

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DEVELOPING A MODULAR FRAMEWORK FOR
IMPLEMENTING A SEMANTIC SEARCH ENGINE

by

Brian M. Hawkins

September 2009

 Thesis Advisor: Craig Martell
 Second Reader: Andrew Schein

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sour ces, gather ing and maintaining the da ta needed, and co mpleting and r eviewing the collection of info rmation. Send
comments regarding this burden estimate or any other aspect of this collection of i nformation, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Developing a Modular Framework for
Implementing a Semantic Search Engine

6. AUTHOR(S) Brian M. Hawkins

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expresse d in this thesis are t hose of t he aut hor a nd do n ot refl ect t he
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Current m ethods of inform ation retrieval (I R) ar e ad equate f or ev eryday s earch needs, bu t th ey ar e not
appropriate for m any military and industrial t asks. The underlying mechanism of typi cal search m ethods is based
upon key word matching, w hich ha s dem onstrated ve ry po or pe rformance ove r h ighly t echnical requi rements
documents fou nd within t he field of ac quisitions. Inst ead of m atching keywords, IR methods t hat un derstand t he
meaning of the words in a query are needed to provide the necessary performance over these types of documents; this
is known as semantic search.

This work utilizes sound s oftware e ngineering pr actices to specify, design, a nd develop a m odular
framework t o ai d i n t he desi gn, t esting, an d de velopment of ne w sem antic search m ethods an d IR t echniques, i n
general. T he development o f M odular Sea rch Engine framework i s documented i n i ts ent irety, f rom user need s
analysis to the production of a full application programming interface.

By ex ploiting th e p owerful tech niques o f p olymorphism an d o bject-oriented prog ramming in th e Jav a
programming l anguage, use rs are abl e t o desi gn new IR t echniques t hat wi ll fun ction seam lessly wi thin t he
framework.

 Finally, a referen ce im plementation is pro vided as a proof-of-concept to d emonstrate t he cap abilities and
usefulness of the framework design.

15. NUMBER OF
PAGES

99

14. SUBJECT TERMS Semantic Search, Modular Search Engine, object-oriented
programming, Java, UML

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DEVELOPING A MODULAR FRAMEWORK FOR IMPLEMENTING A
SEMANTIC SEARCH ENGINE

Brian M. Hawkins

Captain, United States Marine Corps
B.S., United States Naval Academy, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: Brian M. Hawkins

Approved by: Craig Martell
Thesis Advisor

Andrew Schein
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Current m ethods of inform ation retrieva l (IR) are adequate for everyday search

needs, but they are not appropriate for many military and industrial tasks. The underlying

mechanism of typical search m ethods is based upon keyword m atching, which has

demonstrated very poor perform ance over highly technical requirements documents

found within the field of acquisitions. Inst ead of matching keywords, IR m ethods that

understand the m eaning of the words in a que ry are needed to pr ovide the necessary

performance over these types of documents; this is known as semantic search.

This work utilizes sound software engi neering practices to specify, design, and

develop a modular fram ework to aid in th e design, testing, and developm ent of new

semantic search m ethods and IR techniques, in general. T he development of Modular

Search Engine fra mework is documented in it s entirety, fro m user needs analysis to the

production of a full application programming interface.

By exploiting the pow erful techniques of polym orphism and object-oriented

programming in the Java program ming langu age, users are able to design new IR

techniques that will function seamlessly within the framework.

Finally, a reference imple mentation is provided as a proof-of-concept to

demonstrate the capabilities and usefulness of the framework design.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. MOTIVATION ..1
C. OBJECTIVES ..2
D. SCOPE ..3
E. THESIS ORGANIZATION..3

II. VISION DOCUMENT...5
A. INTRODUCTION..5

1. Purpose of the Vision Document ..5
2. Framework Overview..5

B. USER DESCRIPTION ..5
1. User Demographics..5
2. User Profiles ...6
3. User Environment..6
4. Key User Needs ..6
5. Alternatives...7

C. FRAMEWORK OVERVIEW ..7
1. Framework Perspective...7
2. Framework Position Statement ..7
3. Assumptions and Dependencies..8

D. FRAMEWORK FEATURES ...8
1. Data Access and Management ..8

a. Document ..8
b. Corpus..8

2. Resource Access and Management...9
a. Hard Disk Access ..9
b. Threading ..9
c. Heap Space..9

E. USE CASE ..10
1. Add Document..11
2. Delete Document ..12
3. Build Index ...13
4. Force Build Index...14
5. Ready Check...15
6. Single Query Search ..16
7. Multiple Query Search ..17

III. SYSTEM DESIGN...19
A. INTRODUCTION..19
B. SYSTEM ARCHITECTURE ...19

1. Goals..19
2. Integration ..20

 viii

C. BEHAVIORAL DESIGN..21
1. Domain Object Model..21
2. Sequence Diagrams..21

a. Add Document...22
b. Delete Document ...23
c. Build Index..24
d. Force Build Index ...25
e. Ready Check..26
f. Single Query Search ...27
g. Multiple Query Search..28

3. Operational Contracts ...28
a. Add Document...29
b. Delete Document ...29
c. Build Index..30
d. Force Build Index ...31
e. Ready Check..31
f. Single Query Search ...32
g. Multiple Query Search..33

D. OBJECT DESIGN ...33
1. Classes ...34

a. ModularSearchEngine..34
b. Document ..38
c. DocScore..39
d. SearchResults ..40

2. Abstract Classes ...44
a. Corpus..44
b. SearchModule ...46

3. Interface ..48
a. ModuleMixer...48

4. Threads ...49
a. AddDocumentThread..49
b. DeleteDocumentThread..50
c. BuildIndexThread...51
d. ForceBuildIndexThread ...52
e. IsReadyThread ..53
f. SearchForQueryThread..54
g. MultiSearchForThread...55

5. Packages..56
a. modularSearchEngine ..56
b. searchModule ..56
c. modularSearchEngineThreads ..57

IV. REFERENCE IMPLEMENTATION..59
A. OVERVIEW...59
B. EXTENSIONS AND IMPLEMENTATIONS...59

1. Corpora...59

 ix

2. SearchModules ...59
a. TF-IDF SearchModule...60
b. Draeger’s LDA SearchModule...62

3. ModuleMixers ..63
a. Weighted Average Rank ModuleMixer..................................63
b. Condorcet Fuse ModuleMixer. ..63

C. GRAPHICAL USER INTERFACE...65
1. Overview ...65
2. Sections..65

a. Query Entry Section..65
b. Corpus Selection Section ..66
c. ModuleMixer Selection Section..66
d. Status Display Section...67
e. Results Display Section...68

D. PERFORMANCE EVALUATION..69
1. Average Precision...69

a. Definition...69
b. Example...69

2. Mean Average Precision..72
a. Definition...72
b. Example...72

V. CONCLUSIONS AND RECOMMENDATIONS...75
A. RESEARCH CONCLUSIONS...75
B. RECOMMENDATIONS FOR FUTURE WORK......................................75

LIST OF REFERENCES..77

APPENDIX–UML REFERENCE KEY ..79
A. FIGURE 3–UML DOMAIN OBJECT MODEL ..79
B. FIGURES 11-24 UML CLASS MODELS...79

INITIAL DISTRIBUTION LIST ...81

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Use Case Diagram..10
Figure 2. Modular Search Engine Architecture...20
Figure 3. UML Domain Object Model..21
Figure 4. Add Document Sequence Diagram..22
Figure 5. Delete Document Sequence Diagram ..23
Figure 6. Build Index Sequence Diagram ...24
Figure 7. Force Build Index Sequence Diagram ...25
Figure 8. Is Ready Sequence Diagram ..26
Figure 9. Single Query Search Sequence Diagram ...27
Figure 10. Multiple Query Sequence Diagram ...28
Figure 11. UML ModularSearchEngine Class Model...34
Figure 12. UML Document Class Model..38
Figure 13. UML DocScore Class Model...39
Figure 14. UML SearchResults Class Model..41
Figure 15. UML Corpus Class Model ...45
Figure 16. UML SearchModule Class Model ...46
Figure 17. UML ModuleMixer Interface Model...48
Figure 18. UML AddDocumentThread Class Model..49
Figure 19. UML DeleteDocumentThread Class Model ..50
Figure 20. UML BuildIndexThread Class Model ...51
Figure 21. UML ForceBuildIndexThread Class Model ..52
Figure 22. UML IsReadyThread Class Model ..53
Figure 23. UML SearchForQueryThread Class Model...54
Figure 24. UML MultiSearchForQueryThread Class Model..55
Figure 25. GUI Overview..65
Figure 26. Query Entry Section...66
Figure 27. Corpus Selection Section ...66
Figure 28. ModuleMixer Selection Section with Weighted Module Mixer Selected.......67
Figure 29. ModuleMixer Selection Section with C ondorcet Fuse Module Mixer

Selected ..67
Figure 30. Status Display Section ...68
Figure 31. Results Display Section ...68
Figure 32. Average Precision of Test Queries ..73

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Term Frequency Example Table..60
Table 2. Example Voting Scenario ..64
Table 3. Relevant Document Rankings for the 224th Cranfield Test Query.................70
Table 4. Average Precision of Draeger’s LDA SearchModule71
Table 5. Average Precision of the TF-IDF SearchModule ..71
Table 6. Average Precision of the CondorcetFuse ModuleMixer72
Table 7. Mean Average Precisions ..73

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank the staff and stude nts of the Naval Postgraduate S chool for

their support and assistance. I c onsider myself fortunate to have been stationed here over

the past 27 m onths, and I am proud to be graduating with m en and wom en of the

graduating class of Septem ber 2009. Many of you have becom e friends that I will

remember for the remainder of this lifetime. Specifically, I would like to thank:

My thesis advisor, Prof. Craig Marte ll, f or a ll of the g uidance and wisdom ,

recognizing when I was in over my head, and stepping in to pull me out.

Prof. Kevin Squire for all of the classes th at you have taught m e and putting up

with my wavering thesis interests.

Dr. Andrew Schein for taking the job and becoming my second reader.

David Dreier for being King Nerd and giving me someone to compete with.

Jenny Tam for proof-reading this thesis a nd reminding me that it is possible to

survive without Internet at home.

Johnnie Caver for all of the diverse conversations and discussions that we’ve had.

Jonathan Durham for being a constant s ource of comic relief and introducing me

to Hulu.

Marco Draeger for being m y sounding board on just about ev erything related to

this thesis. Thank you for having patience a nd always being so pol ite while I barraged

you with questions and took up so much of your time.

Constantine Perepelitsa for diving in and giving yourself a crash course in Java.

Finally, and m ost importantly, my wife , Deborah, and our children. T hank you

for adapting to m y constantly changing sc hedule over the past two years and being

a constant so urce of pride and en couragement. All of m y accomplishm ents

are meaningless without you.

Thank you all.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

For m any users’ needs, the advent of Google has trivialized the problem of

finding relevant docum ents on the Internet. Prior to Go ogle, th e search task was

accomplished by performing a simple keyword search, which finds pages that contain the

words in the query and rank orders them according to how strongly those words matched.

