

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

COMPUTATIONAL ALGEBRAIC ATTACKS ON THE
ADVANCED ENCRYPTION STANDARD (AES)

by

Mantzouris Panteleimon

September 2009

 Thesis Advisor: David Canright
 Co-Advisor: Jon Butler

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Computational Algebraic Attacks on the Advanced
Encryption Standard (AES)
6. AUTHOR(S) Mantzouris Panteleimon

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis examines the vulnerability of the Advanced Encryption Standard (AES) to algebraic
attacks. It will explore how strong the Rijndael algorithm must be in order to secure important federal
information.

There are several algebraic methods of attack that can be used to break a specific cipher, such as
Buchburger’s and Faugere’s F4 and F5 methods. The method to be used and evaluated in this thesis is the
Multiple Right Hand Sides (MRHS) Linear Equations. MRHS is a new method that allows computations to
be more efficient and the equations to be more compact in comparison with the previously referred
methods.

Because of the high complexity of the Rijndael algorithm, the purpose of this thesis is to investigate
the results of an MRHS attack in a small-scale variant of the AES, since it is impossible to break the actual
algorithm by using only the existent knowledge. Instead of the original ten rounds of AES algorithm,
variants of up to four rounds were used.

Simple examples of deciphering some ciphertexts are presented for different variants of the AES,
and the new attack method of MRHS linear equations is compared with the other older methods.

This method is more effective timewise than the other older methods, but, in some cases, some
systems cannot be uniquely solved.

15. NUMBER OF
PAGES

121

14. SUBJECT TERMS Advanced Encryption Standard (AES), Rijndael’s algorithm, Block
Cipher, Decipher, Round of the algorithm, Sparse Multivariate Polynomial

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

COMPUTATIONAL ALGEBRAIC ATTACKS ON THE ADVANCED
ENCRYPTION STANDARD (AES)

Panteleimon Mantzouris
Lieutenant Junior Grade, Hellenic Navy

B.S., Hellenic Naval Academy, 2001

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

and

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: LTJG Panteleimon Mantzouris

Approved by: David Canright
Thesis Advisor

Jon Butler
Co-Advisor

Jeffrey Knorr
Chairman, Department of Electrical and Computer
Engineering

Carlos Borges
Chairman, Department of Mathematics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis examines the vulnerability of the Advanced Encryption

Standard (AES) to algebraic attacks. It will explore how strong the Rijndael

algorithm must be in order to secure important federal information.

There are several algebraic methods of attack that can be used to break a

specific cipher, such as Buchburger’s and Faugere’s F4 and F5 methods. The

method to be used and evaluated in this thesis is the Multiple Right Hand Sides

(MRHS) Linear Equations. MRHS is a new method that allows computations to

be more efficient and the equations to be more compact in comparison with the

previously referred methods.

Because of the high complexity of the Rijndael algorithm, the purpose of

this thesis is to investigate the results of an MRHS attack in a small-scale variant

of the AES, since it is impossible to break the actual algorithm by using only the

existent knowledge. Instead of the original ten rounds of AES algorithm, variants

of up to four rounds were used.

Simple examples of deciphering some ciphertexts are presented for

different variants of the AES, and the new attack method of MRHS linear

equations is compared with the other older methods.

This method is more effective timewise than the other older methods, but,

in some cases, some systems cannot be uniquely solved.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. HISTORY ... 1
B. RELATED WORK .. 1
C. INTRODUCTION TO AES.. 3
D. STRUCTURE OF THE AES ALGORITHM .. 4

1. Encryption Process ... 4
a. The ByteSub Transformation (BS)............................... 4
b. The ShiftRows Transformation (SR)............................ 7
c. The MixColumns Transformation (MC) 8
d. The AddRoundKey Transformation............................. 9

2. Decryption Process ... 10
a. The InvByteSub Transformation................................ 11
b. The InvShiftRows Transformation............................. 12
c. The InvMixColumns Transformation 12
d. The InvAddRoundKey Transformation 12

E. THESIS OBJECTIVE ... 12

II. ALGEBRAIC EQUATIONS FOR AES.. 15
A. INTRODUCTION.. 15
B. DIFFERENT REPRESENTATIONS OVER F2 AND F256 15

1. Isomorphic Representations .. 15
2. Regular Representations .. 17
3. Logarithmic Representations ... 17

C. ALGEBRAIC SOLUTION METHODS.. 17
1. Buchberger’s Algorithm.. 17
2. F4 and F5 Algorithms ... 19
3. Multiple Right Hand Sides (MRHS) Linear Equations

Algorithm.. 22
a. Agreeing Procedure.. 22
b. Gluing Procedure.. 25
c. Example ... 25
d. From MRHS to Linear Equations 28

4. Algorithms’ Complexities and Comparison 28

III. COMPUTATIONAL EXPERIMENTS .. 31
A. METHODOLOGY... 31
B. RESULTS... 31

1. Example 1 ... 32
2. Example 2 ... 39

IV. CONCLUSIONS AND RECOMMENDATIONS... 47

APPENDIX A... 49

APPENDIX B... 85

 viii

A. GENERATION OF AN EQUATION.. 85

LIST OF REFERENCES.. 101

INITIAL DISTRIBUTION LIST ... 103

 ix

LIST OF FIGURES

Figure 1. The ByteSub step, the first stage in a round of AES (From [7])........... 5
Figure 2. S-Box in the encryption process (From [3]). .. 6
Figure 3. The ShiftRows step, the second stage in a round of AES (From

[7]). ... 8
Figure 4. The MixColumns step, the third stage in a round of AES (From [7]).... 9
Figure 5. The AddRoundKey step, the fourth stage in a round of AES (From

[7]). ... 9
Figure 6. S-Box in the decryption process (From [3]). 11
Figure 7. SR(3,4,4,8) equations variables (From [9])... 23

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Number of rounds, Nr, as a function of Nb (block length/32) and Nk
(key length/32).. 3

Table 2. Correspondence between decimal, binary and hexadecimal
notations... 7

Table 3. The number of irreducible polynomials over subfields of GF (28). 16

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

This thesis compares different algebraic methods for solving and breaking

the Advanced Encryption Standard (AES) algorithm. However, emphasis is given

to the Multiple Right Hand Side (MRHS) Linear Equation method, which is a new

algebraic method used for attacking ciphers with specific algebraic structures.

Such a cipher is the Rijndael algorithm, which was adopted by the U.S.

government as the most efficient among others in order to secure federal

information.

In cryptography, it is considered that a cipher is broken when a method

other than the brute force attack can reduce the complexity of the algorithm or

completely decipher it. The “brute force attack” method is a very simple method

in which we try one by one all the possible keys in order to break the cipher. In

particular, due to the complexity of the AES algorithm, it becomes very difficult to

break it with this method. Therefore, AES generated interest to find a specific

algorithm to break this cipher. Some of the older algebraic methods, such as

Buchberger’s algorithm and Faugere’s F4 and F5 algorithms, which are briefly

presented in Chapter II, cannot break this cipher. This work considers a new

algebraic method (MRHS) that can break small variants of the AES. Even the

breaking of a small variant of the algorithm constitutes a success, since it opens

a new horizon in the cryptanalysis field.

A comparison with the older algebraic attack methods that are presented

in [9] shows that the MRHS method is faster than the others. In Chapter II, there

is a quick overview for some of these methods and a more detailed analysis of

MRHS method with some algebraic examples.

The overall concept of this thesis is to create a program that will break a

small variant of the Rijndael algorithm. This work is based on the codes that

Professors Håvard Raddum and Igor Semaev (of University of Bergen, Norway)

provided to us. These codes (in the “C” language) are the application of the

 xiv

MRHS method to the AES algorithm. In this thesis, we created new programs,

which construct the equation systems of the AES algorithm, that we tried to solve

by using the codes of Professors Raddum and Semaev. Our computational

experiments examined many cases never considered in previous work.

This thesis demonstrates that, for a small variant of the AES, this method

is very efficient (few high-level operations). In the third chapter, some examples

are contained that show how this algorithm works. In some of the computational

experiments, a totally new and significant result appeared for the cryptanalysis

field; sometimes a small AES variant can have multiple decryption keys for a

specific encryption key. This result is surprising and is not mentioned anywhere

by Professors Raddum and Semaev.

In particular, the first example shows a case in which the MRHS method

finds multiple solutions to the system (it fails to solve the system—break the

cipher) and in the second one, all the MRHS linear equations are transformed

into ordinary linear equations whose total number is the number of variables in

our system.

 xv

ACKNOWLEDGMENTS

I would like to thank Professors Håvard Raddum and Igor Semaev, who

very generously sent their codes with instructions and offered to help us.

In addition, I want to thank my advisor, Professor David Canright, for his

invaluable help, without which the completion of this thesis would have been

impossible.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. HISTORY

In 1976, the United States government as an official Federal Information

Processing Standard (FIPS) adopted the Data Encryption Standard (DES).

Today, this standard is considered insecure, and the necessity for a new more

secure and efficient standard has emerged. Therefore, in 1997, the National

Institute of Standards and Technology published a call for the replacement of

DES. Among the requirements this new system had to meet were: the new

algorithm should be able to allow key sizes of 128, 192 and 256 bits; it should

operate on blocks of 128 input bits, and it should work in a variety of different

hardware. For example, 8-bit processors that could be used in smart cards and

the 32-bit architecture commonly used in personal computers [1].

For the adoption of the new algorithm, five finalists were chosen: MARS

(from IBM), RC6 (from RSA Laboratories), Rijndael (from Joan Daemen and

Vincent Rijmen), Serpent (from Ross Anderson, Eli Biham and Lars Knudsen)

and Twofish (from Bruce Schneier, John Kelsey, Doug Whiting, David Wagner,

Chris Hall and Niels Ferguson). Finally, in 2001, the Rijndael algorithm [2] was

adopted as the Advanced Encryption Standard (AES) [3].

B. RELATED WORK

This new algorithm was of great interest for the area of cryptanalysis. The

cryptanalists started to seek ways to attack this algorithm, which might lead to

breaking the algorithm (finding the key more efficiently than a brute-force attack).

Since Rijndael’s algorithm is defined using algebraic operations in finite fields,

cryptanalists investigated algebraic methods in order to break it. Therefore, they

started to try the already known algebraic techniques for solving systems of

polynomial equations. Some of them were the Buchburger’s algorithm and the F4

and F5 algorithms [4] that are summarized in Chapter II with some simple

 2

examples. Also, they tried to describe the new algorithm by using some different

algebraic representations over the Galois finite fields [4] that are discussed in the

same chapter.

Recently, a new algebraic method was developed that used Multiple Right

Hand Sides (MRHS) Linear Equations [5]. The main difference with the other

algebraic methods is that the equations, which describe the algorithm, are not

expressed anymore as multivariate polynomial equations, but instead they are

presented as a system of linear equations, each having a set of multiple right

hand sides.

The Norwegian Professors Håvard Raddum and Igor Semaev first

developed this method. After a comparison between the Buchberger’s F4

algorithms and the MRHS method, they concluded that the last one is much

faster.

In this thesis, after we borrowed the codes [6] from the Norwegian team,

we managed to simulate the AES algorithm in the C language and to break

small-scale variants of the Rijndael’s algorithm. After the application of the

above-mentioned codes, many computational experiments were executed to

explore how the method would work in many different cases. Though the

previous work of Raddum and Semaev [5] only considered AES variants using

the 8-bit field, we also explored variants based on 4-bit and 2-bit fields. From

these experiments, we obtained some very surprising new results about the

decryption (breaking) of variants of the Rijndael algorithm. In particular, one of

the them is that there are some cases that a ciphertext, which was encrypted by

a specific key, could be broken by using a definite number of different keys. This

is explained in detail in Chapter III.

 3

C. INTRODUCTION TO AES

Although the Rijndael algorithm was adopted as the official algorithm for

AES, it is important to note that the algorithm, which is used in the AES, is a

limited version of the Rijndael’s algorithm. In particular, Rijndael is a block cipher

with both a variable block length and a variable key length [2]. While Rijndael’s

algorithm can be used for block and key lengths in any multiple of 32 bits, with a

minimum of 128 bits and a maximum of 256 bits, AES uses constant block length

of 128 bits and key lengths of 128, 192 and 256 bits only. Also, this algorithm is

applicable with a different number of rounds (Nr), depending on the number of

columns of the cipher key (Nk) and the number of columns of the rectangular

array (Nb) called state, which is actually the intermediate cipher result of the

algorithm. In Table 1, the number of rounds are shown as a function of the block

and key length.

 Nb

Nk 4 5 6 7 8

4 10 11 12 13 14

5 11 11 12 13 14

6 12 12 12 13 14

7 13 13 13 13 14

8 14 14 14 14 14

Table 1. Number of rounds, Nr, as a function of Nb (block length/32) and Nk (key
length/32).

Since, in this thesis, only the AES algorithm will be examined, it is good to

analyze the subcases of the Rijndael’s algorithm that are used in the AES. For

the encryption process, the input is the plaintext block and the initial key and the

 4

output is the ciphertext block. In the decryption process, the input is the

ciphertext block and the output the plaintext block.

With a 128-bit key length, the algorithm applies 10 rounds. (A 192-bit key

length contains 12 rounds and a 256-bit length contains 14 rounds). In each

round, there are four transformations (linear and non-linear) that are also called

layers. Each round has also a round key, derived from the original key (input

key). The round transformation and its steps generate intermediate data called

states. A state can be considered as a rectangular array of bytes with four rows

and a number of columns (Nb) that depend on the size of the key length. Here,

we consider that the key length is 128 bits, where the key is arranged in a 4x4

matrix such that each element is a byte. The four transformations are the

ByteSub transformation, the ShiftRow transformation, the MixColumn

transformation and the AddRoundKey transformation. These four transformations

compose a round. The four transformations are discussed next.

D. STRUCTURE OF THE AES ALGORITHM

The AES algorithm can be separated in two stages—the encryption and

the decryption process. The algorithm for the encryption process includes four

transformations, as it is shown below. The algorithm for the decryption process

consists of the inverses of the above-mentioned transformations in the reverse

order.

1. Encryption Process

The sequence of the four transformations mentioned above is the

following: ByteSub, ShiftRow, MixColumn and AddRoundKey transformations.

We next present these transformations in order.

a. The ByteSub Transformation (BS)

This is the only non-linear part of the algorithm and assures

resistance to differential and linear cryptanalysis attacks [2]. This transformation

 5

consists of an S-box, which is applied to each byte element of the state (16-byte

block) independently and has three different steps: inversion, a Galois Field (GF)

linear mapping, and S-Box constant ,as it is shown in Figure 1.

Figure 1. The ByteSub step, the first stage in a round of AES (From [7]).

(1) Inversion. In this operation of the S-box, the inverse is

computed in the 8-bit Galois Field, GF(28). The byte 00000000 has no inverse

and 00000000 is used in place of its inverse. Assume that the first byte is

7 6 5 4 3 2 1 0x x x x x x x x . The byte, which comes up from the inversion, will be

7 6 5 4 3 2 1 0y y y y y y y y , which represents an eight element column vector, with the

rightmost binary bit 0y in the top position. This operation provides resistance

against the linear and differential cryptanalysis attacks [1].

(2) GF—Linear Mapping. At this point, the y vector is

multiplied by a constant matrix, and the column vector (0,1,1,0,0,0,1,1) is added,

yielding a vector 7 6 5 4 3 2 1 0z z z z z z z z : (Note: Galois addition is equivalent to bitwise

XOR in any finite field of even size).

 6

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 0 0 1

0 0 1 1 1 1 1 0 1

0 0 0 1 1 1 1 1 0

1 0 0 0 1 1 1 1 0

1 1 0 0 0 1 1 1 0

1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 0 1 1

z y

z y

z y

z y

z y

z y

z y

z y

(3) S-box Table. The byte z is the input to the S-box

table. Consider an input byte abcdefgh. The S-box is a 16x16 matrix. We look for

the entry at abcd row and efgh column (rows and columns are numbered from 0

to 15). The intersection of these two entries, transformed into a binary number, is

the output from the S-box. For example, if the figure 10101010 is the input byte,

the first four bits, 1010, represent the decimal 10. Therefore, one enters at the

eleventh row and eleventh column. The intersection is 172, as it is shown in

Figure 2. This is converted into binary, which is 10101100. This is shown as ‘ac,’

which is hexadecimal for 10101100 in Table 2. That number is the output of the

S-box.

Figure 2. S-Box in the encryption process (From [3]).

 7

In order to make clear the hexadecimal notation, Table 2

shows the correspondence between decimal, binary and hexadecimal notations.

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Table 2. Correspondence between decimal, binary and hexadecimal notations.

b. The ShiftRows Transformation (SR)

In this transformation, which is linear, the rows of each state are

cyclically shifted to the left, with each row shifted a different amount, as it

appears in Figure 3. This provides resistance against truncated differential and

saturation attacks [2]. For example, row zero is shifted by C0 bytes, row 1 is

shifted by C1 bytes, row 2 is shifted by C2 bytes in such a way that the byte at

position j in row i moves to position (j-Ci) mod Nb. Particularly in AES 0 0C ,

1 1C , 2 2C and 3 3C . The output of this transformation is a matrix with the

same dimensions as the input matrix.

 8

Figure 3. The ShiftRows step, the second stage in a round of AES (From
[7]).

c. The MixColumns Transformation (MC)

This transformation operates on each 4-byte column separately and

is omitted in the last round. It is also a linear transformation, which has diffusion

power. The columns of the state are considered as polynomials over GF(28),

which are multiplied by a fixed polynomial c(x) modulo (x4+1). This polynomial is:

3 2() 03 01 01 02c x x x x [2]

and this multiplication can be presented as a matrix multiplication [2] (in

hexadecimal notation), as it appears below:

0 0

1 1

2 2

3 3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

b a

b a

b a

b a

 [2]

Figure 4 depicts the MixColumns operation on the columns of the

state.

http://upload.wikimedia.org/wikipedia/commons/6/66/AES-ShiftRows.svg�

 9

Figure 4. The MixColumns step, the third stage in a round of AES (From [7]).

d. The AddRoundKey Transformation

In this transformation, a key, consisting of 128 bits, which are

arranged in a 4x4 byte matrix, is added to the output of the MixColumn

transformation. A different round key is added to the state at the end of each

round.

Figure 5. The AddRoundKey step, the fourth stage in a round of AES (From
[7]).

This key is derived recursively from the original key as follows. We

will see this procedure in five steps.

Step1: Label the first four columns of the original key W(0), W(1),

W(2), W(3).

http://upload.wikimedia.org/wikipedia/commons/7/76/AES-MixColumns.svg�
http://upload.wikimedia.org/wikipedia/commons/a/ad/AES-AddRoundKey.svg�

 10

Since the whole algorithm consists of 10 rounds, 40 more columns

are required, four for each round. Let i symbolizes the number of column in the

different round keys as the columns are derived from the key schedule

(4 43i).

