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ABSTRACT 

This thesis examines the vulnerability of the Advanced Encryption 

Standard (AES) to algebraic attacks. It will explore how strong the Rijndael 

algorithm must be in order to secure important federal information. 

There are several algebraic methods of attack that can be used to break a 

specific cipher, such as Buchburger’s and Faugere’s F4 and F5 methods. The 

method to be used and evaluated in this thesis is the Multiple Right Hand Sides 

(MRHS) Linear Equations. MRHS is a new method that allows computations to 

be more efficient and the equations to be more compact in comparison with the 

previously referred methods. 

Because of the high complexity of the Rijndael algorithm, the purpose of 

this thesis is to investigate the results of an MRHS attack in a small-scale variant 

of the AES, since it is impossible to break the actual algorithm by using only the 

existent knowledge. Instead of the original ten rounds of AES algorithm, variants 

of up to four rounds were used.  

Simple examples of deciphering some ciphertexts are presented for 

different variants of the AES, and the new attack method of MRHS linear 

equations is compared with the other older methods. 

This method is more effective timewise than the other older methods, but, 

in some cases, some systems cannot be uniquely solved. 
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EXECUTIVE SUMMARY 

This thesis compares different algebraic methods for solving and breaking 

the Advanced Encryption Standard (AES) algorithm. However, emphasis is given 

to the Multiple Right Hand Side (MRHS) Linear Equation method, which is a new 

algebraic method used for attacking ciphers with specific algebraic structures. 

Such a cipher is the Rijndael algorithm, which was adopted by the U.S. 

government as the most efficient among others in order to secure federal 

information. 

In cryptography, it is considered that a cipher is broken when a method 

other than the brute force attack can reduce the complexity of the algorithm or 

completely decipher it. The “brute force attack” method is a very simple method 

in which we try one by one all the possible keys in order to break the cipher. In 

particular, due to the complexity of the AES algorithm, it becomes very difficult to 

break it with this method. Therefore, AES generated interest to find a specific 

algorithm to break this cipher. Some of the older algebraic methods, such as 

Buchberger’s algorithm and Faugere’s F4 and F5 algorithms, which are briefly 

presented in Chapter II, cannot break this cipher. This work considers a new 

algebraic method (MRHS) that can break small variants of the AES. Even the 

breaking of a small variant of the algorithm constitutes a success, since it opens 

a new horizon in the cryptanalysis field. 

A comparison with the older algebraic attack methods that are presented 

in [9] shows that the MRHS method is faster than the others. In Chapter II, there 

is a quick overview for some of these methods and a more detailed analysis of 

MRHS method with some algebraic examples. 

The overall concept of this thesis is to create a program that  will break a 

small variant of the Rijndael algorithm. This work is based on the codes that 

Professors Håvard Raddum and Igor Semaev (of University of Bergen, Norway) 

provided to us. These codes (in the “C” language) are the application of the 



 xiv

MRHS method to the AES algorithm. In this thesis, we created new programs, 

which construct the equation systems of the AES algorithm, that we tried to solve 

by using the codes of Professors Raddum and Semaev. Our computational 

experiments examined many cases never considered in previous work. 

This thesis demonstrates that, for a small variant of the AES, this method 

is very efficient (few high-level operations). In the third chapter, some examples 

are contained that show how this algorithm works. In some of the computational 

experiments, a totally new and significant result appeared for the cryptanalysis 

field; sometimes a small AES variant can have multiple decryption keys for a 

specific encryption key. This result is surprising and is not mentioned anywhere 

by Professors Raddum and Semaev. 

In particular, the first example shows a case in which the MRHS method 

finds multiple solutions to the system (it fails to solve the system—break the 

cipher) and in the second one, all the MRHS linear equations are transformed 

into ordinary linear equations whose total number is the number of variables in 

our system. 
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I. INTRODUCTION 

A. HISTORY 

In 1976, the United States government as an official Federal Information 

Processing Standard (FIPS) adopted the Data Encryption Standard (DES). 

Today, this standard is considered insecure, and the necessity for a new more 

secure and efficient standard has emerged. Therefore, in 1997, the National 

Institute of Standards and Technology published a call for the replacement of 

DES. Among the requirements this new system had to meet were: the new 

algorithm should be able to allow key sizes of 128, 192 and 256 bits; it should 

operate on blocks of 128 input bits, and it should work in a variety of different 

hardware. For example, 8-bit processors that could be used in smart cards and 

the 32-bit architecture commonly used in personal computers [1]. 

For the adoption of the new algorithm, five finalists were chosen: MARS 

(from IBM), RC6 (from RSA Laboratories), Rijndael (from Joan Daemen and 

Vincent Rijmen), Serpent (from Ross Anderson, Eli Biham and Lars Knudsen) 

and Twofish (from Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, 

Chris Hall and Niels Ferguson). Finally, in 2001, the Rijndael algorithm [2] was 

adopted as the Advanced Encryption Standard (AES) [3]. 

B. RELATED WORK 

This new algorithm was of great interest for the area of cryptanalysis. The 

cryptanalists started to seek ways to attack this algorithm, which might lead to 

breaking the algorithm (finding the key more efficiently than a brute-force attack). 

Since Rijndael’s algorithm is defined using algebraic operations in finite fields, 

cryptanalists investigated algebraic methods in order to break it. Therefore, they 

started to try the already known algebraic techniques for solving systems of 

polynomial equations. Some of them were the Buchburger’s algorithm and the F4 

and F5 algorithms [4] that are summarized in Chapter II with some simple 
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examples. Also, they tried to describe the new algorithm by using some different 

algebraic representations over the Galois finite fields [4] that are discussed in the 

same chapter.  

Recently, a new algebraic method was developed that used Multiple Right 

Hand Sides (MRHS) Linear Equations [5]. The main difference with the other 

algebraic methods is that the equations, which describe the algorithm, are not 

expressed anymore as multivariate polynomial equations, but instead they are 

presented as a system of linear equations, each having a set of multiple right 

hand sides. 

The Norwegian Professors Håvard Raddum and Igor Semaev first 

developed this method. After a comparison between the Buchberger’s F4 

algorithms and the MRHS method, they concluded that the last one is much 

faster. 

In this thesis, after we borrowed the codes [6] from the Norwegian team, 

we managed to simulate the AES algorithm in the C language and to break 

small-scale variants of the Rijndael’s algorithm. After the application of the 

above-mentioned codes, many computational experiments were executed to 

explore how the method would work in many different cases. Though the 

previous work of Raddum and Semaev [5] only considered AES variants using 

the 8-bit field, we also explored variants based on 4-bit and 2-bit fields. From 

these experiments, we obtained some very surprising new results about the 

decryption (breaking) of variants of the Rijndael algorithm. In particular, one of 

the them is that there are some cases that a ciphertext, which was encrypted by 

a specific key, could be broken by using a definite number of different keys. This 

is explained in detail in Chapter III. 
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C. INTRODUCTION TO AES 

Although the Rijndael algorithm was adopted as the official algorithm for 

AES, it is important to note that the algorithm, which is used in the AES, is a 

limited version of the Rijndael’s algorithm. In particular, Rijndael is a block cipher 

with both a variable block length and a variable key length [2]. While Rijndael’s 

algorithm can be used for block and key lengths in any multiple of 32 bits, with a 

minimum of 128 bits and a maximum of 256 bits, AES uses constant block length 

of 128 bits and key lengths of 128, 192 and 256 bits only. Also, this algorithm is 

applicable with a different number of rounds (Nr), depending on the number of 

columns of the cipher key (Nk) and the number of columns of the rectangular 

array (Nb) called state, which is actually the intermediate cipher result of the 

algorithm. In Table 1, the number of rounds are shown as a function of the block 

and key length. 

 Nb 

Nk 4 5 6 7 8 

4 10 11 12 13 14 

5 11 11 12 13 14 

6 12 12 12 13 14 

7 13 13 13 13 14 

8 14 14 14 14 14 

 

Table 1.   Number of rounds, Nr, as a function of Nb (block length/32) and Nk (key 
length/32). 

Since, in this thesis, only the AES algorithm will be examined, it is good to 

analyze the subcases of the Rijndael’s algorithm that are used in the AES. For 

the encryption process, the input is the plaintext block and the initial key and the 
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output is the ciphertext block. In the decryption process, the input is the 

ciphertext block and the output the plaintext block. 

With a 128-bit key length, the algorithm applies 10 rounds. (A 192-bit key 

length contains 12 rounds and a 256-bit length contains 14 rounds). In each 

round, there are four transformations (linear and non-linear) that are also called 

layers. Each round has also a round key, derived from the original key (input 

key). The round transformation and its steps generate intermediate data called 

states. A state can be considered as a rectangular array of bytes with four rows 

and a number of columns (Nb) that depend on the size of the key length. Here, 

we consider that the key length is 128 bits, where the key is arranged in a 4x4 

matrix such that each element is a byte. The four transformations are the 

ByteSub transformation, the ShiftRow transformation, the MixColumn 

transformation and the AddRoundKey transformation. These four transformations 

compose a round. The four transformations are discussed next. 

D. STRUCTURE OF THE AES ALGORITHM 

The AES algorithm can be separated in two stages—the encryption and 

the decryption process. The algorithm for the encryption process includes four 

transformations, as it is shown below. The algorithm for the decryption process 

consists of the inverses of the above-mentioned transformations in the reverse 

order. 

1. Encryption Process 

The sequence of the four transformations mentioned above is the 

following: ByteSub, ShiftRow, MixColumn and AddRoundKey transformations. 

We next present these transformations in order. 

a. The ByteSub Transformation (BS) 

This is the only non-linear part of the algorithm and assures 

resistance to differential and linear cryptanalysis attacks [2]. This transformation 
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consists of an S-box, which is applied to each byte element of the state (16-byte 

block) independently and has three different steps: inversion, a Galois Field (GF) 

linear mapping, and S-Box constant ,as it is shown in Figure 1. 

 

Figure 1.   The ByteSub step, the first stage in a round of AES  (From [7]). 

(1) Inversion. In this operation of the S-box, the inverse is 

computed in the 8-bit Galois Field, GF(28). The byte 00000000 has no inverse 

and 00000000 is used in place of its inverse. Assume that the first byte is 

7 6 5 4 3 2 1 0x x x x x x x x . The byte, which comes up from the inversion, will be 

7 6 5 4 3 2 1 0y y y y y y y y , which represents an eight element column vector, with the 

rightmost binary bit 0y  in the top position. This operation provides resistance 

against the linear and differential cryptanalysis attacks [1]. 

(2) GF—Linear Mapping. At this point, the y  vector is 

multiplied by a constant matrix, and the column vector (0,1,1,0,0,0,1,1) is added, 

yielding a vector 7 6 5 4 3 2 1 0z z z z z z z z : (Note: Galois addition is equivalent to bitwise 

XOR in any finite field of even size). 
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7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 0 0 1

0 0 1 1 1 1 1 0 1

0 0 0 1 1 1 1 1 0

1 0 0 0 1 1 1 1 0

1 1 0 0 0 1 1 1 0

1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 0 1 1

z y

z y

z y

z y

z y

z y

z y

z y

      
     
     
     
     
            
     
     
     
     

           













 

(3) S-box Table. The byte z  is the input to the S-box 

table. Consider an input byte abcdefgh. The S-box is a 16x16 matrix. We look for 

the entry at abcd row and efgh column (rows and columns are numbered from 0 

to 15). The intersection of these two entries, transformed into a binary number, is 

the output from the S-box. For example, if the figure 10101010 is the input byte, 

the first four bits, 1010, represent the decimal 10. Therefore, one enters at the 

eleventh row and eleventh column. The intersection is 172, as it is shown in 

Figure 2. This is converted into binary, which is 10101100. This is shown as ‘ac,’ 

which is hexadecimal for 10101100 in Table 2. That number is the output of the 

S-box.  

 

 

Figure 2.   S-Box in the encryption process  (From [3]). 
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In order to make clear the hexadecimal notation, Table 2 

shows the correspondence between decimal, binary and hexadecimal notations. 

 

Decimal Binary Hexadecimal 

0 0000 0 

1 0001 1 

2 0010 2 

3 0011 3 

4 0100 4 

5 0101 5 

6 0110 6 

7 0111 7 

8 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 

12 1100 C 

13 1101 D 

14 1110 E 

15 1111 F 

Table 2.   Correspondence between decimal, binary and hexadecimal notations. 

b. The ShiftRows Transformation (SR) 

In this transformation, which is linear, the rows of each state are 

cyclically shifted to the left, with each row shifted a different amount, as it 

appears in Figure 3. This provides resistance against truncated differential and 

saturation attacks [2]. For example, row zero is shifted by C0 bytes, row 1 is 

shifted by C1 bytes, row 2 is shifted by C2 bytes in such a way that the byte at 

position j in row i moves to position (j-Ci) mod Nb. Particularly in AES 0 0C  , 

1 1C  , 2 2C   and 3 3C  . The output of this transformation is a matrix with the 

same dimensions as the input matrix. 
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Figure 3.   The ShiftRows step, the second stage in a round of AES  (From 
[7]). 

c. The MixColumns Transformation (MC) 

This transformation operates on each 4-byte column separately and 

is omitted in the last round. It is also a linear transformation, which has diffusion 

power. The columns of the state are considered as polynomials over GF(28), 

which are multiplied by a fixed polynomial c(x) modulo (x4+1). This polynomial is:  

3 2( ) 03 01 01 02c x x x x        [2] 

and this multiplication can be presented as a matrix multiplication [2] (in 

hexadecimal notation), as it appears below:  

 

0 0

1 1

2 2

3 3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

b a

b a

b a

b a

    
    
     
    
    

    

 [2] 

Figure 4 depicts the MixColumns operation on the columns of the 

state. 

http://upload.wikimedia.org/wikipedia/commons/6/66/AES-ShiftRows.svg�
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Figure 4.   The MixColumns step, the third stage in a round of AES  (From [7]). 

d. The AddRoundKey Transformation 

In this transformation, a key, consisting of 128 bits, which are 

arranged in a 4x4 byte matrix, is added to the output of the MixColumn 

transformation. A different round key is added to the state at the end of each 

round. 

 

Figure 5.   The AddRoundKey step, the fourth stage in a round of AES (From 
[7]). 

This key is derived recursively from the original key as follows. We 

will see this procedure in five steps. 

Step1: Label the first four columns of the original key W(0), W(1), 

W(2), W(3).  

http://upload.wikimedia.org/wikipedia/commons/7/76/AES-MixColumns.svg�
http://upload.wikimedia.org/wikipedia/commons/a/ad/AES-AddRoundKey.svg�
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Since the whole algorithm consists of 10 rounds, 40 more columns 

are required, four for each round. Let i  symbolizes the number of column in the 

different round keys as the columns are derived from the key schedule 

( 4 43i  ).  

Step 2: If the number of the new column is a multiple of four, 

then… 

Step 3: It is       4 1W i W i T W i    , where   1T W i   is the 

transformation of  1W i   obtained as follows. Assume that the elements of the 

column  1W i   are a,b,c,d. These are shifted cyclically to obtain b,c,d,a, and 

then, at this point, each of these bytes is substituted with its corresponding byte 

from the S-box of the ByteSub transformation, as it is explained above. So, four 

other bytes result, i.e., e,f,g,h.  

Step 4: Finally, the round constant 

   4 /400000010 ir i   

is computed in GF(28). So, the   1T W i   is the column vector   , , ,e r i f g h . 

 

  Step 5: If i is not a multiple of four, then 

     4 1W i W i W i    . 

2. Decryption Process 

The decryption process consists of the inverses of the four encryption 

steps: InvByteSub, InvShiftRows, InvMixColumns and invAddRoundkey. 
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a. The InvByteSub Transformation 

This transformation consists of the inverse S-box. In essence, in 

this step, the inverse transformation of the equation that was made in the 

ByteSub transformation is performed. For the linear mapping, one takes: 

 

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

0 1 0 1 0 0 1 0 0

0 0 1 0 1 0 0 1 0

1 0 0 1 0 1 0 0 0

0 1 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1 0

1 0 0 1 0 0 1 0 1

0 1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0 1

a b

a b

a b

a b

a b

a b

a b

a b

      
     
     
     
     
            
     
     
     
     

           













 

The inverse of the S-box appears in Figure 6: 

 

Figure 6.   S-Box in the decryption process  (From [3]). 
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b. The InvShiftRows Transformation 

In this transformation, the opposite shifting operation is applied. 

Therefore, the rows are shifted to the right instead of to the left, which takes 

place at the ShiftRows transformation. 

c. The InvMixColumns Transformation 

In this transformation, every column is multiplied by the inverse 

polynomial of c(x) (mod x4+1) which is: 

  3 20 0 09 0d x B x D x x E        

The inverse matrix multiplication of the equation, which was used in the 

MixColumn transformation, is: 

0 0

1 1

2 2

3 3

0 0 0 09

09 0 0 0

0 09 0 0

0 0 09 0

b aE B D

b aE B D

b aD E B

b aB D E

    
    
     
    
    

    

 

This transformation is omitted in the last round. 

d. The InvAddRoundKey Transformation 

This transformation applies the keys that were used in the 

encryption process in the reverse order. 

E. THESIS OBJECTIVE 

A common method to break a cipher is called “the brute force attack.” In 

this method, one tries to break a cipher using one or more ciphertexts, where the 

corresponding plaintexts are known, by trying to decrypt them using all the 

possible keys for the cipher. When the decryption yields the known plaintext, we 

have found the key and the cipher is broken. (A variation on this method, used 

when the plaintexts are not known, stops when a meaninful plaintext is found). 
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However, as ciphers become more and more complicated, this method 

turned out to be useless. For example, in the case of the Rijndael’s algorithm, 

one has to try at most 1282  possible keys to break the cipher. This is impractical, 

since the time and the memory that are necessary for that exceed the limits of all 

existing workstations. 

In the last few decades, some cryptanalysis has been based on algebraic 

attacks. Algebraic attacks have the advantage that a cryptanalyst does not need 

to have many known plaintexts and ciphertexts in order to create an equation 

that can describe the cipher, an event that happens with the linear or differential 

cryptanalysis where one has to have many pairs of plaintexts and ciphertexts in 

order to be able to describe the cipher. 

In this thesis, a specific algebraic attack method—the Multiple Right Hand 

Side (MRHS) Linear Equations method—is examined and compared with other 

older methods (Buchburgers, F4, F5) [4]. In addition, a small-scale variant of the 

AES will be examined, since, as it will be explained later, the number of the 

variables for the whole AES algorithm is too big to be solved. 

Therefore, in Chapter II we will briefly summarize these older algebraic 

methods. While these methods can represent the AES, they cannot break the 

cipher. A more detailed analysis of the MRHS Linear Equations method will also 

be presented with a very simple example in order to show how this method 

works. 

In Chapter III, we will present the computational experiments, where we 

apply the MRHS approach to small variants of AES, including several that have 

never been attacked before by this method. We present the results of the 

application of this method with two representative examples. In the first example, 

the method fails to solve the algebraic system that is created with the MRHS 

Linear Equations, while in the second one we conclude to a solution.   
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II. ALGEBRAIC EQUATIONS FOR AES 

A. INTRODUCTION 

There are many different ways to describe a cipher. However, the 

complexity of modern ciphers requires knowledge of their algebraic 

representation in order to attack and break them. In particular, one tries to 

describe a cipher by finding the algebraic properties that it has and, after that, by 

creating some homomorphisms or isomorphisms of this cipher. These new 

structures are very helpful, both to the implementers of a particular cipher who 

want to provide further protection to the cipher against side-channel attacks, and 

to the cryptanalysts who try to analyze it or even to break it. 

