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Abstract

The power spectral density of frequency fluctuations of an oscillator is gen-
erally modeled as a sum of power laws with integer exponents (from -2 to +2).
However, a power law with o fractional exponent may exist. We propose a method
for measuring such a noiwse level and determining the probability density of the
exponent. This yields a criterion for compatibility with an integer ezponent.
This method is based upon a Bayesian approach called the reference analysis of
Bernardo-Berger. The application to a sequence of frequency measurement from
a quartz oscillator illustrates this paper.

INTRODUCTION

It is commonly assumed that S5,(f), the power spectral density (PSD) of frequency
deviation of an oscillator, may be modeled as the sum of 5 power laws, defining 5
types of noise:

42
=Y haf® (1)

where h, 1s the level of the f* noise. But it may be noticed that models with non-integer
exponents are occasionally used.

The estimation of the noise levels is mainly achieved by using the Allan variance [1],
which is defined versus the integration time r as:

US(T) = %<(?k+1_@'k)2>‘ (2)
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In the frequency domain, the Allan variance may be considered as a filter. If the Allan
variance versus the integration time 7 is plotted, the graph exhibits different slopes,

each slope corresponding to a type of noise:

ol(r) = Cur* & Sy(f) = haf® and o=-p—1 (3)

The estimation of C, yields an estimation of the noise level h,.

However, this curve may exhibit an exponent g which seems to be non-integer. Does
this mean that the corresponding PSD 1s not compatible with the 5 power law model?
In this paper, we propose a method for estimating the most probable value of this
exponent in order to solve this ambiguity. This method is applied to an example of
stability measurement.

CLASSICAL STABILITY ANALYSIS OF AN OSCILLATOR

Sequence of frequency measures

Figure 1 shows average frequency measures v, of a 10 MHz quartz oscillator compared
to a cesium clock. The sampling rate is 10 s and the integration time of each frequency
measure is also 10 s (sampling without dead time).

In order to obtain dimensionless 3, samples, we must subtract the nominal frequency
vy (10 MHz) from the frequency measures and normalize by v:

— VE — 1o
Je=—7— (4)

Variance analysis

Figure 2 is a log-log plot of the Allan deviation of the quartz g, samples versus the
integration time 7. A least squares fit of these variance measures (solid line), weighted
by their uncertainties, detects only two types of noise: a white noise and an f~? noise.
The corresponding noise level estimations are:

ho = (22+0.4) 1075 at lo (68% confidence)
hoy = (2.3%£0.6)-1071%* at 1o (68% confidence)

(for the assessment of the h, noise levels and their uncertainties, we used the multi-
variance method described in [2]).

However, for large  values (corresponding to low frequencies), the variance measures
move away from the fitted curve. Two explanations are possible:

e instead of an f~? noise, there is a noise whose non-integer exponent is contained
between -2 and -3 ;
e since the uncertainty domains of the variance measures contain the fitted curve,

this apparent divergence may be due to a statistical effect.

In order to choose between these two explanations, we decided to estimate the proba-
bility density of the exponent with a Bayesian approach.




BAYESIAN APPROACH

Principle

The goal of all measurement is the estimation of an unknown quantity ¢ from measures
¢, i.e. determining p(dl¢), the density of probability of the quantity ¢ knowing the
measures £. The Bayesian theory is based on the following equality [31:

p(8lg) x p(£]0)=(6) (3)

where p(£]9) is the distribution of the measures ¢ for a fixed value of the quantity 6 and
7(#) is the a priori density of probability of the quantity 4, i.e. before performing any
measurement.

The determination of this a priori density, called the prior, is generally one of the main
difficulties of this approach (particularly in the case of total lack of knowledge! ). In
this paper, we use the Jeffrey’s prior which ensures properties such as invariance [3].

