

DEPARTMENT OF THE ARMY US ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND MD /21010-5403

MCHB-TS-THE

30 September 2009

MEMORANDUM FOR Environmental Acquisition and Logistics Sustainment Program (AMSRD-MSF/Mr. Erik Hangeland), US Army Edgewood Chemical Biological Center, US Army Research, Development and Engineering Command, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424

SUBJECT: Environmental Health Assessment for Work Unit PYRO 06-08, Pyrotechnic Perchlorate Elimination/Mitigation Program for M118/M119 Simulators, Toxicology Report No. 87-XE-074Z-09C

1. Five copies of the subject report with Executive Summary are enclosed.

2. Please contact us if this report or any of our services did not meet your expectations.

3. The US Army Center for Health Promotion and Preventive Medicine point of contact is Dr. Larry Williams, Directorate of Toxicology, Health Effects Research Program. He may be contacted at DSN (312) 584-7159 or commercial (410) 436-7159.

FOR THE COMMANDER:

Encl

GLENN J. LÉACH Acting Director, Toxicology

REPORT DOCUMENTATION PAGE		Form Approved OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per supports, incl getbaring and maintaining the data needed, and completing and reviewing the collection of information. Sand com- information, including suppartients for reducing the burder, to Department of Defaces, Washington Heedquarters 1215 Jefferren Davis Highway, Suite 1204, Arington, VA 22202-4302. Respondents thould be aware that no penalty for failing to comply with a collection of information if it does not display a currently wind OMB control num PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.		ting this hundre estimate or any other search of this calls
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE		3. DATES COVERED (From - To)
Sept. 11, 2009 Environmental Health Assessment		Jan Sept., 2009
4. TITLE AND SUBTITLE	5a. CO	NTRACT NUMBER
Toxicology Report No. 87-XE-074Z-09C: Pyrotechnic Perchlorate Elimination/Mitigation Program For M118/M119 Simulators	56. GR	ANT NUMBER
	Sc. PRI	DGRAM ELEMENT NUMBER
6. AUTHOR(S)	53 004	DJECT NUMBER
	SO-04. 47 11/4	
Larry Williams Michael Quinn		· · ·
William Eck	5e. TA	sk number
	5f. WO	RK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
USA Center for Health Promotion and Preventive Medicine Directorate of Toxicology Health Effects Research Program 5158 Blackhawk Rd.		Toxicology Report No. 87-XE-074Z-
Aberdeen Proving Ground, MD 21010-5403		
9. SPONSDRING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYMIS
USA RDECOM, AMSRD-MSF Environmental Acquisition and Logistics Sustainment Program Aberdeen Proving Ground, MD 21010		USA RDECOM, AMSRD-MSF 11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT Unlimited; approved for public release		
13. SUPPLEMENTARY NOTES		
· ·		
14. ABSTRACT The Army EQT Ordnance Environmental Program (OEP) is dedicated to finding and/or occupational risks to health. As part of this program, each work unit is er impacts. The primary purpose of this work unit (PYRO 06-08) is to eliminate p the formulations for the M118 and M119 simulators. These simulators are used high-pitched whistle. The proposed formulations have successfully removed per environmentally-friendly devices. The current formulations for the M118 and M	vahiated otassium in traini rchlorate	for environmental and occupational hear perchlorate from the flash composition ng to produce illumination or create a from the mixtures, resulting in much m
	_	
15. SUBJECT TERMS. notassium narchlovata. Ordnance Euvironmental Program. MUS and MUS cim	estatore	
15. SUBJECT TERMS potassium perchlorate, Ordnance Environmental Program, M118 and M119 sim	ulators	
potassium perchlorate, Ordnance Environmental Program, M118 and M119 sim	19a. NA	ME OF RESPONSIBLE PERSON
potassium perchlorate, Ordnance Environmental Program, M118 and M119 sim 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 3. REPORT b. ARSTRACT c. THIS PAGE ABSTRACT OF	19a. NA	ME OF RESPONSIBLE PERSON EPHONE NUMBER (Include area code)

Sponsor

USARDECOM, AMSRD-MSF Environmental Acquisition and Logistics Sustainment Program Aberdeen Proving Ground, MD 21010

Study Title

Environmental Health Assessment for Work Unit PYRO 06-08 Pyrotechnic Perchlorate Elimination/Mitigation Program For M118/M119 Simulators Toxicology Report No. 87-XE-074Z-09C September 2009

Authors

Larry Williams, Ph.D., Michael J. Quinn, Jr., Ph.D, and William S. Eck, Ph.D.

Study Completed Final Report

Performing Laboratory

US Army Center for Health Promotion and Preventive Medicine Directorate of Toxicology Health Effects Research Program MCHB-TS-THE Aberdeen Proving Ground, MD 21010-5403

Submitted by:

US Army Center for Health Promotion and Preventive Medicine Health Effects Research Program ATTN: MCHB-TS-THE Aberdeen Proving Ground, MD 21010-5403 (410) 436-3980

Prepared by:

Larry Williams, Ph.D. Toxicologist, HERP

Michael J/Quinn, Jr., Ph.D. Toxicologist, HERP

 $\mathcal{U}_{\mathcal{I}}$

William S. Eck, Ph.D. Biologist, HERP

9-11-09

Date

9/14/09

Date

9/14/2009.

Approved by:

Mark S. Johnson, Ph.D., D.A.B.T. Program Manager Health Effects Research

9-14-09

Date

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support and encouragement provided to this effort by Ms. Maryalice Miller and Mr. Erik Hangeland, former and present Director of the US Army Research, Development and Engineering Command, Environmental Acquisition and Logistics Sustainment Program, respectively. We also thank Dr. John Beatty of the Environmental Quality Technology Program, Pollution Prevention Team for assistance. Finally, we acknowledge Mr. Mike Packer for assistance in establishing and integrating the EndNote Reference Database system into the CHPPM Environmental Health Assessments.

DEPARTMENT OF THE ARMY US ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND MD 21010-5403

EXECUTIVE SUMMARY ENVIRONMENTAL HEALTH ASSESSMENT FOR WORK UNIT PYRO 06-08 PYROTECHNIC PERCHLORATE ELIMINATION MITIGATION PROGRAM FOR M118/M119 SIMULATORS TOXICOLOGY REPORT NO. 87-XE-074Z-09C SEPTEMBER 2009

1. PURPOSE. To provide environmental and occupational health information on new or replacement energetic compounds for Army use in the research, development, testing, and evaluation (RDT&E) of alternatives under the Environmental Quality Technology (EQT) program. This information is necessary for work unit program evaluation.

a. Residues of pyrotechnics, propellants, explosives, and incendiaries that were part of mission-essential activities have been found in soil, air, surface, and ground water samples, creating environmental problems and interfering with training activities. As a consequence, research, development, testing, training, and use of substances potentially less hazardous to human health and the environment is vital to the readiness of the US Army. Safeguarding the health of Soldiers, civilians, and the environment requires an assessment of alternatives before they are fielded. Continuous assessment of the potential alternatives, begun early in the RDT&E process, can save significant time and effort during RDT&E, as well as over the life cycle of the items developed.

b. The Army EQT Ordnance Environmental Program (OEP) is dedicated to finding replacements for substances causing environmental and/or occupational risks to health. As part of this program, each work unit is evaluated for environmental and occupational health impacts. The primary purpose of this work unit (PYRO 06-08) is to eliminate potassium perchlorate from the flash composition of the formulations for the M118 and M119 simulators. These simulators are used in training to produce illumination or create a high-pitched whistle.

2. CONCLUSION. The proposed formulations have successfully removed perchlorate from the mixtures, resulting in much more environmentally-friendly devices.

3. RECOMMENDATIONS. The current formulations for the M118 and M119 simulators should continue in development.

Readiness thru Health

ES-1

TABLE OF CONTENTS

PARAGRAPH

PAGE

1.	REFERENCES	.1
2.	PURPOSE	.1
3.	AUTHORITY	.1
4.	BACKGROUND	.1
	STATEMENT OF PROBLEM	
	METHODS	
7.	RESULTS	.5
8.	DISCUSSION	.34
9.	RECOMMENDATIONS	.36

APPENDICES

A—REFERENCES	A-1
B-PRODUCTS OF COMBUSTION: NASA/GLENN MODEL	B-1

LIST OF TABLES

Table 1. Composition of Simulator Formulations	4
Table 2. Categorization Criteria used in the Development of EnvironmentalSafety and Occupational Health Severity	5
Table 3. ECOSAR-predicted endpoints for carbon black	8
Table 4. List of Physical and Chemical Properties	28
Table Toxicological data	30
Table 6. Human Health Impact Assessment	32
Table 7. Ecotoxicological Impact Assessment	33

ENVIRONMENTAL HEALTH ASSESSMENT FOR WORK UNIT PYRO 06-08 PYROTECHNIC PERCHLORATE ELIMINATION PROGRAM FOR M118/M119 SIMULATORS TOXICOLOGY REPORT NO. XE-87-074Z-09C SEPTEMBER 2009

1. REFERENCES. See Appendix A for a listing of references used in this report.

2. PURPOSE. To provide environmental and occupational health information on new or replacement compounds and mixtures for Army use in explosives, propellants, and pyrotechnics. This information is necessary for work unit program evaluation.

3. AUTHORITY. This Environmental Health Assessment addresses, in part, the environmental safety and occupational health (ESOH) requirements outlined in Army Regulation (AR) 200-1 (2007); AR 40-5 (2007); and AR 70-1 (2003); Department of Defense Instruction (DoDI) 4715.4; and Army Environmental Research and Technology Assessment (AERTA, 2007) requirement PP-3-02-04, "Compliant Ordnance Lifecycle for Readiness of the Transformation and Objective Forces." This assessment was performed as part of an on-going effort by the US Army Environmental Quality Technology (EQT), Ordnance Environmental Program to reduce or eliminate the environmental impact from the life cycle use of new chemical formulations proposed for use in weapon systems or platforms. This program is under the direction of the Research Development Engineering Command (RDECOM) Environmental Acquisition Logistics & Sustainment Program (EALSP; Mr. Erik Hangeland) and EQT P2 Chair (Army Research Laboratory (ARL); Dr. John Beatty).

4. BACKGROUND.

a. Current regulations require assessment of human health and environmental effects arising from exposure to chemical substances in soil, surface water, and ground water. Applied after an item has been fielded, these assessments can reveal the existence of adverse environmental and human health effects that must be addressed, often at substantial cost. It is more efficient to begin the evaluation of exposure, effects, and environmental transport of military-related compounds/substances early in the RDT&E process in order to avoid unnecessary costs, conserve physical resources, and sustain the health of those potentially exposed.

b. In an effort to support this preventive approach, the US Army Center for Health Promotion and Preventive Medicine (USACHPPM) has been tasked with creation of a phased process to reduce adverse ESOH effects impacting readiness, training, development, and potential remediation costs and to sustain the environmental integrity of testing and training ranges. This is an ongoing effort, and this report represents the status of information available as of the date of publication. Summary interpretations of preliminary information search results for this work unit were provided to the sponsor during the course of the development effort.

c. Pyrotechnic simulators teach troops installation, detection, and caution by mimicking booby traps and other hazards a Soldier might encounter on the battlefield. The M118 simulates illumination from a parachute flare or artillery illumination round and the M119 produces a loud

whistle. The developer for these simulators is the US Army Armament Research, Development, and Engineering Center (ARDEC), Picatinny Arsenal, NJ. The principle investigator is Mr. Mark Motyka.

5. STATEMENT OF PROBLEM.

a. Research, develop, and prove-out perchlorate-free charges for the M118 and M119 simulators that are more efficient, are life-cycle cost effective, and more conducive to human health and environmental quality.

b. Potassium perchlorate is a major component of the current simulator formulations. The perchlorate anion is a strong and effective oxidizer and, as such, is an efficient component of propellant mixtures. Unfortunately, the perchlorate anion has numerous environmental and human health regulatory concerns. The greatest human health concern stems from the fact that perchlorate biochemically mimics iodine, competes with iodine for uptake by the body, specifically the sodium-iodine symporter (NIS), and inhibits the production of thyroid hormones. While individuals that consume recommended quantities of iodine in their diet appear not to be affected, persons who are iodine-deficient, nursing mothers, and infants are potentially at an increased risk of thyroid hormone deficiency. Thyroid hormone deficiency has been shown in the developing rat model to result in impaired neurological development (NRC, 2005). Ecological effects associated with perchlorate exposure are summarized in a previous publication (USACHPPM, 2007).

6. METHODS.

a. In order to determine the human health and ecological impacts of compounds employed in these formulations, it is necessary to correctly and unambiguously identify each compound and to determine its physical, chemical, and toxicological properties. The primary means of identification employed for each compound in this program is its Chemical Abstracts Service Registry Number (CAS RN) (Table 1). While all compounds do not necessarily have a single CAS RN, the CAS RN is an unambiguous way of accessing information for chemical substances. The CAS RN is readily used as a keyword for searching online databases, and is often cross-referenced with both systematic and trivial (i.e., "common") names for chemical substances. In some cases, synonyms and trade names are also used to identify structures.

b. This report addresses compounds investigated as part of this work unit through the end of fiscal year (FY) 2008. Basic physical and chemical properties are usually determined by consulting tertiary sources when such information is available. The properties necessary to assess fate and transport in the environment (FTE) include—

(1) Molecular weight (MW).

(2) Henry's law constant (K_H) .

(3) Octanol-water partition coefficient (log K_{OW}).

- (4) Water solubility
- (5) Boiling point (bp).

(6) Organic carbon partition coefficient (log K_{OC}).

(7) Vapor pressure (vp).

c. Available information on combustion, explosion, and thermal decomposition products is also collected, if available. Toxicological information needed to estimate potential human health risks includes reported toxicity effects of acute, subacute, subchronic, and chronic exposures; potential for mutagenesis and carcinogenesis; and mode(s) and mechanisms of toxicity. Toxicological information is derived directly from primary sources whenever possible.

d. Hardcopy sources used in this search included publications from the US Department of Health and Human Services (DHHS), Agency for Toxic Substances and Disease Registry (ATSDR), and *The Merck Index*. The Chemical Propulsion Information Agency's (CPIA), *Hazards of Chemical Rockets and Propellants* (1985), and the US Environmental Protection Agency's (USEPA) *Drinking Water Health Advisory: Munitions* (1992), were also consulted. Commercial suppliers are sometimes contacted for results of in-house research that may not appear in the open literature.

e. Online sources include the US National Library of Medicine's Toxicology Data Network (TOXNET[®]) that provides access to information from the National Institutes of Health and the USEPA. The TOXNET is a suite of individual databases including ChemIDPlusLite[®] and ChemIDPlus® Advanced (i.e., chemical and registration numbers, and chemical identification and structure, searches respectively), Hazardous Substances Data Bank[®] (HSDB), Chemical Carcinogenesis Research Information System (CCRIS), Developmental and Reproductive Toxicology (DART/ETIC), Directory of Information Resources Online (DIRLINE[®]), Genetic Toxicology (GENE-TOX), Haz-Map (database linking chemicals, jobs and diseases), Household Products (potential health effects of chemicals in common household products). Integrated Risk Information System (IRIS), International Toxicity Estimates for Risk (ITER), Toxicology Information Online (TOXLINE[®]), Toxic Release Inventory (TRI), and Lactation Database (LactMed) (database of drugs and other chemicals to which breastfeeding mothers may be exposed). Primary sources are identified and retrieved using PubMed[®], the Ovid[®] Technologies Journals, and the EBSCOhost[®] Research Database. (TOXNET[®], ChemIDPlusLite[®], ChemIDPlus[®], DIRLINE[®], TOXLINE[®], PubMed[®], are registered trademarks US National Library of Medicine; OVID[®], is a registered trademark of Ovid Technologies, Inc.; and EBSCOhost[®] is a registered trademark of EBSCO Publishing.)

f. Some properties are not measured experimentally, but are estimated by Quantitative Structure-Activity Relationship (QSAR) models, or calculated from another value. Every effort was made to find original research reports describing the data and method of collection. Data from secondary and tertiary sources and databases were used when data were abundant and wellevaluated. When toxicity data were not available, criteria were modeled using QSAR approaches.

g. Potential products from combustion were estimated by Dr. Ross Sausa of the US Army Research Laboratory using the NASA/GLENN Chemical Equilibrium with Applications (CEA) code. Additional information on the methods and assumptions used in this code can be found at http://www.grc.nasa.gov/WWW/ CEAWeb/ceaWhat.htm. Results depend upon chemical-specific information contained within the model. When chemical-specific information is not available, data from the closest surrogate is used.

h. Persistence, bioaccumulation, human health toxicity, and ecotoxicity were assigned to general categories of risk (e.g., low, moderate, and high) using criteria modified from Howe et al. (2006). Table 2 describes the criteria used in the categorization, though the relative proportions of each substance were also factored into the final assessment.

Substance/ Formulation	CAS Number	WF-9 M118	WM-2 M119	WM-1	RNX-6	RNX-17
Boron	7440-42-8					8%
Charcoal	1333-86-4	2%				
Epikure 3125 TM	NA				8.6%	7.3%
- >96% Polyamino Amide	68410-23-1					
- < 6% Triethylene Tetramine	112-24-3					
Epon 828 TM	25068-38-6				17.4%	14.7%
Iron Oxide Red (Ferric oxide)	1332-37-2, 1309-37-1				4%	
Potassium Benzoate	582-25-2		17%	17%		
Potassium Chlorate	3811-04-9		67%	80%	• .	
Potassium Nitrate	7757-79-1	81%	13%		70%	70%
Red Gum	9000-20-8		3%	3%		
Silicon	7440-21-3	6%				
Sulfur	7704-34-9	8%				
Vinyl Alcohol Acetate Resin (VAAR)	25213-24-5	3%				

Table 1. Composition of Simulator Formulations

Table 2. Categorization Criteria used in the Development of Environmental Safety and Occupational Health Severity (Howe et al., 2006)

	LOW	MODERATE	HIGH
PERSISTENCE	Readily biodegrades (<28 days)	Degradation ¹ / ₂ life: water <40 days, soil <120 days	Degradation ½ life: water >40 days soil > 120 days
TRANSPORT	Water sol. $< 10 \text{ mg/L}$ log K _{OC} > 2.0	Water sol. 10-1000 mg/L log K _{OC} 2.0-1.0	Water sol. > 1000 mg/L log Koc <1.0
BIOACCUMULATION	log K _{OW} <3.0	log K _{OW} 3.0-4.5	log K _{OW} >4.5
ΤΟΧΙΟΙΤΥ	No evidence of carcinogenicity/ mutagenicity; Subchronic LOAEL > 200 mg/kg-d	Mixed evidence for carcinogenicity/mutagenicity (B2, 2); Subchronic LOAEL 5-200 mg/kg-d	Positive corroborative evidence for carcinogenicity /mutagenicity; LOAEL < 5 mg/kg-d
ECOTOXICITY	Acute LC ₅₀ LD ₅₀ >1 mg/L or 1500 mg/kg; Subchronic EC ₅₀ >100 µg/L or LOAEL >100 mg/kg-d	Acute $LC_{50}LD_{50}$ 1-0.1 mg/L or 1500-150 mg/kg; Subchronic EC_{50} 100-10 µg/L or LOAEL – 10-100 mg/kg-d	Acute LC ₅₀ ,LD ₅₀ <100 µg/L or <150 mg/kg; Subchronic LOAEL <10 mg/kg-d

Notes:

mg/L - milligrams per liter

LOAEL - lowest-observed adverse effect level

LC₅₀ - concentration expected to result in 50% lethality to a population of test animals.

LD₅₀ - Lethal Dose 50 median concentration of a toxicant that will kill 50% of the test animals within a designated period mg/kg-d - milligram per kilogram per day

μg/L - microgram per liter

7. RESULTS.

a. <u>Physical and Chemical Properties</u>. Physical and chemical properties are summarized in Table 3. Numerical toxicological data is tabulated in Table 4. Data for properties that could not be found are indicated by "nd" (no data). In some cases the property named is not applicable ("n/a") to the substance being described. For example, if the compound is a nonvolatile solid or an inorganic salt, vapor pressure, K_{OW}, K_{OC}, and the Henry's Law constant (K_H) are typically negligible. From the available data, there were no indications of significant potential environmental problems (i.e. mobility in water, bioaccumulation, or persistence) for any component resulting from its physical or chemical properties. However, few data were found for some of the commercial plasticizers (e.g. EponTM, EpikureTM). Although efforts were made to gather additional data from the manufacturers, little relevant information has been received. Given the relatively small amounts used in the formulation, it is unlikely these substances will significantly affect the conclusions of this report.

b. <u>Summaries</u>. Summaries of human health and environmental toxicology for each of the formula components are presented in Tables 5 and 6, respectively. Each characterization is generally based on the criteria set forth in Table 2. The final risk characterization also incorporates assessment of the uncertainty associated with available data, the amount of each

compound present in the formulation, and the nature of potential exposure associated with use of the end item.

c. <u>Compound Characterizations</u>.

(1) <u>Boron</u>. Boron is an element that exists as one of three allotropes at room temperature, including red crystals, black crystals with a metallic luster, and a black or dark brown amorphous powder (O'Neil, 2006). Very few toxicity data are available for elemental boron, since its occurrence in nature is rare. The most likely paths for boron exposure are via food – mainly fruits and vegetables, ground water, air, and consumer products (ATSDR, 1992). Individuals who reside in areas of the western United States that have natural boron-rich deposits may be exposed to higher-than-average levels of boron compounds (ATSDR, 1992). In soil, boron readily forms compounds with surrounding materials depending on the type of soil, its pH level, salinity, organic matter content, clay content, and other variables. Boron compounds are absorbed by plants through soil, and there is evidence that boron is an essential nutrient for some plants (WHO, 2005a).

