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Abstract 

The power. spectral dens i ty  of frequ,ency  fluctuation,^ of an  oscillator is gen -  
erally modeled us u surrt of power laws with integer exponent.? (from -2 t o  +2).  
However, a power law with a fractional elcponenl: may exist. W e  propose a method 
for measurin,g such a noise level and determining the probability density of the 
exponent. This yields a criterion, for compatibility with, an integer exponent. 
This method is based upon a Bayesian approach called the reference analysis of 
Bernardo-Berger. The application to a sequence of frequency measurement from 
a quartz oscillator illustrates this puper. 

INTRODUCTION 

It is cornrnonly assumed that  S,(f). the  power spectral density (PSD)  of frequency 
deviation of an oscillator, may be modeled as the surrl of 5 power laws, defining 5 
types of noise: 

+? 

s',(f) = C h,fa 
a=-2 

(1 )  

where h,  is the  level of the  f" rloise. But  it may be noticed tha t  models with non-integer 
exponents are occasionally used. 

The  estimation of the  noise levels is mainly achieved by using the  Allan variance [ll. 
which is defined versus the  integration tirne T as: 

1 
4.1 = - 2 ( ( & + I  - q k l 2 )  (a 
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variance versus the integration time r is plotted, the  graph exhibits different slopes, 
each slope corresponding to a type of noise: 

I fli ( r )  = C,rp @ & ( , ( s )  = h ~ f "  and ~ = - - ~ - l ,  (3) 

I The estirrlation of C',, yields an estirrlation of the noise level h,. 

However, this curve may exhibit an exponent p which seems to be non-integer. Does 
this mean that  the corresponding PSD is not compatible with the 5 power law model? 
In this paper, we propose a method for estimating the rnost probable value of this 
exponent in order to  solve this ambiguity. This method is applied to  an example of 
stability measurement. 

1 CLASSICAL STABILITY ANALYSIS OF AN OSCILLATOR 
Sequence of frequency measures 

1 Figure 1 shows average frequency measures i& of a 10 MHz quartz oscillator compared 
to  a c.esium clock. The sampling rate is 10 s and the integration time of each frequency 

I measure is also 10 s (sampling without dead time). 

In order to  obtain dimensionless y, samples, we must subtract the nominal frequency 
(10 MHz) from the frequency measures and normalize by vo: 

Variance analysis 

Figure 2 is a log-log plot of the Allan deviation of the quartz y, samples versus the 
integration time r. A least squares fit of these variance measures (solid line), weighted 
by their uncertainties, detects only two types of noise: a white noise and an fP%oise. 
The corresponding noise level estimations are: 

ho = (2.2 f 0.4) . 1 K 5 s  at IF (68% confidence) 

h-2 = (2.3 f 0.6) . l ~ - ' ' s - ~  at la (68% confidence) 

(for the  assessment of the h, noise levels and their uncertainties, we used the multi- 
variance method described in PI). 

However, for large T values (corresponding to  low frequencies), the variance measures 
move away from the fitted curve. Two explanations are possible: 

. instead of an f P 2  noise, there is a noise whose non-integer exponent is contained 
between -2 and -3  ; 

since the  uncertainty domains of the variance measures contain the fitted curve, 
this apparent divergence may be due to  a statistical effect. 

In order to choose between these two explanations, we decided to estimate the proba- 
bility density of the exponent with a Bayesian approach. 



BAYESIAN APPROACH 

The goal of all measurement is the estimation of an unknown quantity 6' from measures 
$, i.e. determining p(81$), the density of probability of the quantity B knowing the  
measures $. The Bayesian theory is based on the following equality [31: 

~ ( 4 0  pt<l0)74@) 

where p(EI6') is the  distrihutiorl of the measures < for a fixed value of the quantity 6' and 
r(6') is the a priori density of probability of the quantity 0, i.c. before performing any 
measurement. 

The determination of this a priori density, called the prior, is generally one of the main 
difficulties of this approach (particularly in the case of total lack of knowledge! ). In 
this paper, we use the Jeffrey's prior which ensures properties slich as invariance [31. 

