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1. Introduction 

Atomchipsare miniature structures built to control and manipulate ultracold atoms. They can be 
constructed using techniques borrowed from the integrated circuit, microelectromechanical 
systems (MEMS), and integrated optics industries. The goal is to create miniature structures that 
can be used to produce optical, electrical, or magnetic fields for manipulating and transporting 
atoms in a coherent way on a general atom chip circuit. A recent review of atom chip techniques 
is available in Fortágh (2007). 

Some atom chip structures may be thought of as miniature versions of larger devices common in 
atomic physics laboratories where cold atom techniques are used. However, some devices rely 
on the miniature scale of the traps available on atom chips to produce quantum effects. Single 
mode operation of an atomic waveguide using ultracold atoms requires that the physical scale of 
the guiding potentials be on the order of the deBroglie wavelength of the atom. The deBroglie 
wavelength is inversely proportional to the atomic momentum, so to increase the wavelength the 
momentum of the atoms must be decreased. This is accomplished by cooling the atoms using 
some combination of laser cooling and magnetic evaporation. Atoms can be cooled so that their 
wavelengths are on the order of a few hundred nanometers. This is conveniently in the range of 
available lithographic and other miniature construction techniques. 

A useful device that might be constructed using atom chips is the atom interferometer. A chip-
based atom interferometer could be used to sense inertial fields or magnetic fields. Successful 
development of miniature interferometers on atom chips would allow the development of very 
sensitive detectors based on the interference of matter waves in cold atom systems such as Bose 
condensates or Fermi degenerate gases.  

In one possible implementation of an atom chip-based interferometer, cold atoms would be 
created on the surface of an atom chip and then launched into an atom waveguide. In the 
waveguide, they would propagate towards a beam splitter. The splitter would be designed to 
cause the atomic wave packets to travel along two alternate paths through a sensing region. The 
atoms would then arrive at a beam combiner completing the basic interferometric structure. By 
counting the relative number of atoms exiting at the two output ports of the combiner (using light 
scattering or some other technique), a sensitive measure of the phase difference between the two 
alternate paths can be obtained. The main idea is that all of the necessary functions should take 
place on the surface of the atom chip so that a useful miniature instrument might eventually be 
constructed. 

The phase difference between the paths in the interferometer is the basic quantity that is 
measured in normal operation. Many things can disturb the phase difference causing errors in the 
measurement. For example, local optical, electric, or magnetic fields can perturb the internal and 
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external atomic energy levels causing the guided atoms to accumulate phase errors. In addition, 
mechanical accelerations, rotations, or vibrations of the atom chip could cause relative phase 
errors to accumulate, disturbing the measurement. The various sources of phase error in the 
interferometer must be understood, controlled, and compensated for to a high level in order that 
very sensitive measurements can be made.  

The atom waveguide in one form or another is central to the development of basic 
interferometric structures on atom chips. The quadrupole atom guide as well as the quantum 
behavior of atoms in magnetic traps has been studied by several authors (Hinds, 2000 and 2001 
Bill, 2006; Lesanovsky, 2004; Sukumar, 1997; Potvliege, 2001; Bergman, 1989); however, the 
results of these investigations are difficult to interpret because of several problems in the analysis 
techniques used. It is clear that a certain class of modes may have been missed in these other 
works. In addition, the calculations of Hinds (2000) claim logarithmically singular solutions as 
physically valid guide modes for the spin one case. This is incorrect. The missing modes, 
singularities, and other things will be discussed here and in future work based on this analysis.  

It is necessary to have a complete and correct understanding of the mode structure and the 
eigenvalues in order to predict various experimentally interesting properties of the magnetic 
guides, such as lifetime limitations or longitudinal phase shifts that may be caused by small 
perturbations in the fields. For example, small perturbations might be caused by limitations of 
the lithographic techniques currently available to construct the small wires needed. However, 
without a proper understanding of the behavior of the guide modes under the action of these 
perturbations, it is impossible to know if available construction techniques are adequate to create 
a useful atom guide. This report studies the quantum behavior of a spin one-half magnetic atom 
guided by a two-dimensional quadrupole magnetic field of infinite extent.  The technique used is 
based on the Frobenius series technique (Ince, 1956; Bender, 1978) and gives a complete 
understanding of the guide mode structure for small radial coordinates. Asymptotic solutions are 
then used as boundary conditions at a large distance from the guide center. Although, in 
principle, the series solutions are complete, the present study uses these solutions only to 
establish consistent initial conditions for a differential equation solver. In this way, a set of radial 
modes and eigenvalues are calculated; however, issues pertaining to proper normalization still 
remain to be resolved before these modes can be used for detailed quantum calculations. 

