

AFRL-RI-RS-TR-2009-235
Final Technical Report
October 2009

ACCOUNTABILITY FOR INFORMATION FLOW
VIA EXPLICIT FORMAL PROOF

Carnegie Mellon University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report is the result of contracted fundamental research deemed exempt from public
affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is
available to the general public, including foreign nationals. Copies may be obtained from
the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2009-235 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
 JAMES SIDORAN WARREN H. DEBANY, Jr.
Work Unit Manager Technical Advisor, Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCTOBER 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

May 2007 – May 2009
4. TITLE AND SUBTITLE

ACCOUNTABILITY FOR INFORMATION FLOW VIA EXPLICIT
FORMAL PROOF

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-07-2-0028

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Frank Pfenning, Lujo Bauer, Peter Lee, Michael K. Reiter, and Brian Witten

5d. PROJECT NUMBER
NICE

5e. TASK NUMBER
00

5f. WORK UNIT NUMBER
07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University
Department of Computer Science
5000 Forbes Avenue
Pittsburgh, PA 15213-3815

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-235

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Logical techniques have been developed that capture both authorization and information flow requirements in security applications.
These logical techniques achieve a significantly higher degree of end-to-end accountability in distributed systems than is currently
possible. Furthermore, a case study has shown that these techniques are applicable to security policies that are relevant to the needs
of the intelligence community while providing much greater flexibility in security policy specification. A prototype implementation
has demonstrated the practicality of the proposed file system architecture. Symantec, the industrial partner in the project, is presently
pursuing a significant related business opportunity.

15. SUBJECT TERMS
Information Flow Requirements, Security Policy Specification, Formal Logic, Temporal Logic, Proof Carrying Code

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

24

19a. NAME OF RESPONSIBLE PERSON
James L. Sidoran

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

1 SUMMARY .. 1

2 INTRODUCTION .. 2

3 METHODS, ASSUMPTIONS, AND PROCEDURES .. 5

3.1 Development of Relevant Policy Problems ... 5

3.2 Foundations for Logics of Affirmation and Knowledge.. 5

3.3 Proof-Carrying Authorization .. 6

4 RESULTS AND DISCUSSION ... 7

4.1 Access Control for Classified Information in Logical Form ... 7

4.2 An Authorization Logic with Explicit Time .. 7

4.3 A Proof-Carrying File System ... 9

4.4 Assessment of the Proof-Carrying File System ... 12

4.5 Performance Evaluation of the Proof-Carrying File System Back End 13

4.6 Proof Search and Policy Analysis .. 15

5 TECHNOLOGY TRANSITION .. 16

6 CONCLUSIONS... 16

7 RECOMMENDATIONS .. 17

8 REFERENCES.. 18

9 ACRONYMS/GLOSSARY.. 20

1

1 SUMMARY

Logical techniques that capture both authorization and information flow requirements in security
applications have been developed. These techniques achieve a significantly higher degree of
end-to-end accountability in distributed systems than is currently possible. Furthermore, it has
been demonstrated that these techniques are applicable to security policies that are relevant to the
needs of the intelligence community while providing much greater flexibility in security policy
specification. Key is the development of a logic that allows policy statements by principals and
explicit time to coexist harmoniously.

The cornerstone of the approach is the notion of a formal proof, which can be audited by a hu-
man and checked automatically by machine, augmented with cryptographic primitives, which
provide a different form of evidence for basic logical judgments. Applications lie in security for
general distributed information infrastructures. To test the practicality of this approach, a proto-
type file system using formal proofs has been implemented called PCFS (for proof-carrying file
system). Evaluation of the file system has shown that it is both efficient and modular through a
new organization that separates a front end with proof generation and proof checking from a
back end that uses only cryptographic capabilities. A specific case study shows how realistic
security policies derived from intelligence-community needs can be specified logically, and then
implemented automatically to provide flexible, secure, and accountable access to sensitive files.

The project also laid the foundation for a technology transition to Symantec Corporation, which
is currently in progress.

2

2 INTRODUCTION

For the purpose of security, the access that principals (users, programs, etc.) have to resources
(databases, files, etc.) is usually restricted. This practice, generically called access control, is
pervasive; its use ranges from low-level memory subsystems to file systems and web servers.
Despite differences in both the resources protected and principles from whom they are protected,
the high level architecture of most access control mechanisms is similar: all calls that access a
protected resource pass through a subsystem called the reference monitor, which, based on the
identity of the principal making the call, the resource being accessed, and the nature of the call
(read, write, create, etc.) either allows the call to proceed or blocks it.

A significant question in the design of an access control subsystem is how the reference monitor
decides which requests to authorize and which to deny. The traditional solution to this problem
is to represent the access control policy as a take that for every principal k, resource r, and opera-
tion o tells whether principal k may perform operation o on resource r. This representation is
called an access control matrix, usually implemented through access control lists (ACLs) asso-
ciated directly with resources. Although access control lists and matrices are both simple to im-
plement and widely used in practice, they are extremely low level and suffer from the drawback
that they not carry information about why a certain access is allowed or denied. This limits their
use in scenarios where accountability of access is a concern (e.g., we would like to know why an
individual was able to read a file not merely that she was able to). This is important in military
and intelligence servers with classified information, for businesses that have proprietary data to
protect, and in matters of customer privacy. The second problem with access control matrices
and lists is that it is difficult to keep them up to date with changing access requirements, and this
often results in policy errors and inadvertent access. We illustrate the limitations of access con-
trol matrices and lists in the following example.