Spectral density and covariance matrix 

Let us define the  vector y whose components are the N jj,, samples. We assume that  y 
is s Gaussian vector. The  probability distribution of y is: 

where C: is the covariance matrix. Since &(f) is the Fourier transform of R,(T), the 
autocorrelation function of the frequency deviation. the general term of C: is: 

Equation (7) reveals the key role played by the spectral density of the  noise in the 
expected fluctuation. We will present a general rr~ethod for estimating the  parameters 
of the  model for S,(f). 

Assumed model for the spectral density 

We assume that  the sequence of frequency measures is composed of a white noise y,, 
whose variance (i.e. the level) is unitary, and of a red noise y, whose level is unknown, 
multiplied by the real standard deviation of the white noise u,,, (0, is easily estimated 
from high sampling rate frequency ~aeasurernent): 

y = (h, + yr ) rw .  

This yields the following model for Sy(f): 

s,(f) = ho +he .f" with - 3 < a < - 1  

where h,o = 2 . 2 .  lo-js, h,  and a are the unknown parameters. 

Let us denote y,, the normalized vector: 

Yn "Yw +YT. 
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The corresponding rlorrrlalized PSD S,( f )  is: 

where U, is an amplitude factor whosc meaning will be explained below (see equation 
( 2 3 ) ) .  

Statistical model 

The part of the spectral density due t o  the red noise y, may bc written: 

We used the Bernardo-Berger analysis 41 for estimating the unknown parameter 
e = (0, H ) .  

- Construction of the estimat0r.s: 

Let us introduce the orthonormal basis of ! X N ,  { p o ,  . . . , p j , .  . . , p ~ - ~ } ,  defined such as the 
ith component of pj is: 

Pi,? = Fj (fi ) (13) 

where t i  is the date of the ith frequency measure and & ( t )  is a polynomial of degree j :  
satisfying the orthonormality condition 151: 

C Fj ( t i )  . F .  (ti) = d j k .  

It can be shown than the scalar product of a vector pj by the noise vector y is a n  
estirrlate of the noise spectrurn for a given frequency f j  [GI. Let us denote C j  such an 
estimate applied to the normalized noise: 

Practically, we limited to 16 the number of estimators pj (from degrees 0 to- 15) for lim-- 
iting the computation and because the high degrees, estimating the  high frequencies, 
are less informative for a red noise. 

Moreover, in order to  ensure convergence for very low frequencies (even if the low cut- 
off frequency tends towards O ) ,  the polynomials must satisfy the moment condition [k 61: 

the minimum degree jmi, of a polynomial t o  ensure convergence up to  an exponent cr 
is: 

-a - 1 
jmin 2 - 2 ' (16) 

Since we have assumed a 5 -3, the first 2 estimators and must be removed. 
Thus we have n = 14 estimators {pZ,. . . , yls) and n = 14 estimates {&,. . . ,tI5). 

- Construction of the priors: 

The covariance matrix defined in relationship (7) is an ensemble average of the different 
,estimate products over an infinite number of realizations of this process: 



As for the noise vector y,, the estimate vector $ may be split into two terms, according 
to  equations (10)  and (15): 

t = 411, + 5 r -  (19) 

The covariarlce matrix may also bc split: 

C'= (<w<:) + ( E T f l )  = In  -tH . l l n .  V(@) 

where I ,  is the  identity matrix in !Rn and the general term of the matrix V ( a )  is: 

The high cut-off frequency fh, in (21)  is the Nyquist frequency and T is the total 
duration of the  sequence. 