Spectral density and covariance matrix

Let us define the vector y whose components are the N 7, samples. We assume that y
is a Gaussian vector. The probability distribution of y is:

o (~57%)

(y) = ——5———= 6)
T e E e (

where C is the covariance matrix. Since S,(f) is the Fourier transform of R,(7), the
autocorrelation function of the frequency deviation, the general term of C is:

Ciy =2 f Sy(f) cos (27 £ (t: — ;) df ™

Equation (7) reveals the key role played by the spectral density of the noise in the
expected fluctuation. We will present a general method for estimating the parameters
of the model for S,(f).

Assumed model for the spectral density

We assume that the sequence of frequency measures is composed of a white noise y,,,
whose variance (i.e. the level) is unitary, and of a red noise y, whose level is unknown,
multiplied by the real standard deviation of the white noise o, (o, is easily estimated
from high sampling rate frequency measurement):

Y= (Yo +Yr)0u. (8)
This yields the following model for S,(f):
Sy(f) = ho+ha-f*  with ~3<a<—1 | 9)
where hy =2.2-10"%s, h, and o are the unknown parameters.
Let us denote y,, the normalized vector:

Yn = Yuw + Yr. (10)
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The corresponding normalized PSD S,(f) 1s:

Srz(f):1+'H'lta'fC! (11)
where u, 1s an amplitude factor whose meaning will be explained below (see equation
(23)).

Statistical model
The part of the spectral density due to the red noise y. may be written:

Sp(f) = H -ug - F*. (12)
We used the Bernardo-Berger analysis [3.4] for estimating the unknown parameter
6 = (a, H).

- Construction of the estimators:

Let us introduce the orthonormal basis of ®V, {po,...,p;,...,pn-1}, defined such as the
i*" component of p; is:

pij = Pj(t) (13)
where t; is the date of the i** frequency measure and p;(¢) is a polynomial of degree j,
satisfying the orthonormality condition [5l:

Z

Pi(t:) - Pr(t:) = s (14)

il
k=]

i

It can be shown than the scalar product of a vector p; by the noise vector y is an
estimate of the noise spectrum for a given frequency f; [6l. Let us denote ¢ such an
estimate applied to the normalized noise:

gj =P YUn. (15)

Practically, we limited to 16 the number of estimators p; (from degrees 0 to-15) for lim-
iting the computation and because the high degrees, estimating the high frequencies,
are less informative for a red noise.

Moreover, in order to ensure convergence for very low frequencies (even if the low cut-
off frequency tends towards 0), the polynomials must satisfy the moment condition [5; 6:
the minimum degree jmi, of a polynomial to ensure convergence up to an exponent o
1s:

. —a —1

Jmin 2 ) (16)
Since we have assumed o« < —3, the first 2 estimators (py and p;) must be removed.
Thus we have n = 14 estimators {pz,...,p15} and n = 14 estimates {&,...,&15}.

- Construction of the priors:

The covariance matrix defined in relationship (7) is an ensemble average of the different
estimate products over an infinite number of realizations of this process:

C = (£-¢) (17)
Cij = (&-&). (18)
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As for the noise vector y,, the estimate vector ¢ may be split into two terms, according
to equations (10) and (15):

£E=E&u +£r- (19)
The covariance matrix may also be split:
C = (£l + (&EY =L+ H - ug - V(a) (20)

where I, is the identity matrix in ®* and the general term of the matrix V(a) is:

fn
Vi), =2 f%cos (2mf(t; — t;)) df. (21)
Jiyr
The high cut-off frequency f, in (21) is the Nyquist frequency and T is the total
duration of the sequence.