Example. Consider a hypothetical scenario where Alice is an employee of the company Auth-
Co, and within the company world for the team GovTeam, which handles contracts from the
government. As a member of the team, Alice has access to a government dataset d. Owing to
the sensitive nature of the dataset, this access is contingent upon her maintaining a government
security clearance. Suppose that the access control policy for the dataset d is represented using
ACLs. While Alice has access, her name would be on the ACL of d. Observe, however, that the
access control list does not provide any evidence as to why Alice has this access (it does not
record her affiliation with GovTeam nor her security clearance). As a result, if an internal audi-
tor were to try to determine whether it is legitimate to have Alice’s name on the ACL or not, he
would have to consult many other sources. Further, if Alice were to lose her government securi-
ty clearance, some administrator would have to manually observe this change and remove her
name from the ACL. If, for any reason, the administrator failed to take notice or to act promptly,
Alice would continue to have access when she should not, resulting in a security breach.

The problems with ACLs, as illustrated by the example, can be eliminated using a rule-based
representation of policies. The policy is represented as a set of cause and effect rules, and access
is allowed only if it is entailed by the rules. As an illustration, the policy in the example may be
expressed by the following rules.

3

1. For any principal k, if k works for GovTeam and k has a government security
clearance, then k can read dataset d.

2. Alice works for GovTeam.

3. Alice has a government security clearance.

The main advantage of representing the policy as rules is that the reason for granting access be-
comes explicit. Here, for instance, was an audit to be performed, it would be clear that Alice has
access because she works for GovTeam and also has a government security clearance. Moreo-
ver, if access is granted only if explicit evidence for it is provided or inferred, this evidence may
be logged, increasing accountability and improving assurance in the access control subsystem.
The second advantage of using rules is that such a representation ensures that the consequences
of the policy change automatically change with conditions. For example, if Alice were to lose
her government security clearance, there would no longer be any inference to authorize Alice’s
read request, and hence she would no longer be able to read d.

The next relevant issue is determining a formal language that may be used to represent policy
rules and determine their consequences. This work rests on the idea that formal logic may be
used to represent policy rules and enforce them. As an example, the policy rules (1)-(3) may be
represented by the three formulas below, assuming that the predicate worksFor(k, GovTeam)
means that k works for GovTeam, hasClearance(k) means that k has government security clear-
ance, and may(k, d, read) means that k is allowed to read dataset d.

1. ∀k. ((worksFor(k, GovTeam) � hasClearance(k)) � may(k, d, read)

2. worksFor(Alice, GovTeam)

3. hasClearance(Alice)

Now it is easy to check that (1)-(3) logically entail the formula may(Alice, d, read). The use of
logic for policy representation is not a mere convenience, but very natural and pragmatic.

• As illustrated above, the cause and effect nature of policy rules make it natural to
express them in logic.

• Once represented in logic, the consequence of the policy rules and unambiguous
since they are defined by the logic’s semantics. Hence logic provides a rigorous
foundation for defining the meanings of policies.

• A logical proof that shows why policy rules authorize access may be logged, im-
proving the accountability of the access control subsystem.

• Logical inference and automatic proof search based on it can be used to imple-
ment the policy rules directly.

4

Having established the central role of logic for reducing errors in policy administration and im-
proving accountability for access control decisions, three further questions arise which form the
main threads of this project.

1. Which access control policies and high-level policy motifs are prevalent in the intelli-
gence community?

2. Which forms of logical expression should be directly available in the logic so that
policies from the intelligence community can be represented?

3. Can we design and implement a practical file system that exploits logic-based autho-
rization?

The remainder of the reports is organized along our answers to these questions. The findings
strongly support the contention that logic-based authorization is practical, and could be of great
value to the intelligence community in significantly reducing policy administration errors and
accountability for information flow.

5

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Development of Relevant Policy Problems
We coupled decades of Symantec internal experience working with the intelligence community,
including decades of experience by individuals who were previously government service mem-
bers of the intelligence community, with dozens of more recent meetings with intelligence com-
munity stakeholders in the process of formulating policy on handling of classified and sensitive
but unclassified information. These meetings included meetings with individuals from NSA,
CIA, and DIA, along with other intelligence community leaders such as members of the Office
of the Director of National Intelligence (O-DNI). Additionally, researchers from Symantec met
with intelligence divisions of military commands such as Joint Forces Command, as well as De-
fense Contractors such as Lockheed Martin, actively involved in several intelligence agency pro-
grams along with other executive branch government departments such as the Department of
Homeland Security.

The results of these meetings are summarized in five internal policy reports delivered by Syman-
tec (Serenyi & Witten 2008) acting as a subcontractor, to Carnegie Mellon University. Another
source of information is Executive Orders of the White House (1995, 2003) and the Director of
Central Intelligence (1995, 1998). We then synthesized these reports and additional information
into a formal, logical theory in the authorization logic described in a technical report (Garg et al.
2009).