Step 2: If the number of the new column is a multiple of four,

then…

Step 3: It is 4 1W i W i T W i , where 1T W i is the

transformation of 1W i obtained as follows. Assume that the elements of the

column 1W i are a,b,c,d. These are shifted cyclically to obtain b,c,d,a, and

then, at this point, each of these bytes is substituted with its corresponding byte

from the S-box of the ByteSub transformation, as it is explained above. So, four

other bytes result, i.e., e,f,g,h.

Step 4: Finally, the round constant

 4 /400000010 ir i

is computed in GF(28). So, the 1T W i is the column vector , , ,e r i f g h .

 Step 5: If i is not a multiple of four, then

 4 1W i W i W i .

2. Decryption Process

The decryption process consists of the inverses of the four encryption

steps: InvByteSub, InvShiftRows, InvMixColumns and invAddRoundkey.

 11

a. The InvByteSub Transformation

This transformation consists of the inverse S-box. In essence, in

this step, the inverse transformation of the equation that was made in the

ByteSub transformation is performed. For the linear mapping, one takes:

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

0 1 0 1 0 0 1 0 0

0 0 1 0 1 0 0 1 0

1 0 0 1 0 1 0 0 0

0 1 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1 0

1 0 0 1 0 0 1 0 1

0 1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0 1

a b

a b

a b

a b

a b

a b

a b

a b

The inverse of the S-box appears in Figure 6:

Figure 6. S-Box in the decryption process (From [3]).

 12

b. The InvShiftRows Transformation

In this transformation, the opposite shifting operation is applied.

Therefore, the rows are shifted to the right instead of to the left, which takes

place at the ShiftRows transformation.

c. The InvMixColumns Transformation

In this transformation, every column is multiplied by the inverse

polynomial of c(x) (mod x4+1) which is:

 3 20 0 09 0d x B x D x x E

The inverse matrix multiplication of the equation, which was used in the

MixColumn transformation, is:

0 0

1 1

2 2

3 3

0 0 0 09

09 0 0 0

0 09 0 0

0 0 09 0

b aE B D

b aE B D

b aD E B

b aB D E

This transformation is omitted in the last round.

d. The InvAddRoundKey Transformation

This transformation applies the keys that were used in the

encryption process in the reverse order.

E. THESIS OBJECTIVE

A common method to break a cipher is called “the brute force attack.” In

this method, one tries to break a cipher using one or more ciphertexts, where the

corresponding plaintexts are known, by trying to decrypt them using all the

possible keys for the cipher. When the decryption yields the known plaintext, we

have found the key and the cipher is broken. (A variation on this method, used

when the plaintexts are not known, stops when a meaninful plaintext is found).

 13

However, as ciphers become more and more complicated, this method

turned out to be useless. For example, in the case of the Rijndael’s algorithm,

one has to try at most 1282 possible keys to break the cipher. This is impractical,

since the time and the memory that are necessary for that exceed the limits of all

existing workstations.

In the last few decades, some cryptanalysis has been based on algebraic

attacks. Algebraic attacks have the advantage that a cryptanalyst does not need

to have many known plaintexts and ciphertexts in order to create an equation

that can describe the cipher, an event that happens with the linear or differential

cryptanalysis where one has to have many pairs of plaintexts and ciphertexts in

order to be able to describe the cipher.

In this thesis, a specific algebraic attack method—the Multiple Right Hand

Side (MRHS) Linear Equations method—is examined and compared with other

older methods (Buchburgers, F4, F5) [4]. In addition, a small-scale variant of the

AES will be examined, since, as it will be explained later, the number of the

variables for the whole AES algorithm is too big to be solved.

Therefore, in Chapter II we will briefly summarize these older algebraic

methods. While these methods can represent the AES, they cannot break the

cipher. A more detailed analysis of the MRHS Linear Equations method will also

be presented with a very simple example in order to show how this method

works.

In Chapter III, we will present the computational experiments, where we

apply the MRHS approach to small variants of AES, including several that have

never been attacked before by this method. We present the results of the

application of this method with two representative examples. In the first example,

the method fails to solve the algebraic system that is created with the MRHS

Linear Equations, while in the second one we conclude to a solution.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

II. ALGEBRAIC EQUATIONS FOR AES

A. INTRODUCTION

There are many different ways to describe a cipher. However, the

complexity of modern ciphers requires knowledge of their algebraic

representation in order to attack and break them. In particular, one tries to

describe a cipher by finding the algebraic properties that it has and, after that, by

creating some homomorphisms or isomorphisms of this cipher. These new

structures are very helpful, both to the implementers of a particular cipher who

want to provide further protection to the cipher against side-channel attacks, and

to the cryptanalysts who try to analyze it or even to break it.

B. DIFFERENT REPRESENTATIONS OVER F2 AND F256

The meaning of F2 is the finite field with order (number of elements)

12np , where p is always a prime number and n is a positive integer.

Respectively, F256 is the finite field with order 82 256np , which is also notated

GF(28).

After the adoption of the modern algorithms, one of which is the Rijndael’s

algorithm, a great interest was created for the wider application of computational

algebra in cryptography. Therefore, a number of different algebraic

representations were developed.

In the case of AES, one can consider a number of different

representations, which are called dual ciphers depending on the properties of

their representation mappings. Some are described in the next pages.

1. Isomorphic Representations

Definition: Suppose A is a vector space over a field F with a

multiplication operation A A A . If this multiplication operation is associative

 16

and is a bilinear mapping on the vector space A , then A is an (associative) F -

algebra, or, more simply, an algebra[4].

In these ciphers, the mappings of the state and key spaces are algebra

isomorphisms of the AES state space algebra, where algebra is defined below.

Therefore, these ciphers are isomorphic to the AES.

In AES, each byte can be considered as an element of the finite field

 82GF in terms of the following polynomial:

 8 4 3 1m x x x x x (Rijndael polynomial)

which is irreducible in 2 []GF x . This finite field can be constructed in many

different ways from the chain of its subfields, as it appears below:

 2 4 82 2 2 2GF GF GF GF

In total, there are 30 1 60 3 120 1 6 120 1170 different

isomorphic representations of the AES based on the different irreducible

polynomials of the 82GF subfields as they appear in Table 3 [4].

 Subfield

Degree GF (2) GF (22) GF (24)

2 1 6 120

4 3 60 -

8 30 - -

Table 3. The number of irreducible polynomials over subfields of GF (28).

These particular representations are not of cryptanalytic interest. Rather,

they are intended to improve the efficiency of hardware implementation.

 17

2. Regular Representations

The regular representation is the algebra homomorphism : nv A M K

that maps a A to the matrix corresponding to the linear transformation z az ,

where z is a vector over F of length n [4].

3. Logarithmic Representations

Since an element of a finite field can be represented with logarithmic

functions instead of vector spaces, an element of the AES state space (excluding

zero bytes) can be described as an element of the set 16

255 . These ciphers are

called log dual ciphers and there are 128 different primitive elements in F , giving

128 such representations [4]. More details of how to specify a logarithmic

representation of the AES are given in [8].

C. ALGEBRAIC SOLUTION METHODS

In this subsection, some algebraic solution methods will be discussed. The

first two will be based on the Gröbner basis algorithms, which are well-known

methods for the solution of multivariate polynomial equations. These two

algorithms have been unable to break the Rijndael algorithm, and at the end of

this chapter there will be a comparison between these algorithms and the MRHS

Linear Equation algorithm in terms of their complexities [4]. The last one, which is

examined and analyzed in this thesis with more details, is a new approach that

seems to have better results than the previous two based on the time that is

needed in order to break the AES cipher.

1. Buchberger’s Algorithm

As mentioned above, Buchberger’s algorithm solves systems of

multivariate polynomial equations. Consider a polynomial ring 1 2, ,..., nx x x with

 18

a monomial ordering. Suppose 1 2, ,..., nI x x x is an ideal of this ring with a

basis 1,..., mF f f . The S-polynomial of any pair of the function of the basis is

defined as:

, ,
,

i j i j

i j i j
i j

lcm LM f LM f lcm LM f LM f
S f f f f

LT f LT f

,

where lcm is the least common multiple, LM is the Leading Monomial, and LT is

the Leading Term. What one tries to achieve with this polynomial S , which

belongs to the ideal I , is to cancel the leading terms from any pair of the

polynomials and, with the help of the next theorem, to compute a Gröbner basis

of the ideal I [4].

Theorem: Let 1 2, ,..., nx x x be a polynomial ring with a monomial ordering, and

let I be an ideal of 1 2, ,..., nx x x . A basis 1,..., mG f f for the ideal I is a

Gröbner basis for I if and only if every S -polynomial ,i jS f f of pairs of distinct

polynomials ,i jf f G has remainder 0 upon division by G .

Consider an example of how to solve a multivariate polynomial system by

using this algorithm.

Example: Consider a polynomial ring F[x,y] with multivariate polynomials

(with two variables) over the complex numbers with the lexicographic order

 y x . The ideal in this particular example is generated from the polynomials

that appear below:

2
1 1f x y and 2

2f xy x

Here, the Gröbner basis is computed by using the Buchburger’s algorithm. Set

 1 2,G f f and compute the 1 2,S f f -polynomial.

2 2 2 2

2 2
1 2 2 2
, 1

x y x y
S f f x y xy x

x y xy

 19

 2 2 21y x y x xy x x y

The leading term of the 1 2,S f f is 2x . The leading term of 1f and 2f is 2x y and

2xy , respectively. So, 1 2,S f f cannot be reduced by these two polynomials. The

G is expanded, so that it becomes 1 2 3, ,G f f f where 2
3f x y and 1 3,S f f

and 2 3,S f f are computed.

 2
1 3, 1S f f y , which cannot be reduced by the set 1 2 3, ,G f f f . So the set

 1 2 3 4, , ,G f f f f is expanded, where 2
4 1f y .

 2 3
2 3,S f f x y . Its leading term is 2x which is divisible by the 3LT f . The

division of 2 3,S f f by 3f and then by 4f results in:

 2 3 3
2 3 3 3 4,S f f x y f y y f yf

Now, 1 4 3,S f f f , 2 4, 0S f f and 3 4 3 4,S f f f yf are also computed. Thus,

one concludes that all these S-polynomials can be reduced by G. So,

 1 2 3 4, , ,G f f f f is a Gröbner basis of the ideal I . The reduced Gröbner basis is

 2 2, 1G x y y . Finally, the following system of equations is solved in order to

find the solution.

2

2

0

1 0

x y

y

The complete solution of this system is 1,1 , 1,1 , , 1 , , 1i i .

2. F4 and F5 Algorithms

These two algorithms have their names from their creator, Jean Charles

Faugere, and compute again a Gröbner basis. They can be viewed as an

improved method of Buchburger’s algorithm. They are based on the same

principles. In particular, the F4 algorithm instead of polynomial reduction uses

 20

matrix reduction, while F5 uses matrix reduction, but each of these generated

matrices is of full rank. This method is illustrated in the next example [4].

Example: Consider the polynomial ring , ,R x y z , which includes

polynomials with three variables in lexicographic order. We want to reduce the

following polynomials:

3
1 3 5f x yz xy and 2 2

2 5 3 1f x z xy

by the set of polynomials 1 2,g g , where

1 2g xy z and 2
2 3g x z yz .

To reduce 1f , with respect to 1 2,g g , the following reduction is performed:

3
1 3 5f x yz xy

 2 2 2
16 5 3x z xy x z g

 2 2
1 25 18 3 6xy yz x z g z g

 2 2
1 2 118 10 3 6 5yz z x z g z g g

So, 1f is reduced with respect to 1 2,g g to 218 10yz z .

The same procedure for 2f is

2 2
2 5 3 1f x z xy

 2
23 15 1 5xy yz z g

 2
2 115 6 1 5 3yz z z g g

Thus 2f is reduced to 215 6 1yz z with respect to 1 2,g g .

 21

The idea behind the F4 and F5 algorithms is to make these reductions as a

matrix reduction. However, the reduction for both 1f and 2f requires reduction

only with respect to 2
1x z g , 1g , and 2z g . Therefore, a matrix of coefficients is

created.

 3 2 2 2 1x yz x z yz xy z

1

2
2

1

1

2

1

f

f

x zg

g

zg

3 0 0 5 0 0

0 5 0 3 0 1

1 2 0 0 0 0

0 0 0 1 2 0

0 1 3 0 0 0

The reduction steps correspond to the row reduction of the first two rows,

which represent the polynomials 1 2,f f using the last three rows, which represent

the 2
1 1 2, ,x z g g z g polynomials. So, as a result of the reduction, the following

matrix is derived.

 3 2 2 2 1x yz x z yz xy z

1

2
2

1

1

2

1

f

f

x zg

g

zg

0 0 18 0 10 0

0 0 15 0 6 1

1 2 0 0 0 0

0 0 0 1 2 0

0 1 3 0 0 0

The first two rows of the reduced matrix give the reduction of 1 2,f f with respect

to 1 2,g g . Note, that this is the same result that was achieved with the

Buchburger’s reduction.

 22

3. Multiple Right Hand Sides (MRHS) Linear Equations Algorithm

A different approach of algebraic attack not based on equations of

polynomials will be examined. This presentation will utilize a special type of

equation known as Multiple Right Hand Side Linear Equations.

Definitions:

1. A set of small-scale Variants of the AES denoted by SR(n,r,c,e) are
defined, where

 n is the number of rounds,

 r is the number of rows in the rectangular arrangement of the input,

 c is the number of columns in the rectangular arrangement of the
output,

 e is the number of bits in a “word.”

Since we consider that e=8, the underlying finite field is GF(28) and all the

matrices and vectors are over GF(2).

2. Let X be a set of Boolean variables represented as a column
vector. An equation of the form

1 2, ,..., sAX a a a

or
 :i i iS A X L

is called an MRHS system of linear equations if A is a matrix of
size kxn and rank k and 1 2, ,..., sa a a are column vectors of length k.

3. A symbol S=(X,L) consists of an ordered set of variables X=X(S)

and a list L=L(S) of Right Hand Sides [9]

a. Agreeing Procedure

One of the problems with applying algebraic attacks in a cipher is

the difficulty of presenting practical examples, because the required time and

memory requirements grow beyond the limitations of a typical workstation.

Therefore, only small-scale variants of the different ciphers were performed.

 23

After the completion of the rounds of AES, one can count the

number of variables there are in the system in order to determine the algebraic

equations that can describe the system.

For example, the total number of variables for the AES, assuming

8-bit words, is given by the following formula:

8 8 8(1)rc nr n rc

Thus, for a complete AES the number of variables is 1600. This is large, if one

wants to solve a system with so many non-linear polynomial equations.

Figure 7 shows the bytes that are variables in a small-scale variant

of the AES.

Figure 7. SR(3,4,4,8) equations variables (From [9]).

The variables can be separated in two different categories. The first

one includes all the bits that are derived after each S-box, except the last one

that is considered as known, since the ciphertext is considered as a known for

this algorithm. The second one is the 16 bytes of the initial key and after that,

only the first column of each expansion key, since the first column is derived with

the contribution of the S-box, while the three others are dependent on the first

column, as it is shown in Figure 7 and described in the AddRoundKey

transformation in Chapter I.

 24

Consider two symbols:

 :i i iS A X L and :j j jS A X L

The matrices Li are of size kixsi. These symbols are derived from

the bits that go in and out of each S-box, which are expressed as linear

combinations of the variables.

These two symbols agree if, for any 1 ia L , there exists an 2 ja L

such that the linear system

1

2

i

j

A a
X

A a

is consistent, and, conversely, for any 2 ja L , there exists an 1 ia L such that

the linear system is consistent. The steps for the application of this attack are as

follows:

 Define the matrices:

0
, ,

0
i i

ij ji
jj

A L
A T T

LA

 with i jt k k rows.

 Choose a nonsingular transform matrix U of size t t such that the
product UA is a matrix with zeros in its last r rows. If r=0, then the
symbols agree.

 If r>0, then compute the matrices ijUT and jiUT . Let Prij denotes

the set of ijUT -column projections to the last r coordinates. If

Pr Prij ji the symbols agree.

 If Pr Prij ji then remove the columns from iL whose image is not

found in Pr Prij ji and, similarly, the columns from jL whose image

is not found in Pr Prij ji . One concludes with two new symbols

whose equations are ' ':i i iS A X L and ' ':j j jS A X L .

This procedure is repeated up to the point that all symbols agree. When the

agreeing procedure is applied in a pair of symbols Si and Sj and the procedure is

 25

continued with other symbols in the system, for example, kS , it is possible that

the Si and Sk will disagree. This means that Si and Sj may disagree again after Si

and Sk agree. So, the previous agreements have to be run through again and

again.

b. Gluing Procedure

After the completion of the agreeing procedure, one may conclude

that the system of equations does not have a solution. Therefore, a way to start

the agreeing procedure again must be found. Here is where the gluing procedure

comes into play. This method merges two symbols into one, bringing their joint

information in the new symbol. The agreeing procedure is applied again with the

new symbols, and is repeated until a unique solution is reached. The following

example demonstrates how this works. Also, this step increases the complexity

of the attack.

c. Example

1. Agreeing Procedure. We have two equations

 1 1A X L and 2 2A X L in variables 1 2 3 4 5, , , ,X x x x x x :

1

2

3

4

5

1 1 0 0 0 1 0 0 1

1 0 1 0 0 0 1 0 0

1 0 0 1 0 0 0 1 1

x

x

x

x

x

 ,

1

2

3

4

5

0 1 0 0 1 0 1 0 0

0 0 1 0 1 1 1 0 0

0 0 0 1 1 1 1 0 1

x

x

x

x

x

By following the previously described procedure, the matrix A is:

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

A

.

 26

A non-singular matrix U for the transformation of A is:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 1 0 1 1 0

1 0 1 1 0 1

U

.

So,

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

0 1 0 0 1

0 0 0 0 0

0 0 0 0 0

UA

.

Then, r=2.

Put now

12

1 0 0 1

0 1 0 0

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

T

 and 21

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

1 1 0 0

1 1 0 1

T

and compute:

12

1 0 0 1

0 1 0 0

0 0 1 1

0 0 0 0

1 1 0 1

1 0 1 0

UT

 and 21

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

1 0 0 0

1 0 0 1

UT

.

 27

Looking at the last two rows of the above matrices, one defines:

Pr12={(1,1),(1,0),(0,1)}, Pr21={(1,1),(0,0),(0,1)}

Pr12∩Pr21={(1,1),(0,1)}

One can observe that the second and the fourth column of 12UT do not match

with any column of 21UT . Therefore, these columns are removed. Similarly, the

second and the third column of 21UT should be removed for the same reason.

In addition, two new symbols result,

1

2

3

4

5

1 1 0 0 0 1 0

1 0 1 0 0 0 0

1 0 0 1 0 0 1

x

x

x

x

x

 ,

1

2

3

4

5

0 1 0 0 1 0 0

0 0 1 0 1 1 0

0 0 0 1 1 1 1

x

x

x

x

x

that now agree.

2. Gluing Procedure. Let B be the sub-matrix of UA in its

last t-r nonzero rows. The gluing of the two previously agreed symbols is BX=[L],

where each column of L is the sum of one column from UT12 and one from the

UT21 with the same projection in its last r coordinates, reduced to the first t-r

rows.

