AD_____

AWARD NUMBER: W81XWH-07-1-0122

TITLE: Genetic Association Study of Ancestry-Matched African American Prostate Cancer Cases and Control

PRINCIPAL INVESTIGATOR: William B. Isaacs, Ph.D.

CONTRACTING ORGANIZATION: Johns Hopkins University, East Baltimore Campus Baltimore, MD 21218

REPORT DATE: April 2009

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

E	EPORT DOC		Form Approved				
			-	uing instructions	OMB No. 0704-0188 ching existing data sources, gathering and maintaining the		
data needed, and completing a	and reviewing this collection of i	nformation. Send comments rega	arding this burden estimate or an	y other aspect of this c	ollection of information, including suggestions for reducing		
4302. Respondents should be	aware that notwithstanding an	other provision of law, no person	n shall be subject to any penalty	(0704-0188), 1215 Jeff for failing to comply wit	ferson Davis Highway, Suite 1204, Arlington, VA 22202- th a collection of information if it does not display a currently		
valid OMB control number. PL	EASE DO NOT RETURN YOU	R FORM TO THE ABOVE ADDR	RESS.				
1. REPORT DATE		2. REPORT TYPE Final			DATES COVERED		
1 April 2009		FINA			April 2008 – 31 March 2009 CONTRACT NUMBER		
4. TITLE AND SU	BIIILE			Ja.	CONTRACT NUMBER		
		. Matakad African A			GRANT NUMBER		
	-	y-Matched African A	American Prostate C		81XWH-07-1-0122		
Cases and Contro	I				PROGRAM ELEMENT NUMBER		
				50.	PROGRAM ELEMENT NOMBER		
6. AUTHOR(S)				54	PROJECT NUMBER		
				50.			
William D. Jacoba				50	TASK NUMBER		
William B. Isaacs,	PII.D.			00.	AGRINOMIDER		
				5f	WORK UNIT NUMBER		
	librai a du			51.	WORR ONT NOMBER		
E-Mail: wisaacs@	SANIZATION NAME(S)			8 1	PERFORMING ORGANIZATION REPORT		
		AND ADDICESS(ES)		-	NUMBER		
Johns Hopkins Un	iversity, East Baltir	nore Campus					
Baltimore, MD 21							
9. SPONSORING / MC	NITORING AGENCY	AME(S) AND ADDRES	S(ES)	10.	SPONSOR/MONITOR'S ACRONYM(S)		
U.S. Army Medica			-()		······································		
Fort Detrick, Mary							
,				11.	11. SPONSOR/MONITOR'S REPORT		
					NUMBER(S)		
12. DISTRIBUTION / A	VAILABILITY STATE	IENT					
Approved for Publ	ic Release; Distribu	ition Unlimited					
	,						
13. SUPPLEMENTAR	Y NOTES						
14. ABSTRACT			c	· · · · • •			
					ultiple reasons have been postulated to		
					I and genetic factors may contribute to mponent of this cancer. However, a		
					llation has not been identified.		
					ations with and without a particular		
					ble of affecting disease risk. While these		
					ed due to population stratification (a		
					hed, and well characterized study		
					nts in Caucasian populations,		
					typically being much smaller than the		
					n as a confounder. It is now quite clear		
					rious associations will and undoubtedly		
					African American prostate cancer		
					ation stratification. After this matching,		
					on chromosomes 2, 8 and 17. These and		
other ongoing studie				ors in prostate	carcinogenesis in African Americans.		
15. SUBJECT TERMS							
	Ancestry, genetics	s. Susceptibility					
		,	47 1 10/17 47:00				
16. SECURITY CLASS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON USAMRMC		
		c. THIS PAGE		J. I AGEO			
a. REPORT U	b. ABSTRACT U	C. THIS PAGE	UU	10	19b. TELEPHONE NUMBER (include area code)		
0	0			10			
			1				