B. DIFFERENT REPRESENTATIONS OVER F2 AND F256 

The meaning of F2 is the finite field with order (number of elements) 

12np  , where p is always a prime number and n is a positive integer. 

Respectively, F256 is the finite field with order 82 256np   , which is also notated 

GF(28).  

After the adoption of the modern algorithms, one of which is the Rijndael’s 

algorithm, a great interest was created for the wider application of computational 

algebra in cryptography. Therefore, a number of different algebraic 

representations were developed. 

In the case of AES, one can consider a number of different 

representations, which are called dual ciphers depending on the properties of 

their representation mappings. Some are described in the next pages. 

1. Isomorphic Representations 

Definition: Suppose A  is a vector space over a field F  with a 

multiplication operation A A A  . If this multiplication operation is associative 
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and is a bilinear mapping on the vector space A , then A  is an (associative) F -

algebra, or, more simply, an algebra[4]. 

In these ciphers, the mappings of the state and key spaces are algebra 

isomorphisms of the AES state space algebra, where algebra is defined below. 

Therefore, these ciphers are isomorphic to the AES. 

In AES, each byte can be considered as an element of the finite field 

 82GF  in terms of the following polynomial: 

  8 4 3 1m x x x x x      (Rijndael polynomial) 

which is irreducible in  2 [ ]GF x . This finite field can be constructed in many 

different ways from the chain of its subfields, as it appears below: 

       2 4 82 2 2 2GF GF GF GF    

In total, there are      30 1 60 3 120 1 6 120 1170         different 

isomorphic representations of the AES based on the different irreducible 

polynomials of the  82GF  subfields as they appear in Table 3 [4]. 

 

 Subfield 

Degree GF (2) GF (22) GF (24) 

2 1 6 120 

4 3 60 - 

8 30 - - 

Table 3.   The number of irreducible polynomials over subfields of GF (28). 

These particular representations are not of cryptanalytic interest. Rather, 

they are intended to improve the efficiency of hardware implementation. 
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2. Regular Representations 

The regular representation is the algebra homomorphism  : nv A M K  

that maps a A  to the matrix corresponding to the linear transformation z az , 

where z  is a vector over F  of length n  [4]. 

3. Logarithmic Representations 

Since an element of a finite field can be represented with logarithmic 

functions instead of vector spaces, an element of the AES state space (excluding 

zero bytes) can be described as an element of the set  16

255 . These ciphers are 

called log dual ciphers and there are 128 different primitive elements in F , giving 

128 such representations [4]. More details of how to specify a logarithmic 

representation of the AES are given in [8]. 

C. ALGEBRAIC SOLUTION METHODS 

In this subsection, some algebraic solution methods will be discussed. The 

first two will be based on the Gröbner basis algorithms, which are well-known 

methods for the solution of multivariate polynomial equations. These two 

algorithms have been unable to break the Rijndael algorithm, and at the end of 

this chapter there will be a comparison between these algorithms and the MRHS 

Linear Equation algorithm in terms of their complexities [4]. The last one, which is 

examined and analyzed in this thesis with more details, is a new approach that 

seems to have better results than the previous two based on the time that is 

needed in order to break the AES cipher.  

1. Buchberger’s Algorithm 

As mentioned above, Buchberger’s algorithm solves systems of 

multivariate polynomial equations. Consider a polynomial ring  1 2, ,..., nx x x  with  

 



 18

a monomial ordering. Suppose  1 2, ,..., nI x x x   is an ideal of this ring with a 

basis  1,..., mF f f . The S-polynomial of any pair of the function of the basis is 

defined as: 

 
    
 

    
 

, ,
,

i j i j

i j i j
i j

lcm LM f LM f lcm LM f LM f
S f f f f

LT f LT f

   
    
   
   

, 

where lcm is the least common multiple, LM is the Leading Monomial, and LT is 

the Leading Term. What one tries to achieve with this polynomial S , which 

belongs to the ideal I , is to cancel the leading terms from any pair of the 

polynomials and, with the help of the next theorem, to compute a Gröbner basis 

of the ideal I [4]. 

Theorem: Let  1 2, ,..., nx x x  be a polynomial ring with a monomial ordering, and 

let I  be an ideal of  1 2, ,..., nx x x . A basis  1,..., mG f f  for the ideal I  is a 

Gröbner basis for I  if and only if every S -polynomial  ,i jS f f  of pairs of distinct 

polynomials ,i jf f G  has remainder 0 upon division by G . 

Consider an example of how to solve a multivariate polynomial system by 

using this algorithm. 

Example: Consider a polynomial ring F[x,y] with multivariate polynomials 

(with two variables) over the complex numbers with the lexicographic order 

 y x . The ideal in this particular example is generated from the polynomials 

that appear below: 

2
1 1f x y   and 2

2f xy x   

Here, the Gröbner basis is computed by using the Buchburger’s algorithm. Set 

 1 2,G f f  and compute the  1 2,S f f -polynomial.  

     
2 2 2 2

2 2
1 2 2 2
, 1

x y x y
S f f x y xy x

x y xy
     



 19

   2 2 21y x y x xy x x y       

The leading term of the  1 2,S f f  is 2x . The leading term of 1f  and 2f  is 2x y  and 

2xy , respectively. So,  1 2,S f f  cannot be reduced by these two polynomials. The 

G  is expanded, so that it becomes  1 2 3, ,G f f f  where 2
3f x y   and  1 3,S f f  

and  2 3,S f f  are computed. 

  2
1 3, 1S f f y  , which cannot be reduced by the set  1 2 3, ,G f f f . So the set  

 1 2 3 4, , ,G f f f f  is expanded, where 2
4 1f y  . 

  2 3
2 3,S f f x y   . Its leading term is 2x  which is divisible by the  3LT f .  The 

division of  2 3,S f f  by 3f  and then by 4f  results in: 

   2 3 3
2 3 3 3 4,S f f x y f y y f yf           

Now,  1 4 3,S f f f ,  2 4, 0S f f   and  3 4 3 4,S f f f yf   are also computed. Thus, 

one concludes that all these S-polynomials can be reduced by G. So, 

 1 2 3 4, , ,G f f f f  is a Gröbner basis of the ideal I . The reduced Gröbner basis is 

 2 2, 1G x y y   . Finally, the following system of equations is solved in order to 

find the solution. 

2

2

0

1 0

x y

y

 

 
 

The complete solution of this system is         1,1 , 1,1 , , 1 , , 1i i    . 

2. F4 and F5 Algorithms 

These two algorithms have their names from their creator, Jean Charles 

Faugere, and compute again a Gröbner basis. They can be viewed as an 

improved method of Buchburger’s algorithm. They are based on the same 

principles. In particular, the F4 algorithm instead of polynomial reduction uses 
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matrix reduction, while F5 uses matrix reduction, but each of these generated 

matrices is of full rank. This method is illustrated in the next example [4]. 

Example: Consider the polynomial ring  , ,R x y z , which includes 

polynomials with three variables in lexicographic order. We want to reduce the 

following polynomials: 

3
1 3 5f x yz xy   and 2 2

2 5 3 1f x z xy    

by the set of polynomials  1 2,g g , where 

1 2g xy z   and 2
2 3g x z yz  . 

To reduce 1f , with respect to  1 2,g g , the following reduction is performed: 

3
1 3 5f x yz xy   

                     2 2 2
16 5 3x z xy x z g    

                                       2 2
1 25 18 3 6xy yz x z g z g      

                                                  2 2
1 2 118 10 3 6 5yz z x z g z g g      

So, 1f  is reduced with respect to  1 2,g g  to 218 10yz z . 

The same procedure for 2f  is 

2 2
2 5 3 1f x z xy    

                  2
23 15 1 5xy yz z g     

                              2
2 115 6 1 5 3yz z z g g      

Thus 2f  is reduced to 215 6 1yz z   with respect to  1 2,g g . 
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The idea behind the F4 and F5 algorithms is to make these reductions as a 

matrix reduction. However, the reduction for both 1f  and 2f  requires reduction 

only with respect to  2
1x z g , 1g , and   2z g . Therefore, a matrix of coefficients is 

created.  

                    3 2 2 2 1x yz x z yz xy z  

1

2
2

1

1

2

1

f

f

x zg

g

zg

         

3 0 0 5 0 0

0 5 0 3 0 1

1 2 0 0 0 0

0 0 0 1 2 0

0 1 3 0 0 0

 
  
 
 

 
  

 

The reduction steps correspond to the row reduction of the first two rows, 

which represent the polynomials 1 2,f f  using the last three rows, which represent 

the    2
1 1 2, ,x z g g z g  polynomials. So, as a result of the reduction, the following 

matrix is derived. 

 

                     3 2 2 2 1x yz x z yz xy z  

1

2
2

1

1

2

1

f

f

x zg

g

zg

          

0 0 18 0 10 0

0 0 15 0 6 1

1 2 0 0 0 0

0 0 0 1 2 0

0 1 3 0 0 0

 
 
 
 
 

 
  

 

The first two rows of the reduced matrix give the reduction of 1 2,f f  with respect 

to 1 2,g g . Note, that this is the same result that was achieved with the 

Buchburger’s reduction. 
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3. Multiple Right Hand Sides (MRHS) Linear Equations Algorithm 

A different approach of algebraic attack not based on equations of 

polynomials will be examined. This presentation will utilize a special type of 

equation known as Multiple Right Hand Side Linear Equations. 

 

Definitions: 

1. A set of small-scale Variants of the AES denoted by SR(n,r,c,e) are 
defined, where 

 n is the number of rounds, 

 r is the number of rows in the rectangular arrangement of the input, 

 c is the number of columns in the rectangular arrangement of the 
output, 

 e is the number of bits in a “word.” 

Since we consider that e=8, the underlying finite field is GF(28) and all the 

matrices and vectors are over GF(2). 

2. Let X be a set of Boolean variables represented as a column 
vector. An equation of the form 

1 2, ,..., sAX a a a  

or 
 :i i iS A X L  

is called an MRHS system of linear equations if A is a matrix of 
size kxn and rank k and 1 2, ,..., sa a a  are column vectors of length k.  

 
3. A symbol S=(X,L) consists of an ordered set of variables X=X(S) 

and a list L=L(S) of Right Hand Sides [9] 

a. Agreeing Procedure 

One of the problems with applying algebraic attacks in a cipher is 

the difficulty of presenting practical examples, because the required time and 

memory requirements grow beyond the limitations of a typical workstation. 

Therefore, only small-scale variants of the different ciphers were performed. 
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After the completion of the rounds of AES, one can count the 

number of variables there are in the system in order to determine the algebraic 

equations that can describe the system. 

For example, the total number of variables for the AES, assuming 

8-bit words, is given by the following formula: 

8 8 8( 1)rc nr n rc    

Thus, for a complete AES the number of variables is 1600. This is large, if one 

wants to solve a system with so many non-linear polynomial equations. 

Figure 7 shows the bytes that are variables in a small-scale variant 

of the AES.  

 

 

Figure 7.   SR(3,4,4,8) equations variables (From [9]). 

The variables can be separated in two different categories. The first 

one includes all the bits that are derived after each S-box, except the last one 

that is considered as known, since the ciphertext is considered as a known for 

this algorithm. The second one is the 16 bytes of the initial key and after that, 

only the first column of each expansion key, since the first column is derived with 

the contribution of the S-box, while the three others are dependent on the first 

column, as it is shown in Figure 7 and described in the AddRoundKey 

transformation in Chapter I. 
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Consider two symbols: 

 :i i iS A X L   and  :j j jS A X L     

The matrices Li are of size kixsi. These symbols are derived from 

the bits that go in and out of each S-box, which are expressed as linear 

combinations of the variables. 

These two symbols agree if, for any 1 ia L , there exists an 2 ja L  

such that the linear system 

 

1

2

i

j

A a
X

A a

   
   
  

 

is consistent, and, conversely, for any  2 ja L , there exists an 1 ia L  such that 

the linear system is consistent. The steps for the application of this attack are as 

follows: 

 Define the matrices: 

0
, ,

0
i i

ij ji
jj

A L
A T T

LA

    
      

    
 with  i jt k k   rows. 

 Choose a nonsingular transform matrix U of size t t  such that the 
product UA  is a matrix with zeros in its last r rows. If r=0, then the 
symbols agree. 

 If r>0, then compute the matrices ijUT  and  jiUT . Let Prij  denotes 

the set of ijUT -column projections to the last r coordinates. If 

Pr Prij ji  the symbols agree. 

 If Pr Prij ji  then remove the columns from iL  whose image is not 

found in Pr Prij ji  and, similarly, the columns from jL  whose image 

is not found in  Pr Prij ji . One concludes with two new symbols 

whose equations are ' ':i i iS A X L     and ' ':j j jS A X L    . 

This procedure is repeated up to the point that all symbols agree. When the 

agreeing procedure is applied in a pair of symbols Si and Sj and the procedure is 
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continued with other symbols in the system, for example, kS , it is possible that 

the Si and Sk will disagree. This means that Si and Sj may disagree again after Si 

and Sk agree. So, the previous agreements have to be run through again and 

again. 

b. Gluing Procedure 

After the completion of the agreeing procedure, one may conclude 

that the system of equations does not have a solution. Therefore, a way to start 

the agreeing procedure again must be found. Here is where the gluing procedure 

comes into play. This method merges two symbols into one, bringing their joint 

information in the new symbol. The agreeing procedure is applied again with the 

new symbols, and is repeated until a unique solution is reached. The following 

example demonstrates how this works. Also, this step increases the complexity 

of the attack. 

c. Example 

1. Agreeing Procedure. We have two equations 

 1 1A X L  and  2 2A X L  in variables  1 2 3 4 5, , , ,X x x x x x : 

1

2

3

4

5

1 1 0 0 0 1 0 0 1

1 0 1 0 0 0 1 0 0

1 0 0 1 0 0 0 1 1

x

x

x

x

x

 
                     
  

   ,   

1

2

3

4

5

0 1 0 0 1 0 1 0 0

0 0 1 0 1 1 1 0 0

0 0 0 1 1 1 1 0 1

x

x

x

x

x

 
                     
  

 

By following the previously described procedure, the matrix A is: 

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

A

 
 
 
 

  
 
 
 
 

. 



 26

A non-singular matrix U for the transformation of A is: 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 1 0 1 1 0

1 0 1 1 0 1

U

 
 
 
 

  
 
 
 
 

. 

So,  

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

0 1 0 0 1

0 0 0 0 0

0 0 0 0 0

UA

 
 
 
 

  
 
 
 
 

. 

Then, r=2. 

Put now 

12

1 0 0 1

0 1 0 0

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

T

 
 
 
 

  
 
 
 
 

  and  21

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

1 1 0 0

1 1 0 1

T

 
 
 
 

  
 
 
 
 

 

and compute: 

12

1 0 0 1

0 1 0 0

0 0 1 1

0 0 0 0

1 1 0 1

1 0 1 0

UT

 
 
 
 

  
 
 
 
 

  and 21

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

1 0 0 0

1 0 0 1

UT

 
 
 
 

  
 
 
 
 

. 
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Looking at the last two rows of the above matrices, one defines: 

Pr12={(1,1),(1,0),(0,1)}, Pr21={(1,1),(0,0),(0,1)} 

Pr12∩Pr21={(1,1),(0,1)} 

One can observe that the second and the fourth column of 12UT  do not match 

with any column of 21UT . Therefore, these columns are removed. Similarly, the 

second and the third column of 21UT  should be removed for the same reason. 

In addition, two new symbols result,  

1

2

3

4

5

1 1 0 0 0 1 0

1 0 1 0 0 0 0

1 0 0 1 0 0 1

x

x

x

x

x

 
                     
  

   ,   

1

2

3

4

5

0 1 0 0 1 0 0

0 0 1 0 1 1 0

0 0 0 1 1 1 1

x

x

x

x

x

 
                     
  

 

that now agree. 

2. Gluing Procedure. Let B be the sub-matrix of UA in its 

last t-r nonzero rows. The gluing of the two previously agreed symbols is BX=[L], 

where each column of L is the sum of one column from UT12 and one from the 

UT21 with the same projection in its last r coordinates, reduced to the first t-r 

rows. 

For the above example, the gluing procedure yields: 

1

2

3

4

5

1 1 0 0 0 1 0

1 0 1 0 0 0 0

1 0 0 1 0 0 1

0 1 0 0 1 0 0

x

x

x

x

x

 
    
    
     
    
    
     

 

This MRHS system of linear equations contains the information of the first two 

different symbols. 
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d. From MRHS to Linear Equations 

In order to derive the ordinary linear equations (unique right hand 

side) from the MRHS linear equations, the L matrix is triangulated with a row 

transformation. An upper-triangular matrix with zeros in its last r1≥0 rows is 

sought, from where to take r1 homogeneous equations. There may also be non-

homogeneous equations with ones in the whole row of L. In the above example, 

the triangulation of L results in the following symbol: 

 

1

2

3

4

5

1 1 0 0 0 1 0

0 1 0 1 0 1 1

1 0 1 0 0 0 0

0 1 0 0 1 0 0

x

x

x

x

x

 
    
    
     
    
    
     

, 

which is equivalent with the three following linear equations and the two initial 

MRHS linear equations [5]: 

2 4

1 3

2 5

1

0

0

x x

x x

x x

 
 
 

 

4. Algorithms’ Complexities and Comparison 

This section compares the complexities of the previously described 

algorithms.  

The Buchberger’s algorithm time complexity is related to the total degree 

of all the intermediate polynomials that are generated by the algorithm. In 

essence, this algorithm can have double exponential complexity. In particular, 

considering the AES equation system over  82GF , the complexity of 

Buchburger’s algorithm is, at worst, single exponential [4]. 

The F4 and F5 algorithms are different approaches for the computation of a 

Gröbner basis. Since the Buchberger’s algorithm involves polynomial reductions, 
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which take place sequentially, while F4 and F5 use matrix reductions, it seems 

logical that F4 and F5 will be faster. The F5 algorithm is even better than the F4 

because it uses only full rank matrices. 

The complexity of the MRHS algorithm is very difficult to specify since the 

different parameters that can be used, such as the number of rounds, the 

number of rows and columns, etc, make it very complicated. However, this 

algorithm seems to be much better than the previous ones, since the required 

time to solve equations from the AES is much smaller [5]. 
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III. COMPUTATIONAL EXPERIMENTS 

A. METHODOLOGY 

This chapter will explain how the MRHS method was applied by using 

different equations that were generated with the code shown in Appendix B.  The 

parameters of this small-scale variant of AES were determined: the number of 

rounds (0<Nr<10), the number of the rows and the columns in the rectangular 

arrangement of the input (0<Nb<4), and the number of bits in each word (2, 4, 8). 

In addition, a random plaintext and an initial key were chosen, which have 

lengths that correspond to the number of columns and rows of the states and 

with the number of bits in the words as well. These texts are expressed in 

hexadecimal notation. After that, the MRHS Linear Equations method was used 

to try to solve this system. 

Initially, the agreeing procedure was implemented to see if some linear 

equations could be extracted just by applying this procedure. If the number of 

linear equations that resulted was equal to the number of variables in the system, 

then the procedure would be stopped since there would be a unique solution for 

the system. If the number of linear equations extracted from the agreeing 

procedure was less than the number of variables, the gluing procedure was 

performed, in which the maximum number of Right Hand Sides (RHS) in the 

glued equations is specified.  Then another attempt was made to extract some 

linear equations.  In order to have a unique solution, it is necessary to have a 

sum of linear equations equal to the number of variables. 