Google’s revolution cam e not by changing the funda mentals, as the pages returned are

still thos e that m atch the keyword s in th e query, but instead by changing the order in

which the returned pages are presented. G oogle evaluates the returned pages according

to the PageRank algorithm and t hen presents those pages in order of decreasing

PageRank value.

Thus, the innovation behind Google is in the PageRank algorithm . Simply put,

the algorithm ranks pages according to sociological importance by observing the number

of hyperlinks that point to each page. The m ore links that po int to a particular page, the

higher that page is in the “society.” Add itionally, some pages are given extra authority

based upon the num ber and rank of the pages to which they poi nt. Therefore, if several

pages with high autho rity all ref er to a p articular p age, it will be ran ked highe r than

another page that has only lo w-ranking pages pointing to it [1]. PageRank is essentially

analogous to the stereotypica l high-school social popularity status: If you can becom e

associated with a “cool kid,” then your social status will be elevated respectively.

B. MOTIVATION

Despite the fact that Google works well fo r most search tas ks, for m any military

and industrial tasks, popularity is not a sufficient m etric. Consider a software engineer

who is tasked with developi ng a sophisticated system . He separates his design into

subcomponents designed to achieve particular tasks that contribute to the operation of the

whole. Before he sets of f to start buildi ng each subcom ponent from scratch, he first

 2

searches his com pany’s database to find out if any subcom ponent (or part thereof)

already exists in order to not duplicate effort.

So, he searches over the database of re quirements docum ents with a particular

search query, and if he is extremely lucky, the best component in the database that m eets

his needs will have been described with the same set of words in his query. Chances are,

however, that those particular words were no t used to describe the existing component,

but rather a different set of wo rds with the exact sam e meaning. In this case, the search

will not retu rn what he needs, regardless of the popularity o f the documents returned: If

the keywords are incorrect, he will never fi nd the com ponent that he is looking for. He

then resorts to altering hi s set of keywords with synonym s, in hopes of choosing the

particular words that were used to descri be the relevant system in the database, a

particularly time-consuming and frustrating effort.

The problem described above is the semantic search problem, and it is a particular

issue in Department of Defense (DoD) acquisitions. In August 2006, P rogram Executive

Officer of Integra ted W arfare Sys tems (PEO-IW S) established the Software Hard ware

Asset Reuse Enterprise (SHARE) repository to enable th e reuse of com bat system

software and related assets [2]. In order to make effective use of the SHARE repository,

the DoD needs an effective solution to the problem of semantic search.

C. OBJECTIVES

The objectives of this thesis are to utilize sound software engineering practices to

specify, design, and develop a m odular fr amework for de veloping, imple menting, and

testing new sem antic search m ethods and in formation retrieval (IR) techniques, in

general. These objectives shall be accomplished through the following:

 Thorough system specification and desi gn using UML and other software

engineering practices.

 Development of a modular, object -oriented Java package whose

components can be used to build a fully functional search engine

consisting of one or more independ ent IR m odules. The addition of a

 3

single IR module should not incur a large in tegration effort as m easured

by the num ber of classes and m ethods that need to be imple mented.

Additionally, the fram ework will incorporate basic m anagement

functionality for use by adm inistrators, such as adding and deleting

documents from a corpus.

 Demonstrate the m odular fram ework by developing a reference

implementation that consists of at le ast two IR modules whose results are

combined to produce a single list of results to the user.

D. SCOPE

The scope of this thesis focuses on the design of a modular framework that allows

multiple IR methods to run simultaneously on a selected corpus of data with each method

returning a list of search results. Th e framework also provides for the developm ent of

methods to com bine the lists returned from eac h IR m ethod into a si ngle list that is

returned to the user. The scope of this th esis does not include the developm ent of a new

method for IR.

E. THESIS ORGANIZATION

Chapter II establishes the system and us er req uirements necessa ry to design a

comprehensive and m odular framework for implementing multiple IR te chniques within

a single search engine. A detailed use case analysis is performed.

Chapter III for malizes the requ irement specifications into an architectural design

by decomposing the system into a su bset of systems. The use cas es from Chapter II are

expanded and developed in detail.

Chapter IV descr ibes and demonstra tes th e f unctionality of a ref erence

implementation; in addition, this chapter describes an evaluation metric and demonstrates

how to apply the measure.

Chapter V contains a summary and recommendations for future work.

The Appendix provides a UML reference key to the figures in Chapters II and III.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. VISION DOCUMENT

A. INTRODUCTION

1. Purpose of the Vision Document

This chapter provides the foundation, bac kground, and reference for all future,

more detailed, development. Here, the high- level user needs are gath ered, analyzed, and

defined to identify the require d features needed for a fully functional Modular S earch

Engine.

2. Framework Overview

The Modular Search Engine provides the fra mework for future design,

development, testing, implementation, and deployment of IR m ethods. Developers need

only adhere to the design requirements, inherite d via abstract super cl asses, in order to

have a new IR technique integrate seamlessly into the Modular Search Engine.

B. USER DESCRIPTION

1. User Demographics

The primary users of the Modular Search Engine fra mework are any student or

researcher looking to develop and test ne w m ethods of IR and/or m etasearch.

Specifically, Draeger used the Modular Sear ch Engine fra mework to implem ent a new

semantic search te chnique to help solve th e p roblems of searching ov er requ irements

documents [3].

Additionally, the Modular Search Engine framework can be used to develop fully

functional applications for end-users needing to conduct searches over text corpora. Such

applications would req uire adm inistrative con trol and functionality to update and

maintain the corpora.

 6

2. User Profiles

Students and IR researchers at NPS and ot her academic universities will need to

be fa miliar with the Java programm ing language in order to use the Modular Search

Engine framework.

End-users, f or whom a pplications have been built u sing the Modular Search

Engine fram ework, need not have any spec ific knowledge of the interworking of the

application. Such users only need basic co mputer knowledge to launch the application

and conduct searches over the corpus for which the application was designed.

3. User Environment

Users of the framework will need a computer system that enables development in

the Java programm ing language. While not mandatory, a developing environm ent such

as Eclipse or NetBeans is recommended. At minimum, users will need a text editor and a

current version of the Java SE Developm ent Kit provided by Sun Mi crosystems in order

to write, build, and run their applications.

End-user applications developed using the Modular Search Engine framework can

be run on a ny computer operating system utilizing a current Java Runtime Environment,

also provided by Sun Microsystems.

4. Key User Needs

When conducting research in this field, comparing different IR m ethods against

one another to determ ine the m ethod with the best perform ance is im portant. The

Modular Search Engine framework provides the architecture and data structures that each

IR method must utilize to simplify such comparisons.

One additio nal and important area of study i n the field of IR is known as

metasearch. Metasearch is the process of fusing or merging the ranked lists of documents

returned from different m ethods or system s in order to produce a combined list whose

quality (as m easured via the p erformance m etrics m entioned above) is greater th an or

equal to any of the lists f rom which it was cr eated [4]. Given the ability to im prove the

 7

quality of results returned to th e user and the m odular natu re of the fram ework,

metasearch has been included in the design of the Modular Search Engine from the

ground up, and users are provided with the struct ure in which to build their m etasearch

techniques.

5. Alternatives

Each student or IR research er is certainly free to develop, test, and implem ent

new IR techniques without the use of the Modular Search Engine f ramework. They

would, however, be required to spend va luable tim e impl ementing th e entir e

infrastructure themselves instead of on the development of the IR method. Additionally,

it is highly unlikely that any two IR tec hniques developed by different authors would

work cohesively in the sa me system wit hout extensive modifica tions to one or both

authors’ source code.

C. FRAMEWORK OVERVIEW

1. Framework Perspective

The Modular Search Engine fram ework’s architectu re allows m ultiple IR

techniques to run sim ultaneously on a user’s query over a s elected corpus of documents .

The architecture then combines the results of each into a single ranked list that is returned

to the user. The fram ework is designed such that each IR technique, k nown within the

framework as a Search Module, need not be aware of any other Search Module within the

Modular Search Engine.

2. Framework Position Statement

IR researchers can ben efit from a comm on framework in which to develop and

test new IR techniques. The Modular Sear ch Engine fram ework provides all of the

necessary overhead and design constraints necessary to streamline design efforts into the

 8

development of new IR techniques. Additionally, the framework also provides sufficient

structure to develop a fully functional end-us er application for searching over given data

corpora.

3. Assumptions and Dependencies

The Modular Search Engine fram ework is written in the Java p rogramming

language and applications developed with the framework can be run on any platform with

the current Java Runtime Environment installed. The data, over wh ich a Modular Search

Engine application m ay conduct searches, is independent of the fram ework i tself;

however, th e fram ework provides the necess ary classes in to which th e data m ust be

converted for use within the application.

D. FRAMEWORK FEATURES

1. Data Access and Management

a. Document

The basic data elem ent within the M odular Search Engine fram ework is a

document. At a minimum a document consists of a unique identif ication number, known

as a document ID, and a body of text. However, a docum ent may contain m uch more

information e.g., an author, bibliographical information, date writ ten, etc. For this

reason, this basic document m odel will likely need to be extended in order to capture the

additional information that may exist.

b. Corpus

A collection of documents that have similar underlying structure comprise

a corpus. In the realm of IR research, a co rpus is usually a fixed set of docum ents over

which IR techniques are tested and com pared against one another. To this end, read

access to the data is the minimum capability required to access the data and perform these

types of operations. However, all corpora need not remain static. As such, the Modular

 9

Search Engine framework is designed with this in mind and includes the functionality to

add and delete docum ents from a corpus. Such functions are expected to be used by a n

administrator needing to maintain the data in a given corpus.

2. Resource Access and Management

a. Hard Disk Access

In general, IR techniques do not r ead through an entire corpus of

documents on the hard disk each time they perform a search. Instead, they each create an

internal representation of the corpus, ca lled an index, which each uses to conduct

searches. Accordingly, each IR technique is expected to store its respective index on the

hard disk for subsequ ent access. This use of hard d isk space will save s ignificant

amounts of tim e and resources by preventing each technique from having to re-build its

index from the original corpus every time the system is launched.

b. Threading

The Modular Search Engine fram ework has adopted the principle that no

operation perform ed by any individual IR te chnique shall be forced to wait on the

operations of another IR technique. As such, the framework has been designed to

maximize the use of threading, and therefore all operations perform ed by individual IR

techniques shall be run by independent threads.

c. Heap Space

Most IR techniques require large am ounts of working memory to function

and even m ore to be efficien t at returning qua lity results to the u ser in a tim ely manner.

By default the Java Runtim e Environm ent a llocates an in itial 32 MB to the heap and

allows it to grow to a m aximum of 128 MB. This, unfortunately, is not likely to be

enough m emory for the Modular Search Engine fram ework to perform e fficiently,

especially as multiple IR techniques are added to a single system. As such, when running

 10

a Modular Search Engine application, it is recommended to use the m aximum amount of

memory that a given computer will allow the Java Runtime Environment to use.

E. USE CASE

Use case scenarios are a critic al initial step in determ ining the requ irements of a

system by analyzing th e scenarios in which actors will in teract with a system and how

that system should respond to the actors’ actions [5]. The use cases identified in this

section will become the primary functions of the Modular Search Engine fra mework and

will be developed in detail thr oughout Chapter III. Figure 1 is the u se case diagram for

the Modu lar Search Engine Fram ework; belo w the figure, each of the seven us e cas e

scenarios is described in detail.