For the above example, the gluing procedure yields:

1

2

3

4

5

1 1 0 0 0 1 0

1 0 1 0 0 0 0

1 0 0 1 0 0 1

0 1 0 0 1 0 0

x

x

x

x

x

This MRHS system of linear equations contains the information of the first two

different symbols.

 28

d. From MRHS to Linear Equations

In order to derive the ordinary linear equations (unique right hand

side) from the MRHS linear equations, the L matrix is triangulated with a row

transformation. An upper-triangular matrix with zeros in its last r1≥0 rows is

sought, from where to take r1 homogeneous equations. There may also be non-

homogeneous equations with ones in the whole row of L. In the above example,

the triangulation of L results in the following symbol:

1

2

3

4

5

1 1 0 0 0 1 0

0 1 0 1 0 1 1

1 0 1 0 0 0 0

0 1 0 0 1 0 0

x

x

x

x

x

,

which is equivalent with the three following linear equations and the two initial

MRHS linear equations [5]:

2 4

1 3

2 5

1

0

0

x x

x x

x x

4. Algorithms’ Complexities and Comparison

This section compares the complexities of the previously described

algorithms.

The Buchberger’s algorithm time complexity is related to the total degree

of all the intermediate polynomials that are generated by the algorithm. In

essence, this algorithm can have double exponential complexity. In particular,

considering the AES equation system over 82GF , the complexity of

Buchburger’s algorithm is, at worst, single exponential [4].

The F4 and F5 algorithms are different approaches for the computation of a

Gröbner basis. Since the Buchberger’s algorithm involves polynomial reductions,

 29

which take place sequentially, while F4 and F5 use matrix reductions, it seems

logical that F4 and F5 will be faster. The F5 algorithm is even better than the F4

because it uses only full rank matrices.

The complexity of the MRHS algorithm is very difficult to specify since the

different parameters that can be used, such as the number of rounds, the

number of rows and columns, etc, make it very complicated. However, this

algorithm seems to be much better than the previous ones, since the required

time to solve equations from the AES is much smaller [5].

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

III. COMPUTATIONAL EXPERIMENTS

A. METHODOLOGY

This chapter will explain how the MRHS method was applied by using

different equations that were generated with the code shown in Appendix B. The

parameters of this small-scale variant of AES were determined: the number of

rounds (0<Nr<10), the number of the rows and the columns in the rectangular

arrangement of the input (0<Nb<4), and the number of bits in each word (2, 4, 8).

In addition, a random plaintext and an initial key were chosen, which have

lengths that correspond to the number of columns and rows of the states and

with the number of bits in the words as well. These texts are expressed in

hexadecimal notation. After that, the MRHS Linear Equations method was used

to try to solve this system.

Initially, the agreeing procedure was implemented to see if some linear

equations could be extracted just by applying this procedure. If the number of

linear equations that resulted was equal to the number of variables in the system,

then the procedure would be stopped since there would be a unique solution for

the system. If the number of linear equations extracted from the agreeing

procedure was less than the number of variables, the gluing procedure was

performed, in which the maximum number of Right Hand Sides (RHS) in the

glued equations is specified. Then another attempt was made to extract some

linear equations. In order to have a unique solution, it is necessary to have a

sum of linear equations equal to the number of variables.

B. RESULTS

Some simple examples of the procedure described above are shown

below.

 32

1. Example 1

In this example, a system was created with two rounds, two rows and two

columns, in the rectangular arrangement of the input and 2-bit words. The

system has also a plaintext fa (in hexadecimal notation), which corresponds to

11111010 in binary notation, and a key ea (in hexadecimal notation), which

corresponds to 11101010 in binary notation. The system of equations appears

below, starting with the number of bit variables and the number of MRHS

equations. Each MRHS equation appears as the number of rows, the number of

RHS, the rows of Ai and the columns of Li. The first four symbols are from the key

schedule, the next four from round 1, and the last four from round 2.

 24 12

 4 4

000000100000000000000000

000000010000000000000000

100000001000000000000000

010000000100000000000000

0011

0110

1000

1101

 4 4

000010000000000000000000

000001000000000000000000

001000000010000000000000

000100000001000000000000

0010

0111

1001

1100

 4 4

000000100010000000000000

000000010001000000000000

000000001000100000000000

000000000100010000000000

 33

0000

0101

1011

1110

 4 4

000010001000000000000000

000001000100000000000000

000000000010001000000000

000000000001000100000000

0010

0111

1001

1100

 4 4

100000000000000000000000

010000000000000000000000

000000000000000010000000

000000000000000001000000

0010

0111

1001

1100

 4 4

000000100000000000000000

000000010000000000000000

000000000000000000100000

000000000000000000010000

0010

0111

1001

1100

 4 4

000010000000000000000000

000001000000000000000000

000000000000000000001000

000000000000000000000100

 34

0010

0111

1001

1100

 4 4

001000000000000000000000

000100000000000000000000

000000000000000000000010

000000000000000000000001

0010

0111

1001

1100

 4 4

000000001000000001110000

000000000100000011100000

000000000000100000000000

000000000000010000000000

0001

0100

1010

1111

 4 4

000000100010000000001101

000000010001000000001011

000000000000001000000000

000000000000000100000000

0010

0111

1001

1100

 4 4

000010001000000000000111

000001000100000000001110

000010001000100000000000

000001000100010000000000

 35

0010

0111

1001

1100

 4 4

000000000010000011010000

000000000001000010110000

000000100010001000000000

000000010001000100000000

0000

0101

1011

1110

now: neq = 12 ; nlink = 0 ; linbank = 0

Let us explain the above shown result. The “neq” is the number of MRHS

Linear Equations we have up to that point. The “linbank” (linear bank) is the

notation, which shows the number of the ordinary linear equations that have

extracted after the application of the agreeing or gluing procedures.

The above system has at the beginning 24 variables combined in 12

MRHS linear equations. Before the application of the agreeing procedure, we

cannot extract any ordinary linear equation. That is why we see in the above

result that we have 0 number of linear equation in our linear bank (linbank).

This system of equations was used as input in the code “mrhs,” which is

shown in Appendix B. After the agreeing procedure, we conclude with zero

MRHS linear equations and 22 new ordinary linear equations, which appear

below.

 0 + 8 + 20 + 21 + 23 = 0

 0 + 1 + 2 + 8 + 9 + 10 + 21 + 22 = 0

 21 = 0

 2 + 10 + 20 = 0

 1 + 2 + 9 + 10 + 19 = 0

 0 + 8 + 18 = 0

 36

 0 + 2 + 8 + 10 + 17 = 0

 0 + 8 + 16 = 0

 15 = 0

 0 + 1 + 2 + 8 + 9 + 10 + 14 = 0

 0 + 2 + 8 + 10 + 13 = 0

 1 + 2 + 9 + 10 + 12 = 0

 1 + 2 + 9 + 10 + 11 = 0

 2 + 8 + 10 = 0

 0 + 1 + 2 + 8 + 9 = 0

 8 = 1

 2 + 7 = 0

 0 + 6 = 0

 5 = 0

 4 = 0

 0 + 2 + 3 = 0

 1 = 0

now: neq = 0 ; nlink = 0 ; linbank = 22

The numbers that appear in the above system of ordinary linear equations

represent the number of the variable in our initial system, i.e., 0.

The matrix form of the above ordinary linear equations is shown below:

001100000000000000000001

001000000000000000000010

000011000000000000000100

000010000000000000001000

000000110000000000010000

000000100000000000100000

110000000000000001000000

100000000000000010000000

000011001101000100000000

000010001010001000000000

000000110111010000000000

000000101010100000000000

000111000001000000000000

001010000010000000000000

110000011100000000000000

 37

100000101000000000000000

111010110000000000000000

001101100000000000000000

111111000000000000000000

010010000000000000000000

111100000000000000000000

010000000000000000000000

0101010101000101000000

The last row represents the Right Hand Side, which has only 22 elements,

meaning that there are two free variables. The same thing can be easily

observed from the reduced matrix of the coefficients of the variables. That

particular system cannot have a unique solution. The possible solutions of this

system appear below.

010000000000000000000000 0

101100000000000000000000 0

000010000000000000000000 0

000001000000000000000000 0

100000100000000000000000 0

001000010000000000000000 0

000000001000000000000000 1

101000000100000000000000 1

001000000010000000000000 1

101000000001000000000000 0

101000000000100000000000 0

100000000000010000000000 0

001000000000001000000000 1

000000000000000100000000 0

100000000000000010000000 1

100000000000000001000000 0

100000000000000000100000 1

101000000000000000010000 0

000000000000000000001000 1

000000000000000000000100 0

001000000000000000000010 1

 38

100000000000000000000001 0

free:

 0 2

solutions:

?0??00??1??????0????10??

000000001110001010101010

100100101011111001011011

001100011001100010111000

101000111100010001001001

Therefore, the variables x0 and x2 are free variables, as it is appeared in

the code above. Additionally, we have a depiction of the four different solutions at

the end, which means that this particular system has four different keys for one

plaintext and ciphertext. In that example, where we have a small-scale variant of

the AES with two rounds, two rows and two columns in the rectangular

arrangement of the input and two-bit words, the algorithm cannot give a unique

solution.

This is a surprising result, as we mentioned in the introduction. We have a

specific plaintext, which is encrypted by using a specific key. In our attempt to

break the algorithm and to extract the initial plaintext from the ciphertext, we

expect to recover the initial key. Instead, solving the system of the MRHS Linear

Equations, we found four different keys that can decrypt that ciphertext to get the

correct plaintext.

One thing that one could suppose is that some other linear equations

could be extracted in order to solve this problem, by applying a different plaintext

with the same key. At first glance, it can be seen that the ordinary linear

equations are different from the previous ones. However, if the matrix of the

coefficients of the variables is reduced, we conclude exactly in the same set of

linear equations as before. Therefore, such a system has a non-unique solution.

 39

2. Example 2

The second example is one with a unique solution. The parameters of this

system are one round, two rows, and two columns in the rectangular

arrangement of the input and four bit words.

The system, which appears below, has 24 variables and six MRHS linear

equations. Therefore, in order to end up with a unique solution, it is necessary to

find 24 ordinary linear equations.

 24 6

 8 16

000001000000000000000000

000100000000000000000000

001000000000000000000000

000110000000000000000000

010000000000000000000000

011111010000000000000000

011011100000000000000000

111011100000000000000000

10000000

01000000

10100000

11110000

00001000

11001100

10101100

01101100

00010110

11000101

10110101

11100110

00001101

01011010

00101101

01101110

 8 16

 40

000000000100000000000000

000000010000000000000000

000000100000000000000000

000000011000000000000000

000001000000000000000000

000000110001000000000000

000000100010000000000000

000010000000000000000000

10000000

01000000

10100000

11110000

00001000

11001100

10101010

01101010

00010111

11000011

10110011

11100001

00001101

01011011

00101101

01101001

 8 16

000000000000001000000000

000000000001000000000000

000000000010000000000000

000000000001100000000000

000000000100000000000000

000000000011000100000000

000000000100110000000000

000000001000000000000000

10000000

11000000

00100000

 41

01110000

10001000

11001100

10101010

11101010

00010101

01000011

10110011

01100011

10001101

01011001

00101101

01101011

 8 16

100000000000000000000000

100100000000000000000000

101000000000000000000000

100100000000000010000000

110000000000000000000000

001100000000000000010000

001000000000000000100000

011000000000000011100000

10000000

11000000

10100000

11110000

10001000

11001100

10101010

11101010

01101111

00111010

01001010

00011001

01110100

00100011

 42

01010100

00010001

 8 16

000000000000000000000100

000000010000000000010000

000000100000000000100000

000000010000000000011000

000001000000000001000000

000000110000000000110001

000001100000000001101110

000011100000000011101110

10000000

01000000

10100000

11110000

00001000

11001100

10101000

01101000

00010110

11000001

10110001

11100010

00001101

01011010

00101101

01101010

 8 16

000000000000010000000000

000000000001000000000001

000000000010000000000010

000000000001100000000001

000000000100000000000100

000000000011000100000011

000000000110111000000110

000000001110111000001110

 43

10000000

01000000

10100000

11110000

00001000

11001100

10101000

01101000

00010110

11000001

10110001

11100010

00001101

01011010

00101101

01101010

now: neq = 6 ; nlink = 0 ; linbank = 0

In this case, we tried to extract some ordinary linear equations directly

from the initial system of the six MRHS Linear Equations, without any result. After

the agreeing algorithm is applied, there is still no linear equation in the linear

bank. As we said before, “linbank” (Linear bank) is the name of the place in the

computer program where all the ordinary linear equations, that are extracted from

the different procedures, are saved. This means that many times the agreeing

procedure has no result, if it is applied alone in such a system of MRHS Linear

Equations. Here is where the gluing procedure is performed. In this particular

example, we observe that exactly 24 different ordinary linear equations are

extracted, which are shown below.

 4 + 23 = 0

 4 + 22 = 0

 4 + 21 = 0

 4 + 20 = 0

 44

 19 = 0

 17 + 18 = 0

 17 = 0

 16 = 0

 4 + 15 = 0

 14 = 0

 4 + 13 = 0

 12 = 0

 4 + 11 = 0

 10 = 0

 4 + 9 = 0

 4 + 8 = 0

 4 + 6 + 7 = 0

 4 + 6 = 0

 5 = 0

 3 + 4 = 0

 3 = 1

 2 = 0

 1 = 0

 0 = 0

now: neq = 0 ; nlink = 0 ; linbank = 24

As we mentioned before, we conclude in zero MRHS Linear Equations

and 24 ordinary linear equations (“linbank=24”).

In a matrix form, these are:

24 0

 linear eqs (24):

 24 1

000010000000000000000001

000010000000000000000010

000010000000000000000100

000010000000000000001000

000000000000000000010000

000000000000000001100000

000000000000000001000000

000000000000000010000000

 45

000010000000000100000000

000000000000001000000000

000010000000010000000000

000000000000100000000000

000010000001000000000000

000000000010000000000000

000010000100000000000000

000010001000000000000000

000010110000000000000000

000010100000000000000000

000001000000000000000000

000110000000000000000000

000100000000000000000000

001000000000000000000000

010000000000000000000000

100000000000000000000000

000000000000000000001000

In addition, the unique solution of this system is:

100000000000000000000000 0

010000000000000000000000 0

001000000000000000000000 0

000100000000000000000000 1

000010000000000000000000 1

000001000000000000000000 0

000000100000000000000000 1

000000010000000000000000 0

000000001000000000000000 1

000000000100000000000000 1

000000000010000000000000 0

000000000001000000000000 1

000000000000100000000000 0

000000000000010000000000 1

000000000000001000000000 0

000000000000000100000000 1

000000000000000010000000 0

 46

000000000000000001000000 0

000000000000000000100000 0

000000000000000000010000 0

000000000000000000001000 1

000000000000000000000100 1

000000000000000000000010 1

000000000000000000000001 1

free:

solutions:

000110101101010100001111

There are no free variables. Therefore, it is a unique solution, as it

appears above.

From the two examples above, we saw how the algebraic attack method

of MRHS Linear Equations works. The many experiments that were tested for

this thesis were mostly successful for a small variant of the AES. The parameters

of the system that were used were at most four rounds, with four rows and

columns and 8-bit words instead of 10 rounds that the original AES algorithm

uses.

 47

IV. CONCLUSIONS AND RECOMMENDATIONS

This work has shown that the new method of breaking the Rijndael

algorithm with the algebraic representation of a system with Multiple Right Hand

Sides linear equations is quite effective. It is comparatively effective because by

using other algebraic methods, such as the Buchberger’s and the F4 – F5

algorithms, it was impossible to find a solution for some very simple systems. In

particular, a small version of the AES with 5 rounds and 1 row and 1 column in

the rectangular arrangement of the input, could not be solved with the older

algebraic methods [5]. Moreover, a system with 4 rounds and 1 row and 1

column in the rectangular arrangement of the input, took 20286.18 seconds to be

solved by the standard algebraic methods [5]. The MRHS method solved this

problem in only 0.032 seconds [5].

In Chapter II, we saw that the new method seems to be much better than

the other algebraic methods in terms of complexity. As mentioned before, due to

the different parameters that this algorithm can have, (different number of

rounds, rows and columns) it is very complicated to specify an exact complexity.

According to the real parameters of the AES, our test cannot be considered very

realistic, since the values of the parameters of the original AES are bigger.

Nevertheless, by comparing the complexities in terms of the time consumed for a

small-scale variant to be solved, we conclude that it is worthwhile to further

develop and improve this method.

The AES, as we explained in the beginning, is a standard in order to

secure federal information. With MRHS Linear Equations, we concluded that we

can break a small-scale variant of this system. We cannot say that the AES is at

risk, but we can say for sure that this new method gives new perspectives in the

field of cryptanalysis that may put the AES algorithm at risk.

For example, one new detail in this thesis, is the application of our codes

in many different experiments with different parameters. In particular, instead of

 48

the 8-bit field that professors Håvard Raddum and Igor Semaev used, we

executed some experiments in the 2-bit and 4-bit fields, that is original. From

that, we discovered a result very important in terms of cryptanalysis. There are

some cases where (a small variant of) the Rijndael algorithm can have multiple

solutions. We demonstrated that in the 2-bit field. However, it may be valid

though more difficult of course, even in the 8-bit field, which might reduce the

effectiveness of the algorithm. This means that we may have to be cautious

when we choose the encryption keys, because multiple decryption keys would

make it easier to break the algorithm and further to decrypt and reveal important

federal information.

In conclusion, our first goal was to create the code, which could solve a

small-scale variant of the AES. Based on the codes of Professors Raddum and

Semaev, we reached this point. In a few cases, a unique solution of a small-scale

variant of the AES resulted. However, the small AES algorithm has some

weaknesses, which consist of the fact that some systems cannot uniquely be

solved, even if different plaintexts with the same initial key are applied.

The complexity of this algorithm is the area that needs to be improved in

future research. The reduction of the complexity by a significant factor could

upgrade the MRHS algorithm to a very effective algebraic attack method against

new very strong cryptographic algorithms. This reduction could be achieved by

reducing either the number of the agreeings between the symbols or the

numbers of gluings which adds more complexity in the whole algorithm. One way

to achieve that could be the simultaneous agreeing of more than two symbols,

which may require a smaller number of necessary gluings for the extraction of

the ordinary linear equations. In that way, we could break an AES algorithm with

parameters of greater value.

