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ABSTRACT
A parallel structure to do spectrum sensing in Cognitive Radio

(CR) at sub-Nyquist rate is proposed. The structure is based on

Compressed Sensing (CS) that exploits the sparsity of frequency

utilization. Specifically, the received analog signal is segmented or

time-windowed and CS is applied to each segment independently

using an analog implementation of the inner product, then all the

samples are processed together to reconstruct the signal. Applying

the CS framework to the analog signal directly relaxes the require-

ments in wideband RF receiver front-ends. Moreover, the parallel

structure provides a design flexibility and scalability on the sensing

rate and system complexity. This paper also provides a joint recon-

struction algorithm that optimally detects the information symbols

from the sub-Nyquist analog projection coefficients. Simulations

showing the efficiency of the proposed approach are also presented.

Index Terms— Cognitive radio, spectrum sensing, segmented

compressed sensing, parallel, sub-Nyquist

1. INTRODUCTION
Cognitive Radio (CR) provides a new paradigm to exploit the

existing wireless spectrum efficiently. In CR, spectrum holes that

are unoccupied by primary users can be assigned to appropriate

secondary users[1], [2], [3]. However, spectrum sensing in CR can

be a very challenging task due to the wide frequency bandwidth,

potentially up to several gigahertz. Usually, the RF front-end can

either do narrow-band sensing via a bank of passband filters or

use a wideband RF front-end followed by DSP blocks to sense the

whole bandwidth. Unfortunately, both have their own drawbacks:

the former imposes strict constraints on the filter design whereas

the latter necessitates a high-speed ADC.

Recent work in Compressed Sensing (CS)[4], [5] provides a way

to sense sparse or compressible signals efficiently. According to CS

theories, the characteristics of a discrete-time sparse signal can be

completely captured by a number of projections over a random

basis and reconstructed perfectly from these random projections.

The number of random projections is on the order of the signal’s

information rate rather than the Nyquist rate.

Moreover, because much of today’s spectrum usage is such that

only a small portion of frequency bands are heavily loaded while

others are partially or rarely occupied[6], CS can be used as a

framework to reduce the spectrum sensing rate for the wideband

RF front-end in CR. This idea was first introduced in [7], where

the authors first utilized CS to do coarse classification of the sparse

spectrum at sub-Nyquist rate and then used the wavelet-based edge

detector to recover the frequency band location. However, digital

approaches generally require full-rate sampling before spectrum

estimation, and the issue is then to reduce the complexity of the

spectrum estimate. When it comes to practical implementation,

there are several issues to be considered. (i) The random projections

(measurements) in CS are done over a discrete-time signal that

is obtained by sampling the continuous-time signal at Nyquist

rate, which is paradoxical because sub-Nyquist sensing is achieved

by first discreterizing the analog signal at Nyquist rate. Can we

avoid the discreterization at Nyquist rate by applying CS to the

analog signal directly? (ii) How are the random measurements

implemented in practice? Are they practically affordable?

As an effort to answer the above questions, a parallel wideband

sensing structure for CR via applying CS to analog signals directly

is proposed in this paper. Specifically, the received analog signal is

segmented or time-windowed and CS is applied to each segment

independently using mixers and integrators, then all the samples

are processed together to reconstruct the signal. We show that in

an OFDM-based CR system with 256 sub-carriers where only 10

are simultaneously active but at unknown frequencies, a parallel

processing mixed-signal architecture with 8-10 branches is capable

of sensing the spectrum at 20/256 of the Nyquist rate.

The remainder of this paper is organized as follows. Section

2 introduces the principle and structure of the parallel wideband

spectrum sensing based on segmented CS. Section 3 describes

the joint signal reconstruction using Orthogonal Matching Pursuit

(OMP). Simulation results are shown in section 4 and conclusions

are made in section 5.