Figure 1. Use Case Diagram

 11

1. Add Document

Use case: UC-1 Add Document

Primary Actor: Ad ministrator

Stakeholders and Interests:

 Administrator wants to add a doc ument into a corpus so the
document can be included in search queries by the end-user.

Entry conditions:

 Administrator’s application is running.
 The corpus is accessible for writing.
 Document object is created in system memory.

Exit conditions:

 Document successfully added to the corpus in m emory a nd on
disk.

 Document successfully added to each IR technique in the system.

Flow of events:

1. Administrator identifies the document to be added.
2. The document is added to the corpus on disk and in memory.
3. The document is added to each IR technique.

Special Considerations:

1. After the addition of a docum ent into a corpus, the index models
for each IR technique will need to be updated/re-built.

2. Each IR te chnique shall return to the system if the docum ent was
successfully added.

3. If any IR technique was not suc cessful in adding the docum ent,
then the sys tem as a whole is cons idered to hav e failed to add the
document.

4. If the document fails to be added to the corpus in step 2 of the flow
of events, above, then the failure is i mmediately returned to the
system, and attem pts to add the docum ent to the system ’s I R
methods are abandoned.

 12

2. Delete Document

Use case: UC-2 Delete Document

Primary Actor: Ad ministrator

Stakeholders and Interests:

 Administrator wants to delete a document from a corpus so that the
document is no longer included in search queries by the end-user.

Entry conditions:
 Administrator’s application is running.
 The corpus is accessible for writing.
 The document ID of the document to be deleted is known.

Exit conditions:

 Document successfully deleted from the corpus in m emory and on
disk.

 Document successfully deleted fr om each IR techniqu e in th e
system.

Flow of events:
1. Administrator identifies the document to be deleted.
2. The document is deleted from to the corpus on disk and in

memory.
3. The document is deleted from each IR technique.

Special Considerations:

1. After the deletion of a docum ent from a corpus, the index models
for each IR technique will need to be updated/re-built.

2. Each IR te chnique shall return to the system if the docum ent was
successfully deleted.

3. If any IR technique was not succ essful in deleting the docum ent,
then the sys tem as a whole is cons idered to have failed to delete
the document.

4. If the document fails to be deleted from the corpus in step 2 of the
flow of events, above, then the failure is imm ediately returned to
the system, and attempts to delete the docum ent from the system’s
IR methods are abandoned.

 13

3. Build Index

Use case: UC-3 Build Index

Primary Actors: Administrator & Researcher

Stakeholders and Interests:

 Administrator or resea rcher wants each IR tec hnique to build its
respective index of the system corpus.

Entry conditions:
 Administrator or researcher’s application is running.
 The corpus is accessible for reading.

Exit conditions:

 Each IR technique in th e system has built its respective index of
the corpus

Flow of events:
1. Administrator or res earcher prov ides the neces sary ins truction to

the system.
2. Each IR technique builds its respective index of the corpus.

Special Considerations:

1. This functionality is designed to be optimized at the level of each
IR techn ique so that u nnecessary work is not perform ed. For
example, if there has no t been a change to the corpus, then there
should be no need to build a new index. If an i ndividual search
technique is instru cted to build a n ew index in this ca se, then it
should recognize that no actual change has been m ade and should
not spend the com puter’s resource s to build a new index that is
identical to the current index.

2. Each IR te chnique sha ll re turn to the system if the inde x was
successfully built.

3. If any IR technique was not success ful in building its index, then
the system as a whole is considered to have failed the operation.

 14

4. Force Build Index

Use case: UC-4 Force Build Index

Primary Actors: Administrator & Researcher

Stakeholders and Interests:

 Administrator or res earcher want s to force each IR technique to
build its respective index of the system corpus.

Entry conditions:
 Administrator or researcher’s application is running.
 The corpus is accessible for reading.

Exit conditions:

 Each IR tec hnique in th e system has f orcibly b uilt its resp ective
index of the corpus.

Flow of events:
1. Administrator or researcher provid es the neces sary ins truction to

the system.
2. Each IR te chnique f orcibly builds its re spective index o f the

corpus.

Special Considerations:
1. This use case is the complement to UC-3. It is designed to ensure

that each IR technique in the sy stem builds a new index of the
corpus.

2. Each IR te chnique sha ll re turn to the system if the inde x was
successfully built.

3. If any IR technique was not success ful in building its index, then
the system as a whole is considered to have failed the operation.

 15

5. Ready Check

Use case: UC-5 Ready Check

Primary Actor: End-user & Researcher

Stakeholders and Interests:

 End-user or researcher wants to en sure that each IR m ethod in the
system is ready to receive a search query.

Entry conditions:
 The end-user or researcher’s application is running.

Exit conditions:

 Each IR method in the system has returned its ready status.

Flow of events:
1. End-user or researcher requests a ready check of the system.
2. Each individual IR method returns its ready status.

Special Considerations:
1. If any one of the individual IR methods is not ready, then the

system’s status, as a whole, is returned as not ready.

 16

6. Single Query Search

Use case: UC-6 Single Query Search

Primary Actor: End-user, Researcher

Stakeholders and Interests:

 End-user or research er wants to perfor m a single query search of
the corpus.

Entry conditions:
 The end-user or researcher’s application is running.
 The system is ready as described in UC-5.

Exit conditions:

 The system has returned the results of the single query search.

Flow of events:
1. End-user or researcher submits a single query to the system.
2. Each individual IR technique in the system performs a search using

the provided query and returns its results.
3. All of the results returned from t he individual IR m ethods are

combined to return a single set of results to the user or researcher.

Special Considerations:
None.

 17

7. Multiple Query Search

Use case: UC-7 Multiple Query Search

Primary Actor: Researcher

Stakeholders and Interests:

 Researcher wants to perform multiple query searches of the corpus.

Entry conditions:
 The researcher’s application is running.
 The system is ready as described in UC-5.

Exit conditions:

 The system has returned the results of the multiple query search.

Flow of events:
1. Researcher submits a list of queries to the system.
2. Each individual IR technique in the system performs a search for

each of the provided queries and returns results for each.
3. All of the results returned from t he individual IR m ethods are

combined to return a s ingle set of results for each query to the
researcher.

Special Requirements:
1. This use ca se is specif ically des igned to allow f or individual IR

methods to optimize the simultaneous search of multiple queries in
order to preserve system resources.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. SYSTEM DESIGN

A. INTRODUCTION

This chapter converts the ge neral analysis m odel descri bed in Chapter II into a

detailed system design. This evolution will begin with a thorough study of the use case

models, and it will continue with a decom position of the system , as a whole, into

architectural and behavioral models that will eventually become objects in the design.

B. SYSTEM ARCHITECTURE

1. Goals

The primary goal of the architecture is modularity. Existing IR techniques can be

encoded as SearchModu le objects and built into a Modular Search Engine application.

As new IR techniques are developed, they too can be encoded as SearchModule objects

and seamlessly inserted into th e existing Modular Search Engine application for testing

and further developm ent. As such, the Sear chModule class shall be abstract, providing

an existing template for extensions to inherit and follow.

In addition to new IR t echniques, ne w m ethods of conduc ting m etasearch are

constantly being researched in the field, a nd th e f ramework takes this into ac count as

well. It provides researchers with the ability to encode different m etasearch methods as

ModuleMixer objects that can be interchanged within the system , thus keeping with the

goal of modularity.

Figure 2 displays a high level, conceptual, view of the internal architecture within

the Modular Search Engine framework.

 20

Figure 2. Modular Search Engine Architecture

As each SearchModule object com pletes a se arch request, it feeds its results, in

the form of a Sea rchResults object, into a Mod uleMixer ob ject tha t combines multiple

SearchResults objects into a single set of resu lts. In general, a Modular Search Engine

implementation would only use one ModuleMix er at a tim e; howeve r, this is not a

restriction. In fact, for th e purposes of developmental testing and com parison, it may be

beneficial to implement multiple ModuleMixer objects simultaneously.

2. Integration

The objects within th e framework will comm unicate with each othe r by directly

calling eac h other' s pr ocedures. However, no integr ation will tak e place be tween

SearchModule objects because each is specifically designed to work independently of

one another. As such, custom designed extensions of the java.lang.Thread class are used

to handle comm unication both to and from al l SearchModule objects for the use cases

presented in Chapter II.

 21

C. BEHAVIORAL DESIGN

1. Domain Object Model

The domain object model records the key co ncepts in the Modular Search Engine

framework. Figure 3 depicts the various entit ies involved and the re lationships between

them. See Appendix for a key to the figure.

Figure 3. UML Domain Object Model

2. Sequence Diagrams

Sequence diagrams help for malize the dyna mic behavior of the system by tying

use cases to objects and by showing how proce sses operate with one another and in what

order. Visualizing the communication am ong objects can help determ ine additional

objects required to formalize th e use cases [6]. In this regard, sequence diagram s offer

another perspective on the behavioral m odel and are instrumental in discovering missing

 22

objects and grey areas in the req uirements s pecification. The following sequ ence

diagrams depict the use cases identified in Chapter II.

a. Add Document

Figure 4 displays the sequence diagram for adding a docum ent in the

Modular Search Engine framework.

Figure 4. Add Document Sequence Diagram

 23

b. Delete Document

Figure 5 displays the sequence diag ram f or deleting a doc ument in th e

Modular Search Engine framework.

Figure 5. Delete Document Sequence Diagram

 24

c. Build Index

Figure 6 displays the sequence diagra m for building the necessary indices

in the Modular Search Engine framework.

Figure 6. Build Index Sequence Diagram

 25

d. Force Build Index

Figure 7 displays the sequence diagram for forcibly building the necessary

indices in the Modular Search Engine framework.

Figure 7. Force Build Index Sequence Diagram

 26

e. Ready Check

Figure 8 displays the sequence diagram for determining that the system is

ready to accept a search query in the Modular Search Engine framework.

Figure 8. Is Ready Sequence Diagram

 27

f. Single Query Search

Figure 9 displays the sequence diag ram for pe rforming a single query

search in the Modular Search Engine framework.

Figure 9. Single Query Search Sequence Diagram

In this case, the user is not norm ally responsible for redirecting the list of

results returned from t he ModularSearchEngi ne object into the ModuleMixer object.

Instead, this is performed automatically by the user’s application.

 28

g. Multiple Query Search

Figure 10 displays the sequence diagram for performing a multiple query

search in the Modular Search Engine framework.

Figure 10. Multiple Query Sequence Diagram

3. Operational Contracts

Operational contracts represent the final phase of the behavioral m odel design;

they are built on the foundations established by the use case specifications, domain object

model, and sequence diagram s. These operati onal contracts assign con crete attribu tes,

such as function nam es, parameters, and retu rn types, to the fra mework components and

 29

also provide a brief definition of purpose to each. Additionally, the operational contracts

precisely d efine the p re-conditions and post-conditions required for the pro posed

methods.

a. Add Document

Contract: C1: Add Document

Method: addDocument(Document d)

Cross Reference: UC-1: Add Document

Pre-conditions:

1. The Corpus object was successfully constructed.
2. All of the SearchModule objects were successfully constructed and

added to an ArrayList.
3. The ModularSearchEng ine object was successfully constructed

with the Corpus object and the A rrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

4. The system has com pleted a succ essful call to buildIndex() or
forceBuildIndex().

5. The Document object to be added was successfully constructed.

Post-conditions:
1. The ModularSearchEngine object constructed and started an

AddDocumentThread object for each SearchModule object in the
system.