B.  RESULTS 

Some simple examples of the procedure described above are shown 

below. 
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1. Example 1 

In this example, a system was created with two rounds, two rows and two 

columns, in the rectangular arrangement of the input and 2-bit words. The 

system has also a plaintext fa (in hexadecimal notation), which corresponds to 

11111010 in binary notation, and a key ea (in hexadecimal notation), which 

corresponds to 11101010 in binary notation. The system of equations appears 

below, starting with the number of bit variables and the number of MRHS 

equations. Each MRHS equation appears as the number of rows, the number of 

RHS, the rows of Ai and the columns of Li. The first four symbols are from the key 

schedule, the next four from round 1, and the last four from round 2. 

  24  12 

 4 4 

000000100000000000000000 

000000010000000000000000 

100000001000000000000000 

010000000100000000000000 

0011 

0110 

1000 

1101 

 4 4 

000010000000000000000000 

000001000000000000000000 

001000000010000000000000 

000100000001000000000000 

0010 

0111 

1001 

1100 

 4 4 

000000100010000000000000 

000000010001000000000000 

000000001000100000000000 

000000000100010000000000 
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0000 

0101 

1011 

1110 

 4 4 

000010001000000000000000 

000001000100000000000000 

000000000010001000000000 

000000000001000100000000 

0010 

0111 

1001 

1100 

 4 4 

100000000000000000000000 

010000000000000000000000 

000000000000000010000000 

000000000000000001000000 

0010 

0111 

1001 

1100 

 4 4 

000000100000000000000000 

000000010000000000000000 

000000000000000000100000 

000000000000000000010000 

0010 

0111 

1001 

1100 

 4 4 

000010000000000000000000 

000001000000000000000000 

000000000000000000001000 

000000000000000000000100 
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0010 

0111 

1001 

1100 

 4 4 

001000000000000000000000 

000100000000000000000000 

000000000000000000000010 

000000000000000000000001 

0010 

0111 

1001 

1100 

 4 4 

000000001000000001110000 

000000000100000011100000 

000000000000100000000000 

000000000000010000000000 

0001 

0100 

1010 

1111 

 4 4 

000000100010000000001101 

000000010001000000001011 

000000000000001000000000 

000000000000000100000000 

0010 

0111 

1001 

1100 

 4 4 

000010001000000000000111 

000001000100000000001110 

000010001000100000000000 

000001000100010000000000 
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0010 

0111 

1001 

1100 

 4 4 

000000000010000011010000 

000000000001000010110000 

000000100010001000000000 

000000010001000100000000 

0000 

0101 

1011 

1110 

now: neq = 12 ; nlink = 0 ; linbank = 0 
 

Let us explain the above shown result. The “neq” is the number of MRHS 

Linear Equations we have up to that point. The “linbank” (linear bank) is the 

notation, which shows the number of the ordinary linear equations that have 

extracted after the application of the agreeing or gluing procedures. 

The above system has at the beginning 24 variables combined in 12 

MRHS linear equations. Before the application of the agreeing procedure, we 

cannot extract any ordinary linear equation. That is why we see in the above 

result that we have 0 number of linear equation in our linear bank (linbank).  

This system of equations was used as input in the code “mrhs,” which is 

shown in Appendix B. After the agreeing procedure, we conclude with zero 

MRHS linear equations and 22 new ordinary linear equations, which appear 

below. 

                     0 +   8 +  20 +  21 +  23 = 0 

   0 +   1 +   2 +   8 +   9 +  10 +  21 +  22 = 0 

                                            21 = 0 

                                 2 +  10 +  20 = 0 

                     1 +   2 +   9 +  10 +  19 = 0 

                                 0 +   8 +  18 = 0 
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                     0 +   2 +   8 +  10 +  17 = 0 

                                 0 +   8 +  16 = 0 

                                            15 = 0 

         0 +   1 +   2 +   8 +   9 +  10 +  14 = 0 

                     0 +   2 +   8 +  10 +  13 = 0 

                     1 +   2 +   9 +  10 +  12 = 0 

                     1 +   2 +   9 +  10 +  11 = 0 

                                 2 +   8 +  10 = 0 

                     0 +   1 +   2 +   8 +   9 = 0 

                                             8 = 1 

                                       2 +   7 = 0 

                                       0 +   6 = 0 

                                             5 = 0 

                                             4 = 0 

                                 0 +   2 +   3 = 0 

                                             1 = 0 

now: neq = 0 ; nlink = 0 ; linbank = 22 

The numbers that appear in the above system of ordinary linear equations 

represent the number of the variable in our initial system, i.e., 0. 

The matrix form of the above ordinary linear equations is shown below: 

001100000000000000000001 

001000000000000000000010 

000011000000000000000100 

000010000000000000001000 

000000110000000000010000 

000000100000000000100000 

110000000000000001000000 

100000000000000010000000 

000011001101000100000000 

000010001010001000000000 

000000110111010000000000 

000000101010100000000000 

000111000001000000000000 

001010000010000000000000 

110000011100000000000000 
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100000101000000000000000 

111010110000000000000000 

001101100000000000000000 

111111000000000000000000 

010010000000000000000000 

111100000000000000000000 

010000000000000000000000 

0101010101000101000000 
 

The last row represents the Right Hand Side, which has only 22 elements, 

meaning that there are two free variables. The same thing can be easily 

observed from the reduced matrix of the coefficients of the variables. That 

particular system cannot have a unique solution. The possible solutions of this 

system appear below. 

010000000000000000000000 0 

101100000000000000000000 0 

000010000000000000000000 0 

000001000000000000000000 0 

100000100000000000000000 0 

001000010000000000000000 0 

000000001000000000000000 1 

101000000100000000000000 1 

001000000010000000000000 1 

101000000001000000000000 0 

101000000000100000000000 0 

100000000000010000000000 0 

001000000000001000000000 1 

000000000000000100000000 0 

100000000000000010000000 1 

100000000000000001000000 0 

100000000000000000100000 1 

101000000000000000010000 0 

000000000000000000001000 1 

000000000000000000000100 0 

001000000000000000000010 1 
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100000000000000000000001 0 

 

free: 

    0    2 

 

 

solutions: 

?0??00??1??????0????10?? 

000000001110001010101010 

100100101011111001011011 

001100011001100010111000 

101000111100010001001001 
 

Therefore, the variables x0 and x2 are free variables, as it is appeared in 

the code above. Additionally, we have a depiction of the four different solutions at 

the end, which means that this particular system has four different keys for one 

plaintext and ciphertext. In that example, where we have a small-scale variant of 

the AES with two rounds, two rows and two columns in the rectangular 

arrangement of the input and two-bit words, the algorithm cannot give a unique 

solution.  

This is a surprising result, as we mentioned in the introduction. We have a 

specific plaintext, which is encrypted by using a specific key. In our attempt to 

break the algorithm and to extract the initial plaintext from the ciphertext, we 

expect to recover the initial key. Instead, solving the system of the MRHS Linear 

Equations, we found four different keys that can decrypt that ciphertext to get the 

correct plaintext. 

One thing that one could suppose is that some other linear equations 

could be extracted in order to solve this problem, by applying a different plaintext 

with the same key. At first glance, it can be seen that the ordinary linear 

equations are different from the previous ones. However, if the matrix of the 

coefficients of the variables is reduced, we conclude exactly in the same set of 

linear equations as before. Therefore, such a system has a non-unique solution. 
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2. Example 2 

The second example is one with a unique solution. The parameters of this 

system are one round, two rows, and two columns in the rectangular 

arrangement of the input and four bit words. 

The system, which appears below, has 24 variables and six MRHS linear 

equations. Therefore, in order to end up with a unique solution, it is necessary to 

find 24 ordinary linear equations. 

  24  6 

 8 16 

000001000000000000000000 

000100000000000000000000 

001000000000000000000000 

000110000000000000000000 

010000000000000000000000 

011111010000000000000000 

011011100000000000000000 

111011100000000000000000 

10000000 

01000000 

10100000 

11110000 

00001000 

11001100 

10101100 

01101100 

00010110 

11000101 

10110101 

11100110 

00001101 

01011010 

00101101 

01101110 

 8 16 
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000000000100000000000000 

000000010000000000000000 

000000100000000000000000 

000000011000000000000000 

000001000000000000000000 

000000110001000000000000 

000000100010000000000000 

000010000000000000000000 

10000000 

01000000 

10100000 

11110000 

00001000 

11001100 

10101010 

01101010 

00010111 

11000011 

10110011 

11100001 

00001101 

01011011 

00101101 

01101001 

 8 16 

000000000000001000000000 

000000000001000000000000 

000000000010000000000000 

000000000001100000000000 

000000000100000000000000 

000000000011000100000000 

000000000100110000000000 

000000001000000000000000 

10000000 

11000000 

00100000 
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01110000 

10001000 

11001100 

10101010 

11101010 

00010101 

01000011 

10110011 

01100011 

10001101 

01011001 

00101101 

01101011 

 8 16 

100000000000000000000000 

100100000000000000000000 

101000000000000000000000 

100100000000000010000000 

110000000000000000000000 

001100000000000000010000 

001000000000000000100000 

011000000000000011100000 

10000000 

11000000 

10100000 

11110000 

10001000 

11001100 

10101010 

11101010 

01101111 

00111010 

01001010 

00011001 

01110100 

00100011 
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01010100 

00010001 

 8 16 

000000000000000000000100 

000000010000000000010000 

000000100000000000100000 

000000010000000000011000 

000001000000000001000000 

000000110000000000110001 

000001100000000001101110 

000011100000000011101110 

10000000 

01000000 

10100000 

11110000 

00001000 

11001100 

10101000 

01101000 

00010110 

11000001 

10110001 

11100010 

00001101 

01011010 

00101101 

01101010 

 8 16 

000000000000010000000000 

000000000001000000000001 

000000000010000000000010 

000000000001100000000001 

000000000100000000000100 

000000000011000100000011 

000000000110111000000110 

000000001110111000001110 



 43

10000000 

01000000 

10100000 

11110000 

00001000 

11001100 

10101000 

01101000 

00010110 

11000001 

10110001 

11100010 

00001101 

01011010 

00101101 

01101010 

now: neq = 6 ; nlink = 0 ; linbank = 0 

 

In this case, we tried to extract some ordinary linear equations directly 

from the initial system of the six MRHS Linear Equations, without any result. After 

the agreeing algorithm is applied, there is still no linear equation in the linear 

bank. As we said before, “linbank” (Linear bank) is the name of the place in the 

computer program where all the ordinary linear equations, that are extracted from 

the different procedures, are saved. This means that many times the agreeing 

procedure has no result, if it is applied alone in such a system of MRHS Linear 

Equations. Here is where the gluing procedure is performed. In this particular 

example, we observe that exactly 24 different ordinary linear equations are 

extracted, which are shown below. 

 
 

         4 +  23 = 0 

         4 +  22 = 0 

         4 +  21 = 0 

         4 +  20 = 0 
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              19 = 0 

        17 +  18 = 0 

              17 = 0 

              16 = 0 

         4 +  15 = 0 

              14 = 0 

         4 +  13 = 0 

              12 = 0 

         4 +  11 = 0 

              10 = 0 

         4 +   9 = 0 

         4 +   8 = 0 

   4 +   6 +   7 = 0 

         4 +   6 = 0 

               5 = 0 

         3 +   4 = 0 

               3 = 1 

               2 = 0 

               1 = 0 

               0 = 0 

now: neq = 0 ; nlink = 0 ; linbank = 24 

As we mentioned before, we conclude in zero MRHS Linear Equations 

and 24 ordinary linear equations (“linbank=24”). 

In a matrix form, these are: 

24  0 

 linear eqs (24): 

 24 1 

000010000000000000000001 

000010000000000000000010 

000010000000000000000100 

000010000000000000001000 

000000000000000000010000 

000000000000000001100000 

000000000000000001000000 

000000000000000010000000 
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000010000000000100000000 

000000000000001000000000 

000010000000010000000000 

000000000000100000000000 

000010000001000000000000 

000000000010000000000000 

000010000100000000000000 

000010001000000000000000 

000010110000000000000000 

000010100000000000000000 

000001000000000000000000 

000110000000000000000000 

000100000000000000000000 

001000000000000000000000 

010000000000000000000000 

100000000000000000000000 

000000000000000000001000 
 

In addition, the unique solution of this system is: 
 

100000000000000000000000 0 

010000000000000000000000 0 

001000000000000000000000 0 

000100000000000000000000 1 

000010000000000000000000 1 

000001000000000000000000 0 

000000100000000000000000 1 

000000010000000000000000 0 

000000001000000000000000 1 

000000000100000000000000 1 

000000000010000000000000 0 

000000000001000000000000 1 

000000000000100000000000 0 

000000000000010000000000 1 

000000000000001000000000 0 

000000000000000100000000 1 

000000000000000010000000 0 
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000000000000000001000000 0 

000000000000000000100000 0 

000000000000000000010000 0 

000000000000000000001000 1 

000000000000000000000100 1 

000000000000000000000010 1 

000000000000000000000001 1 

 

free: 

 

solutions: 

000110101101010100001111 
 

There are no free variables. Therefore, it is a unique solution, as it 

appears above. 

From the two examples above, we saw how the algebraic attack method 

of MRHS Linear Equations works. The many experiments that were tested for 

this thesis were mostly successful for a small variant of the AES. The parameters 

of the system that were used were at most four rounds, with four rows and 

columns and 8-bit words instead of 10 rounds that the original AES algorithm 

uses. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

This work has shown that the new method of breaking the Rijndael 

algorithm with the algebraic representation of a system with Multiple Right Hand 

Sides linear equations is quite effective. It is comparatively effective because by 

using other algebraic methods, such as the Buchberger’s and the F4 – F5 

algorithms, it was impossible to find a solution for some very simple systems. In 

particular, a small version of the AES with 5 rounds and 1 row and 1 column in 

the rectangular arrangement of the input, could not be solved with the older 

algebraic methods [5]. Moreover, a system with 4 rounds and 1 row and 1 

column in the rectangular arrangement of the input, took 20286.18 seconds to be 

solved by the standard algebraic methods [5]. The MRHS method solved this 

problem in only 0.032 seconds [5].  

In Chapter II, we saw that the new method seems to be much better than 

the other algebraic methods in terms of complexity. As mentioned before, due to 

the different parameters that this algorithm can have, (different number of 

rounds, rows and columns) it is very complicated to specify an exact complexity. 

According to the real parameters of the AES, our test cannot be considered very 

realistic, since the values of the parameters of the original AES are bigger. 

Nevertheless, by comparing the complexities in terms of the time consumed for a 

small-scale variant to be solved, we conclude that it is worthwhile to further 

develop and improve this method. 

The AES, as we explained in the beginning, is a standard in order to 

secure federal information. With MRHS Linear Equations, we concluded that we 

can break a small-scale variant of this system. We cannot say that the AES is at 

risk, but we can say for sure that this new method gives new perspectives in the 

field of cryptanalysis that may put the AES algorithm at risk. 

For example, one new detail in this thesis, is the application of our codes 

in many different experiments with different parameters. In particular, instead of 
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the 8-bit field that professors Håvard Raddum and Igor Semaev used, we 

executed some experiments in the 2-bit and 4-bit fields, that is original. From 

that, we discovered a result very important in terms of cryptanalysis. There are 

some cases where (a small variant of) the Rijndael algorithm can have multiple 

solutions. We demonstrated that in the 2-bit field. However, it may be valid 

though more difficult of course, even in the 8-bit field, which might reduce the 

effectiveness of the algorithm. This means that we may have to be cautious 

when we choose the encryption keys, because multiple decryption keys would 

make it easier to break the algorithm and further to decrypt and reveal important 

federal information. 

In conclusion, our first goal was to create the code, which could solve a 

small-scale variant of the AES. Based on the codes of Professors Raddum and 

Semaev, we reached this point. In a few cases, a unique solution of a small-scale 

variant of the AES resulted. However, the small AES algorithm has some 

weaknesses, which consist of the fact that some systems cannot uniquely be 

solved, even if different plaintexts with the same initial key are applied. 

The complexity of this algorithm is the area that needs to be improved in 

future research. The reduction of the complexity by a significant factor could 

upgrade the MRHS algorithm to a very effective algebraic attack method against 

new very strong cryptographic algorithms. This reduction could be achieved by 

reducing either the number of the agreeings between the symbols or the 

numbers of gluings which adds more complexity in the whole algorithm. One way 

to achieve that could be the simultaneous agreeing of more than two symbols, 

which may require a smaller number of necessary gluings for the extraction of 

the ordinary linear equations. In that way, we could break an AES algorithm with 

parameters of greater value. 



 49

APPENDIX A 

(These codes are only intended for experiments with the MRHS method, 

and neither their author nor the author of this thesis takes any responsibility for 

their use) 

1. BASIS.h (by Havard Raddum and Igor Semaev) 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
typedef unsigned int u32; 
typedef unsigned char u8; 
 
#define MAXINT 2147483647 
#define EPSILON 0.001 
#define log2(x) ( 1.442695040888963407359924681 * log(x) )  // !! 
changed for bcc - DC 
 
int NVAR, NWORDS; 
 
u8 
weight[256]={0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,
4,4,5,1,2,2,3,2,3,3,4, 
 