(a) Acute oral. The acute oral LD_{50} for boron has been determined in several species. In mouse it is 2000 mg/kg for "presumably amorphous" boron (Stokinger, 1981) although a value of 560 mg/kg was reported for another "unspecified" form of boron, presumably elemental boron. LD50's in other species are: rat, 650 mg/kg; rabbit, 310 mg/kg; guinea pig, 310 mg/kg; dog, 310 mg/kg; and cat, 250 mg/kg (CIDPL, 2009a).

(b) Sub-chronic oral. No data found.

(c) Chronic oral. Based on developmental effects (decreased fetal weights) in rats from two studies (Heindell et al., 1992; Price et al., 1996), the EPA reference dose (RfD) for boron is 0.2 mg/kg/day (USEPA, 2006b). The No-Observed-Adverse-Effect Level (NOAEL) for boron is 9.6 mg/kg-day (Price et al., 1996), and the LOAEL is 13.3 mg/kg-day (Heindell et al., 1992).

(d) Acute inhalation. No data found.

(e) Sub-Chronic inhalation. Fifteen mice were exposed to concentrations averaging 72.8 mg/m³ of elemental amorphous boron for 7 hours per day, 5 days per week over a 30-day period. Mean particle size was 0.67 μ m with a standard deviation of 2.0 μ m. At the end of the study, average boron concentrations in the mouse tissues were: 792 μ g/g in the lung, 252 μ g/g in the kidney, 106 μ g/g in the liver, and 73 μ g/g in the gastrointestinal tract. There was no evidence of toxicological effects. The mice had a mean weight loss of 7% during the first week, but they later recovered the lost weight in steady increases (Stokinger, 1981).

(f) Chronic inhalation. No data found.

(g) Dermal. No data found.

(h) Development and Reproduction. No data found.

(i) Mutagenesis. No data found.

(j) Carcinogenesis. Based on the lack of human studies and limited animal studies, the human carcinogenicity of elemental boron cannot be classified (WHO, 2005a).

(k) Ecotoxicology. Boron is an essential micronutrient for some plants. It is important in plant cell division, metabolism, and membrane structure and function (WHO, 2005a).

(2) <u>Charcoal</u>.

(a) Acute Oral. The LD₅₀ for rats orally exposed to carbon black has been determined to be >15,400 mg/kg and >3000mg/kg in rabbits RTECS (RTECS, 2006).

(b) Subchronic Oral. Female Sprague-Dawley rats and female CF1 mice treated with 1,2dimethylhydrazine to induce adenocarcinomas of the colon were fed carbon black at 2.05 g/kg for 52 weeks (Pence et al., 1985). No differences in tumor incidences were seen in rats or mice. Although exact amounts were not reported, no effects of a diet of 10% carbon black in mice for 72 weeks were observed (Nau et al., 1976).

(c) Chronic Oral. No differences in tumor incidences were observed in a two-year feeding study with 2.05 g/kg carbon black in female Sprague-Dawley rats and female CF1 mice (Pence et al., 1985).

(d) Acute Inhalation. No data found.

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation.

i. Hamsters exposed to 3 mg/ft^3 black carbon for 172 days did not have any observable differences in pathological changes to the larynx, trachea, hypopharynx, or cervical esophagus compared to controls. Exposure to 1.5 mg/ft^3 did, however, result in edema in the subepithelial area of the thyroaryntenoid fold and retention of amorphous eosinophilic material in the subglotic glands. In the same study, Rhesus monkeys that were exposed to 1.5 mg/ft^3 for 160 days did not have any impairment in pulmonary function, but did have accumulations of carbon black particles in the lymphatics surrounding the bronchiolar areas and were observed to have experienced destruction of the alveolar walls in the bronchioles and parenchyma surrounding the pulmonary veins (Nau et al., 1976).

ii. Carbon black is considered to be a non-specific irritant with toxic effects similar to other insoluble particulates (USEPA, 2005). Few toxicity data exist for acute inhalational exposure to carbon black due to the greater concern over the potential for cancer from longer term exposures (Heinrich et al., 1994; Driscoll et al., 1996). A description of the current views on the mechanism of inhalational carcinogenicity is discussed in the carcinogenesis section.

(g) Dermal. No data found.

(h) Reproduction and Development. No data found.

(i) Mutagenicity. No data found.

(j) Carcinogenesis. A recent review by Valberg and co-workers reassesses the International Agency for Research on Cancer's 1996 reclassification of carbon black from group 3 to group 2B (Valberg et al., 2006). The elucidated mechanism for carcinogenicity reveals that the particulate exposures result in macrophage activation of various signaling pathways that amplify inflammation (IARC, 1996). Mutations and fibrosis result from the chronic state of inflammation that help to cause metaplastic changes and lung tumors (Knappen et al., 2004). The carcinogenic properties are therefore similar to any poorly soluble particle--toxicity results from particle overload more than the molecules' chemistries. In light of the new mechanistic data for carbon black's potential carcinogenicity, it has been determined that there is inadequate evidence of cancer risk in humans and limited evidence in experimental animals (Valberg et al., 2006).

(k) Ecotoxicology. Ecotoxicity data were available for the common carp (*Cyprinus carpio*) using activated charcoal. Activated charcoal is used in many aquatic filtering systems; however, effects to the fry in a slurry had not yet been tested; no adverse effects were found (Kaviraj et al., 1995). An inhalation study conducted with carbon fibers using northern bobwhite (*Colinus virginianus*) was found not to result in adverse effects except at high concentrations (C. Driver, pers. comm.). ECOSAR-predicted endpoints from the EPA's assessment for carbon black (USEPA, 2005) are presented in Table 3.

Organism	Duration	Endpoint	Predicted mg/L
Fish	14 day	LC ₅₀	250
Fish	96 hour	LC_{50}	170
Daphnid	48 hour	LC ₅₀	170
Green algae	96 hour	EC ₅₀	96
Fish	30 day	ChV	18
Daphnid	16 day	EC ₅₀	- 5
Green algae	96 hour	ChV	5
Fish	96 hour	LC ₅₀	22
Mysid shrimp	96 hour	LC ₅₀	110
Earthworm	14 day	LC ₅₀	240 (dry mass soil)

Table 3. ECOSAR-predicted endpoints for carbon black.

Key: ChV = chronic value estimate (survival/growth for fish; growth for algae

(3) <u>Epikure[™] 3125</u>. Epikure[™] 3125 is a curing agent manufactured by Hexion Specialty Chemicals, Columbus, OH, and is comprised of two components: polyaminoamide (>96%) and triethylenetetramine (<6%) (Hexion Specialty Chemicals, 2007). A request was made to Hexion for data that had been collected from any internal toxicological studies done with Epikure[™] 3125, but no data has been forthcoming. SCORECARD, has Epikure[™] 3125 listed as a high volume chemical with productions exceeding 1 million pounds annually in the US; it could not be designated with a hazard ranking because of lack of data (Scorecard). The majority of the information found was from Material Safety Data Sheets (MSDS) for specific products that

contained Epikure[™] 3125. Information on the two ingredients of Epikure[™] 3125 is provided below.

(a) Acute Oral. No data found.

(b) Subchronic Oral. No data found.

(c) Chronic Oral. No data found.

(d) Acute Inhalation. No data found.

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal. No data found.

(h) Reproduction and Development. No data found.

(i) Mutagenicity. No data found.

(j) Carcinogenesis. No data found.

(k) Ecotoxicology. No data found.

(4) <u>Polyaminoamide</u>. From the name, one can infer that this is a heterodisperse polyamide with basic (amino) side chains, structurally very similar to a protein with a high percentage of basic amino acids, such as histones or similar molecules. While the exact nature of the monomers involved is unknown, the combustion process will probably consume most of the material. Polyamino amides have been patented for use in protecting hair against atmospheric attack and light (US Patent 4842851, 1989).

(a) Acute Oral. The LD₅₀ values for rats, mice, and rabbits have been determined to be 4340 mg/kg, 1600 mg/kg, and 5500 mg/kg respectively (Stavreva, 1979). The manufacturer's MSDS for EpikureTM 3125 (Hexion Specialty Chemicals, 2007) reports, that the mixture is expected to be of low toxicity, LD₅₀ > 2000 mg/kg.

(b) Subchronic Oral. No data found.

(c) Chronic Oral. No data found.

(d) Acute Inhalation. The manufacturer's MSDS for Epikure[™] 3125 (Hexion Specialty Chemicals, 2007) reports, "Inhalation of vapors or mists may cause irritation."

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal. No data found.

(h) Reproduction and Development. No data found.

(i) Mutagenicity. No data found.

(j) Carcinogenesis. Lifelong dermal application to mice at 1.2 mg three times a week did not result in increased incidence of any tumors, nor did it have any effect on skin irritation (DePass et al., 1987).

(k) Ecotoxicity. No data found.

(5) <u>Triethylenetetramine</u>. Also known as triene, triethylenetetramine is used as an oral chelator in treatment of Wilson's Disease (toxic accumulation of copper) and biliary cirrhosis, especially when patients are unable to tolerate D-penicillamine. It is also used in detergents, synthesis of dyestuffs, pharmaceuticals, and drilling mud (Ormerod et al., 1989; HSDB, 2008).

(a) Acute oral. Use of triethylenetetramine in treatment of biliary cirrhosis has been associated with serious gastrointestinal and abdominal pain, anemia, and rhabdomyolysis (HSDB, 2008).

(b) Subchronic oral.

i. Greenman et al., administered triethylenetetramine to B6C3F1 mice and F344 rats in drinking water for up to 92 days at concentrations of 0, 120, 600, and 3000 ppm (Greenman et al., 1996). Animals were fed diets containing nutritionally-adequate amounts of copper. At 600 and 3000 ppm, rats fed a purified diet had somewhat lowered levels of plasma copper, but failed to demonstrate signs of copper deficiency. In female rats receiving 3000 ppm in water and a purified diet, an increased frequency of uterine dilatation was noted. In mice, toxicity was noted only at the highest concentration in animals receiving a purified diet. Rats receiving a cereal-based diet (NIH-31) showed reduced liver copper levels at 3000 ppm.

ii. In a 10-month study in rats, the "threshold dose for chronic toxicity" was reported to be 0.8 mg/kg (BUA, 1995).

(c) Chronic oral. Most publications relating to doses in humans during treatment of Wilson's Disease indicate oral doses up to 2.3 g/day are well-tolerated (BUA, 1995).

(d) Acute inhalation. Exposure to hot vapor results in respiratory tract irritation (HSDB, 2008). Acute exposure to saturated vapor via inhalation was tolerated without impairment (OECD SIDS, 1998).

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal.

i. Exposure to hot vapor results in itching of the face with erythema and edema. Sensitization of workmen in an electrical equipment factory was also noted, with serious skin lesions, vesicular popular eczema (sometimes weeping), localized particularly on hands, forearms, genital, and inguinal regions (HSDB, 2008).

ii. In animals, triethylenetetramine has moderate toxicity on dermal application to rabbits; LD₅₀ 550-820 mg/kg (BUA, 1995).

(h) Reproduction and Development.

i. Classified as FDA pregnancy category C (see box text). Numerous malformations and fetal abnormalities have been reported with use in animals (HSDB, 2008).

Pregnancy Category C: If animal reproduction studies have shown an adverse effect on the fetus, if there are no adequate and well-controlled studies in humans, and if the benefits from the use of the drug in pregnant women may be acceptable despite its potential risks, the labeling shall state: "Pregnancy Category C. (Name of drug) has been shown to be teratogenic (or to have an embryocidal effect or other adverse effect) in (name(s) of species) when given in doses (x) times the human dose. There are no adequate and well-controlled studies in pregnant women. (Name of drug) should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus." The labeling shall contain a description of the animal studies. If there are no animal reproduction studies and no adequate and well-controlled studies in humans, the labeling shall state: "Pregnancy Category C. Animal reproduction studies have not been conducted with (name of drug). It is also not known whether (name of drug) can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. (Name of drug) should be given to a pregnant woman only if clearly needed." The labeling shall contain a description of any available data on the effect of the drug on the later growth, development, and functional maturation of the child. (FDA: http://www.fda.gov/Cder/handbook/categc.htm)

ii. Keen and co-workers fed triethylenetetramine in the diet at levels of 0, 0.17, 0.83, or 1.66% to Sprague-Dawley rats (Keen et al., 1983). Frequency of resorptions and abnormal fetuses at term increased with increasing levels of the drug. Maternal and fetal tissue copper levels were significantly lower than controls, and decreased in a dose-dependent manner. Maternal liver iron was increased in the high-dose group, but fetal iron and both maternal and fetal manganese levels were not significantly affected by the drug. A follow-on study indicated that low copper levels were primarily responsible for the teratogenic response (Cohen et al., 1983).

iii. Administration of triethylentetramine to rats results in decreased fetal copper levels, and may result in increased fetal zinc (Keen et al., 1983).

iv. Tanaka and coworkers investigated the effects of triethylenetetramine in mice on gestational day 19 (Tanaka et al., 1992). Triethylenetetramine was given throughout pregnancy to the dams at levels of 0; 3000; 6000; and 12, 000 mg/L via drinking water. At the level of 12,000 mg/L, frequency of resorption of fetuses tended to be high, and fetal viability was low compared to controls. Fetal body and cerebrum weights decreased significantly at dosage rates of 6000 and 12,000 mg/L, however fetal liver weights remained unchanged. Fetal copper concentrations in liver and cerebrum were significantly lower than controls in the treated groups, changing is a dose-related manner. Changes in fetal zinc concentration varied by tissues, i.e. there was an increase in liver but no change in the cerebrum.

v. Tanaka and coworkers also investigated the effects of the dosage levels in the previous paragraph in mice on gestational day 19 (Tanaka et al., 1993). While mean litter size and live fetus per dam at birth were not affected, a dose-dependent increase in gross brain abnormalities such as hemorrhages, delayed ossification of the cranium, hydrocephaly, exencephaly, and microcephaly were noted. At the microscopic level, disorganization of neuronal cell layers, spongiform changes in white matter, and reduced myelin development were noted. Abnormalities increased in a dose-dependent manner.

(i) Mutagenicity.

i. Triethylenetetramine is mutagenic in the Ames *Salmonella* test in all 5 strains of testing bacteria, with or without S9 activation. The lowest positive dose tested was 0.033 mg/plate in TA100 without activation (Mortelmans et al., 1986; CCRIS, 2009c).

ii. Positive results have been obtained in the Sister Chromatid Exchange (SCE) and Unscheduled DNA Synthesis (UDS) tests, but triethylenetetramine was negative in the Sexlinked Recessive Lethal (SLRL) test in *Drosophila*. Triethylenetetramine is not clastogenic in the mouse micronucleus test *in vivo* following either oral or intraperitoneal administration (BUA, 1995).

(j) Carcinogenesis. No data found.

(k) Ecotoxicology. The 24-hour growth inhibition test on bacteria (*Pseudomonas fluorescens*) gave an Effective Concentration (EC₅₀) of 500 mg/L, and 500 mg/L has a marked cytostatic effect on the yeast *Saccharomyces cerevisiae*. Green algae (*Scenedesmus subspicatus*) showed a 72-hour EC₁₀ of 2.5 mg/L based on biomass. The test of an inhibiting effect on mobility in *Daphnia magna* gave the following 24-hour values: EC₀: 22 mg/L, EC₅₀: 92.4 mg/L, and EC₁₀₀: 354 mg/L. In finfish, a test with golden orfes (*Leuciscus idus*) gave a 48-hour LC₀ of 200 mg/L and a 27-hour LC₁₀₀ of 500 mg/L (BUA, 1995). In one study using guppies (*Poecilia reticulate*), the LC₅₀ after a 96-hr exposure was determined to be 570 mg/L (OECD SIDS, 1998; Procolor MSDS, 1999). An LD₅₀ for red-winged blackbird (*Agelaius phoenicus*) was estimated to be 101 mg/kg based on food consumption data over an 18-hour period (Schafer et al., 1983).

Toxicology Report No. 87-XE-074Z-09C, August 2009

(1) Other. Yin and co-workers found that triethylenetetramine inhibits telomerase activity in HeLa cells in culture, with an Inhibitory Concentration (IC₅₀) of about 7.8 μ M (Yin et al., 2004). The proportion of cells in the G1 phase of the cell cycle was found to increase with the dosage of triethylenetetramine.

(6) <u>EPON 828</u>TM. Epon 828TM is a low-molecular weight epoxy resin. It is a yellow, flaky solid at room temperature, and is insoluble in water with no measurable vapor pressure (CCRIS, 2009a). Epon 828TM has a wide variety of uses in automotive products, home maintenance materials, and hobby/craft adhesives (HSDB, 2008). The reaction product of Epon 828TM is bisphenol-A-(epichlorhydrin) epoxy resin.

(a) Acute Oral. Based on a reported oral LD_{50} value of 11,400 mg/kg for rats (Hine et al., 1958), Epon 828TM is considered practically non-toxic to humans. Several other LD_{50} values have been reported for this chemical, including an oral LD_{50} of 15,600 mg/kg for mice, an intraperitoneal LD_{50} of 2400 mg/kg for rats, and an intraperitoneal LD_{50} of 4000 mg/kg for mice (Hine et al., 1958). Epon 828TM showed no chronic toxicity in the diet of male rats (Hine et al., 1958). The manufacturer (Hexion Specialty Chemicals) MSDS for Epon 828TM (Hexion Specialty Chemicals, 2006) reports, that the LD_{50} is expected to be of low toxicity, $LD_{50} > 2000$ mg/kg.

(b) Subchronic Oral. No data found.

(c) Chronic Oral. Significant mortality was observed in male rats fed 5.0% Epon 828TM in their diet for 26 weeks. Female rats were not tested (Hine et al., 1958).

(d) Acute Inhalation. No data found.

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal. In rabbit, dermal exposure to 0.1 mL of a 20% suspension Epon 828TM polymer in propylene glycol resulted in an irritation grade of 2 for the eye. Epon 828TM was also tested for effect on the skin of rabbits. Compounds were introduced under patches of gauze on the clipped rabbit skin. The dose was not specified. After 24 hours, a first reading was made, and, after 72 hours, a second reading was made. Epon 828TM received an irritation grade of 0 for the skin. After 20 applications, ore irritation was observed (Hine et al., 1958).

(h) Reproduction and Development. No data found.

(i) Mutagenicity. Epon 828TM tested positive in the Ames assay (Hauptman et al., 1978). Chinese hamster ovary (CHO) cells tested positive for mutagenicity (structural changes) after in vitro exposure to 0.01-0.04 mg/mL Epon 828TM in dimethylsulfoxide solution for 24 hours continuous treatment (JCIETIC, 1996).

(j) Carcinogenesis.

i. A two-year bioassay with rats and mice exposed dermally to the diglycidyl ether of bisphenol A (BADGE) showed evidence of carcinogenicity to the skin (Hexion Specialty Chemicals, 2006). Epichlorohydrin has been found to be carcinogenic in rodents, though inadequate evidence has been determined for carcinogenesis in humans (IRIS, 2007).

ii. Female mice, CF-1 strain, tested positive for reticulum cell sarcoma and lymphoblastic lymphosarcoma tumors after the twice weekly dermal application of a 10% solution of Epon 828TM in acetone (0.2 mL total dose) for 2 weeks. There was no evidence that exposure of male mice to the epoxy resin affected their susceptibility to systemic tumor development. However, it is possible that the increased incidence of reticulum-cell sarcomas or lymphosarcomas may be due to the susceptibility of the CF-1 mice to a viral infection and is not a direct indication of any systemic carcinogenic potential of epoxy resins (Peristianis et al., 1988).

(k) Ecotoxicology. Aquatic data exists for epichlorohydrin tested in *Daphnia*, algae, and many fish species. Toxicity was observed is at relatively high concentrations (USEPA, 2006a). Aquatic data exists for bisphenol-A, though the results are variable. Mortality has been reported in rainbow trout at 96-hour exposures of 60 μ g/L (Brooke, 1991).

(7) <u>Iron Oxide Red</u>. Known more commonly by the name ferric oxide, this is the common form of iron (III) oxide.

(a) Acute Oral. No data found.

(b) Subchronic Oral. No data found.

(c) Chronic Oral. No data found.

(d) Acute Inhalation. In humans there was no effect of inhaled iron oxide particle aerosols. Inhalation did not cause an appreciable alteration of alveolar epithelial permeability, lung diffusing capacity, or pulmonary function in healthy subjects under the studied conditions (Lay et al., 2001).

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal. No data found.

(h) Reproduction and Development. No data found.

(i) Mutagenicity. No data found.

(j) Carcinogenesis. No data found.

(k) Ecotoxicology. No data found.

(8) <u>Benzoic acid, sodium or potassium salt</u>. Benzoic acid is a weak, organic acid with a pK_a of 4.204 (Dean, 1992). Accordingly, exposure of either benzoate salt to an aqueous environment will result in formation of benzoic acid ($K_a = 6.25 \times 10^{-5}$). The information below reflects both the protonated and salt forms of benzoic acid.

(a) Acute Oral. The rat LD_{50} for sodium benzoate is reported to be 1714 mg/kg (SCCP, 2005).