2. Magnetic Waveguides—Atom Guides using Magnetic Fields 

One of the simplest types of atomic waveguides that can be constructed on an atom chip is the 
single-wire magnetic guide. This type of guide is designed as a single straight current-carrying 
wire printed lithographically on a silicon chip. The cross section of a lithographically produced 
wire is often nearly rectangular. Assuming the detailed cross-sectional shape of the wire can be 
ignored, the magnetic field created by a current flowing along the wire encircles the wire in a 
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right-hand sense relative to the current direction. Using large external Helmholtz coils, a uniform 
bias magnetic field is applied in a direction parallel to the chip surface and perpendicular to the 
direction of the wire. The two fields will cancel at a fixed distance above the wire creating a null 
in the total transverse magnetic field that extends the length of the wire. This long null in the 
magnetic field forms a two-dimensional quadrupole field that can be used to guide atoms along 
and just above the wire. 

A two-dimensional finite element solution of the magnetic fields just above a rectangular 
current-carrying conductor is shown in figure 1. The uniform current flowing in the rectangular 
wire produces a magnetic field that is cancelled at about 60 µm directly above the wire surface 
by the field of an external pair of coils. The contour lines represent the flux density of the 
magnetic field and there is a magnetic null within the small circular contour. This null region is 
where low-field-seeking atoms will be trapped and guided in this single-wire guide design. 

 

Figure 1.  Cross-sectional view of the magnetic null above a single wire waveguide. Low-field-seeking 
atoms are guided in this local magnetic minimum. 

The single-wire guide is one of the simplest structures for magnetically guiding atoms on atom 
chips; however, it is not an ideal guide. There are several basic difficulties that make this design 
inconvenient for use in general atom chip circuits. The basic problem is that the wire must be 
perpendicular to the fixed external bias field so that the trapping region maintains its shape and  
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strength. This means that the waveguides must be straight and run in one direction only. This is a 
serious design limitation for a general waveguide. Some alternative are shown in figure 2 and 
others are discussed in Fortágh (2007). 

Quadrupole Guide

Guided Cold
Atom Cloud

Silicon Substrate

Gold Wires
Embedded in

Substrate

Hexapole Guide

Guided Cold
Atom Cloud

Silicon Substrate

Cold Atom Guide Cross Sections

 

Figure 2.  Two alternatives to the single-wire guide that could be constructed using etching techniques on a 
silicon chip. (Upper) The four-wire guide with one pair of currents going into and another pair 
coming out of the page, in which the current directions simply alternate from one wire to the 
next. The symmetry of the current distribution creates a null in the magnetic field at the center of 
the guide, which forms a transverse quadrupole field without the need of a large external bias 
coil. (Lower) A hexapole configuration shown as a simple generalization of the quadrupole 
guide; however, the magnitude of the potential varies quadratically from the center as opposed to 
the linear variation of the quadrupole. In addition, the alignment operator would be changed to  
Lz – 2Sz instead of Lz – Sz. 

By using multiple coplanar wires or by etching into the surface of the chip, it is possible to 
construct magnetic guides that can be laid out in a flexible way on the surface of an atom chip. 
These techniques can, in principle, produce approximate quadrupole guiding fields that twist and 
turn along the surface of an atom chip and preclude the need for a system of external bias coils.  
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Generalized quadrupole guiding structures for atoms might be used to create coherent splitters, 
combiners, directional couplers, and tunneling devices that are analogous designs to those 
presently used to create similar microwave or optical devices. However, the detailed analysis 
begins with the simple straight magnetic waveguide for atoms.  

3. The Hamiltonian for a Straight Magnetic Waveguide 

To study the dynamics of an atom in a magnetic waveguide, the Schrödinger equation describing 
a single neutral magnetic atom trapped in the magnetic guiding field must be solved. To 
minimize the initial complexities, the initial model is chosen to be a neutral spin 1/2 atomic level 
since it has only two magnetic levels. Although this system is essentially the same as the 
magnetically trapped or guided neutron, it is not completely representative of the magnetic 
properties of the alkali atoms that are normally used in laser cooling work. Once the study of this 
model atomic system is complete, a model of a more realistic system, such as the rubidium atom 
with F = 1,2, will be completed. A full model including hyperfine interactions, important in 
experimental systems that explore atomic clock development, could include eight or more 
magnetic sublevels. Rubidium is used at the U.S. Army Research Laboratory (ARL) for 
experimental atom chip development and a complete rubidium waveguide model will be useful 
for design and analysis of various experiments. 

3.1 Hamiltonian for a Magnetic Atom 

The quantum description of an atom moving in a spatially dependent magnetic field must include 
both internal and external degrees of freedom. This means that the momentum, position, and spin 
degrees of freedom must all be treated as quantum operators. Using m for the mass of the atom 

and M


 for the magnetic moment, the Hamiltonian is written as the sum of the kinetic energy, 
2

2

p

m
 and the interaction energy of the magnetic moment and the field B


. The result is     

  
2

2

p
H M B r

m
  

  
. (1) 

The magnetic field  B r
 

 is independent of the z-direction since it is the guiding field and is 

taken to be an ideal quadrupole field equation (equation 2), extending to infinity in the x-y plane 
and uniform along z. An additional uniform bias field B0 is added in the z-direction to help 
control possible spin-dependent losses that may occur at the zero field point at the center of the 
guide. The spatial dependence of the ideal quadrupole field is given by 

    1 0ˆ ˆ ˆB r B xx yy B z   
 

. (2) 
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A cross-sectional plot of this field is shown in figure 3. The guiding center of this field is at the 
origin where the transverse field is zero. The quantity B1 is the magnitude of the transverse field 
gradient. It is taken as greater than or equal to zero in this work, although changing the sign of B1 
simply changes the quadrupole field configuration from one with the field point inward along the 
x-axis to one with the field pointing inward along the y-axis.  