 2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2
,3,3,4,3,4,4,5, 
 
 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3
,4,4,5,4,5,5,6, 
 
 4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3
,4,4,5,4,5,5,6, 
 
 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2
,3,3,4,3,4,4,5, 
 
 3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4
,5,5,6,5,6,6,7, 
  4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8}; 
 
struct bitVector{ 
  u32 *v; 
  int length, wl; 
}; 
 
struct eqSymbol{ 
  int nlin, nrhs, nw, nn, eqnr, originalNRHS; 
  u32 **A, **b, **coverID; 
  u8 *RHSexists, delSinceExtract; 
  struct linkSymbol **link; 
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}; 
 
struct linkSymbol{ 
  int ncells, *nCover[2], linknr; 
  struct eqSymbol *nlist[2]; 
  struct bitVector *cellID; 
  u8 *cellExists; 
}; 
 
struct system{ 
  int neq, nlink; 
  struct eqSymbol *E, *linbank; 
  struct linkSymbol *L; 
}; 
 
int ww(u32 *word, int n){ 
  int i, j, w=0; 
 
  for(i=0; i<n; ++i){ 
    w+=weight[word[i]&0xff]; 
    w+=weight[(word[i]>>8)&0xff]; 
    w+=weight[(word[i]>>16)&0xff]; 
    w+=weight[word[i]>>24]; 
  } 
 
  return w; 
} 
 
double averageNRHS(struct system *S){ 
  int i, totnrhs=0; 
 
  if(S->neq==0) 
    return 0.0; 
  for(i=0; i<S->neq; ++i) 
    totnrhs+=S->E[i].nrhs; 
 
  return (double)(totnrhs)/(double)(S->neq); 
} 
 
int smallestSetBit(u32 *M, int ncw){ 
  int j=0, m=0; 
  u32 w; 
 
  while(j<ncw && !M[j]){ 
    j++; 
    m+=32; 
  } 
  if(j==ncw) 
    return -1; 
  w=M[j]; 
  for(j=4; j>=0; --j){ 
    if(!(w&((1<<(1<<j))-1))){ 
      m+=(1<<j); 
      w>>=(1<<j); 
    } 
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  } 
 
  return m; 
} 
 
int largestSetBit(u32 *M, int ncw){ 
  int j, m; 
  u32 w; 
 
  j=ncw-1; 
  m=(ncw<<5)-1; 
  while(j>=0 && !M[j]){ 
    j--; 
    m-=32; 
  } 
  if(j==-1) 
    return -1; 
  w=M[j]; 
  for(j=4; j>=0; --j){ 
    if(!(w&(((1<<(1<<j))-1)^0xffffffff)))//no set bit in upper remaning 
half 
      m-=(1<<j); 
    else 
      w>>=(1<<j); 
  } 
  return m; 
} 
u8 v0GreaterThanV1(struct bitVector v0, struct bitVector v1){ 
  int i; 
 
  if(v0.length!=v1.length)printf("(v0GreaterThanV1)Uncomparable bit-
strings, v0.length=%d, v1.length=%d!\n", 
     v0.length,v1.length); 
  i=v0.wl-1; 
  while(i>=0 && !(v0.v[i]^v1.v[i])) 
    i--; 
  if(i>=0 && v0.v[i]>v1.v[i]) 
    return 1; 
  else 
    return 0; 
} 
 
u8 v0EqualV1(struct bitVector v0, struct bitVector v1){ 
  int i; 
 
  if(v0.length!=v1.length)printf("(v0EqualV1)Uncomparable bit-strings, 
v0.length=%d, v1.length=%d!\n", 
     v0.length,v1.length); 
  i=v0.wl-1; 
  while(i>=0 && !(v0.v[i]^v1.v[i])) 
    i--; 
  if(i<0) 
    return 1; 
  else 
    return 0; 
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} 
 
void mergeSortBitVectors(struct bitVector *vl, int nil){ 
  int i, j, t, na, nb; 
  struct bitVector tmp, *ml, *vlb; 
 
  if(nil==1) 
    return; 
  if(nil==2){ 
    if(v0GreaterThanV1(vl[0],vl[1])){ 
      tmp=vl[0]; 
      vl[0]=vl[1]; 
      vl[1]=tmp; 
    } 
    return; 
  } 
  na=nil/2; 
  nb=nil-na; 
  vlb=vl+na; 
  mergeSortBitVectors(vl,na); 
  mergeSortBitVectors(vlb,nb); 
  ml=(struct bitVector *)malloc(nil*sizeof(struct bitVector)); 
  t=i=j=0; 
  while(i<na && j<nb){ 
    if(v0GreaterThanV1(vl[i],vlb[j])) 
      ml[t++]=vlb[j++]; 
    else 
      ml[t++]=vl[i++]; 
  }//lists merged 
  if(i<na){ 
    for(j=i; j<na; ++j) 
      ml[t++]=vl[j]; 
  } 
  else{ 
    for(i=j; i<nb; ++i) 
      ml[t++]=vlb[i]; 
  }//remainder of unfinished list copied 
  for(i=0; i<nil; ++i) 
    vl[i]=ml[i]; 
  //copied back to vl 
} 
 
void printLinComb(u32 *l, int nvar){ 
  int i; 
 
  for(i=0; i<nvar; ++i){ 
    if(l[i>>5]&(1<<(i&0x1f))) 
      printf("%3d + ",i); 
  } 
  printf("\b\b\n"); 
} 
 
void printEquation(struct eqSymbol *eq){ 
  /* Prints the equation to the screen, includes up to 16 righ-hand 
sides */ 
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  int i, j, maxnv=0, nv, nr, nwritten; 
 
  if(eq->nrhs>16) 
    nr=16; 
  else 
    nr=eq->nrhs; 
  for(i=0; i<eq->nlin; ++i){ 
    nv=ww(eq->A[i],NWORDS); 
    if(nv>maxnv) 
      maxnv=nv; 
  } 
  printf("========= Equation %d ================================\n",eq-
>eqnr); 
  for(i=0; i<eq->nlin; ++i){ 
    nv=ww(eq->A[i],NWORDS); 
    for(j=0; j<maxnv-nv; ++j) 
      printf("      "); 
    for(j=0; j<NVAR; ++j){ 
      if(eq->A[i][j>>5]&(1<<(j&0x1f))) 
 printf(" %3d +",j); 
    } 
    printf("\b="); 
    nwritten=0; 
    for(j=0; j<eq->originalNRHS; ++j){ 
      if(eq->RHSexists[j]){ 
 if(eq->b[j][i>>5]&(1<<(i&0x1f))) 
   printf(" 1 |"); 
 else 
   printf(" 0 |"); 
 nwritten++; 
 if(nwritten==nr) 
   j=eq->originalNRHS; 
      } 
    } 
    printf("\b\n\n"); 
  } 
  printf("%d right hand sides in total\n",eq->nrhs); 
  printf("\nLinked to %d other equations\n",eq->nn); 
  printf("RHS index - "); 
  nwritten=0; 
  for(i=0; i<eq->originalNRHS; ++i){ 
    if(eq->RHSexists[i]){ 
      printf(" %2d ",i); 
      nwritten++; 
      if(nwritten==nr) 
 i=eq->originalNRHS; 
    } 
  } 
  printf("\ncoverID"); 
  for(i=0; i<eq->nn; ++i){ 
    printf("\nLink %2d     ",i); 
    nwritten=0; 
    for(j=0; j<eq->originalNRHS; ++j){ 
      if(eq->RHSexists[j]){ 
 printf(" %2d ",eq->coverID[i][j]); 
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 nwritten++; 
 if(nwritten==nr) 
   j=eq->originalNRHS; 
      } 
    } 
  } 
  printf("\n======================================================\n"); 
} 
 
void printLink(struct linkSymbol *ls){ 
  /* Prints the link to the screen */ 
  int i, c0, c1; 
 
  printf("============== Link %d ========================\n",ls-
>linknr); 
  printf("Link with %d cells\n",ls->ncells); 
  if(ls->ncells<=32){ 
    printf("\n       "); 
    for(i=0; i<ls->ncells; ++i) 
      printf(" %2d ",i); 
    printf("\nExists "); 
    for(i=0; i<ls->ncells; ++i){ 
      if(ls->cellExists[i]) 
 printf("  x "); 
      else 
 printf("    "); 
    } 
    printf("\nnCover0"); 
    for(i=0; i<ls->ncells; ++i) 
      printf(" %2d ",ls->nCover[0][i]); 
    printf("\nnCover1"); 
    for(i=0; i<ls->ncells; ++i) 
      printf(" %2d ",ls->nCover[1][i]); 
  } 
  else{ 
    c0=ls->nCover[0][0]; 
    c1=ls->nCover[1][0]; 
    for(i=1; i<ls->ncells; ++i){ 
      if(c0!=ls->nCover[0][i] || c1!=ls->nCover[1][i]){ 
 printf("\nUnbalanced link\n"); 
 i=ls->ncells; 
      } 
    } 
  } 
  printf("\n\nLinks together equations %d and %d of dimensions %d and 
%d\n", 
      ls->nlist[0]->eqnr,ls->nlist[1]->eqnr,ls->nlist[0]->nlin,ls-
>nlist[1]->nlin); 
  printf("===================================================\n"); 
} 
 
void printLinEquation(struct eqSymbol *eq, int start, int stopp){ 
  int i, j, nv, maxnv=0; // !! added init , maxnv; 
 
  for(i=start; i<stopp; ++i){ 
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    nv=ww(eq->A[i],NWORDS); 
    if(nv>maxnv) 
      maxnv=nv; 
  } 
  printf("========= Linear Equation =====================\n",eq->eqnr); 
  for(i=start; i<stopp; ++i){ 
    nv=ww(eq->A[i],NWORDS); 
    for(j=0; j<maxnv-nv; ++j) 
      printf("      "); 
    for(j=0; j<NVAR; ++j){ 
      if(eq->A[i][j>>5]&(1<<(j&0x1f))) 
 printf(" %3d +",j); 
    } 
    printf("\b="); 
    if(eq->b[0][i>>5]&(1<<(i&0x1f))) 
      printf(" 1\n"); 
    else 
      printf(" 0\n");   
  } 
} 
 
void deleteEquation(struct eqSymbol *eq){ 
  /* Frees all allocated memory in eq not associated to links. */ 
  int i; 
 
  for(i=0; i<eq->originalNRHS; ++i){ 
    if(eq->RHSexists[i]) 
      free(eq->b[i]); 
  } 
  free(eq->b); 
  for(i=0; i<eq->nlin; ++i) 
    free(eq->A[i]); 
  free(eq->A); 
  free(eq->RHSexists); 
} 
 
void deleteSystem(struct system *S){ 
  int i; 
 
  for(i=0; i<S->neq; ++i) 
    deleteEquation(S->E+i); 
  deleteEquation(S->linbank); 
} 
 
void Uxb(u32 **U, int nr, int nc, u32 *b, u32 *x){ 
  /* computes U times b, where U has nr rows and nc columns.  Stores 
     result in x */ 
  int i, j, ncw, nrw; 
  u32 *w; 
 
  ncw=(nc+31)>>5; 
  nrw=(nr+31)>>5; 
  w=(u32 *)malloc(ncw*sizeof(u32)); 
  for(i=0; i<nrw; ++i) 
    x[i]=0; 
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  for(i=0; i<nr; ++i){ 
    for(j=0; j<ncw; ++j) 
      w[j]=U[i][j]&b[j]; 
    if(ww(w,ncw)&1) 
      x[i>>5]|=(1<<(i&0x1f)); 
  } 
  free(w); 
} 
 
void UAX(u32 **U, u32 **A, u32 **nyA, int nl, int ncw){ 
  /* Multiplies the matrices U and A, stores result in nyA */ 
  int i, j, k, *bpos, hw; 
 
  bpos=(int *)malloc(nl*sizeof(int)); 
  for(i=0; i<nl; ++i){ 
    hw=0; 
    for(j=0; j<nl; ++j){ 
      if(U[i][j>>5]&(1<<(j&0x1f))) 
 bpos[hw++]=j; 
    }//found positions where U[i] has 1-bits 
    for(j=0; j<ncw; ++j){ 
      for(k=0; k<hw; ++k) 
 nyA[i][j]^=A[bpos[k]][j]; 
    } 
  } 
} 
 
int rank(u32 **M, int nr, int nc){ 
  /* Returns the rank of M */ 
  int rank, i, j, k, sb, minsb, r, ncw; 
  u32 **cM, *tmp; 
 
  ncw=(nc+31)>>5; 
  cM=(u32 **)malloc(nr*sizeof(u32)); 
  for(i=0; i<nr; ++i){ 
    cM[i]=(u32 *)malloc(ncw*sizeof(u32)); 
    for(j=0; j<ncw; ++j) 
      cM[i][j]=M[i][j]; 
  } 
  for(i=0; i<nr; ++i){ 
    minsb=nc; 
    for(j=i; j<nr; ++j){ 
      sb=smallestSetBit(cM[j],ncw); 
      if(sb!=-1 && sb<minsb){ 
 r=j; 
 minsb=sb; 
      } 
    } 
    if(minsb==nc){ 
      for(j=0; j<nr; ++j) 
 free(cM[j]); 
      free(cM); 
      return i; 
    } 
    if(r>i){ 
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      tmp=cM[i]; 
      cM[i]=cM[r]; 
      cM[r]=tmp; 
    } 
    for(j=i+1; j<nr; ++j){ 
      if(cM[j][minsb>>5]&(1<<(minsb&0x1f))){ 
 for(k=0; k<ncw; ++k) 
   cM[j][k]^=cM[i][k]; 
      } 
    } 
  } 
  for(i=0; i<nr; ++i) 
    free(cM[i]); 
  free(cM); 
  return nr; 
} 
 
int computeU(struct eqSymbol *eq0, struct eqSymbol *eq1, u32 **U){ 
  /* Computes U such that UM is triangularized, where M is the 
   concatenation of the matrices in eq0 and eq1.  Returns the 
   dimension of the shared subspaces of eq0 and eq1. */ 
  int i, j, k, b, minb, r, enord, uw, rank, sumnl; 
  u32 *tmp, enmask, **M; 
 
  sumnl=eq0->nlin+eq1->nlin; 
  M=(u32 **)malloc(sumnl*sizeof(u32 *)); 
  for(i=0; i<sumnl; ++i){ 
    M[i]=(u32 *)malloc(NWORDS*sizeof(u32)); 
    if(i<eq0->nlin){ 
      for(j=0; j<NWORDS; ++j) 
 M[i][j]=eq0->A[i][j]; 
    } 
    else{ 
      for(j=0; j<NWORDS; ++j) 
 M[i][j]=eq1->A[i-eq0->nlin][j]; 
    } 
  } 
  rank=sumnl; 
  uw=(sumnl+31)>>5; 
  for(i=0; i<sumnl; ++i){ 
    U[i]=(u32 *)calloc(uw,sizeof(u32)); 
    U[i][i>>5]|=(1<<(i&0x1f)); 
  } 
  //U is identity-matrix 
  for(i=0; i<sumnl; ++i){ 
    minb=MAXINT; 
    for(j=i; j<sumnl; ++j){ 
      b=smallestSetBit(M[j],NWORDS); 
      if(b!=-1 && b<minb){ 
 r=j; 
 minb=b; 
 if(minb==i)//no need to search further 
   j=sumnl; 
      } 
    } 
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    if(minb==MAXINT){//only all-zero rows remaining 
      rank=i; 
      i=sumnl; 
    } 
    else{ 
      if(r>i){//need to swap rows 
 tmp=M[i]; 
 M[i]=M[r]; 
 M[r]=tmp; 
 tmp=U[i]; 
 U[i]=U[r]; 
 U[r]=tmp; 
      } 
      enmask=1<<(minb&0x1f); 
      enord=minb>>5; 
      for(j=i+1; j<sumnl; ++j){//making 0's under leading 1 
 if(M[j][enord]&enmask){ 
   for(k=0; k<NWORDS; ++k) 
     M[j][k]^=M[i][k]; 
   for(k=0; k<uw; ++k) 
     U[j][k]^=U[i][k]; 
 } 
      } 
    } 
  }  
  for(i=0; i<sumnl; ++i) 
    free(M[i]); 
  free(M); 
 
  return sumnl-rank; 
} 
 
u8 checkSolution(struct system *S, u8 *val){ 
  /* Returns 1 if val is a solution to S, 0 if not. 
     Prints out the equation number of equations not satisfied. val[i] 
is assigned to variable i.*/ 
  int i, j; 
  u32 *propRHS; 
  struct eqSymbol *eq;  
  u8 bit, funnet, rv=1; 
 
 
  propRHS=(u32 *)calloc(NWORDS,sizeof(u32)); 
  for(eq=S->E; eq<S->E+S->neq; ++eq){ 
    for(i=0; i<eq->nlin; ++i){ 
      bit=0; 
      for(j=0; j<NVAR; ++j){ 
 if(eq->A[i][j>>5]&(1<<(j&0x1f)) && val[j]) 
   bit^=1; 
      } 
      if(bit) 
 propRHS[i>>5]|=1<<(i&0x1f); 
    }//propRHS maa vaere blant eq->b 
    for(i=0; i<eq->originalNRHS; ++i){ 
      if(eq->RHSexists[i]){ 
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 funnet=1; 
 for(j=0; j<eq->nw; ++j){ 
   if(propRHS[j]^eq->b[i][j]) 
     funnet=0; 
 } 
 if(funnet) 
   i=eq->originalNRHS+1; 
      } 
    } 
    if(i==eq->originalNRHS){//eq ikke tilfredsstilt 
      printf("Equation %d not satisfied, nlin=%d, nrhs=%d\n",eq-
>eqnr,eq->nlin,eq->nrhs); 
      //printEquation(eq); 
      rv=0; 
    } 
    for(i=0; i<eq->nw; ++i) 
      propRHS[i]=0; 
  } 
  return rv; 
} 
 
u8 deleteRHS(struct eqSymbol *eq, int RHSindex){ 
  int i, minindex, ci; 
  struct linkSymbol *lS; 
 
  if(eq->RHSexists[RHSindex]==1){ 
    eq->RHSexists[RHSindex]=0; 
    free(eq->b[RHSindex]); 
    eq->nrhs--; 
    if(eq->nrhs==0) 
      return 0; 
    for(i=0; i<eq->nn; ++i){ 
      lS=eq->link[i]; 
      ci=eq->coverID[i][RHSindex]; 
      if(lS->nlist[0]==eq) 
 minindex=0; 
      else 
 minindex=1; 
      lS->nCover[minindex][ci]--; 
      if(lS->nCover[minindex][ci]<0){printLink(lS);exit(0);} 
    } 
    eq->delSinceExtract=1; 
  } 
  return 1; 
} 
 
u8 trimEquation(struct eqSymbol *eq){ 
  /* Makes sure that A-matrix in eq has full rank, and removes 
     RHS if possible.  Returns 0 if eq can not be satisfied, returns 1 
     if A-matrix had full rank, returns 2 if A-matrix has decreased. */ 
  u32 **U, *x, *tmp, enmask; 
  int i, j, k, b, minb, r, enord, uw, rank; 
  u8 rv; // !! removed var: , delocc=0; 
 
  rank=eq->nlin; 
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  uw=(eq->nlin+31)>>5; 
  U=(u32 **)malloc(eq->nlin*sizeof(u32 *)); 
  for(i=0; i<eq->nlin; ++i){ 
    U[i]=(u32 *)calloc(uw,sizeof(u32)); 
    U[i][i>>5]|=(1<<(i&0x1f)); 
  } 
  //U is identity-matrix 
  for(i=0; i<eq->nlin; ++i){ 
    minb=NVAR; 
    for(j=i; j<eq->nlin; ++j){ 
      b=smallestSetBit(eq->A[j],NWORDS); 
      if(b!=-1 && b<minb){ 
 r=j; 
 minb=b; 
      } 
    } 
    if(minb==NVAR){//only all-zero rows remaining 
      rank=i; 
      i=eq->nlin; 
    } 
    else{ 
      if(r>i){//need to swap rows 
 tmp=eq->A[i]; 
 eq->A[i]=eq->A[r]; 
 eq->A[r]=tmp; 
 tmp=U[i]; 
 U[i]=U[r]; 
 U[r]=tmp; 
      } 
      enmask=1<<(minb&0x1f); 
      enord=minb>>5; 
      for(j=i+1; j<eq->nlin; ++j){//making 0's under leading 1 
 if(eq->A[j][enord]&enmask){ 
   for(k=0; k<NWORDS; ++k) 
     eq->A[j][k]^=eq->A[i][k]; 
   for(k=0; k<uw; ++k) 
     U[j][k]^=U[i][k]; 
 } 
      } 
    } 
  }//U is computed 
  x=(u32 *)malloc(eq->nw*sizeof(u32)); 
  for(i=0; i<eq->originalNRHS; ++i){ 
    if(eq->RHSexists[i]){ 
      Uxb(U,eq->nlin,eq->nlin,eq->b[i],x);//x er ny RHS-vektor 
      for(j=0; j<eq->nw; ++j) 
 eq->b[i][j]=x[j]; 
      for(j=rank; j<eq->nlin; ++j){ 
 if(eq->b[i][j>>5]&(1<<(j&0x1f))){//inneholder 1-bit i 0-rad 
omraade 
   rv=deleteRHS(eq,i); 
   // !! removed var: delocc=1; 
   if(rv==0) 
     return 0; 
   j=eq->nlin; 
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 } 
      } 
    } 
  }//oppdatert alle RHS, og sikret at de er gyldige 
  if(eq->nlin==rank) 
    return 1; 
  else{ 
    eq->nlin=rank; 
    eq->nw=(eq->nlin+31)>>5; 
    return 2; 
  } 
} 
 
void depositLinComb(struct eqSymbol *eq, u32 *lc, u8 rhv){ 
  /* Adds lc=rhv to eq (the linear bank).  The bank must be 
     antitriangular, and will remain so after addition of lc=rhv. 
     lc must not be in the span of eq->A. */ 
  int i, j, vnr, insertrow=-1, libit; 
  u32 *clc; 
 