3.2 Foundations for Logics of Affirmation and Knowledge
Although many authorization policies may be represented in propositional or first-order logic,
there are some commonly occurring policy idioms that are best represented with specialized log-
ical connectives? We use the term authorization logic to designate any logic that has been de-
signed with the explicit purpose of representing authorization policies. One particularly impor-
tant connective, written “k says s” for a principal k and sentence s, expresses that principal k
says, claims, or supports the formula s, without forcing s to be necessarily true. As the following
continued example illustrates, it is extremely important for representing authority of principals
on parts of policies, and for capturing the interaction between rules created by different princip-
als.

Example (continued). Let us assume there are three principals involved in determining authori-
zation: (a) Admin, who has ultimate authority on deciding who should have access to the dataset
d, (b) AuthCoHr which determines team affiliations of employees of AuthCo, and (c) Gov,
which certifies government security clearances. The principal who certifies (creates) each rule is
indicated at the beginning of the rule in square brackets [-].

1. [Admin] for every principal k, if AuthCoHr certifies that k works for GovTeam and Gov
certifies that k has a government security clearance, the k is allowed to read dataset d.

2. [AuthCoHr] Alice works for GovTeam.

3. [Gov] Alice has a government security clearance.

6

Using the connective k says s; these rules may be represented as follows:

1. Admin says k. (((AuthCoHr says worksFor(k, GovTeam)) � (Gov says hasClear-
ance(k))) � may (k, d, read))

2. AuthCoHr says worksFor(Alice, GovTeam)

3. Gov says HasClearance(Alice)

In general, Principal Alice will be allowed to read dataset d only if there is a proof of the follow-
ing formula: Admin says may (Alice, d, read). This is the case in the developed authorization
logic.

Our method has been to analyze various proposed laws of logical reasoning with the “says” con-
nective that are both semantically sound and in accord with its policy interpretation as in the ex-
amples above.

3.3 Proof-Carrying Authorization
Proof-carrying authorization (PCA) is a rigorous mechanism based in cryptography and formal
proofs that is used for distributed enforcement of authorization policies represented in logic. It is
based on two central ideas:

• Principal k should be allowed to perform operation o on resource r only if k can produce
a formal proof object which shows that the policy rules in effect entail that access should
be allowed. For instance, in our running example, k would have to prove the formula
Admin says may(k, r, o) from the policy formulas (1)-(3).

• Policy rules can be established a priori using digital signatures: if principal k signs the
formula s with its private key, then the resulting digital certificate is evidence that k says
s holds.

Based on these ideas, PCA allows distributed enforcement of authorization policies represented
in logic in the following manner. Administrators sign policy rules in digital certificates which
are then published through any mechanism. A principal k wishing to access, selects certificates
it believes relevant to its authorization, and, taking the policy rules instated by the certificates as
hypotheses, construction a logical proof M which establishes that it has legitimate access. Along
with its request to perform access, k also provides the proof M and the certificates used in it to
the reference monitor (hence the adjective “proof-carrying”). The reference monitor verifies the
digital certificates by checking the digital signatures in them, and also verifies the logical proof
M. If both checks succeed, the access is allowed, otherwise it is blocked.

While this work follows this method to a large extent, PCA as sketched above it too inefficient
for direct use in a file system, where access may be frequent and speed is essential. In a more
distributed setting, however, the above has been shown to be successful (Bauer et al. 2007, Bauer
et al. 2008).

7

4 RESULTS AND DISCUSSION

4.1 Access Control for Classified Information in Logical Form
Analysis of the access control policies in the intelligence community has led to the following
findings regarding the design of authorization logic:

• The “says” connective, which is used to represent certificates digitally signed by princip-
als, should be weak in deductive power in order to limit inadvertent consequences of pol-
icies.

• The logic should be intuitionistic, which is logic of explicit evidence. Using an intuitio-
nistic logic means that the reasons for why access was granted are clear and direct, be-
cause intuitionistic logic prohibits the rule of indirect proof.

• The logic should be first-order rather than higher-order. First-order logics are easier for
proof search and to establish meta-theoretic properties of the logic itself and of policies
encoded in it. The added expressive power of higher-order logics does not seem to be re-
quired in practice and might indeed lead to unintended consequences.

• The logic should incorporate interpreted predicates whose truth or falsity is decided at
time of access based on the current system state. In particular, interpreted predicates
should have access to meta-data associated with a file. This is important to capture the
life cycle of sensitive information, which includes stages as a working paper, a classified,
or an unclassified document.

• The logic should integrate a concept of absolute time, because many policies we found
are dynamic and require explicit time bounds. For example, a working paper must be
classified, declassified, deleted, or reinstated as a working paper within 90 days from its
creation. Another example is background checks necessary for security clearance, which
expire after 5, 10, or 15 years, depending on the level of clearance and kind of check per-
formed.

Once an authorization logic with these characteristics has been defined (as is detailed in the next
section), then it is straightforward for a researcher to cast informal policy rules into the authori-
zation logic. Detailed policy rules, together with an explanation of their informal meaning, can
be found in an extensive technical report (Garg et al. 2009).