 

Figure 3.  Cross-sectional field plot of the general quadrupole guiding field used in this 
work. Fields come inwards along x and go outwards along y, resulting in a 
quadrupole null at the center that can be used for atom guiding. 

The gradient of the transverse field is what provides the trapping force that keeps the atom 
confined in the transverse direction. The transverse field is zero at the center of the guide and the 
only nonzero field component at the very center is the longitudinal bias field B0. The magnitude 

of the transverse field is 2 2
1 1B B x y B    , where  is the radial coordinate in the 

cylindrical system. Even though the field is varying in direction as one goes round the guide, the 
contours of constant field magnitude are simply circles. 

The potential is independent of the position along the guide z and therefore pz is a constant of the 
motion and is ignored here. In future problems, when variations in the potential along the z-
direction are considered, the variations in the longitudinal momentum will be included. 
Variations in the transverse potential should show up as variations in the guide propagation 
constant and this will affect the accuracy of sensitive measurements based on interferometry. 



 

7 

In this simplified model of the atom (equation 1), the magnetic moment is just the magnetic 
moment of a single outer electron. The atomic model used here can be thought of as an alkali 

atom with a spin zero nucleus and a total mass m. The magnetic moment is M S


, where  is 

the gyromagnetic ratio of the level considered and S


 is the spin angular momentum of the atom. 
Since a spin ½ system is being considered, the spin angular momentum is proportional to the 

Pauli matrices,
2

S 
  

.  

The Schrödinger equation for the guided atom eigenstates E  is  

        
2

2

2 E E Er S B r r E r
M

       
     

. (3) 

It will be solved for the energies and eigenstates. The equation 3 is made dimensionless by 
choosing a length scale such that x x  , where the new x is dimensionless. Then 

   
2 2 2

2 2

2 2E E

k
r r

M M
    

  
 and the recoil energy is defined as 

2 2

2R

k
E

M



, where 
1

k 


 is 

the wavenumber of the optical field used to cool the atom. This is a rather arbitrary choice at this 
stage, but the recoil energy is a convenient scale for atoms that have been laser cooled. After 
dividing through by the recoil energy, pulling out the relevant factors, and defining the 

dimensionless transverse field parameter 1
1 2 R

B
b

E
  

, the longitudinal field parameter 

0
0 2 R

B
b

E
 

, and the scaled energy 
R

E

E
  , the scaled Schrödinger equation becomes  

          2
1 0x y zr b x y r b r r               

   
. (4) 

The next step is to convert to the cylindrical coordinate system and derive the equation for the 
radial wave functions. In cylindrical coordinates, we have x =  cos , y =  sin , and the 
Schrödinger equation takes the following form: 

          2
1 0, cos sin , , ,x y zb b                          .  (5) 

Before reducing equation 5 further, an important conserved quantity in this problem will be 
introduced. 

3.2 The Alignment Operator 

The total angular momentum is not conserved in this system. Neither the orbital angular 

momentum 
1

zL
i    nor the spin angular momentum 

1

2z zS   individually commute with 

the Hamiltonian but the difference of these two operators does commute with H as shown in the  
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Erratum (Hinds, 2001). To show that this is the case, one can explicitly calculate the 
commutators of Lz and Sz with H. The appropriate operator form of the Hamiltonian for this 
calculation is 

  2
1 0cos sinx y zH b b          . (6) 

Both Lz and Sz obviously commute with the first and third terms of H, but the middle term that 
corresponds to the quadrupole potential is more interesting. The following straightforward 
calculations (equation 7) of both commutators show that they are equal to each other and 
nonzero unless, of course, the transverse field gradient b1 is zero or if we consider the point 
 = 0. 

 

   
 

    
 
 

1

1

1

1

1

, cos sin

sin cos

, , cos , sin
2

2 cos 2 sin
2

cos sin

z x y

x y

z z x z y

y x

y x

b
L H

i

ib

b
S H

b
i i

ib


    

    

      

    

    

  

 

    

 

 

. (7) 

The fact that the commutators are equal means that the difference Lz – Sz is a conserved quantity. 
For simplicity, the operator Lz – Sz is relabeled as z  and called the alignment operator. The 

alignment is obviously related to the angular momentum. Instead of being the sum of the two 
types of angular momentum, it is the difference. If one considers the angular momentum as a 
generator of rotation, then the alignment generates a coordinated rotation about the axis that 
maintains the angle between the field and the magnetic moment of the atom. The eigenvalues of 

z  are denoted by μ. Since the eigenvalues of Lz are integral and the eigenvalues of Sz are half-

integral in the spin ½ case, the allowed values of μ are half-integral and μ has the dimensions of 
an angular momentum. 