 49

APPENDIX A

(These codes are only intended for experiments with the MRHS method,

and neither their author nor the author of this thesis takes any responsibility for

their use)

1. BASIS.h (by Havard Raddum and Igor Semaev)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

typedef unsigned int u32;
typedef unsigned char u8;

#define MAXINT 2147483647
#define EPSILON 0.001
#define log2(x) (1.442695040888963407359924681 * log(x)) // !!
changed for bcc - DC

int NVAR, NWORDS;

u8
weight[256]={0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,
4,4,5,1,2,2,3,2,3,3,4,

 2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2
,3,3,4,3,4,4,5,

 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3
,4,4,5,4,5,5,6,

 4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3
,4,4,5,4,5,5,6,

 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2
,3,3,4,3,4,4,5,

 3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4
,5,5,6,5,6,6,7,
 4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8};

struct bitVector{
 u32 *v;
 int length, wl;
};

struct eqSymbol{
 int nlin, nrhs, nw, nn, eqnr, originalNRHS;
 u32 **A, **b, **coverID;
 u8 *RHSexists, delSinceExtract;
 struct linkSymbol **link;

 50

};

struct linkSymbol{
 int ncells, *nCover[2], linknr;
 struct eqSymbol *nlist[2];
 struct bitVector *cellID;
 u8 *cellExists;
};

struct system{
 int neq, nlink;
 struct eqSymbol *E, *linbank;
 struct linkSymbol *L;
};

int ww(u32 *word, int n){
 int i, j, w=0;

 for(i=0; i<n; ++i){
 w+=weight[word[i]&0xff];
 w+=weight[(word[i]>>8)&0xff];
 w+=weight[(word[i]>>16)&0xff];
 w+=weight[word[i]>>24];
 }

 return w;
}

double averageNRHS(struct system *S){
 int i, totnrhs=0;

 if(S->neq==0)
 return 0.0;
 for(i=0; i<S->neq; ++i)
 totnrhs+=S->E[i].nrhs;

 return (double)(totnrhs)/(double)(S->neq);
}

int smallestSetBit(u32 *M, int ncw){
 int j=0, m=0;
 u32 w;

 while(j<ncw && !M[j]){
 j++;
 m+=32;
 }
 if(j==ncw)
 return -1;
 w=M[j];
 for(j=4; j>=0; --j){
 if(!(w&((1<<(1<<j))-1))){
 m+=(1<<j);
 w>>=(1<<j);
 }

 51

 }

 return m;
}

int largestSetBit(u32 *M, int ncw){
 int j, m;
 u32 w;

 j=ncw-1;
 m=(ncw<<5)-1;
 while(j>=0 && !M[j]){
 j--;
 m-=32;
 }
 if(j==-1)
 return -1;
 w=M[j];
 for(j=4; j>=0; --j){
 if(!(w&(((1<<(1<<j))-1)^0xffffffff)))//no set bit in upper remaning
half
 m-=(1<<j);
 else
 w>>=(1<<j);
 }
 return m;
}
u8 v0GreaterThanV1(struct bitVector v0, struct bitVector v1){
 int i;

 if(v0.length!=v1.length)printf("(v0GreaterThanV1)Uncomparable bit-
strings, v0.length=%d, v1.length=%d!\n",
 v0.length,v1.length);
 i=v0.wl-1;
 while(i>=0 && !(v0.v[i]^v1.v[i]))
 i--;
 if(i>=0 && v0.v[i]>v1.v[i])
 return 1;
 else
 return 0;
}

u8 v0EqualV1(struct bitVector v0, struct bitVector v1){
 int i;

 if(v0.length!=v1.length)printf("(v0EqualV1)Uncomparable bit-strings,
v0.length=%d, v1.length=%d!\n",
 v0.length,v1.length);
 i=v0.wl-1;
 while(i>=0 && !(v0.v[i]^v1.v[i]))
 i--;
 if(i<0)
 return 1;
 else
 return 0;

 52

}

void mergeSortBitVectors(struct bitVector *vl, int nil){
 int i, j, t, na, nb;
 struct bitVector tmp, *ml, *vlb;

 if(nil==1)
 return;
 if(nil==2){
 if(v0GreaterThanV1(vl[0],vl[1])){
 tmp=vl[0];
 vl[0]=vl[1];
 vl[1]=tmp;
 }
 return;
 }
 na=nil/2;
 nb=nil-na;
 vlb=vl+na;
 mergeSortBitVectors(vl,na);
 mergeSortBitVectors(vlb,nb);
 ml=(struct bitVector *)malloc(nil*sizeof(struct bitVector));
 t=i=j=0;
 while(i<na && j<nb){
 if(v0GreaterThanV1(vl[i],vlb[j]))
 ml[t++]=vlb[j++];
 else
 ml[t++]=vl[i++];
 }//lists merged
 if(i<na){
 for(j=i; j<na; ++j)
 ml[t++]=vl[j];
 }
 else{
 for(i=j; i<nb; ++i)
 ml[t++]=vlb[i];
 }//remainder of unfinished list copied
 for(i=0; i<nil; ++i)
 vl[i]=ml[i];
 //copied back to vl
}

void printLinComb(u32 *l, int nvar){
 int i;

 for(i=0; i<nvar; ++i){
 if(l[i>>5]&(1<<(i&0x1f)))
 printf("%3d + ",i);
 }
 printf("\b\b\n");
}

void printEquation(struct eqSymbol *eq){
 /* Prints the equation to the screen, includes up to 16 righ-hand
sides */

 53

 int i, j, maxnv=0, nv, nr, nwritten;

 if(eq->nrhs>16)
 nr=16;
 else
 nr=eq->nrhs;
 for(i=0; i<eq->nlin; ++i){
 nv=ww(eq->A[i],NWORDS);
 if(nv>maxnv)
 maxnv=nv;
 }
 printf("========= Equation %d ================================\n",eq-
>eqnr);
 for(i=0; i<eq->nlin; ++i){
 nv=ww(eq->A[i],NWORDS);
 for(j=0; j<maxnv-nv; ++j)
 printf(" ");
 for(j=0; j<NVAR; ++j){
 if(eq->A[i][j>>5]&(1<<(j&0x1f)))
 printf(" %3d +",j);
 }
 printf("\b=");
 nwritten=0;
 for(j=0; j<eq->originalNRHS; ++j){
 if(eq->RHSexists[j]){
 if(eq->b[j][i>>5]&(1<<(i&0x1f)))
 printf(" 1 |");
 else
 printf(" 0 |");
 nwritten++;
 if(nwritten==nr)
 j=eq->originalNRHS;
 }
 }
 printf("\b\n\n");
 }
 printf("%d right hand sides in total\n",eq->nrhs);
 printf("\nLinked to %d other equations\n",eq->nn);
 printf("RHS index - ");
 nwritten=0;
 for(i=0; i<eq->originalNRHS; ++i){
 if(eq->RHSexists[i]){
 printf(" %2d ",i);
 nwritten++;
 if(nwritten==nr)
 i=eq->originalNRHS;
 }
 }
 printf("\ncoverID");
 for(i=0; i<eq->nn; ++i){
 printf("\nLink %2d ",i);
 nwritten=0;
 for(j=0; j<eq->originalNRHS; ++j){
 if(eq->RHSexists[j]){
 printf(" %2d ",eq->coverID[i][j]);

 54

 nwritten++;
 if(nwritten==nr)
 j=eq->originalNRHS;
 }
 }
 }
 printf("\n==\n");
}

void printLink(struct linkSymbol *ls){
 /* Prints the link to the screen */
 int i, c0, c1;

 printf("============== Link %d ========================\n",ls-
>linknr);
 printf("Link with %d cells\n",ls->ncells);
 if(ls->ncells<=32){
 printf("\n ");
 for(i=0; i<ls->ncells; ++i)
 printf(" %2d ",i);
 printf("\nExists ");
 for(i=0; i<ls->ncells; ++i){
 if(ls->cellExists[i])
 printf(" x ");
 else
 printf(" ");
 }
 printf("\nnCover0");
 for(i=0; i<ls->ncells; ++i)
 printf(" %2d ",ls->nCover[0][i]);
 printf("\nnCover1");
 for(i=0; i<ls->ncells; ++i)
 printf(" %2d ",ls->nCover[1][i]);
 }
 else{
 c0=ls->nCover[0][0];
 c1=ls->nCover[1][0];
 for(i=1; i<ls->ncells; ++i){
 if(c0!=ls->nCover[0][i] || c1!=ls->nCover[1][i]){
 printf("\nUnbalanced link\n");
 i=ls->ncells;
 }
 }
 }
 printf("\n\nLinks together equations %d and %d of dimensions %d and
%d\n",
 ls->nlist[0]->eqnr,ls->nlist[1]->eqnr,ls->nlist[0]->nlin,ls-
>nlist[1]->nlin);
 printf("===\n");
}

void printLinEquation(struct eqSymbol *eq, int start, int stopp){
 int i, j, nv, maxnv=0; // !! added init , maxnv;

 for(i=start; i<stopp; ++i){

 55

 nv=ww(eq->A[i],NWORDS);
 if(nv>maxnv)
 maxnv=nv;
 }
 printf("========= Linear Equation =====================\n",eq->eqnr);
 for(i=start; i<stopp; ++i){
 nv=ww(eq->A[i],NWORDS);
 for(j=0; j<maxnv-nv; ++j)
 printf(" ");
 for(j=0; j<NVAR; ++j){
 if(eq->A[i][j>>5]&(1<<(j&0x1f)))
 printf(" %3d +",j);
 }
 printf("\b=");
 if(eq->b[0][i>>5]&(1<<(i&0x1f)))
 printf(" 1\n");
 else
 printf(" 0\n");
 }
}

void deleteEquation(struct eqSymbol *eq){
 /* Frees all allocated memory in eq not associated to links. */
 int i;

 for(i=0; i<eq->originalNRHS; ++i){
 if(eq->RHSexists[i])
 free(eq->b[i]);
 }
 free(eq->b);
 for(i=0; i<eq->nlin; ++i)
 free(eq->A[i]);
 free(eq->A);
 free(eq->RHSexists);
}

void deleteSystem(struct system *S){
 int i;

 for(i=0; i<S->neq; ++i)
 deleteEquation(S->E+i);
 deleteEquation(S->linbank);
}

void Uxb(u32 **U, int nr, int nc, u32 *b, u32 *x){
 /* computes U times b, where U has nr rows and nc columns. Stores
 result in x */
 int i, j, ncw, nrw;
 u32 *w;

 ncw=(nc+31)>>5;
 nrw=(nr+31)>>5;
 w=(u32 *)malloc(ncw*sizeof(u32));
 for(i=0; i<nrw; ++i)
 x[i]=0;

 56

 for(i=0; i<nr; ++i){
 for(j=0; j<ncw; ++j)
 w[j]=U[i][j]&b[j];
 if(ww(w,ncw)&1)
 x[i>>5]|=(1<<(i&0x1f));
 }
 free(w);
}

void UAX(u32 **U, u32 **A, u32 **nyA, int nl, int ncw){
 /* Multiplies the matrices U and A, stores result in nyA */
 int i, j, k, *bpos, hw;

 bpos=(int *)malloc(nl*sizeof(int));
 for(i=0; i<nl; ++i){
 hw=0;
 for(j=0; j<nl; ++j){
 if(U[i][j>>5]&(1<<(j&0x1f)))
 bpos[hw++]=j;
 }//found positions where U[i] has 1-bits
 for(j=0; j<ncw; ++j){
 for(k=0; k<hw; ++k)
 nyA[i][j]^=A[bpos[k]][j];
 }
 }
}

int rank(u32 **M, int nr, int nc){
 /* Returns the rank of M */
 int rank, i, j, k, sb, minsb, r, ncw;
 u32 **cM, *tmp;

 ncw=(nc+31)>>5;
 cM=(u32 **)malloc(nr*sizeof(u32));
 for(i=0; i<nr; ++i){
 cM[i]=(u32 *)malloc(ncw*sizeof(u32));
 for(j=0; j<ncw; ++j)
 cM[i][j]=M[i][j];
 }
 for(i=0; i<nr; ++i){
 minsb=nc;
 for(j=i; j<nr; ++j){
 sb=smallestSetBit(cM[j],ncw);
 if(sb!=-1 && sb<minsb){
 r=j;
 minsb=sb;
 }
 }
 if(minsb==nc){
 for(j=0; j<nr; ++j)
 free(cM[j]);
 free(cM);
 return i;
 }
 if(r>i){

 57

 tmp=cM[i];
 cM[i]=cM[r];
 cM[r]=tmp;
 }
 for(j=i+1; j<nr; ++j){
 if(cM[j][minsb>>5]&(1<<(minsb&0x1f))){
 for(k=0; k<ncw; ++k)
 cM[j][k]^=cM[i][k];
 }
 }
 }
 for(i=0; i<nr; ++i)
 free(cM[i]);
 free(cM);
 return nr;
}

int computeU(struct eqSymbol *eq0, struct eqSymbol *eq1, u32 **U){
 /* Computes U such that UM is triangularized, where M is the
 concatenation of the matrices in eq0 and eq1. Returns the
 dimension of the shared subspaces of eq0 and eq1. */
 int i, j, k, b, minb, r, enord, uw, rank, sumnl;
 u32 *tmp, enmask, **M;

 sumnl=eq0->nlin+eq1->nlin;
 M=(u32 **)malloc(sumnl*sizeof(u32 *));
 for(i=0; i<sumnl; ++i){
 M[i]=(u32 *)malloc(NWORDS*sizeof(u32));
 if(i<eq0->nlin){
 for(j=0; j<NWORDS; ++j)
 M[i][j]=eq0->A[i][j];
 }
 else{
 for(j=0; j<NWORDS; ++j)
 M[i][j]=eq1->A[i-eq0->nlin][j];
 }
 }
 rank=sumnl;
 uw=(sumnl+31)>>5;
 for(i=0; i<sumnl; ++i){
 U[i]=(u32 *)calloc(uw,sizeof(u32));
 U[i][i>>5]|=(1<<(i&0x1f));
 }
 //U is identity-matrix
 for(i=0; i<sumnl; ++i){
 minb=MAXINT;
 for(j=i; j<sumnl; ++j){
 b=smallestSetBit(M[j],NWORDS);
 if(b!=-1 && b<minb){
 r=j;
 minb=b;
 if(minb==i)//no need to search further
 j=sumnl;
 }
 }

 58

 if(minb==MAXINT){//only all-zero rows remaining
 rank=i;
 i=sumnl;
 }
 else{
 if(r>i){//need to swap rows
 tmp=M[i];
 M[i]=M[r];
 M[r]=tmp;
 tmp=U[i];
 U[i]=U[r];
 U[r]=tmp;
 }
 enmask=1<<(minb&0x1f);
 enord=minb>>5;
 for(j=i+1; j<sumnl; ++j){//making 0's under leading 1
 if(M[j][enord]&enmask){
 for(k=0; k<NWORDS; ++k)
 M[j][k]^=M[i][k];
 for(k=0; k<uw; ++k)
 U[j][k]^=U[i][k];
 }
 }
 }
 }
 for(i=0; i<sumnl; ++i)
 free(M[i]);
 free(M);

 return sumnl-rank;
}

u8 checkSolution(struct system *S, u8 *val){
 /* Returns 1 if val is a solution to S, 0 if not.
 Prints out the equation number of equations not satisfied. val[i]
is assigned to variable i.*/
 int i, j;
 u32 *propRHS;
 struct eqSymbol *eq;
 u8 bit, funnet, rv=1;

 propRHS=(u32 *)calloc(NWORDS,sizeof(u32));
 for(eq=S->E; eq<S->E+S->neq; ++eq){
 for(i=0; i<eq->nlin; ++i){
 bit=0;
 for(j=0; j<NVAR; ++j){
 if(eq->A[i][j>>5]&(1<<(j&0x1f)) && val[j])
 bit^=1;
 }
 if(bit)
 propRHS[i>>5]|=1<<(i&0x1f);
 }//propRHS maa vaere blant eq->b
 for(i=0; i<eq->originalNRHS; ++i){
 if(eq->RHSexists[i]){

 59

 funnet=1;
 for(j=0; j<eq->nw; ++j){
 if(propRHS[j]^eq->b[i][j])
 funnet=0;
 }
 if(funnet)
 i=eq->originalNRHS+1;
 }
 }
 if(i==eq->originalNRHS){//eq ikke tilfredsstilt
 printf("Equation %d not satisfied, nlin=%d, nrhs=%d\n",eq-
>eqnr,eq->nlin,eq->nrhs);
 //printEquation(eq);
 rv=0;
 }
 for(i=0; i<eq->nw; ++i)
 propRHS[i]=0;
 }
 return rv;
}

u8 deleteRHS(struct eqSymbol *eq, int RHSindex){
 int i, minindex, ci;
 struct linkSymbol *lS;

 if(eq->RHSexists[RHSindex]==1){
 eq->RHSexists[RHSindex]=0;
 free(eq->b[RHSindex]);
 eq->nrhs--;
 if(eq->nrhs==0)
 return 0;
 for(i=0; i<eq->nn; ++i){
 lS=eq->link[i];
 ci=eq->coverID[i][RHSindex];
 if(lS->nlist[0]==eq)
 minindex=0;
 else
 minindex=1;
 lS->nCover[minindex][ci]--;
 if(lS->nCover[minindex][ci]<0){printLink(lS);exit(0);}
 }
 eq->delSinceExtract=1;
 }
 return 1;
}

u8 trimEquation(struct eqSymbol *eq){
 /* Makes sure that A-matrix in eq has full rank, and removes
 RHS if possible. Returns 0 if eq can not be satisfied, returns 1
 if A-matrix had full rank, returns 2 if A-matrix has decreased. */
 u32 **U, *x, *tmp, enmask;
 int i, j, k, b, minb, r, enord, uw, rank;
 u8 rv; // !! removed var: , delocc=0;

 rank=eq->nlin;

 60

 uw=(eq->nlin+31)>>5;
 U=(u32 **)malloc(eq->nlin*sizeof(u32 *));
 for(i=0; i<eq->nlin; ++i){
 U[i]=(u32 *)calloc(uw,sizeof(u32));
 U[i][i>>5]|=(1<<(i&0x1f));
 }
 //U is identity-matrix
 for(i=0; i<eq->nlin; ++i){
 minb=NVAR;
 for(j=i; j<eq->nlin; ++j){
 b=smallestSetBit(eq->A[j],NWORDS);
 if(b!=-1 && b<minb){
 r=j;
 minb=b;
 }
 }
 if(minb==NVAR){//only all-zero rows remaining
 rank=i;
 i=eq->nlin;
 }
 else{
 if(r>i){//need to swap rows
 tmp=eq->A[i];
 eq->A[i]=eq->A[r];
 eq->A[r]=tmp;
 tmp=U[i];
 U[i]=U[r];
 U[r]=tmp;
 }
 enmask=1<<(minb&0x1f);
 enord=minb>>5;
 for(j=i+1; j<eq->nlin; ++j){//making 0's under leading 1
 if(eq->A[j][enord]&enmask){
 for(k=0; k<NWORDS; ++k)
 eq->A[j][k]^=eq->A[i][k];
 for(k=0; k<uw; ++k)
 U[j][k]^=U[i][k];
 }
 }
 }
 }//U is computed
 x=(u32 *)malloc(eq->nw*sizeof(u32));
 for(i=0; i<eq->originalNRHS; ++i){
 if(eq->RHSexists[i]){
 Uxb(U,eq->nlin,eq->nlin,eq->b[i],x);//x er ny RHS-vektor
 for(j=0; j<eq->nw; ++j)
 eq->b[i][j]=x[j];
 for(j=rank; j<eq->nlin; ++j){
 if(eq->b[i][j>>5]&(1<<(j&0x1f))){//inneholder 1-bit i 0-rad
omraade
 rv=deleteRHS(eq,i);
 // !! removed var: delocc=1;
 if(rv==0)
 return 0;
 j=eq->nlin;