(b) Subchronic Oral. Sherman rats dosed with 16-1090 mg/kg-d sodium benzoate for 30 days had lesions of the adrenal glands, upper intestine, kidneys, liver, and spleen (Smyth et al., 1948; Smyth et al., 1969), and rats dosed with 1947-2195 mg/kg-d sodium benzoate for 3-6 weeks were observed to have severe reductions in growth rates compared to controls (White, 1941).

(c) Chronic Oral. No data found.

(d) Acute Inhalation. No data found.

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal. No data found.

(h) Reproduction and Development. Pregnant CD-1 mice and Wistar rats received oral doses of sodium benzoate at 1.75, 8, 38, or 175 mg/kg on gestation days 6-15, pregnant hamsters received doses of 3, 14, 65, or 300 mg/kg on gestation days 6-10, and rabbits received doses of 2.5, 12, 54, or 250 mg/kg on gestation days 6-18 without any harmful effects observed on maternal or fetal survival or soft or skeletal fetal abnormalities (FDRL, 1972).

(i) Mutagenicity. Potassium benzoate showed no mutagenic activity in *in vitro* Ames tests (OECD SIDS, 2001).

(j) Carcinogenesis. No data found.

(k) Ecotoxicity. No change in mortality was observed in *Daphnia*, *Gammarus* (scud), *Pimphales promelas* (fathead minnow), *Helisoma* (ramshorn snail), flatworm, or *Lumbriculus* (oligochate worm) exposed to benzoic acid concentrations of up to 100 mg/L (Anderson, 1946; Geiger et al., 1985; Ewell et al., 1986).

(9) <u>Potassium chlorate</u>. Potassium chlorate is an inorganic salt that occurs as colorless crystals or as white powder or granules. It is soluble in water, alcohol, alkalies, glycerol, glycerin, and liquid ammonia and insoluble in acetone. Potassium chlorate is explosive and flammable, and as an oxidizing agent it is useful for various medical, and veterinary purposes (ATSDR, 2008). Potassium chlorate is approved by the European Union for use in toothpastes at concentrations of 5% or less, and for other uses at 3% or less. It has a Category II for over the counter (OTC) drugs. Heads of "strike anywhere" matches contain 24% potassium chlorate,

while "safety" or "strike-on-box" matches contain potassium chlorate as their chief ingredient. This chemical is incorporated in gargles, mouth washes, dentifrices, and throat lozenges (Kurokawa et al., 1985).

(a) Acute Oral. Several acute toxicity studies with rats indicate that potassium chlorate is slightly toxic. In humans, the lethal dose ranged from 5 g to 75 g potassium chlorate. Clinical descriptions of potassium chlorate poisonings in humans from accidental or suicidal ingestion include reports of rapid oxidative destruction of red blood cells, possibly followed or preceded by increased methemoglobin and eventual cyanosis and progressive kidney failure (NRC, 1980). The LD₅₀ value for the rat was determined to be 1850 mg/kg (SciLab, 2009). From cases of accidental or suicidal ingestion, the probable oral lethal dose for adult humans is estimated to be between 50-500 mg/kg (Gosselin et al., 1977; NRC, 1980).

(b) Subchronic Oral.

i. Oral doses of potassium chlorate 0.05 to 0.25 g/kg were administered daily to cats for 25 to 32 day. Although one of the common effects of oral toxicity is an increase in methemoglobin, none of the cats had any demonstrable changes in plasma levels. Upon necropsy, all cats receiving greater than 0.05 g/kg showed fibrosis and atrophy of distal renal tubules (NRC, 1980).

ii. Male and female Sprague-Dawley rats were exposed to drinking water containing 3.0, 12.0 or 48.0 mM sodium chlorate. The mean drinking water consumption between exposure groups varied from 100-200 mL/kg-day. There were no compound-related deaths; however, both males and females in the high exposure groups had significant weight loss during the 90-day exposure period. Also, in these same groups females had mild but significant decreases in the relative organ weights of adrenals, thymus and spleen, while the relative brain weight was increased. In males, the heart, kidneys and liver were mildly decreased while the brain and testes were mildly increased. Red blood cell counts and percent hematocrit were decreased in both sexes in the high dose group. Pituitary gland (pars distalis) vacuolization and thyroid gland colloid depletion were prominent in both sexes in mid and/or high dose animals. A NOAEL of 0.36 mM chlorate/kg-day in males and 0.50 mM chlorate/kg-day in females were established (McCauley et al., 1995).

(c) Chronic Oral. In another study, groups of male and female rats were provided drinking water containing 125, 1000, or 2000 mg NaClO₃/L for two years, while male and female mice received 500, 1000, or 2000 mg NaClO₃/L. Other groups of animals received plain tap water and served as controls. At the end of the study, tissues from more than 40 sites were examined for every animal. Male and female rats receiving sodium chlorate had higher rates of follicular cellular hypertrophy of the thyroid gland, and the groups receiving 2000 mg/L had higher rates of thyroid gland cancer, compared with the control group. Female mice exposed to sodium chlorate had a few pancreatic islet cell tumors. Based on these results, it was concluded that sodium chlorate caused some thyroid gland neoplasia in male and female rats (NTP, 2005a).

(d) Acute Inhalation. Inhalation of potassium chlorate dust and contact with eyes or skin causes local irritation (NRC, 1980).

- (e) Subchronic Inhalation. No data found.
- (f) Chronic Inhalation. No data found.
- (g) Dermal. No data found.
- (h) Reproduction and Development. No data found.
- (i) Mutagenicity. No data found.

(j) Carcinogenesis.

i. Few data exist on the carcinogenic potential of any of the chlorates in either humans or animals. Exposure to 1% potassium chlorate in the drinking water of rats for 25 weeks, which was assumed to be the maximum tolerated dose as determined in a 6-week toxicity test, did not promote rat renal carcinogenesis (Kurokawa et al., 1985).

ii. In another study, groups of male and female rats were provided drinking water containing 125, 1000, or 2000 mg NaClO₃/L for two years, while male and female mice received 500, 1000, or 2000 mg NaClO₃/L. Other groups of animals received plain tap water and served as controls. At the end of the study, tissues from more than 40 sites were examined for every animal. Male and female rats receiving 2000 mg/L had higher rates of thyroid gland cancer, compared with the control group. Female mice exposed to sodium chlorate had a few pancreatic islet cell tumors. Based on these results, it was concluded that sodium chlorate caused some thyroid gland neoplasia in male and female rats (NTP, 2005b).

iii. Khan et al., found that administration of sodium chlorate in conjunction with ammonium perchlorate potentiated thyroid effects greater than either substance alone. Effects included thyroid hypertrophy and hyperplasia, and reduction in circulating thyroxine (T4) levels (Khan et al., 2005).

(k) Ecotoxicology.

i. Fourteen day-old soybean seedlings were exposed to up to 2.0 mM potassium chlorate for 24 hours at varying light levels (100, 67, 33 and 0% of full light which was 750 μ Einstein/m²-s) (Harper, 1981). Interveinal chlorosis was evident within 24 hours following addition of 0.5 mM, with the severity of the symptoms increasing with dose. Leaflet nitrate reductase activity was lower following exposures to concentrations of 0.5 mM and higher, indicating that ClO₃⁻⁻, or some reduction product of ClO₃⁻⁻, was detrimental to enzyme functionality. Sodium chlorate was not shown to greatly affect shoot growth in sorghum or cucumber (Sund et al., 1963).

ii. Changes in population growth rates were observed by Van Wijk and co-workers in brown algae (*Ectocarpus variabilis*) exposed 14 days to relatively small amounts of chlorate salt (0.005 mM) (Van Wijk et al., 1998). Similar changes were not seen in two species of green

algae (*Pseudokirchneriella subcapitata* and *Scenedesmus subspicatus*) at concentrations of up to 144 mg/L (USEPA, 2000) and 3137 mg/L (Brixham, 1995), respectively.

iii. Concentrations of sodium chlorate lethal to *Daphnia* (Dosdall et al., 1997) and many fish species (Matida et al., 1976; USEPA, 2000) were reported to be greater than 3000 mg/L, though variation exits in the data. Aquatic insects were also relatively resistant to chloric salt exposures where reports of lethality (LC₅₀ values) were often greater than 30 mg/L (e.g. caddisfly, mayfly; (USEPA, 2000)).

iv. Median lethal dose (LD_{50}) was reported to be greater than 2500 mg/kg for mallard and northern bobwhite (USEPA, 2000). Median lethal concentration (LC_{50}) for the earthworm (*Lumbricus terrestis*) could not be determined for concentrations of NaClO₃ of up to 1000 mg/kg soil, though reductions in biomass may occur at lower levels (Hague et al., 1983).

(10) <u>Potassium nitrate</u>. Nitrates can be transformed to nitrites by certain microorganisms in the soil, and by microorganisms found in the mouth and stomach, followed by nitrosation of secondary amines and amides in the diet. The resulting nitrosamines are mutagenic, but humans are naturally exposed to the precursors as a part of a normal diet. The average Western diet contains 1-2 mmol nitrate/person/day (Shuval et al., 1972; Hotchkiss et al., 1992; Francis, 1995).

(a) Acute Oral. The LD_{50} values for rats and rabbits have been determined to be 3750 mg/kg and 1901 mg/kg respectively, and the estimated minimum lethal dose for cattle and sheep is 1000 mg/kg (Sax et al., 1989).

(b) Subchronic Oral. In a study by Til et al., 6-week-old Wistar rats were given 100, 300, 1000, and 3000 mg potassium nitrite/L in drinking water for 90 days (Til et al., 1988). Methemoglobin was significantly increased and plasma alkaline phosphatase activity was decreased in both sexes, plasma urea was increased in males at the 300 mg/kg treatment level.

(c) Chronic Oral. Female guinea pigs were given 0, 300, 2500, 10,000 or 30,000 ppm potassium nitrate in drinking water for 204 days (Sleight et al., 1968). Decreases in the number of litters and the number of live births were observed in animals in the 30,000 ppm dose group, which were estimated to have received a dose equivalent to 1130 mg/kg. One female in this dose group died with four mummified fetuses *in utero*. The fetal deaths were attributed to hypoxia caused by maternal methemoglobinemia.

(d) Acute Inhalation. No data found.

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal. No data found.

(h) Reproduction and Development. Female guinea pigs were given 0, 300, 2500, 10,000 or 30,000 ppm potassium nitrate in drinking water for 204 days (Sleight et al., 1968). Decreases in the

number of litters and the number of live births were observed in animals in the 30,000 ppm dose group, which were approximated to have received nitrate at a dose equivalent to 1130 mg/kg.

(i) Mutagenicity. Potassium nitrate was positive in a Chinese Hamster Ovary (CHO) cell chromosome aberration test (Ishidate et al., 1977).

(j) Carcinogenesis. According to the USEPA, available information on the carcinogenic potential of nitrates is equivocal. The results of some carcinogenicity studies suggest that nitrates may cause tumors in laboratory animals, while others do not (USEPA, 1991a). The possible carcinogenicity of nitrate depends on the conversion of nitrate to nitrite and the reaction of nitrite with secondary amines, amides, and carbamates to form N-nitroso compounds that are carcinogenic (Bouchard et al., 1992).

(k) Ecotoxicology. The LC₅₀ for a 28-day exposure of annelid worms averages 2230 μ g KNO₃/L (Reish, 1970). The 24-, 48-, and 96-hour LC₅₀'s for adult female mosquitofish (*Gambusia affinis*) have been determined to be 58,500; 31,100; and 22,500 μ g/L, respectively (Wallen et al., 1957). Other data collected from *Daphnia*, algae, and many fish species suggest potassium nitrate toxicity is relatively low (USEPA, 2007b).

(11) Red Gum (Eucalyptus Oil). Red Gum may refer to any of a number of species of Eucalyptus or the closely related Corymbia spp., including River Red Gum (Eucalyptus camaldulensis) and Mari (Corymbia calophylla). It is obtained by steam distillation of fresh leaves of the E. globulus tree, which is native to Australia and cultivated in subtropical regions of Europe, Asia, Africa, and the United States. Red gum is a mixture of natural organic compounds, including eucalyptol (70-80%), α -pinene, *d*-limonene, *p*-cymene, α -phellandrene, and 1- α -terpineol. It is practically insoluble in water but can be dissolved in 5 volumes of 70% alcohol (O'Neil, 2006). Eucalyptus oil has a long history of safe medicinal uses and has been classified by Food and Drug Administration (FDA) as a Generally Recognized as Safe (GRAS) substance and permitted as a direct additive to foods for human consumption. The primary constituent of eucalyptus oil is cineole or 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane (CAS RN: 470-82-6). It is used as a component of decongestant products, as an expectorant component of cough and cold products. Red gum is used as an astringent and fragrance in soaps, lotions, and cosmetics, such as Noxema® skin cream (HPD, 2007). Traditionally, red gum has been used as a topical antiseptic and analgesic as well as an expectorant. The amount of eucalyptus oil allowed in cough drops is 2000 ppm (USEPA, 2006c).

(a) Acute Oral.

i. Accidental ingestion is the most common means of human exposure to red gum, through its traditional use as an antiseptic and analgesic and its industrial use as an astringent and fragrance. Ingestion of red gum depresses the central nervous system and respiratory system and causes abdominal pain, vomiting, and diarrhea (Tibballs, 1995).

ii. The LD₅₀ values for eucalyptus oil is reported as 4400 mg/kg for rats and 3320 mg/kg for mice (USEPA, 2006c). Red gum is considered slightly toxic based on the oral LD₅₀ value of 2480 mg/kg for rats (Ford et al., 1988).

(b) Subchronic Oral. No data found.

(c) Chronic Oral. No data found.

(d) Acute Inhalation. No data found.

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal. No data found.

(h) Reproduction and Development. No data found.

(i) Mutagenicity. No genotoxicity was observed following exposure of eucalyptus oil to *Salmonella* strains TA100, TA1535, TA1537, and TA98 in tests with or without activation by rat and hamster liver S9 fractions (NTP, 2009). An additional study reported that eucalyptol, the main component of eucalyptus oil, was negative for mutation in *S. typhimurium* strains TA100, TA97A, TA98, and TA102 (Gomes-Carneiro, 1998).

(j) Carcinogenesis. There are no chronic or sub-chronic effects of red gum reported in the literature, but studies show that red gum produces weak tumor-promoting activity on mouse skin (Roe et al., 1965).

(k) Ecotoxicity. Population growth rate was affected in blue-green algae exposed to cineole for 5-days at 100 μ M (Schrader et al., 1998). Mortality occurred in fathead minnow (*Pimphales promelas*) at exposures exceeding 95,400 μ g/L for four days (Geiger et al., 1988). Lettuce exposed to cineole for 72 hours was reported to have an effect on germination and growth. An EC₅₀ was reported at 13.2 mM concentration (Reynolds, 1987).

(12) Elemental Silicon. Silicon, also known as polycrystalline silicon powder, does not occur free in nature. Silicon is found as silica (quartz, sand, sandstone) or as silicate (feldspar or orthoclase, koalinite, anorthorite, etc.). It constitutes about 27% of the earth's crust, and is the second most abundant element on earth (O'Neil, 2006). Silicon is prepared industrially by carbon reduction of silica in an electric arc furnace. Very pure silicon is obtained by decomposition of silicon tetraiodide. For the past century, silicon has been produced almost exclusively by carbothermal reduction of silicon dioxide. Silicon is practically insoluble in water but is soluble in molten alkali oxides. It reacts to fluorine and chlorine and is decomposed by hydrofluoric and nitric acids. Silicon is also used in the manufacturing of transistors, silicon diodes and semiconductors, and for making such alloys as ferrosilicon, silicon bronze, and silicon copper. It is also used as a reducing agent like aluminum in high temperature reactions (O'Neil, 2006). The chemical dangers associated with silicon are that it reacts violently with oxidants and halogens causing a fire hazard, and reacts on heating with water forming flammable/explosive gas. The occupational exposure limits for silicon expressed as Threshold Limit Value (TLV) is 10 mg/m³, for Occupational Safety and Health Administration (OSHA) is a Time Weighted Average (TWA) of 5-15 mg/m³ and for National Institute for Occupational

Safety and Health (NIOSH) the TWA is 5-10 mg/m³ (NIOSH, 2009). Silicon occurs naturally as oxides. In humans, silicon exposure has been found to cause increased renal silicon levels and can deposit in the eyes, ears, and nasal passages. In rats, dogs, and guinea pigs, silicon is only slightly toxic. Although the International Agency for Research on Cancer does not have a cancer classification for silicon, crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1), and amorphous silica is not classifiable as to its carcinogenicity to humans (Group 3) (WHO, 1997). No ecotoxicity information was found pertaining to silicon.

(a) Acute Oral. The LD₅₀ in rats is 3,160 mg/kg (SciLab, 2009).

(b) Subchronic Oral. No data found.

(c) Chronic Oral. In humans, silicon exposure has been found to cause increased renal silicon levels and can deposit in the eyes, ears, and nasal passages (WHO, 1997).

(d) Acute Inhalation. No data found.

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal. No data found.

(h) Reproduction and Development. No data found.

(i) Mutagenicity. No data found.

(j) Carcinogenesis. No data found.

(k) Ecotoxicology. No data found.

(13) <u>Sulfur</u>. In solid form, sulfur is insoluble in water and thus cannot be transported downward to the ground water table. If molten sulfur is spilled onto soil, it will solidify prior to any significant movement into the soil. The World Health Organization (WHO) lists sulfur as a technical grade active ingredient of pesticides unlikely to present an acute hazard in normal use. Inhalation of high concentrations of sulfur may have harmful effects on the skin, eyes, and respiratory system. In humans, exposure to airborne sulfur may result in ulceration of the skin, conjunctivitis, inflammation of the nasal mucosa, shortness-of-breath, asthma, and tracheobronchitis (Ellenhorn et al., 1988). When burned in air, sulfur will produce the toxic oxides sulfur dioxide (CAS RN: 7746-09-5) and sulfur trioxide (CAS RN: 7746-11-9). When exposed to water, these gases will react to produce sulfurous and sulfuric acids, respectively. The primary routes of exposure to sulfur dioxide and sulfur trioxide are through inhalation of the acids.

(a) Acute Oral. Sulfur is reported to have an oral $LD_{50} > 5000 \text{ mg/kg}$ in rats (Doull et al., 1977). No deaths were observed when rabbits were fed 98% sulfur at a single dose of 2000 mg/kg. The only adverse effect noted from acute oral exposure to sulfur is a mild laxative effect (USEPA, 1982). When given orally, such as the historical practice of a "spring cleansing" of sulfur and molasses, sulfur is partially converted to sulfide by bacteria in the digestive tract, and is sufficiently stimulating to exert a cathartic effect (Harvey, 1975).

(b) Subchronic Oral. A repeat-dose study in rabbits compared the effects of intravenous and oral dosing. Three rabbits received 3-5, 10 and 20 mg/kg of colloidal sulfur per day orally. Autopsies did not reveal pathological changes in any of the organs (Greengard et al., 1940).

(c) Chronic Oral.

i. Epidemiological studies with mine workers who were exposed to sulfur dust and sulfur dioxide (SO₂) during their lifetimes revealed ocular disturbances as one of the principal toxicity signs. Chronic bronchitis was generally found in those individuals as well as chronic sinusal effects and respiratory disturbances (USEPA, 1991b).

ii. Groups of rats (4 per dose and 2 controls) were fed doses of 2, 5, 10 or 15 mg per day (15 mg-day/0.3kg \approx 50mg/kg-day [NOAEL] at the higher dose level) colloidal sulfur in the form of a pill for 100 days. Treated rats grew normally and no abnormalities were found following gross necropsy. At maturity the rats were mated to evaluate effects on reproductive capacity. The control and sulfur-fed rats gave birth to healthy litters which they nursed successfully (Greengard et al., 1940).

(d) Acute Inhalation.

i. The acute inhalation LC_{50} for 98% sulfur in rats was found to be >2.56 mg/L and >5.74 mg/L for 80% sulfur (USEPA, 1982; USEPA, 1988). NIOSH has established a short-term exposure limit of 5 ppm (13 mg/m³) for sulfur dioxide; the Immediately Dangerous to Life or Health (IDLH) level is 100 ppm. NIOSH recommends use of a respirator at all levels of SO₂ exposure (NIOSH, 2009). Because of the extremely irritating nature of SO₂ and SO₃ gases, encounters with them tend to be self-limiting (Steuven et al., 1993).

ii. The approximate LC_{50} for a 30-minute exposure of Swiss albino mice to sulfur dioxide is estimated to be 3000 ppm (Hilado et al., 1977). Groups of rats exposed to levels of sulfur dioxide 925 ppm and higher experienced some degree of mortality. The lower limit of toxicity is somewhere between 590 ppm (NOAEL, 0 fatalities/8 animals) and 925 ppm (unbounded LOAEL, 3 fatalities/8 animals) (Cohen et al., 1973).

iii. Approximate LC_{50} values for male and female rats exposed to fuming sulfuric acid gas were 420 and 347 ppm, respectively (Vernot et al., 1977). The lowest concentration of sulfuric acid aerosols that resulted in the death of rats was 383 mg/m³ (Treon et al., 1950).

(e) Subchronic Inhalation. Nasopharyngitis and lipid peroxidation of lung tissue were observed in guinea pigs exposed to 10 ppm sulfur dioxide for 1 hour/day for 30 days (Haider,

1985). Mild bronchitic lesions were seen in 72 hamsters exposed to 650 ppm sufur dioxide for 4 hours/day, 5 days/week, for 19-74 days (Goldring et al., 1970). Subchronic inhalation exposure to sulfur in rats showed body weight depression, decreased blood sulfhydryl contents, decreased serum peroxidase levels, and increased serum albumin (USEPA, 1991b).