2. SEGMENTED COMPRESSED SENSING OF
WIDEBAND ANALOG SIGNALS

2.1. Compressed Sensing Background
According to CS theories, given a vector of discrete-time signal

xQ×1 that is K- sparse or compressible in some basis matrix

ΨQ×S , i.e., x = Ψa, where aS×1 has only K non-zero elements,

we can reconstruct the signal successfully with high probability

from L measurements, where L depends on the reconstruction

algorithm and is usually much less than Q. For example, when

the signal is reconstructed through OMP, L is approximately

2Klog(Q) to achieve a reasonable reconstruction quality[4], [5].

In CS, the measurement is done by projecting x over another

random basis Φ that is incoherent with Ψ, i.e., y = ΦΨa.

The reconstruction is done by solving the following l1- norm
optimization problem.

â = arg min‖a‖1 s.t. y = ΦΨa (1)

for which linear programming techniques or iterative greedy al-

gorithms such as OMP can be used. Note that measurements,

projections and samples are used interchangeably for the rest of

this paper.
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2.2. Compressed Sensing of Analog Signals
CS was initially proposed for processing of discrete-time signals.

Then, if the received signal is analog, an ADC sampling at Nyquist

rate is needed to discreterize the analog signal before applying

the CS. After that, the compressed sensed data are sent to DSP

blocks for further manipulation. While it is true that the data

volume to be processed by DSP blocks is reduced due to the CS, a

high-speed ADC sampling at Nyquist rate is still required when

the received signal is wideband. As mentioned in section 1, it

is natural to think about ways to avoid the high-speed ADC by

applying CS to the analog signal directly. A related idea was first

described in [8], where the analog signal was first demodulated with

a pseudo-random chipping sequence p(t), then passed through an

analog filter h(t), and the measurements were obtained in serial by

sampling the filtered signal at sub-Nyquist rate, which is shown in

Fig. 1(a). The serial sampling structure is appropriate for real-time

processing. However, to achieve a satisfactory signal reconstruction

quality, the order of the filter is usually higher than 10. In addition,

because the measurements are obtained by sampling the output

of the analog filter sequentially, they are no longer independent

due to the convolution in the filter, which brings some redundancy

in the measurements. Here, we propose a Parallel Compressed
Sensing (PCS) structure to sense the analog signal, in which each

measurement is obtained through an independent projection.

Specifically, suppose we have an analog signal x(t) which is

K- sparse over some basis Ψ as in (2) for t ∈ [0, T ].

x(t) =

S−1∑

s=0

anΨn(t) = Ψa (2)

where, Ψ = [Ψ0(t), Ψ1(t), . . . , ΨS−1(t)] consists of S basis

components, a = [a0(t), a1(t), . . . , aS−1(t)] has only K � S
non-zero elements. Assuming full Channel State Information (CSI),

the received signal r(t) can be viewed as the transmitted signal plus

some additive noise, i.e.,

r(t) = x(t) + n(t) (3)

Measurements of r(t) are obtained in parallel by calculating the

inner product of the received signal r(t) and the random projection

components Φl(t)|L−1
l=0 during a period of T . For example, the lth

measurement yl is given by.

yl = 〈r(t), Φl(t)〉 =

∫ T

0

r(t)Φ∗
l (t)dt (4)

There are several choices for the distribution of Φl(t), such

as Gaussian, Bernoulli, and others. Here, we focus on binary

(Bernoulli) because such sequences can be readily generated with

digital sequential circuitry. The inner product calculation is imple-

mented with mixers and integrators in practice. Define TN as the

Nyquist sampling period, because the outputs of the integrators are

fed to a set of parallel ADCs at the end of each integration time T
and the quantized digital words are sent to DSP blocks for further

processing, each parallel branch samples the received signal at a

sub-Nyquist rate as long as T > TN .

2.3. Parallel Segmented Compressed Sensing (PSCS) Structure
Although each branch in the above PCS structure works at sub-

Nyquist sensing rate, there are total L parallel branches required. L
may still be high in terms of hardware cost. For example, assuming

Q = 256 and K = 10 for the K- sparse discrete-time signal

vector xQ×1 as defined in section 2.1, if OMP is used to reconstruct

the signal, then L will be around 2Klog(Q) = 160. This means

160 parallel branches are needed, which is very undesirable for a

practical circuit design. Aiming at reducing the system complexity,

we proposed the Parallel Segmented Compressed Sensing (PSCS)
structure as depicted in Fig. 1(b).