4.2 An Authorization Logic with Explicit Time

An authorization logic, called BL, that responds to the findings regarding access control policies
in the previous section is presented in a technical report (Garg 2008), refining an earlier design
(DeYoung et al. 2008). First, BL contains all the usual connectives and quantifiers from intui-
tionistic predicate logic. Second, BL contains the modality k says s, which means that principal
k claims the truth of formula s, without necessarily forcing s to be true. In practice, the modality
is used to distinguish policy rules and credentials created by different individuals or sources of
authority. That is, a certificate containing sentence s digitally signed by k is represented on the
logical side precisely as the formula k says s. BL also supports a fixed hierarchy of principals,
primarily in order to represent local authorities and commonly shared assumption. We write k’ ≥
k if k’ is stronger than k, so k claims everything that k’ does.

8

Logically, the modality can be characterized by the following laws:

• If |- s then |- k says s. This is the modal rule of necessitation, for each principal.

• |- (k says (s � r)) � (k says s � k says r)

• |- (k says s) � (k’ says (k says s))

• |- (k’ says s) � (k says s) if k’ ≥ k

It is also important to see the laws that are not validated. Most importantly

• Not |- (k says s) � s.

• Not |- s � (k says s).

The first expresses that just saying (digitally signing) something does not make it true. The
second expresses that we are not forced to affirm something which is true but depends on as-
sumptions (some of which we might not share), while the rule of necessitation forces us to accept
what is logically valid, without possibly contentious assumptions. The finding is that this bal-
ance of laws provides an excellent foundation for security policies in the intelligence community
in neither being too strong (which might admit too many accesses) nor too weak (which might
not admit enough).

Support for explicit time in BL is manifest in the modality s @ [u, w], which means that s is true
during the time interval [u, w], but possibly not outside of it. The variables u and w both denote
time points, encoded as integers that count seconds from a fixed point of reference. This modali-
ty is very useful for representing policies that expire at stipulated points of time, as well as those
that use time relatively (for example, allowing access for 90 days from an event such as a file
creation).

Explicit time is useful for determining consequences of policies in practice only in conjunction
with methods for reasoning about inequality between time points. For example, if Alice has a
certificate that allows her a certain access from January 1, 2007 to December 31, 2009, it is only
reasonable that she be able to derive from it a proof that allows her access on August 12, 2009.
Constructing such a proof requires the ability to reason that August 12, 2009 lies between Janu-
ary 1, 2007 and December 31, 2010. To this end, BL includes special formulas called con-
straints, on particular form of which may be inequalities on time points, u ≤ w. Constraints dif-
fer from ordinary predicates in that they are not established by hypothesis; instead their verifica-
tion relies on an external constraint solver which is formally embedded in the logic via a satisfac-
tion judgment |= c, where c denotes a constraint.

Besides explicit time, many real authorization policies use the state of the system as an input.
The state may represent the progress of a workflow or a protocol. As a simple example, the au-
thorization policy for a homework directory in a class administration system may allow read and
write access for the teaching assistants while the homework is being prepared, read and write
access for students while the homework may be submitted, and read access for teaching assis-
tants after submissions are closed. A simple way to model the different stages – preparation,
submission, and post-submission – may be as a state system; the stage may be written by the in-
structor as an attribute (meta-data) on the homework directory, and the access policy rules may
be contingent upon the value of the attribute. To incorporate such elements of state in policy
rules, BL allows interpreted predicates, whose truth is not justified by the logical hypotheses, but

9

by an external solver that refers to the state of the system. In the case of our example here, the
solver would check the value of the attribute on the homework directory. From a proof-theoretic
perspective, constraints and interpreted predicates are similar. We maintain a syntactic distinc-
tion between the two in BL because they are enforced differently in the proof-carrying file sys-
tem (PCFS).

Here are some policy idioms that can be expressed in BL. The simplest use of time is to
represent certificate expiration. For example, if Alice signs a certificate allowing Bob read-
access to the file secret.txt from February 1, 2009 to February 28, 2009, this can be represented
in BL as the formula (Alice says (may Bob secret.txt read)) @ [2009:02:01,2009:02:28]. The
interaction of the @ connective with constraints in BL ensures that this time interval is respected
during enforcement.

The second crucial policy idiom is expiration of access rights not necessarily tied to certificates.
As an example, consider a so-called working paper in the intelligence community. Working pa-
pers are marked by an extended file attribute status which is set to working (u), where u is the
time of file creation. The following, extracted from the case study of the intelligence communi-
ty, expresses that k may read the file f, if the owner k’ of f affirms that this is the case, and the file
has been a working paper for at most 90 days.

• Admin says (has-xattr(f, status, working(u)) � owner(f, k’) � k’ says may(k, f, read) �
may(k, f, read)) @ [u, u+90d]

BL satisfies the kind of metatheoretic properties, which show that it is well-defined as logic. In
particular, its natural deduction formulation satisfies normalization, and its sequent calculus for-
mulation satisfied cut elimination. Interested readers may refer to a technical report for addition-
al details (Garg 2008). One property that it does not satisfy is decidability. Fortunately, in the
context of our main intended application, a proof-carrying file system, decidability is not re-
quired. What is, however, required is that proofs expressed in the logic can be verified with rela-
tive efficiency. That is indeed the case – some measurements can be found in the next section.