2. Each SearchModule object' s addD ocument(Document d) m ethod
has executed and terminated.

3. A status message was displayed back to the user.

b. Delete Document

Contract: C2: Delete Document

Method: deleteDocument(int docID)

Cross Reference: UC-2: Delete Document

Pre-conditions:

1. The Corpus object was successfully constructed.
2. All of the SearchModule objects were successfully constructed and

added to an ArrayList.

 30

3. The ModularSearchEng ine object was successfully constructed
with the Corpus object and the A rrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

4. The system has com pleted a succ essful call to buildIndex() or
forceBuildIndex().

5. The unique identification num ber of the Docum ent object to be
deleted is known.

Post-conditions:
1. The ModularSearchEngine object constructed and started a

DeleteDocumentThread object for each Search Module ob ject in
the system.

2. Each Searc hModule ob ject's delet eDocument(int docID) m ethod
has executed and terminated.

3. A status message was displayed back to the user.

c. Build Index

Contract: C3: Build Index

Method: buildIndex()

Cross Reference: UC-3: Build Index

Pre-conditions:

1. The Corpus object was successfully constructed.
2. All of the SearchModule objects were successfully constructed and

added to an ArrayList.
3. The ModularSearchEng ine object was successfully constructed

with the Corpus object and the A rrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

Post-conditions:
1. The ModularSearchEngine object constructed and started a

BuildIndexThread object for each SearchModule object in the
system.

2. Each SearchModule object's buildIndex() method has executed and
terminated.

3. A status message was displayed to the user.

 31

d. Force Build Index

Contract: C4: Force Build Index

Method: forceBuildIndex()

Cross Reference: UC-4: Force Build Index

Pre-conditions:

1. The Corpus object was successfully constructed.
2. All of the SearchModule objects were successfully constructed and

added to an ArrayList.
3. The ModularSearchEng ine object was successfully constructed

with the Corpus object and the A rrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

Post-conditions:
1. The ModularSearchEngine object constructed and started a

ForceBuildIndexThread object fo r each Search Module ob ject in
the system.

2. Each SearchModule object' s fo rceBuildIndex() m ethod has
executed, terminated, and returned its success or failure.

3. A status message was displayed to the user.

e. Ready Check

Contract: C5: Ready Check

Method: isReady()

Cross Reference: UC-5: Ready Check

Pre-conditions:

1. The Corpus object was successfully constructed.
2. All of the SearchModule objects were successfully constructed and

added to an ArrayList.
3. The ModularSearchEng ine object was successfully constructed

with the Corpus object and the A rrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

4. The system has com pleted a succ essful call to buildIndex() or
forceBuildIndex().

 32

Post-conditions:
1. The ModularSearchEngine object constructed and started an

IsReadyThread object for each SearchModule object in the system.
2. Each SearchModule object' s isReady() m ethod has executed,

terminated, and returned its ready status.
3. A status message was displayed to the user.

f. Single Query Search

Contract: C6: Single Query Search

Method: searchFor(String query, int returnSize)

Cross Reference: UC-6: Single Query Search

Pre-conditions:

1. The Corpus object was successfully constructed.
2. All of the SearchModule objects were successfully constructed and

added to an ArrayList.
3. The ModularSearchEng ine object was successfully constructed

with the Corpus object and the A rrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

4. The system has com pleted a succ essful call to buildIndex() or
forceBuildIndex().

5. The system has completed a successful call to isReady().
6. The user's query is contained within a String object.

Post-conditions:

1. The ModularSearchEngine object constructed and started a
SearchForQueryThread object for each SearchModule object in the
system.

2. Each SearchModule object' s searchFor(String query, int
returnSize) m ethod has executed, term inated, and returned a
SearchResults object.

3. The ModularSearchEngine object co llected and passed all of the
returned SearchResults objects from post-condition 1 into a
ModuleMixer object via the ModuleMixer' s
mix(ArrayList<SearchResults>) method.

4. The ModuleMixer method from post-condition 3 returned a single
SearchResults object.

5. A status message was displayed to the user.

 33

g. Multiple Query Search

Contract: C7: Multiple Query Search

Method: searchFor(Set<String> queries, int returnSize)

Cross Reference: UC-7: Multiple Query Search

Pre-conditions:

1. The Corpus object was successfully constructed.
2. All of the SearchModule objects were successfully constructed and

added to an ArrayList.
3. The ModularSearchEng ine object was successfully constructed

with the Corpus object and the A rrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

4. The system has com pleted a succ essful call to buildIndex() or
forceBuildIndex().

5. The system has completed a successful call to isReady().
6. The researcher's batch of queries is contained within a Set<String>

object.

Post-conditions:
1. The ModularSearchEngine object constructed and started a

MultiSearchForQueryThread object for each SearchModule object
in the system.

2. Each SearchModule object' s searchFor(Set<S tring> queries, int
returnSize) m ethod has executed, term inated, and returned a
Hashtable<String,SearchResults> object.

3. The ModularSearchEngine object co llected and passed all of the
returned Hashtable<String,Sear chResults> objects from post-
condition 1 into a Mo duleMixer object v ia the ModuleMixer' s
mix(Hashtable<String,ArrayList<SearchResults>>
tableOfListedResults) method.

4. The ModuleMixer m ethod from post-condition 3 returned a
Hashtable<String, SearchResults> object.

5. A status message was displayed to the user.

D. OBJECT DESIGN

The system analysis conducted in the pr evious sections for the Modular Search

Engine fram ework is critical for identifying the necessary objects th at need to exist

within the fram ework a nd how those objects s hould interact with one another. This

section describes those objects in detail. See Appendix for class diagram reference.

 34

1. Classes

This section describes the non-abstract classes in the fra mework, with the

exception of the Thread classes. The customized extensions of the java.lang.Thread class

are described later in this section.

a. ModularSearchEngine

The ModularSearchEngine class is the prim ary object on w hich all use

cases, sequence diagrams, and operational contract s focus; it is the cen tral object in a ny

application developed f rom the fram ework. Figure 11 is the UML class model for the

ModularSearchEngine class.

Figure 11. UML ModularSearchEngine Class Model

(1) Attributes

Corpus corpus : This pr ivate variable is the Cor pus on whic h the

ModularSearchEngine performs its operations.

ArrayList<SearchModule> m odules: This pr ivate var iable is the

container for all of the SearchModules in the system.

(2) Methods

boolean addDocum ent(Document): This public m ethod is the

interface through which a Docum ent is adde d to the system . During this m ethod’s

execution, the provided Docum ent is first added the Corpus via its addDoc method. If

adding the Document to the Corpus is not succ essful, this method prints an error, returns

 35

false, and term inates. Otherwise, this m ethod continues, creating and starting an

AddDocumentThread for each SearchModule in the system. Each AddDocum entThread

is responsible for calling the addDoc m ethod of the SearchModule to which it is

assigned. As those addDoc m ethods term inate, each AddDocumentThread returns

whether or not its addDoc method was successful, and this method prints an appro priate

message reflecting that success o r failure. Once all of the AddDocum entThreads have

terminated, if there were any failures, then this method displays an error message, returns

false, and terminates. If there were no failures, then this m ethod displays an appropriate

message, returns true, and terminates.

boolean deleteDocument(int): This public m ethod is the interface

through which Documents are deleted from the system; the provided integer corresponds

to th e uniq ue iden tification num ber of th e d ocument to be de leted. The ind icated

Document is first deleted from the Corpus vi a its deleteDoc m ethod. If deleting the

document fr om the Corpus is not successful , this m ethod prints an error, returns false,

and term inates. Otherwise, this m ethod continues, crea ting and starting a

DeleteDocumentThread for ea ch S earchModule in the system . Each

DeleteDocumentThread is responsible for calling th e deleteDoc m ethod of the

SearchModule to which it is a ssigned. As tho se deleteDoc m ethods term inate, each

DeleteDocumentThread returns whether or not its deleteDoc method was successful, and

this method prints an ap propriate message reflecting that su ccess or failure. Once all of

the DeleteD ocumentThreads hav e term inated, if there were any failures, this m ethod

displays an error m essage, returns false, and te rminates. If there were no f ailures, then

this method displays an appropriate message, returns true, and terminates.

boolean buildIndex(): This public method is the interface through

which a user ensures th at an appro priate index is built for each Search Module. It first

creates and starts a BuildIndexThread for ea ch Search Module in th e s ystem, each of

which is responsible for calling the buildIndex method of the SearchModule to which it is

assigned. As those buildIndex m ethods term inate, each BuildIndexThread returns

whether or not its buildIndex m ethod was successful, and this m ethod prints an

appropriate message reflecting that success or failure. Once all of the BuildIndexThreads

 36

have terminated, if there were any failures, this method displays an error message, returns

false, and terminates. If there were no failures, then this m ethod displays an appropriate

message, returns true, and term inates. This m ethod allows each SearchModule the

opportunity to optim ize its buildIndex method so that, if possib le, a new index m ight be

built upon an existing o ne. This w ould allow the system to save reso urces, instead of

building a new index directly from the Corpus each time.

boolean forceBuildIndex() : This public m ethod is the interface

through which a user forces each S earchModule to build a new index directly from the

Corpus. It first creates and starts a ForceBuildIndexThread for each SearchModule in the

system, each of which is responsible for calling the forceBuildIndex m ethod of the

SearchModule to which it is assigned. As those forceBuildIndex methods terminate, each

ForceBuildIndexThread retu rns whether or not its forceBuildIndex m ethod was

successful, and this m ethod prints an approp riate m essage reflecting that success or

failure. Once all of the ForceBuildIndexThr ead have term inated, if there were any

failures, this m ethod displays an error m essage, returns false, and term inates. If there

were no failures, then this m ethod disp lays an appropriate m essage, returns true, and

terminates. This method is the complement to the method above, and its primary purpose

is to be used when the user suspects that an index has becom e cor rupted on disk.

Additionally, it may be used any time that a user has a reason to give the system a “fresh

start;” however, a call to this method can be expected to take a significant amount of time

to complete.

boolean isR eady(): This public m ethod is the interface th rough

which a user determ ines if the system is rea dy to receive a search query. It first creates

and starts a IsReadyThread for each Search Module in th e system , e ach of whi ch is

responsible for calling the isReady method of t he SearchModule to which it is assigned.

As the isReady methods terminate, each IsRead yThread returns the status of its isReady

method, and this m ethod prints an appropriate message reflecting that status. If any of

the IsReadyThreads indicated that its Sear chModule was not ready, then this m ethod

displays an error m essage, returns false, and terminates. If all of the SearchModules are

ready, then this method displays an appropriate message, returns true, and terminates.

