage intereface allow inbound ports:  443 



 52

Allow IP to login to management interface:  10.9.8.40 

Web interface for analysis:  yes 

Restrict firewall outbound comm:  yes 

SNORT_Inline:  yes 

Blacklist: (none) 

Whitelist: (none) 

Black/white list filtering enable: Yes 

Disable “strict” capture filtering: no 

Fencelist location: /etc/fencelist.txt (IP addresses 

and CIDR blocks 

Enable Fencelist filtering: no 

Enable “Roach motel” mode: no 

DNS: unlimited 

Limit Honeypot unlimited access to DNS: no 

Restrict DNS server: no 

Email alerts: yes 

Email address:  insert your email address here 

Alert start auto @ : yes 

SEBEK 

Dest IP Sebek packets: 63.205.26.2 

Dest Port: 1101 

Sebek Var: Accept and Log 

Oink Code is needed for Snort. Go to Snort Web site to 

login and request an Oink Code.  https://www.snort.org/login  



 53

B. HONEYPOTS 

1. Windows 2000, Service Pack 3 

a. Wipe Hard Drive 

First run Hard Drive wiping utility, such as 

Derik’s Boot and Nuke, from http://dban.org in order to 

clean the hard drive and its boot sectors. 

b. Insert and Run Install of Win2k SP3 

Delete any partitions 

Perform long format 

Computer name: Sam 

Organization: Sam Group 

Product Key:  Enter your product key here 

Computer Name: Sam-86ST 

Admin Password: !#79R()CK! 

Choose Typical settings 

Check Workgroup option 

IP: 63.205.26.90  Mask: 255.255.255.224 

Gateway: 63.205.26.65 

DNS: 206.13.28.12 206.13.29.12 

c. Sebek Install 

Run sebek from disk, so that it is never copied 

onto the hard drive. 

Driver name: Sebek 



 54

Destination MAC: (MAC Address of NIC 1, inward 

facing NIC of Honeywall) 00:02:B3:CA:D4:EC 

IP: 63.205.26.2 

Port: 1101 

Magic Value: 3289080092 

Configuration program name: services25v 

Sam’s dog Password >f1D0! F!d0 

Mutt 

Unregmp2.exe 

Admin Password: !#79R()CK! 

Guest: p@ssing! 

 

2. Windows XP, Service Pack 2 

a. Wipe Hard Drive 

Perform Hard drive Wipe as in Win2k paragraph 1.a. 

b. Insert and Run Install of WinXP SP2 

Delete all partitions 

Perform long format 

Name: Joe 

Organization: Joe Group 

Computer Name: JOE-8F60 

Admin Password: C0rn4@a11 

Select Typical settings 



 55

Select Workgroup 

Static IP: 63:205.26.94 Mask: 255.255.255.224 

Default Gateway: 63.205.26.65 

DNS: 206.13.28.12 206.13.29.12 

Create users: 

Username  user type  password 

Bobby  admin  T1ght@ss 

Sue   limited  1L1keU2 

c. Sebek Install 

Run sebek from disk so that it is never copied 

onto the hard drive. 

Driver name: Sebek 

Destination MAC: (MAC Address of NIC 1, inward 

facing NIC of Honeywall) 00:02:B3:CA:D4:EC 

IP: 63.205.26.2 

Port: 1101 

Magic Value: 3289080092 

Configuration program name: services25v 

C. BOTHUNTER 

Bothunter is installed per the instructions in [21] and 

the graphical user interface (GUI) instructions in [22].  In 

this configuration, BotHunter is not run behind a firewall, 

requiring entry into the custom configuration option per 

[21]. 



 56

THIS PAGE INTENTIONALLY LEFT BLANK 



 57

LIST OF REFERENCES 

[1] The Honeynet Project.  Know your enemy: Tracking 
botnets (accessed January, 2008), 
http://www.honenet.org/book/export/html/50, 2005. 

[2] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-scale 
botnet detection and characterization.”  In Proceedings 
of the 1st Workshop on Hot Topics in Understanding 
Botnets, April 2007, Cambridge, MA, USA (accessed 
February 19, 2009), 
http://www.usenix.org/events/hotbots07/tech/full_papers
/karasaridis/karasaridis.pdf. 

[3] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, 
“Bothunter:  Detecting malware infection through ids-
driven dialog correlation.”  In Proceedings of the 16th 
USENIX Security Symposium (Security ’07), pp 167-182, 
August 2007, Boston, MA, USA, (accessed February 19, 
2009), 
http://www.usenix.org/events/sec07/tech/full_papers/gu/
gu_html/index.html. 

[4] Z. Zhu, G. Lu, Y. Chen, Z.J. Fu, P. Roberts, and K.Han, 
“Botnet Research Survey.”  In Annual IEEE International 
Computer Software and Applications Conference, pp 967-
972, July 2008, Turku, Finland. 

[5] E. Cooke, F. Jahanian, and D. McPherson, “The zombie 
roundup:  Understanding, detecting and disrupting 
botnets.“  In 1st Workshop on Steps to Reducing 
Unwanted Traffic on the Internet (SRUTI), pp 39-44, 
July 2005, Cambridge, MA, USA (accessed February 19, 
2009), 
http://www.usenix.org/event/sruti05/tech/full_papers/co
oke/cooke.pdf. 