(a) Structure in [8]

(b) PSCS structure

Fig. 1. Structures of compressed sensing of analog signals

In the PSCS structure, the received signal r(t) for t ∈ [0, T ]
is segmented into M pieces rm(t) = r(t)wm(t)|M−1

m=0 with a

duration time Tc, where, wm(t) is the windowing function. Two

adjacent pieces have an overlapping time Tc − Tm which defines

an overlapping percentage OV R = Tc−Tm
Tc

, as shown in Fig. 2.

Fig. 2. Illustration of overlapping windows

Random projection is applied to each segment independently

through N parallel branches. There are total L = MN samples

generated every T seconds and the mth measurement of the nth

branch is given by:

ymN+n = 〈rm(t), ΦmN+n(t)〉 =
∫ mTm+Tc

mTm
r(t)Φ∗

mN+n(t)dt
(5)

Where, ΦmN+n(t) is chosen randomly for all m and n. Obviously,

the PCS structure introduced in section 2.2 is a special case of the

PSCS structure with M = 1.

The motivation behind the PSCS structure is to reduce the

number of parallel ADC branches, i.e., the number of measurements

by sensing only a segment of the original signal[9]. The problem

caused by segmentation is that each segment has incomplete infor-

mation about the signal, so the measurements from all segments

3862



should be processed jointly to reconstruct the original signal. Also,

since the information loss is more serious along the window

edges than in the middle, overlapping is introduced to average

out the error resulting from reduced information. Similar classical

windowing methods are well known in spectrum estimation[10].

Since the signal is sensed segment by segment, the number of

measurements per segment, i.e., the number of parallel branches N ,

can be much less than L, which will be verified by the simulation

results shown in section 4. However, this comes at the cost of

increasing the sensing rate of each branch by T/Tc times due to

the reduced integration period.

3. JOINT SIGNAL RECONSTRUCTION
In the PSCS structure, the random projection is applied to each

segment independently to get the compressed sensed samples of

the received signal, the next step is to reconstruct the signal from

those samples. In this paper, we propose the following joint signal

reconstruction algorithm based on OMP.

First, stack the measurements for every segment as

y = [ỹT
0 , ỹT

1 , . . . , ỹT
M−1]

T
(6)

where, ỹm = [ymN , ymN+1, . . . , ymN+N−1]
T is the vector of

measurements of the mth segment from all N branches.

Define the reconstruction matrix V = {vi,j}L×S with

VmN+n,s = 〈Ψs,m(t), ΦmN+n(t)〉 =
∫ T

0
Ψs,m(t)Φ∗

mN+n(t)dt
(7)

Where, Ψs,m(t) = Ψs(t)wm(t).
Then, we apply OMP to reconstruct the signal based on the

measurements y and the reconstruction matrix V. The pseudo-
code for the OMP is shown below.

Initialization: z0 = y

Iteration: for k = 1 : K, do

(1) Calculate the projection of the residue over

the direction of Vj for all j

bk,j = 〈zk−1,Vj〉
where, Vj is the jth column of V

(2) Find the column Vik
such that

ik = argmax bk,j

(3) Compute the new residue zk

âk =
〈y,Vik

〉
〈Vik

,Vik
〉

zk = zk−1 − âkVik

Output: the reconstructed signal: x̂(t) =
∑K

k=1 âkΨik
(t)

For simplicity, K is assumed known here. If K is unknown,

we can modify the iteration in the above by letting k run from 1

to S but adding a threshold for bk,j below which the iteration is

terminated.