Table of Contents

<u>Page</u>

Introduction	4
Body	4
Key Research Accomplishments	5
Reportable Outcomes	56
Conclusion	5
References	NA
Appendices	NA

INTRODUCTION

African American men have the highest incidence and mortality from prostate cancer in the world. Multiple reasons have been postulated to explain these findings including access to care, attitudes about care, socioeconomic and education differences, differences in type and aggressiveness of treatment, dietary, and genetic differences, although the definitive reasons for this are unknown. Indeed, the reasons why any prostate cancers occur are incompletely understood, and the only consistent risk factors identified for prostate cancer in addition to race are age and family history. While both environmental and genetic factors may contribute to prostate cancer susceptibility, results from multiple studies consistently implicate a strong genetic component of this cancer, with an estimated heritability of 42%, the highest among all common cancers. However, despite years of extensive effort by multiple research groups world wide, a specific gene which is consistently and reproducibly associated with prostate cancer risk in any population has not been identified. Association studies examining the frequency of common but specific genetic variants in study populations with and without a particular disease (i.e. case-control) is a powerful way to detect the influence of common genetic variants capable of affecting disease risk. While these types of studies are powerful, they are not without limitations, including the tendency to be confounded due to population stratification (a critical issue in admixed populations like African American), and the requirement for large, well matched, and well characterized study populations. While there has been extensive use of case control studies to identify genetic risk variants in Caucasian populations, corresponding studies in the African American prostate cancer population have been less extensive, typically being much smaller than the Caucasian counterparts, with little or no efforts to address the critical issue of population stratification as a confounder. It is now quite clear that unless cases are well matched to controls in terms of genetic heterogeneity in such studies, spurious associations will and undoubtedly have been observed and reported. In this study we use 58 Ancestry Informative Markers (AIMs) to match African American prostate cancer cases and controls for the purposes of performing association studies without confounding by population stratification. We have identified and confirmed several novel prostate cancer susceptibility loci in these studies, on chromosomes 2, 8, and 17. These and other ongoing studies will provide unprecedented insight into the role of inherited factors in prostate carcinogenesis in African Americans.

BODY: Four genome-wide association studies, all in populations of European descent, have identified 20 independent single nucleotide polymorphisms (SNP) in 20 regions that are associated with prostate cancer risk. We evaluated these 20 SNPs in a combined African American (AA) study, with 868 prostate cancer patients and 878 control subjects. AIM markers (n=58) were initially genotyped, and the proportion of European ancestry was estimated for each subject based on these AMIs using the computer program, STRUCTURE. For 17 of these 20 SNPs, implicated risk-associated alleles were found to be more common in these AA cases than controls, significantly more than expected under the null hypothesis (P = 0.03). Two of these 17 SNPs, located at 3p12, and region 2 at 8q24, were significantly associated with prostate cancer risk (P < 0.05), and only SNP rs16901979 at region 2 of 8q24 remained significant after accounting for 20 tests. A multivariate analysis of additional SNPs across the broader 8q24 region revealed three independent prostate cancer risk-associated SNPs, including rs16901979, rs13254738, and rs10086908. The first two SNPs were approximately 20 kb apart and the last SNP, a novel finding from this study, was approximately 100 kb centromeric to the first two SNPs. These results suggest that a systematic evaluation of regions harboring known prostate cancer risk SNPs implicated in other races is an efficient approach to identify risk alleles for AA. However, studies with larger numbers of AA subjects are needed, and this will likely require a major collaborative effort to combine multiple AA study populations.

KEY RESEARCH ACCOMPLISHMENTS:

- Our African American case control population has been genotyped for 58 AIMs
- Matching of cases and controls based on average percent African American ancestry has been accomplished
- Genotyping of SNPs in this population led to the discovery of a novel prostate cancer risk variant at 8q24 (rs10086908) that is associated with prostate cancer in African American men
- Genotyping of 20 SNPs markers in this population provided the first systematic analysis in African Americans of SNPs shown to be associated with prostate cancer risk in men of European descent.