Consider an atom located on the positive x-axis of the waveguide with its magnetic moment 
aligned with the local magnetic field. At this position the magnetic field is pointing in the 
negative x-direction towards the origin. If the position of the atom is rotated 90° 
counterclockwise around the z-axis, it will end up on the y-axis. If the rotation is performed 
without changing the orientation of the magnetic moment, then the moment will be perpendicular 
to the y-axis at this new position. This is illustrated by the red vector in figure 4. However, the 
quadrupole magnetic field defined in equation 2 is pointing in the positive y-direction at this 
position.  
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Figure 4.  Illustration of the backwards rotation of the spin that must occur to keep a magnetic moment aligned 
with the magnetic field. The particular form of the alignment operator used here is specific to the 
quadrupole field. 

By rotating the spin of the atom 90° clockwise, the magnetic moment will be aligned along the 
magnetic field as it was at the starting point on the x-axis. This backward 90° rotation is 
illustrated by the green vector in figure 4, which is always aligned with the quadrupole field as it 
moves around the center. The operator z  is the generator of the special rotation zie    needed 
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to keep the spin aligned with the magnetic field, keeping the magnetic potential energy constant. 
It is a special property of the quadrupole field that two equal rotations of opposite sense in 
different spaces conserve the potential energy in this way. However, similar relations hold for 
higher multipole magnetic fields, in which the rotation angle of the spin must be an integer 
multiple of the actual rotation angle. 

3.3 Eigenstates Common to H and Lz  

Using the alignment operator, the Schrödinger equation in polar coordinates (equation 5) reduces 
to a radial equation for the spin components of the wave function. The first step is to rewrite the 
Schrödinger equation using the Pauli matrices, i. The quantization axis for the spin description 
is the +z-direction and this is along the propagation axis of the guide. This basis is referred to as 
the global spin basis. The spin-up, +, and spin-down, –, components are referred to this global 
spin basis. Using the following definitions  

 

         

   
 

2
1 0, cos sin , , ,

,
,

,

0 1 0 1 0
, ,

1 0 0 0 1

x y z

x y z

b b

i

i

   



              
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 (8) 

in the Schrödinger equation, we arrive at the coupled system 
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. (9) 

The components are completely uncoupled if the transverse field b1 is turned off by setting 
b1 = 0. In this limit, the problem reduces to that of a free particle with a magnetic moment in a 
uniform magnetic field, b0. Also in this limit, the operators Lz, Sz, and the alignment z z zL S    

commute with H and are conserved quantities. Since these operators commute with each other as 
well as with H, simultaneous eigenstates can be found when b1 = 0. We can use this limit as a 
way to identify states when the transverse field is large by allowing b1 to reduce towards zero in 
the complete solutions.  

The common eigenstates of Lz, Sz, and z  are found using the eigenstates of Lz, Sz in the 

following way 
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 (10) 

In the coordinate representation, 
1

zL
i    and therefore the angular dependence of the  

component with alignment µ and spin m is given by  i me m  . Using this angular dependence, 

the general multi-component wave function in the matrix representation is 
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. (11) 

Although very similar, this is not the simple product form that is used in basic separation of 
variables techniques because the angular dependence is different for each component of the trial 
function. The result of using this trial form of the eigenstates in the Schrödinger equation 
(equation 9) is 
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                        

. (12) 

The Laplacian operator acting on the states (equation 11) produces the following terms: 

       
2

1/2 1/22 2
2

1/ 21i iR e R R R e   
 


 

 
   

 
      

 
 

.  (13) 

Using this expression in equation 12 results in the following system of coupled differential 
equations: 
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 (14) 

An interesting point to notice is the way that the angular dependence factors out exactly. This 
cancellation is due to the way the angular factor in the quadrupole field part of the potential 
compensates for the action of the spin operators and is a direct consequence of using 
simultaneous eigenstates of H and the alignment operator z . Because of this, the angular 

dependence can be completely factored out of the problem leaving only the radial equations: 
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 (15) 

The coupled radial equations for the eigenstates of the quadrupole waveguide are shown in 
equation 15. They must be solved for eigenvalues and eigenvectors using the allowed half-

integral values of the alignment 
1 3 5

, ,
2 2 2

      . 

As mentioned earlier, when the transverse field is turned off, the two equations in equation 15 
are uncoupled. In this limit, the solutions are simply Bessel functions and they may also be 
common eigenstates of H, Lz, Sz, and z . Using this fact the complete solutions at b1 = 0 can be 

written as 
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 .
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
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
 
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   

 (16) 

The set of solutions in equation 16 represents the four free space solutions to the pair of 
uncoupled second order radial equations in the limit of a small transverse field, that is, when 
b1  0. It is seen that the limiting cases are clearly distinguished. There will be one mode that 
behaves like 1/2J  that will be referred refer to as a spin-up mode and one mode that behaves 

like 1/2J  that will be referred to as a spin-down mode. As the transverse field 1b  is turned on, 

these modes continuously evolve into modes with significant amplitudes of both components. 
This can be thought of as precession of a pure spin state around a transverse field. To keep things 
straight, the states can still be labeled by their character as 1 0b  .  