 37

Integer nextID(): This public m ethod is a utility to be used while

creating n ew Docum ents because each Docu ment is required to have a u nique

identification number, as shown later in this chapter. This method provides the user with

the nex t av ailable integ er th at can be ass igned to a new Docum ent for entry into the

Corpus and each SearchModule. Specifically, it calls and retu rns the value from the

Corpus’ protected nextID method which is also shown later in the chapter.

ArrayList<SearchResults> searchFor(String, int) : This p ublic

method is primary interface for conducting a search of the Corpus. The parameters to the

method are the query S tring and an integer that indicates the number of results to return,

e.g. if the provided integer is 100, then the each SearchModul e returns the top 100

Documents that m atch the search query. If the provided integer is greate r than the

number of Documents in the Corpus, it is treated as if the user requested the results for all

Documents. This method first creates and starts a SearchForThread for each

SearchModule in the sy stem, each of which is responsible for cal ling the app ropriate

searchFor m ethod of t he SearchModule to which it is assigned. As those searchFor

methods term inate an d retu rn S earchResults, each SearchForThread retu rns those

SearchResults. All of the SearchResults are collected into an ArrayList and then returned

by this method.

Hashtable<String,ArrayList<SearchResults>>

searchFor(Set<String>, int) : This public m ethod is the primary interface that an IR

researcher uses conduct batch query search es. This m ethod allows researchers and

developers to take advantage of the way that a SearchModule computes the relevance of a

document and optim ize it, if possible, f or pe rforming m ultiple sea rch qu eries

simultaneously. The param eters to the m ethod are a Set of query Strings and an integer

that indicates the num ber of re sults that should be returned in the SearchResults. This

method first creates and starts a M ultiSearchForThread for each SearchModule in the

system, each of which is responsible for calling the appropriate searchFor method of the

SearchModule to which it is assigned. Those searchFor methods terminate and return a

Hashtable of SearchResults which are indexed by the String used to produce them . Each

MultiSearchForThread return s tha t Hashta ble according ly, after which all of the

 38

Hashtables are broken down to produce a single Hashtable of ArrayLists of

SearchResults such that the index of the Ha shtable is the String which generated the list

of results.

b. Document

The essence of conducting a search is to find documents that are relevant

to the p rovided query, and as such , the Docu ment class is the b asic elem ent in th e

Modular Search Engine fra mework. Howe ver, the provided class im plementation

represents only the minimum amount of information necessary to comprise the concept of

a document. In many cases, much more information about a given document is available,

and, as such, this Docum ent class should be extended to include that additional

information as required. Figure 12 is the UML class model for the Document class.

Figure 12. UML Document Class Model

(1) Attributes

String body: This private variable is the text body of a Document.

int id: This private variable is the unique identification number of a

Document; it must be unique amongst all the other Documents in a given Corpus.

(2) Methods

int bodyLength(): This public m ethod allows a user to quickly get

the length of the Document’s text, without having to get the entire body of the Document.

String getBody() : This public m ethod allows a user to get the

entire body of the Document.

 39

int ge tID(): This public m ethod allows a user to get the unique

identification number of a Document.

void setBody(String): This public m ethod allows a user to set the

text body of a Document.

c. DocScore

Conceptually, when conducting a search, documents are considered in turn

and evaluated for how relevant they are to the provided quer y. The DocScore class is a

customized container class specifically cr eated for the purpose of representing that

evaluation. Figure 13 is the UML class model for the DocScore class.

Figure 13. UML DocScore Class Model

(1) Attributes

Integer docID : This private va riable is the unique iden tification

number of the Document to which this DocScore refers.

Integer docRank : This private variable is the rank given to the

Document.

Integer docScore : This private va riable is th e score tha t the

Document receives from the evaluation process.

 40

(2) Methods

int compare(DocScore, DocScore): This public method is required

by the implementation of the java.lang.Com parator interface. This method assists in the

sorting of DocScores. W hen two DocScore s are com pared with this m ethod, it will

return a positive integer if the first has a better score (ranked higher) than the second.

int compareTo(DocScore): This public m ethod is required by the

implementation of the java.lang.Comparable interface. This method assists in the sorting

of DocScores and functions in the same manner as described above

Integer id() : This public m ethod allows a user to get the unique

identification number of the Document to which this DocScore refers.

Integer rank(): This public m ethod allows a user to get the rank

contained within the DocScore.

Double score(): This public m ethod allows a user to get the score

contained within the DocScore.

void setRank(int): This protected m ethod allows a user to set the

rank contained within the DocScore.

String toString(): This public m ethod allows a user to get a String

representation of the DocScore for display purposes.

d. SearchResults

The DocScore class abo ve, for all p ractical purposes, cannot exist alone

because th e inform ation contained within a single DocScore is useless without other

DocScores to com pare against. As such, th e SearchResults class h as been created as a

custom container class designed to hold all of the DocScores generated from a s ingle

search query. Figure 14 is the UML class model for the SearchResults class.

 41

Figure 14. UML SearchResults Class Model

(1) Attributes

int dsVe rsion: This private va riable en sures tha t a ll of the

DocScores contained within the SearchResults are formatted the same. For example, the

user is prohibited from placing a DocScore consisting of a docID and docScore into a set

of SearchResults that already contains DocScores with docID and docRank.

boolean firstPut : This private variable is used f or internal record-

keeping in conjunction with the dsVersion attribute above.

int putVers ion: This private variable is used for internal record-

keeping in conjunction with the dsVersion and firstPut attributes above.

 42

String query : This private variable is query String that produces

this SearchResults.

Hashtable<Integer, DocScore> scoreTable: This private variable is

one of two internal containers that hold DocScores. It allows quick access to a DocScore

that is associated with a particular Document.

TreeSet<DocScore> scoreTree: This private variable is the s econd

internal container that h olds DocScores. It allo ws for the quick ordere d retrieval o f all

the DocScores contain ed within because the DocScores are stored in sorted orde r

according to the compareTo method described above.

double weight : This p rivate var iable ass igns a weight to the

SearchResults for the purpose of weighting different sets of results against one another.

String whoMadeMe: This private variable stores the unique String

name of the object that created th e SearchResults. This variable is the only way that the

set of SearchResults is tied to the SearchModule or ModuleMixer that created it.

(2) Methods

boolean add(DocScore) : This private m ethod is a utility m ethod

used by the put methods described below.

Set<Integer> docIDs(): This public method allows a user to get all

of the Document identification numbers contained within the SearchResults.

DocScore get(Integer): This public method allows a user to get the

DocScore for the Docum ent whose unique identification num ber corresponds to the

provided integer. The null valu e is returned if the indicated Document does not exist in

the SearchResults.

String getQuery() : This public m ethod allows a user to get the

String query that was used to generate the SearchResults.

double getWeight() : This public m ethod allows a user to get the

weight of the SearchResults.

 43

String getWhoMadeMe(): This public m ethod allows a user to get

the name of the object that created the SearchResults.

Iterator<DocScore> iterator(): Implementing the java.lang.Iterable

interface requires the d efinition of this publ ic m ethod. Calling th is m ethod returns an

Iterator over all of the DocScores in the S earchResults. T his function allows a u ser to

easily create a prog ramming loop to iterate through the results via the for-each loop

construct.

boolean put(int, int): This public method is one of four that allows

a user to create an entry in the SearchResults. The firs t parameter corresponds to the

unique identification number of the Docum ent to which the result pertains; the second

corresponds to the rank of that Docum ent when compared to the rest of the Documents.

This method creates a D ocScore with the provided param eters and then calls the private

add method to store the DocScore in the SearchResults.

boolean put(int, double) : This public m ethod is the second of four

that allows a user to create an entry in the SearchR esults. The first param eter

corresponds to the unique identification num ber of the Docum ent to which the result

pertains; the second corresponds to the scor e that the Docum ent received from the

method or object that evaluate d it. This m ethod creates a DocScore with the provided

parameters and then c alls the private add m ethod to store the DocScore in the

SearchResults.

boolean put(int, double, int) : This public m ethod is the third of

four that allows a user to create an entry in the SearchResults; it is a co mbination of the

two put m ethods above. The first param eter corresponds to the unique identification

number of the Document to which the result pertains; the second corresponds to the score

that the Do cument received from the m ethod or object that evalu ated it; the third

corresponds to the rank of that Docum ent when compared to the rest of the Documents.

This method creates a D ocScore with the provided param eters and then calls the private

add method to store the DocScore in the SearchResults.

 44

boolean put(DocScore): This public m ethod is the last of four that

allows a us er to create an entry in the Sear chResults. The user can ch oose to create a

DocScore directly and then use this method which will call the private add method to

store the DocScore in the SearchResults.

void setQuery(String): This public method allows a user to set the

query attribute that was used to create this SearchResults.

void setRanks() : T his public m ethod allows a user to

automatically set the ranks of all the DocScores contained within the SearchResults. This

method is only applicable if the DocSco res do not already have assigned ranks.

DocScores are sorted according to their sc ore attribute and assigned a rank, accordin gly,

such that the DocScore with the highest score is assigned a rank of one.

void setWeight(double): This public m ethod allows a user to set

the weight attribute of the SearchR esults for later use when com paring SearchResults

against one another.

2. Abstract Classes

Abstract classes are classes that cannot be instantiated; they must be extended into

a non-abstract child class in order to gain this capability. Below are the two abstract

classes in the Modular Search Engine framework.

a. Corpus

In the field of IR, a collection of documents that have similar structure is a

corpus. As such, the abstra ct Corpus class has been deve loped for the Modular Search

Engine fram ework. It is abs tract because corpora vary g reatly from one another, the

details of which this author does not presum e to know. Therefore, it is up to the user to

extend this abstract c lass and conf orm it to th e preexisting structure of a select corpus.

All of the methods in the abstract Corpus class are also abstract and must be implemented

to allow the functionality described below. Figure 15 is the UML class m odel for the

abstract Corpus class.

 45

Figure 15. UML Corpus Class Model

(1) Attributes

None.

(2) Methods

boolean addDoc(Docum ent): Th is p rotected abstrac t m ethod

allows a user to add a Document to the Corpus.

Corpus clone(): This public abstract m ethod allows a user to get a

deep copy of the Corpus.

boolean deleteDoc(int) : This protected abst ract m ethod allows a

user to delete a Document from the Corpus.

Document getDoc(int): This public abstract method allows a user

to retrieve the Document who’s unique id entification num ber m atches the pro vided

integer.

Set<Integer> idSet(): This public abstract method allows a user to

get all of the Document identification numbers contained within the Corpus.

Iterator<Document> ite rator(): Im plementing the

java.lang.Iterable in terface requires the definitio n of this public m ethod. Calling this

method returns an Iterator over all of the Docu ments in the Corpus. This function allows

the user to easily create a programming loop to iterate through the Documents via the for-

each loop construct.

 46

String name(): This public abstract m ethod allows the user to get

the name of the Corpus. Each child extended from this abstract parent class should have

a unique String returned by this function so that the Corpus can be identified at runtime.