 61

 }
 }
 }
 }//oppdatert alle RHS, og sikret at de er gyldige
 if(eq->nlin==rank)
 return 1;
 else{
 eq->nlin=rank;
 eq->nw=(eq->nlin+31)>>5;
 return 2;
 }
}

void depositLinComb(struct eqSymbol *eq, u32 *lc, u8 rhv){
 /* Adds lc=rhv to eq (the linear bank). The bank must be
 antitriangular, and will remain so after addition of lc=rhv.
 lc must not be in the span of eq->A. */
 int i, j, vnr, insertrow=-1, libit;
 u32 *clc;

 clc=(u32 *)malloc(NWORDS*sizeof(u32));
 for(i=0; i<NWORDS; ++i)
 clc[i]=lc[i];
 //clc er kopi og kan herjes med
 if(eq->nlin==0)
 insertrow=0;
 i=0;
 while(insertrow==-1){
 vnr=largestSetBit(clc,NWORDS);
 while(i<eq->nlin && vnr<largestSetBit(eq->A[i],NWORDS))
 i++;
 if(i<eq->nlin){
 libit=largestSetBit(eq->A[i],NWORDS);
 if(vnr>libit)
 insertrow=i;
 else{//vnr==libit
 for(j=0; j<NWORDS; ++j)
 clc[j]^=eq->A[i][j];
 if(eq->b[0][i>>5]&(1<<(i&0x1f)))
 rhv^=1;
 i++;
 }
 }
 else//i==eq->nlin
 insertrow=eq->nlin;
 }
 for(i=eq->nlin; i>insertrow; --i){
 eq->A[i]=eq->A[i-1];
 if(((eq->b[0][i>>5]>>(i&0x1f))^(eq->b[0][(i-1)>>5]>>((i-
1)&0x1f)))&1)
 eq->b[0][i>>5]^=(1<<(i&0x1f));
 }//ryddet plass til ny linear ligning
 eq->A[insertrow]=clc;
 if((u8)((eq->b[0][insertrow>>5]>>(insertrow&0x1f))&1)^rhv)//feil bit
i RHS

 62

 eq->b[0][insertrow>>5]^=(1<<(insertrow&0x1f));
 eq->nlin++;
}

u8 substituteLinComb(struct system *S, u32 *lc, u32 rhv){
 /* Largest variable in lc is eliminated using the equation lc = rhv.
 Returns 0 if system becomes inconsistent, 1 if no A-matrices were
 reduced, and 2 if some A-matrices did not have full rank after
 substitution. */
 int i, j, enord, maxvar, rhsshift, rhsord, sistshift, sisteord;
 u32 enmask;
 struct eqSymbol *eq;
 u8 eqendret, lokrv, rv=1;

 maxvar=largestSetBit(lc,NWORDS);
 enmask=(1<<(maxvar&0x1f));
 enord=maxvar>>5;
 for(eq=S->E; eq<S->E+S->neq; ++eq){
 eqendret=0;
 for(i=0; i<eq->nlin; ++i){
 if(eq->A[i][enord]&enmask){//rekke i i eq har variabelen som skal
erstattes
 eqendret=1;
 for(j=0; j<NWORDS; ++j)
 eq->A[i][j]^=lc[j];
 if(rhv){//maa endre alle rhs
 rhsshift=1<<(i&0x1f);
 rhsord=i>>5;
 for(j=0; j<eq->originalNRHS; ++j){
 if(eq->RHSexists[j])
 eq->b[j][rhsord]^=rhsshift;
 }
 }
 }
 }
 if(eqendret){
 lokrv=trimEquation(eq);
 if(lokrv==0){
 printf("trimeq returnerer 0 for ligning %d\n",eq->eqnr);
 return 0;
 }
 if(lokrv==2)
 rv=2;
 }
 }
 depositLinComb(S->linbank,lc,rhv);
 //substituted equation added to the bank

 return rv;
}

void trimSystem(struct system *S){
 /* Removes equations with no information in them. */
 struct eqSymbol *eq;

 63

 for(eq=S->E; eq<S->E+S->neq; ++eq){
 if(eq->nlin<32 && (1<<eq->nlin)==eq->nrhs){//ligning uten
informasjon
 if(eq<S->E+S->neq-1)
 *eq=S->E[S->neq-1];
 eq--;
 S->neq--;
 }
 }
}

void initLinBank(struct eqSymbol *leq){
 leq->A=(u32 **)malloc(2*NVAR*sizeof(u32 *));
 leq->b=(u32 **)malloc(sizeof(u32 *));
 leq->b[0]=(u32 *)calloc(2*NWORDS,sizeof(u32));
 leq->nlin=0;
 leq->nrhs=1;
 leq->nw=0;
 leq->nn=0;
 leq->eqnr=-1;
 leq->originalNRHS=1;
 leq->RHSexists=(u8 *)malloc(sizeof(u8));
 leq->RHSexists[0]=1;
}

u8 solved(struct system *S){
 int i;

 if(S->neq==0)
 return 1;
 if(S->neq==1 && S->E[0].nrhs>=1)
 return 1;
 for(i=0; i<S->neq; ++i){
 if(S->E[i].nrhs!=1)
 return 0;
 }
 return 1;
}

void solveLinSystem(struct eqSymbol *e){
 int i, j, k, sb, minb, maxb, r;
 u32 *tmp;
 u8 ibit, rbit;

 for(i=0; i<e->nlin; ++i){
 minb=NVAR;
 for(j=i; j<e->nlin; ++j){
 sb=smallestSetBit(e->A[j],NWORDS);
 if(sb>=0 && sb<minb){
 minb=sb;
 r=j;
 }
 if(minb==i)
 j=e->nlin;
 }

 64

 if(e->b[0][i>>5]&(1<<(i&0x1f)))
 ibit=1;
 else
 ibit=0;
 if(r!=i){//trenger å bytte om på rader
 tmp=e->A[i];
 e->A[i]=e->A[r];
 e->A[r]=tmp;
 if(e->b[0][r>>5]&(1<<(r&0x1f)))
 rbit=1;
 else
 rbit=0;
 if(ibit^rbit){
 e->b[0][i>>5]^=(1<<(i&0x1f));
 ibit^=1;
 e->b[0][r>>5]^=(1<<(r&0x1f));
 }
 }
 for(j=i+1; j<e->nlin; ++j){//lager 0 under ledende 1'er
 if(e->A[j][minb>>5]&(1<<(minb&0x1f))){
 for(k=minb>>5; k<NWORDS; ++k)
 e->A[j][k]^=e->A[i][k];
 if(ibit)
 e->b[0][j>>5]^=(1<<(j&(0x1f)));
 }
 }
 }//triangularisert, starter tilbakesubstitusjon

 for(i=e->nlin-1; i>0; --i){
 maxb=largestSetBit(e->A[i],NWORDS);
 if(e->b[0][i>>5]&(1<<(i&0x1f)))
 ibit=1;
 else
 ibit=0;
 for(j=i-1; j>=0; --j){
 if(e->A[j][maxb>>5]&(1<<(maxb&0x1f))){
 for(k=0; k<NWORDS; ++k)
 e->A[j][k]^=e->A[i][k];
 if(ibit)
 e->b[0][j>>5]^=(1<<(j&0x1f));
 }
 }
 }
}

void copySystem(struct system *S, struct system *kopiS){
 int i, j, k;

 kopiS->neq=S->neq;
 kopiS->E=(struct eqSymbol *)malloc(kopiS->neq*sizeof(struct
eqSymbol));
 kopiS->linbank=(struct eqSymbol *)malloc(sizeof(struct eqSymbol));
 initLinBank(kopiS->linbank);
 for(i=0; i<S->linbank->nlin; ++i){
 for(j=0; j<NWORDS; ++j)

 65

 kopiS->linbank->A[i][j]=S->linbank->A[i][j];
 }
 for(i=0; i<S->linbank->nw; ++i)
 kopiS->linbank->b[0][i]=S->linbank->b[0][i];
 kopiS->linbank->nlin=S->linbank->nlin;
 kopiS->linbank->nw=S->linbank->nw;
 for(i=0; i<S->neq; ++i){
 kopiS->E[i].nlin=S->E[i].nlin;
 kopiS->E[i].nrhs=S->E[i].nrhs;
 kopiS->E[i].originalNRHS=S->E[i].originalNRHS;
 kopiS->E[i].nw=S->E[i].nw;
 kopiS->E[i].nn=0;
 kopiS->E[i].A=(u32 **)malloc(kopiS->E[i].nlin*sizeof(u32 *));
 for(j=0; j<kopiS->E[i].nlin; ++j){
 kopiS->E[i].A[j]=(u32 *)malloc(NWORDS*sizeof(u32));
 for(k=0; k<NWORDS; ++k)
 kopiS->E[i].A[j][k]=S->E[i].A[j][k];
 }
 kopiS->E[i].b=(u32 **)malloc(kopiS->E[i].nrhs*sizeof(u32 *));
 for(j=0; j<kopiS->E[i].nrhs; ++j){
 kopiS->E[i].b[j]=(u32 *)malloc(kopiS->E[i].nw*sizeof(u32));
 for(k=0; k<kopiS->E[i].nw; ++k)
 kopiS->E[i].b[j][k]=S->E[i].b[j][k];
 }
 kopiS->E[i].RHSexists=(u8 *)malloc(kopiS-
>E[i].originalNRHS*sizeof(u8));
 for(j=0; j<kopiS->E[i].originalNRHS; ++j)
 kopiS->E[i].RHSexists[j]=S->E[i].RHSexists[j];
 kopiS->E[i].delSinceExtract=S->E[i].delSinceExtract;
 }
}

double log2sum(double *T, int n){
 /* computes log2(\sum_{i=0}^{n-1}(2^{T[i]})). Works also when the
sum is greater than 2^{32}. */
 double suma, sumb;
 int na;

 if(n==1)
 return T[0];
 na=n/2;
 suma=log2sum(T,na);
 sumb=log2sum(T+na,n-na);
 if(suma<sumb){
 if((sumb-28.0)>suma)//only sumb contributes
 return sumb;
 else//compute exactly
 return suma+log2(pow(2,sumb-suma)+1.0);
 }
 else{//suma largest
 if((suma-28.0)>sumb)//only suma contributes
 return suma;
 else//compute exactly
 return sumb+log2(pow(2,suma-sumb)+1.0);
 }

 66

}

u8 evaluate(u32 *lc, u8 *v){
 /* evaluates the linear combination lc with the variables in v and
returns its sum */
 int i;
 u8 sum=0;

 for(i=0; i<NVAR; ++i){
 if(lc[i>>5]&(1<<(i&0x1f)) && v[i])
 sum^=1;
 }

 return sum;
}

2. AGREEING.h (by Havard Raddum and Igor Semaev)

u8 checkLink(struct linkSymbol *lS){
 /*Checks if the two equations linked in this link agree. Returns 0
if equations are inconsistent,
 1 if equations agree and 2 if equations disagreed */
 u8 rv=1, lokrv;
 int i, j, eqdel, linkIndex, eq0ni, eq1ni;
 struct eqSymbol *eq, *eq0, *eq1;

 if((log2(lS->ncells)<(log2(lS->nlist[0]->nrhs)/2)) &&
 (log2(lS->ncells)<(log2(lS->nlist[1]->nrhs)/2))){//do not expect
deletions
 for(i=0; i<lS->ncells; ++i){
 if(lS->cellExists[i]){
 eqdel=2;
 if(lS->nCover[0][i]==0 && lS->nCover[1][i]>0)
 eqdel=1;
 if(lS->nCover[0][i]>0 && lS->nCover[1][i]==0)
 eqdel=0;
 if(eqdel<2){
 rv=2;
 eq=lS->nlist[eqdel];
 for(j=0; j<eq->nn; ++j){
 if(eq->link[j]==lS){
 linkIndex=j;
 j=eq->nn+1;
 }
 }
 if(j==eq->nn){
 printf("Fant ikke link!? eqdel=%d, i=%d\n",eqdel,i);
 printf("Linkadresse: %x, eq.naboadresse: %x\n",lS,eq-
>link[0]);
 }

 j=0;

 67

 while(lS->nCover[eqdel][i]>0){
 while(j<eq->originalNRHS && eq-
>coverID[linkIndex][j]!=(unsigned)i) // !! added cast
 ++j;
 if(j==eq->originalNRHS)printf("fant ikke RHS som dekker celle
%x, lS->nCover=%d\n",i,lS->nCover[eqdel][i]);
 lokrv=deleteRHS(eq,j);
 if(lokrv==0)
 return 0;
 ++j;
 }
 lS->cellExists[i]=0;
 }
 }
 }
 }
 else{//expects deletions, goes through RHS's of linked equations
 eq0=lS->nlist[0];
 eq1=lS->nlist[1];
 for(i=0; i<eq0->nn; ++i){
 if(eq0->link[i]==lS){
 eq0ni=i;
 i=eq0->nn+1;
 }
 }
 if(i==eq0->nn)printf("(checkLink)Fant ikke link fra nabo 0\n");
 for(i=0; i<eq1->nn; ++i){
 if(eq1->link[i]==lS){
 eq1ni=i;
 i=eq1->nn+1;
 }
 }
 if(i==eq1->nn)printf("(checkLink)Fant ikke link fra nabo 1\n");
 for(i=0; i<eq1->originalNRHS; ++i){
 if(eq1->RHSexists[i]){
 if(lS->nCover[1][eq1->coverID[eq1ni][i]]==0)
 printf("RHS %d i eq1 dekker en celle som link sier ikke blir
dekket av eq1\n",i);
 if(lS->nCover[0][eq1->coverID[eq1ni][i]]==0){
 lokrv=deleteRHS(eq1,i);
 if(lokrv==0)
 return 0;
 rv=2;
 }
 }
 }
 for(i=0; i<eq0->originalNRHS; ++i){
 if(eq0->RHSexists[i]){
 if(lS->nCover[0][eq0->coverID[eq0ni][i]]==0)
 printf("RHS %d i eq0 dekker en celle som link sier ikke blir
dekket av eq0\n",i);
 if(lS->nCover[1][eq0->coverID[eq0ni][i]]==0){
 lokrv=deleteRHS(eq0,i);
 if(lokrv==0)
 return 0;

 68

 rv=2;
 }
 }
 }
 }
 return rv;
}

u8 agreeSystem(struct system *S){
 /* Agrees the whole system. Returns 0 if system is inconsistent,
 1 if system already agreed, or 2 if deletions of RHS's have
occurred */
 int i;
 u8 rv=1, lokrv, changed=1;
 struct linkSymbol *lsym;

 while(changed){
 changed=0;
 for(lsym=S->L; lsym<S->L+S->nlink; ++lsym){
 lokrv=checkLink(lsym);
 if(lokrv==2)
 changed=1;
 if(lokrv==0){
 printf("inconsistency in link %d\n",i);
 return 0;
 }
 }
 }

 return rv;
}

}

3. GLUING.h (by Havard Raddum and Igor Semaev)
/* Methods inmplementing gluing of equations, before linking */

u8 maskedRHS1EqualRHS2(u32 *rhs1, u32 *rhs2, int nw, u32 *maske){
 int t;

 t=nw-1;
 while(t>=0 && ((rhs1[t]&maske[t])==(rhs2[t]&maske[t])))
 t--;
 if(t<0)
 return 1;
 else
 return 0;
}

u8 maskedRHS1BiggerThanRHS2(u32 *rhs1, u32 *rhs2, int nw, u32 *maske){
 int t;

 t=nw-1;
 while(t>=0 && (rhs1[t]&maske[t])==(rhs2[t]&maske[t]))

 69

 t--;
 if(t>=0 && (rhs1[t]&maske[t])>(rhs2[t]&maske[t]))
 return 1;
 else
 return 0;
}

void mergeSortMaskedRightHandSides(u32 **RHS, int nicl, int nw, u32
*maske){
 int niacl, nibcl, i, j, t;
 u32 *tmp, **aRHS, **bRHS, **dl;

 if(nicl==2 && maskedRHS1BiggerThanRHS2(RHS[0],RHS[1],nw,maske)){
 tmp=RHS[0];
 RHS[0]=RHS[1];
 RHS[1]=tmp;
 }
 if(nicl>2){
 niacl=nicl/2;
 nibcl=nicl-niacl;
 aRHS=RHS;
 bRHS=RHS+niacl;
 mergeSortMaskedRightHandSides(aRHS,niacl,nw,maske);
 mergeSortMaskedRightHandSides(bRHS,nibcl,nw,maske);
 dl=(u32 **)malloc(nicl*sizeof(u32 *));
 i=j=t=0;
 while(i<niacl && j<nibcl){//ingen er ferdige, må sammenligne
 if(maskedRHS1BiggerThanRHS2(aRHS[i],bRHS[j],nw,maske))
 dl[t++]=bRHS[j++];
 else
 dl[t++]=aRHS[i++];
 }
 if(i==niacl){//aRHS ble ferdig først, kopierer resten av bRHS
 for(i=j; i<nibcl; ++i)
 dl[t++]=bRHS[i];
 }
 else{//bRHS ble ferdig først, kopierer resten av aRHS
 for(j=i; j<niacl; ++j)
 dl[t++]=aRHS[j];
 }
 //kopierer tilbake i RHS
 for(i=0; i<nicl; ++i)
 RHS[i]=dl[i];
 free(dl);
 }
}

void computeMaskedSortedRHS(struct eqSymbol *eq1, struct eqSymbol *eq2,
 u32 **Ub1, u32 **Ub2, u32 *maske, u32 **U, int
ncommon){
 /* Expands RHS's in eq1 and eq2 so they can be glued together. maske
 shows which bits that must be equal when gluing. */
 u32 *lokb;
 int i, j, t, sumnl, sumnlw, skev;

 70

 sumnl=eq1->nlin+eq2->nlin;
 sumnlw=(sumnl+31)>>5;
 lokb=(u32 *)malloc(sumnlw*sizeof(u32));
 t=0;
 for(i=0; i<eq1->originalNRHS; ++i){//computes Ub for all right-hand
sides b in E1
 if(eq1->RHSexists[i]){
 for(j=0; j<eq1->nw; ++j)
 lokb[j]=eq1->b[i][j];
 for(j=eq1->nw; j<sumnlw; ++j)
 lokb[j]=0;