(f) Chronic Inhalation. The NIOSH TWA exposure limit is 2 ppm (5 mg/m³) for sulfur dioxide. The corresponding OSHA Permissible Exposure Limit (PEL) is 5 ppm (13 mg/m³). For sulfur trioxide (as sulfuric acid), the NIOSH TWA recommended exposure limit (REL) and OSHA PEL are both 1 mg/m³ (NIOSH, 2009).

(g) Dermal. LD₅₀ for 98% sulfur from acute dermal rabbit study is >2,000 mg/kg (Baker, 1976).

(h) Reproduction and Development. No data found.

(i) Mutagenicity. Assays of clastogenic effects in humans following occupational exposure to sulfur dioxide and sulfur trioxide were largely negative (ATSDR, 1998a; ATSDR, 1998b).

(j) Carcinogenesis. There are no known risks of carcinogenic or oncogenic effects associated with the use of sulfur (USEPA, 1991b). There is no definitive evidence for an increased cancer potential from sulfur dioxide or sulfur trioxide in humans (ATSDR, 1998a; ATSDR, 1998b).

(k) Ecotoxicology.

i. The 48-hour LC_{50} for *Daphnia magna* and the 96-hour LC_{50} for *Mysidopsis bahia* (shrimp) was reported to be >5,000 and 736 ppm, respectively, in a study using 90% sulfur. A beneficial insect study on *Apis mellifera* (honey bee) demonstrated that a 98% dust and a 92% wettable powder is low in toxicity through contact and ingestion (Borthwich et al., 1982).

ii. The 96-hour LC₅₀ values for bluegill sunfish and rainbow trout are >180 ppm using a 99.5% sulfur dust formulation. In the same report, the 48-hour LC₅₀ for *Daphnia* and the 96-hour LC₅₀ for mysid shrimp were quoted as >5000 ppm and 736 ppm, respectively, in a study using 90% sulfur (USEPA, 1982). Exposing goldfish to 16,000 ppm sulfur for 5 hours in turbid water conditions resulted in 100% mortality; exposure to 1600 ppm in tap water for 3.5-5.25 hours also proved fatal (HSDB, 2008).

iii. An 8-day oral LD₅₀ for bobwhite quail was reported to be >5620 ppm in a study using 95% sulfur wettable powder formulation (USEPA, 1991b). Grützmacher and co-workers (Grützmacher et al., 2004) found the sulfur fungicide Kumulus[®] DF to eliminate parisitism (i.e. eliminated reproduction) by the hymenopteran egg parsitoid *Trichogramma cacoeciae* used in biological pest control, at both 600 g/l00 L and 2.40 μ g/cm².

(14) <u>Vinyl Acetate Alcohol Resin (VAAR)</u>. Vinyl Alcohol Acetate Resin is prepared by partial hydrolysis of polyvinyl acetate polymer and consists of methyl acetate, vinyl acetate

monomer, polyvinyl alcohol, and impurities. The molecular weight of VAAR is variable. Using the VAAR CAS RN, a search of the TOXNET database returns one CIDPL record which contains no toxicity data (CIDPL, 2009d). The VAAR product is used in the formulation for black smoke (Pyro 05-01), as well as several other systems. The formulation for the current Black Smoke configuration (as of 7/22/2009) contains 1% VAAR. The percent composition for VAAR is 72% methyl acetate, 23% vinyl acetate, 5% polyvinyl alcohol, and 13% impurities. Toxicity data for VAAR could not be found; therefore as a substitute, toxicity data for the components of VAAR were reviewed and are summarized in the following section.

(15) <u>Methyl acetate</u> (CAS RN 79-20-9). Methyl acetate is a solvent for many resins. There are data on the low toxicity of methyl acetate.

(a) Acute Oral. From the CIDPL database, the oral LD_{50} for rat is >5 g/kg and for rabbit is 3705 mg/kg (CIDPL, 2009b).

(b) Subchronic Oral. No data found.

(c) Chronic Oral. No data found.

(d) Acute Inhalation. Inhalation data include rat Lethal Concentration Low (LCLo) 32000 ppm/4 hrs, mouse LCLo 34 gm/m³/4 hrs, and human Toxic Concentration Low (TCLo) 15000 mg/m³ (CIDPL, 2009b).

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. No data found.

(g) Dermal. No data found.

(h) Reproduction and Development. No data found.

(i) Mutagenicity. Methyl acetate is negative in Ames mutagenicity assay both with and without S9 activation (CCRIS, 2009b).

(j) Carcinogenicity. No data found.

(k) Ecotoxicity. Little aquatic toxicity data is available; fathead minnow LC_{50} was reported to be between 320,000-408,000 ug/L (USEPA, 2007a).

(16) Vinyl acetate (CAS RN 108-05-4).

(a) Acute Oral. The acute toxicity of vinyl acetate is low: oral LD50's for rat and mouse are 2900mg/kg and 1600 mg/kg respectively (CIDPL, 2009e).

(b) Subchronic Oral. No data found.

(c) Chronic Oral. No data found.

(d) Acute Inhalation. LC50 inhalation values are 11,400 mg/m3/4 hr (rat), 1550 ppm/4 hr (mouse), and 2500 ppm/4hr (rabbit) (CIDPL, 2009e).

(e) Subchronic Inhalation. No data found.

(f) Chronic Inhalation. A group of 96 Sprague-Dawley rats (sex not specified) were exposed to vinyl acetate for 4 hours/day, 5 days/week for 52 weeks to a maximum tolerated concentration of 8.8 g/m³ (2500 ppm) vinyl acetate in air. No tumors were reported to have occurred during 135 weeks. Early mortality was high; 49 animals survived for 26 or more weeks (IARC, 1995).

(g) Dermal. No data found.

(h) Reproduction and Development. No data found.

(i) Mutagenicity. Vinyl acetate was negative in the *Salmonella typhimurium* Ames mutagenicity assay both with and without S9 activation; however it was positive in lymphoma assays (micronucleus and sister chromatid exchange) (IARC, 1995).

(j) Carcinogenicity.

i. Vinyl acetate is rapidly transformed into acetaldehyde in human blood and animal tissues. There is sufficient evidence in experimental animals for the carcinogenicity of acetaldehyde. Both vinyl acetate and acetaldehyde induce nasal cancer in rats after administration by inhalation (IARC, 1995).

ii. Chronic and reproductive toxicology studies have been performed for vinyl acetate. In inhalation studies using rats and mice, animals were exposed to 50, 200, or 600 ppm vinyl acetate in air. A small percentage of early deaths in mice, attributable to respiratory lesions, were possibly associated with inhalation of 600 ppm vinyl acetate. Body weight gain was lower in both rats and mice at higher concentrations. In the nasal cavity, atrophy of the olfactory epithelium with replacement by different cell types was noted in both species at 200 and 600 ppm. Epithelial hyperplasia of the trachea was noted at 200 and 600 ppm in mice only. In the lungs of both species, foamy histiocytes, epithelial exfoliation and fibroepithelial tags were noted at 600 ppm. Mice demonstrated epithelial hyperplasia at 600 ppm and fibroepithelial tags were noted at 200 ppm. Changes were noted at 53 weeks into the study and showed little progression for the remainder of the time. Eleven tumors were found in the nasal cavities of rats at the 600 ppm exposures; eight were benign papillomas of various cell types and three were squamous carcinomas. There was no evidence that vinyl acetate exposure caused adverse systemic effects and 50 ppm was a clear no observable effect (NOEL) level (Clary, 1988).

iii. In a chronic 2-year toxicity/carcinogenicity study following *in utero* exposure of rats to vinyl acetate via drinking water, dose-related reductions in water and food intake, and body weight gain were seen. An increase in relative kidney weight in high dose males was the only

treatment-related organ effect. A two-generation reproduction study was conducted in rats exposed via drinking water. A decrease in fertility was seen in the 5000 ppm group, attributable to males (Mebus et al., 1995).

v. There is little evidence that vinyl acetate causes developmental or reproductive effects. Teratogenicity was evaluated in mated female Sprague Dawley rats (23/group) orally exposed to vinyl acetate in their drinking water at concentrations of 0, 200, 1000 or 5000 ppm on gestation days (GD) 6-15 (Hazelton, 1980). There was a significant difference observed between treated and control animals in increased mean pregnancy rates (high-dose group). There were no significant differences observed between treated and control animals in the following: maternal mortality, body weight, body weight gain and food intake, mean pregnancy rates, numbers of corpora lutea/dam and fetal sex ratio, pre- or post-implantation losses, macroscopic fetal changes, mean litter weight and fetal weight, external/visceral and skeletal defects and crown rump length.

iv. A dose-dependant increase in nasal lesions and tumors was observed in chronic inhalation exposure studies of rats and mice (IARC, 1995). Carcinogenicity data is confounded by evidence that vinyl acetate is rapidly metabolized in vivo to acetaldehyde (Thurman et al., 1992).

(k) Ecotoxicity. Vinyl acetate toxicity has been tested on several aquatic species. Population effects in algae species was observed at an lowest observed effect concentration (LOEC) of 370000 ug/L; behavioral effects in *Daphnia magna* were observed at an EC₅₀ of 52000 ug/L and *Daphnia* mortality EC₅₀ was 330000 ug/L (USEPA, 2007a). The toxicity to several fish species has been evaluated, as well. The LC₅₀ for fathead minnow (*Pimephales promelas*) is approximately 24,000 ug/L; guppy (*Poecilia retculata*) 31,080 ug/L, bluegill (Lepomis macrochirus) 18,000 ug/L, and goldfish (*Carassius auratus*) 42,330 ug/L (USEPA, 2007a). Significant quantities were also necessary for toxicity measured by changes in growth/biomass in corn and bean (*Phaseolus vulgaris*; (Miller et al., 1980)).

(17) <u>Polyvinyl alcohol</u> (CAS RN 9002-89-5). Polyvinyl alcohol is a polymer prepared from polyvinyl acetates. It is used as a pharmaceutic aid and ophthalmic lubricant and in the manufacture of surface coatings (CIDPL, 2009c).

(a) Acute Oral. The rat oral LD_{50} is > 20000 mg/kg and the mouse oral LD_{50} is 14,270 mg/kg (FAO/WHO, 2004).

(b) Subchronic Oral. Based on rat 90-day and two-generation toxicity studies, the FAO/WHO identified a NOEL of 5000 mg/kg and calculated an acceptable daily intake (ADI) of 50 mg/kg-day (FAO/WHO, 2004).

(c) Chronic Oral. No data found.

(d) Acute Inhalation. No data found.

(e) Subchronic Inhalation. No data found.

- (f) Chronic Inhalation. No data found.
- (g) Dermal. No data found.

(h) Reproduction and Development. No data found.

(i) Mutagenicity. No data found.

(j) Carcinogenicity. No data found.

(k) Ecotoxicity. No data found.

(18) <u>Combustion Products</u>. The NASA/GLENN model was used to predict production of combustion for five compounds (or their surrogates) that had properties within the database (potassium nitrate, silicon oxide, aluminum, sulfur, and boric acid). Products of complete combustion consist primarily of aluminum oxides, borates, aluminum and silicon oxides, potassium and nitrogen oxides. The predominant products were oxides of aluminum and potassium; both are considered relatively benign from an environmental perspective. A detailed listing of the results is provided at Appendix B.

99C
'4Z-(
(E-07
87-3
No.
Report
logy
Toxico

Track is the of the product of the p	TTATA ATTA T						
			Aq. sol.			Henry's Law	
Compound	MM	bp (°C)	(mg/L)	log Kow ²⁶	log Koc	Constant	vp (mmHg)
Boron	10.8 ¹	2550 ²	Insoluble in water ¹	pu	pu	n/a	1.1856 x10 ⁻² at 2140 °C (exp) ³
Charcoal	12.01 ⁴	42005	Insoluble ²³	n/a	n/a	n/a	n/a
Epikure 3125 TM	pu	pu	pu	pu	pu	pu	< 0.013 at 20 °C ⁴
Polyamino Amide	varies	n/a	n/a	n/a	n/a	n/a	n/a
Triethylenetetramine	146.1 ^{4,8}	266.5 ⁴	$4.77 \times 10^{64,8}$	2.65 (Est) ⁴	pu	1.66 x 10 ^{-11 4}	< 1 mmHg@20°C ^{4,8}
Epon 828 TM	320.8 ⁶	>260 ¹⁵	Negligible ⁷	pu	pu	pu	0.03 @ 77°C ⁴
Iron Oxide - Red	159.76	n/a	Insoluble ⁸	n/a	u/a	n/a	n/a
-	112.13 ⁹	249.2@760 mmHg ⁹	3.5x10 ^{3, 10}	1.87 ¹¹	pu	0.3×10^{-8} atm-cu m/mole at 25°C	7.0x10 ⁻⁴ @25°C ¹³
Potassium Benzoate		0				(estimated) ¹²	
Potassium Chlorate	122.55 ¹	400 ¹⁴	$71 70,000 at 25^{\circ}C (exp)^{15}$	-4.22 (est) ¹⁷	n/a	n/a	6.2 x10 ^{-17 18}
Potassium Nitrate	101.10 ¹⁹	400^{20}	$1 g/2.8 ml^{1}$	n/a	n/a	n/a	n/a
Red Gum	variable	variable	variable	pu	pu	, pu	variable
Silicon	28.09^{1}	23559	insoluble ^t	n/a	n/a	n/a	n/a
Sulfur	32.069	444.6 ²¹	insoluble ¹	n/a	n/a	n/a	3.95x10 ⁻⁶ @30°C ²²

Table 4. List of Physical and Chemical Properties.

¹ O'Neil, 2006 ² USEPA, 20066 ³ Searcy, et al., 1957 ⁴ SciLab, 2009 ⁵ Sax, et al., 1989 ⁶ NCBI, ⁷ CCOHS, 2007 ⁸ HSDB, 2008 ⁹ Lide, 2006-2007 ¹⁰ Yalkowsky, et al., 1992 ¹¹ Hansch, et al., 1992 ¹¹ Hansch, et al., 1993 ¹² USEPA, 2005 ¹³ MFG2acherr, et al., 1993 ¹⁴ Clayton, et al., 1993 ¹⁴ Clayton, et al., 1991 ¹⁶ Ohe, 1976 ¹⁹ Shiu, et al., 1991 ¹⁸ Ohe, 1976 ¹⁰ Dean, 1992 ²⁰ Weast, 1979 ²¹ EnvCan, 1981 ²² Ashförd, 1994

			Aq. sol.			Henry's Law		
Compound	MM	bp (°C) ((mg/L)	log Kow ²⁶ log Koc	log Koc	Constant	vp (mmHg)	
Table 4. List of Physical and Chemical Properties - Continued	l and Chemi	ical Properties	- Continued		,			
Vinyl/polyvinyl Acetate (VAAR) (components listed below)	Monomer 86.09 ⁸	72.78	insoluble ²³	n/a	608	5.1 x 10 ⁻⁴ ⁸	90.2@20°C ⁸	
Methyl acetate ²⁴	74.081	56.8 ²⁶	Soluble	0.18 ²⁶		$1.15 \times 10^{-4.26}$	216 ²⁶	
Vinyl acetate ²⁴	86.09 ²⁵	72.31	2.0×10^{4} ¹			5.11 x 10 ^{-4 26}	90.2	
Polyvinyl alcohol ²⁴	varies ¹	varies ¹ 200 decom. ¹	varies ¹	unk ¹		unk ¹	unk ¹	
n/a = not applicable	nd = no	nd = no data found]

2

²³ Hawley, 1981
²⁴ Surrogate component of vinyl/polyvinyl acetate
²⁵ Thurman, et al., 1992
data.
logical
Toxico
Table 5.

		Sub-acute	Sub-chronic	Chronic		
Compound	Acute LD ₅₀ (mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Carcinogenicity	Mutagenicity
		pu	>72.8 mg/m ^{3 27}	LOAEL	nd	nd
Boron	560 ²⁶			13. ²⁸		
Charcoal	$>2,000^{29}$	pu	>2,000 ³⁰	>2,000 ³⁰	pu	pu
Epikure 3125 TM	nd ³¹	pu	pu	pu	pu	
Polyamino Amide	>2,000 (rat) ³²	pu	n/a	n/a	Positive ³³	
Triethylenetetramine	pu	pu	pu	>2,000 ³⁴	pu	Positive ^{34,35}
Epon 828 TM	>2,000 ³⁶	pu	n/a	n/a	Positive ³⁷	Positive ³⁸
Iron Oxides Red	pu	nd	pu	pu	pu	pu
Potassium Benzoate	$LD_{50} - 1714^{39}$	pu	16-1090 ⁴⁰	pu	pu	Negative ⁴¹
Potassium Chlorate	$LD_{50} - 1,500^{42}$	pu	50 42	pu	2000 mg/L^{43}	pu
	LD_{50} -3750 ⁴⁴	pu	methemoglobin $@$	methemoglobinemia	equivocal ⁴⁷	-
Potassium Nitrate			300 ⁴⁵	at 1130 ⁴⁶		Positive ⁴⁸

²⁶ CIDPL, 2009a
 ²⁷ Stokinger, 1981.
 ²⁸ Heindell, et al., 1992.
 ²⁹ RTECS, 2006
 ³⁰ Nau, et al., 1976
 ³¹ No data found
 ³² Hexion Specialty Chemicals, 2005
 ³³ DePass, et al., 1987

³⁴ BUA, 1995 ³⁵ Mortelmans, et al., 1986 ³⁶ Hine, et al., 1958 ³⁷ IRIS, 2008

³⁸ Hauptman, et al., 1978
 ³⁹ SCCP, 2005
 ⁴⁰ Snyth, et al., 1969
 ⁴¹ OECD SIDS, 2001
 ⁴² Gosselin, et al., 1977, NRC, 2005, SciLab, 2009
 ⁴³ NTP, 20056

⁴⁴ Sax, et al., 1989 ⁴⁵ Til, et al., 1988

⁴⁶ Sleight, et al., 1968 ⁴⁷ Bouchard, et al., 1992 ⁴⁸ Ishidate, et al., 1977

		Sub-acute	Sub-chronic	Chronic		
Compound	Acute LD ₅₀ (mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Carcinogenicity	Mutagenicity
Red Gum	LD ₅₀ .2480 ⁴⁹	nd	na	na	Negative ⁵⁰	Negative ⁵¹
Table 5. Toxicological data – Continued.	1 - Continued.					
Silicon	LD ₅₀ -3160 ⁵²	pu	na	na	pu	nd
Sulfur	LD ₅₀ .>5000 ⁵³		No effect @ 20 ⁵⁴	No effect @ 50 for 100d ⁵⁴	Negative ⁵⁵	Negative ⁵⁵
Vinyl/polyvinyl Acetate (VAAR) (components listed below)	pu	pu	pu	nd	Positive ⁵⁶	Positive ⁵⁷
Methyl acetate ⁵⁸	> 5000 (rat) 3705 (rabbit) ⁵⁹ LCLo 32,000 ppm/ 4hr ⁵⁹	n/a	n/a	n/a	Negative 60	pu
Vinyl acetate ²⁴	2900 (rat) 1600 (mouse) 11,400 mg/m3/4hr (rat), 1550 ppm/4hr (mouse), and 2500 ppm/4hr (rabbit) ⁵⁹	TWA 10 ppm STEL 15 ppm	n/a	n/a	Negative ⁶¹	Pos. micronucleus and SCE ⁶¹ Carcinogenicity data is confounded; vinyl acetate is rapidly metabolized in vivo to acetaldehyde ⁶²
Polyvinyl alcohol ²⁴	> 20,000 (rat) 14,270 (mouse) ⁶³	n/a	n/a	ADI 50 mg/kg/bw/d ⁶³	pu	pu
n/a= not applicable; nd = no data						

⁴⁹ Ford, et al., 1988 ⁵⁰ Roc, et al., 1965 ⁵¹ NTP, 1982 ²² ARS, 1966 ³³ Doull, et al., 1977 ⁵⁴ Greengard, et al., 1940 ⁵⁵ ATSDR, 1998a, ATSDR, 1998b ⁵⁶ Crany, 1988 ⁵⁶ Crany, 1988 ⁵⁶ Crany, 1988 ⁵⁸ Surrogate component of vinyl/polyvinyl acetate ⁵⁸ Surrogate component of vinyl/polyvinyl acetate ⁵⁸ Surrogate component of vinyl/polyvinyl acetate ⁵⁸ CriDPL, 2009b ⁵⁰ CCRIS, 2009b ⁵⁰ CCRIS, 2009b ⁵¹ ARC, 1995 ⁵² FAO/WHO, 2004

r١	
-09C	
õ	
4Z-	
Ľ.	
Ģ.	
87-XE-074Z	
<u>, '</u>	
∞	
Report No.	
ogy	
1	
oxicol	
[

ant
Assessme
Impact
q
-
Health]
-
6. Human
6. Human
6. Human

		-qnS	-			
	Acute	chronic	Acute	Sub-chronic	Cancer	
Compound	toxicity	toxicity	inhalation	inhalation	probability	Comments
Boron	Low	Low	Low	nd	unknown	
Charcoal	Low	Low	Low	Low	Low	Effects similar to other non-soluble irritants.
Ē			Low-			Body weight reductions, hemapoetic cell proliferations, non-specific, mild
Epikure 3125 ^{1M}	Low	Low	moderate	n/a	Low	effects, in general.
Polyamino Amide	nd	pu	nd	nd	nd	
Tetraethvlenetetramine	Low	Low	pu	pu	Low	Positive in AMES mutagenicity test, dermal sensitizer; teratogenic in animals.
•					*	Reticulum cell sarcoma and lymphoblastic lymphosarcoma tumors observed
Epon 828 TM	Low	unknown	unknown	unknown	Moderate	contacted for additional data.
Iron Oxide Red	Low	Low	Low	Low	Low	
						Few adverse effects; reproductive and developmental studies conducted w/o
Potassium Benzoate	Low	Low	unknown	unknown	Low	adverse effects.
						May cause erythrolysis at high doses (anemia, kidney effects). Some states
						regulate as "chlorates" (e.g. Maine = 7 ug/L water guideline for chlorate ion; $CA = 800 \text{ mol}$.) No cancerous effects noted (Kurokawa et al. 1985). Toxic
Potassium Chlorate	Low-Mod	Low-Mod	Low-Mod	Low	Low	dose to a human varies between 5 grams and 35 grams
				-		Causes erythrolysis (anemia) at high concentrations, some nitrates may from
Potassium Nitrate	Low	Low	nd	nd	Low	N-nitroso compounds in gut leading to carcinogenesis.
						Classified by FDA as GRAS substance. Weak tumor promoting activity on
Red Gum	Low	Low	pu	pu	Low	mouse skin (Roe et al., 1960).
Elemental silicon	Low	Low	Low	Low	Low	
Sulfar.	T ANY	n/a	I out-Mod	e/u	ľ ou	Mild laxative effect from acute exposures. SO_2 : STEL = 2 ppm; REL = 5 mm PFI = 13 mm Revivator recommended
Inting	207	3				Vinvl acetate is a nossible concern if VAAR is a major component of
Polyvinyl Acetate (VAAR)	Low	Low	Low-Mod	Moderate	Low	formulation.