REPORTABLE OUTCOMES

Xu J, Kibel AS, Hu JJ, Turner AR, Pruett K, Zheng SL, Sun J, Isaacs SD, Wiley KE, Kim ST, Hsu FC, Wu W, Torti FM, Walsh PC, Chang BL, Isaacs WB. Prostate Cancer Risk Associated Loci in African Americans. Cancer Epidemiol Biomarkers Prev 2009;18(7):2145-9.

CONCLUSIONS

Ancestry mapping of African American prostate cancer cases and controls allows for the identification and characterization of genetic risk factors that are significantly and reproducibly associated with prostate cancer risk in this high risk population. The identification of reproducible genetic risk factors for prostate cancer in African American men will permit an estimation of the relative importance of genetics vs environment as factors responsible for disparity in prostate cancer risk and mortality.

Prostate Cancer Risk Associated Loci in African Americans

Jianfeng Xu,^{1,2} Adam S. Kibel,^{5,6} Jennifer J. Hu,⁷ Aubrey R. Turner,^{1,2} Kristen Pruett,^{1,2} Siqun Lilly Zheng,^{1,2} Jielin Sun,^{1,2} Sarah D. Isaacs,⁸ Kathleen E. Wiley,⁸ Seong-Tae Kim,^{1,2} Fang-Chi Hsu,^{1,2,3} William Wu,^{5,6} Frank M. Torti,⁴ Patrick C. Walsh,⁸ Bao-Li Chang,^{1,2} and William B. Isaacs⁸

¹Centers for Cancer Genomics, ²Center for Human Genomics, and Departments of ³Biostatistical Sciences, and ⁴Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Departments of ⁵Surgery and ⁴Genetics, Washington University School of Medicine, St. Louis, Missouri; ⁷Department of Epidemiology and Public Health and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; and ⁸Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland

Abstract

Four genome-wide association studies, all in populations of European descent, have identified 20 independent single nucleotide polymorphisms (SNP) in 20 regions that are associated with prostate cancer risk. We evaluated these 20 SNPs in a combined African American (AA) study, with 868 prostate cancer patients and 878 control subjects. For 17 of these 20 SNPs, implicated risk-associated alleles were found to be more common in these AA cases than controls, significantly more than expected under the null hypothesis (P = 0.03). Two of these 17 SNPs, located at 3p12, and region 2 at 8q24, were significantly associated with prostate cancer risk (P < 0.05), and only SNP rs16901979 at region 2 of 8q24 remained significant after accounting for 20 tests. A

Introduction

Recent genome-wide association studies (GWAS) in four study populations of European descent have revealed more than a dozen prostate cancer risk-associated loci (1-8). Additional independent prostate cancer riskassociated loci were identified in fine mapping studies of these initially discovered loci (9-15). Confirmation of these risk loci among populations of European descent has been reported, but studies examining African American (AA) are limited. No GWAS of prostate cancer in AA has been published to date, and confirmation studies in AA were primarily limited to single nucleotide polymorphisms (SNP) at 8q24 (9, 11, 16). The goal of this study was to systematically evaluate, in an AA population, all reported prostate cancer risk associated loci identified in men of European descent.

Received 1/30/09; revised 3/27/09; accepted 4/28/09; published OnlineFirst 6/23/09. Grant support: National Cancer Institute [CA129684, CA105055, CA106523, CA95052 (J. Xu), CA112517, CA58236 (W.B. Isaacs), CA86323 (A.W. Partin), CA112028 (A.S. Kibel)]; Department of Defense [W81XWH-06-1-0245 (B. Chang), PC051264 (J. Xu), PCw81XWH-07-1-0122 (W.B. Isaacs)]; and the American Cancer Society [CNE-101119

doi:10.1158/1055-9965.EPI-09-0091

multivariate analysis of additional SNPs across the broader 8q24 region revealed three independent prostate cancer risk-associated SNPs, including rs16901979, rs13254738, and rs10086908. The first two SNPs were ~ 20 kb apart and the last SNP, a novel finding from this study, was ~ 100 kb centromeric to the first two SNPs. These results suggest that a systematic evaluation of regions harboring known prostate cancer risk SNPs implicated in other races is an efficient approach to identify risk alleles for AA. However, studies with larger numbers of AA subjects are needed, and this will likely require a major collaborative effort to combine multiple AA study populations. (Cancer Epidemiol Biomarkers Prev 2009;18(7):2145–9)