4.3 A Proof-Carrying File System
The proof-carrying file system (PCFS) has been implemented as a testbed for logic-based autho-
rization in practice. It is freely available (PCFS 2009) and described in detail in a technical re-
port (Garg & Pfenning 2009). It builds on ideas from proof-carrying authorization (PCA). It is
currently implemented as a local file system for Linux servers, but its architecture has been de-
signed to support distribution. The name PCFS is an acronym for Proof-Carrying File System,
even though access requests in PCFS do not carry proofs as they do in proof-carrying authoriza-
tion. Instead proof verification is offlined to trusted verifiers that are invoked prior to file access.

Briefly, PCFS works as follows. The access policy is represented as logical formulas in BL and
distributed to users in the form of digital certificates signed by policy administrators. A user con-
structs formal proofs, which show that the policy entails certain permissions for her. Each proof
is checked by a trusted proof verifier, which gives the user a signed capability in return. This ca-
pability, called a procap (for proven capability), can be used repeatedly to authorize access to
file system operations; the file system checks the procap each time it is required for authoriza-
tion. Therefore, policy enforcement in PCFS follows the path:

10

Figure 1 shows the PCFS architecture. Numbers are used to label steps in order in which they
occur in practice. Steps 1–6 deal with the logic, and include proof generation, proof verification,
and creation of procaps. These steps are performed in advance of file access, and happen infre-
quently (usually when a user accesses a file for the first time). Once procaps are stored, they can
be used repeatedly to perform file operations (steps 7–12). The solid black vertical line in the
diagram separates parts that happen in user space, that is, before and after a file system call (left
side of the line) from those that take place during a file system call (right side of the line). In the
following we describe the steps of Figure 1 in some detail.

Figure 1: PCFS Architecture

Policy creation (Step 1). A policy is defined as a set of formulas in the logic BL that determine
access rights. An access right is a triple <k, f, and p>, which means that user k (Alice, Bob, etc)
has permission p (read, write, etc) on file or directory f. A policy is concretely represented as
digital certificates, signed by individuals who create it. PCFS provides a command line tool,
pcfs-cert, to help administrators check formulas for adherence to logical syntax, to digitally sign
them, and to convert them to a custom certificate format.

Policy Proof Procap File Access

11

Proof generation (Steps 2–3). Once certificates have been created by administrators and given
to users, the latter use them to show that they are allowed certain permissions in the file system.
The basic tenet of PCFS, as in PCA, is that a user k is allowed permission p on resource f at time
u, if and only if the user can provide a formal logical proof M which shows that the policy in ef-
fect entails a fixed formula auth (k, f, p, u). To help users construct the proof M, PCFS provides
an automatic theorem prover for BL, through the command line tool pcfs-search. This tool is
based in logic programming; its underlying theory is explained in a technical report (Garg 2009).
Figure 1 shows the user giving the policy (certificates) to the proof search tool in step 2, and the
proof search tool returning a proof in step 3. Typical proof construction in PCFS takes several
hundred milliseconds. A salient point is that the proof search tool is not a trusted component of
PCFS and a user may use any method to create proofs.

Proof verification (Steps 4–5). Once the user has constructed a proof M, this proof (together
with the certificates used to construct it) is given to a proof verifier, which is invoked using
another command line program pcfs-verify (Step 4 in Figure 1). The verifier is a trusted compo-
nent of PCFS. It checks that the logical structure of the proof M is correct, and that all certifi-
cates used in the proof are genuine, that is, their digital signatures check correctly. If both these
hold, then the verifier gives back to the user a procap, which is a capability that mentions the
right <k, f, p> that the proof grants (Step 5). The procap also contains some conditions on which
the proof depends and is signed using a shared symmetric key that is known only to the verifier
and the file system interface. The method used for verification of BL proofs and extraction of
conditions from them is discussed in a technical report (Garg & Pfenning 2009). A typical proof
verification including creation of a procap takes several tens or a few hundred milliseconds, de-
pending on the size of the proof.

Procap injection (Step 6). After receiving a procap, the user invokes another command line
tool to put the procap in a central store marked “Procap Store” in Figure 1. This store is in a des-
ignated part of the PCFS file system, and is accessible to both users as well as the system inter-
face. The system interface looks up this store to find relevant procaps when file system calls are
made.

File system call (Step 7). A call to the PCFS file system is made through the usual POSIX file
system API during the execution of a user program or through a shell command. PCFS respects
the standard POSIX interface, so user programs and shell commands don't need to change to
work on it. However, before a file system call is executed the user or the program must ensure
that procaps authorizing all needed permissions have been created and injected using Steps 2–6.

Procap look-up and checking (Steps 8–10). Once a program has made a file system call the
file system looks up one or more procaps to authorize the operation (Steps 9 and 10). The exact
procaps needed to authorize each operation vary. If all relevant procaps are found, they are
checked. Checking a typical procap takes only 10–100μs (compare the time taken to check a
proof, which is of the order of tens or hundreds of milliseconds.