Let ¢;(a) denote the #** eigenvector of V(a) and (o) its i

The averaged quadratic norm of the estimate vector ¢ is:

(GRETES S uqiw(a) = (lleul”) + (1) (22)

The factor u, is chosen in such a way that, for # = 1, the averaged quadratic norms

{lleal?) and {Ji&-”) are equal:

eigenvalue (i € {0,...,n—1}).

n
Z?:_ol vi{a)

The direct problem is now solved since £ is a vector of ®” with a probability distribution
given the parameter 6 equal to:

(23)

Uy =

1 1
6 —— —=EtC ). 24
PIE) = frrrrm ep(=5€' 0710 (24)

Denoting “Tr(M)” the trace of a matrix M and X the matrix defined as:
X =y Via) (25)

the Fisher information matrix 7(8) is (see [4]):

_ 1/ (Ct et HIr (CIXCEE)
19) = 5( AT (c-Xe1 Y o (cmixe-ixy ) (26)
The Jeffrey’s prior =(f) is defined as:
~(6) = /8. (27)

The parameter ¢ is a two-dimensional parameter composed of the exponent parameter
o and of the amplitude parameter H. Since we are mostly interested in o, H is called
a nuisance parameter.

In presence of nuisance parameter Bernardo and Berger suggested that o should first
be fixed and the conditional prior =(H|e) computed for that value. The full prior is
then:

n(6) = 7(Hla)  w(a). (28)
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The conditional prior »(Hla) is given by:

7(H|a) = V/|[1(6)]22] (29)

where [I(0)]11, [[(9)]1z = [[(9)]21 and {I(6)]22 are the elements of the Fisher information
matrix I(6).

The prior for « may be computed as:

m(a) = c-exp (/ r(Hle)In |[k(a, H)'/? d,\> (30)

where ¢ is a normalization coefficient ensuring that [7(a)da =1 and:

ko, H) = [T(®)]1; — HEZHL (31)

This prior is plotted in Figure 3.

- Construction of the posteriors:

According to the Bayes theorem, the posterior probability distribution is given by:

_ __p(E|6)=(6)

POS) = Tt moae )

The posterior probability distribution for « is then given by:
_ [ p(Elo, Hyr(H|o)m(e)dH

Pl = T pelar, H)yr(H Joryw (o) dH da’

RESULTS AND DISCUSSION
Compatibility with an integer exponent

Figure 4 shows the posterior probability distribution for the exponent o of the red
noise using the Bernardo-Berger prior.

The exponent value obtained for the maximum of likelihood, just as for the maximum
of the distribution, is o = —2.2.

However, a = —2 is fully compatible with this prior distribution. Thus, we may conclude
that the apparent divergence between the variance measures and the fitted curve in
Figure 2 is probably due to a statistical bias of the data. The spectral density Sy(f) 1s
then compatible with the following model:

Sy(f) = ho + hoof 7. (34)

Noise level estimation

Selecting an exponent value o = —2, we obtained the posterior probability distribution
plotted in Figure 5. As in the variance analysis, we chose a confidence interval of 68%
(16% probability that k., is smaller than the low bound and 16% probability that A_,
is greater than the high bound):

h_y= (2,3 __F 028 ) .107 %! at 1o (68% confidence)
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The difference between the maximum likelihood value (h_, = 2.2991.10~1%s7!) and the
variance analysis value (h_, = 2.2049-10~1%s7") is only 0.18%.

However, the confidence intervals given by these two methods are quiet different. The
main difference concerns the symmetry of the variance analysis interval: in this case,
we don’t take into account the fact that the noise levels are positive, whereas the prior
of the Bayesian approach is null for negative values of A_j.

Moreover, the variance analysis interval seems to be a bit underestimated.

CONCLUSION

The variance analysis is an useful tool for a quick estimation of the noise levels in
the output signal of an oscillator. However, a negative estimate of a noise level may
occur. Generally, in this case, this value is rejected and the corresponding noise level
is assumed to be null. On the other hand, although the Bayesian method is a bit
heavier, it takes into account properly the a priori information, and gives a more
reliable estimation of these noise levels and especially of their confidence intervals.

However, the main advantage of the Bayesian method concerns the verification of the
validity of the power law model of spectral density. Each time the model is suspected,
such an approach should be used in order to estimate the exponent of the power law.
In particular, this method should be very interesting for the study of the f~! and f*!
noise, whose origin remains mysterious [7].
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Figure 2: Allan deviation of the sequence of frequency measures
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