As a specific example, the case of alignment ½ can be considered. In this case, the two 
physically acceptable solutions in the 1 0b   limit are the spin-up 1J  state and the spin-down 0J  

state. Then, to calculate the properties of the spin-down state at larger values of 1b , the series 

solution that reduces to 0J  spin down is used to calculate the complete behavior of the finite 1b  

state near the origin. This series solution provides all initial conditions required near the origin 
for  and R R   to initialize an ordinary differential equation (ODE) solver for the calculation of 

the behavior of both components of the spin-down mode at large radii.   

The two solutions that involve the Bessel functions of the second kind  iY   are unbounded at 

the origin and should be excluded as unphysical in problems that include the origin in the 
domain. This is the case in the quadrupole waveguide problem considered here. However, the 
unbounded solutions can be useful as they may help to identify the unphysical modes when all 
that is available is a complicated series solution. In the analysis by Hinds (2000) and others 
based on this earlier work, the two bounded modes seem to be combined into one mode, 
apparently leading to the use of mixed boundary conditions at the origin. For this reason, the 
results of that work are difficult to interpret. In this study, the modes are separately identified and  
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kept separate throughout the calculations. Although the scheme chosen here to separate the 
modes at low transverse field seems useful, more work on the effect of the various boundary 
conditions at the guide center is needed. 

3.4 Numerical Work 

Numerical techniques are used to find the eigenvalues and eigenvectors at finite b1. The 
differential equation solvers that come with the Maple computer algebra system have been used 
in this work. The integration technique that is used is called the shooting technique and was the 
technique used in the work by Hinds (2000). Specific values of the parameters μ, , b0, and the 
transverse field b1 are chosen. An initial value is provided for both of the radial wave function 
components and their derivatives at the origin, and the coupled equations are integrated outwards 
towards large values of . If the eigenvalue  is not correct, the solution quickly grows large as 
an exponentially growing solution becomes dominant. The process is repeated after adjusting the 
eigenvalue. In this way, consistent values for the energies can be found that correspond to 
various modes of the guide.  

However, in order to get accurate results from the differential equation solvers, accurate initial 
values are needed at the origin. The equations are singular at the origin and a Taylor series 
expansion of the general solution about the origin does not, in general, exist. The singularity at 
the origin is a regular singularity and series solution techniques can be used to accurately solve 
for the behavior of the solutions near the origin. These solutions are used to provide accurate 
initial conditions to the ODE solvers. In this way, specific modes that are bounded at the origin 
can be studied.   

To obtain an equation convenient for the use of the series technique, the coupled 2nd order radial 
equations (equation 15) are transformed into a single 4th order equation for one specific 
component such as  R   of the wave function, as shown in equation 17. Once the 4th order 

equation is solved, the general solution for  R   contains four independent functions in series 

form. The four functions describing  R   are found by substitution of each  R   into 

equation 18. In this way, four consistent pairs of components solving the original coupled 
equation (equation 15) are obtained. This process can be reversed by solving first for  R    

using equation 19 and then using equation 20 to find the corresponding  R   solutions. 

Solving in either order produces a valid general solution to the system, but often one way 
produces a better form for the resulting solutions. This can be a useful way to identify log free 
regular solutions to the system. These types of solutions are free from singularities at the origin 
and are the physical solutions required in the waveguide problem under study.  
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Each of the 4th order equations 17 and 19 are solvable using the Frobenius technique for higher 
order equations (Ince, 1956; Bender, 1978). The basic idea is to use a modified power series 
form for the solution and to solve for the unknown coefficients. An assumed series solution of 
the form  

  
0

sR c 




 







  (21) 

is used in one of the 4th order equations. The coefficients cv and the index s are determined by 
equating the coefficients of like powers on either side of the equation to zero. The first equation 
will be of the form c0f0(s) = 0 and c0 is assumed equal to one. The equation f0(s) = 0 is called the 
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indicial equation and there are four roots si. Each root corresponds to one solution of one of the 
differential equations 17 or 19. The indicial equations and the roots are both given as follows: 
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 (23) 

In the case of μ =1/2, the indices for the R equation are s+ = (3,3,1,–1) and for the R equation the 

indices are s– = (4,2,0,0). The largest index always produces a solution free from logarithms in 
the Frobenius method and is thus bounded at the origin. Thus, two types of log-free modes with 
leading behaviors of R+ ~ 3 and R– ~ 4 at the origin are found.   