[6] T. Holz, M. Steiner, F. Dahl, E. W. Biersack, And F. 
Freiling, “Measurements and mitigation of peer-to-peer-
based botnets:  a case study on storm worm.”  In 
LEET’08:  First USENIX Workshop on Large-Scale Exploits 
and Emergent Threats, April 2008, San Francisco, CA, 
USA (accessed April 2009), 
http://www.usenix.org/event/leet08/tech/full_papers/hol
z/holz_html/. 



 58

[7]  The Honeynet Project.  Know your enemy: Fast-flux 
service networks (accessed July 13, 2009), 
http://www.honeynet.org/book/export/html/130. 

[8] M. Rajab, J. Zarfoss, F. Monroe, and A. Terzis, “A 
multi-faceted approach to understanding the botnet 
phenomenon.”  In Proceedings of ACM SIGCOMM/USENIX 
Internet Measurement Conference (IMC’06), Brazil, 
October 2006. 

[9]  N. Provos and T. Holz, Virtual Honeypots: From Botnet 
Tracking to Intrusion Detection, .Addison-Wesley, Upper 
Saddle River, New Jersey, 2008. 

[10] The Honeynet Project.  Know your enemy: Sebek, A kernel 
based data capture tool (accessed July 2009), 
http://www.honeynet.org//papers/sebek, November 17, 
2003. 

[11] The Honeynet Project.  Know your enemy: Honeynets 
(accessed February 2009), 
http://old.honeynet.org/papers/honeynet/, May 31, 2006. 

[12] B. Shirley and C.D. Mano, “A model for covert botnet 
communication in a private subnet” in NETWORKING 2008, 
LNCS 4982, pp. 624–632, 2008. 

[13] B. Zdrnja, “Conficker’s autorun and social 
engineering,” Handler’s Diary, SANS Internet Storm 
Center; Cooperative Network Security Community 
(accessed January 15, 2009).  
http://isc.sans.org/diary.html?storyid=5695  

[14] X. Chen, “Conficker Worm using Metasploit payload to 
spread,” Computer Security Research–McAfee Avert Labs 
Blog (accessed January 15, 2009), 
http://www.avertlabs.com/research/blog/index.php/2009/0
1/. 

[15] “The Downadup Codex: A comprehensive guide to the 
threat’s mechanics” edition 1.0 in Symantec Security 
Response (accessed March 13, 2009).  
http://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/the_downadup_codex_ed1.pd
f.  



 59

[16] L. Spitzner, “Honeypots: Definitions and value of 
honeypots,” http://www.tracking-hackers.com, May 29, 
2003  (accessed January 2009), http://www.tracking-
hackers.com/papers/honeypots.html. 

[17] G. Gu, J. Zhang, W. Lee, ”Botsniffer: Detecting botnet 
command and control channles in network traffic.”  In 
Proceedings of the 2008 ISOC Network and Distributed 
System Security Symposium, February, 2008, San Diego, 
CA, USA (accessed February 19, 2009), 
http://www.isoc.org/isoc/conferences/ndss/08/papers/17_
botsniffer_detecting_botnet.pdf. 

[18] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer:  
Clustering analysis of network traffic for protocol- 
and structure-independent botnet detection.”  In 
Proceedings of the USENIX Security Symposium, pp 139-
154, August 2008, San Jose, CA, USA (accessed April 
2009), 
http://www.usenix.org/events/sec08/tech/full_papers/gu/
gu_html/index.html. 

[19] Sourcefire Inc. (accessed March 2009), 
http://www.snort.org/. 

[20] SRI International. BotHunter unix distribution version 
1.0.2. (accessed March 2009), http://bothunter.net.  

[21] SRI International. BotHunter User Manual, Version 
1.0.2, Unix release (accessed March 2009,  
http://www.bothunter.net/doc/users_guide-UNIX.html. 

[22] SRI International. BotHunter Graphical user interface 
user manual, Version 1.0.2. (accessed March 2009), 
http://www.bothunter.net/doc/gui.html. 

[23] The Honeynet Project.  Honeywall CDROM Roo 1.2 User’s 
Manual  (accessed March 2009), 
http://yum.honeynet.org/roo/manual/1-overview.html. 

[24] Jon Erickson.  Hacking:  The Art of Exploitation.  No 
Starch Press, 2nd ed., 2008. 



 60

THIS PAGE INTENTIONALLY LEFT BLANK 



 61

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. John G. Kato 
Naval Information Operations Command Suitland 
Suitland, Maryland 
 

4. John T. Scott 
Naval Information Operations Command Suitland 
Suitland, Maryland 
 

5. Marine Corps Representative 
Naval Postgraduate School 
Monterey, California 
 

6. Director, Training and Education 
MCCDC, Code C46 
Quantico, Virginia 
 

7. Director, Marine Corps Research Center 
MCCDC, Code C40RC 
Quantico, Virginia 
 

8. Marine Corps Tactical Systems Support Activity  
(Attn: Operations Officer) 
Camp Pendleton, California 
 

9. Professor John McEachen 
Naval Postgraduate School 
Monterey, California  
 

10. Professor Murali Tummala 
Naval Postgraduate School 
Monterey, California  
 
 
 