Subjects and Methods

Four independent study populations of AA were included in this combined analysis of 868 cases and 878 controls, including a hospital-based case-control study from Johns Hopkins Hospital (JHH; ref. 2), a populationbased case-control study in the western part of North Carolina, a hospital-based case-control study from Wake Forest University School of Medicine (17), and a hospitalbased case-control study from Washington University School of Medicine (Supplementary Methods; Table 1).

We selected 20 SNPs that were significantly associated with prostate cancer risk in four previous GWASs (1-8) and follow-up confirmation and fine mapping studies of European descent (9-15). We also selected 14 additional SNPs in the broader 8q24 region that were implicated in several AA populations (9, 11, 16). In addition, a subset (n =58) of ancestry informative markers that have large differences in allele frequencies between the two parental populations of AA (Europeans and Africans) were also included (18). These SNPs were genotyped using a MassARRAY iPLEX system (Sequenom, Inc.). The range of genotyping call rate is from 0.989 to 0.999, with an average of 0.996. The concordance rate was 99.5% among the duplicated samples. Each of the autosomal SNPs was in Hardy-Weinberg equilibrium ($P \ge 0.05$) among control subjects using Fisher's exact test. The proportion of European ancestry was estimated for each subject based on the 58 ancestry informative markers using the computer program, STRUCTURE (19). Subjects with a proportion of European ancestry of >0.8 or with a high proportion of

⁽J.J. Hu)]. Note: Supplementary data for this article are available at Cancer Epidemiology, Biomarkers & Prevention Online (http://cebp.aacrjournals.org/).

Requests for reprints: Jianfeng Xu, Center for Cancer Genomics, Medical Center Boulevard, Winston-Salem, NC 27157. Phone: 336-713-7500; Fax: 336-713-7566. E-mail: jxu@wfubmc.edu, or Bao-Li Chang, Center for Cancer Genomics, Medical Center Boulevard, Winston-Salem, NC 27157. Phone: 336-713-7500; Fax: 336-713-7566. E-mail: bchang@wfubmc.edu, or William B. Isaacs, Marburg 115, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287. Phone: 410-955-2518; Fax: 410-955-0833. E-mail: wisaacs@jhmi.edu

Copyright © 2009 American Association for Cancer Research.

Study population	No. subjects		Mean (SD) age (y)		Mean (SD) proportion of European ancestry		
	Cases	Controls	Cases	Controls	Cases	Controls	
IHH	555	353	56.8 (7.40)	54.4 (11.9)	0.22 (0.18)	0.19 (0.14)	
Wake	59	66	58.1 (8.39)	58.0 (8.86)	0.21 (0.13)	0.21 (0.18)	
NC	173	246	60.7 (7.26)	54.3 (9.54)	0.19 (0.12)	0.18 (0.12)	
WashU	81	213	65.9 (10.6)	71.7 (5.69)	0.19 (0.16)	0.22 (0.16)	
Total	868	878	58.5 (8.25)	58.9 (12.2)	0.21 (0.17)	0.20 (0.14)	

Table 1. Subjects in four AA study populations

Abbreviations: Wake, Wake Forest University School of Medicine; NC, North Carolina; WashU, Washington University School of Medicine.

missing genotype data (>50%) were excluded. A logistic regression model was used to test for association under an additive model and adjusting for age, ancestry proportion, and study (Supplementary methods).