  clc=(u32 *)malloc(NWORDS*sizeof(u32)); 
  for(i=0; i<NWORDS; ++i) 
    clc[i]=lc[i]; 
  //clc er kopi og kan herjes med 
  if(eq->nlin==0) 
    insertrow=0; 
  i=0; 
  while(insertrow==-1){ 
    vnr=largestSetBit(clc,NWORDS); 
    while(i<eq->nlin && vnr<largestSetBit(eq->A[i],NWORDS)) 
      i++; 
    if(i<eq->nlin){ 
      libit=largestSetBit(eq->A[i],NWORDS); 
      if(vnr>libit) 
 insertrow=i; 
      else{//vnr==libit 
 for(j=0; j<NWORDS; ++j) 
   clc[j]^=eq->A[i][j]; 
 if(eq->b[0][i>>5]&(1<<(i&0x1f))) 
   rhv^=1; 
 i++; 
      } 
    } 
    else//i==eq->nlin 
      insertrow=eq->nlin; 
  } 
  for(i=eq->nlin; i>insertrow; --i){ 
    eq->A[i]=eq->A[i-1]; 
    if(((eq->b[0][i>>5]>>(i&0x1f))^(eq->b[0][(i-1)>>5]>>((i-
1)&0x1f)))&1) 
      eq->b[0][i>>5]^=(1<<(i&0x1f)); 
  }//ryddet plass til ny linear ligning 
  eq->A[insertrow]=clc; 
  if((u8)((eq->b[0][insertrow>>5]>>(insertrow&0x1f))&1)^rhv)//feil bit 
i RHS 
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    eq->b[0][insertrow>>5]^=(1<<(insertrow&0x1f)); 
  eq->nlin++; 
} 
 
u8 substituteLinComb(struct system *S, u32 *lc, u32 rhv){ 
  /* Largest variable in lc is eliminated using the equation lc = rhv. 
     Returns 0 if system becomes inconsistent, 1 if no A-matrices were 
     reduced, and 2 if some A-matrices did not have full rank after 
     substitution. */  
  int i, j, enord, maxvar, rhsshift, rhsord, sistshift, sisteord; 
  u32 enmask; 
  struct eqSymbol *eq; 
  u8 eqendret, lokrv, rv=1; 
 
  maxvar=largestSetBit(lc,NWORDS); 
  enmask=(1<<(maxvar&0x1f)); 
  enord=maxvar>>5; 
  for(eq=S->E; eq<S->E+S->neq; ++eq){ 
    eqendret=0; 
    for(i=0; i<eq->nlin; ++i){ 
      if(eq->A[i][enord]&enmask){//rekke i i eq har variabelen som skal 
erstattes 
 eqendret=1; 
 for(j=0; j<NWORDS; ++j) 
   eq->A[i][j]^=lc[j]; 
 if(rhv){//maa endre alle rhs 
   rhsshift=1<<(i&0x1f); 
   rhsord=i>>5; 
   for(j=0; j<eq->originalNRHS; ++j){ 
     if(eq->RHSexists[j]) 
       eq->b[j][rhsord]^=rhsshift; 
   } 
 } 
      } 
    } 
    if(eqendret){ 
      lokrv=trimEquation(eq); 
      if(lokrv==0){ 
 printf("trimeq returnerer 0 for ligning %d\n",eq->eqnr); 
 return 0; 
      } 
      if(lokrv==2) 
 rv=2; 
    } 
  } 
  depositLinComb(S->linbank,lc,rhv); 
  //substituted equation added to the bank 
 
  return rv;  
} 
 
void trimSystem(struct system *S){ 
  /* Removes equations with no information in them. */ 
  struct eqSymbol *eq; 
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  for(eq=S->E; eq<S->E+S->neq; ++eq){ 
    if(eq->nlin<32 && (1<<eq->nlin)==eq->nrhs){//ligning uten 
informasjon 
      if(eq<S->E+S->neq-1) 
 *eq=S->E[S->neq-1]; 
      eq--; 
      S->neq--; 
    } 
  } 
} 
 
void initLinBank(struct eqSymbol *leq){ 
  leq->A=(u32 **)malloc(2*NVAR*sizeof(u32 *)); 
  leq->b=(u32 **)malloc(sizeof(u32 *)); 
  leq->b[0]=(u32 *)calloc(2*NWORDS,sizeof(u32)); 
  leq->nlin=0; 
  leq->nrhs=1; 
  leq->nw=0; 
  leq->nn=0; 
  leq->eqnr=-1; 
  leq->originalNRHS=1; 
  leq->RHSexists=(u8 *)malloc(sizeof(u8)); 
  leq->RHSexists[0]=1; 
} 
 
u8 solved(struct system *S){ 
  int i; 
 
  if(S->neq==0) 
    return 1; 
  if(S->neq==1 && S->E[0].nrhs>=1) 
    return 1; 
  for(i=0; i<S->neq; ++i){ 
    if(S->E[i].nrhs!=1) 
      return 0; 
  } 
  return 1; 
} 
 
void solveLinSystem(struct eqSymbol *e){ 
  int i, j, k, sb, minb, maxb, r; 
  u32 *tmp; 
  u8 ibit, rbit; 
 
  for(i=0; i<e->nlin; ++i){ 
    minb=NVAR; 
    for(j=i; j<e->nlin; ++j){ 
      sb=smallestSetBit(e->A[j],NWORDS); 
      if(sb>=0 && sb<minb){ 
 minb=sb; 
 r=j; 
      } 
      if(minb==i) 
 j=e->nlin; 
    }  
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    if(e->b[0][i>>5]&(1<<(i&0x1f))) 
      ibit=1; 
    else 
      ibit=0; 
    if(r!=i){//trenger å bytte om på rader 
      tmp=e->A[i]; 
      e->A[i]=e->A[r]; 
      e->A[r]=tmp; 
      if(e->b[0][r>>5]&(1<<(r&0x1f))) 
 rbit=1; 
      else 
 rbit=0; 
      if(ibit^rbit){ 
 e->b[0][i>>5]^=(1<<(i&0x1f)); 
 ibit^=1; 
 e->b[0][r>>5]^=(1<<(r&0x1f)); 
      } 
    } 
    for(j=i+1; j<e->nlin; ++j){//lager 0 under ledende 1'er 
      if(e->A[j][minb>>5]&(1<<(minb&0x1f))){ 
 for(k=minb>>5; k<NWORDS; ++k) 
   e->A[j][k]^=e->A[i][k]; 
 if(ibit) 
   e->b[0][j>>5]^=(1<<(j&(0x1f))); 
      } 
    } 
  }//triangularisert, starter tilbakesubstitusjon 
 
  for(i=e->nlin-1; i>0; --i){ 
    maxb=largestSetBit(e->A[i],NWORDS); 
    if(e->b[0][i>>5]&(1<<(i&0x1f))) 
      ibit=1; 
    else 
      ibit=0; 
    for(j=i-1; j>=0; --j){ 
      if(e->A[j][maxb>>5]&(1<<(maxb&0x1f))){ 
 for(k=0; k<NWORDS; ++k) 
   e->A[j][k]^=e->A[i][k]; 
 if(ibit) 
   e->b[0][j>>5]^=(1<<(j&0x1f)); 
      } 
    } 
  } 
} 
 
void copySystem(struct system *S, struct system *kopiS){ 
  int i, j, k; 
 
  kopiS->neq=S->neq; 
  kopiS->E=(struct eqSymbol *)malloc(kopiS->neq*sizeof(struct 
eqSymbol)); 
  kopiS->linbank=(struct eqSymbol *)malloc(sizeof(struct eqSymbol)); 
  initLinBank(kopiS->linbank); 
  for(i=0; i<S->linbank->nlin; ++i){ 
    for(j=0; j<NWORDS; ++j) 
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      kopiS->linbank->A[i][j]=S->linbank->A[i][j]; 
  } 
  for(i=0; i<S->linbank->nw; ++i) 
    kopiS->linbank->b[0][i]=S->linbank->b[0][i]; 
  kopiS->linbank->nlin=S->linbank->nlin; 
  kopiS->linbank->nw=S->linbank->nw; 
  for(i=0; i<S->neq; ++i){ 
    kopiS->E[i].nlin=S->E[i].nlin; 
    kopiS->E[i].nrhs=S->E[i].nrhs; 
    kopiS->E[i].originalNRHS=S->E[i].originalNRHS; 
    kopiS->E[i].nw=S->E[i].nw; 
    kopiS->E[i].nn=0; 
    kopiS->E[i].A=(u32 **)malloc(kopiS->E[i].nlin*sizeof(u32 *)); 
    for(j=0; j<kopiS->E[i].nlin; ++j){ 
      kopiS->E[i].A[j]=(u32 *)malloc(NWORDS*sizeof(u32)); 
      for(k=0; k<NWORDS; ++k) 
 kopiS->E[i].A[j][k]=S->E[i].A[j][k]; 
    } 
    kopiS->E[i].b=(u32 **)malloc(kopiS->E[i].nrhs*sizeof(u32 *)); 
    for(j=0; j<kopiS->E[i].nrhs; ++j){ 
      kopiS->E[i].b[j]=(u32 *)malloc(kopiS->E[i].nw*sizeof(u32)); 
      for(k=0; k<kopiS->E[i].nw; ++k) 
 kopiS->E[i].b[j][k]=S->E[i].b[j][k]; 
    } 
    kopiS->E[i].RHSexists=(u8 *)malloc(kopiS-
>E[i].originalNRHS*sizeof(u8)); 
    for(j=0; j<kopiS->E[i].originalNRHS; ++j) 
      kopiS->E[i].RHSexists[j]=S->E[i].RHSexists[j]; 
    kopiS->E[i].delSinceExtract=S->E[i].delSinceExtract; 
  } 
} 
 
double log2sum(double *T, int n){ 
  /* computes log2(\sum_{i=0}^{n-1}(2^{T[i]})).  Works also when the 
sum is greater than 2^{32}. */ 
  double suma, sumb; 
  int na; 
 
  if(n==1) 
    return T[0]; 
  na=n/2; 
  suma=log2sum(T,na); 
  sumb=log2sum(T+na,n-na); 
  if(suma<sumb){ 
    if((sumb-28.0)>suma)//only sumb contributes 
      return sumb; 
    else//compute exactly 
      return suma+log2(pow(2,sumb-suma)+1.0); 
  } 
  else{//suma largest 
    if((suma-28.0)>sumb)//only suma contributes 
      return suma; 
    else//compute exactly 
      return sumb+log2(pow(2,suma-sumb)+1.0); 
  } 
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} 
 
u8 evaluate(u32 *lc, u8 *v){ 
  /* evaluates the linear combination lc with the variables in v and 
returns its sum */ 
  int i; 
  u8 sum=0; 
 
  for(i=0; i<NVAR; ++i){ 
    if(lc[i>>5]&(1<<(i&0x1f)) && v[i]) 
      sum^=1; 
  } 
 
  return sum; 
} 

 

2. AGREEING.h (by Havard Raddum and Igor Semaev) 

 
 
u8 checkLink(struct linkSymbol *lS){ 
  /*Checks if the two equations linked in this link agree.  Returns 0 
if equations are inconsistent, 
    1 if equations agree and 2 if equations disagreed */ 
  u8 rv=1, lokrv; 
  int i, j, eqdel, linkIndex, eq0ni, eq1ni; 
  struct eqSymbol *eq, *eq0, *eq1; 
 
  if((log2(lS->ncells)<(log2(lS->nlist[0]->nrhs)/2)) &&  
     (log2(lS->ncells)<(log2(lS->nlist[1]->nrhs)/2))){//do not expect 
deletions 
    for(i=0; i<lS->ncells; ++i){ 
      if(lS->cellExists[i]){ 
 eqdel=2; 
 if(lS->nCover[0][i]==0 && lS->nCover[1][i]>0) 
   eqdel=1; 
 if(lS->nCover[0][i]>0 && lS->nCover[1][i]==0) 
   eqdel=0; 
 if(eqdel<2){ 
   rv=2; 
   eq=lS->nlist[eqdel]; 
   for(j=0; j<eq->nn; ++j){ 
     if(eq->link[j]==lS){ 
       linkIndex=j; 
       j=eq->nn+1; 
     } 
   } 
   if(j==eq->nn){ 
     printf("Fant ikke link!?  eqdel=%d, i=%d\n",eqdel,i); 
     printf("Linkadresse: %x, eq.naboadresse: %x\n",lS,eq-
>link[0]); 
   } 
 
   j=0; 
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   while(lS->nCover[eqdel][i]>0){ 
     while(j<eq->originalNRHS && eq-
>coverID[linkIndex][j]!=(unsigned)i) // !! added cast 
       ++j; 
     if(j==eq->originalNRHS)printf("fant ikke RHS som dekker celle 
%x, lS->nCover=%d\n",i,lS->nCover[eqdel][i]); 
     lokrv=deleteRHS(eq,j); 
     if(lokrv==0) 
       return 0; 
     ++j; 
   } 
   lS->cellExists[i]=0; 
 } 
      } 
    } 
  } 
  else{//expects deletions, goes through RHS's of linked equations 
    eq0=lS->nlist[0]; 
    eq1=lS->nlist[1]; 
    for(i=0; i<eq0->nn; ++i){ 
      if(eq0->link[i]==lS){ 
 eq0ni=i; 
 i=eq0->nn+1; 
      } 
    } 
    if(i==eq0->nn)printf("(checkLink)Fant ikke link fra nabo 0\n"); 
    for(i=0; i<eq1->nn; ++i){ 
      if(eq1->link[i]==lS){ 
 eq1ni=i; 
 i=eq1->nn+1; 
      } 
    } 
    if(i==eq1->nn)printf("(checkLink)Fant ikke link fra nabo 1\n"); 
    for(i=0; i<eq1->originalNRHS; ++i){ 
      if(eq1->RHSexists[i]){ 
 if(lS->nCover[1][eq1->coverID[eq1ni][i]]==0) 
   printf("RHS %d i eq1 dekker en celle som link sier ikke blir 
dekket av eq1\n",i); 
 if(lS->nCover[0][eq1->coverID[eq1ni][i]]==0){ 
   lokrv=deleteRHS(eq1,i); 
   if(lokrv==0) 
     return 0; 
   rv=2; 
 } 
      } 
    } 
    for(i=0; i<eq0->originalNRHS; ++i){ 
      if(eq0->RHSexists[i]){ 
 if(lS->nCover[0][eq0->coverID[eq0ni][i]]==0) 
   printf("RHS %d i eq0 dekker en celle som link sier ikke blir 
dekket av eq0\n",i); 
 if(lS->nCover[1][eq0->coverID[eq0ni][i]]==0){ 
   lokrv=deleteRHS(eq0,i); 
   if(lokrv==0) 
     return 0; 



 68

   rv=2; 
 } 
      } 
    } 
  } 
  return rv; 
} 
 
u8 agreeSystem(struct system *S){ 
  /* Agrees the whole system.  Returns 0 if system is inconsistent, 
     1 if system already agreed, or 2 if deletions of RHS's have 
occurred */ 
  int i; 
  u8 rv=1, lokrv, changed=1; 
  struct linkSymbol *lsym; 
 
  while(changed){ 
    changed=0; 
    for(lsym=S->L; lsym<S->L+S->nlink; ++lsym){ 
      lokrv=checkLink(lsym); 
      if(lokrv==2) 
 changed=1; 
      if(lokrv==0){ 
 printf("inconsistency in link %d\n",i); 
 return 0; 
      } 
    } 
  } 
  
  return rv; 
} 

} 

 

3. GLUING.h (by Havard Raddum and Igor Semaev) 
/* Methods inmplementing gluing of equations, before linking */ 
 
u8 maskedRHS1EqualRHS2(u32 *rhs1, u32 *rhs2, int nw, u32 *maske){ 
  int t; 
 
  t=nw-1; 
  while(t>=0 && ((rhs1[t]&maske[t])==(rhs2[t]&maske[t]))) 
    t--; 
  if(t<0) 
    return 1; 
  else 
    return 0; 
} 
 
u8 maskedRHS1BiggerThanRHS2(u32 *rhs1, u32 *rhs2, int nw, u32 *maske){ 
  int t; 
   
  t=nw-1; 
  while(t>=0 && (rhs1[t]&maske[t])==(rhs2[t]&maske[t])) 
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    t--; 
  if(t>=0 && (rhs1[t]&maske[t])>(rhs2[t]&maske[t])) 
    return 1; 
  else 
    return 0; 
} 
 
void mergeSortMaskedRightHandSides(u32 **RHS, int nicl, int nw, u32 
*maske){ 
  int niacl, nibcl, i, j, t; 
  u32 *tmp, **aRHS, **bRHS, **dl; 
 
  if(nicl==2 && maskedRHS1BiggerThanRHS2(RHS[0],RHS[1],nw,maske)){ 
    tmp=RHS[0]; 
    RHS[0]=RHS[1]; 
    RHS[1]=tmp; 
  } 
  if(nicl>2){ 
    niacl=nicl/2; 
    nibcl=nicl-niacl; 
    aRHS=RHS; 
    bRHS=RHS+niacl; 
    mergeSortMaskedRightHandSides(aRHS,niacl,nw,maske); 
    mergeSortMaskedRightHandSides(bRHS,nibcl,nw,maske); 
    dl=(u32 **)malloc(nicl*sizeof(u32 *)); 
    i=j=t=0; 
    while(i<niacl && j<nibcl){//ingen er ferdige, må sammenligne 
      if(maskedRHS1BiggerThanRHS2(aRHS[i],bRHS[j],nw,maske)) 
 dl[t++]=bRHS[j++]; 
      else 
 dl[t++]=aRHS[i++]; 
    } 
    if(i==niacl){//aRHS ble ferdig først, kopierer resten av bRHS 
      for(i=j; i<nibcl; ++i) 
 dl[t++]=bRHS[i]; 
    } 
    else{//bRHS ble ferdig først, kopierer resten av aRHS 
      for(j=i; j<niacl; ++j) 
 dl[t++]=aRHS[j]; 
    } 
    //kopierer tilbake i RHS 
    for(i=0; i<nicl; ++i) 
      RHS[i]=dl[i]; 
    free(dl); 
  } 
} 
 
void computeMaskedSortedRHS(struct eqSymbol *eq1, struct eqSymbol *eq2,  
       u32 **Ub1, u32 **Ub2, u32 *maske, u32 **U, int 
ncommon){ 
  /* Expands RHS's in eq1 and eq2 so they can be glued together.  maske 
     shows which bits that must be equal when gluing.  */ 
  u32 *lokb; 
  int i, j, t, sumnl, sumnlw, skev; 
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  sumnl=eq1->nlin+eq2->nlin; 
  sumnlw=(sumnl+31)>>5; 
  lokb=(u32 *)malloc(sumnlw*sizeof(u32)); 
  t=0; 
  for(i=0; i<eq1->originalNRHS; ++i){//computes Ub for all right-hand 
sides b in E1 
    if(eq1->RHSexists[i]){ 
      for(j=0; j<eq1->nw; ++j) 
 lokb[j]=eq1->b[i][j]; 
      for(j=eq1->nw; j<sumnlw; ++j) 
 lokb[j]=0; 
 