Assessment.
Impact
Ecotoxicology
Table 7.

· ·		-	-	-		
Compound	Aquatic	Invertebrate	Plants	Mammalian	Avian	Comments
Boron	Low	Low	Low	Low	Low	
Charcoal	Low (carp)	Low (modeled)	Low (expected)	Low (rats, mice)	Low (bobwhite, inhal.)	Non reactive in many biological systems.
Epikure 3125 TM	Low-moderate (fish; triethyleneamine)	pu	pu	Low (expected based on LD ₅₀)	Low (based on LD ₅₀ for triethylenea mine)	
Polyamino Amide	nd	pu	pu	Low	nd	
Triethylenetetramine	Mod	nd	Low	Low	pu	Not expected to be toxic given the amounts used in combustion
Epon 828 TM	pu	nd	nd	Low	nd	formulations.
Iron Oxide - Red	Low (mayfly)	Low (mayfly)	Low-moderate (chlorophyll; soybean, oat)	Low (small mammals, mink)	pu	Data from both oxides integrated in assessment.
Potassium Benzoate (Benzoic acid, sodium salt)	Low (fish, <i>Daphnia</i> , snail, worms)	Low (snail, copepods, worms)	nd	Low (mice, rats)	pq	Both potassium and sodium benzoate produce benzoic acid in water; data from both integrated in assessment.
Potassium Chlorate (chloric acid, potassium salt)	Low (<i>Daphnia</i> , mayfly, caddisfly, fish)	Low (<i>Daphnia</i> , mayfly, caddisfly, earthworm)	Low-moderate (algae, soybean, sorghum, cucumber)	Low (mice, rats)	Low (mallard, bobwhite)	Few subchronic (sublethal) data.
Potassium/Sodium Nitrate	Low (<i>Daphnia</i> , algae, fish spp.)	Low (earthworms, Daphnia)	Low (algae)	Low (mice, rats)	pu	Any toxicity would be expected from the nitrate anion (expected low for all species).
Red Gum	Low (Pimphales, algae)	pu	Low (algae, lettuce)	Low (mice, rats)	pu	Toxicity expected to be for other organisms.
Elemental Silicon	Low	Low	Low	Low	Low	Determination based on the inert properties of environmental silica and not from experimental data per se.
Sulfur	Low (fish, <i>Daphnia</i> , shrimp)	Low (shrimp)	Low (suspected)	Low (rats, rabbits)	Low (bobwhite)	Few toxicity data exist for elemental sulfur; however, toxicity is suspected to be low.
Vinyl/Polyvinyl Acetate (VAAR)	Low	Low	Unk	Low	unk	Data represent those available for vinyl acctate, a primary component of VAAR.

8. DISCUSSION.

a. Environmental problems associated with perchlorate use are widespread and in the forefront of public awareness (Mayer et al., 2006). Perchlorate has been found in the environment at concentrations shown to elicit adverse effects in some species (USACHPPM, 2007). Awareness of concentrations of perchlorate found in ground waters and surface waters in the southwestern and northeastern United States (Callahan et al., 1998; Sterner et al., 1998) have halted training exercises and may have a direct impact on the readiness of our forces. Because of the impact on military training and operations, replacements for these compounds and rigorous assessment of alternatives are essential.

b. Regulatory considerations. A search for regulatory requirements under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), Toxic Substances Control Act (TSCA), Resource Conservation and Recovery Act (RCRA), and Comprehensive Environmental Response, Compensation, and Liability Act/Superfund Amendments and Reauthorization Act (CERCLA/SARA) related to components of the simulator formulations resulted in the information below. Industrial standards set by the NIOSH and the OSHA are also included. No additional requirements were discovered.

(1) Boron. EPA has established a RfD for humans for boron of 0.2 mg/kg-day (USEPA, 2006b), based on developmental effects in rats from two studies. Based on an oral LD_{50} value of 650 mg/kg for rats, boron is classified as slightly toxic to humans (CIDPL, 2009a).

(2) Triethylenetetramine. Workplace Environmental Exposure Level (WEEL): 8-hour TWA 1 ppm skin (HSDB, 2008). Primary concerns for tetraethylenetetramine are in the area of dermal exposure and possible teratology as indicated in animal studies.

(3) Iron Oxide, Red. NIOSH has established a PEL of TWA 15 mg/m³ for total particulates, and TWA 5 mg/m³ for respirable particles (NIOSH, 2009).

(4) Potassium chlorate. Potassium chlorate is subject to state drinking water guidelines in California (800 μ g chlorate/L) and Maine (7 μ g chlorate/L) (HSDB, 2008).

(5) Potassium nitrate. Potassium nitrate is approved as a component of rodenticides under FIFRA. Potassium nitrate is used as a curing agent for cod roe, and may not exceed 200 ppm in the finished roe. Drinking water standards exist at the Federal level, and for the states of Maine and Minnesota, with all three standards being identical at 10,000 μ g nitrate ion/L (HSDB, 2008).

(6) Silicon. Elemental silicon does not occur naturally. It is considered a nuisance particulate. NIOSH has established a TWA REL at 10 mg/m^3 (5 mg/m³ respirable particles). OSHA has established a PEL of 15 mg/m^3 (5 mg/m³ resipirable particles) (NIOSH, 2009).

(7) Sulfur. Sulfur is generally considered safe in applications involving pesticides, and is approved as an indirect food additive as a component of adhesives (HSDB, 2008). Elemental sulfur is not regulated by NIOSH or OSHA. Toxicity of elemental sulfur is very low; its low

solubility in water makes its primary hazard one of exposure to solid sulfur applied as a pesticide. The combustion products SO_2 and SO_3 represent a greater risk, but if quantities of sulfur in the formulation are not large, and the devices are used in an open-air environment, there is little risk to humans. Extended use in the same area could eventually result in acidification of soil and water, so monitoring during periods of heavy or extended use may be desirable.

(8) VAAR. Because vinyl acetate is so widely used in a variety of manufacturing processes there are established occupational exposure limits; the TWA is 10 ppm and STEL is 15 ppm (CIDPL, 2009e). The FDA has approved the use of vinyl acetate as a food starch modifier (21CFR172.892) and as the copolymer vinyl acetate/crotonic acid for food packaging (21CFR175.350).

(9) Combustion Products. While the NASA/GLENN modeling gives some indication of combustion products, it is not completely accurate as the modeling is based on equilibrium concentrations at very high temperatures, as in the combustion temperatures of rocket and missile propellants. However, combustion of any compound containing carbon, nitrogen or sulfur will certainly produce oxides of those elements. When present in sufficient concentration in an enclosed place, such oxides should be considered toxic. However, if the ignition of the device occurs in open air, normal wind dispersion of the combustion products is expected to make toxic impact of the combustion products negligible.

c. Environmental degradation products depend upon many factors, including but not limited to ignition efficiency, ambient temperature and humidity, site-specific media characteristics (e.g. soil pH, organic carbon content, cation exchange capacity, etc.) and other media and site specific parameters.

d. Regardless, from an environmental perspective the proposed formulation is a great improvement over previous formulations that integrate perchlorate as an oxidizer. Replacing antimony compounds also has added benefit in that antimony is persistent and has environmental toxicological properties. Many of the proposed alternative compounds are relatively benign from an environmental fate and effects viewpoint.

e. Areas of uncertainty.

(1) The mode of action of potassium chlorate is unknown, but appears to be different from that of perchlorate in that it has been reported to affect red blood cells and cause anemia at relatively high exposure levels. The chlorate anion is mobile in the environment, and may reach ground water if sufficient quantities are used. Some states regulate as "chlorates" (e.g. Maine = $7 \mu g/L$ water guideline for chlorate ion; CA = $800 \mu g/L$), though the standards vary between jurisdictions.

(2) There is some concern over triethylenetetramine, especially with respect to dermal sensitization. However, this is primarily a manufacturing concern, and should be addressable through appropriate engineering controls or personal protective equipment (PPE). The total amount present in the formulation is likely to lead to negligible risk upon functioning of the simulator.

(3) Toxicity information was not available for Epon and Epikure.

(4) Despite apparently being little studied, VAAR appears not to be considered hazardous as such. Furthermore, in this formulation it is used in small quantities. It is widely used in products to which people and the environment are far more likely to be exposed than production or demilitarization of the M118-M119 pyrotechnics. However, from a routine production standpoint, the extensive use of VAAR in manufacturing operations may be associated with the release of volatiles. Thus, the use of VAAR may have industrial hygiene concerns or regulatory compliance issues associated with atmospheric releases.

9. RECOMMENDATIONS. At this time Work Unit PYRO 06-08 appears to integrate a relatively benign environmental and human health, perchlorate-free alternative group of formulations. There do not appear to be significant health issues resulting from the use of these replacement compounds. The toxicology of chlorates and the synthetic plasticizers and binders merit closer scrutiny. However, the available evidence and relatively small amounts used in these formulations suggest health risks are relatively low. It is recommended that this formulation proceed to program implementation.

APPENDIX A

REFERENCES

AERTA 2007. Army Environmental User Requirements and Technology Assessments.

Anderson, B. G. 1946. The toxicity thresholds of various sodium salts determined by the use of *Daphnia magna. Sewage Works J.* 18: 82-87.

AR 40-5 2007. Medical Services-Preventive Medicine, Department of the Army, Washington, DC.

AR 70-1 2003. Research, Development, and Aquisition-Army Aquisition Policy, Department of the Army, Washington, DC.

AR 200-1 2007. Environmental Quality-Environmental Protection and Enhancement, Department of the Army, Washington, DC.

ARS 1966. USDA Information Memorandum. 20: 9. Agricultural Research Service.

Ashford, R. D. 1994. *Ashford's Dictionary of Industrial Chemicals*. London, England, Wavelength Publications Ltd.

ATSDR 1992. Toxicological Profile for Boron and its Compounds. Atlanta, GA., Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, US Department of Health and Human Services, Public Health Service.

ATSDR 1998a. Toxicological profile for sulfur dioxide. Atlanta, GA, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, US Department of Health and Human Services, Public Health Service.

ATSDR 1998b. Toxicological profile for sulfur trioxide and sulfuric acid. Atlanta, GA, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, US Department of Health and Human Services, Public Health Service.

ATSDR 2008. *Toxicological Profile for Perchlorates*. Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Department of Health and Human Services, Public Health Service. Atlanta, GA.

Baker, R. G. 1976. Report to Kocide Chemical Corporation: Acute toxicity studies with flowable sulfur (52% S w/w) 76-180: IBT No. 8530-09283.

Borthwich, P. and Stanley, R. S. 1982. Definitive static bio-assay with *Daphnia magna* and *Mysidipsis bahia* exposed to Ortho Flotox. E. R. L. USEPA Office of Research and Development. Breeze, FL.

Bouchard, D. C., Williams, M. K. and Surampalli, R. Y. 1992. Nitrate contamination of groundwater: Sources and potential health effects. *American Water Works Association Journal* 84: 85-90.

Brixham, E. L. 1995. *Sodium Chlorate: Toxicity to the green algae (Scenedesmus subspicatum)*. Study No. T129/B: p 3 *In:* USEPA 2006. Brixham Environmental Laboratory. Devon, London, UK.

Brooke, L. T. 1991. Results of Freshwater Exposures with the Chemicals Atrazine, Biphenyl, Butachlor, Carbaryl, Carbazole, Dibenzofuran, 3,3'-Dichlorobenzidine, Dichlorvos 1,2-Epoxyethylbenzene (Styrene Oxide), Isophorone, Isopropalin. Superior, WI, Center for Lake Superior Environmental Studies, University of Wisconsin-Superior: 1-110 In: EPA 2006.

BUA 1995. Berateremium für umweltrelevante Altstoff. 89: 58.

Callahan, C. and Sprenger, M. 1998. Perchlorate ecological risk studies--A Report on Literature Reviews and Studies Conducted by the Ecological Impact/Transport and Transformation Subcommittee of the Interagency Perchlorate Steering Committee. Brooks AFB, TX, US Air Force Institute for Environment, Safety, and Occupational Health.

CCOHS 2007. *Diglycidyl Ether of Bisphenol A-based epoxy resins, low molecular weight solids.* (9/14/07). Canadian Centre for Occupational Health and Safety - CHEMINFO chemical profiles data base. URL: <u>http://www.intox.org/databank/documents/chemical/epoxyres/cie772.htm</u>.

CCRIS 2009a. "Epon 828." *Chemical Carcinogenesis Research Information System*. TOXNET, US National Library of Medicine. from <u>http://toxnet.nlm.nih.gov/</u>.

CCRIS 2009b. "Methyl acetate." *Chemical Carcinogenesis Research Information System*. TOXNET, US National Library of Medicine. Retrieved 17 Jul, 2009, from <u>http://toxnet.nlm.nih.gov/</u>.

CCRIS 2009c. "Triethylenetetramine." *Chemical Carcinogenesis Research Information System*. TOXNET, US National Library of Medicine. Retrieved 14 Jul, 2009, from <u>http://toxnet.nlm.nih.gov/</u>.

CIDPL 2009a. "ChemIDplus Lite." US National Library of Medicine. Retrieved multiple dates, 2009, from <u>http://chem.sis.nlm.nih.gov/chemidplus/</u>.

CIDPL 2009b. "Full Record: Methyl acetate." *ChemIDPlus Lite*. TOXNET, US National Library of Medicine. Retrieved 17 Jul, 2009, from <u>http://chem.sis.nlm.nih.gov/chemidplus/</u>.

CIDPL 2009c. "Full Record: Polyvinyl Alcohol." *ChemIDPlus Lite*. TOXNET, US National Library of Medicine. Retrieved 20 Jul, 2009, from <u>http://chem.sis.nlm.nih.gov/chemidplus/</u>.

CIDPL 2009d. "Full Record: VAAR." *ChemIDplus Lite*. TOXNET, US National Library of Medicine. Retrieved 20 Jul, 2009, from <u>http://chem.sis.nlm.nih.gov/chemidplus/</u>.

A - 2

CIDPL 2009e. "Full Record: Vinyl Acetate." *ChemIDPlus Lite*. TOXNET, US National Library of Medicine. Retrieved 20 Jul, 2009, from http://chem.sis.nlm.nih.gov/chemidplus/.

Clary, J. J. 1988. Chronic and reproduction toxicologic studies on vinyl acetate. Ann. N.Y. Acad. Sci. 534: 255-260.

Clayton, G. D. and Clayton, F. E. 1993. Patty's Industrial Hygiene and Toxicology. Volumes 2A, 2B, 2C, 2D, 2E, 2F: Toxicology. 4th ed. New York, NY, John Wiley & Sons Inc.

Cohen, H. J., Drew, R. T., Johnston, J. L. and Rajagopalan, K. V. 1973. Molecular basis of the function of molybdenum. The relationship between sulfite oxidase and the acute toxicity of bisulfite and SO2. *Proc. Nat. Acad. Sci.* 70: 3655-3659.

Cohen, N. L., Keen, C. L., Lönnerdal, B. and Hurley, L. S. 1983. The effect of copper supplementation on the teratogenic effects of triethylenetetramine in rats. *Drug Nutr. Interact.* 2(3): 203-210.

CPIA 1985. Hazards of Chemical Rockets and Propellants. Chemical Propulsion Information Agency, Johns Hopkins Applied Physics Laboratory. Columbia, MD.

Dean, J. A. 1992. Lange's Handbook of Chemistry. New York, McGraw-Hill, Inc.

DePass, L. R., Fowler, E. H. and Weil, C. S. 1987. Dermal oncogenicity studies on various ethyleneamines in male C3H mice. *Fundam. Appl. Toxicol.* 9: 807-811.

Dosdall, L. M., Goodwin, L. R., Casey, R. J. and Noton, L. 1997. The effect of ambient concentrations of chlorate on survival of freshwater aquatic invertebrates. *Water Qual. Res. J. Can.* 32: 839-854.

Doull, J. and Cross, R. 1977. Acute oral toxicity of Chigg-Away and is ingredients in adult male rats. Kansas City, MO, Univ. of Kansas Medical School, Dept. of Pharmacology.

Driscoll, K. E., Carter, J. M. and Howard, B. W. 1996. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. *Toxicol. Appl. Pharmacol.* 136: 372-380.

Ellenhorn, M. J. and Barceloux, D. G. 1988. *Medical toxicology - diagnosis and treatment of human poisoning*. New York, NY, Elsevier Science Publishing Co., Inc.: 37.

EnvCan 1981. Technical Information for Problem Spills: Sulfur. Environment Canada.

Eweil, W. S., Gorsuch, J. W., Kringle, R. O., Robillard, K. A. and Spiegel, R. C. 1986. Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. *Environ.Toxicol.Chem.* 5: 831-841 In: EPA 2006a.

FAO/WHO 2004. Safety evaluation of certain food additives and contaminants

Sixty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives Rome, International Programme on Chemical Safety. 52.

FDRL 1972. *Teratologic Evaluation of FDA 71-37 (Sodium Benzoate)*. p.75-79. Food and Drug Research Labs.

Ford, R. A., Letiza, C. and Api, A. M. 1988. Monographs on Fragrance Raw Materials -Eucalyptus citriodora oil. *Food and Chemical Toxicology*. 26: 323.

Francis, A. 1995. Toxicity Summary for Nitrates. *Environmental Restoration Program, Report* #*DE-AC05-840R21400*. Oak Ridge, TN, Oak Ridge National Laboratory.

Geiger, D. L., Northcott, C. E., Call, D. J. and Brooke, L. T. 1985. Acute Toxicities of Organic Chemicals to Fathead Minnows (*Pimephales promelas*). 143-144.

Geiger, D. L. C., D.J. and Brooke, L. T. 1988. Acute toxicities of organic chemicals to fathead minnows (*Pimephales promelas*), Vol 2. Superior, WI, Center for Lake Superior Environmental Studies, University of Wisconsin-Superior: 351 in EPA 2006a.

Goldring, I. P. G., L. and Park, S. S. 1970. Pulmonary effects of sulfur dioxide exposure in the syrian hamster: combined with emphysema. *Arch. Environ. Health* 21: 32-37.

Gomes-Carneiro, R. 1998. Mutagenicity testing (-) camphor, 1,8-cineole, citral, citronellol, (-)menthol, and terpineol with the Salmonella microsome assay. *Mutation Res.* 416: 129-136.

Gosselin, R. E., Hodge, H. C., Smith, R. P. and Gleason, M. N. 1977. Potassium chlorate. *Clinical Toxicology of Commercial Products*. Baltimore, MD, Williams and Wilkins: p.11-77.

Greengard, H. and Woodley, J. R. 1940. Studies on colloidal sulfur - polysulphide mixture. I - Toxicity. J. Am. Pharmaceut. Assoc. 29(7): 289-292.

Greenman, D. L., Morrissey, R. L., Blakemore, W., Crowell, J., Siitonen, P., Felton, P., Allen, R. and Cronin, G. 1996. Subchronic toxicity of triethylenetetramine dihydrochloride in B6C3F1 mice and F344 rats. *Fundam. Appl. Toxicol.* 29(2): 185-193.

Grützmacher, A. D., Zimmerman, O., Yousef, A. and Hassan, S. A. 2004. The side-effects of pesticides used in integrated production of peaches in Brazil on the egg parasitoid Trichogramma cacoeciae Marchal (Hym., Trichogrammatidae). *J. Appl. Entomol.* 128: 377-383.

Hague, A. and Ebing, W. 1983. Toxicity determination of pesticides to earthworms in the soil substrate. *J. Plant Dis. Prot.* 90: 395-408.