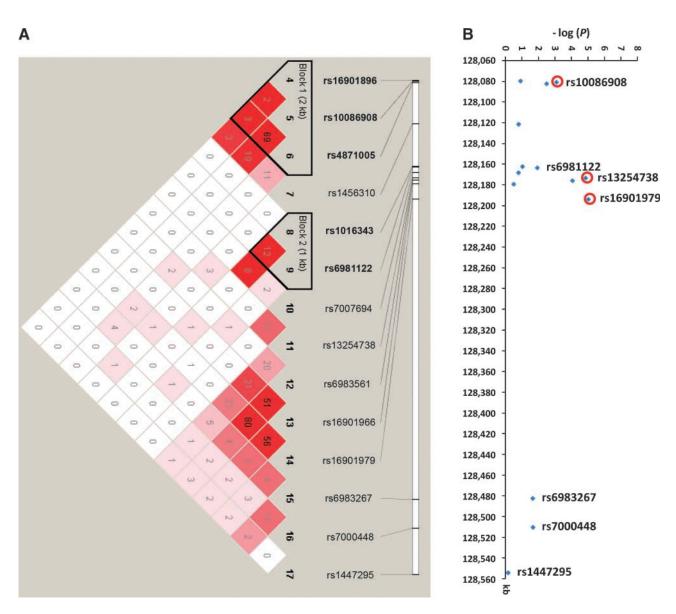
Results and Discussion

Association tests were first done for each of the 20 SNPs that were implicated in populations of European

descent in this combined AA study (Table 2A). For 17 of these 20 SNPs, the implicated risk-associated alleles were found to be more common in these AA cases than controls, and the differences were statistically significant for two of these SNPs (P < 0.05). The number of SNPs that have the same direction of association as in European populations significantly exceeded the expected number of 10 under the null hypothesis that none of these SNPs are associated with prostate cancer risk in AA (P = 0.03, goodness-of-fit test, following a χ^2

Table 2. Summar	y results of	f prostate	cancer	association	in AAs
-----------------	--------------	------------	--------	-------------	--------