Error (Steps 11a, 12). If any procap needed for performing the requested file operation is miss-
ing or fails to check an error code is returned to the user program.

12

File operation (Steps 11b, 11c, 12). If all relevant procaps needed to perform the requested file
operation are found, and successfully check, then the file operation is performed. In the current
implementation of PCFS, actual I/O is performed by redirecting to an existing file system (Step
11b). Hence PCFS is a virtual file system that layers logic-based access control on another file
system.

4.4 Assessment of the Proof-Carrying File System
The merits of the logic-based approach to authorization have already been discussed above, as
has its suitability for access-control policies in effect in the intelligence community. The more
traditional approach to exploiting policies expressed in authorization logic has been proof-
carrying authorization (PCA), where the proof of access is supplied upon request by the refer-
ence monitor, directly at time of access. There are two main advantages of the PCFS approach
over more traditional architectures for PCA.

Modularity. Owing to the separation of the proof verifier from the reference monitor, the access
control subsystem factors into two parts, both conceptually and in the implementation: (a) the
front end that understands the logic and digital certificates, and performs proof search and proof
verification to generate procaps, and (b) the back end that checks procaps to authorize access and
performs resource access. The two parts only interact through procaps and are otherwise inde-
pendent. In Figure 1, the front end corresponds to steps 1–6 and the back end corresponds to
steps 7–12. This factorization has the following merits:

• The front end may be changed to support a different logic, or even replicated to support
two authorization logics simultaneously, without any need to change the back end.

• The same front end can be used with different back ends

• The front end and back end can be implemented, tested, and debugged separately, possi-
bly by different teams having expertise in logic and systems programming, respectively.
There are no compile-time dependencies between the two parts, but they have to agree on
a common structure for procaps.

Backwards compatibility. By storing procaps in a central location (“procap store” in Figure 1)
rather than requiring programs to provide them at the time of access, as PCA does for proofs,
PCFS is able to maintain backwards compatibility with the POSIX file system interface. This
allows existing programs to run without modification, provided that enough procaps are generat-
ed in advance to authorize all access they need. A complication arises for files that programs
create while they execute, in particular, temporary files that word processors and spreadsheets
often create. To allow programs to access such files without the need to create and check proofs,
the file system automatically generates default procaps that give the creating user read and write
access to a new file or directory for a certain period of time. As a result, even sophisticated soft-
ware like word processors and spreadsheets work seamlessly on PCFS. Access through default
procaps can be turned off by changing an extended attribute on the file or directory on which
such access is conditional.

13

4.5 Performance Evaluation of the Proof-Carrying File System Back End
In this section, a performance evaluation of the PCFS back end is presented. Specifically, mi-
crobenchmarks are used to evaluate the overhead of access checks during read, write, stat, create,
and delete operations, together with a measurement of the effectiveness of an in-memory procap
cache. To evaluate performance in practice, we also present the results of two simple macroben-
chmarks. Since we are primarily interested in measuring the overhead of procap-based access
checks, our baseline for comparing performance is a Fuse-based file system that does not per-
form the corresponding checks, but otherwise runs a server process and uses an underlying ext3
file system, just as PCFS does. We call this file system Fuse/Null. For macrobenchmarks we also
compare with a native ext3 file system. All measurements reported here were made on a 2.4GHz
Core Duo 2 machine with 3GB RAM and a 7200RPM 100GB hard disk drive, running the Linux
kernel 2.6.24-23.

Read and write throughput. By default, PCFS does not make any access checks when read or
write operations are performed on a previously opened file. As a result, it’s read and writes
throughput is very close to that of Fuse/Null. The following table summarizes the read and writes
throughputs of PCFS and Fuse/Null based on reading and writing a 1GB file sequentially using
the Bonnie++ test suite.

Table 1. Read and write throughput of PCFS

Operation PCFS (MB/s) Fuse/Null (MB/s)

Read 538.69 567.47

Write 73.18 76.05

Even if access checks on every read and write are enabled, read and write throughputs do not
show a significant change as long as required procaps remain cached in memory.

File stats and effectiveness of caching. Besides read and write, two other very common file
operations and open and stat (reading a file’s meta-data). In terms of access checks, both are
similar, since usually one procap must be checked in each case. We report in the table below the
speed of the stat operation and the effect of the in-memory procap cache with different hit rates.
All measurements are reported in number of operations per second, as well as time taken per op-
eration. For comparison, performance of Fuse/Null is also shown.

14

As can be seen from Table 2, the procap cache is extremely helpful in attaining efficiency.

Table 2. Effectiveness of procap caching in PCFS

Cache hit
rate

0% 50% 90% 95% 98% 100% Fuse/Null

Stats per
second

5774 7186 8871 9851 11879 23652 36042

Time per
stat (μs)

163.2 139.2 112.7 101.5 84.2 42.2 27.7

File creation and deletion. Table 3 lists the number of create and delete operations per second
that are supported by PCFS and Fuse/Null. These are measured by creating and deleting 10,000
files in a single directory.