4. SIMULATIONS
We present simulations to show the effectiveness of our PSCS

structure. In our simulations, OFDM based CR is assumed, this

is because OFDM-based CR systems are known to be excellent fit

for the physical architecture of CR systems[2], [11], [12]. Suppose

that there are S = 128 or 256 possible sub-carriers for primary

users over the given wide frequency band. To model the sparsity in

frequency utilization, only K = 10 randomly chosen sub-carriers

are used during each OFDM symbol period. Each received signal is

partitioned into M segments with 10% overlapping and a rectangle

windows is used. Each segment has N parallel branches for
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Fig. 4. Symbol error rate with different number of segments.

measurements. {ΦmN+n(t)}|M−1
m=0 |N−1

n=0 are i.i.d. Bernoulli random

process. We simulate 1000 QPSK modulated OFDM symbols and

use order 2 Butterworth filter to filter the out of band noise and

joint OMP described in section 3 to reconstruct the signal. We

also assume perfect CSI and SNR=10dB, and define the success
reconstruction rate as one minus the block error rate of OFDM

blocks and the symbol error rate as the error rate of QPSK symbols.

Fig. 3 and Fig. 4 show the success reconstruction rate and symbol
error rate for an OFDM-based CR systems under different M
respectively, with S = 256 and K = 10. As shown, given the same

number of samples per branch, the signal reconstruction quality

improves with more parallel branches. On the other hand, given

the same reconstruction quality, the number of parallel branches

can be reduced by decreasing T and and thereby increasing the

sample rate for each branch. This is illustrated in Fig. 5.

In Fig. 5, the number of parallel branches N is plotted against the

number of samples per branch M with S = 256 and K = 10, given

the target success reconstruction rate of 95% which corresponds

to a symbol error rate of 10−4 approximately. For comparison, we

also plot the curve of N = 140
M

in the same figure. Comparing the

simulation curve with the curve of N = 140
M

, we can make two

important observations. First, the system works at sub-Nyquist rate.

If sampled according to the Nyquist rate, there will be S = 256
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Fig. 5. Impact of number of segments on the number of measure-

ments required per segment.

samples needed for one OFDM symbol period T ; whereas in our

PSCS structure, each ADC needs to generate no more than 20

samples during each T and even the total number of samples

L = MN is approximately equal to 140 which is still less than

256. This significant reduction on the sensing rate is the benefit

of parallelization and compressed sensing. Second, the number

of parallel branches N is approximately inversely proportional to

the number of samples per branch M , which presents a tradeoff

between the system complexity and the sensing rate. For example,

without segmentation, the sensing rate per branch is only 1/256 of

the Nyquist rate, but more than 100 parallel branches are required

to have a satisfactory reconstruction quality; with 20 segments, only

8-10 parallel branches are needed, which is affordable for practical

implementation, but the sensing rate is increased by 20 times.

In the PSCS structure, the sensing is done with mixers and

integrators. Fig. 6 shows an interesting result about how the

randomness of the projection basis impacts the system with M = 4
and S = 128. We simulate the analog signal by sampling it

at fOS = 100 times the Nyquist sampling rate, and the clock

frequency for the random basis fCLKR is initially set as the signal’s

sampling rate. As shown, the system performance remains the same

even if fCLKR is reduced by 50 times, which means a great

relaxation on the circuits to generate the random basis. Intuitively

speaking, if viewing the random projection as a matching procedure

in the frequency domain, because the more random the basis in the

time-domain, the whiter its spectrum in the frequency-domain, we

can reduce the randomness of the projection components without

degrading the reconstruction quality as long as their spectrum are

white enough to capture the signal’s spectral characteristics, but

there is a threshold beyond which further reduction will cause their

spectrum to become too narrow to recover the signal.

5. CONCLUSIONS
In this paper, we propose a parallel spectrum sensing structure for
wideband cognitive radios. The sparsity of spectrum utilization in
CR can be exploited by CS to do wideband spectrum sensing at
sub-Nyquist rate. Applying CS to analog signals relaxes the design
specifications of the RF front-end and ADC. The parallel structure
brings flexibility and scalability on design and practical spectrum
sensing for wideband cognitive radio can be achieved by carefully
balancing the complexity and the sensing rate. The signal can
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Fig. 6. Impact of the randomness of projection basis.

be reconstructed by jointly processing all the measurements. The
sensing at each branch is implemented with mixers and integrators
and the randomness of the projection basis can be smoothed to
some extent without degrading the performance.
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