Integer nextID(): This protected abstract method allows a user to

get the next available identification number that can be used to put a new Docum ent into

the Corpus.

int siz e(): This public abstract method allow s a user to get the

number of Documents in the Corpus.

b. SearchModule

The heart of any search engine is the unique m ethod with which it

performs its prim ary function: to search. The goal behind the M odular Search Engine

framework is to im plement m ultiple dif ferent IR te chniques sim ultaneously within a

single search engine. As such, th e abs tract S earchModule class is the heart of the

Modular Search Engine fra mework. Users ar e able to extend this abstract class and

implement existing and new IR techniques tha t will integrate seamlessly with each othe r

within the framework. Figure 16 is the UML class model for the abstract SearchModule

class.

Figure 16. UML SearchModule Class Model

(1) Attributes

Corpus corpus: This protected variable is the Corpus on which the

SearchModule performs its operations.

 47

 (2) Methods

boolean addDocum ent(Document): This public m ethod allows a

user to add a Document to the SearchModule.

boolean deleteDocument(int): This public method allows a user to

delete Documents from the SearchModule.

boolean buildIndex() : This public m ethod allows the user to

ensure that an appropriate i ndex is built for the SearchMo dule. This m ethod allows a

SearchModule the opport unity to optim ize its buildIndex method so that, if possible, a

new index might be built upon an existing one. This allows the system to save resources,

instead of building a new index directly from the Corpus each time.

boolean forceBuildIndex() : This public m ethod allows a user to

forcibly direct the SearchModule to build a new index directly from t he Corpus. This

method is the complement to the method above; it is used when the user suspects that an

index has become corrupted. A call to this method can be expected to take a significant

amount of time to complete.

boolean isR eady(): This public m ethod is the interface th rough

which a user determines if the SearchModule is ready to receive a search query.

String name(): This public method allows the user to get the name

of the SearchModule. Each child extended from this abstract parent class should have a

unique String returned by this function so that the SearchModule can be differentiated

from other SearchModules at runtime.

SearchResults searchFor(String, int) : This public m ethod is

primary interface for conducting a search with the SearchModule. The param eters to the

method are the query S tring and an integer that indicates the number of results to return,

e.g., if the provided integer is 100, then the each SearchModule should return the top 100

Documents that m atch my search query. If the provided integer is greater than the

number of Documents in the Corpus, it is treated as if the user requested the results for all

Documents.

 48

Hashtable<String, SearchResults> searchFor(Set<String>, int) :

This public m ethod is t he prim ary interface through which an IR researcher conducts

batch query searches. T his method allows re searchers and developers to take advantage

of the way in which the SearchModule co mputes the relevance of a docum ent and

optimize it, if possible , f or perf orming multiple sea rch queries simultaneous ly. The

parameters to the m ethod are a Set of query Strings and an intege r that indicates the

number of results that should be returned in each SearchResults.

3. Interface

Like an abstract class, an interface cannot be instantiated on its own. An interface

must be implem ented by the user, and that im plementation must adhere to the structure

defined in the interface. The Modular S earch Engine fr amework contains a single

interface, detailed below.

a. ModuleMixer

In the field of IR, metasearch is the process of combining multiple ranked

lists of docum ents to produce a single list that is better than any one of the lists that

generated it. Since the Modular Search E ngine fram ework is designed to work with

multiple IR m ethods s imultaneously, integ rating m etasearch into th e fram ework is

essential in the design. Implementing a metasearch technique is accomplished through the

ModuleMixer interface.

Figure 17 is the UML model for the ModuleMixer interface.

Figure 17. UML ModuleMixer Interface Model

(1) Attributes

None.

 49

(2) Methods

SearchResults m ix(ArrayList<SearchResults>): This public

method is designed to accompany the single query searchFor method. It allows a user to

create a single set of SearchResults from the provided ArrayList of SearchResults via the

metasearch method implemented by the ModuleMixer.

Hashtable<String, SearchResu lts> m ix(Hashtable<String,

ArrayList<SearchResults>>): This public method is designed to accompany the multiple

query searchFor method. It allows a user to create a single set of SearchResults for each

Arraylist of SearchResults in the provide d Hashtable via the m etasearch method

implemented by the ModuleMixer.

4. Threads

The Modular Search Engine fram ework c ontains seven class extensions of the

java.lang.Thread class. Each is designed to carry out one of the use cases described in

Chapter II and is responsible for ha ndling the communication between the

ModularSearchEngine and a SearchModule within the system . The details of all seven

are described below.

a. AddDocumentThread

Figure 18 is the UML class model for the AddDocumentThread class.

Figure 18. UML AddDocumentThread Class Model

 50

(1) Attributes

Document doc: This private variable is the Document to be added.

int id : Th is priva te variab le is the unique identif ier of the

Document to be added.

SearchModule sm : This private variab le is the SearchModule

whose addDocument method will be called by this AddDocumentThread.

boolean success: This private var iable holds the returned result of

the SearchModule’s addDocument method.

(2) Methods

String nam e(): This public m ethod allows a user to obtain the

name of the SearchModule that this AddDocumentThread is associated with.

void run() : Extending the java.lang.T hread class requires the

definition of this public m ethod. It calls the addDocument method of the SearchModule

assigned to this AddDocumentThread.

boolean su ccessful(): This public m ethod allows a user to

determine if the Document was successfully added to the SearchModule.

b. DeleteDocumentThread

Figure 19 is the UML class model for the DeleteDocumentThread class.

Figure 19. UML DeleteDocumentThread Class Model

 51

(1) Attributes

int id : Th is priva te variab le is the unique identif ier of the

Document to be deleted.

SearchModule sm : This private variab le is the SearchModule

whose deleteDocument method will be called by this DeleteDocumentThread.

boolean success: This private var iable holds the returned result of

the SearchModule’s deleteDocument method.

(2) Methods

String nam e(): This public m ethod allows a user to obtain the

name of the SearchModule that this DeleteDocumentThread is associated with.

void run() : Extending the java.lang.T hread class requires the

definition of this pu blic m ethod. It calls the deleteDocument m ethod of the

SearchModule assigned to this DeleteDocumentThread.

boolean su ccessful(): This public m ethod allows a user to

determine if the Document was successfully deleted from the SearchModule.

c. BuildIndexThread

Figure 20 is the UML class model for the BuildIndexThread class.

Figure 20. UML BuildIndexThread Class Model

(1) Attributes

SearchModule sm : This private variab le is the SearchModule

whose buildIndex method will be called by this BuildIndexThread.

 52

boolean success: This private var iable holds the returned result of

the SearchModule’s buildIndex method.

(2) Methods

String nam e(): This public m ethod allows a user to obtain the

name of the SearchModule that this BuildIndexThread is associated with.

void run() : Extending the java.lang.T hread class requires the

definition of this public m ethod. It calls the buildIndex method of the SearchModule

assigned to this BuildIndexThread.

boolean su ccessful(): This public m ethod allows a user to

determine if the SearchModule’s buildIndex method was successful.

d. ForceBuildIndexThread

Figure 21 is the UML class model for the ForceBuildIndexThread class.

Figure 21. UML ForceBuildIndexThread Class Model

(1) Attributes

SearchModule sm : This private variab le is the SearchModule

whose forceBuildIndex method will be called by this ForceBuildIndexThread.

boolean success: This private var iable holds the returned result of

the SearchModule’s forceBuildIndex method.

(2) Methods

String nam e(): This public m ethod allows a user to obtain the

name of the SearchModule that this ForceBuildIndexThread is associated with.

 53

void run() : Extending the java.lang.T hread class requires the

definition of this pu blic m ethod. It calls the forceBuildIndex m ethod of the

SearchModule assigned to this ForceBuildIndexThread.

boolean su ccessful(): This public m ethod allows a user to

determine if the SearchModule’s forceBuildIndex method was successful.

e. IsReadyThread

Figure 22 is the UML class model for the IsReadyThread class.

Figure 22. UML IsReadyThread Class Model

(1) Attributes

SearchModule sm : This private variab le is the SearchModule

whose isReady method will be called by this IsReadyThread.

boolean ready : This private variable holds the returned result of

the SearchModule’s isReady method.

(2) Methods

String nam e(): This public m ethod allows a user to obtain the

name of the SearchModule that this IsReadyThread is associated with.

boolean ready(): This public m ethod allows a user to determ ine if

the SearchModule is ready to receive a search query.

void run() : Extending the java.lang.T hread class requires the

definition of this public m ethod. It calls the isReady m ethod of t he SearchModule

assigned to this IsReadyThread.

 54

f. SearchForQueryThread

Figure 23 is the UML class model for the SearchForQueryThread class.

Figure 23. UML SearchForQueryThread Class Model

(1) Attributes

String query : This priv ate var iable is Str ing to search f or and is

passed as a parameter to the SearchModule’s searchFor method.

SearchResults results : This pr ivate variable h olds th e re turned

result of the SearchModule’s searchFor method.

Integer returnSize: This private variable is passed as a param eter

to the SearchModule’s searchFor m ethod to i ndicate the size of the SearchResults to

return.

SearchModule sm : This private variab le is the SearchModule

whose searchFor method will be called by this SearchForQueryThread.

 (2) Methods

SearchResults getResults() : This public m ethod allows a user to

get the results of the search query.

String nam e(): This public m ethod allows a user to obtain the

name of the SearchModule that this SearchForQueryThread is associated with.

 55

void run() : Extending the java.lang.T hread class requires the

definition o f this pub lic m ethod. It calls the searchFor m ethod of the SearchModule

assigned to this SearchForQueryThread.

g. MultiSearchForThread

Figure 24 is the UML class m odel f or the MultiSea rchForQueryThread

class.

Figure 24. UML MultiSearchForQueryThread Class Model

(1) Attributes

Set<String> queries: T his private variable is th e Set of Strings to

search for and is passed as a parameter to the SearchModule’s searchFor method.

Hashtable<String, SearchResults> results : Th is pr ivate v ariable

holds the returned result of the SearchModule’s searchFor method.

Integer returnSize: This private variable is passed as a param eter

to the SearchModule’s searchFor m ethod to i ndicate the size of the SearchResults to

return.

SearchModule sm : This private variab le is the SearchModule

whose searchFor method will be called by this MultiSearchForQueryThread.

 (2) Methods

Hashtable<String, Search Results> getResults() : Th is public

method allows a user to get the results of the batch search query.

 56

String nam e(): This public m ethod allows a user to obtain the

name of the SearchModule that this MultiSearchForQueryThread is associated with.

void run() : Extending the java.lang.T hread class requires the

definition o f this pub lic m ethod. It calls the searchFor m ethod of the SearchModule

assigned to this MultiSearchForQueryThread.

5. Packages

The Modular Search Engine fram ework is divided into three prim ary packages

that serve to organize the classes, interfaces , and extensio ns into logical g roups. The

packages also serve to ensure that th e protected variables are only directly accessible by

objects within the same package. The three packages are described below.

a. modularSearchEngine

The modularSearchEngine package consists of the following:

 Corpus—Abstract Class
 Document—Class
 ModularSearchEngine—Class
 ModuleMixer—Interface

b. searchModule

The searchModule package consists of the following:

 DocScore—Class
 SearchModule—Abstract Class
 SearchResults—Class

 57

c. modularSearchEngineThreads

The m odularSearchEngineThreads package consists of the following

seven class extensions of java.lang.Thread:

 AddDocumentThread
 BuildIndexThread
 DeleteDocumentThread
 ForceBuildIndexThread
 IsReadyThread
 MultiSearchForQueryThread
 SearchForQueryThread

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

IV. REFERENCE IMPLEMENTATION

A. OVERVIEW

As a proof of concept, we have de veloped a reference im plementation to

demonstrate the abilities of the Modular Search Engine fram ework. This chapter

describes the internal com ponents of th e reference im plementation and shows the

Graphical User In terface (GUI) d esigned to provide the user with a sim ple working

environment.