Table 3. File creation and deletion in PCFS

Operation PCFS (op/s) Fuse/Null (op/s)

Create 1386 4738

Delete 1989 15429

PCFS is approximately 3.5 times slower than FUSE/Null in creating files. This is because in this
experiment PCFS also created six default procaps for every file created. As a result, the PCFS
numbers measure creation of seven times as many files in three separate directories. Deletion in
PCFS in this experiment is nearly 7.7 times slower than that in Fuse/Null. This is because when a
file is deleted in PCFS, one procap must be looked up, parsed, and checked, and all procaps re-
lated to the file must later be deleted. In this case, each file deletion in PCFS corresponds to sev-
en file deletions on the ext3 file system in three different directories.

Macrobenchmarks. To understand the performance of PCFS in practice, we also ran two simple
macrobenchmarks. The first (called OpenSSL in the table below), unpacks the OpenSSL source
code, compiles it and deletes it. The other (called Fuse in the table below) performs similar oper-
ations for the source of the Fuse kernel module five times in sequence. As can be seen, the per-
formance penalty for PCFS as compared to Fuse/Null is approximately 10% for OpenSSL, and
2.5% for Fuse. The difference arises because the OpenSSL benchmark depends more on file cre-
ation and deletion as compared to the Fuse benchmark. Ext3 is the native file system in the Li-
nux kernel we used.

Table 4. PCFS Macrobenchmarks

Benchmark PCFS Fuse/Null Ext3

OpenSSL 126 114 94

Fuse x 5 79 77 70

15

In summary, assuming a low rate of cache misses, the performance of PCFS on common file op-
erations like read, write, stat, and open is comparable to that of Fuse/Null. On the other hand,
less common operations like create and delete are slower because procaps must be managed.

4.6 Proof Search and Policy Analysis
Since logical proof is paramount to access control in the PCFS architecture, techniques for con-
structing such proofs from policies in the front end of PCFS and related systems have been de-
veloped. One approach is tailored to settings where credentials needed to complete a proof
might need to be obtained from, or reactively created by, distant components in a distributed sys-
tem. In such contexts, the approach substantially improves upon previous proposals in both
computation and communication costs, and better guides users to create the most appropriate
credentials in those cases where needed credentials do not yet exist. At the same time, the strate-
gy offers strictly superior proving ability, in the sense that it finds a proof in every case that pre-
vious approaches would (and more). It has been implemented in the Grey access-control testbed
at Carnegie Mellon, and further evaluated using simulations of other deployments (Bauer et al.
2007).

Proof-generation strategies have been further enhanced by showing that applying association rule
mining to a history of accesses can predict changes to access-control policies that are likely to be
consistent with users' intentions. This enables these changes to be instituted in advance of mis-
configurations interfering with legitimate accesses, for example, by prompting the creation of
needed credentials in a logic-based authorization framework. Instituting these changes requires
consent of the appropriate administrator, of course, and so a primary contribution of this work is
to automatically determine from whom to seek consent and to minimize the costs of doing so.
We showed using data from the Grey deployment that these methods can reduce the number of
accesses that would have incurred costly time-of-access delays by 43%, and can correctly predict
58% of the intended policy. These gains were achieved without impacting the total amount of
time users spent interacting with the system (Bauer et al. 2008).

The techniques sketched above are not yet directly applicable in PCFS, which is currently im-
plemented as a centralized system. Proof-search techniques in the centralized setting, for direct
use in our PCFS file system prototype have also been developed in implemented. The resulting
proof search procedure for a practically sufficient fragment of our logic BL (Garg 2009) is based
on insights from the domain of logic programming, and has been shown to be sufficient for typi-
cal uses of PCFS (Chaudhuri & Garg 2009).

Finally, some techniques for reasoning about policies themselves, expressed in our authorization
logic, have been developed. This requires reasoning about the semantic consequences of poli-
cies, specifically with respect to information flow as represented by the knowledge state of the
principals. The preliminary results are quite promising (DeYoung & Pfenning 2009).

16

5 TECHNOLOGY TRANSITION

Symantec believes that aspects of the technology explored under this effort have transition po-
tential. For this reason, Symantec has applied more than a dozen software developers to the task
of building a commercially viable prototype over the course of a year.

6 CONCLUSIONS

Traditional methods for access control, such as access control lists, operate at a very low level of
abstraction: with individual files and individual principals. This creates numerous problems in
policy administration, because high-level policies about who should have access to which data
have to be manually translated into access control lists and be maintained. This is both labor-
intensive and error-prone, supported by much anecdotal evidence both from industry and the in-
telligence community. Ideally, access control policies can be both specified and enforced at a
very high level of abstraction, namely at the level they are stated in informal government docu-
ments detailing the handling of sensitive information.

The key components to achieving this are logic of authorization that is expressive enough to cap-
ture the kinds of policies in effect in the intelligence community and a practical enforcement me-
chanism that directly uses the logic. The central accomplishments of this project can therefore
be summarized as follows:

• Development of a logic rich enough to accurately capture policy motifs in the intelligence
community. Briefly, access to a sensitive document is granted if there is a formal proof
in the logic attesting this fact. This proof embodies the reason why a principal should be
given this access, leading to greater accountability than hitherto possible.