CHR	SNP	BP	Alleles	Risk allele	Allele frequency		Association test	
					Case	Cont	OR (95%CI)	P^*
A. SNPs implicate	d in GWAS in p	opulations of E	uropean des	scent				
2p15	rs721048	63,043,382	'A/G	А	0.051	0.041	1.20 (0.86-1.68)	0.29
3p12	rs2660753	87,193,364	T/C	Т	0.505	0.483	1.17 (1.02-1.35)	0.029
6q25	rs9364554	160,804,075	T/C	Т	0.064	0.064	0.91 (0.68-1.22)	0.52
7p15	rs10486567	27,749,803	T/C	С	0.737	0.714	1.15 (0.99-1.34)	0.075
7q21	rs6465657	97,460,978	T/C	С	0.870	0.870	1.10 (0.89-1.36)	0.38
8q24 (region 2)	rs16901979	128,194,098	A/C	А	0.495	0.431	1.38 (1.19-1.60)	1.7E-05
8q24 (region 3)	rs6983267	128,482,487	T/G	G	0.910	0.899	1.22 (0.96-1.55)	0.10
8q24 (region 1)	rs1447295	128,554,220	A/C	А	0.326	0.325	1.06 (0.91-1.23)	0.46
9q33	rs1571801	121,506,927	T/G	Т	0.151	0.138	1.07 (0.88-1.31)	0.48
10q11	rs10993994	51,219,502	C/T	Т	0.620	0.604	1.11 (0.96-1.28)	0.15
10q26	rs4962416	126,686,862	G/A	G	0.175	0.174	1.04 (0.86-1.24)	0.72
11q13 (region 2)	rs12418451	68,691,995	A/G	А	0.120	0.127	0.91 (0.74-1.13)	0.39
11q13 (region 1)	rs10896449	68,751,243	A/G	G	0.705	0.690	1.08 (0.92-1.26)	0.35
17q12 (region 2)	rs11649743	33,149,092	T/C	С	0.937	0.931	1.13 (0.85-1.49)	0.40
17q12 (region 1)	rs4430796	33,172,153	T/C	Т	0.362	0.325	1.16 (1.00-1.34)	0.056
17q24.3	rs1859962	66,620,348	G/T	G	0.333	0.318	1.05 (0.91-1.22)	0.50
19q13	rs887391	46,677,464	T/C	Т	0.503	0.495	1.01 (0.89-1.16)	0.84
19q13 (KLK3)	rs2735839	56,056,435	A/G	G	0.671	0.694	0.86 (0.74-1.00)	0.056
22q13	rs9623117	38,776,619	T/C	С	0.758	0.749	1.09 (0.93-1.29)	0.30
Xp11	rs5945619	51,074,708	G/A	G	0.407	0.364	1.22 (0.99-1.49)	0.058
B. SNPs implicated	d in previous fir	ne mapping stud	lies of 8q24	among AA pop	ulations			
8q24 [†]	rs7008482	126,336,812	T/G	Ğ	0.858	0.842	1.25 (1.02-1.54)	0.034
8q24 [†]	rs2124036	126,717,316	T/C	С	0.795	0.782	1.14 (0.95-1.36)	0.15
8q24 '	rs780321	127,152,877	C/T	Т	0.730	0.719	1.14 (0.97-1.33)	0.107
8q24 ⁺	rs16901896	128,079,950	G/A	G	0.073	0.057	1.27 (0.95-1.69)	0.10
8q24 [±] 8q24 [±]	rs10086908	128,081,119	C/T	Т	0.793	0.744	1.31 (1.11-1.55)	1.1E-03
8q24 [±]	rs4871005	128,082,558	C/A	А	0.714	0.670	1.24 (1.06-1.44)	6.4E-03
8a24 ^s	rs1456310	128,121,615	G/A	G	0.379	0.399	0.91 (0.78-1.04)	0.17
8g24	rs1016343	128,162,479	T/C	Т	0.245	0.213	1.16 (0.99-1.37)	0.071
8q24 [±] 8q24 [±]	rs6981122	128,163,642	A/C	С	0.722	0.690	1.22 (1.04-1.42)	0.013
8q24 [*]	rs7007694	128,168,348	C/T	Т	0.779	0.749	1.15 (0.98-1.35)	0.10
8q24"	rs13254738	128,173,525	A/C	С	0.681	0.623	1.36 (1.17-1.58)	4.9E-05
8q24	rs6983561	128,176,062	C/A	С	0.511	0.457	1.31 (1.13-1.52)	2.8E-04
8q24§	rs16901966	128,179,434	G/A	G	0.339	0.329	1.08 (0.93-1.26)	0.32
8q24 [∥]	rs7000448	128,510,352	C/T	Ť	0.692	0.652	1.20 (1.03-1.40)	0.016


*Association was tested under an additive model and adjusted for age, ancestry proportion and study population.

† Reported in Robbins et al. (2007).

[‡] Implicated in a subset of JHH study (372 cases and 350 controls).

Reported in Salinas et al. (2008).

Reported in Haiman et al. (2007) and Salinas et al. (2008).

Figure 1. A schematic view of genetic association between SNPs at 8q24 and prostate cancer risk in the combined AA study. **A.** Association test for 14 SNPs at 8q24 (128,060,000-128,560,000) and prostate cancer risk among 853 patients and 874 control subjects assuming an additive model using a logistic regression model and adjusted for age, ancestry proportion, and study. Three SNPs with a red circle were independently associated with prostate cancer risk in a multivariate analysis. SNPs rs7008482, rs2124036, and rs780321 are not included in this figure because they are ~ 900 kb centromeric to these 14 SNPs. **B.** Inferred haplotype blocks of these 14 SNPs were estimated from the control subjects using the Haploview computer program, color scheme indicates pair-wise D' value with the brightest red for the strongest D' (= 1), and number indicates pair-wise r^2 values.