      Uxb(U,sumnl,sumnl,lokb,Ub1[t++]); 
    } 
  } 
  if(t!=eq1->nrhs)printf("eq1->nrhs=%d, t=%d\n",eq1->nrhs,t); 
  t=0; 
  for(i=0; i<eq2->originalNRHS; ++i){//computes Ub for all right-hand 
sides b in E2 
    if(eq2->RHSexists[i]){ 
      for(j=0; j<eq1->nw; ++j) 
 lokb[j]=0; 
      skev=(eq1->nlin)&0x1f; 
      if(skev==0){ 
 for(j=eq1->nw; j<sumnlw; ++j) 
   lokb[j]=eq2->b[i][j-eq1->nw]; 
      } 
      else{ 
 for(j=0; j<eq2->nw; ++j){ 
   lokb[eq1->nw+j-1]|=(eq2->b[i][j]<<skev); 
   if(sumnlw>(j+eq1->nw)) 
     lokb[eq1->nw+j]=eq2->b[i][j]>>(32-skev); 
 } 
      } 
      Uxb(U,sumnl,sumnl,lokb,Ub2[t++]); 
    } 
  } 
  if(t!=eq2->nrhs)printf("eq2->nrhs=%d, t=%d\n",eq2->nrhs,t); 
 
  free(lokb);   
 
  i=sumnl-ncommon; 
  j=0; 
  while(i>=32){ 
    maske[j++]=0; 
    i-=32; 
  } 
  if(j<sumnlw){ 
    maske[j]=(0xffffffff<<i); 
    for(i=j+1; i<sumnlw; ++i) 
      maske[i]=0xffffffff; 
    if(sumnl&0x1f) 
      maske[sumnlw-1]&=(1<<(sumnl&0x1f))-1; 
  } 
  //mask in place 
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  mergeSortMaskedRightHandSides(Ub1,eq1->nrhs,sumnlw,maske); 
  mergeSortMaskedRightHandSides(Ub2,eq2->nrhs,sumnlw,maske); 
} 
 
int nRHSwhenGlued(struct eqSymbol *eq1, struct eqSymbol *eq2){ 
  /* Computes number of RHS if gluing eq1 and eq2 */ 
  u32 **Ub1, **Ub2, *maske, **U; 
  int i, j, nn=0, bp1, pp1, bp2, pp2, prod, nw, nl, nc; 
 
  nl=eq1->nlin+eq2->nlin; 
  nw=(nl+31)>>5; 
  U=(u32 **)malloc(nl*sizeof(u32 *)); 
  nc=computeU(eq1,eq2,U); 
  if(nc==0){ 
    for(i=0; i<nl; ++i) 
      free(U[i]); 
    free(U); 
    if((MAXINT/eq1->nrhs)<eq2->nrhs) 
      return MAXINT; 
    else 
      return eq1->nrhs*eq2->nrhs; 
  } 
  Ub1=(u32 **)malloc(eq1->nrhs*sizeof(u32 *)); 
  for(i=0; i<eq1->nrhs; ++i) 
    Ub1[i]=(u32 *)calloc(nw,sizeof(u32)); 
  Ub2=(u32 **)malloc(eq2->nrhs*sizeof(u32 *)); 
  for(i=0; i<eq2->nrhs; ++i) 
    Ub2[i]=(u32 *)calloc(nw,sizeof(u32)); 
  maske=(u32 *)malloc(nw*sizeof(u32));  
 
  computeMaskedSortedRHS(eq1,eq2,Ub1,Ub2,maske,U,nc); 
 
  for(i=0; i<nl; ++i) 
    free(U[i]); 
  free(U); 
  bp1=pp1=bp2=pp2=0; 
  while(bp1<eq1->nrhs && bp2<eq2->nrhs && nn<MAXINT){   
    while(bp1<eq1->nrhs && bp2<eq2->nrhs && 
!maskedRHS1EqualRHS2(Ub1[bp1],Ub2[bp2],nw,maske)){ 
      if(maskedRHS1BiggerThanRHS2(Ub1[bp1],Ub2[bp2],nw,maske)) 
 bp2++; 
      else 
 bp1++; 
    }//her er maskert Ub1[bp1] og Ub2[bp2] like, eller en av listene er 
nådd til endes 
    pp1=bp1; 
    pp2=bp2; 
    while(pp1<eq1->nrhs && 
maskedRHS1EqualRHS2(Ub1[bp1],Ub1[pp1],nw,maske)) 
      pp1++; 
    while(pp2<eq2->nrhs && 
maskedRHS1EqualRHS2(Ub2[bp2],Ub2[pp2],nw,maske)) 
      pp2++; 
    //Blokkene fra bp1 og bp2 til pp1 og pp2 er identiske maskert 
    if((pp1-bp1)>0 && MAXINT/(pp1-bp1)<(pp2-bp2)) 
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      nn=MAXINT; 
    prod=(pp1-bp1)*(pp2-bp2); 
    if(nn>MAXINT-prod) 
      nn=MAXINT; 
    if(nn<MAXINT) 
      nn+=prod; 
    bp1=pp1; 
    bp2=pp2; 
  } 
  for(i=0; i<eq1->nrhs; ++i) 
    free(Ub1[i]); 
  free(Ub1); 
  for(i=0; i<eq2->nrhs; ++i) 
    free(Ub2[i]); 
  free(Ub2); 
  free(maske); 
 
  return nn; 
} 
 
int estimateNRHSwhenGlued(struct eqSymbol *eq1, struct eqSymbol *eq2){ 
  int i, enn, nc, sumnl; 
  u32 **M; 
 
  sumnl=eq1->nlin+eq2->nlin; 
  M=(u32 **)malloc(sumnl*sizeof(u32 *)); 
  for(i=0; i<eq1->nlin; ++i) 
    M[i]=eq1->A[i]; 
  for(i=eq1->nlin; i<sumnl; ++i) 
    M[i]=eq2->A[i-eq1->nlin]; 
  nc=sumnl-rank(M,sumnl,NVAR); 
  free(M); 
  if((log2(eq1->nrhs)+log2(eq2->nrhs)-(double)nc)<30.9){ 
    if((log2(eq1->nrhs)+log2(eq2->nrhs)-(double)nc)>0.0){ 
      if(eq2->nrhs>eq1->nrhs) 
 enn=(eq1->nrhs>>(nc/2))*(eq2->nrhs>>(nc-(nc/2))); 
      else 
 enn=(eq2->nrhs>>(nc/2))*(eq1->nrhs>>(nc-(nc/2))); 
      if(enn==0) 
 enn=1; 
    } 
    else 
      enn=1; 
  } 
  else 
    enn=MAXINT; 
 
  return enn; 
} 
 
void glue(struct eqSymbol *eq1, struct eqSymbol *eq2, struct eqSymbol 
*geq){ 
  /* Glues together eq1 and eq2 into geq, eq1 and eq2 should not be 
used afterwards. */   
  int i, j, k, bp1, pp1, bp2, pp2, ncommon, t, estnnew; 
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  u32 *maske, **Ub1, **Ub2, **U, **nyA; 
 
  Ub1=(u32 **)malloc(eq1->nrhs*sizeof(u32 *)); 
  Ub2=(u32 **)malloc(eq2->nrhs*sizeof(u32 *)); 
  geq->nlin=eq1->nlin+eq2->nlin; 
  geq->nw=(geq->nlin+31)>>5; 
  geq->A=(u32 **)malloc(geq->nlin*sizeof(u32 *)); 
  for(i=0; i<eq1->nlin; ++i) 
    geq->A[i]=eq1->A[i]; 
  for(i=0; i<eq2->nlin; ++i) 
    geq->A[eq1->nlin+i]=eq2->A[i]; 
 
  nyA=(u32 **)malloc(geq->nlin*sizeof(u32 *)); 
  U=(u32 **)malloc(geq->nlin*sizeof(u32 *)); 
  for(i=0; i<geq->nlin; ++i) 
    nyA[i]=(u32 *)calloc(NWORDS,sizeof(u32)); 
  for(i=0; i<eq1->nrhs; ++i) 
    Ub1[i]=(u32 *)calloc(geq->nw,sizeof(u32)); 
  for(i=0; i<eq2->nrhs; ++i) 
    Ub2[i]=(u32 *)calloc(geq->nw,sizeof(u32)); 
  maske=(u32 *)malloc(geq->nw*sizeof(u32)); 
 
  ncommon=computeU(eq1,eq2,U); 
  UAX(U,geq->A,nyA,geq->nlin,NWORDS); 
  free(geq->A); 
  geq->A=nyA; 
  computeMaskedSortedRHS(eq1,eq2,Ub1,Ub2,maske,U,ncommon); 
  estnnew=(eq1->nrhs>>(ncommon/2))*(eq2->nrhs>>(ncommon-ncommon/2)); 
  if(estnnew<1) 
    estnnew=1; 
  //printf("estnnew=2^(%.3f), ",log2(estnnew)); 
 
  geq->b=(u32 **)malloc(estnnew*sizeof(u32 *)); 
  bp1=pp1=bp2=pp2=t=0; 
  while(bp1<eq1->nrhs && bp2<eq2->nrhs){   
    while(bp1<eq1->nrhs && bp2<eq2->nrhs && 
!maskedRHS1EqualRHS2(Ub1[bp1],Ub2[bp2],geq->nw,maske)){ 
      if(maskedRHS1BiggerThanRHS2(Ub1[bp1],Ub2[bp2],geq->nw,maske)) 
 bp2++; 
      else 
 bp1++; 
    }//her er maskert Ub1[bp1] og Ub2[bp2] like, eller en av listene er 
nådd til endes 
    pp1=bp1; 
    pp2=bp2; 
    while(pp1<eq1->nrhs && maskedRHS1EqualRHS2(Ub1[bp1],Ub1[pp1],geq-
>nw,maske)) 
      pp1++; 
    while(pp2<eq2->nrhs && maskedRHS1EqualRHS2(Ub2[bp2],Ub2[pp2],geq-
>nw,maske)) 
      pp2++; 
    //Blokkene fra bp1 og bp2 til pp1 og pp2 er identiske maskert, 
limer alle par 
    for(i=bp1; i<pp1; ++i){ 
      for(j=bp2; j<pp2; ++j){ 
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 geq->b[t]=(u32 *)malloc(geq->nw*sizeof(u32)); 
 for(k=0; k<geq->nw; ++k) 
   geq->b[t][k]=Ub1[i][k]^Ub2[j][k];//faktisk liming 
 t++; 
 if(t==estnnew){//needs more memory and a better estimate 
   if(i==0) 
     estnnew*=2; 
   else{ 
     if(i==eq1->nrhs) 
       estnnew+=(pp2-j); 
     else 
       estnnew=(int)((double)estnnew/((double)i/(double)eq1-
>nrhs)); 
   } 
   geq->b=(u32 **)realloc(geq->b,estnnew*sizeof(u32 *)); 
 } 
      } 
    } 
    bp1=pp1; 
    bp2=pp2; 
  } 
  geq->originalNRHS=t; 
  geq->nrhs=t; 
  geq->b=(u32 **)realloc(geq->b,geq->originalNRHS*sizeof(u32 *)); 
  geq->RHSexists=(u8 *)malloc(geq->originalNRHS*sizeof(u8)); 
  for(i=0; i<geq->originalNRHS; ++i) 
    geq->RHSexists[i]=1; 
  if(ncommon>0){//trimmer bort lineært avhengig informasjon 
    for(i=geq->nlin-ncommon; i<geq->nlin; ++i) 
      free(geq->A[i]); 
    geq->nlin-=ncommon; 
    geq->A=(u32 **)realloc(geq->A,geq->nlin*sizeof(u32 *)); 
    geq->nw=(geq->nlin+31)>>5; 
    if(((geq->nlin+31)>>5)<geq->nw){ 
      geq->nw=(geq->nlin+31)>>5; 
      for(i=0; i<geq->nrhs; ++i) 
 geq->b[i]=(u32 *)realloc(geq->b[i],geq->nw*sizeof(u32)); 
    } 
  } 
  geq->nn=0; 
 
  free(maske); 
  for(i=0; i<eq1->nrhs; ++i) 
    free(Ub1[i]); 
  free(Ub1); 
  for(i=0; i<eq2->nrhs; ++i) 
    free(Ub2[i]); 
  free(Ub2); 
} 
 
u8 packSystem(struct system *S, int th){ 
  /* Tries to glue together as many equations as possible, with the 
restriction that the number of  
     right-hand sides in the glued equation should not be estimated to 
be larger than th.   
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     Returns 0 if inconsistencies are found, 1 otherwise. */ 
  struct eqSymbol *nyE, *tmp; 
  int i, j, nnew, minnew, mini, minj, nyneq=0, **gluetab; 
  u8 *limt, tryglue, trypack; 
 
  nyE=(struct eqSymbol *)malloc(S->neq*sizeof(struct eqSymbol)); 
  tmp=(struct eqSymbol *)malloc(sizeof(struct eqSymbol)); 
  limt=(u8 *)calloc(S->neq,sizeof(u8)); 
 
  gluetab=(int **)malloc(S->neq*sizeof(int *)); 
  for(i=0; i<S->neq; ++i) 
    gluetab[i]=(int *)calloc(S->neq,sizeof(int)); 
  for(i=0; i<S->neq; ++i){ 
    for(j=i+1; j<S->neq; ++j){ 
      gluetab[i][j]=estimateNRHSwhenGlued(S->E+i,S->E+j); 
      if(gluetab[i][j]==0){ 
 j=S->neq; 
 i=S->neq+1; 
      } 
    } 
  } 
  if(i==S->neq) 
    tryglue=1; 
  else{//funnet inkonsistens 
    tryglue=2; 
    printf("inconsistency found\n"); 
  } 
  while(tryglue==1){ 
    minnew=th+1; 
    for(i=0; i<S->neq; ++i){ 
      if(!limt[i]){ 
 for(j=i+1; j<S->neq; ++j){ 
   if(!limt[j]){ 
     nnew=gluetab[i][j]; 
     if(nnew<minnew){ 
       minnew=nnew; 
       mini=i; 
       minj=j; 
     } 
   } 
 } 
      } 
    }//her er billigste liming funnet, hvis mulig aa lime under th 
    if(minnew<=th){//mulig aa lime 
      glue(S->E+mini,S->E+minj,nyE+nyneq); 
      nyE[nyneq].eqnr=nyneq; 
      limt[mini]=1; 
      limt[minj]=1; 
      trypack=1; 
      while(trypack){ 
 minnew=th+1; 
 for(i=0; i<S->neq; ++i){ 
   if(!limt[i]){ 
     nnew=estimateNRHSwhenGlued(S->E+i,nyE+nyneq); 
     if(nnew==0){ 
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       tryglue=2;  
       printf("Inconsistency Found\n"); 
       i=S->neq; 
     } 
     else{ 
       if(nnew<minnew){ 
  minnew=nnew; 
  mini=i; 
       } 
     } 
   } 
 } 
 if(tryglue==1 && minnew<=th){//mulig aa putte paa en til 
   //printf(" og %d\n",mini); 
   glue(nyE+nyneq,S->E+mini,tmp); 
   limt[mini]=1; 
   deleteEquation(nyE+nyneq); 
   nyE[nyneq]=*tmp; 
 } 
 else 
   trypack=0; 
      } 
      nyneq++; 
    } 
    else 
      tryglue=0; 
  }//har pakket saa godt som mulig, kopierer ulimte symboler 
  if(tryglue<2){ 
    for(i=0; i<S->neq; ++i){ 
      if(limt[i]) 
 deleteEquation(S->E+i); 
      else{ 
 nyE[nyneq]=S->E[i]; 
 nyE[nyneq].eqnr=nyneq; 
 nyneq++; 
      } 
    } 
    free(S->E); 
    S->E=nyE; 
    S->neq=nyneq; 
    for(i=0; i<S->neq; ++i) 
      S->E[i].eqnr=i; 
  } 
  free(limt); 
  for(i=0; i<S->neq; ++i) 
    free(gluetab[i]); 
  free(gluetab); 
  if(tryglue==2) 
    return 0; 
  return 1; 
} 
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4. LINKING.h 

 
/* Methods for linking equations in system */ 
 
void zeroPrepend(u32 *b, int lb, int nzeros, u32 *x){ 
  int xw, n0w, lbw, skev, i; 
 
  n0w=(nzeros>>5); 
  xw=(lb+nzeros+31)>>5; 
  lbw=(lb+31)>>5; 
  for(i=0; i<xw; ++i) 
    x[i]=0; 
  skev=(nzeros&0x1f); 
  if(skev){ 
    for(i=0; i<lbw; ++i){ 
      x[i+n0w]|=(b[i]<<skev); 
      if((i+n0w)<(xw-1)) 
 x[i+n0w+1]|=(b[i]>>(32-skev)); 
    } 
  } 
  else{ 
    for(i=0; i<lbw; ++i) 
      x[i+n0w]=b[i]; 
  } 
} 
 
void zeroAppend(u32 *b, int lb, int nzeros, u32 *x){ 
  int i, xw, lbw; 
 
  lbw=(lb+31)>>5; 
  xw=(lb+nzeros+31)>>5; 
  for(i=0; i<lbw; ++i) 
    x[i]=b[i]; 
  for(i=lbw; i<xw; ++i) 
    x[i]=0; 
} 
 
int collapseCellIDlist(struct bitVector *vl, int nil){ 
  int bp=0, pp=1; 
 
  while(pp<nil){ 
    while(pp<nil && v0EqualV1(vl[bp],vl[pp])) 
      free(vl[pp++].v); 
    if(pp<nil) 
      vl[++bp]=vl[pp++]; 
  } 
 
  return bp+1; 
} 
 
int findCellIndex(struct bitVector *vl, int nil, struct bitVector 
target){ 
  int bunn, topp, midt; 
 
  if(v0GreaterThanV1(vl[0],target))//target smaller than smallest in vl 
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    return -1; 
  if(v0GreaterThanV1(target,vl[nil-1]))//target greater than largest in 
vl 
    return -1; 
  if(v0EqualV1(vl[0],target)) 
    return 0; 
  if(v0EqualV1(vl[nil-1],target)) 
    return nil-1; 
   