B. EXTENSIONS AND IMPLEMENTATIONS

As described in the previous chapter, several components of the Modular Search

Engine framework must be extended or implemented. Specifically, the user must extend

the abstract Corpus and SearchModule classes and imple ment the ModuleMixer

interface. The reference implementation contains four child classes of Corpus, two child

classes of SearchModule, and two imple mentation classes of ModuleMixer. These are

described below.

1. Corpora

The reference implementation includes four standard benchmark corpora that are

used frequently in IR [3]. The corpora were attained f rom the University of Glasgow’s

IR Group and are as follows: Cranfield, Medline, CISI, and Ti me [7]. Each of the four

Corpus classes was developed by extending the base Corpus class and adapting it to the

specifics of each data set. However, only one is active at a time, as chosen by the user.

2. SearchModules

There are two SearchModules included in this exam ple application; they are

individually described below.

 60

a. TF-IDF SearchModule

Term Frequency-Inverse Docum ent Frequency (TF-IDF) is a basic

keyword matching technique and is the basis for one of the two SearchModules in the

reference implementation. The essentials of TF-IDF are explained below.

One way to repres ent a docum ent is as a vector of the fr equencies of the

words contained within it. For example, c onsider a document whose entirety consists of

the following sentence: “The boy fed the dog.” The document is five words long, but it

only contains four unique words because the word “the” is used twice; we would say that

that this document has f ive tokens, but only four types. We assign an index to each type

and count the number of times each appears in the document. Dividing by the sum of the

counts (the total number of words in the document) will yield the term frequency for each

type. The table below shows these values for the example.

Index Type Count Term
Frequency

0 the 2 2/5 = 0.4

1 boy 1 1/5 = 0.2

2 fed 1 1/5 = 0.2

3 dog 1 1/5 = 0.2

Table 1. Term Frequency Example Table

We can now generalize the above process. Let c i,j be the count of wor d i

in document j. We can then calculate tfi,j, the term frequency of word i in document j:

,

,
,

i j
i j

k j
k

c
tf

c



Now that we have a ll of the term f requencies in a docu ment, we can

represent that document as a single column vector: tfj = [tf1,j , tf2,j , … , tfV,j]T where V is

the total number of unique words in our vocabulary.

 61

So far, the above process weights the relevance of a word according to the

frequency in which tha t word appear s in a document. This ref lects the intuition that the

more frequent terms in a document may reflect the meaning of that document better than

the terms that appear less frequently and, t hus, should have stronger weights [8, 9]. We

now turn o ur attention to th e f act that we ar e dealing w ith m ultiple docum ents that

comprise a corpus.

Consider a word that appears in every document in the corpus. This word

has little po wer when trying to ide ntify the relevance of one docum ent over another.

Conversely, consider a word that appears in only a single document. The opposite is true

because this word carries a lot of importance in identifying this particular document when

compared t o all the others. Thus, we should weight those words which are common

across many documents lower than those whic h appear in o nly a few documents [8, 9].

As such, a new m easure known as the inve rse docum ent frequency (IDF) com es into

play. IDF i s defined as N / n i, where N is the total num ber of docum ents in the corpus,

and n i is the num ber of docum ents in which word i appears. In order to discount the

weight of a word that appears in m any documents, this measure is app lied within a log

function resulting in the following definition for the inverse document frequency of word

i: [9]

 logi
i

N
idf

n

 
  

 

If word i appears in every d ocument, then n i = N, and thus

idfi = log(1) = 0. Whe n applied to every wo rd in the vocabulary, this yields an IDF

vector with dimension equal to V.

Combining term frequency (TF) with IDF results in the TF-IDF weighting

scheme such that the weight of word i in docum ent j is the product of its frequency in j

with the log of its inve rse document frequency in the co rpus: w i,j = tf i,j * idf i [9]. Thi s

yields a matrix with dimension V x N, such that each column in the matrix is the TF-IDF

weight vector of a single docum ent. We then use the Euclid ian norm on each of these to

produce document weight vectors whose lengths are exactly one.

 62

The TD-IDF matrix and the IDF vector together comprise the index of the

corpus, and calculating these for a fi xed corpus needs only take place on ce. They can be

stored on disk and recalled for subsequent r uns of the reference im plementation. Up to

this point, all of the above calculations have been performed on the corpus, and we now

turn the attention to how to conduct a search query using TF-IDF.

First, the query string is converted into a TF vector in the same manner as

each document is above. W e then calculate the element-wise product of the TF vector

and the corpus’ IDF vector to produce a new TF-I DF vector for the query. This vector is

normalized via the Euclidian no rm, and now can be used to determine how relevant each

document in the corpus is to the pr ovided query. The TF-IDF SearchModule

accomplishes this by co mputing the cosine s imilarity (via the dot produ ct of norm alized

vectors) between the qu ery TF-IDF vector a nd the TF-IDF vector for each docum ent in

the corpu s (aka the co lumns of the m atrix.) This is acco mplished by a single matrix

multiplication: transpose the query TF-IDF column vector into a row vector and multiply

it by the TF -IDF matrix of the corp us. The r esulting vector contains the scalar co sine

similarity measure between each document in the corpus and the provided query. Sorting

in descending order according to this m easure will yield an ordere d list of docum ents

such that the most similar documents are at the top of the list [8-10].

It should be noted that the vector and matrix mathematics implemented in

this implementation of TF-IDF is accomplished via the Colt Project, a set of open source

java libraries published by the European Or ganization for Nuclear Research (CERN)

[11].

b. Draeger’s LDA SearchModule

As m entioned in Chapter II, Draeger used the Modular S earch Engine

framework to im plement a new IR technique to conduct sem antic search. During the

course of his research, he developed a SearchModule based upon Latent Dirichlet

Allocation (LDA) [3].

LDA is a param etric Bayesian model that genera tes a prob ability

distribution over the topics covered in a docum ent, and each topic is a distribution over

 63

the words in a vocabu lary. Thes e topics form a latent feature s et that describ es a

document collec tion be tter than th e words alo ne. Using this m odel, it is pos sible to

perform a search by using the words in the query to infer the most likely topics associated

with that query and then find the documents that cover these same topics [3, 12].

As a dem onstration of the m odularity of the Modular S earch Engine

framework, we have taken Draeger’s LDA S earchModule and incorporated it directly

into the reference implementation.

3. ModuleMixers

Two ModuleMixers are includ ed in the reference im plementation, however only

one ModuleMixer is active for each search, as chosen by the user. Th e details of each

ModuleMixer are described below.

a. Weighted Average Rank ModuleMixer.

This ModuleMixer sim ply calculates the weighted m ean rank for each

Document (via a DocScore). For a given document, it uses the weights assigned to each

set of SearchResults an d com putes the weight ed m ean rank of that docum ent. It then

creates a new set of SearchResults whose DocScores are s orted by th e new weighted

average rank. This set of SearchResults is then returned to the user.

b. Condorcet Fuse ModuleMixer.

This ModuleMixer implem ents th e m etasearch technique known as

Condorcet-fuse [13]. The inspir ation for this technique com es from the field of Social

Choice Theory which studies voting algorithms as techniques to m ake group decisions

[14-16]. The Condorcet voting algorithm specifies that the winner of an election is the

candidate that beats or ties with every other candidate in a pair-wise comparison [13, 17].

Consider a voting scen ario in which ten voters are voting on five candidates in an

election, and the voters m ust rank all five can didates in order of preference. Table 2

depicts one possible outcome of the votes for this scenario [13].

 64

Number of Votes
Candidate Preference

(in order)

3 a, b, c, d, e

3 e, b, c, a, d

2 c, b, a, d, e

2 c, d, b, a, e

Table 2. Example Voting Scenario

In the example, consider a pair-wise comparison of candidates b and c; six

out of the ten voters placed candidate b ahead of candidate c. In fact, candidate b ranks

above every other candidate in a pair-wis e, head-to-head com parison; therefore,

candidate b is the Condorcet winner [13].

This is the essence of the Condorcet-fuse metasearch m ethod and the

associated ModuleMixer in the reference im plementation. Candidates are analogous to

Documents, voters to SearchModules, and vote preference to Search Results. The

following two pseudo-code algorithm s e xplain exactly how the Condorcet-fuse

metasearch method is applied within the Modular Search Engine framework [13].

Algorithm 1: Pair-wise Document

 Comparison (d1, d2)

Algorithm 2: Condorcet-fuse

1: count = 0

2: for each SearchModule, sm, do

 2a: If sm ranks d1 above d2, count++

 2b: If sm ranks d2 above d1, count--

3: If count > 0, rank d1 better than d2

4: Otherwise rank d2 better than d1

1: Create a list L of all the
documents

2: Sort(L) using Algorithm 1 as the
comparison function

3: Output the sorted list of
documents as a SearchResults object

 65

C. GRAPHICAL USER INTERFACE

1. Overview

The reference im plementation can be divide d into f ive different sections: Query

Entry, Corpus Selection, ModuleMixer Select ion, Status Display, and Results Display.

Figure 25 is a screensh ot of the reference im plementation GUI and i dentifies th e five

basic sections, and each section is described in detail below the figure.

Figure 25. GUI Overview

2. Sections

a. Query Entry Section

As Figure 26 indicates, users enter thei r search query into the text box;

typing <ENTER> or clicking the Search button will begin the search.

 66

Figure 26. Query Entry Section

b. Corpus Selection Section

As previously m entioned, the refere nce im plementation contains four

different corpora to choose from. The Corpus Selection Sec tion allows users to choose a

corpus via Radio Button as shown in Figure 27. By default, the Cranfield corpus is

selected when the application is launched.

Figure 27. Corpus Selection Section

c. ModuleMixer Selection Section

Similar to the Corpus Selection Sec tion above, the user chooses one of

two available ModuleMixers via radio butt on; in the reference imple mentation the

WeightedModuleMixer is selected by defau lt. This ModuleMixer requires additional

input from the user via the slider bar. M oving the slider bar adjusts the relative m ixing

weight assigned to each SearchModule. In Figure 28, the TF-IDF based SearchModule

will be weighted three times greater than the other.

 67

Figure 28. ModuleMixer Selection Section with Weighted Module Mixer Selected

If the CondorcetFuseModuleMixer is se lected, the m ixing weights are no

longer applicable and that sub-section is disabled accordingly as depicted in Figure 29.

Figure 29. ModuleMixer Selection Section with Condorcet Fuse Module Mixer
Selected

d. Status Display Section

When the reference implementation is running, System.out and System.err

are redirected to th e Status Display as shown in Figure 30 below. This area is s crollable

so that a us er can view older m essages which may have s crolled up and out of view or

longer messages that extend to the right of the view.