 Uxb(U,sumnl,sumnl,lokb,Ub1[t++]);
 }
 }
 if(t!=eq1->nrhs)printf("eq1->nrhs=%d, t=%d\n",eq1->nrhs,t);
 t=0;
 for(i=0; i<eq2->originalNRHS; ++i){//computes Ub for all right-hand
sides b in E2
 if(eq2->RHSexists[i]){
 for(j=0; j<eq1->nw; ++j)
 lokb[j]=0;
 skev=(eq1->nlin)&0x1f;
 if(skev==0){
 for(j=eq1->nw; j<sumnlw; ++j)
 lokb[j]=eq2->b[i][j-eq1->nw];
 }
 else{
 for(j=0; j<eq2->nw; ++j){
 lokb[eq1->nw+j-1]|=(eq2->b[i][j]<<skev);
 if(sumnlw>(j+eq1->nw))
 lokb[eq1->nw+j]=eq2->b[i][j]>>(32-skev);
 }
 }
 Uxb(U,sumnl,sumnl,lokb,Ub2[t++]);
 }
 }
 if(t!=eq2->nrhs)printf("eq2->nrhs=%d, t=%d\n",eq2->nrhs,t);

 free(lokb);

 i=sumnl-ncommon;
 j=0;
 while(i>=32){
 maske[j++]=0;
 i-=32;
 }
 if(j<sumnlw){
 maske[j]=(0xffffffff<<i);
 for(i=j+1; i<sumnlw; ++i)
 maske[i]=0xffffffff;
 if(sumnl&0x1f)
 maske[sumnlw-1]&=(1<<(sumnl&0x1f))-1;
 }
 //mask in place

 71

 mergeSortMaskedRightHandSides(Ub1,eq1->nrhs,sumnlw,maske);
 mergeSortMaskedRightHandSides(Ub2,eq2->nrhs,sumnlw,maske);
}

int nRHSwhenGlued(struct eqSymbol *eq1, struct eqSymbol *eq2){
 /* Computes number of RHS if gluing eq1 and eq2 */
 u32 **Ub1, **Ub2, *maske, **U;
 int i, j, nn=0, bp1, pp1, bp2, pp2, prod, nw, nl, nc;

 nl=eq1->nlin+eq2->nlin;
 nw=(nl+31)>>5;
 U=(u32 **)malloc(nl*sizeof(u32 *));
 nc=computeU(eq1,eq2,U);
 if(nc==0){
 for(i=0; i<nl; ++i)
 free(U[i]);
 free(U);
 if((MAXINT/eq1->nrhs)<eq2->nrhs)
 return MAXINT;
 else
 return eq1->nrhs*eq2->nrhs;
 }
 Ub1=(u32 **)malloc(eq1->nrhs*sizeof(u32 *));
 for(i=0; i<eq1->nrhs; ++i)
 Ub1[i]=(u32 *)calloc(nw,sizeof(u32));
 Ub2=(u32 **)malloc(eq2->nrhs*sizeof(u32 *));
 for(i=0; i<eq2->nrhs; ++i)
 Ub2[i]=(u32 *)calloc(nw,sizeof(u32));
 maske=(u32 *)malloc(nw*sizeof(u32));

 computeMaskedSortedRHS(eq1,eq2,Ub1,Ub2,maske,U,nc);

 for(i=0; i<nl; ++i)
 free(U[i]);
 free(U);
 bp1=pp1=bp2=pp2=0;
 while(bp1<eq1->nrhs && bp2<eq2->nrhs && nn<MAXINT){
 while(bp1<eq1->nrhs && bp2<eq2->nrhs &&
!maskedRHS1EqualRHS2(Ub1[bp1],Ub2[bp2],nw,maske)){
 if(maskedRHS1BiggerThanRHS2(Ub1[bp1],Ub2[bp2],nw,maske))
 bp2++;
 else
 bp1++;
 }//her er maskert Ub1[bp1] og Ub2[bp2] like, eller en av listene er
nådd til endes
 pp1=bp1;
 pp2=bp2;
 while(pp1<eq1->nrhs &&
maskedRHS1EqualRHS2(Ub1[bp1],Ub1[pp1],nw,maske))
 pp1++;
 while(pp2<eq2->nrhs &&
maskedRHS1EqualRHS2(Ub2[bp2],Ub2[pp2],nw,maske))
 pp2++;
 //Blokkene fra bp1 og bp2 til pp1 og pp2 er identiske maskert
 if((pp1-bp1)>0 && MAXINT/(pp1-bp1)<(pp2-bp2))

 72

 nn=MAXINT;
 prod=(pp1-bp1)*(pp2-bp2);
 if(nn>MAXINT-prod)
 nn=MAXINT;
 if(nn<MAXINT)
 nn+=prod;
 bp1=pp1;
 bp2=pp2;
 }
 for(i=0; i<eq1->nrhs; ++i)
 free(Ub1[i]);
 free(Ub1);
 for(i=0; i<eq2->nrhs; ++i)
 free(Ub2[i]);
 free(Ub2);
 free(maske);

 return nn;
}

int estimateNRHSwhenGlued(struct eqSymbol *eq1, struct eqSymbol *eq2){
 int i, enn, nc, sumnl;
 u32 **M;

 sumnl=eq1->nlin+eq2->nlin;
 M=(u32 **)malloc(sumnl*sizeof(u32 *));
 for(i=0; i<eq1->nlin; ++i)
 M[i]=eq1->A[i];
 for(i=eq1->nlin; i<sumnl; ++i)
 M[i]=eq2->A[i-eq1->nlin];
 nc=sumnl-rank(M,sumnl,NVAR);
 free(M);
 if((log2(eq1->nrhs)+log2(eq2->nrhs)-(double)nc)<30.9){
 if((log2(eq1->nrhs)+log2(eq2->nrhs)-(double)nc)>0.0){
 if(eq2->nrhs>eq1->nrhs)
 enn=(eq1->nrhs>>(nc/2))*(eq2->nrhs>>(nc-(nc/2)));
 else
 enn=(eq2->nrhs>>(nc/2))*(eq1->nrhs>>(nc-(nc/2)));
 if(enn==0)
 enn=1;
 }
 else
 enn=1;
 }
 else
 enn=MAXINT;

 return enn;
}

void glue(struct eqSymbol *eq1, struct eqSymbol *eq2, struct eqSymbol
*geq){
 /* Glues together eq1 and eq2 into geq, eq1 and eq2 should not be
used afterwards. */
 int i, j, k, bp1, pp1, bp2, pp2, ncommon, t, estnnew;

 73

 u32 *maske, **Ub1, **Ub2, **U, **nyA;

 Ub1=(u32 **)malloc(eq1->nrhs*sizeof(u32 *));
 Ub2=(u32 **)malloc(eq2->nrhs*sizeof(u32 *));
 geq->nlin=eq1->nlin+eq2->nlin;
 geq->nw=(geq->nlin+31)>>5;
 geq->A=(u32 **)malloc(geq->nlin*sizeof(u32 *));
 for(i=0; i<eq1->nlin; ++i)
 geq->A[i]=eq1->A[i];
 for(i=0; i<eq2->nlin; ++i)
 geq->A[eq1->nlin+i]=eq2->A[i];

 nyA=(u32 **)malloc(geq->nlin*sizeof(u32 *));
 U=(u32 **)malloc(geq->nlin*sizeof(u32 *));
 for(i=0; i<geq->nlin; ++i)
 nyA[i]=(u32 *)calloc(NWORDS,sizeof(u32));
 for(i=0; i<eq1->nrhs; ++i)
 Ub1[i]=(u32 *)calloc(geq->nw,sizeof(u32));
 for(i=0; i<eq2->nrhs; ++i)
 Ub2[i]=(u32 *)calloc(geq->nw,sizeof(u32));
 maske=(u32 *)malloc(geq->nw*sizeof(u32));

 ncommon=computeU(eq1,eq2,U);
 UAX(U,geq->A,nyA,geq->nlin,NWORDS);
 free(geq->A);
 geq->A=nyA;
 computeMaskedSortedRHS(eq1,eq2,Ub1,Ub2,maske,U,ncommon);
 estnnew=(eq1->nrhs>>(ncommon/2))*(eq2->nrhs>>(ncommon-ncommon/2));
 if(estnnew<1)
 estnnew=1;
 //printf("estnnew=2^(%.3f), ",log2(estnnew));

 geq->b=(u32 **)malloc(estnnew*sizeof(u32 *));
 bp1=pp1=bp2=pp2=t=0;
 while(bp1<eq1->nrhs && bp2<eq2->nrhs){
 while(bp1<eq1->nrhs && bp2<eq2->nrhs &&
!maskedRHS1EqualRHS2(Ub1[bp1],Ub2[bp2],geq->nw,maske)){
 if(maskedRHS1BiggerThanRHS2(Ub1[bp1],Ub2[bp2],geq->nw,maske))
 bp2++;
 else
 bp1++;
 }//her er maskert Ub1[bp1] og Ub2[bp2] like, eller en av listene er
nådd til endes
 pp1=bp1;
 pp2=bp2;
 while(pp1<eq1->nrhs && maskedRHS1EqualRHS2(Ub1[bp1],Ub1[pp1],geq-
>nw,maske))
 pp1++;
 while(pp2<eq2->nrhs && maskedRHS1EqualRHS2(Ub2[bp2],Ub2[pp2],geq-
>nw,maske))
 pp2++;
 //Blokkene fra bp1 og bp2 til pp1 og pp2 er identiske maskert,
limer alle par
 for(i=bp1; i<pp1; ++i){
 for(j=bp2; j<pp2; ++j){

 74

 geq->b[t]=(u32 *)malloc(geq->nw*sizeof(u32));
 for(k=0; k<geq->nw; ++k)
 geq->b[t][k]=Ub1[i][k]^Ub2[j][k];//faktisk liming
 t++;
 if(t==estnnew){//needs more memory and a better estimate
 if(i==0)
 estnnew*=2;
 else{
 if(i==eq1->nrhs)
 estnnew+=(pp2-j);
 else
 estnnew=(int)((double)estnnew/((double)i/(double)eq1-
>nrhs));
 }
 geq->b=(u32 **)realloc(geq->b,estnnew*sizeof(u32 *));
 }
 }
 }
 bp1=pp1;
 bp2=pp2;
 }
 geq->originalNRHS=t;
 geq->nrhs=t;
 geq->b=(u32 **)realloc(geq->b,geq->originalNRHS*sizeof(u32 *));
 geq->RHSexists=(u8 *)malloc(geq->originalNRHS*sizeof(u8));
 for(i=0; i<geq->originalNRHS; ++i)
 geq->RHSexists[i]=1;
 if(ncommon>0){//trimmer bort lineært avhengig informasjon
 for(i=geq->nlin-ncommon; i<geq->nlin; ++i)
 free(geq->A[i]);
 geq->nlin-=ncommon;
 geq->A=(u32 **)realloc(geq->A,geq->nlin*sizeof(u32 *));
 geq->nw=(geq->nlin+31)>>5;
 if(((geq->nlin+31)>>5)<geq->nw){
 geq->nw=(geq->nlin+31)>>5;
 for(i=0; i<geq->nrhs; ++i)
 geq->b[i]=(u32 *)realloc(geq->b[i],geq->nw*sizeof(u32));
 }
 }
 geq->nn=0;

 free(maske);
 for(i=0; i<eq1->nrhs; ++i)
 free(Ub1[i]);
 free(Ub1);
 for(i=0; i<eq2->nrhs; ++i)
 free(Ub2[i]);
 free(Ub2);
}

u8 packSystem(struct system *S, int th){
 /* Tries to glue together as many equations as possible, with the
restriction that the number of
 right-hand sides in the glued equation should not be estimated to
be larger than th.

 75

 Returns 0 if inconsistencies are found, 1 otherwise. */
 struct eqSymbol *nyE, *tmp;
 int i, j, nnew, minnew, mini, minj, nyneq=0, **gluetab;
 u8 *limt, tryglue, trypack;

 nyE=(struct eqSymbol *)malloc(S->neq*sizeof(struct eqSymbol));
 tmp=(struct eqSymbol *)malloc(sizeof(struct eqSymbol));
 limt=(u8 *)calloc(S->neq,sizeof(u8));

 gluetab=(int **)malloc(S->neq*sizeof(int *));
 for(i=0; i<S->neq; ++i)
 gluetab[i]=(int *)calloc(S->neq,sizeof(int));
 for(i=0; i<S->neq; ++i){
 for(j=i+1; j<S->neq; ++j){
 gluetab[i][j]=estimateNRHSwhenGlued(S->E+i,S->E+j);
 if(gluetab[i][j]==0){
 j=S->neq;
 i=S->neq+1;
 }
 }
 }
 if(i==S->neq)
 tryglue=1;
 else{//funnet inkonsistens
 tryglue=2;
 printf("inconsistency found\n");
 }
 while(tryglue==1){
 minnew=th+1;
 for(i=0; i<S->neq; ++i){
 if(!limt[i]){
 for(j=i+1; j<S->neq; ++j){
 if(!limt[j]){
 nnew=gluetab[i][j];
 if(nnew<minnew){
 minnew=nnew;
 mini=i;
 minj=j;
 }
 }
 }
 }
 }//her er billigste liming funnet, hvis mulig aa lime under th
 if(minnew<=th){//mulig aa lime
 glue(S->E+mini,S->E+minj,nyE+nyneq);
 nyE[nyneq].eqnr=nyneq;
 limt[mini]=1;
 limt[minj]=1;
 trypack=1;
 while(trypack){
 minnew=th+1;
 for(i=0; i<S->neq; ++i){
 if(!limt[i]){
 nnew=estimateNRHSwhenGlued(S->E+i,nyE+nyneq);
 if(nnew==0){

 76

 tryglue=2;
 printf("Inconsistency Found\n");
 i=S->neq;
 }
 else{
 if(nnew<minnew){
 minnew=nnew;
 mini=i;
 }
 }
 }
 }
 if(tryglue==1 && minnew<=th){//mulig aa putte paa en til
 //printf(" og %d\n",mini);
 glue(nyE+nyneq,S->E+mini,tmp);
 limt[mini]=1;
 deleteEquation(nyE+nyneq);
 nyE[nyneq]=*tmp;
 }
 else
 trypack=0;
 }
 nyneq++;
 }
 else
 tryglue=0;
 }//har pakket saa godt som mulig, kopierer ulimte symboler
 if(tryglue<2){
 for(i=0; i<S->neq; ++i){
 if(limt[i])
 deleteEquation(S->E+i);
 else{
 nyE[nyneq]=S->E[i];
 nyE[nyneq].eqnr=nyneq;
 nyneq++;
 }
 }
 free(S->E);
 S->E=nyE;
 S->neq=nyneq;
 for(i=0; i<S->neq; ++i)
 S->E[i].eqnr=i;
 }
 free(limt);
 for(i=0; i<S->neq; ++i)
 free(gluetab[i]);
 free(gluetab);
 if(tryglue==2)
 return 0;
 return 1;
}

 77

4. LINKING.h

/* Methods for linking equations in system */

void zeroPrepend(u32 *b, int lb, int nzeros, u32 *x){
 int xw, n0w, lbw, skev, i;

 n0w=(nzeros>>5);
 xw=(lb+nzeros+31)>>5;
 lbw=(lb+31)>>5;
 for(i=0; i<xw; ++i)
 x[i]=0;
 skev=(nzeros&0x1f);
 if(skev){
 for(i=0; i<lbw; ++i){
 x[i+n0w]|=(b[i]<<skev);
 if((i+n0w)<(xw-1))
 x[i+n0w+1]|=(b[i]>>(32-skev));
 }
 }
 else{
 for(i=0; i<lbw; ++i)
 x[i+n0w]=b[i];
 }
}

void zeroAppend(u32 *b, int lb, int nzeros, u32 *x){
 int i, xw, lbw;

 lbw=(lb+31)>>5;
 xw=(lb+nzeros+31)>>5;
 for(i=0; i<lbw; ++i)
 x[i]=b[i];
 for(i=lbw; i<xw; ++i)
 x[i]=0;
}

int collapseCellIDlist(struct bitVector *vl, int nil){
 int bp=0, pp=1;

 while(pp<nil){
 while(pp<nil && v0EqualV1(vl[bp],vl[pp]))
 free(vl[pp++].v);
 if(pp<nil)
 vl[++bp]=vl[pp++];
 }

 return bp+1;
}

int findCellIndex(struct bitVector *vl, int nil, struct bitVector
target){
 int bunn, topp, midt;

 if(v0GreaterThanV1(vl[0],target))//target smaller than smallest in vl

 78

 return -1;
 if(v0GreaterThanV1(target,vl[nil-1]))//target greater than largest in
vl
 return -1;
 if(v0EqualV1(vl[0],target))
 return 0;
 if(v0EqualV1(vl[nil-1],target))
 return nil-1;

 //Know target is not inside boundary of vl
 bunn=0;
 topp=nil-1;
 while((topp-1)>bunn){
 midt=(bunn+topp)/2;
 if(v0EqualV1(vl[midt],target))

 return midt;
 if(v0GreaterThanV1(vl[midt],target))
 topp=midt;
 else
 bunn=midt;
 }

 return -1;
}

void establishSmallLink(struct eqSymbol *eq0, struct eqSymbol *eq1,
struct linkSymbol *ls, u32 **M0, int commondim){
 /* Spaces spanned by A-matrices in equations overlap in few
dimensions, constructs a link with 2^r cells */
 int i, j, sumnl, sumnlw;
 u32 *x, *ci;

 sumnl=eq0->nlin+eq1->nlin;
 sumnlw=(sumnl+31)>>5;
 ls->nlist[0]=eq0;
 ls->nlist[1]=eq1;
 eq0->link[eq0->nn]=ls;
 eq1->link[eq1->nn]=ls;
 ls->ncells=(1<<commondim);//commondim should be small enough for this
 ls->cellExists=(u8 *)malloc(ls->ncells*sizeof(u8));
 for(i=0; i<2; ++i)
 ls->nCover[i]=(int *)calloc(ls->ncells,sizeof(int));
 eq0->coverID[eq0->nn]=(u32 *)malloc(eq0->originalNRHS*sizeof(u32));
 eq1->coverID[eq1->nn]=(u32 *)malloc(eq1->originalNRHS*sizeof(u32));
 x=(u32 *)malloc(sumnlw*sizeof(u32));
 ci=(u32 *)malloc(sizeof(u32));
 /* Establish connections for eq0 */
 for(i=0; i<eq0->originalNRHS; ++i){
 if(eq0->RHSexists[i]){
 zeroAppend(eq0->b[i],eq0->nlin,eq1->nlin,x);
 Uxb(M0,commondim,sumnl,x,ci);
 ls->nCover[0][ci[0]]++;
 eq0->coverID[eq0->nn][i]=ci[0];
 }