  //Know target is not inside boundary of vl 
  bunn=0; 
  topp=nil-1; 
  while((topp-1)>bunn){ 
    midt=(bunn+topp)/2; 
    if(v0EqualV1(vl[midt],target)) 
 
      return midt; 
    if(v0GreaterThanV1(vl[midt],target)) 
      topp=midt; 
    else 
      bunn=midt; 
  } 
 
  return -1; 
} 
 
void establishSmallLink(struct eqSymbol *eq0, struct eqSymbol *eq1, 
struct linkSymbol *ls, u32 **M0, int commondim){ 
  /* Spaces spanned by A-matrices in equations overlap in few 
dimensions, constructs a link with 2^r cells */ 
  int i, j, sumnl, sumnlw; 
  u32 *x, *ci; 
 
  sumnl=eq0->nlin+eq1->nlin; 
  sumnlw=(sumnl+31)>>5; 
  ls->nlist[0]=eq0; 
  ls->nlist[1]=eq1; 
  eq0->link[eq0->nn]=ls; 
  eq1->link[eq1->nn]=ls; 
  ls->ncells=(1<<commondim);//commondim should be small enough for this 
  ls->cellExists=(u8 *)malloc(ls->ncells*sizeof(u8)); 
  for(i=0; i<2; ++i) 
    ls->nCover[i]=(int *)calloc(ls->ncells,sizeof(int)); 
  eq0->coverID[eq0->nn]=(u32 *)malloc(eq0->originalNRHS*sizeof(u32)); 
  eq1->coverID[eq1->nn]=(u32 *)malloc(eq1->originalNRHS*sizeof(u32)); 
  x=(u32 *)malloc(sumnlw*sizeof(u32)); 
  ci=(u32 *)malloc(sizeof(u32)); 
  /* Establish connections for eq0 */ 
  for(i=0; i<eq0->originalNRHS; ++i){ 
    if(eq0->RHSexists[i]){ 
      zeroAppend(eq0->b[i],eq0->nlin,eq1->nlin,x); 
      Uxb(M0,commondim,sumnl,x,ci); 
      ls->nCover[0][ci[0]]++; 
      eq0->coverID[eq0->nn][i]=ci[0]; 
    } 
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  } 
  /* Establish connections for eq1 */ 
  for(i=0; i<eq1->originalNRHS; ++i){ 
    if(eq1->RHSexists[i]){ 
      zeroPrepend(eq1->b[i],eq1->nlin,eq0->nlin,x); 
      Uxb(M0,commondim,sumnl,x,ci); 
      ls->nCover[1][ci[0]]++; 
      eq1->coverID[eq1->nn][i]=ci[0]; 
    } 
  } 
  for(i=0; i<ls->ncells; ++i){ 
    if(ls->nCover[0][i]>0 || ls->nCover[1][i]>0) 
      ls->cellExists[i]=1; 
    else 
      ls->cellExists[i]=0; 
  } 
  eq0->nn++; 
  eq1->nn++; 
 
  free(x); 
  free(ci); 
} 
 
void establishBigLink(struct eqSymbol *eqmin, struct eqSymbol *eqmax, 
struct linkSymbol *ls, u32 **M0, int commondim){ 
  /* Constructs a link where the equations overlap in too many 
dimensions.  The (number of) cells in the link is based on 
     the right-hand sides from the smallest equation */ 
  int i, j, t, sumnl, sumnlw, lcw, newNcell, cellindex; 
  u32 *x; 
  struct bitVector ci; 
 
  sumnl=eqmin->nlin+eqmax->nlin; 
  sumnlw=(sumnl+31)>>5; 
  lcw=(commondim+31)>>5; 
  ls->nlist[0]=eqmin; 
  ls->nlist[1]=eqmax; 
  eqmin->link[eqmin->nn]=ls; 
  eqmax->link[eqmax->nn]=ls; 
  ls->ncells=eqmin->nrhs; 
  if(ls->ncells==0){printf("(establishBigLink)Equations %d and %d 
inconsistent\n",eqmin->eqnr,eqmax->eqnr);exit(0);} 
  ls->cellExists=(u8 *)malloc(ls->ncells*sizeof(u8)); 
  ls->cellID=(struct bitVector *)malloc(ls->ncells*sizeof(struct 
bitVector)); 
  for(i=0; i<2; ++i) 
    ls->nCover[i]=(int *)calloc(ls->ncells,sizeof(int)); 
  eqmin->coverID[eqmin->nn]=(u32 *)malloc(eqmin-
>originalNRHS*sizeof(u32)); 
  eqmax->coverID[eqmax->nn]=(u32 *)malloc(eqmax-
>originalNRHS*sizeof(u32)); 
 
  x=(u32 *)malloc(sumnlw*sizeof(u32)); 
  ci.v=(u32 *)malloc(lcw*sizeof(u32)); 
  ci.length=commondim; 
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  ci.wl=lcw; 
  /* Establish connections for eqmin */ 
  t=0; 
  for(i=0; i<eqmin->originalNRHS; ++i){ 
    if(eqmin->RHSexists[i]){ 
      zeroAppend(eqmin->b[i],eqmin->nlin,eqmax->nlin,x); 
      Uxb(M0,commondim,sumnl,x,ci.v); 
      ls->cellID[t].wl=lcw; 
      ls->cellID[t].length=commondim; 
      ls->cellID[t].v=(u32 *)malloc(lcw*sizeof(u32)); 
      for(j=0; j<lcw; ++j) 
 ls->cellID[t].v[j]=ci.v[j]; 
      t++; 
    } 
  }//all different cellIDs, with repetition, created 
  if(t!=eqmin->nrhs){printf("(establishBigLink)More existing RHS's (%d) 
in eqmin than eqmin->nrhs=%d says!\n", 
       t,eqmin->nrhs);exit(0);} 
  mergeSortBitVectors(ls->cellID,ls->ncells); 
  newNcell=collapseCellIDlist(ls->cellID,ls->ncells); 
  if(newNcell<ls->ncells){ 
    ls->ncells=newNcell;//the actual number of cells in this link 
    ls->cellID=(struct bitVector *)realloc(ls->cellID,ls-
>ncells*sizeof(struct bitVector)); 
  } 
  for(i=0; i<2; ++i) 
    ls->nCover[i]=(int *)calloc(ls->ncells,sizeof(int)); 
  for(i=0; i<eqmin->originalNRHS; ++i){ 
    if(eqmin->RHSexists[i]){ 
      zeroAppend(eqmin->b[i],eqmin->nlin,eqmax->nlin,x); 
      Uxb(M0,commondim,sumnl,x,ci.v); 
      cellindex=findCellIndex(ls->cellID,ls->ncells,ci); 
      if(cellindex==-1){printf("(establishBigLink)fant ikke 
cellID!");exit(0);} 
      eqmin->coverID[eqmin->nn][i]=cellindex; 
      ls->nCover[0][cellindex]++; 
    } 
  }//link to eqmin created 
  /* Establish connections for eqmax */ 
  for(i=0; i<eqmax->originalNRHS; ++i){ 
    if(eqmax->RHSexists[i]){ 
      zeroPrepend(eqmax->b[i],eqmax->nlin,eqmin->nlin,x); 
      Uxb(M0,commondim,sumnl,x,ci.v); 
      cellindex=findCellIndex(ls->cellID,ls->ncells,ci); 
      if(cellindex==-1)//RHS i does not agree with eqmin 
 deleteRHS(eqmax,i); 
      else{ 
 eqmax->coverID[eqmax->nn][i]=cellindex; 
 ls->nCover[1][cellindex]++; 
      } 
    } 
  }//links created, no more use for cellID, deletes it 
  for(i=0; i<ls->ncells; ++i) 
    free(ls->cellID[i].v); 
  free(ls->cellID); 
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  ls->cellExists=(u8 *)malloc(ls->ncells*sizeof(u8)); 
  for(i=0; i<ls->ncells; ++i){ 
    if(ls->nCover[0][i]>0 || ls->nCover[1][i]>0) 
      ls->cellExists[i]=1; 
    else 
      ls->cellExists[i]=0; 
  } 
  eqmin->nn++; 
  eqmax->nn++; 
 
  free(x); 
  free(ci.v); 
} 
 
void tryEstablishLink(struct system *S, int eqnr0, int eqnr1){ 
  struct eqSymbol *eqmin, *eqmax; 
  struct linkSymbol *ls; 
  int i, commondim, sumnl;// !! deleted var: , sumnlw; 
  u32 **U; 
 
  if(S->E[eqnr0].nrhs<S->E[eqnr1].nrhs){ 
    eqmin=S->E+eqnr0; 
    eqmax=S->E+eqnr1; 
  } 
  else{ 
    eqmin=S->E+eqnr1; 
    eqmax=S->E+eqnr0; 
  }//eqmin goes on top when computing U! 
  sumnl=eqmin->nlin+eqmax->nlin; 
  // !! deleted var: sumnlw=(sumnl+31)>>5; 
  U=(u32 **)malloc(sumnl*sizeof(u32 *)); 
  commondim=computeU(eqmin,eqmax,U); 
  if(commondim>0){/* eqmin and eqmax can exchange information, 
establish link */ 
    ls=S->L+S->nlink; 
    ls->linknr=S->nlink; 
    if(commondim<32 && (1<<commondim)<eqmin->nrhs) 
      establishSmallLink(eqmin,eqmax,ls,U+(sumnl-commondim),commondim); 
    else 
      establishBigLink(eqmin,eqmax,ls,U+(sumnl-commondim),commondim); 
    S->nlink++; 
  } 
  for(i=0; i<sumnl; ++i) 
    free(U[i]); 
  free(U); 
} 
 
void linkSystem(struct system *S){ 
  /* Establishes connections for all pairs of equations that can 
exchange information */ 
  int i, j, eq0ni, eq1ni; 
  struct eqSymbol *eq0, *eq1; 
  struct linkSymbol *ls; 
 
  S->nlink=0; 
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  for(i=0; i<S->neq; ++i){ 
    S->E[i].nn=0; 
    S->E[i].coverID=(u32 **)malloc((S->neq-1)*sizeof(u32 *)); 
    S->E[i].link=(struct linkSymbol **)malloc((S->neq-1)*sizeof(struct 
linkSymbol *)); 
  } 
  S->L=(struct linkSymbol *)malloc(((S->neq*(S->neq-
1))/2)*sizeof(struct linkSymbol)); 
  for(i=0; i<S->neq-1; ++i){ 
    for(j=i+1; j<S->neq; ++j) 
      tryEstablishLink(S,i,j); 
  } 
  S->L=(struct linkSymbol *)realloc(S->L,S->nlink*sizeof(struct 
linkSymbol)); 
  for(i=0; i<S->neq; ++i){ 
    S->E[i].coverID=(u32 **)realloc(S->E[i].coverID,S-
>E[i].nn*sizeof(u32 *)); 
    S->E[i].link=(struct linkSymbol **)realloc(S->E[i].link,S-
>E[i].nn*sizeof(struct linkSymbol *)); 
  }  
} 
 
void deLinkSystem(struct system *S){ 
  /* Removes all links in S and frees the memory */ 
  int i; 
  struct eqSymbol *eq; 
  struct linkSymbol *li; 
 
  for(eq=S->E; eq<S->E+S->neq; ++eq){ 
    if(eq->nn>0){ 
      for(i=0; i<eq->nn; ++i) 
 free(eq->coverID[i]); 
      free(eq->coverID); 
      free(eq->link); 
      eq->nn=0; 
    } 
  } 
  for(li=S->L; li<S->L+S->nlink; ++li){ 
    free(li->nCover[0]); 
    free(li->nCover[1]); 
    free(li->cellExists); 
  } 
  free(S->L); 
  S->nlink=0; 
} 
 
void makeLinkTab(struct system *S, int **LT){ 
  int i; 
 
  for(i=0; i<S->neq; ++i) 
    LT[i]=(int *)calloc(S->neq,sizeof(int)); 
  for(i=0; i<S->nlink; ++i){ 
    LT[S->L[i].nlist[0]-(S->E)][S->L[i].nlist[1]-(S-
>E)]=(int)ceil(log2(S->L[i].ncells)); 
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    LT[S->L[i].nlist[1]-(S->E)][S->L[i].nlist[0]-(S-
>E)]=(int)ceil(log2(S->L[i].ncells)); 
  } 
} 
 
void printLinkTab(int **LT, int n){ 
  int i, j; 
 
  for(i=0; i<n; ++i){ 
    for(j=0; j<n; ++j){ 
      printf("%2d",LT[i][j]); 
      if((j+1)%5==0) 
 printf("|"); 
    } 
    if((i+1)%5==0){ 
      printf("\n"); 
      for(j=0; j<n; ++j) 
 printf("--"); 
      for(j=0; j<n/5; ++j) 
 printf("-"); 
    } 
    printf("\n"); 
  } 
} 
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APPENDIX B 

(These codes are intended only to be used for experiments with the 

MRHS method, and neither their author nor the author of this thesis takes any 

responsibility for their use). 

A. GENERATION OF AN EQUATION 

/* 
 aes_eqs.c 
 D. Canright 2008 Sep 10 Wed 12:44:56 
Generate MRHS Equations for 
Small-scale Variants of the AES algorithm  
Also does the encryption! 
Notes: always uses * form: last round no MixCols 
 always keysize = block size 
optional command line arguments: 
 variant (string) = "nrce" to specify small-scale variant of AES: 
   n (hex) is # rounds ( 1 - A; default=A=10 ) 
   r (int) is # rows ( 1, 2, 4; default=4 ) 
   c (int) is # cols ( 1, 2, 4; default=4 ) 
   e (int) is # bits in word ( 2, 4, 8; default=8 ) 
   defaults are "A448" for standard AES = SR*(10; 4; 4; 
8) 
 input (hex)  = plaintext block (default is zero block) 
 output (hex) = key block (default is zero block) 
 outfile (string) = filename of output file (default is stdout) 
while all the above are optional, you must have one to have the next... 
 
save all the X state data (output of S-box after ShiftRows) and K key 
data, 
print it out after the equations. 
encryption re-organized the to give the X state: 
 put ShiftRows before S-box, as part of previous round 
 do NOT do "in place"; rather, put result in new place. 
(ARS) (MARS)*(n-1) (A) rather than 
(A) (SRMA)*(n-1) (SRA) [where R is RowShift, S is SubstBytes, ...] 
Does actual KeySchedule and Encrypt. 
(Note: keep InvMix in case do non-star versions). 
*/ 
#include <stdio.h> 
#include <string.h> 
 
#define MAXROUNDS 10 
#define MAXROWS 4 
#define MAXCOLS 4 
#define MAXBITS 8 
#define MAXBLOCK MAXROWS*MAXCOLS 
#define MAXKEY MAXBLOCK 
#define MAXVARS MAXROUNDS*MAXROWS*(MAXCOLS+1) 
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#define SR(c,r) ( (c+r) & (nCols-1) ) 
 
unsigned char RoundKeys[(MAXROUNDS + 1) * MAXBLOCK]; 
unsigned char States[(MAXROUNDS + 2) * MAXBLOCK]; 
unsigned int *Log; 
unsigned char *ALog, *Sbox, *Mix, *InvMix, fieldmask; 
int nRounds = 10, nRows = 4, nCols = 4, nBits = 8, star = 1, field, 
block, 
    KeyBits, KeyCols, nKeyCols; 
int nEqs, nVars, nKeyVars; 
unsigned char PT[MAXBLOCK], CT[MAXBLOCK], Eq[2][MAXVARS], Data[2]; 
enum InOut { In, Out }; 
enum VarType { Key, X, State }; 
 
unsigned int Log8[256] = { 
0x00,0x00,0x19,0x01,0x32,0x02,0x1A,0xC6,0x4B,0xC7,0x1B,0x68,0x33,0xEE,0
xDF,0x03, 
0x64,0x04,0xE0,0x0E,0x34,0x8D,0x81,0xEF,0x4C,0x71,0x08,0xC8,0xF8,0x69,0
x1C,0xC1, 
0x7D,0xC2,0x1D,0xB5,0xF9,0xB9,0x27,0x6A,0x4D,0xE4,0xA6,0x72,0x9A,0xC9,0
x09,0x78, 
0x65,0x2F,0x8A,0x05,0x21,0x0F,0xE1,0x24,0x12,0xF0,0x82,0x45,0x35,0x93,0
xDA,0x8E, 
0x96,0x8F,0xDB,0xBD,0x36,0xD0,0xCE,0x94,0x13,0x5C,0xD2,0xF1,0x40,0x46,0
x83,0x38, 
0x66,0xDD,0xFD,0x30,0xBF,0x06,0x8B,0x62,0xB3,0x25,0xE2,0x98,0x22,0x88,0
x91,0x10, 
0x7E,0x6E,0x48,0xC3,0xA3,0xB6,0x1E,0x42,0x3A,0x6B,0x28,0x54,0xFA,0x85,0
x3D,0xBA, 
0x2B,0x79,0x0A,0x15,0x9B,0x9F,0x5E,0xCA,0x4E,0xD4,0xAC,0xE5,0xF3,0x73,0
xA7,0x57, 
0xAF,0x58,0xA8,0x50,0xF4,0xEA,0xD6,0x74,0x4F,0xAE,0xE9,0xD5,0xE7,0xE6,0
xAD,0xE8, 
0x2C,0xD7,0x75,0x7A,0xEB,0x16,0x0B,0xF5,0x59,0xCB,0x5F,0xB0,0x9C,0xA9,0
x51,0xA0, 
0x7F,0x0C,0xF6,0x6F,0x17,0xC4,0x49,0xEC,0xD8,0x43,0x1F,0x2D,0xA4,0x76,0
x7B,0xB7, 
0xCC,0xBB,0x3E,0x5A,0xFB,0x60,0xB1,0x86,0x3B,0x52,0xA1,0x6C,0xAA,0x55,0
x29,0x9D, 
0x97,0xB2,0x87,0x90,0x61,0xBE,0xDC,0xFC,0xBC,0x95,0xCF,0xCD,0x37,0x3F,0
x5B,0xD1, 
0x53,0x39,0x84,0x3C,0x41,0xA2,0x6D,0x47,0x14,0x2A,0x9E,0x5D,0x56,0xF2,0
xD3,0xAB, 
0x44,0x11,0x92,0xD9,0x23,0x20,0x2E,0x89,0xB4,0x7C,0xB8,0x26,0x77,0x99,0
xE3,0xA5, 
0x67,0x4A,0xED,0xDE,0xC5,0x31,0xFE,0x18,0x0D,0x63,0x8C,0x80,0xC0,0xF7,0
x70,0x07, 
}; 
 
unsigned char ALog8[256] = { 
0x01,0x03,0x05,0x0F,0x11,0x33,0x55,0xFF,0x1A,0x2E,0x72,0x96,0xA1,0xF8,0
x13,0x35, 
0x5F,0xE1,0x38,0x48,0xD8,0x73,0x95,0xA4,0xF7,0x02,0x06,0x0A,0x1E,0x22,0
x66,0xAA, 
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0xE5,0x34,0x5C,0xE4,0x37,0x59,0xEB,0x26,0x6A,0xBE,0xD9,0x70,0x90,0xAB,0
xE6,0x31, 
0x53,0xF5,0x04,0x0C,0x14,0x3C,0x44,0xCC,0x4F,0xD1,0x68,0xB8,0xD3,0x6E,0
xB2,0xCD, 
0x4C,0xD4,0x67,0xA9,0xE0,0x3B,0x4D,0xD7,0x62,0xA6,0xF1,0x08,0x18,0x28,0
x78,0x88, 
0x83,0x9E,0xB9,0xD0,0x6B,0xBD,0xDC,0x7F,0x81,0x98,0xB3,0xCE,0x49,0xDB,0
x76,0x9A, 
0xB5,0xC4,0x57,0xF9,0x10,0x30,0x50,0xF0,0x0B,0x1D,0x27,0x69,0xBB,0xD6,0
x61,0xA3, 
0xFE,0x19,0x2B,0x7D,0x87,0x92,0xAD,0xEC,0x2F,0x71,0x93,0xAE,0xE9,0x20,0
x60,0xA0, 
0xFB,0x16,0x3A,0x4E,0xD2,0x6D,0xB7,0xC2,0x5D,0xE7,0x32,0x56,0xFA,0x15,0
x3F,0x41, 
0xC3,0x5E,0xE2,0x3D,0x47,0xC9,0x40,0xC0,0x5B,0xED,0x2C,0x74,0x9C,0xBF,0
xDA,0x75, 
0x9F,0xBA,0xD5,0x64,0xAC,0xEF,0x2A,0x7E,0x82,0x9D,0xBC,0xDF,0x7A,0x8E,0
x89,0x80, 
0x9B,0xB6,0xC1,0x58,0xE8,0x23,0x65,0xAF,0xEA,0x25,0x6F,0xB1,0xC8,0x43,0
xC5,0x54, 
0xFC,0x1F,0x21,0x63,0xA5,0xF4,0x07,0x09,0x1B,0x2D,0x77,0x99,0xB0,0xCB,0
x46,0xCA, 
0x45,0xCF,0x4A,0xDE,0x79,0x8B,0x86,0x91,0xA8,0xE3,0x3E,0x42,0xC6,0x51,0
xF3,0x0E, 
0x12,0x36,0x5A,0xEE,0x29,0x7B,0x8D,0x8C,0x8F,0x8A,0x85,0x94,0xA7,0xF2,0
x0D,0x17, 
0x39,0x4B,0xDD,0x7C,0x84,0x97,0xA2,0xFD,0x1C,0x24,0x6C,0xB4,0xC7,0x52,0
xF6,0x01, 
}; 
 
unsigned int Log4[16] = { 
0,  0,  1,  4,  2,  8,  5, 10,  3, 14,  9,  7,  6, 13, 11, 12, 
}; 
 
unsigned char ALog4[16] = { 
1,  2,  4,  8,  3,  6, 12, 11,  5, 10,  7, 14, 15, 13,  9,  1,  
}; 
 
unsigned int Log2[4] = { 
0,  0,  1,  2, 
}; 
 
unsigned char ALog2[4] = { 
1,  2,  3,  1,  
}; 
 
unsigned char Sbox8[256] = { 
0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0
xAB,0x76, 
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0
x72,0xC0, 
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0
x31,0x15, 
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0
xB2,0x75, 
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0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0
x2F,0x84, 
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0
x58,0xCF, 
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0
x9F,0xA8, 
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0
xF3,0xD2, 
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0
x19,0x73, 
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0
x0B,0xDB, 
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0
xE4,0x79, 
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0
xAE,0x08, 
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0
x8B,0x8A, 
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0
x1D,0x9E, 
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0
x28,0xDF, 
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0
xBB,0x16, 
}; 
 
unsigned char Sbox4[16] = { 
0x6,0xB,0x5,0x4,0x2,0xE,0x7,0xA,0x9,0xD,0xF,0xC,0x3,0x1,0x0,0x8,  
}; 
 
unsigned char Sbox2[4] = { 
 2, 3, 1, 0, 
}; 
 
unsigned char Mix4[4] = { 
0x2,0x3,0x1,0x1, 
}; 
 
unsigned char InvMix4[4] = { 
0xE,0xB,0xD,0x9, 
}; 
 
unsigned char InvMix42[4] = { 
0x0,0x2,0x3,0x0, 
}; 
 
unsigned char Mix2[2] = { 
0x3,0x2, 
}; 
 
unsigned char Mix1[1] = { 
0x1, 
}; 
 