Since μ must be half integral, the solutions to the indicial equations are all integers. This is a 
special case in the Frobenius technique that results in some of the series solutions containing 
logarithmic terms like ln() times another power series. These logarithmic terms are unbounded 
unless multiplied by a positive power of . They must be excluded from the physical solutions if 
they cause either component of the solution to become unbounded.  

In the modes studied so far, two bounded and two unbounded solutions are always found by this 
technique for any value of μ. This should be expected by examining the limiting behavior of the 
solutions demonstrated in equation 16 for small values of b1. Since b1 and  are independent, any 
logarithmic terms in  cannot simply be cancelled by allowing b1  0.  

However, there are cases when straightforward application of the series technique apparently 
results in only one solution that is bounded at the origin, the other three being unbounded. The 
four solutions together must represent the general solution to the problem. By inspecting the 
limiting forms (equation 16), a linear superposition of the three unbounded solutions can be 
constructed to create two unbounded and one bounded solution, again resulting in two 
independent bounded solutions. Essentially, a singularity present in two of the calculated series 
is cancelled by this technique producing the additional regular log free solution.    

Once the series solutions (equation 21) for various values of s  are determined, they are 
individually substituted into the corresponding equation (equation 18) to obtain the related series 
solution for the other solution. In this way, four consistent pairs of series solutions are generated 
for the system (equation 15). 
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These four functions together represent a fundamental solution to the waveguide problem for a 
particular value of the alignment eigenvalue μ. Two modes are bounded and two are unbounded 
at the origin, as mentioned previously. The series solutions do not converge quickly for large 
distances from the guide center and the basic requirement in the search for eigenvalues is that 
solutions remain bounded at large radii as well as at the origin. A better technique for large radii 
is to use an ODE solver and integrate outwards from the origin. The series solutions are ideal 
tools to establish consistent initial conditions at some point away from the origin so that the 
singularities do not negatively affect the ODE solver.  

Samples of the four series solutions obtained via the Frobenius technique for the case μ = 1/2 are 
displayed in equations 24 through 27. The solutions are labeled Rms1, etc., indicating series one 
for R– and so on. The series labeled Rps1, etc., are derived directly from the corresponding Rm 
series using equation 20. The bounded solutions in this case are Rms1 and Rms3 and these series 
are the basis of two types of waveguide modes that are distinguished by their behavior at the 
origin. 

For the case μ = 1/2 the allowed values of s– are (4,2,0,0). Rms1 is the solution with the indicial 
exponent 4. This is the largest exponent of the group and, therefore, Rms1 is finite at the origin 
according to the Frobenius theory (Ince, 1956; Bender, 1978). Both components of the Rms1 
solution are zero at the origin, which may lead to an inherent insensitivity to certain types of spin 
flips or field fluctuations that are possible at the zero field point at the guide center. As b1  0 
the component Rps1 dominates and the combination behaves like the m = 1/2 spin-up state 
identified in equation 16. This is how the states are identified for arbitrary b1. 

   
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 
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 (24) 

The solution Rms2 is the s = 2 solution and both components have logarithmic terms that are 
multiplied by positive powers of . These terms are actually finite at the origin, but the 1/ term 
in Rps2 is unbounded so this term must be excluded from the physical solutions. The singularity 
in Rps2 comes from substituting Rms2 into the differential equation 20. The derivative of the log 
produces the singularity. 
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 (25) 

The indicial exponent s = 0 produces the solution Rms3. This solution is an acceptable solution 

that is nonzero at the origin. However, it also behaves as  1R J    for small values of b1 

and could also be a m = 1/2 state. Closer inspection shows that the pair of solutions generated 
by the b1  0 limit can be created as superpositions of the Rms1 and Rms3 series. For example, 

the series RMS3 in equation 26 should be  0J   . The two leading terms are correct but a 

term proportional to 4  is missing. Since the leading term of Rms1 in equation 24 is also 4  

these series can be added to fill in the missing term. This produces both a modified Rms3 and a 
modified Rps3 of precisely the correct limiting behavior. This type of correction is currently 
done by hand for the various series generated at different values of alignment; however, a 
general way of combining and creating solutions to automatically obtain the desired limiting 
behavior for various values of μ is being developed. This will enhance the usefulness of any 
results based on these modes. 
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The solution Rms4 also contains logarithmic terms and is unbounded at the origin. It is not a 

physically acceptable solution as it has a term proportional to 
1


. 
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 (27) 

4. Farfield Solutions 

The coupled equation 15 can be solved approximately in the limit as   . This is 
accomplished by ignoring terms that are small relative to the linearly increasing term 
proportional to b1. The resulting approximate equation is independent of μ, , and b0. It has the 
following solutions:  
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. (28) 

The only unacceptable solution at  is the I0 solution. By adding and subtracting these two 
equations, the oscillatory and exponential terms are isolated. The resulting equations are 

 

   

   

3 3

2 2
1 0 1 3 0 1

1 1

3 3

2 2
2 0 1 4 0 1

1 1

2 2
( ) ( )

3 3

2 2
( ) ( )

3 3

R R C I b C K b
b b

R R C J b C Y b
b b

   

   

 