 79

 }
 /* Establish connections for eq1 */
 for(i=0; i<eq1->originalNRHS; ++i){
 if(eq1->RHSexists[i]){
 zeroPrepend(eq1->b[i],eq1->nlin,eq0->nlin,x);
 Uxb(M0,commondim,sumnl,x,ci);
 ls->nCover[1][ci[0]]++;
 eq1->coverID[eq1->nn][i]=ci[0];
 }
 }
 for(i=0; i<ls->ncells; ++i){
 if(ls->nCover[0][i]>0 || ls->nCover[1][i]>0)
 ls->cellExists[i]=1;
 else
 ls->cellExists[i]=0;
 }
 eq0->nn++;
 eq1->nn++;

 free(x);
 free(ci);
}

void establishBigLink(struct eqSymbol *eqmin, struct eqSymbol *eqmax,
struct linkSymbol *ls, u32 **M0, int commondim){
 /* Constructs a link where the equations overlap in too many
dimensions. The (number of) cells in the link is based on
 the right-hand sides from the smallest equation */
 int i, j, t, sumnl, sumnlw, lcw, newNcell, cellindex;
 u32 *x;
 struct bitVector ci;

 sumnl=eqmin->nlin+eqmax->nlin;
 sumnlw=(sumnl+31)>>5;
 lcw=(commondim+31)>>5;
 ls->nlist[0]=eqmin;
 ls->nlist[1]=eqmax;
 eqmin->link[eqmin->nn]=ls;
 eqmax->link[eqmax->nn]=ls;
 ls->ncells=eqmin->nrhs;
 if(ls->ncells==0){printf("(establishBigLink)Equations %d and %d
inconsistent\n",eqmin->eqnr,eqmax->eqnr);exit(0);}
 ls->cellExists=(u8 *)malloc(ls->ncells*sizeof(u8));
 ls->cellID=(struct bitVector *)malloc(ls->ncells*sizeof(struct
bitVector));
 for(i=0; i<2; ++i)
 ls->nCover[i]=(int *)calloc(ls->ncells,sizeof(int));
 eqmin->coverID[eqmin->nn]=(u32 *)malloc(eqmin-
>originalNRHS*sizeof(u32));
 eqmax->coverID[eqmax->nn]=(u32 *)malloc(eqmax-
>originalNRHS*sizeof(u32));

 x=(u32 *)malloc(sumnlw*sizeof(u32));
 ci.v=(u32 *)malloc(lcw*sizeof(u32));
 ci.length=commondim;

 80

 ci.wl=lcw;
 /* Establish connections for eqmin */
 t=0;
 for(i=0; i<eqmin->originalNRHS; ++i){
 if(eqmin->RHSexists[i]){
 zeroAppend(eqmin->b[i],eqmin->nlin,eqmax->nlin,x);
 Uxb(M0,commondim,sumnl,x,ci.v);
 ls->cellID[t].wl=lcw;
 ls->cellID[t].length=commondim;
 ls->cellID[t].v=(u32 *)malloc(lcw*sizeof(u32));
 for(j=0; j<lcw; ++j)
 ls->cellID[t].v[j]=ci.v[j];
 t++;
 }
 }//all different cellIDs, with repetition, created
 if(t!=eqmin->nrhs){printf("(establishBigLink)More existing RHS's (%d)
in eqmin than eqmin->nrhs=%d says!\n",
 t,eqmin->nrhs);exit(0);}
 mergeSortBitVectors(ls->cellID,ls->ncells);
 newNcell=collapseCellIDlist(ls->cellID,ls->ncells);
 if(newNcell<ls->ncells){
 ls->ncells=newNcell;//the actual number of cells in this link
 ls->cellID=(struct bitVector *)realloc(ls->cellID,ls-
>ncells*sizeof(struct bitVector));
 }
 for(i=0; i<2; ++i)
 ls->nCover[i]=(int *)calloc(ls->ncells,sizeof(int));
 for(i=0; i<eqmin->originalNRHS; ++i){
 if(eqmin->RHSexists[i]){
 zeroAppend(eqmin->b[i],eqmin->nlin,eqmax->nlin,x);
 Uxb(M0,commondim,sumnl,x,ci.v);
 cellindex=findCellIndex(ls->cellID,ls->ncells,ci);
 if(cellindex==-1){printf("(establishBigLink)fant ikke
cellID!");exit(0);}
 eqmin->coverID[eqmin->nn][i]=cellindex;
 ls->nCover[0][cellindex]++;
 }
 }//link to eqmin created
 /* Establish connections for eqmax */
 for(i=0; i<eqmax->originalNRHS; ++i){
 if(eqmax->RHSexists[i]){
 zeroPrepend(eqmax->b[i],eqmax->nlin,eqmin->nlin,x);
 Uxb(M0,commondim,sumnl,x,ci.v);
 cellindex=findCellIndex(ls->cellID,ls->ncells,ci);
 if(cellindex==-1)//RHS i does not agree with eqmin
 deleteRHS(eqmax,i);
 else{
 eqmax->coverID[eqmax->nn][i]=cellindex;
 ls->nCover[1][cellindex]++;
 }
 }
 }//links created, no more use for cellID, deletes it
 for(i=0; i<ls->ncells; ++i)
 free(ls->cellID[i].v);
 free(ls->cellID);

 81

 ls->cellExists=(u8 *)malloc(ls->ncells*sizeof(u8));
 for(i=0; i<ls->ncells; ++i){
 if(ls->nCover[0][i]>0 || ls->nCover[1][i]>0)
 ls->cellExists[i]=1;
 else
 ls->cellExists[i]=0;
 }
 eqmin->nn++;
 eqmax->nn++;

 free(x);
 free(ci.v);
}

void tryEstablishLink(struct system *S, int eqnr0, int eqnr1){
 struct eqSymbol *eqmin, *eqmax;
 struct linkSymbol *ls;
 int i, commondim, sumnl;// !! deleted var: , sumnlw;
 u32 **U;

 if(S->E[eqnr0].nrhs<S->E[eqnr1].nrhs){
 eqmin=S->E+eqnr0;
 eqmax=S->E+eqnr1;
 }
 else{
 eqmin=S->E+eqnr1;
 eqmax=S->E+eqnr0;
 }//eqmin goes on top when computing U!
 sumnl=eqmin->nlin+eqmax->nlin;
 // !! deleted var: sumnlw=(sumnl+31)>>5;
 U=(u32 **)malloc(sumnl*sizeof(u32 *));
 commondim=computeU(eqmin,eqmax,U);
 if(commondim>0){/* eqmin and eqmax can exchange information,
establish link */
 ls=S->L+S->nlink;
 ls->linknr=S->nlink;
 if(commondim<32 && (1<<commondim)<eqmin->nrhs)
 establishSmallLink(eqmin,eqmax,ls,U+(sumnl-commondim),commondim);
 else
 establishBigLink(eqmin,eqmax,ls,U+(sumnl-commondim),commondim);
 S->nlink++;
 }
 for(i=0; i<sumnl; ++i)
 free(U[i]);
 free(U);
}

void linkSystem(struct system *S){
 /* Establishes connections for all pairs of equations that can
exchange information */
 int i, j, eq0ni, eq1ni;
 struct eqSymbol *eq0, *eq1;
 struct linkSymbol *ls;

 S->nlink=0;

 82

 for(i=0; i<S->neq; ++i){
 S->E[i].nn=0;
 S->E[i].coverID=(u32 **)malloc((S->neq-1)*sizeof(u32 *));
 S->E[i].link=(struct linkSymbol **)malloc((S->neq-1)*sizeof(struct
linkSymbol *));
 }
 S->L=(struct linkSymbol *)malloc(((S->neq*(S->neq-
1))/2)*sizeof(struct linkSymbol));
 for(i=0; i<S->neq-1; ++i){
 for(j=i+1; j<S->neq; ++j)
 tryEstablishLink(S,i,j);
 }
 S->L=(struct linkSymbol *)realloc(S->L,S->nlink*sizeof(struct
linkSymbol));
 for(i=0; i<S->neq; ++i){
 S->E[i].coverID=(u32 **)realloc(S->E[i].coverID,S-
>E[i].nn*sizeof(u32 *));
 S->E[i].link=(struct linkSymbol **)realloc(S->E[i].link,S-
>E[i].nn*sizeof(struct linkSymbol *));
 }
}

void deLinkSystem(struct system *S){
 /* Removes all links in S and frees the memory */
 int i;
 struct eqSymbol *eq;
 struct linkSymbol *li;

 for(eq=S->E; eq<S->E+S->neq; ++eq){
 if(eq->nn>0){
 for(i=0; i<eq->nn; ++i)
 free(eq->coverID[i]);
 free(eq->coverID);
 free(eq->link);
 eq->nn=0;
 }
 }
 for(li=S->L; li<S->L+S->nlink; ++li){
 free(li->nCover[0]);
 free(li->nCover[1]);
 free(li->cellExists);
 }
 free(S->L);
 S->nlink=0;
}

void makeLinkTab(struct system *S, int **LT){
 int i;

 for(i=0; i<S->neq; ++i)
 LT[i]=(int *)calloc(S->neq,sizeof(int));
 for(i=0; i<S->nlink; ++i){
 LT[S->L[i].nlist[0]-(S->E)][S->L[i].nlist[1]-(S-
>E)]=(int)ceil(log2(S->L[i].ncells));

 83

 LT[S->L[i].nlist[1]-(S->E)][S->L[i].nlist[0]-(S-
>E)]=(int)ceil(log2(S->L[i].ncells));
 }
}

void printLinkTab(int **LT, int n){
 int i, j;

 for(i=0; i<n; ++i){
 for(j=0; j<n; ++j){
 printf("%2d",LT[i][j]);
 if((j+1)%5==0)
 printf("|");
 }
 if((i+1)%5==0){
 printf("\n");
 for(j=0; j<n; ++j)
 printf("--");
 for(j=0; j<n/5; ++j)
 printf("-");
 }
 printf("\n");
 }
}

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

APPENDIX B

(These codes are intended only to be used for experiments with the

MRHS method, and neither their author nor the author of this thesis takes any

responsibility for their use).

A. GENERATION OF AN EQUATION

/*
 aes_eqs.c
 D. Canright 2008 Sep 10 Wed 12:44:56
Generate MRHS Equations for
Small-scale Variants of the AES algorithm
Also does the encryption!
Notes: always uses * form: last round no MixCols
 always keysize = block size
optional command line arguments:
 variant (string) = "nrce" to specify small-scale variant of AES:
 n (hex) is # rounds (1 - A; default=A=10)
 r (int) is # rows (1, 2, 4; default=4)
 c (int) is # cols (1, 2, 4; default=4)
 e (int) is # bits in word (2, 4, 8; default=8)
 defaults are "A448" for standard AES = SR*(10; 4; 4;
8)
 input (hex) = plaintext block (default is zero block)
 output (hex) = key block (default is zero block)
 outfile (string) = filename of output file (default is stdout)
while all the above are optional, you must have one to have the next...

save all the X state data (output of S-box after ShiftRows) and K key
data,
print it out after the equations.
encryption re-organized the to give the X state:
 put ShiftRows before S-box, as part of previous round
 do NOT do "in place"; rather, put result in new place.
(ARS) (MARS)*(n-1) (A) rather than
(A) (SRMA)*(n-1) (SRA) [where R is RowShift, S is SubstBytes, ...]
Does actual KeySchedule and Encrypt.
(Note: keep InvMix in case do non-star versions).
*/
#include <stdio.h>
#include <string.h>

#define MAXROUNDS 10
#define MAXROWS 4
#define MAXCOLS 4
#define MAXBITS 8
#define MAXBLOCK MAXROWS*MAXCOLS
#define MAXKEY MAXBLOCK
#define MAXVARS MAXROUNDS*MAXROWS*(MAXCOLS+1)

 86

#define SR(c,r) ((c+r) & (nCols-1))

unsigned char RoundKeys[(MAXROUNDS + 1) * MAXBLOCK];
unsigned char States[(MAXROUNDS + 2) * MAXBLOCK];
unsigned int *Log;
unsigned char *ALog, *Sbox, *Mix, *InvMix, fieldmask;
int nRounds = 10, nRows = 4, nCols = 4, nBits = 8, star = 1, field,
block,
 KeyBits, KeyCols, nKeyCols;
int nEqs, nVars, nKeyVars;
unsigned char PT[MAXBLOCK], CT[MAXBLOCK], Eq[2][MAXVARS], Data[2];
enum InOut { In, Out };
enum VarType { Key, X, State };

unsigned int Log8[256] = {
0x00,0x00,0x19,0x01,0x32,0x02,0x1A,0xC6,0x4B,0xC7,0x1B,0x68,0x33,0xEE,0
xDF,0x03,
0x64,0x04,0xE0,0x0E,0x34,0x8D,0x81,0xEF,0x4C,0x71,0x08,0xC8,0xF8,0x69,0
x1C,0xC1,
0x7D,0xC2,0x1D,0xB5,0xF9,0xB9,0x27,0x6A,0x4D,0xE4,0xA6,0x72,0x9A,0xC9,0
x09,0x78,
0x65,0x2F,0x8A,0x05,0x21,0x0F,0xE1,0x24,0x12,0xF0,0x82,0x45,0x35,0x93,0
xDA,0x8E,
0x96,0x8F,0xDB,0xBD,0x36,0xD0,0xCE,0x94,0x13,0x5C,0xD2,0xF1,0x40,0x46,0
x83,0x38,
0x66,0xDD,0xFD,0x30,0xBF,0x06,0x8B,0x62,0xB3,0x25,0xE2,0x98,0x22,0x88,0
x91,0x10,
0x7E,0x6E,0x48,0xC3,0xA3,0xB6,0x1E,0x42,0x3A,0x6B,0x28,0x54,0xFA,0x85,0
x3D,0xBA,
0x2B,0x79,0x0A,0x15,0x9B,0x9F,0x5E,0xCA,0x4E,0xD4,0xAC,0xE5,0xF3,0x73,0
xA7,0x57,
0xAF,0x58,0xA8,0x50,0xF4,0xEA,0xD6,0x74,0x4F,0xAE,0xE9,0xD5,0xE7,0xE6,0
xAD,0xE8,
0x2C,0xD7,0x75,0x7A,0xEB,0x16,0x0B,0xF5,0x59,0xCB,0x5F,0xB0,0x9C,0xA9,0
x51,0xA0,
0x7F,0x0C,0xF6,0x6F,0x17,0xC4,0x49,0xEC,0xD8,0x43,0x1F,0x2D,0xA4,0x76,0
x7B,0xB7,
0xCC,0xBB,0x3E,0x5A,0xFB,0x60,0xB1,0x86,0x3B,0x52,0xA1,0x6C,0xAA,0x55,0
x29,0x9D,
0x97,0xB2,0x87,0x90,0x61,0xBE,0xDC,0xFC,0xBC,0x95,0xCF,0xCD,0x37,0x3F,0
x5B,0xD1,
0x53,0x39,0x84,0x3C,0x41,0xA2,0x6D,0x47,0x14,0x2A,0x9E,0x5D,0x56,0xF2,0
xD3,0xAB,
0x44,0x11,0x92,0xD9,0x23,0x20,0x2E,0x89,0xB4,0x7C,0xB8,0x26,0x77,0x99,0
xE3,0xA5,
0x67,0x4A,0xED,0xDE,0xC5,0x31,0xFE,0x18,0x0D,0x63,0x8C,0x80,0xC0,0xF7,0
x70,0x07,
};

unsigned char ALog8[256] = {
0x01,0x03,0x05,0x0F,0x11,0x33,0x55,0xFF,0x1A,0x2E,0x72,0x96,0xA1,0xF8,0
x13,0x35,
0x5F,0xE1,0x38,0x48,0xD8,0x73,0x95,0xA4,0xF7,0x02,0x06,0x0A,0x1E,0x22,0
x66,0xAA,

 87

0xE5,0x34,0x5C,0xE4,0x37,0x59,0xEB,0x26,0x6A,0xBE,0xD9,0x70,0x90,0xAB,0
xE6,0x31,
0x53,0xF5,0x04,0x0C,0x14,0x3C,0x44,0xCC,0x4F,0xD1,0x68,0xB8,0xD3,0x6E,0
xB2,0xCD,
0x4C,0xD4,0x67,0xA9,0xE0,0x3B,0x4D,0xD7,0x62,0xA6,0xF1,0x08,0x18,0x28,0
x78,0x88,
0x83,0x9E,0xB9,0xD0,0x6B,0xBD,0xDC,0x7F,0x81,0x98,0xB3,0xCE,0x49,0xDB,0
x76,0x9A,
0xB5,0xC4,0x57,0xF9,0x10,0x30,0x50,0xF0,0x0B,0x1D,0x27,0x69,0xBB,0xD6,0
x61,0xA3,
0xFE,0x19,0x2B,0x7D,0x87,0x92,0xAD,0xEC,0x2F,0x71,0x93,0xAE,0xE9,0x20,0
x60,0xA0,
0xFB,0x16,0x3A,0x4E,0xD2,0x6D,0xB7,0xC2,0x5D,0xE7,0x32,0x56,0xFA,0x15,0
x3F,0x41,
0xC3,0x5E,0xE2,0x3D,0x47,0xC9,0x40,0xC0,0x5B,0xED,0x2C,0x74,0x9C,0xBF,0
xDA,0x75,
0x9F,0xBA,0xD5,0x64,0xAC,0xEF,0x2A,0x7E,0x82,0x9D,0xBC,0xDF,0x7A,0x8E,0
x89,0x80,
0x9B,0xB6,0xC1,0x58,0xE8,0x23,0x65,0xAF,0xEA,0x25,0x6F,0xB1,0xC8,0x43,0
xC5,0x54,
0xFC,0x1F,0x21,0x63,0xA5,0xF4,0x07,0x09,0x1B,0x2D,0x77,0x99,0xB0,0xCB,0
x46,0xCA,
0x45,0xCF,0x4A,0xDE,0x79,0x8B,0x86,0x91,0xA8,0xE3,0x3E,0x42,0xC6,0x51,0
xF3,0x0E,
0x12,0x36,0x5A,0xEE,0x29,0x7B,0x8D,0x8C,0x8F,0x8A,0x85,0x94,0xA7,0xF2,0
x0D,0x17,
0x39,0x4B,0xDD,0x7C,0x84,0x97,0xA2,0xFD,0x1C,0x24,0x6C,0xB4,0xC7,0x52,0
xF6,0x01,
};

unsigned int Log4[16] = {
0, 0, 1, 4, 2, 8, 5, 10, 3, 14, 9, 7, 6, 13, 11, 12,
};

unsigned char ALog4[16] = {
1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9, 1,
};

unsigned int Log2[4] = {
0, 0, 1, 2,
};

unsigned char ALog2[4] = {
1, 2, 3, 1,
};

unsigned char Sbox8[256] = {
0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0
xAB,0x76,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0
x72,0xC0,
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0
x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0
xB2,0x75,

 88

0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0
x2F,0x84,
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0
x58,0xCF,
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0
x9F,0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0
xF3,0xD2,
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0
x19,0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0
x0B,0xDB,
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0
xE4,0x79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0
xAE,0x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0
x8B,0x8A,
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0
x1D,0x9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0
x28,0xDF,
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0
xBB,0x16,
};

unsigned char Sbox4[16] = {
0x6,0xB,0x5,0x4,0x2,0xE,0x7,0xA,0x9,0xD,0xF,0xC,0x3,0x1,0x0,0x8,
};

unsigned char Sbox2[4] = {
 2, 3, 1, 0,
};

unsigned char Mix4[4] = {
0x2,0x3,0x1,0x1,
};

unsigned char InvMix4[4] = {
0xE,0xB,0xD,0x9,
};

unsigned char InvMix42[4] = {
0x0,0x2,0x3,0x0,
};

unsigned char Mix2[2] = {
0x3,0x2,
};

unsigned char Mix1[1] = {
0x1,
};

// multiply by "2" in field

 89

#define POLY8 0x1B
#define POLY4 0x13
#define POLY2 0x07
unsigned char HIBIT, POLY;
unsigned char mul2 (unsigned char x) {
 unsigned char y;
 y = x << 1;
 if (x & HIBIT) y ^= POLY;
 return(y);
}