Let E * ( C Y )  denote the i th eigenvector of V ( a )  and ;/,(a) its i th eigcnvalue ( i  E ( 0 , .  . . ,  n - 1)). 
The averaged quadratic norm of the estimate vector ( is: 

The  factor u, is chosen in such a way that.  for H = 1. thc  avcraged quadratic norms 

( ~ l € ~ l l ~ )  and ( l l k 2 )  are eqllal: 

The  direct problem is now solved since < is a vector of V b i t h  a, probability distribution 
given the parameter B equal to: 

Denoting "Tr(M)" the trace of a matrix and X the matrix defined as: 

the Fisher information matrix I ( @ )  is (see M): 

The Jeffrey's prior ~ ( 6 )  is defined as: 

The parameter B is a two-dimensional parameter composed of the exponent parameter 
cu and of the  amplitude parameter H. Since we are rrlostly interested in a ,  H is called 
a nuisance parameter. 

In presence of nuisance parameter, Bernardo and Berger suggested that  a should first 
be fixed and the  conditional prior ~(111cw) cornpilted for that  value. The full prior is 
then: 

T(@) = ~ ( H j a )  . ~ ( L Y ) .  (28) 



The conditional prior x(Hla)  is given by: 

4 H l a )  = m (29) 

whcrc [ 1 ( 0 ) ] 1 1 ,  [ I ( # ) l l z  = [I(#)Jzl and [I(B)]22 are the elements of the Fisher information 
matrix I(O). 

The prior for a may be computed as: 

where c is a normalization coefficient ensuring that  J n ( a ) d a  = 1 and: 

This prior is plotted in Figurc 3. 

- Construct ion of the posteriors: 

According to  the Bayes theorem, the posterior probability distribution is given by: 

The posterior probability distribution for cr is then given by: 

RESULTS AND DISCUSSION 
Compatibility with an integer exponent 

Figtire 4 shows the posterior probability distribution for the exponent a of the red 
noise using the Bernardo-Berger prior. 

The exponent value obtained for the maximum of likelihood, just as for th-e maximum 
of the distribution, is a = -2.2. 

However, a = -2 is fully compatible with this prior distribution. Thus, we may conclude 
that  the apparent divergence between the variance measures and the fitted curve in 
Figure 2 is probably due to  a statistical bias of the data. The spectral density S,(f) is 
then compatible with the following model: 

Noise level estimation 

Selecting an exponent value a = -2, we obtained the posterior probability distribution 
plotted in Figure 5. As in the variance analysis, we chose a confidence interval of 68% 
(16% probability that  hVz is smaller than the low bound and 16% probability that  hL2 
is greater than the high bound): 

hL2 = ( 2.3 ' dLg ) . 1 0 - l ~ ~ '  at 1u (68% confidence) 



The  difference between the  maximum likelihood value ( 1 2 - 2  = 2.2991. 10112s-1) and the  
variance analysis value ( h P z  = 2.2949. lo - '%- ' )  is only 0.18%. 

However, the  confidence intervals given by these two methods are quiet different. The  
main difference concerns the  symmetry of thc variance analysis interval: i11 this case, 
we don't  take into account the  fact tha t  the noise levels are positive, whereas the  prior 
of the  Bayesian approach is null for negative values of hPZ.  

Moreover, the  variance analysis interval seems t o  be a bit underestimated. 

CONCLUSION 

The variance analysis is an  useful tool for a quick estimation of the  noise levels in 
the  output  signal of an oscillator. However, a negative estimate of a noise level nlay 
occur. Generally, in this case, this valuc is rejected and the  corresponding noise level 
is assumed t o  be null. On the  other hand. although the  Bayesian method is a bit 
heavier, it takes into account properly the a priori information, and gives a more 
reliable estimation of these noise levels and especially of their confidence intervals. 

However, the  main advantage of the  Bayesian method concerns the  verification of the  
validity of t h e  power law model of spectral density. Each time the  model is suspected, 
such an  approach should be used in order t o  estimate the  exponent of the  power law. 
In particular, this method should be very interesting for the  study of the  fV1 and f'l 
noise, whose origin remains mysterious [TI. 
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Figure 1: Sequence of frequency measures 
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Figure 2: Allan deviation of t,he sequence of frequency measures 



Figure 3: Reference prior for the power 0 

Figure 4: Posterior probabilit,~ density for the power (I 

Figure 5: Posterior probability density for the noise level h,L2 