• Case study of policies in effect in the intelligence community. The policies have been
elicited through personal interviews of intelligence officials as well as publicly available
reference material. The result is a formalization of a policy, which should be seen as an
approximate model; consistent with unclassified information we were able to gather.

• Implementation of a file system that enforces access control policies through formal
proof. This file system called PCFS has been evaluated with respect to efficiency goal
and found to be practical for typical uses. Moreover, its architecture makes it backward
compatible with POSIX standards, which eases the difficult of using it with standard
software packages.

We conclude that security architecture for sensitive information, in particular in the intelligence
community, is practical and can have numerous benefits, including reduction of error rates and
greater accountability for information flow.

17

7 RECOMMENDATIONS
Based on our findings, we make two primary recommendations.

• Complex authorization policies regarding sensitive information in the intelligence com-
munity can be expressed in sufficiently rich authorization logic such as BL. The render-
ing of policies in logical form can be used as a fulcrum between policy administration on
one side, and policy enforcement on the other, which is significantly less vulnerable to
human error. Moreover, formal proofs underlying access control decisions have the po-
tential to constitute raw material for powerful auditing tools. We recommend that ques-
tions of workflow, audit, and policy analysis be pursued further in order to address the
remaining problems that have to do with the human interface to the developed technolo-
gy.

• The prototype implementation of a proof-carrying file system (PCFS) has demonstrated
that potential efficiency barriers can be overcome. PCFS is practical. However, in the
intelligence community we believe there is a greater need for distributed secure storage
as compared to a local file system like PCFS. This raises new opportunities and new
questions, specifically with respect to certificate discovery, policy administration, and
various protocol issues. A further investment in this technology seems indicated, in par-
ticular after the initial success of the technology transition effort at Symantec that ex-
plores some of these ideas.

 18

8 REFERENCES

(Bauer et al. 2007)
Lujo Bauer, Scott Garriss, and Michael K. Reiter, “Efficient proving for practical distributed
access-control systems,” 12th European Symposium on Research in Computer Security, Springer
LNCS 4734, September 2007 pp. 19–37.

(Bauer et al. 2008)
Lujo Bauer, Scott Garriss, and Michael K. Reiter, “Detecting and resolving policy misconfigura-
tions in access-control systems,” 13th ACM Symposium on Access Control Models and Technol-
ogies, June 2008 pp. 19–37.

(Chaudhuri & Garg 2009)
Avik Chaudhuri and Deepak Garg, “Pcal: Language support for proof-carrying authorization sys-
tems,” European Symposium on Research in Computer Security (ESORICS'09), Saint Malo,
France, September 2009.

(DeYoung et al. 2008)
Henry DeYoung, Deepak Garg, and Frank Pfenning. “An authorization logic with explicit time,”
Proceedings of the 21st Computer Security Foundations Symposium (CSF-21), June 2008 pp
133–145
Extended version available as Technical Report CMU-CS-07-166, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, revised February 2008.

(DeYoung & Pfenning 2009)
Henry DeYoung and Frank Pfenning, “Reasoning about the consequences of authorization poli-
cies in a linear epistemic logic,” Workshop on Foundations of Computer Security (FCS'09), Los
Angeles, California, August 2009.

(Garg 2008)
Garg, Deepak, “Principal-centric reasoning in constructive authorization logic,” Workshop on
Intuitionistic Modal Logic and Applications (IMLA'08), July 2008.
Extended and revised version available as Technical Report CMU-CS-09-120, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, April 2009.

(Garg 2009)
Deepak Garg. Proof search in an authorization logic, CMU-CS-09-139, Carnegie Mellon Uni-
versity, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, April 2009.

(Garg & Pfenning 2009)
Deepak Garg and Frank Pfenning, A proof-carrying file system, CMU-CS-09-123, Carnegie Mel-
lon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, June 2009.

 19

(Garg et al. 2009)
Deepak Garg, Frank Pfenning, Denis Serenyi, and Brian Witten, A logical representation of
common rule for controlling access to classified information, CMU-CS-09-139, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, June 2009.

(PCFS 2009)
PCFS, a proof-carrying file system.
Available at http://www.cs.cmu.edu/~dg/pcfs, Version 2.1, June 2009.

(Serenyi & Witten 2008a)
Denis Serenyi and Brian Witten, Reports on policy formulation dynamics: Information access
control policies with the intelligence community, Internal Reports 1–5, Symantec Corporation,
20330 Stevens Creek Blvd., Cupertino, CA 95014, January–November 2008.

(Serenyi & Witten 2008b)
Denis Serenyi and Brian Witten, Initial design of PCA file system and workflow control, Internal
report, Symantec Corporation, 20330 Stevens Creek Blvd., Cupertino, CA 95014, November
2008.

http://www.cs.cmu.edu/~dg/pcfs

 20

9 ACRONYMS/GLOSSARY

PCFS Proof-Carrying File System

ACL Access Control List

PCA Proof-Carrying Authorization

BL An authorization logic with explicit time and interpreted predicates

Procap Proven Capability, signed by a trusted proof verify

Fuse File System in User Space, basis for microbenchmark performance evaluation