distribution with 1 degree of freedom), suggesting that some of these SNPs may also be associated with prostate cancer risk in AA. It is estimated that the study has 80% power to detect SNPs with allelic odds ratio (OR) of \geq 1.3 and minor allele frequency of \geq 20% at a significance level of 0.05. The limited number of SNPs reaching statistical significance level in this study may reflect the limited statistical power to detect association of moderate effect. We have also compared the association results for the 20 SNPs between this study in AAs and previous published studies in Caucasians (Supplementary Table S1). The strength of associations is similar among AAs and Caucasians, although these SNPs have very different allele frequencies in AAs and Caucasians.

Two of these 17 SNPs, located at 3p12, and region 2 at 8q24, were significantly associated with prostate cancer risk (P < 0.05) in this AA study. Of these, SNP rs16901979 at region 2 of 8q24 (nominal $P = 1.9 \times 10^{-5}$) is the only SNP that reached a study-wide significance level of 0.05 after adjustment for 20 independent tests. In addition, considerable but not statistically significant differences in allele frequencies between cases and controls were also found for SNPs at 7p15, 8q24 (region 3), 17q12 (Region 1),

and Xp11 (P < 0.1). Notably, SNP rs2735839 at 19q13 (*KLK3*) showed a reversed direction of association compared with that observed in Caucasians (P = 0.056).

We have also estimated the ORs for each study population separately and tested homogeneity of the OR among four study populations using a Breslow-Day homogeneity test (Supplementary Table S2). Significant heterogeneity (nominal P < 0.05) was found for two SNPs, rs11649743 and rs6981122. However, they were not statistically significant after taking multiple testing into account.

When 14 additional SNPs at 8q24 that were previously implicated in several AA study populations were examined in this combined study, 7 were significantly associated with prostate cancer risk at nominal P value of <0.05 (Table 2B). A multivariate analysis of all nominally significant 8q24 SNPs using a stepwise procedure and adjusted for ancestry proportion, age, and study populations revealed three independent prostate cancer risk-associated SNPs; they were rs1325 $\hat{4}738$ (P = 0.007), rs16901979 (P = 0.013), and rs10086908 (P = 0.001). The first two SNPs have been previously implicated in populations of European descent (2, 3, 6, 8-11) and AA (2, 9, 11, 16). They were ~20 kb apart and were in weak linkage disequilibrium (LD) in the AA control subjects $(r^2 = 0.23; \text{ Fig. 1})$. The last SNP (rs10086908), ~100 kb centromeric to the first two SNPs ($r^2 = 0$ with each of the two SNPs), was a novel finding. This SNP was evaluated in this study because it was initially implicated in a subset of the JHH AA study (372 cases and 350 controls; P = 0.003).¹¹ The association was replicated in the remaining 481 cases and 524 controls of this study (P = 0.03). We did not observe any significant pair-wise interaction among the three independent 8q24 risk SNPs, with P values ranging from 0.34 to 0.65.

Several other \$q24 SNPs, although not statistically significant in the multivariate analysis (P > 0.05), had results that were consistent with previous reports and warrant further evaluations in larger studies. Specifically, SNPs rs6983267 (region 3), rs7000448 (region 1), rs7008482, and rs780321 were reported to be associated with prostate cancer risk in at least one previous AA study (9, 11, 16). On the other hand, consistent with the results from two previous AA studies (11, 16), we did not find evidence for prostate cancer association with SNP rs1447295.

We have also tested the association between SNPs and disease aggressiveness. Although the association with prostate cancer was generally stronger among aggressive prostate cancer patients, no statistically significant difference in allele frequencies of these SNPs were found between aggressive and nonaggressive prostate cancer patients (Supplementary Table S3).