 68

Figure 30. Status Display Section

e. Results Display Section

As the name suggests, the results of t he search query are displayed in this

section. In this exam ple a pplication, this area is sim ply populated with text using the

toString() m ethod of the final SearchResults object produced by the selected

ModuleMixer. Figure 31 is an example of wh at this section looks like after conducting a

search. Users can use the scroll bars to view the entire set of results.

Figure 31. Results Display Section

 69

D. PERFORMANCE EVALUATION

This section presents how the Modular Search Engine fra mework can help

students and researchers de sign new IR techniques and metasearch m ethods by

calculating and evaluating the perfor mance of the dif ferent com ponents within the

reference implementation.

1. Average Precision

a. Definition

For a particular query, we use average precision as a metric to measure the

performance of an IR technique or a metasearch method [18]. The average precision for

a single query is defined as

1

1 D

n
n

AP AP
R 

  ,

where R is the num ber of total relevant documents and D denotes the total num ber of

documents in the corpus. The contribution of docum ent dn to the average precision APn

is defined as

,
1

1 n

n m n
m

AP
n




  ,

where δm,n = 1, if the docum ents dn and dm are both relevant to the query, and δm,n = 0

otherwise.

b. Example

Each corpus included in the reference implementation comes with a set of

test queries and a relevancy list that tells which documents in the corpus that are relevant

to each test query. These are provid ed so that different IR and/or m etasearch techniques

can be compared with one another. For ex ample, the 224th test query for the Cranfield

corpus is: “in practice, how close to reality are the as sumptions th at th e flow in a

 70

hypersonic shock tube using nitrogen is non-viscous and in thermodynamic equilibrium.”

There are exactly nine documents identified as relevant to this query.

Using the reference implementation, one can see how each SearchModu le

performs compares against the other and how the ModuleMixers aff ect that performance

when searching for this test query. Table 3 is a summ ary of how the two SearchModules

performed independently and when mixed with the Condorcet-fuse ModuleMixer.

Relevant
Document ID

LDA
 Ranking

TF‐IDF
Ranking

CondorcetFuse
Ranking

656 6 15 7

1157 40 10 24

1274 113 32 43

1286 4 3 2

1313 15 23 11

1316 120 27 41

1317 26 61 15

1318 7 117 22

1319 100 33 33

Table 3. Relevant Document Rankings for the 224th Cranfield Test Query

With the inform ation in Table 3, we can calculate the average precis ion

for each of the three sets of results. Table 4 d isplays the average precision calculations

for the results of Draeger’s LDA SearchModule.

 71

nth Relevant
Document

Relevant
Document ID

LDA
Ranking APn

1 1286 4 1/4 = 0.25

2 656 6 2/6 = 0.33333

3 1318 7 3/7 = 0.42857

4 1313 15 4/15 = 0.26667

5 1317 26 5/26 = 0.19231

6 1157 40 6/40 = 0.15

7 1319 100 7/100 = 0.07

8 1274 113 8/113 = 0.0708

9 1316 120 9/120 = 0.075

Average Precision = 0.20408

Table 4. Average Precision of Draeger’s LDA SearchModule

Table 5 dis plays the average p recision calculations for the results of the

TF-IDF SearchModule.

nth Relevant
Document

Relevant
Document ID

TF‐IDF
Ranking APn

1 1286 3 1/3 = 0.33333

2 1157 10 2/10 = 0.2

3 656 15 3/15 = 0.2

4 1313 23 4/23 = 0.17391

5 1316 27 5/27 = 0.18519

6 1274 32 6/32 = 0.1875

7 1319 33 7/33 = 0.21212

8 1317 61 8/61 = 0.13115

9 1318 117 9/117 = 0.07692

Average Precision = 0.1889

Table 5. Average Precision of the TF-IDF SearchModule

Table 6 dis plays the average p recision calculations for the results of the

Condorcet-fuse ModuleMixer. Note that the average precision of the m ixed results for

this query is higher than both Draeg er’s LDA SearchModule and the T F-IDF

SearchModule.

 72

nth Relevant
Document

Relevant
Document ID

CondorcetFuse
Ranking APn

1 1286 2 1/2 = 0.5

2 656 7 2/7 = 0.28571

3 1313 11 3/11 = 0.27273

4 1317 15 4/15 = 0.26667

5 1318 22 5/22 = 0.22727

6 1157 24 6/24 = 0.25

7 1319 33 7/33 = 0.21212

8 1316 41 8/41 = 0.19512

9 1274 43 9/43 = 0.2093

Average Precision = 0.26877

Table 6. Average Precision of the CondorcetFuse ModuleMixer

2. Mean Average Precision

a. Definition

In order to m easure the overall pe rformance of an IR technique o r

metasearch method, we use the m ean average precision. Calculating the m ean average

precision is as sim ple as calculating the average precisio n, as shown above, for each

query in the set of test queries and then taking the mean of all those.

b. Example

The Cranfield corpus contains a total of 225 test queries; using a separate

application to speed th e proce ss, we cal culated the m ean averag e p recision of both

SearchModules independently and when m ixed with the Condorcet-fuse ModuleMixer.

Figure 32 s hows the average p recision calcula tions for each test query, ordered fr om

largest to sm allest for each m ethod, and Ta ble 7 shows the m ean average p recisions.

Again, the Condorcet-fuse ModuleMixer ou tperforms both of the independent

SearchModules.

 73

Figure 32. Average Precision of Test Queries

LDA TF‐IDF CondorcetFuse

0.32711 0.36701 0.37637

Table 7. Mean Average Precisions

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

V. CONCLUSIONS AND RECOMMENDATIONS

A. RESEARCH CONCLUSIONS

The overarching goal of this thesis was to develop a sof tware API offering

students and researchers a fram ework in wh ich they can develop, test, and im plement

new IR techniques and m etasearch m ethods, specifically targeting the developm ent of

new semantic search techniques.

Utilizing sound engineering practices, those user requirements were specified and

incorporated into the overal l design of the Modular Search E ngine framework. Through

extensive use of the Unified Modeling Langu age, software engineering patterns, and

object-oriented features, the Modular Search Engine framework achieved the m odularity

goal tha t allows m ultiple IR techniques to work simultaneously within a single sy stem

and allows IR techniques to be seam lessly added and deleted from a system . Keeping

with the objective s, the addition of an IR technique requires only the extension of the

single abstract SearchModule cl ass with its eight abstract methods. The fram ework also

successfully allows for the developm ent of different m etasearch m ethods that can be

interchanged within a system.

Furthermore, this thes is showed co nclusively, using a standard m etric, that the

framework can be used to judge the relative performance of each individual IR technique

and metasearch method.

B. RECOMMENDATIONS FOR FUTURE WORK

Overall, this res earch successfully accom plished its objectives as d efined in

Chapter I. However, severa l areas could benefit from further exploration, augmentation,

and improvement.

As with any new softwa re application, th e framework could greatly benefit fro m

extensive testing and debugging. If the Modul ar Search Engine fram ework we re to

 76

receive greater exposu re to stud ents and IR research ers, th eir feedback w ould

undoubtedly benefit the framework by providing information for patches and upgrades.

One upgrade in particular would be the development and inclusion of a set of

diagnostic tools. These tools would be able to autom atically calc ulate the m etrics to

analyze the perform ance of the different framework com ponents using the benchm ark

test corpora. Such tools would m ake it trivial f or the develope r to eva luate the

performance of a new IR technique or metasearch method.

Additionally, as end-user applications are developed, it is not recommended to

build them as stand-alo ne applications design ed to run on clien t machines. Becau se of

the large requirement for the com puter’s resources, such applications will undoub tedly

run extremely slow and would lik ely aggravate any user, esp ecially during initialization.

Instead, the fra mework could be used to de velop a server application, possibly web-

based, that clien ts could access to perform searches. Th is sty le architecture w ould

provide the most responsiveness to users while preserving resources in client computers.

Finally, the fra mework could benefit fr om t he incorporation of ontological

information such as those suggested for th e SHARE repository [2]. Such inform ation

could be used to develop a robust system that allows a user to refine search queries and

navigate through documents based upon the ontological relationships of the documents.

 77

LIST OF REFERENCES

[1] S. Brin and L. Page, "T he Anatomy of a Large-Scale Hypertextual W eb Search
Engine," in Computer Networks and ISDN Systems, 1998, pp. 107–117.

[2] J. Johnson and C. Blais, "SHAR E repository framework: Component
specification and ontology," in Proceedings from the Fifth Annual Acquisitions
Research Symposium, 2008, pp. 194–212.

[3] M. Draeger, "Use of probabilistic topic models for search," Master's thesis, Naval
Postgraduate School, Monterey, CA, 2009.

[4] J. A. Aslam, V. Pavlu and E. Y ilmaz, "Measure-based m etasearch," in
Proceedings of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2005, pp. 571–572.

[5] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3rd ed., New Jersey: Prentice
Hall, 2005.

[6] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering: Using
UML, Patterns and Java, New Jersey: Prentice Hall, 2004.

[7] University of Glasgow, Inform ation Retrieval Group, "Test Collections," 2004.
Available at http://ir.dcs.gla.ac.uk/resources/test_collections/ (accessed September
2009).

[8] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language
Processing, Cambridge, MA: MIT Press, 1999.

[9] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech
Recognition, 2nd ed., New Jersey: Prentice Hall, 2009.

[10] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval, New York: Cambridge University Press, 2008.

[11] European Organization for Nuclear Re search, "Colt Project," 2004. Available at
http://acs.lbl.gov/~hoschek/colt/index.html (accessed September 2009).

[12] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent Dirichlet Allocation," The Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[13] M. Montague and J. A. Aslam , "C ondorcet Fusion for Im proved Retrieval," in
CIKM '02: Proceedings of the Eleventh International Conference on Information
and Knowledge Management, pp. 538–548, 2002.

 78

[14] W. H. Riker, Liberalism Against Populism, San Francisco: W. H. Freeman, 1982.

[15] H. Moulin, Axioms of Cooperative Decision Making, New York: C ambridge
University Press, 1988.

[16] J. S. Kelly, Social Choice Theory, Berlin: Springer-Verlag, 1988.

[17] M. de Condorcet, Essai Sur l'Application De l'Analyse à La Probabilité Des
Décisions Rendues à La Pluralité Des Voix, 1785.

[18] S. Robertson, "A new interpre tation of average precision," in SIGIR '08:
Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 689–690, 2008.

 79

APPENDIX–UML REFERENCE KEY

This appendix contains the reference fo r the UML sym bols used in Chapters II

and III of this thesis.

A. FIGURE 3–UML DOMAIN OBJECT MODEL

An association with an aggregation relationship indicates that one class is a part

of another c lass. In this relationship the ch ild class in stance can ou tlive its parent class;

the existence of the child is not depende nt on the existence of the parent. The

aggregation relationship is represented with a solid line drawn from the parent class to the

child class with an open diamond shape on the parent class’s end.

For example, a ModularSearchEngine object contains a single Corpus object, but

the SearchResults object contains one or more DocScore objects:

B. FIGURES 11-24 UML CLASS MODELS

Each class m ember and m ethod is preced ed with one of three symbols that

indicate its visibility.

Additionally, if any m ethod name or class nam e is italicized it indicate s that the

method or the class is abstract.

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