// multiply two bytes in field
unsigned char mul(unsigned char x, unsigned char y)
{
 if (x && y)
 return (ALog[(Log[x] + Log[y]) % (field - 1)]);
 else
 return (0);
}

#include "eqs_io.h" // include I/O package

// set up specific small-scale variant of AES
// assumes main() already set: nRounds, nRows, nCols, nBits, star
int setup(void)
{
 int returnval = 0;

// check parameters for validity
 if (nRounds < 1 || nRounds > MAXROUNDS) {
 nRounds = 10;
 returnval = 1;
 }
 if (!(nCols == 1 || nCols == 2 || nCols == 4)) {
 nCols = 4;
 returnval = 1;
 }

 switch (nBits) {
 case 2:
 Log = Log2;
 ALog = ALog2;
 Sbox = Sbox2;
 POLY = POLY2;
 field = 4;
 break;
 case 4:
 Log = Log4;
 ALog = ALog4;
 Sbox = Sbox4;
 POLY = POLY4;
 field = 16;
 break;
 default:
 nBits = 8;

 90

 returnval = 1; // if bad value, use default, fall thru
 case 8:
 Log = Log8;
 ALog = ALog8;
 Sbox = Sbox8;
 POLY = POLY8;
 field = 256;
 break;
 }

 switch (nRows) {
 case 1:
 Mix = InvMix = Mix1;
 break;
 case 2:
 Mix = InvMix = Mix2;
 break;
 default:
 nRows = 4;
 returnval = 1; // if bad value, use default, fall thru
 case 4:
 Mix = Mix4;
 InvMix = (nBits == 2) ? InvMix42 : InvMix4;
 break;
 }
 fieldmask = field - 1;
 HIBIT = 1 << (nBits - 1);
 setScale(); // set up bit matrices for scalars
 block = nRows * nCols;
 KeyBits = block * nBits;
 nKeyCols = (nRounds + 1) * nCols;
 nKeyVars = block + nRounds * nRows;
 nVars = nKeyVars + block * (nRounds - 1);
 nEqs = nVars;

 return returnval;
}

int KeySchedule(unsigned char Key[])
{
 int colbits, returnval = 0;
 int r, c;
 unsigned char col[MAXROWS], t, rcon;

 colbits = nRows * nBits;
 KeyCols = KeyBits / colbits;
#define NOISY 0
#if NOISY
fprintf(stderr,"-KeySched: colbits=%d, KeyCols=%d, nKeyCols=%d,
Key=%p\n",
 colbits, KeyCols, nKeyCols, Key);
fprintf(stderr,"-Key: ");
 for (r = 0; r < block; r++) fprintf(stderr, ((nBits>4) ? "%02X" :
"%01X"), Key[r]);
fprintf(stderr,"\n"); fflush(stderr);

 91

#endif
 /* Copy key */
 for (c = 0; c < KeyCols; c++)
 for (r = 0; r < nRows; r++)
 RoundKeys[r + nRows * c] = Key[r + nRows * c];
 for (r = 0; r < nRows; r++)
 col[r] = Key[r + nRows * (c - 1)];
#if NOISY
fprintf(stderr,"-KeySched: Key copied; c=%d, col= ", c);
 for (r = 0; r < nRows; r++) fprintf(stderr, (nBits>4)?"%02X":"%01X",
col[r]);
fprintf(stderr,"\n"); fflush(stderr);
#endif

 for (rcon = 1; c < nKeyCols; c++) {
 /* calculate new columns until enough */
 if (c % KeyCols == 0) {
 t = col[0];
 for (r = 0; r < (nRows - 1); r++)
 col[r] = Sbox[col[r + 1]];
 col[nRows - 1] = Sbox[t];
 col[0] ^= rcon;
#if NOISY
fprintf(stderr,"-KeySched: apply F; t=%X, rcon=%X, col= ", t, rcon);
 for (r = 0; r < nRows; r++) fprintf(stderr, (nBits>4)?"%02X":"%01X",
col[r]);
fprintf(stderr,"\n"); fflush(stderr);
#endif
 rcon = mul(2, rcon);
 }
// need to handle KeyCols = 1 differently
 for (r = 0; r < nRows; r++)
 RoundKeys[r + nRows * c] = (KeyCols == 1) ? col[r] :
 (col[r] ^= RoundKeys[r + nRows * (c - KeyCols)]);
#if 0
fprintf(stderr,"-KeySched: RoundKeys col[%d]= ", c);
 for (r = 0; r < nRows; r++) fprintf(stderr, (nBits>4)?"%02X":"%01X",
 RoundKeys[r + nRows * c]);
fprintf(stderr,"\n"); fflush(stderr);
#endif
 }

 return returnval;
}

// do one round on block: (ARS) for #0 or else (MARS)
void doround(unsigned char State[], unsigned char roundKey[],
 int round)
{
 unsigned char t[MAXROWS];
 int i, r, c, offset=0;
 if (round) // if normal round
 for (c = 0; c < nCols; c++) {
 for (r = 0; r < nRows; r++)
 for (t[r] = i = 0; i < nRows; i++)

 92

 t[r] ^= // MixColumns
 mul(Mix[i], State[((r + i) % nRows) + nRows *
c]);
 for (r = 0; r < nRows; r++)
 State[block + r + nRows * c] = t[r];
 }
else offset = -block;
State += block;
 for (i = 0; i < block; i++)
 State[i] = State[offset+i] ^ roundKey[i]; // AddRoundKey
 for (r = 1; r < nRows; r++) {
 for (c = 0; c < nCols; c++) // ShiftRows
 t[c] = State[r + nRows * ((c + r) % nCols)];
 for (c = 0; c < nCols; c++)
 State[r + nRows * c] = t[c];
 }
 for (i = 0; i < block; i++)
 State[i] = Sbox[State[i]]; // SubBytes

}

// do round #n on block: (A)
void doroundn(unsigned char State[], unsigned char roundKey[])
{
 int i;

 for (i = 0; i < block; i++)
 State[block + i] = State[i] ^ roundKey[i]; //
AddRoundKey
}

// encrypt block (NOT in place - keep output of each S-box)
void encrypt(void)
{
 int i, round;

 for (i = 0; i < block; i++)
 States[i] = PT[i]; // copy PT in
 for (round = 0; round < nRounds; round++) {
 doround(States + round*block, RoundKeys + round*block, round);
 }
 doroundn(States + round*block, RoundKeys + round*block);
 for (i = 0; i < block; i++)
 CT[i] = States[(nRounds+1)*block + i]; // copy CT out
}

void NewEq(void)
{
 int i, r;

 for (r = In; r <= Out; r++) {
 Data[r] = 0;
 for (i = 0; i < nVars; i++)
 Eq[r][i] = 0;
 }

 93

}

int VarNum(enum VarType var,
 int round, int col, int row)
{
 switch (var) {
 case Key:
 if (round == 0)
 return (col * nRows + row);
 else // then col == 0
 return (block + (round-1) * nRows + row);
 case X:
 return (nKeyVars + (round-1) * block + col * nRows + row);
 }
 return (0); // dummy
}

void AddVar(enum InOut line, enum VarType var,
 int round, int col, int row, int scale)
{
 int r;

 switch (var) {
 case Key:
 if (round == 0 || col == 0)
 Eq[line][VarNum(Key, round, col, row)] ^= scale;
 else {
 AddVar(line, Key, round, col-1, row, scale);
 AddVar(line, Key, round-1, col, row, scale);
 }
 break;
 case X:
 Eq[line][VarNum(X, round, col, row)] ^= scale;
 break;
 case State: // scale must be 1
 for (r = 0; r < nRows; r++) {
 AddVar(line, X, round, col, (row+r)&(nRows-1), Mix[r]);
 }
 AddVar(line, Key, round, col, row, 1);
 break;
 }
}

void KeyScheduleEqs(void)
{
 int i, r;
 unsigned char rcon;

 for (i = 1, rcon = 1; i <= nRounds; i++) {
 for (r = 0; r < nRows; r++) {
 NewEq();
 AddVar(Out, Key, i, 0, r, 1);
 if (nCols > 1) AddVar(Out, Key, i-1, 0, r, 1);
 AddVar(In, Key, i-1, nCols-1, (r+1)&(nRows-1), 1);
 if (r == 0) Data[Out] = rcon;

 94

 WriteEq();
 }
 rcon = mul2(rcon);
 }
}

// do only 1 round on block
void doonlyroundEqs(int round)
{
 int r, c;

 for (c = 0; c < nCols; c++) {
 for (r = 0; r < nRows; r++) {
 NewEq();
 AddVar(Out, Key, round, c, r, 1);
 Data[Out] = CT[r + nRows * c];
 AddVar(In, Key, round-1, SR(c,r), r, 1);
 Data[In] = PT[r + nRows * SR(c,r)];
 WriteEq();
 }
 }
}

// do round #1 on block
void doround1Eqs(int round)
{
 int r, c;

 for (c = 0; c < nCols; c++) {
 for (r = 0; r < nRows; r++) {
 NewEq();
 AddVar(Out, X, round, c, r, 1);
 AddVar(In, Key, round-1, SR(c,r), r, 1);
 Data[In] = PT[r + nRows * SR(c,r)];
 WriteEq();
 }
 }
}

// do one round on block
void doroundEqs(int round)
{
 int r, c;

 for (c = 0; c < nCols; c++) {
 for (r = 0; r < nRows; r++) {
 NewEq();
 AddVar(Out, X, round, c, r, 1);
 AddVar(In, State, round-1, SR(c,r), r, 1);
 WriteEq();
 }
 }
}

// do round #n on block

 95

void doroundnEqs(int round)
{
 int r, c;

 for (c = 0; c < nCols; c++) {
 for (r = 0; r < nRows; r++) {
 NewEq();
 AddVar(Out, Key, round, c, r, 1);
 AddVar(In, State, round-1, SR(c,r), r, 1);
 Data[Out] = CT[r + nRows * c];
 WriteEq();
 }
 }
}

void EncryptEqs(void)
{
 int round;

 if (nRounds == 1) {
 doonlyroundEqs(1);
 return;
 }
 doround1Eqs(1);
 for (round = 2; round < nRounds; round++) {
 doroundEqs(round);
 }
 doroundnEqs(round);
}

int main(int argc, char *argv[])
{
unsigned char Key[MAXBLOCK];

 if (argc > 1) {
 sscanf(argv[1], "%1x%1d%1d%1d",
 &nRounds, &nRows, &nCols, &nBits);
 }
 fprintf(stderr, " nRounds=%d, nRows=%d, nCols=%d, nBits=%d,
star=%d\n",
 nRounds, nRows, nCols, nBits, star);
 if (setup())
 fprintf(stderr,
 "Bad parameter(s); now:\n nRounds=%d, nRows=%d, nCols=%d,
nBits=%d, star=%d\n",
 nRounds, nRows, nCols, nBits, star);
// by default KeyBits = bits in block
 ReadBlock((argc > 2) ? argv[2] : "", PT);
 ReadBlock((argc > 3) ? argv[3] : "", Key);
 if (argc > 4)
 if (freopen(argv[4], "w", stdout) != stdout) {
 fprintf(stderr, "Could not open output file %s\n", argv[4]);
 return 1;
 }

 96

 KeySchedule(Key);
 encrypt();

 WriteSystemHeader();
 KeyScheduleEqs();
// do only single block
 EncryptEqs();

 WriteVars();
 printf(" nRounds=%d, nRows=%d, nCols=%d, nBits=%d, star=%d\n",
 nRounds, nRows, nCols, nBits, star);
 WriteKeys();
 WriteStates();

 return (0);
}

B. MRHS algorithm

/*
 mrhs.c
 D. Canright 2008 Aug 22 Fri 13:58:27
Interactive tool to solve MRHS equations

input file format:
header:
 NVAR # variables
 neq # equations (symbols)
for each equation symbol:
 nlin # rows
 nrhs # RHS
 A (by rows, binary)
 b (by cols, binary)

*/

#include "mrhs.h" // includes all others
#include <ctype.h>

int main(int argc, char *argv[])
{
 int i, n;
 char input[101], *filename;
 char menu[] = {
"Enter commands from the menu below.\n"
" # means a number is required: use nondigit for default value (or for
'all')\n"
 "l linkSystem(S);\n"
 "a agreeSystem(S);\n"
 "d deLinkSystem(S);\n"
 "g # packSystem(S, #); (glue)\n"
 "x extractLinearInfo(S);\n"
 "w writeSystem(S);\n"
 "i # EquationInfo(&S->E[#]);\n"

 97

 "p # printEquation(&S->E[#]);\n"
 "e printLinEquation(S->linbank, 0, S->linbank->nlin);\n"
 "t writeLinkTab(S, 36);\n"
 "q QUIT (exit)\n"
 };

// struct eqSymbol *tmpeq = (struct eqSymbol *) malloc(sizeof(struct
eqSymbol));
 struct system *S = (struct system *) malloc(sizeof(struct system
));
 CHECKPTR(S); // test of macro
/*
read in header, set up sys, setup & read eqns
link system
agree
glue
*/

#if 0
 i = 0;
 CHECKPTR(i); // test of macro
 return(0);
#endif

if (argc > 1) filename = argv[1];
else {
 fprintf(stderr, "Enter filename for input system: ");
 scanf("%100s", input);
 filename = input;
 }
if (readSystem(S, filename)) {
 fprintf(stderr, "Error in main: did not get input system; abort!\n"
);
 return (1);
 }
printf("got: NVAR = %d (NWORDS = %d); neq = %d\n", NVAR, NWORDS, S->neq
);
printf(menu);
while (scanf("%100s",input) == 1) {
switch (input[0]) {
case 'a':
case 'A':
printf("** agreeSystem\n");
agreeSystem(S);
break;
case 'e':
case 'E':
printLinEquation(S->linbank, 0, S->linbank->nlin);
break;
case 'd':
case 'D':
printf("** deLinkSystem\n");
deLinkSystem(S);
break;
case 'p':

 98

case 'P':
if (input[1]) i=1;
else { scanf("%100s",input); i = 0; }
if (isdigit(input[i])) {
 sscanf(input+i, "%d", &i);
 if (i < 0 || i >= S->neq) {fprintf(stderr," bad eq #: %d\n",i);
break;}
 printEquation(&S->E[i]);
 }
else
 for(i=0; i<S->neq; ++i) printEquation(&S->E[i]);
break;
case 'i':
case 'I':
if (input[1]) i=1;
else { scanf("%100s",input); i = 0; }
if (isdigit(input[i])) {
 sscanf(input+i, "%d", &i);
 if (i < 0 || i >= S->neq) {fprintf(stderr," bad eq #: %d\n",i);
break;}
 EquationInfo(&S->E[i]);
 }
else
 for(i=0; i<S->neq; ++i) EquationInfo(&S->E[i]);
break;
case 'g':
case 'G':
if (input[1]) i=1;
else { scanf("%100s",input); i = 0; }
if (isdigit(input[i]))
 sscanf(input+i, "%d", &i);
else
 i = 1024; // arbitrarily picked a (small) max size of glued eqns
printf("** packSystem (glue); max = %d\n", i);
packSystem(S, i);
break;
case 'l':
case 'L':
printf("** linkSystem\n");
linkSystem(S);
break;
case 'q':
case 'Q':
return 0;
case 't':
case 'T':
writeLinkTab(S, 36);
break;
case 'w':
case 'W':
writeSystem(S);
break;
case 'x':
case 'X':
printf("** extractLinearInfo\n");

 99

extractLinearInfo(S);
break;
default:
printf(menu);
break;
}
printf("now: neq = %d ; nlink = %d ; linbank = %d\n",
 S->neq, S->nlink, S->linbank->nlin);
}

 return (0);
}

 100

THIS PAGE INTENTIONALLY LEFT BLANK

 101

LIST OF REFERENCES

[1] W. Trappe and L.C. Washington, Introduction to Cryptography with Coding
Theory, 2d ed., Upper Saddle River: Pearson Prentice Hall, 2006.

[2] J. Daemen and V. Rijmen, The Design of Rijndael: AES—The Advanced
Encryption Standard, New York: Springer, 2002.

[3] “Announcing the Advanced Encryption Standard,” Federal Information
Processing Standards Publication 197, November 26, 2001, [Online].
Available: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
(accessed June 2008).

[4] C. Cid, S. Murphy and M. Robshaw, Algebraic Aspects of the Advanced
Encryption Standard, New York: Springer, 2006.

[5] H. Raddum and I. Semaev, “Solving MRHS linear equations,” Cryptology
ePrint Archive, Report 2007/285, August 28, 2007,
http://eprint.iacr.org/2007/285 (accessed September 2008).

[6] H. Raddum and I. Semaev (private communication: provided codes in
Appendix A).

[7] “Advanced encryption standard,” Wikipedia, September 2008. [Online].
Available: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
(accessed September 2008).

[8] E. Trichina, L. Korkishko, Secure and Efficient AES Software
Implementation for Smart Cards, [Online]. Available:
http://eprint.iacr.org/2004/149.pdf (accessed June 2009).

[9] C. Cid, S. Murphy and M.J.B. Robshaw, “Small-scale variants of the AES,”
Fast Software Encryption: 12th International Workshop (FSE 2005), Paris,
France, February 21–23, 2005, Lecture Notes in Computer Science, vol.
3557, pp. 145–162, Berlin: Springer, 2005.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf�
http://eprint.iacr.org/2007/285�
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard�
http://eprint.iacr.org/2004/149.pdf�

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor David Canright
Department of Applied Mathematics
Naval Postgraduate School
Monterey, California

	I. INTRODUCTION
	A. HISTORY
	B. RELATED WORK
	C. INTRODUCTION TO AES
	D. STRUCTURE OF THE AES ALGORITHM
	1. Encryption Process
	a. The ByteSub Transformation (BS)
	b. The ShiftRows Transformation (SR)
	c. The MixColumns Transformation (MC)
	d. The AddRoundKey Transformation

	2. Decryption Process
	a. The InvByteSub Transformation
	b. The InvShiftRows Transformation
	c. The InvMixColumns Transformation
	d. The InvAddRoundKey Transformation

	E. THESIS OBJECTIVE

	II. ALGEBRAIC EQUATIONS FOR AES
	A. INTRODUCTION
	B. DIFFERENT REPRESENTATIONS OVER F2 AND F256
	1. Isomorphic Representations
	2. Regular Representations
	3. Logarithmic Representations

	C. ALGEBRAIC SOLUTION METHODS
	1. Buchberger’s Algorithm
	2. F4 and F5 Algorithms
	3. Multiple Right Hand Sides (MRHS) Linear Equations Algorithm
	a. Agreeing Procedure
	b. Gluing Procedure
	c. Example
	d. From MRHS to Linear Equations

	4. Algorithms’ Complexities and Comparison

	III. COMPUTATIONAL EXPERIMENTS
	A. METHODOLOGY
	B. RESULTS
	1. Example 1
	2. Example 2

	IV. CONCLUSIONS AND RECOMMENDATIONS
	APPENDIX A
	APPENDIX B
	A. GENERATION OF AN EQUATION

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