 

   
     

   
   

     
   

.  (29) 

The physical basis of this behavior is that expressions R+()  R–() are proportional to the two 
components of the eigenstates of Sx and the magnetic field is aligned with the x-axis at  = 0. 
The components R+()  R–() form the components of what is called the local basis in the 
section 5. These two components then exhibit purely bound or purely unbound behavior.  
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Physically acceptable solutions are obtained only for C1 = 0, thus the sum R+() +R–() decays as 

3/2
0 1

1

2
( )

3
K b

b


 
 
 

 for   . This is the basis of the procedure to find the eigenvalues, . The 

equations are integrated using an ODE routine for various values of . The correct eigenvalues 
are the ones that effectively force C1 = 0 producing the physical boundary condition  
R+() + R–()  0 for   . In the section 5, many samples of these eigenstates and 
eigenenergies are discussed.  

5. Numerical Solutions 

In this section, the results of the numerical techniques described in the text are displayed for 
various parameters. The components R+()  R–() discussed in the text form the components of 
the local basis. The components in the local basis are labeled by  and s dR R R R R R       . 

This pair of components is what is meant by local basis components in the text of this section. 
The component sR  is proportional to the amplitude for the spin to be pointed along the positive x 

direction and dR  is proportional to the amplitude for the spin to be found pointing in the negative 

x-direction. Since the magnetic field is chosen to be pointing along the negative x-direction and 
the spin is chosen to be parallel to the magnetic moment, the sR component of the wavefunction 

is aligned opposite to the magnetic field and must act as a bound component at large radii where 
the magnitude of the magnetic field gets very large. Since the dR component is aligned with the 

field, it must be unbound as the effective magnetic potential energy decreases for large radii.  

The solutions, therefore, are of a peculiar nature in that one component in the local basis appears 
to be a localized bound state yet the other component extends to infinity. This makes it difficult 
to identify solutions that can be considered to be purely bound states. However, the solutions for 
μ form a degenerate pair when b0 = 0. This means that the solution found for one value of μ is 
only one component of a degenerate pair of solutions. Any linear superposition of these two 
states is then also a solution with the common eigenvalue. It turns out that by simply adding and 
subtracting the two degenerate solutions, a new set of degenerate states that are either purely 
bound or purely unbound states can be formed.  

In this way, the solutions are separated into bound and unbound pairs. The bound states are 
concentrated near the center of the guide, decaying exponentially away from the guide axis and 
the unbound states oscillate and extend to infinity. The modes of interest in atom guiding are the 
bound modes, as the unbound modes will tend to interact with things far from the guide center 
and thereby be easily lost from the guide. However, the bound and unbound modes are 
degenerate and it will be difficult experimentally to keep them from mixing with each other and 
eventually causing atoms to be lost from the guide. The introduction of a nonzero bias field b0 
can remove the degeneracy, leaving isolated bound and unbound modes. This is analogous to the 
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introduction of a bias field in magnetic traps to reduce spin flips in the adiabatic approximation. 
The details of this connection with the adiabatic picture will be a subject of future study.  

In figure 5, the degenerate low energy states of the modes with zero axial amplitudes are shown 
in the global basis. On the left of figure 5, the mode with 1/ 2   is shown, and on the right, the 
degenerate mode for 1/ 2    is shown. For zero bias field, these modes are identical except for 

the exact reversal of the roles of R  and R .   

 

Figure 5.  These plots show a µ = 1/2 eigenstate (left) and the µ = –1/2 degenerate eigenstate (right). The mode 
on the left is spin up in the low field limit and the mode on the right is spin down in this limit. Notice 
that the two components in each mode oscillate as out of phase Bessel functions at large radius and 
that the roles of R+ and R–have been reversed relative to each other. The fact that these two modes are 
degenerate allows them to be combined to form pure bound or unbound states. 

In figure 6, the same modes shown in figures 5 are displayed except they are now both in the 
local basis. The bound component of each of these modes is apparent as the red curve that decays 
at large radius. However both modes are clearly mixed with bound and unbound components that 
oscillate as   . Since these modes are degenerate, they can be cleanly separated into bound 

and unbound modes by simply superpositioning the degenerate pair. By adding and subtracting 
the modes from one another, new modes are formed that each contains a single nonzero 
component and one component that is identically zero. It is not simply the individual sum and 
difference of spin components that takes the mode from the global to the local spin basis but a 
superposition of two degenerate modes both of which are in the local spin basis. The result of 
combining the modes is shown in figure 7. Only one component is visible in each of these plots 
because the other component has been exactly cancelled out. Since this separation into bound 
and unbound modes is based on the degeneracy of the 1/ 2   , modes that occurs when 0 0b    
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it is expected that nonzero values of 0b  will lift the degeneracy and provide a purely quantum 

description of the stabilizing effect of the bias field in magnetic traps. A complete study of this 
effect and a comparison with the adiabatic approximation will be the subject of a future study. 