// multiply by "2" in field 
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#define POLY8 0x1B 
#define POLY4 0x13 
#define POLY2 0x07 
unsigned char HIBIT, POLY; 
unsigned char mul2 (unsigned char x) { 
    unsigned char y; 
    y = x << 1; 
    if ( x & HIBIT ) y ^= POLY; 
    return( y ); 
} 
 
// multiply two bytes in field 
unsigned char mul(unsigned char x, unsigned char y) 
{ 
    if (x && y) 
        return (ALog[(Log[x] + Log[y]) % (field - 1)]); 
    else 
        return (0); 
} 
 
#include "eqs_io.h"    // include I/O package 
 
// set up specific small-scale variant of AES 
// assumes main() already set: nRounds, nRows, nCols, nBits, star  
int setup(void) 
{ 
    int returnval = 0; 
 
// check parameters for validity 
    if (nRounds < 1 || nRounds > MAXROUNDS) { 
 nRounds = 10; 
 returnval = 1; 
    } 
    if (!(nCols == 1 || nCols == 2 || nCols == 4)) { 
 nCols = 4; 
 returnval = 1; 
    } 
 
    switch (nBits) { 
    case 2: 
        Log = Log2; 
        ALog = ALog2; 
 Sbox = Sbox2; 
 POLY = POLY2; 
 field = 4; 
 break; 
    case 4: 
        Log = Log4; 
        ALog = ALog4; 
 Sbox = Sbox4; 
 POLY = POLY4; 
 field = 16; 
 break; 
    default: 
 nBits = 8; 
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 returnval = 1;  // if bad value, use default, fall thru 
    case 8: 
        Log = Log8; 
        ALog = ALog8; 
 Sbox = Sbox8; 
 POLY = POLY8; 
 field = 256; 
 break; 
    } 
 
    switch (nRows) { 
    case 1: 
 Mix = InvMix = Mix1; 
 break; 
    case 2: 
 Mix = InvMix = Mix2; 
 break; 
    default: 
 nRows = 4; 
 returnval = 1;  // if bad value, use default, fall thru 
    case 4: 
 Mix = Mix4; 
 InvMix = (nBits == 2) ? InvMix42 : InvMix4; 
 break; 
    } 
    fieldmask = field - 1; 
    HIBIT = 1 << (nBits - 1); 
    setScale();  // set up bit matrices for scalars 
    block = nRows * nCols; 
    KeyBits = block * nBits; 
    nKeyCols = (nRounds + 1) * nCols; 
    nKeyVars = block + nRounds * nRows; 
    nVars = nKeyVars + block * (nRounds - 1); 
    nEqs = nVars; 
 
    return returnval; 
} 
 
int KeySchedule(unsigned char Key[]) 
{ 
    int colbits, returnval = 0; 
    int r, c; 
    unsigned char col[MAXROWS], t, rcon; 
 
    colbits = nRows * nBits; 
    KeyCols = KeyBits / colbits; 
#define NOISY 0 
#if NOISY 
fprintf(stderr,"-KeySched: colbits=%d, KeyCols=%d, nKeyCols=%d, 
Key=%p\n", 
 colbits, KeyCols, nKeyCols, Key); 
fprintf(stderr,"-Key: "); 
 for (r = 0; r < block; r++) fprintf(stderr, ((nBits>4) ? "%02X" : 
"%01X"), Key[r]); 
fprintf(stderr,"\n"); fflush(stderr); 
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#endif 
    /* Copy key */ 
    for (c = 0; c < KeyCols; c++) 
        for (r = 0; r < nRows; r++) 
            RoundKeys[r + nRows * c] = Key[r + nRows * c]; 
    for (r = 0; r < nRows; r++) 
        col[r] = Key[r + nRows * (c - 1)]; 
#if NOISY 
fprintf(stderr,"-KeySched: Key copied; c=%d, col= ", c); 
 for (r = 0; r < nRows; r++) fprintf(stderr, (nBits>4)?"%02X":"%01X", 
col[r]); 
fprintf(stderr,"\n"); fflush(stderr); 
#endif 
 
    for (rcon = 1; c < nKeyCols; c++) { 
        /* calculate new columns until enough */ 
        if (c % KeyCols == 0) { 
            t = col[0]; 
            for (r = 0; r < (nRows - 1); r++) 
                col[r] = Sbox[col[r + 1]]; 
            col[nRows - 1] = Sbox[t]; 
            col[0] ^= rcon; 
#if NOISY 
fprintf(stderr,"-KeySched: apply F; t=%X, rcon=%X, col= ", t, rcon); 
 for (r = 0; r < nRows; r++) fprintf(stderr, (nBits>4)?"%02X":"%01X", 
col[r]); 
fprintf(stderr,"\n"); fflush(stderr); 
#endif 
            rcon = mul(2, rcon); 
        } 
// need to handle KeyCols = 1 differently  
        for (r = 0; r < nRows; r++) 
            RoundKeys[r + nRows * c] = (KeyCols == 1) ? col[r] : 
                (col[r] ^= RoundKeys[r + nRows * (c - KeyCols)]); 
#if 0 
fprintf(stderr,"-KeySched: RoundKeys col[%d]= ", c); 
 for (r = 0; r < nRows; r++) fprintf(stderr, (nBits>4)?"%02X":"%01X",  
 RoundKeys[r + nRows * c]); 
fprintf(stderr,"\n"); fflush(stderr); 
#endif 
    } 
 
    return returnval; 
} 
 
// do one round on block: (ARS) for #0 or else (MARS) 
void doround(unsigned char State[], unsigned char roundKey[], 
             int round) 
{ 
    unsigned char t[MAXROWS]; 
    int i, r, c, offset=0; 
    if (round)             // if normal round 
        for (c = 0; c < nCols; c++) { 
            for (r = 0; r < nRows; r++) 
                for (t[r] = i = 0; i < nRows; i++) 
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                    t[r] ^=             // MixColumns 
                        mul(Mix[i], State[((r + i) % nRows) + nRows * 
c]); 
            for (r = 0; r < nRows; r++) 
                State[block + r + nRows * c] = t[r]; 
        } 
else offset = -block; 
State += block; 
   for (i = 0; i < block; i++) 
        State[i] = State[offset+i] ^ roundKey[i];        // AddRoundKey 
   for (r = 1; r < nRows; r++) { 
        for (c = 0; c < nCols; c++)     // ShiftRows 
            t[c] = State[r + nRows * ((c + r) % nCols)]; 
        for (c = 0; c < nCols; c++) 
            State[r + nRows * c] = t[c]; 
    } 
   for (i = 0; i < block; i++) 
        State[i] = Sbox[State[i]];      // SubBytes 
 
} 
 
// do round #n on block: (A) 
void doroundn(unsigned char State[], unsigned char roundKey[]) 
{ 
    int i; 
 
    for (i = 0; i < block; i++) 
        State[block + i] = State[i] ^ roundKey[i];        // 
AddRoundKey 
} 
 
// encrypt block (NOT in place - keep output of each S-box) 
void encrypt( void ) 
{ 
    int i, round; 
 
    for (i = 0; i < block; i++)  
     States[i] = PT[i];  // copy PT in 
    for (round = 0; round < nRounds; round++) { 
        doround( States + round*block, RoundKeys + round*block, round); 
    } 
    doroundn(States + round*block, RoundKeys + round*block); 
    for (i = 0; i < block; i++)  
     CT[i] = States[(nRounds+1)*block + i]; // copy CT out 
} 
 
void NewEq( void ) 
{ 
    int i, r; 
 
    for (r = In; r <= Out; r++) { 
    Data[r] = 0; 
    for (i = 0; i < nVars; i++) 
        Eq[r][i] = 0; 
    } 
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} 
 
int VarNum( enum VarType var,  
 int round, int col, int row ) 
{ 
    switch (var) { 
    case Key: 
 if (round == 0) 
     return ( col * nRows + row ); 
 else   // then  col == 0 
     return ( block + (round-1) * nRows + row ); 
    case X: 
 return ( nKeyVars + (round-1) * block + col * nRows + row ); 
    } 
    return ( 0 );  // dummy 
} 
 
void AddVar( enum InOut line, enum VarType var,  
 int round, int col, int row, int scale ) 
{ 
    int r; 
 
    switch (var) { 
    case Key: 
 if (round == 0 || col == 0) 
     Eq[line][ VarNum( Key, round, col, row ) ] ^= scale; 
 else { 
     AddVar( line, Key, round, col-1, row, scale ); 
     AddVar( line, Key, round-1, col, row, scale ); 
 } 
 break; 
    case X: 
 Eq[line][ VarNum( X, round, col, row ) ] ^= scale; 
 break; 
    case State:  // scale must be 1 
 for (r = 0; r < nRows; r++) { 
     AddVar( line, X, round, col, (row+r)&(nRows-1), Mix[r] ); 
 } 
 AddVar( line, Key, round, col, row, 1 ); 
 break; 
    } 
} 
 
void KeyScheduleEqs(void) 
{ 
    int i, r; 
    unsigned char rcon; 
 
    for (i = 1, rcon = 1; i <= nRounds; i++) { 
 for (r = 0; r < nRows; r++) { 
     NewEq(); 
     AddVar( Out, Key, i, 0, r, 1); 
     if ( nCols > 1 ) AddVar( Out, Key, i-1, 0, r, 1); 
     AddVar( In, Key, i-1, nCols-1, (r+1)&(nRows-1), 1); 
     if ( r == 0 ) Data[ Out ] = rcon; 
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     WriteEq(); 
 } 
 rcon = mul2(rcon); 
    } 
} 
 
// do only 1 round on block 
void doonlyroundEqs(int round) 
{ 
    int r, c; 
 
    for (c = 0; c < nCols; c++) { 
 for (r = 0; r < nRows; r++) { 
     NewEq(); 
     AddVar( Out, Key, round, c, r, 1); 
     Data[ Out ] = CT[ r + nRows * c ]; 
     AddVar( In, Key, round-1, SR(c,r), r, 1); 
     Data[ In ] = PT[ r + nRows * SR(c,r) ]; 
     WriteEq(); 
 } 
    } 
} 
 
// do round #1 on block 
void doround1Eqs(int round) 
{ 
    int r, c; 
 
    for (c = 0; c < nCols; c++) { 
 for (r = 0; r < nRows; r++) { 
     NewEq(); 
     AddVar( Out, X, round, c, r, 1); 
     AddVar( In, Key, round-1, SR(c,r), r, 1); 
     Data[ In ] = PT[ r + nRows * SR(c,r) ]; 
     WriteEq(); 
 } 
    } 
} 
 
// do one round on block 
void doroundEqs(int round) 
{ 
    int r, c; 
 
    for (c = 0; c < nCols; c++) { 
 for (r = 0; r < nRows; r++) { 
     NewEq(); 
     AddVar( Out, X, round, c, r, 1); 
     AddVar( In, State, round-1, SR(c,r), r, 1); 
     WriteEq(); 
 } 
    } 
} 
 
// do round #n on block 
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void doroundnEqs(int round) 
{ 
    int r, c; 
 
    for (c = 0; c < nCols; c++) { 
 for (r = 0; r < nRows; r++) { 
     NewEq(); 
     AddVar( Out, Key, round, c, r, 1); 
     AddVar( In, State, round-1, SR(c,r), r, 1); 
     Data[ Out ] = CT[ r + nRows * c ]; 
     WriteEq(); 
 } 
    } 
} 
 
void EncryptEqs(void) 
{ 
    int round; 
 
    if ( nRounds == 1 ) { 
        doonlyroundEqs(1); 
        return; 
        } 
    doround1Eqs(1); 
    for (round = 2; round < nRounds; round++) { 
 doroundEqs(round); 
    } 
    doroundnEqs(round); 
} 
 
int main(int argc, char *argv[]) 
{ 
unsigned char Key[MAXBLOCK]; 
 
    if (argc > 1) { 
 sscanf(argv[1], "%1x%1d%1d%1d", 
     &nRounds, &nRows, &nCols, &nBits); 
    } 
    fprintf(stderr, " nRounds=%d, nRows=%d, nCols=%d, nBits=%d, 
star=%d\n", 
     nRounds, nRows, nCols, nBits, star); 
    if (setup()) 
 fprintf(stderr, 
  "Bad parameter(s); now:\n nRounds=%d, nRows=%d, nCols=%d, 
nBits=%d, star=%d\n", 
  nRounds, nRows, nCols, nBits, star); 
//  by default KeyBits = bits in block 
 ReadBlock( (argc > 2) ? argv[2] : "", PT); 
 ReadBlock( (argc > 3) ? argv[3] : "", Key); 
    if (argc > 4) 
 if (freopen(argv[4], "w", stdout) != stdout) { 
     fprintf(stderr, "Could not open output file %s\n", argv[4]); 
     return 1; 
 } 
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    KeySchedule(Key); 
    encrypt(); 
     
    WriteSystemHeader(); 
    KeyScheduleEqs(); 
//  do only single block 
    EncryptEqs(); 
     
    WriteVars(); 
    printf(" nRounds=%d, nRows=%d, nCols=%d, nBits=%d, star=%d\n", 
     nRounds, nRows, nCols, nBits, star); 
    WriteKeys(); 
    WriteStates(); 
 
    return (0); 
} 

 

B. MRHS algorithm 

/* 
        mrhs.c 
        D. Canright 2008 Aug 22 Fri 13:58:27 
Interactive tool to solve MRHS equations 
 
input file format: 
header: 
 NVAR # variables 
 neq # equations (symbols) 
for each equation symbol: 
 nlin # rows 
 nrhs # RHS 
 A (by rows, binary) 
 b (by cols, binary) 
 
*/ 
 
#include "mrhs.h"  // includes all others  
#include <ctype.h> 
 
int main(int argc, char *argv[]) 
{ 
    int i, n; 
    char input[101], *filename; 
    char menu[] = {  
"Enter commands from the menu below.\n" 
"  # means a number is required: use nondigit for default value (or for 
'all')\n" 
   "l   linkSystem(S);\n" 
   "a   agreeSystem(S);\n" 
   "d   deLinkSystem(S);\n" 
   "g # packSystem(S, #); (glue)\n" 
   "x   extractLinearInfo(S);\n" 
   "w   writeSystem(S);\n" 
   "i # EquationInfo(&S->E[#]);\n" 
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   "p # printEquation(&S->E[#]);\n" 
   "e   printLinEquation(S->linbank, 0, S->linbank->nlin);\n" 
   "t   writeLinkTab(S, 36);\n" 
   "q   QUIT (exit)\n" 
    }; 
 
//    struct eqSymbol *tmpeq = (struct eqSymbol *) malloc(sizeof(struct 
eqSymbol)); 
    struct system *S = (struct system *) malloc(sizeof(struct system 
)); 
 CHECKPTR(S);  // test of macro 
/*  
read in header, set up sys, setup & read eqns 
link system 
agree 
glue 
*/ 
 
#if 0 
 i = 0; 
 CHECKPTR(i);  // test of macro 
 return(0); 
#endif 
 
if ( argc > 1 ) filename = argv[1]; 
else { 
  fprintf( stderr, "Enter filename for input system: "); 
  scanf("%100s", input); 
  filename = input; 
  } 
if ( readSystem(S, filename) ) { 
  fprintf( stderr, "Error in main: did not get input system; abort!\n" 
); 
  return ( 1 ); 
  } 
printf("got: NVAR = %d (NWORDS = %d); neq = %d\n", NVAR, NWORDS, S->neq 
); 
printf(menu); 
while ( scanf("%100s",input) == 1 ) { 
switch (input[0]) { 
case 'a': 
case 'A': 
printf("** agreeSystem\n"); 
agreeSystem(S); 
break; 
case 'e': 
case 'E': 
printLinEquation(S->linbank, 0, S->linbank->nlin); 
break; 
case 'd': 
case 'D': 
printf("** deLinkSystem\n"); 
deLinkSystem(S); 
break; 
case 'p': 
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case 'P': 
if ( input[1] ) i=1; 
else { scanf("%100s",input); i = 0; } 
if ( isdigit(input[i]) ) { 
  sscanf( input+i, "%d", &i ); 
  if ( i < 0 || i >= S->neq ) {fprintf(stderr," bad eq #: %d\n",i); 
break;} 
  printEquation(&S->E[i]); 
  } 
else 
  for(i=0; i<S->neq; ++i) printEquation(&S->E[i]); 
break; 
case 'i': 
case 'I': 
if ( input[1] ) i=1; 
else { scanf("%100s",input); i = 0; } 
if ( isdigit(input[i]) ) { 
  sscanf( input+i, "%d", &i ); 
  if ( i < 0 || i >= S->neq ) {fprintf(stderr," bad eq #: %d\n",i); 
break;} 
  EquationInfo(&S->E[i]); 
  } 
else 
  for(i=0; i<S->neq; ++i) EquationInfo(&S->E[i]); 
break; 
case 'g': 
case 'G': 
if ( input[1] ) i=1; 
else { scanf("%100s",input); i = 0; } 
if ( isdigit(input[i]) ) 
  sscanf( input+i, "%d", &i ); 
else 
  i = 1024;   // arbitrarily picked a (small) max size of glued eqns 
printf("** packSystem (glue); max = %d\n", i); 
packSystem(S, i); 
break; 
case 'l': 
case 'L': 
printf("** linkSystem\n"); 
linkSystem(S); 
break; 
case 'q': 
case 'Q': 
return 0; 
case 't': 
case 'T': 
writeLinkTab(S, 36); 
break; 
case 'w': 
case 'W': 
writeSystem(S); 
break; 
case 'x': 
case 'X': 
printf("** extractLinearInfo\n"); 
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extractLinearInfo(S); 
break; 
default: 
printf(menu); 
break; 
} 
printf("now: neq = %d ; nlink = %d ; linbank = %d\n", 
 S->neq, S->nlink, S->linbank->nlin ); 
} 
 
    return (0); 
} 
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