Although AAs have the highest incidence and mortality rate of prostate cancer, this group is severely under studied. GWAS of prostate cancer in AA can be a powerful approach to identify genetic risk variants; however, this is difficult to implement at this time because large sample sizes are needed for both the initial discovery and subsequent confirmation stages. A systematic evaluation of risk variants implicated in populations of European descent among AA is a feasible and effective alternative that has been empirically shown in this study. The discovery of three prostate cancer risk variants in AA, if confirmed, may be substantial, especially when considering that only three factors (age, family history, and race) have been documented in the past. In the future, these risk factors may be used to identify men at increased risk to prostate cancer for early screening, prevention, and diagnosis.

Several additional implications are worth noting. Novel prostate cancer risk variants at 8q24 in AA suggest that additional prostate cancer risk variants in AA may exist in the regions flanking other prostate cancer riskassociated SNPs that have been previously implicated by genome-wide studies of populations of European descent. In addition, the generally smaller LD blocks in AA may provide better positional information on causal, functional variants. Fine mapping association studies of each region harboring known prostate cancer riskassociated SNP among AA study populations are warranted. In addition, the substantially different genetic background and environmental exposures between populations of European and African descent may provide a unique opportunity to study gene-gene and geneenvironmental interactions in disease risk (20). Finally, our results suggest that studies with larger numbers of AA subjects are needed to detect risk variants with moderate effect, and this will likely require a major collaborative effort to combine multiple AA study populations.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank all the study subjects who participated the study, the multiple physicians and researchers for their contribution in designing and recruiting study subjects, including Drs. Bruce J. Trock and Alan W. Partin, St. Louis Men's Group Against Cancer to A.S. Kibel, and William T. Gerrard, Mario A. Duhon, John and Jennifer Chalsty, and P. Kevin Jaffe to W.B. Isaacs.

References

- Amundadottir LT, Sulem P, Gudmundsson J, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet 2006;38:652–8.
- Gudmundsson J, Sulem P, Manolescu A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007;39:631–7.
- Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 2007; 39:645 – 9.
- Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007;39:977–83.
 Duggan D, Zheng SL, Knowlton M, et al. Two genome-wide
- Duggan D, Zheng SL, Knowlton M, et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 2007;99: 1836–44.
- Thomas G, Jacobs KB, Yeager M, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 2008; 40:310-5.
- Gudmundsson J, Sulem P, Rafnar T, et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 2008;40:281–3.

¹¹ Unpublished data.

- Eeles RA, Kote-Jarai Z, Giles GG, et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 2008;40: 316–21.
- **9.** Haiman CA, Patterson N, Freedman ML, et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 2007;39:638–44.
- Zheng SL, Sun J, Cheng Y, et al. Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst 2007;99:1525–33.
- Salinas CA, Kwon E, Carlson CS, et al. Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2008;17:1203–13.
- Sun J, Zheng SL, Wiklund F, et al. Evidence for two independent prostate cancer risk associated loci in the HNF1B gene at 17q12. Nat Genet 2008;40:1153–5.
- **13.** Sun J, Zheng SL, Wiklund F, et al. Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res 2009;69: 10–5.

- 14. Hsu FC, Sun J, Wiklund F, et al. A novel prostate cancer susceptibility locus at 19q13. Cancer Res. In press.
- **15.** Zheng SL, Stevens VL, Wiklund F, et al. Two independent prostate cancer risk associated loci at 11q13. Cancer Epidemiol Biomarkers Prev. In press.
- Robbins C, Torres JB, Hooker S, et al. Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res 2007;17:1717–22.
- Hu JJ, Hall MC, Grossman L, et al. Deficient nucleotide excision repair capacity enhances human prostate cancer risk. Cancer Res 2004;64:1197–201.
- **18.** Smith MW, Patterson N, Lautenberger JA, et al. A high-density admixture map for disease gene discovery in African Americans. Am J Hum Genet 2004;74:1001–13.
- Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000;155:945–59.
- Tang H. Confronting ethnicity-specific disease risk. Nat Genet 2006; 38:13-5.