Haider, S. S. 1985. Effects of exhaust pollutant sulfur dioxide on lipid metabolism of guinea pig organs. *Ind. Health* 23: 81-87.

Hansch, C., Leo, A. and Hoekman, D. 1995. Exploring QSAR - hydrophobic, electronic, and steric constants. Washington, DC, American Chemical Society.

Harper, J. E. 1981. Effect of chlorate, nitrogen source, and light on chlorate toxicity and nitrate reductase activity in soybean leaves. *Physiologia Plantarum* 53: 505-510.

Harvey, S. C. 1975. Antiseptics and disinfectants; fungicides; ectoparasites. *The Pharmacological Basis of Theraputics*. L. S. Goodman and A. Gilman. New York, Macmillan.

Hauptman, S. P. and Kansu, E. 1978. Mutagenic action of aromatic epoxy resins. *Nature* 276(391-392).

Hawley, G. G. 1981. *The Condensed Chemical Dictionary. 10th ed.* New York, NY, Van Nostrand Reinhold Co.

Hazelton 1980. *Vinyl Acetate Oral and Inhalation Teratology Studies in the Rat.* (EPA Document No. FYI-OTS-0184-0278, Fiche No. 0000278-0). Hazelton Laboratories Europe Ltd. Washington, DC, US Environmental Protection Agency.

Heindell, J. J., Price, C. J., Field, E. A., Marr, M. C., Myers, C. B., Morrissey, R. E. and Schwetz, B. A. 1992. Developmental toxicity of boric acid in rats and mice. *Fundam. Appl. Toxicol.* 18: 266-277.

Heinrich, U., Peters, L., Creutzenberg, O., Dasenbrock, C. and Hoymann, H. G. 1994. Inhalation exposure of rats to tar/pitch condensation aerosol or carbon black alone or in combination with irritant gases. *Toxic and Carcinogenic Effects of solid Particles in the Respiratory Tract*. Washington, DC, International Life Sciences Institute Press: 433-441.

Hexion Specialty Chemicals 2005. "Polyaminoamide." from http://www.hexion.com/.

Hexion Specialty Chemicals 2006. "Epon[™] Resin 828 Material Safety Data Sheet, version 17.4, Revision Date 9/1/06, ." from <u>http://www.hexion.com/</u>.

Hexion Specialty Chemicals 2007. *Technical Data Sheet: Epikure Curing Agent 3125*. HEXION Specialty Chemicals.

Hilado, C. J. and Machado, A. M. 1977. Effect of sulfur dioxide on Swiss albino mice. J. Comb. Toxicol. 4: 236-245.

Hine, C. H., Kodama, J. K., Anderson, H. H., Simonson, D. W. and Wellington, J. S. 1958. The toxicology of epoxy resins. *American Medical Association Archives of Industrial Health* 17: 129-144.

Hotchkiss, J. H., Helser, M. A., Maragos, C. M. and Weng, Y.-M. 1992. Nitrate, nitrite, and Nnitroso compounds: Food safety and biological implications. *Food Safety Assessment*. J. W. Finley, S. F. Robinson and D. J. Armstrong. Washington, DC, American Chemical Society, pp. 400-418.

Howe, P. D., Griffiths, T. T., Dobson, S. and Malcolm, H. M. 2006. Environmental assessment of pyrotechnics compounds (Poster). Washington, DC, SERDP/ESTCP Symposium.

HPD 2007. "Eucalyptus Oil/Red Gum." Household Products Data Base, US National Library of Medicine. Retrieved 20 Sep, 2007, from <u>http://hpd.nlm.nih.gov/</u>.

HSDB 2008. "Hazardous Substances Data Bank: A comprehensive, peer-reviewed toxicology database for about 5,000 chemicals." TOXNET, US National Library of Medicine. from <u>http://toxnet.nlm.nih.gov/</u>.

IARC 1995. Dry Cleaning, Some Chlorinated Solvents and other Industrial Chemicals. *IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man.* International Agency for Research on Cancer. Geneva, World Health Organization. 63: 551. http://monographs.iarc.fr/ENG/Monographs/vol63/volume63.pdf.

IARC 1996. Printing Processes and Printing Inks, Carbon Black, and some Nitrocompounds. *IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man.* International Agency for Research on Cancer. Geneva, World Health Organization. 65. <u>http://monographs.iarc.fr/ENG/Monographs/vol65/volume65.pdf</u>.

IRIS 2007. *Epichlorohydrin* Integrated Risk Information System. US Environmental Proection Agency, Office of Research and Development, Washington, DC, URL: <u>http://toxnet.nlm.nih.gov/</u>.

IRIS 2008. *EPON828*. Integrated Risk Information System. US Environmental Proection Agency, Office of Research and Development, Washington, DC, URL: <u>http://toxnet.nlm.nih.gov/</u>.

Ishidate, M. and Odashima, S. 1977. Chromosome tests with 134 compounds on Chinese hamster cells in vitro: a screening for chemical carcinogens. *Mutat. Res.* 48(3-4): 337-353.

JCIETIC 1996. *Mutagenicity test data of existing chemical substances based on the toxicity investigation of the industrial safety and health law.* T. a. I. C. Japan Chemical Industry Ecology.

Kaviraj, A. and Das, S. 1995. Influence of chelating agent EDTA, adsorbent activated charcoal and inorganic fertilizer (single super phosphate) on the histopathological changes in the common carp (*Cyprinus carpio*). *Proc. Natl. Acad. Sci. India Sect. B* 65: 305-308.

Keen, C. L., Cohen, N. L., Lönnerdal, B. and Hurley, L. S. 1983. Teratogenesis and low copper status resulting from triethylenetetramine in rats. *Proc. Soc. Exp. Biol. Med.* 173(4): 598-605.

Khan, M. A., Fenton, S. E., Swank, A. E., Hester, S. D., Williams, A. and Wolf, D. C. 2005. A mixture of ammonium perchlorate and sodium chlorate enhances alterations of the pituitary-thyroid axis caused by the individual chemicals in adult male F344 rats. *Toxicol. Pathol.* 37: 776-783.

Knappen, A. M., Borm, P. J. A., Albrecht, C. and Schinns, R. P. F. 2004. Inhaled particles and lung cancer. Part A: Mechanisms. *Int. J. Cancer* 109: 799-809.

Kurokawa, Y., Imazawa, T., Matsushima, M. T., N and Hayashi, Y. 1985. Lack of promoting effect of sodium chlorate and potassium chlorate in two-stage rat renal carcinogenesis. *J am coll toxicol* 4: 331-337.

Lay, J. C., Zeman, K. L., Ghie, A. J. and Bennett, W. D. 2001. Effects of inhaled iron oxide particles on alvelolar epithelial permeability in normal subjects. *Inhalation Toxicology* 13: 1065-1078.

Lide, D. R. 2006-2007. CRC handbook of chemistry and physics. Boca Raton, FL, CRC Press. <u>http://www.hbcpnetbase.com</u>.

Matida, Y., Kimura, S., Tanaka, H. and Yokote, M. 1976. Effects of some herbicides applied in the forest to the freshwater fishes and other aquatic organisms - III. Experiments on the Assessment of Acute. *Bull. Freshwater Fish. Res. Lab.* 26: 79-84.

Mayer, K. P., Jackson, W. A., Snyder, S. A., Smith, P. N. and Anderson, A. T. 2006. State of the Science: Background, History, and Occurrence. *Perchlorate Ecotoxicology (Kendall, R.J., Smith, P.N., eds).* Pensacola, FL, SETAC Publications: 1-20.

McCauley, P. T., Robinson, M., Daniel, F. B. and Olson, G. R. 1995. The effects of subchronic chlorate exposure in Sprague-Dawley rats. *Drug Chem. Toxicol.* 18: 185-199.

McEachern, D. M. and Sandoval, O. 1973. Molecular flow evaporation apparatus for measuring vapor pressure. J. Phys. E. 6: 155-161.

Mebus, C. A., Carpanini, F. M., Rickard, R. W., Cascieri, T. C., Tyler, T. R. and Vinegar, M. B. 1995. A two-generation reproduction study in rats receiving drinking water containing vinyl acetate. *Fundam. Appl. Toxicol.* 24(2): 206-216.

Meylan, W. M. and Howard, P. H. 1991. Bond contribution method for estimating Henry's Law constants. *Environmental Toxicology and Chemistry* 10: 1283-1293.

Miller, R. W., Honarvar, S. and Hunsaker, B. 1980. Effects of drilling fluids on soils and plants: I. Individual fluid components. *J. Environ. Qual.* 9: 547-552.

Mortelmans, K., Haworth, S., Lawlor, T., Speck, W., Tainer, B. and Zeiger, E. 1986. Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. *Environ. Mutagen.* 8 Suppl 7: 1-119.

Nau, C. A., Taylor, G. T. and Lawrence, C. H. 1976. Properties and physiological effects of thermal carbon black. *J. Occup. Med.* 18: 732-734.

NCBI. *Epon 828*. National Center for Biotechnology Information, PubChem. Retrieved 9/13/07, URL: <u>http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=204779</u>.

NIOSH 2009. NIOSH Pocket Guide to Chemical Hazards: Sulfur Dioxide. National Institute for Occupational Safety and Health. <u>http://www.cdc.gov/niosh/npg/npgd0575.html</u>.

NRC 1980. Drinking Water and Health. Washington, DC, National Academy Press.

NRC 2005. *Health Implications of Perchlorate Ingestion*. National Research Council. National Academies Press; Board on Environmental Studies and Toxicology.

NTP 1982. TR-227 Carcinogenesis Bioassay of Gum Arabic (CAS No. 9000-01-5) in F344 Rats and B6C3F₁ Mice (Feed Study). Technical Report Series No. 227. National Toxicology Program, US Department of Health and Human Services, Public Health Services, National Institutes of Health.

NTP 2005a. Chlorate. National Toxicology Program. Research Triangle Park, NC, US Department of Health and Human Services, Public Health Services, National Institutes of Health. http://www.ntp-server.niehs.nih.gov.

NTP 2005b. Toxicology and carcinogenesis studies of sodium chlorate (CAS No. 7775-09-9) in F344/N rats and B6C3F1 mice (drinking water studies). Technical Report Series. N. T. Program, US Department of Health and Human Services, Public Health Services, National Institutes of Health: 1-255.

NTP 2009. National Toxicology Program. Research Triangle Park, NC, National Institute of Environmental Health Sciences, Department of Heath and Human Services. <u>http://www.ntp.niehs.nih.gov</u>.

O'Neil, M. J. 2006. *The Merck Index - Encyclopedia of Chemicals, Drugs and Biologicals. 14th Ed.* Rahway, NJ, Merck and Co. Inc.

OECD SIDS 1998. *SIDS Initial Assessment Report for SIAM 8, Triethylene Tetramine.* Screening Information Dataset; Organization for Economic Cooperation and Development. Paris, France. <u>http://www.chem.unep.ch/irptc/sids/oecdsids/112-24-3.pdf</u>.

OECD SIDS 2001. SIDS Initial Assessment Report for SIAM 13. Benzoates: Benzoic acid, Sodium benzoate, Potassium benzoate, Benzyl alcohol. . Screening Information Dataset; Organization for Economic Cooperation and Development. Paris, France, URL: <<u>http://www.inchem.org/documents/sids/sids/BENZOATES.pdf</u>>.

Ohe, S. 1976. Computer aided data book of vapor pressure. Tokyo, Japan, Data Book Publishing Company.

Ormerod, A. D., Wakeel, R. A., Mann, T. A., Main, R. A. and Aldridge, R. D. 1989. Polyamine sensitization in offshore workers handling drilling muds. *Contact Dermatitis* 21(5): 326-329.

Pence, B. C. and Buddingh, F. 1985. The effect of carbon black ingestion on 1,2dimethylhydrazine-induced colon carcinogenesis in rats and mice. *Toxicol. Lett.* 25: 273-377.

Peristianis, G. C., Doak, S. M. A., Cole, P. N. and Hend, R. W. 1988. Two-year carcinogenicity study on three aromatic epoxy resins applied cutaneously to CF1 mice. *Food Chem. Toxicol.* 26(7): 611-624.

Price, C. J., Strong, P. L., Marr, M. C., Myers, C. B. and Murray, F. J. 1996. Developmental toxicity NOAEL and postnatal recovery in rats fed boric acid during gestation. *Fundamentals of Applied Toxicology* 32: 179-193.

Procolor MSDS 1999. URL: <u>http://www.procolor.es/NR/rdonlyres/F285B562-FD5B-443D-B779-954C8240883D/0/727ProcopoxalDisolvente.pdf</u>.

Reish, D. J. 1970. The effects of varying concentrations of nutrients, chlorinity, and dissolved oxygen on polychaetous annelids. *Water Res.* 4(721-735).

Reynolds, T. 1987. Comparative effects of alicyclic compounds and quinones on inhibition of lettuce fruit germination. *Ann. Bot.* 60: 215-223 in EPA 2006a.

Roe, F. J. C. and Field, W. E. H. 1965. Chronic toxicology of essential oils and certain other products of natural origin. *Food Cos. Toxicol.* 3: 311-324.

Roe, F. J. C. and Peirce, W. E. H. 1960. Tumor promotion by citrus oils: tumors of the skin and urethral orifice in mice. *J. Nat. Cancer Inst.*

RTECS 2006. *Carbon Black.* Registry of Toxic Effects of Chemical Substances, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Washington, DC, URL: <u>http://www.cdc.gov/niosh/rtecs</u>.

Sax, N. I. and Lewis, R. J. 1989. Dangerous Properties of Industrial Materials. New York, NY, Van Nostrand Reinhold. II: 2494.

SCCP 2005. *Opinion on Benzoic Acid and Sodium Benzoate*. Scientific Committee on Consumer Products. Retrieved 12/3/07, URL: risk/committees/04 sccp/docs/sccp o 015.pdf.

Schafer, E. W., Bowles, W. A. and Hurlbut, J. 1983. The acute oral toxicity, repellency, and hazard potential of 998 chemicals to one or more species of wild and domestic birds. *Arch. Environm. Contam. Toxicol.* 12: 355-382.

Schrader, K. K. D., M.Q., Tidwell, P. R., Tucker, C. S. and Duke, S. O. 1998. Selective growth inhibition of the musty-odor producing *cyanobacterium oscillatoria cf. chalybea* by natural compounds. *Bull. Environ. Contam. Toxicol.* 60: 651-658 in EPA 2006a.

SciLab 2009. Material Safety Data Sheets. http://www.sciencelab.com.

Scorecard 2007. *Fatty Acids, C18 unsatd., dimers, reaction products with polyethylepolyamines.* (12/13/2007). Scorecard; The pollution information site. URL: <u>http://www.scorecard.org/</u>.

Searcy, A. W. and Myers, C. E. 1957. The heat of sublimation of boron and the gaseous species of the boron-boric oxide system. *Journal of Physical Chemistry* 61: 957-960.

Shiu, W. Y., Ma, K. C., Mackay, D., Seiber, J. N. and Wauchope, R. D. 1990. Solubilities of pesticide chemicals in water, part II: data compilation. *Rev environ contam toxicol* 116: 15-187.

Shuval, H. I. and Gruener, N. 1972. Epidemiological and toxicological aspects of nitrates and nitrites in the environment. *Am. J. Public Health* 62: 1045-1052.

Sleight, S. D. and Atallah, O. A. 1968. Reproduction in the guinea pig as affected by chronic administration of potassium nitrate and potassium nitrite. *Toxicol. Appl. Pharmacol.* 12: 179-185.

Smyth, H. F., Carpenter, C. P., Pozzani, U. C., Striegel, J. A. and Nycum, J. S. 1969. Range-finding toxicity data: List VII. *American industrial hygiene association journal* 30(5): 470-476.

Smyth, H. F., Jr and Carpenter, C. P. 1948. Further experience with the range-finding test in the industrial toxicology laboratory. *J. Ind. Hyg. Toxicol.* 30: 63-68.

Stavreva, M. 1979. Khig Zdraveopaz 22: 179.

Sterner, T. R. and Mattie, D. R. 1998. Perchlorate literature review and summary: Developmental effects, metabolism, receptor kinetics and pharmacological uses. US Air Force Armstrong Laboratory. Wright-Patterson Air Force Base, OH.

Steuven, H. A., Coogan, P. and Valley, V. 1993. A hazardous materials episode: sulfur trioxide. *Vet. Hum. Toxicol.* 35: 37-38.

Stokinger, H. E. 1981. Patty's Industrial Hygiene and Toxicology. New York, Wiley.

Sund, K. A. and Nomura, N. 1963. Laboratory Evaluation of Several Herbicides. *Weed Res.* 3(35-43).

Tanaka, H., Inomata, K. and Arima, M. 1993. Teratogenic effects of triethylene tetramine dihydrochloride on the mouse brain. J. Nutr. Sci. Vitaminol .(Tokyo) 39(2): 177-188.

Tanaka, H., Yamanouchi, M., Imai, S. and Hayashi, Y. 1992. Low copper and brain abnormalities in fetus from triethylene tetramine dihydrochloride-treated pregnant mouse. *J. Nutr. Sci. Vitaminol. (Tokyo)* 38(6): 545-554.

Thurman, R. G. and Kauffman, F. C. 1992. *Ethel Browning's Toxicity and Metabolism of Industrial Solvents*. Amsterdam and New York, Elsevier.

Tibballs, J. 1995. Clinical effects and management of eucalyptus oil ingestion in infants and young children. *Medical Journal of Australia* 163: 177-180.

Til, H. P., Falke, H. E., Kuper, C. F. and Willems, M. I. 1988. Evaluation of the oral toxicity of potassium nitrite in a 13-week drinking-water study in rats. *Food Chem. Toxicol.* 26: 851-859.

Treon, J. F., Dutra, F. R. and Cappel, J. 1950. Toxicity of sulfuric acid mist. AMA Arch. Indus. Hyg. Occ. Med. 2: 716-734.

USACHPPM 2007. *Wildlife Toxicity Assessment for Perchlorate. Project Number 87-MA02T6-05D.* US Army Center for Health Promotion and Preventive Medicine. Aberdeen Proving Ground, Maryland.

USEPA 1982. *Sulfur Pesticide Registration Standard*. US Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. Washington, DC.

USEPA 1988. Office of Pesticides. TOX Oneliners - Sulfur. US Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. Washington, DC.

USEPA 1991a. R.E.D. FACTS Inorganic Nitrate/Nitrite (Sodium and Potassium Nitrates). United States Environmental Protection Agency.

USEPA 1991b. *Reregistration eligibility document, Sulfur, List A, CASE 0031*. US Environmental Protection Agency, Office of Pesticides Programs Special Review and Reregistration Division. Washington, DC.

USEPA 1992. Drinking Water Health Advisory: Munitions, US Environmental Protection Agency, Office of Drinking Water Health Advisories; CRC Press.

USEPA 2000. Pesticide Ecotoxicity Database: Potassium chlorate. US Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. Washington, DC, 67: 94.

USEPA 2005. Memorandum: Reassessment of One Exemption from the Requirement of a Tolerance for Carbon Black. US Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. <u>http://www.epa.gov/opprd001/inerts/carbonblack.pdf</u>.

USEPA 2006a. *Epichlorohydrin Ground and Drinking Water Health Pages*. US Environmental Protection Agency. Retrieved 12/3/07, URL: <u>http://www.epa.gov/OGWDW/dwh/t-soc/di-adipa.html</u>.

A - 11

USEPA 2006b. *Health Effects Support Document for Boron*. EPA Document Number EPA-822-R-06-005. US Environmental Protection Agency Office of Water Health and Ecological Criteria Division.

USEPA 2006c. Toxicology Review and a Dietary Exposure Assessment for Eucalyptus Oil for the Exemption from the Requirement of a Tolerance. US Environmental Protection Agency, Federal Register: Vol. 71, No. 177. US Environmental Protection Agency. Washington, DC.

USEPA 2007a. "ECOTOX User Guide: ECOTOXicology Database System. Version 4.0 ". Retrieved multiple dates, 2009, from <u>http://www.epa.gov/ecotox/</u>.

USEPA 2007b. *ECOTOXicology database (online: ECOTOX)*. United States Environmental Protection Agency, Office of Research and Development, National Health and Environment Effects Research Laboratory, Mid-Continent Ecology Division. Duluth, MN, URL: <u>http://cfpub.epa.gov/ecotox/</u>.

Valberg, P. A., Long, C. M. and Sax, C. N. 2006. Integrating studies on carcinogenic risk of carbon black: epidemiology, animal exposures, and mechanism of action. *J. Occup. Environ. Med.* 48: 1291-1307.

Van Wijk, D., Kroon, S. G. M. and Garttener-Arends, I. C. M. 1998. Toxicity of chlorate and chlorite to selected species of algae, bacteria, and fungi. *Ecotoxicol. Environ. Saf.* 40: 206-211.

Vernot, E. H., MacEwen, J. D., Haun, C. C. and Kinkead, E. R. 1977. Acute toxicity and skin corrosion data for some organic and inorganic compounds and aqueous solutions. *Toxicol Appl Pharmacol* 42(2): 417-23.

Wallen, I. E., Greer, W. C. and Lasater, R. 1957. Toxicity to *Gambusia affinis* of certain pure chemicals in turbid waters. *Sewage Industrial Wastes* 29(6): 695-711.

Weast, R. C. 1979. *Handbook of Chemistry and Physics. 60th ed.* Boca Raton, FL, CRC Press Inc.