 

Figure 6.  Local basis eigenstates corresponding to the global basis states shown in figure 5. The components of 
the local basis states are derived from the global states by forming the sum and difference of the global 
components. This can also be accomplished as a basis transformation using rotation matrices to go 
from the Sz to Sx basis. The significant difference between the local and global basis representations is 
the appearance of an exponentially decaying bound component along with an oscillatory or unbound 
component. The bound components in the two degenerate modes are equal and have the same sign, but 
the unbound components have opposite signs. For this reason the sum and the difference of the two 
degenerate modes can be used to produce pure bound and unbound states as shown in figure 7.   

 

Figure 7.  Purely bound state obtained by forming a superposition of the degenerate states shown in figure 6.  
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The first higher order local mode for the 1/ 2    case is displayed in figure 8. This is the 

second mode in the series of modes that behave like 1J  at low transverse field. The bound 

component, shown in red, clearly crosses the axis once and returns exponentially to zero from 
negative values. The unbound modes, shown in green, oscillate in a manner similar to a Bessel 
function, but these two components are clearly exactly out of phase for the two different values 
of  . This behavior is the same in all degenerate pairs and again allows the formation of pure 

bound and unbound modes. In figure 9, the next two higher order modes of this sequence are 
displayed. It is clear that the bound components are behaving in the same way as in other 
quantum mechanical bound state problems. The difference here is the intermingling of the bound 
and unbound behavior within one mode and is due to the extra spin degree of freedom not found 
in the more common potential well problems that involve scalar particles. This makes the 
identification of pure bound states difficult. 

 

 

Figure 8.  These two states are the degenerate pair of the first excited modes in the system of modes that act like 

1J  when the transverse field goes to zero. Since they are degenerate, they can be combined to obtain 

pure unbound and bound modes.   
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Figure 9.  These are the next two higher order modes in the system of modes that act like 
1J  when the transverse 

field goes to zero. As expected, the number of zero crossings increases as the mode energy increases.  

The second sequence of modes behaves like 0J  at the origin. These lowest of these modes are 

lower in energy than the 1J  type modes and should be considered the ground state of the system. 

This apparent ground state is shown in figure 10. This mode may have some contamination in it 
as discussed in section 3. We are currently developing a way to exclude these types of 
contamination so that a complete and systematic study of all the modes can be completed. 
Another issue may be that this ground state designation is system dependent, as the differing 
behavior of these modes at the origin might be used along with various mode suppression 
strategies to eliminate some levels, possibly including the original ground state. In figure 11, a 
few higher modes of this sequence are displayed in the local basis. In the local basis, both 
components of the 1/ 2   modes are nonzero at the origin. In figure 12, the lowest energy 
state for the 3 / 2  case is presented. Its bound state component also has no zero crossings and 
could be considered a ground state for atoms constrained to be in the 3 / 2   state of alignment. 
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Figure 10.  This state is the lowest order mode of the system of modes that behave like 

0J  as the transverse field 

is decreased. Notice the large on axis component that distinguishes this mode from the 
1J  type 

modes. This mode is the likely ground state of the system; however, there is some mixing of modes 
from the spin-up solutions in this system as discussed in the text of section 3. Thus, this mode might 
represent a superposition of spin-up and spin-down eigenstates. It is shown in both the global and 
local bases.  

 
Figure 11.  Local behavior of the higher order modes that behave like

1 2and J J  at low transverse field 
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Figure 12.  These two plots for the lowest energy µ = 3/2 state show that the same basic behavior holds for 
alignment other than µ = ±1/2. The solutions can be found for higher values of alignment as well.  

6. Conclusions 

A technique for solving for the eigenmodes and eigenvalues of the magnetic quadrupole 
waveguide has been developed. The technique is robust, but there is still some room for 
improvement. A good understanding of the modes and mode structure has been obtained; 
however, the numerical techniques being used for the calculations can still produce some 
contamination between modes that can result in errors in the calculated energies. This is 
currently being resolved and an improved technique will be incorporated soon.  

The calculated modes are of a peculiar nature that is not completely bound or completely 
unbound, which causes a problem as they are not strictly normalizeable. Rather, the modes are of 
a hybrid nature. A possible resolution of this problem is to use degeneracy to split the hybrid 
modes into pure bound and pure unbound states. This technique appears to be useful, but we are 
still left with modes that must be normalized properly to be used in further calculations. A 
reliable technique to handle this problem for the hybrid modes has not yet been developed. It 
may be the case that some type of box normalization could be useful for the unbound states, but 
this would have to include the bound states in some natural way so that consistent expectations 
could be calculated. Another issue is the possible close coupling of the degenerate bound and 
unbound states. This coupling could cause possible lifetime limitations. This degeneracy must be 
studied and the usefulness of the bias field in lifting the degeneracy in a purely quantum  
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situation, reducing any related decay mechanisms, must be considered. Some details still need to 
be resolved, but as the remaining issues are cleared up these mode calculations will be useful for 
further calculations of important effects in the use of atomic waveguides in atom interferometry 
based on atom chips. 
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