White, A. 1941. Growth inhibition produced in rats by the oral administration of sodium benzoate. Effects of various dietary supplements. *Yale. J. Biol. Med.* 13: 759-768.

WHO 1997. Silica monographs on the evaluation of carcinogenic risks to humans. 68. United Nations Environment Programme; International Labour Organisation; International Programme on Chemical Safety. Geneva. <u>http://www.inchem.org/documents/ehc/ehc/ehc/204.htm</u>.

WHO 2005a. Boron in drinking water: Background document for development of WHO guidelines for drinking water quality. http://www.who.int/water sanitation health/dwq/boron.pdf.

WHO 2005b. Chlorite and Chlorate in Drinking water. WHO/SDE/WSH/05.08/86. World Health Organization.

Yalkowsky, S. H. and Dannelfelser, R. M. 1992. Aquasol database of aqueous solubility. Version 5, College of Pharmacy, University of Arizona, Tucson, AZ. Cited in NLM ChemIDplus 2007.

Yin, F., Liu, J. and Peng, X. 2004. Effects of triethylene tetraamine on telomerase activity and proliferation in HeLa cells. *Cell Biol. Int.* 28(4): 287-291.

APPENDIX B

PRODUCTS OF COMBUSTION: NASA/GLENN PREDICTIONS

Combustion Products of WF-9

NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA, NOVEMBER 5, 1999 BY BONNIE MCBRIDE And SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 And NASA RP-1311, PART II, 1996

reac

name S S 1 wt%=8 t,k=298.15 h,kcal/mol=0 name Si Si 1 wt%=6 t,k=298.15 h,kJ/mol=0 name CC 1 wt%=2 t.k=298.15 h.kcal/mol=0 name KNO3K1N1O3 wt%=81 t,k=298.15 h,kcal/mol=-118.08 name VAAR C 34 O 17 H 54 wt%=3 t.k=298.15 h.kJ/mol=-2664.9 prob case=wf9 hp eqil p(psia)=14.7 outp cal massf end

OPTIONS: TP=F HP=T SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F RKT=F FROZ=F EQL=T IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

P,BAR = 1.013525

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY EXPLODED FORMULA

- N: S 0.080000 0.000000E+00 298.15 0.0000 S 1.00000
- N: Si 0.060000 0.000000E+00 298.15 0.0000 SI 1.00000

N: C 0.020000 0.000000E+00 298.15 0.0000 C 1.00000 N: KNO3 0.810000 -0.594198E+05 298.15 0.0000 K 1.00000 N 1.00000 O 3.00000 N: VAAR 0.030000 -0.320512E+06 298.15 0.0000 C 34.00000 O 17.00000 H 54.00000 SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) LAST thermo.txt UPDATE: 11/08/99 g 7/97 *C tpis79 *CH g 8/99 CH2 g 8/99 CH3 g12/92 CH2OH g10/92 CH3O g 8/99 CH4 g 8/88 CH3OH g 8/99 *CN g12/89 CNN tpis79 *CO g 6/95 COS tpis91 COOH g 9/99 *CO2 g 7/99 CS g 6/95 CS2 tpis91 *C2 g 1/91 C2H g 6/89 CHCO,ketyl g12/89 C2H2, vinylidene g 1/91 C2H2, acetylene g 5/90 CH2CO, ketene g 2/92 C2H3, vinyl g12/92 CH3CN g 6/96 CH3CO, acetyl g 1/91 C2H4 g 8/88 C2H4O, ethylen-o g 8/88 CH3CHO, ethanal g 8/88 CH3COOH g12/92 C2H5 g 8/88 C2H6 g 8/88 CH3N2CH3 g 8/88 C2H5OH g12/92 CH3OCH3 g12/92 CCN tpis91 CNC tpis79 C2N2 g12/89 C2O tpis79 *C3 x 4/98 C3H3,1-propynl x 4/98 C3H3,2-propynl g12/92 C3H4,allene g12/92 C3H4,propyne g 5/90 C3H4,cyclo- bur 92 C3H5,allyl g 2/95 C3H6, propylene g 1/93 C3H6, cyclog 6/90 C3H6O g 6/90 C3H7,n-propyl g 9/85 C3H7,i-propyl g 6/90 C3H8 g 9/88 C3H8O,1propanol g 9/88 C3H8O,2propanol g 7/88 C3O2 g 2/93 C4H2 g 5/90 C4H4,1,3-cyclog 7/88 C4 x10/92 C4H6,butadiene x10/93 C4H6,1-butyne x10/93 C4H6,2-butyne g 5/90 C4H6,cyclo- x 4/88 C4H8,1-butene x 4/88 C4H8,cis2-buten x 4/88 C4H8,tr2-butene x 4/88 C4H8,isobutene g 5/90 C4H8,cyclog 6/90 (CH3COOH)2 x10/84 C4H9,n-butyl x10/84 C4H9,i-butyl g 1/93 C4H9,s-butyl g 1/93 C4H9,t-butyl g 6/90 C4H10,isobutane g 7/88 C5 g 6/90 C4H10,n-butane j 3/61 C4N2 g 5/90 C5H6,1,3cyclo- g 1/93 C5H8,cyclo- x 4/87 C5H10,1-pentene g 6/90 C5H10,cyclo- x10/84 C5H11,pentyl g 1/93 C5H11,t-pentyl x10/85 C5H12,n-pentane x10/85 C5H12,i-pentane x10/85 CH3C(CH3)2CH3 g 2/93 C6H2 g 1/91 C6H5, phenyl g 6/90 C6H5O, phenoxy g 1/91 C6H6 g 6/90 C6H5OH, phenol g 1/93 C6H10, cyclox 4/87 C6H12,1-hexene g 6/90 C6H12,cyclo- x10/83 C6H13,n-hexyl g 6/96 C6H14,n-hexane g 1/93 C7H7,benzyl g 1/93 C7H8 g 1/93 C7H8O,cresol-mx x 4/87 C7H14,1-heptene x10/83 C7H15,n-heptyl x10/85 C7H16,2-methylh x10/85 C7H16,n-heptane x 4/89 C8H8,styrene x10/86 C8H10,ethylbenz x 4/87 C8H16,1-octene x10/83 C8H17,n-octyl

x 4/85 C8H18,n-o	ctane x 4/85 C8H1	8, isooctane x10/83 C9H19	n-nonyl
	iphenyl g 6/97 *H	g 7/88 HCN	
•	tpis89 HCCN	g11/92 HNC	
g 2/96 HNCO	g 5/99 HNO	tpis89 HNO2	
g 5/99 HNO3	g 5/99 HO2	tpis78 *H2	
• · · · · · · · · · · · · · · · · · · ·	naldehy g 8/88 HC	-	
g 6/99 H2O2	tpis89 H2S	tpis89 H2SO4	
g 8/88 (HCOOH)2	*	J 3/66 KCN	
J 3/63 KH	tpis82 KNO2	tpis82 KNO3	
J12/67 KO	g 9/97 KOH	j12/83 K2	
tpis82 K2CO3	J 3/66 K2C2N2	tpis82 K2O	
tpis82 K2O2	g 9/97 K2O2H2	g10/99 K2SO4	
g 5/97 *N	g 2/96 NCO	g 4/99 *NH	
g 5/99 NH2	tpis89 NH3	tpis89 *NO	
g 4/99 NO2	j12/64 NO3	tpis78 *N2	
g12/89 NCN	g 5/99 N2H2	tpis89 NH2NO2	
g 4/99 N2H4	g 4/99 N2O	g 4/99 N2O3	•
tpis89 N2O4	g 4/99 N2O5	tpis89 N3	
g 4/99 N3H	g 5/97 *O	tpis78 *OH	
tpis89 *O2	tpis89 O3	g 5/97 *S	
tpis89 SH	tpis89 SN	tpis89 SO	
tpis89 SO2	tpis89 SO3	tpis89 S2	
tpis89 S2O	tpis89 S3	tpis89 S4	
tpis89 S5	-	tpis89 S7	
tpis89 S8	-	tpis91 SiC	
tpis91 SiC2	J12/60 SiC4H12	g 3/99 SiH	
g 3/99 SiH2	g 3/99 SiH3	tpis91 SiH4	
g 5/99 SiN	tpis91 SiO	tpis91 SiO2	
tpis91 SiS	tpis91 SiS2	tpis91 Si2	
tpis91 Si2C	J 3/67 Si2N	g 7/95 Si3	
x 4/83 C(gr)	x 4/83 C(gr)	x 4/83 C(gr)	
g 8/89 H2O(s)	g 8/89 H2O(L)	J 9/77 H2SO4(L)	•
coda89 K(cr)	coda89 K(L)	J 3/66 KCN(s)	
J 3/66 KCN(L)	J 3/66 KCN(L)	· · · ·	
tpis82 KH(L)	tpis82 KNO2(II)	,	
tpis82 KNO2(L)	tpis82 KNO3(a	· - · · · ·	
tpis82 KNO3(L)	g 8/97 KOH(a)	e v	
g 8/97 KOH(c)	g 8/97 KOH(L)	*	
tpis82 KO2(a)	tpis82 KO2(L)	tpis82 K2CO3(a)	
tpis82 K2CO3(b)	tpis82 K2CO3		
tpis82 K2O(b)	tpis82 K2O(a)	tpis82 K2O(L)	
tpis82 K2O2(cr)	tpis82 K2O2(L)		
J 3/78 K2S(1)	J 3/78 K2S(2)	J 3/78 K2S(3)	
J 3/78 K2S(L)	tpis82 K2SO4(II		
tpis82 K2SO4(I)	tpis82 K2SO4(l	L) tpis82 K2SiO3(cr)	

B - 3

tpis82	K2SiO3(cr)	tpis	82	K2SiO	3(L)	tpis8	2 K2	Si2O5(a)
tpis82	K2Si2O5(b)	tpi	s82	K2Si2	O5(c)	tpis8	32 K2	2Si2O5(L)
tpis89	S(cr1)	tpis89	S(c	r2)	tpis8	9 S(L))	
tpis89	S(L)	tpis89	S(L	.)	tpis89	S(L)		
-	· ·	tpis91	Si(c	cr)	tpis91	Si(cr))	
tpis91	Si(L)	tpis91	SiC	Ľ(b)	tpis9	1 SiC	(b)	
tpis91	SiC(L)	tpis91	Si	O2(a-q2	z) tpi	is91 S	SiO2(1	o-qz)
tpis91	SiO2(b-crt)	tpis	91 8	SiO2(L)	tp	is91 S	SiS(cı	;)
tpis91	SiS(L)	tpis91	Si	S2(cr)	tpis	91 SiS	S2(cr)	
tpis91	SiS2(L)	g 7/9:	5 Si	i2N2O(s) g	7/95	Si2N ²	2O(s)
tpis91	Si3N4(cr)	tpis9	1 S	i3N4(c	r)			

O/F = 0.000000

ENTH		FECTIVE FI h(2)/		FECTIVE O	XIDANT h0/R	MIXTURE	
	ALF I IOL)(K)/K	• • •)3 0.0000		-0.48913461E+03	ł
(110 1)	101)(11)/1	-0,-10.	134011540	0.0000	0000100	-0.407154012+03	,
KG-FC	DRM.WT./	/KG 1	bi(2)	bi(1)	b0i		
*S	0.	24948544E-	02 0.00	000000E+00	0.24948	544E-02	
*Si		21363337E-	02 0.00	000000E+00	0.21363	337E-02	
*C		.30533480E-	02 0.00	000000E+00		480E-02	
*K				000000E+00		5127E-02	
*N				000000E+00		5127E-02	
*O				000000E+00		8921E-01	
*H	0.	.22047345E-	02 0.00	000000E+00	0.22047	/345E-02	
		~ ~	~*	~ ~~			
POINT	TITN T		SI	C K			
1 / 1	N		H 28.200	21.010	00.107		
1 41		35 -39.911		-31.019	-20.197		
	-13.753 SiO2(b-crt		-17.924				
		,	24.025	-24.762	-19.134		
1 11	-14.220		-16.049		-19.134		
PHASI				-crt) WITH	SID2(L)	· · ·	
1 2				-24.786			
1 4	-14.215		-16.053	-24.700	-17.157		
ADD	K2Si2O5(10.055				
	2482.17		-27.477	-22.172	-22.302	,	
	-14.454				221002		
REMO	VE SiO2						
			-37.851	-24.541	-19.582		
		5 -15.572					
ADD 1	K2SO4(L))					
1 3	2196.79	9 -24.003	-36.640	-24.162	-19.593		
	-14.270) -15.580	-15.360				
						,	

B - 4

ADD K2SiO3(L) 1 4 2152.914 -37.181 -23.888 -24.683 -20.429 -14.233 -15.478 -14.946 REMOVE K2Si2O5(L) -37.109 1 3 2170.762 -23.860 -24.479 -20.135 -14.247 -15.514 -15.063

THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED

PRESSURES

CASE = wf9

I	REACTANT	WT FRACT	ΓΙΟΝ	ENERGY	TEMP
	*	(SEE NOTE) CA	AL/MOL	K	
NAME	S	0.0800000	0.000	298.150	
NAME	Si	0.0600000	0.000	298.150	
NAME	С	0.0200000	0.000	298.150	
NAME	KNO3	0.8100000	-11808	0.000 29	8.150
NAME	VAAR	0.0300000) -63692	26.386 29	98.150

O/F= 0.00000 %FUEL= 0.000000 R,EQ.RATIO= 0.828069 PHI,EQ.RATIO= 0.000000

THERMODYNAMIC PROPERTIES

P, ATM 1.0003 T, K 2170.76 RHO, G/CC 3.9125-4 H, CAL/G -972.02 U, CAL/G -1033.93 G, CAL/G -3907.63 S, CAL/(G)(K) 1.3523

M, (1/n) 69.673 MW, MOL WT 60.537 (dLV/dLP)t -1.32829 (dLV/dLT)p 6.1599 Cp, CAL/(G)(K) 2.6240 GAMMAs 1.0919 SON VEL,M/SEC 531.8

MASS FRACTIONS

*CO	0.00111
*CO2	0.13260
H2O	0.00311
*K	0.02830
KNO2	0.00021
KO	0.00214
КОН	0.10298
K2	0.00001
K2CO3	0.00012
K2O	0.00009
K2O2H2	0.00015
K2SO4	0.09341
*NO	0.00244
*N2	0.11104
*O	0.00019
*OH	0.00034
*O2	0.06339
SO	0.00016
SO2	0.12320
SO3	0.00021
K2SO4(L)	0.00522
K2SiO3(L)	0.32959

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C *CH CH2 CH3 CH2OH CH3OH CH3O *CN CH4 CNN COS COOH CS CS2 *C2 C2H CHCO,ketyl C2H2, vinylidene C2H2, acetylene CH2CO, ketene C2H3, vinyl CH3CN CH3CO.acetyl C2H4 C2H4O.ethvlen-o CH3CHO, ethanal CH3COOH C2H5 C2H6 CH3N2CH3 C2H5OH CH3OCH3 CCN CNC C2N2 C2O *C3 C3H3,1-propynl C3H3,2-propynl C3H4,allene C3H4, propyne C3H4, cyclo- C3H5, allyl C3H6, propylene C3H6, cyclo-C3H6O C3H7,n-propyl C3H7,i-propyl C3H8 C3H8O,1propanol C3H8O,2propanol C3O2 C4 C4H2 C4H4,1,3-cyclo-C4H6, butadiene C4H6, 1-butyne C4H6, 2-butyne C4H6, cyclo-C4H8,1-butene C4H8,cis2-buten C4H8,tr2-butene C4H8,isobutene C4H8,cyclo- (CH3COOH)2 C4H9,n-butyl C4H9,i-butyl C4H9,s-butyl C4H9,t-butyl C4H10,isobutane C4H10,n-butane C4N2 C5 C5H6,1,3cyclo- C5H8,cyclo-C5H10,1-pentene C5H10,cyclo- C5H11,pentyl C5H11,t-pentyl C5H12,n-pentane C5H12,i-pentane CH3C(CH3)2CH3 C6H2 C6H5, phenyl C6H5O, phenoxy C6H5OH, phenol C6H10.cvclo- C6H12.1-hexene C6H12.cvclo-C6H6

C6H13,n-hexyl C6H14,n-hexane C7H7,benzyl C7H8 C7H8O,cresol-mx C7H14,1-heptene C7H15,n-heptyl C7H16,2-methylh C7H16,n-heptane C8H8,styrene C8H10,ethylbenz C8H16,1-octene C8H17,n-octyl C8H18,n-octane C8H18,isooctane C9H19,n-nonyl C10H8,naphthale C10H21,n-decyl C12H9,o-bipheny C12H10,biphenyl *H HCN HCO HCCN HNC HNCO HNO HNO2 HNO3 HO2 *H2 HCHO, formaldehy HCOOH H2O2 H2S H2SO4 (HCOOH)2 KCN KH KNO3 K2C2N2 K2O2 *N NCO *NH NH2 NO₂ NH3 NO3 NCN N2H2 NH2NO2 N2H4 N20 N2O3 N2O4 N2O5 N3 N3H O3 *S S2 SH SN **S2O** S3 S4 S5 S6 **S7** *Si SiC2 **S8** SiC SiC4H12 SiH SiH2 SiH3 SiH4 SiN SiO SiO2 SiS SiS2 Si₂ Si₂C Si2N Si3 C(gr)H2O(s) H2O(L)H2SO4(L)K(cr) K(L)KCN(s) KCN(L) KNO2(II) KH(cr) KH(L) KNO2(I) KNO2(L) KNO3(a) KNO3(b) KNO3(L) KOH(a) KOH(b) KOH(c) KOH(L) KO2(a) KO2(b)KO2(L)K2CO3(a) K2CO3(b) K2CO3(L)K2O(c)K2O(b) K2O(a) K2O(L)K2O2(cr)K2O2(L) K2S(1) K2S(2)K2S(3) K2S(L)K2SO4(II) K2Si2O5(a) K2SO4(I) K2SiO3(cr) K2Si2O5(b) K2Si2O5(c) K2Si2O5(L) S(cr1)S(cr2)S(L) Si(cr) Si(L) SiC(b) SiC(L) SiO2(a-qz) SiO2(b-qz) SiO2(b-crt) SiO2(L)SiS(cr) SiS(L) SiS2(cr) SiS2(L) Si2N2O(s)Si3N4(cr)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS And OF OXIDANT IN TOTAL OXIDANTS

Combustion Products of WM-2

NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA, NOVEMBER 5, 1999 BY BONNIE MCBRIDE And SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 And NASA RP-1311, PART II, 1996

reac

name KBenz K 1 C 7 H 5 O 2 wt%=17 h,kJ/mol=-610.94 t,k=298.15 name KNO3 K 1 N 1 O 3 wt%=13 h,cal/mol=-117760.0 t,k=298.15 name KClO3 K 1 Cl 1 O 3 wt%=67 h,kJ/mol=-389 t,k=298.15 name RedGum C 10 H 18 O 1 wt%=3 h,kJ/mol=-276 t,k=298.15 prob case=WM2 hp equil p(psia)=14.7 outp cal massf end

OPTIONS: TP=F HP=T SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F

RKT=F FROZ=F EQL=T IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

P,BAR = 1.013525

 REACTANT
 WT.FRAC (ENERGY/R),K TEMP,K DENSITY

 EXPLODED FORMULA

 N: KBenz
 0.170000 -0.734788E+05 298.15 0.0000

 K 1.00000
 C 7.00000 H 5.00000 O 2.00000

 N: KNO3
 0.130000 -0.592588E+05 298.15 0.0000

 K 1.00000
 N 1.00000 O 3.00000

 N: KClO3
 0.670000 -0.467857E+05 298.15 0.0000

 K 1.00000
 CL 1.00000 O 3.00000

 N: RedGum
 0.030000 -0.331950E+05 298.15 0.0000

 C 10.00000
 H 18.00000 O 1.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM

(CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) LAST thermo.txt UPDATE: 11/08/99

g 7/97 *C g 8/99 CCL g 8/99 CCL2 x12/93 CCL3 tpis91 CCL4 tpis79 *CH g 9/99 CHCL x12/93 CHCL2 g 7/99 CHCL3 g 8/99 CH2 g 2/96 CH2CL tpis91 CH2CL2 g 8/99 CH3 tpis91 CH3CL g12/92 CH2OH g10/92 CH3O g 8/99 CH4 g 8/88 CH3OH g 8/99 *CN g12/89 CNN tpis79 *CO tpis91 COCL tpis91 COCL2 tpis91 COHCL g 9/99 *CO2 tpis91 COOH tpis91 *C2 tpis91 C2CL tpis91 C2CL2 tpis91 C2CL3 tpis91 C2CL4 tpis91 C2CL6 g 1/91 C2H tpis91 C2HCL tpis91 C2HCL3 g 6/89 CHCO, ketyl g12/89 C2H2, vinylidene g1/91 C2H2, acetylene tpis91 C2H2CL2 g 5/90 CH2CO,ketene g 2/92 C2H3, vinyl tpis91 C2H3CL g12/92 CH3CN g 6/96 CH3CO, acetyl g 1/91 C2H4 g 8/88 C2H4O, ethylen-o g 8/88 CH3CHO, ethanal g 8/88 CH3COOH g12/92 C2H5 g 8/88 C2H6 g 8/88 CH3N2CH3 g 8/88 C2H5OH g12/92 CH3OCH3 g12/92 CCN tpis91 CNC tpis79 C2N2 g12/89 C2O tpis79 *C3 x 4/98 C3H3,1-propynl x 4/98 C3H3,2-propynl g12/92 C3H4,allene g12/92 C3H4, propyne g 5/90 C3H4, cyclobur 92 C3H5,allyl g 2/95 C3H6, propylene g 1/93 C3H6, cyclog 6/90 C3H7,n-propyl g 9/85 C3H7,i-propyl g 6/90 C3H6O g 6/90 C3H8 g 9/88 C3H8O,1propanol g 9/88 C3H8O,2propanol g 7/88 C3O2 g 7/88 C4 g 2/93 C4H2 g 5/90 C4H4,1,3-cyclo- x10/92 C4H6,butadiene x10/93 C4H6,1-butyne x10/93 C4H6,2-butyne g 5/90 C4H6,cyclo- x 4/88 C4H8,1-butene x 4/88 C4H8,cis2-buten x 4/88 C4H8,tr2-butene x 4/88 C4H8,isobutene g 5/90 C4H8.cyclog 6/90 (CH3COOH)2 x10/84 C4H9,n-butyl x10/84 C4H9,i-butyl g1/93 C4H9,s-butyl g1/93 C4H9,t-butyl g 6/90 C4H10, isobutane g 6/90 C4H10, n-butane j 3/61 C4N2 g 5/90 C5H6,1,3cyclo- g 1/93 C5H8,cyclog 7/88 C5 x 4/87 C5H10,1-pentene g 6/90 C5H10,cyclo- x10/84 C5H11,pentyl g 1/93 C5H11,t-pentyl x10/85 C5H12,n-pentane x10/85 C5H12,i-pentane x10/85 CH3C(CH3)2CH3 g 2/93 C6H2 g 1/91 C6H5, phenyl g 6/90 C6H5O, phenoxy g 1/91 C6H6 g 6/90 C6H5OH, phenol g 1/93 C6H10,cyclo- x 4/87 C6H12,1-hexene g 6/90 C6H12,cyclox10/83 C6H13,n-hexyl g 6/96 C6H14,n-hexane g 1/93 C7H7,benzyl g 1/93 C7H8O, cresol-mx x 4/87 C7H14, 1-heptene g 1/93 C7H8 x10/83 C7H15,n-heptyl x10/85 C7H16,2-methylh x10/85 C7H16,n-heptane x 4/89 C8H8, styrene x10/86 C8H10, ethylbenz x 4/87 C8H16, 1-octene x10/83 C8H17,n-octyl x 4/85 C8H18,n-octane x 4/85 C8H18,isooctane x10/83 C9H19,n-nonyl g 8/93 C10H8,naphthale x10/83 C10H21,n-decyl

			H10,biphenyl g 7/97 *CL
•	CLCN	tpis89 CLO	g 7/93 CLO2
tpis89		tpis89 CL2O	g 6/97 *H
g 7/88		g 9/96 HCO	tpis89 HCCN
tpis89		g11/92 HNC	g 2/96 HNCO
g 5/99		tpis89 HNO2	g 5/99 HNO3
tpis89	HOCL	g 5/99 HO2	tpis78 *H2
		naldehy g 8/88 HC	OOH g 8/89 H2O
g 6/99	H2O2	g 8/88 (HCOOH))2 g 7/97 *K
J 3/66	KCN	J 3/66 KCL	J 3/63 KH
•	KNO2	tpis82 KNO3	J12/67 KO
g 9/97	КОН	j12/83 K2	tpis82 K2CO3
J 3/66	K2C2N2	tpis82 K2CL2	tpis82 K2O
tpis82	K2O2	g 9/97 K2O2H2	g 5/97 *N
g_2/96	NCO	g 4/99 *NH	g 5/99 NH2
tpis89	NH3	tpis89 *NO	g 4/99 NOCL
g 4/99	NO2	g 4/99 NO2CL	j12/64 NO3
tpis78	*N2	g12/89 NCN	g 5/99 N2H2
tpis89	NH2NO2	g 4/99 N2H4	g 4/99 N2O
g 4/99	N2O3	tpis89 N2O4	g 4/99 N2O5
tpis89	N3	g 4/99 N3H	g 5/97 *O
tpis78	*OH	tpis89 *O2	tpis89 O3
x 4/83	C(gr)	x 4/83 C(gr)	x 4/83 C(gr)
g 8/89	H2O(s)	g 8/89 H2O(L)	coda89 K(cr)
coda89	9 K(L)	J 3/66 KCN(s)	J 3/66 KCN(L)
J 3/66	KCN(L)	tpis82 KCL(cr)	tpis82 KCL(cr)
tpis82	KCL(L)	tpis82 KH(cr)	tpis82 KH(L)
tpis82	KNO2(II)	tpis82 KNO2(I)	tpis82 KNO2(L)
tpis82	KNO3(a)	tpis82 KNO3(b)) tpis82 KNO3(L)
g 8/97	KOH(a)	g 8/97 KOH(b)	g 8/97 KOH(c)
g 8/97	KOH(L)	tpis82 KO2(b)	tpis82 KO2(a)
*	KO2(L)	tpis82 K2CO3(a)	
-	K2CO3(L)	tpis82 K2O(c)	tpis82 K2O(b)
	K2O(a)	tpis82 K2O(L)	tpis82 K2O2(cr)
tpis82	K2O2(L)	BAR 73 NH4CI	L(a) BAR 73 NH4CL(b)

O/F = 0.000000

	EFFECTI	VE FUEL	EFFEC	TIVE OX	IDANT	MIXTURE
ENTHALPY		h(2)/R	h(1)/	/R	h0/R	
(KG-MOL)(K	.)/KG	-0.4164062	4E+03	0.000000)00E+00	-0.41640624E+03
KG-FORM.W	/T./KG	bi(2)	ł	$\operatorname{pi}(1)$	b0i	· .
*K	0.78141	024E-02	0.00000	000E+00	0.78141	024E-02
*C	0.93725	755E-02	0.00000	000E+00	0.93725	755E-02
*H	0.88063	060E-02	0.00000	000E+00	0.88063	060E-02

B - 10

*0	0.22575701E-01	0.00000000E+00	0.22575701E-01
*N	0.12858144E-02	0.00000000E+00	0.12858144E-02
*CL	0.54671920E-02	0.00000000E+00	0.54671920E-02

POINT ITN T K C H O N CL 1 28 2370.406 -20.999 -19.360 -12.602 -17.140 -15.523 -25.450

THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED

PRESSURES

CASE = WM2

RI	EACTANT	WT FRACTION ENERGY TEMP
		(SEE NOTE) CAL/MOL K
NAME	KBenz	0.1700000 -146018.164 298.150
NAME	KNO3	0.1300000 -117760.000 298.150
NAME	KClO3	0.6700000 -92973.231 298.150
NAME	RedGum	0.0300000 -65965.583 298.150

O/F= 0.00000 %FUEL= 0.000000 R,EQ.RATIO= 1.068989 PHI,EQ.RATIO= 0.000000

THERMODYNAMIC PROPERTIES

P, ATM	1.0003
T, K 23	370.41
RHO, G/CC	2.3668-4
H, CAL/G	-827.49
U, CAL/G	-929.84
G, CAL/G	-4722.57
S, CAL/(G)(K) 1.6432

M, (1/n) 46.025 (dLV/dLP)t -1.01572 (dLV/dLT)p 1.2796 Cp, CAL/(G)(K) 0.5372 GAMMAs 1.1311 SON VEL,M/SEC 695.9

MASS FRACTIONS

*CO	0.04484
*CO2	0.34204
*CL	0.00015
*H	0.00002
HCL	0.00120
*H2	0.00025
H2O	0.06188
*K	0.03312
KCL	0.40330
KH	0.00001
KO	0.00053
KOH	0.08562
K2CL2	0.00151
K20L2	0.000101
K2O2H2	0.00001
*NO	0.00003
~ • •	
*N2	0.01781
*0	0.00022
*OH	0.00189
*02	0.00513

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C CCL CCL2 CCL3 CCL4 *CH CHCL CHCL2 CHCL3 CH2 CH2CL CH2CL2 CH3 CH3CL CH2OH CH3O CH3OH CH4 *CN CNN COCL COCL2 COHCL COOH *C2 C2CL C2CL2 C2CL3 C2CL4 C2CL6 C2H C2HCL C2HCL3 CHCO.ketvl C2H2.vinylidene C2H2, acetylene C2H2CL2 CH2CO,ketene C2H3,vinyl C2H3CL CH3CN CH3CO, acetyl C2H4 C2H4O,ethylen-o CH3CHO,ethanal CH3COOH C2H5 C2H6 CH3N2CH3 C2H5OH CH3OCH3 CCN CNC C2N2 C20 *C3 C3H3,1-propynl C3H3,2-propynl C3H4,allene C3H4,propyne C3H4,cyclo-C3H5,allyl C3H6, propylene C3H6, cyclo- C3H6O C3H7,n-propyl C3H7,i-propyl C3H8 C3H8O,1propanol C3H8O,2propanol C4H2 C3O2 C4 C4H4,1,3-cyclo-C4H6,butadiene C4H6,1-butyne C4H6,2-butyne C4H6,cyclo- C4H8,1-butene C4H8,cis2-buten C4H8,tr2-butene C4H8,isobutene C4H8,cyclo- (CH3COOH)2 C4H9.n-butvl C4H9,i-butyl C4H9,s-butyl C4H9,t-butyl C4H10,isobutane C4H10,n-butane C5H6,1,3cyclo- C5H8,cyclo- C5H10,1-pentene C4N2 C5 C5H10,cyclo- C5H11,pentyl C5H11,t-pentyl C5H12,n-pentane C5H12,i-pentane CH3C(CH3)2CH3C6H2C6H5,phenylC6H5O,phenoxyC6H6C6H5OH,phenolC6H10,cyclo-C6H12,1-hexeneC6H12,cyclo-C6H13,n-hexylC6H14,n-hexaneC7H7,benzylC7H8C7H8O,cresol-mxC7H14,1-hepteneC7H15,n-heptylC7H16,2-methylhC7H16,n-heptaneC8H8,styreneC8H10,ethylbenzC8H16,1-octeneC8H17,n-octylC8H18,n-octaneC8H18,isooctaneC9H19,n-nonylC10H8,naphthaleC10H21,n-decylC12H9,o-biphenyC12H10,biphenylCLCN

HCOHCCNHNCHNCOHNOHNO2HNO3HOCLHO2HCHO,formaldehyHCOOHH2O2(HCOOH)2KCNKNO2KNO3K2K2CO3K2C2N2K2O2*NNCO*NHNH2NH3NOCLNO2NO2CLNO3NCNN2H2NH2NO2N2H4N2ON2O3N2O4N2O5N3N3HO3C(gr)H2O(s)H2O(L)K(cr)K(L)KCN(s)KCN(L)KCL(cr)KCL(L)KH(cr)KH(L)KNO2(II)KNO2(I)KNO3(a)KNO3(b)KNO3(L)KOH(a)KOH(b)KOH(c)KOH(L)KO2(a)KO2(L)K2CO3(a)K2CO3(b)K2CO3(L)K2O(c)K2O(b)K2O(a)K2O(L)K2O2(cr)K2O2(L)NH4CL(a)NH4CL(b)	CLO	CLO2	CL2	CL2O	HCN
HCOOHH2O2(HCOOH)2KCNKNO2KNO3K2K2CO3K2C2N2K2O2*NNCO*NHNH2NH3NOCLNO2NO2CLNO3NCNN2H2NH2NO2N2H4N2ON2O3N2O4N2O5N3N3HO3C(gr)H2O(s)H2O(L)K(cr)K(L)KCN(s)KCN(L)KCL(cr)KCL(L)KH(cr)KH(L)KNO2(II)KNO2(I)KNO3(a)KNO3(b)KNO3(L)KOH(a)KOH(b)KOH(c)KOH(L)KO2(a)KO2(a)KO2(b)K2CO3(a)K2CO3(b)K2CO3(L)K2O(c)K2O(b)K2O(a)	HCO	HCCN	HNC	HNCO	HNO
KNO3K2K2CO3K2C2N2K2O2*NNCO*NHNH2NH3NOCLNO2NO2CLNO3NCNN2H2NH2NO2N2H4N2ON2O3N2O4N2O5N3N3HO3C(gr)H2O(s)H2O(L)K(cr)K(L)KCN(s)KCN(L)KCL(cr)KCL(L)KH(cr)KH(L)KNO2(II)KNO2(I)KNO3(a)KNO3(b)KNO3(L)KOH(a)KOH(b)KOH(c)KOH(L)KO2(a)KO2(L)K2CO3(a)K2CO3(b)K2CO3(L)K2O(c)K2O(b)K2O(a)	HNO2	HNO3	HOCL	HO2	HCHO,formaldehy
	HCOOH	H2O2	(HCOOH	I)2 KCN	KNO2
NOCLNO2NO2CLNO3NCNN2H2NH2NO2N2H4N2ON2O3N2O4N2O5N3N3HO3C(gr)H2O(s)H2O(L)K(cr)K(L)KCN(s)KCN(L)KCL(cr)KCL(L)KH(cr)KH(L)KNO2(II)KNO2(I)KNO3(a)KNO3(b)KNO3(L)KOH(a)KOH(b)KOH(c)KOH(L)KO2(a)KO2(a)KO2(L)K2CO3(a)K2CO3(b)K2CO3(L)K2O(c)K2O(b)K2O(a)	KNO3	K2	K2CO3	K2C2N2	K2O2
N2H2NH2NO2N2H4N2ON2O3N2O4N2O5N3N3HO3C(gr)H2O(s)H2O(L)K(cr)K(L)KCN(s)KCN(L)KCL(cr)KCL(L)KH(cr)KH(L)KNO2(II)KNO2(I)KNO2(L)KNO3(a)KNO3(b)KNO3(L)KOH(a)KOH(b)KOH(c)KOH(L)KO2(b)KO2(a)KO2(L)K2CO3(a)K2CO3(b)K2CO3(L)K2O(c)K2O(b)K2O(a)	*N	NCO	*NH]	NH2	NH3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NOCL	NO2	NO2CL	NO3	NCN
$\begin{array}{cccc} C(gr) & H2O(s) & H2O(L) & K(cr) & K(L) \\ KCN(s) & KCN(L) & KCL(cr) & KCL(L) & KH(cr) \\ KH(L) & KNO2(II) & KNO2(I) & KNO2(L) & KNO3(a) \\ KNO3(b) & KNO3(L) & KOH(a) & KOH(b) & KOH(c) \\ KOH(L) & KO2(b) & KO2(a) & KO2(L) & K2CO3(a) \\ K2CO3(b) & K2CO3(L) & K2O(c) & K2O(b) & K2O(a) \\ \end{array}$	N2H2	NH2NO2	N2H4	N2O	N2O3
KCN(s)KCN(L)KCL(cr)KCL(L)KH(cr)KH(L)KNO2(II)KNO2(I)KNO2(L)KNO3(a)KNO3(b)KNO3(L)KOH(a)KOH(b)KOH(c)KOH(L)KO2(b)KO2(a)KO2(L)K2CO3(a)K2CO3(b)K2CO3(L)K2O(c)K2O(b)K2O(a)	N2O4	N2O5	N3	N3H	O3
KH(L)KNO2(II)KNO2(I)KNO2(L)KNO3(a)KNO3(b)KNO3(L)KOH(a)KOH(b)KOH(c)KOH(L)KO2(b)KO2(a)KO2(L)K2CO3(a)K2CO3(b)K2CO3(L)K2O(c)K2O(b)K2O(a)	C(gr)	H2O(s)	H2O(L)	K(cr)	K(L)
KNO3(b)KNO3(L)KOH(a)KOH(b)KOH(c)KOH(L)KO2(b)KO2(a)KO2(L)K2CO3(a)K2CO3(b)K2CO3(L)K2O(c)K2O(b)K2O(a)	KCN(s)	KCN(L)	KCL(cr)	KCL(L)	KH(cr)
KOH(L)KO2(b)KO2(a)KO2(L)K2CO3(a)K2CO3(b)K2CO3(L)K2O(c)K2O(b)K2O(a)	KH(L)	KNO2(II)	KNO2(I)	KNO2(I	L) KNO3(a)
K2CO3(b) K2CO3(L) K2O(c) K2O(b) K2O(a)	KNO3(b)	KNO3(L)) KOH(a)) KOH(b) KOH(c)
	KOH(L)	KO2(b)	KO2(a)	KO2(L)	K2CO3(a)
$K_{2O}(L) = K_{2O}(cr) = K_{2O}(L) = NH4CL(a) = NH4CL(b)$	K2CO3(b)	K2CO3(1	L) K2O(c) K2O(b) K2O(a)
	K2O(L)	K2O2(cr)	K2O2(L)	NH4CI	L(a) NH4CL(b)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS And OF OXIDANT IN TOTAL OXIDANTS

Combustion Products of WM-1

NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA, NOVEMBER 5, 1999 BY BONNIE MCBRIDE And SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 And NASA RP-1311, PART II, 1996

reac

name KBenz K 1 C 7 H 5 O 2 wt%=17 h,kJ/mol=-610.94 t,k=298.15 name KClO3 K 1 Cl 1 O 3 wt%=80 h,kJ/mol=-389 t,k=298.15 name RedGum C 10 H 18 O 1 wt%=3 h,kJ/mol=-276 t,k=298.15 prob case=WM1 hp equil p(psia)=14.7 outp cal massf end

OPTIONS: TP=F HP=T SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F

RKT=F FROZ=F EQL=T IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

P,BAR = 1.013525

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY EXPLODED FORMULA

 N: KBenz
 0.170000 -0.734788E+05
 298.15
 0.0000

 K
 1.00000
 C
 7.00000
 H
 5.00000
 O
 2.00000

 N: KClO3
 0.800000
 -0.467857E+05
 298.15
 0.0000

 K
 1.00000
 CL
 1.00000
 O
 3.00000

 N: RedGum
 0.030000
 -0.331950E+05
 298.15
 0.0000

C 10.00000 H 18.00000 O 1.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) LAST thermo.txt UPDATE: 11/08/99

g 7/97 *C g 8/99 CCL g 8/99 CCL2 x12/93 CCL3 tpis91 CCL4 tpis79 *CH g 9/99 CHCL x12/93 CHCL2 g 7/99 CHCL3 g 8/99 CH2 g 2/96 CH2CL tpis91 CH2CL2 g 8/99 CH3 tpis91 CH3CL g12/92 CH2OH g10/92 CH3O g 8/88 CH3OH g 8/99 CH4 tpis79 *CO tpis91 COCL tpis91 COCL2 tpis91 COHCL g 9/99 *CO2 tpis91 COOH tpis91 *C2 tpis91 C2CL tpis91 C2CL2 tpis91 C2CL3 tpis91 C2CL4 tpis91 C2CL6 g 1/91 C2H tpis91 C2HCL tpis91 C2HCL3 g 6/89 CHCO, ketyl g12/89 C2H2, vinylidene g 1/91 C2H2, acetylene tpis91 C2H2CL2 g 5/90 CH2CO, ketene g 2/92 C2H3, vinyl tpis91 C2H3CL g 6/96 CH3CO, acetyl g 1/91 C2H4 g 8/88 C2H4O, ethylen-o g 8/88 CH3CHO, ethanal g 8/88 CH3COOH g12/92 C2H5 g 8/88 C2H6 g 8/88 C2H5OH g12/92 CH3OCH3 g12/89 C2O tpis79 *C3 x 4/98 C3H3,1-propynl x 4/98 C3H3,2-propynl g12/92 C3H4,allene g12/92 C3H4,propyne g 5/90 C3H4,cyclo- bur 92 C3H5,allyl g 2/95 C3H6, propylene g 1/93 C3H6, cyclog 6/90 C3H6O g 6/90 C3H7,n-propyl g 9/85 C3H7,i-propyl g 6/90 C3H8 g 9/88 C3H8O,1propanol g 9/88 C3H8O,2propanol g 7/88 C3O2 g 2/93 C4H2 g 5/90 C4H4,1,3-cyclog 7/88 C4 x10/92 C4H6,butadiene x10/93 C4H6,1-butyne x10/93 C4H6,2-butyne g 5/90 C4H6,cyclo- x 4/88 C4H8,1-butene x 4/88 C4H8,cis2-buten x 4/88 C4H8,tr2-butene x 4/88 C4H8,isobutene g 5/90 C4H8,cyclog 6/90 (CH3COOH)2 x10/84 C4H9,n-butyl x10/84 C4H9,i-butyl g 1/93 C4H9,s-butyl g 1/93 C4H9,t-butyl g 6/90 C4H10,isobutane g 6/90 C4H10,n-butane g 7/88 C5 g 5/90 C5H6,1,3cyclog 1/93 C5H8,cyclox 4/87 C5H10,1-pentene g 6/90 C5H10,cyclox10/84 C5H11, pentyl g1/93 C5H11, t-pentyl x10/85 C5H12, n-pentane x10/85 C5H12,i-pentane x10/85 CH3C(CH3)2CH3 g 2/93 C6H2 g 1/91 C6H5, phenyl g 6/90 C6H5O, phenoxy g 1/91 C6H6 g 6/90 C6H5OH, phenol g 1/93 C6H10, cyclo- x 4/87 C6H12, 1-hexene g 6/90 C6H12,cyclo- x10/83 C6H13,n-hexyl g 6/96 C6H14,n-hexane g 1/93 C7H7, benzyl g 1/93 C7H8 g 1/93 C7H8O, cresol-mx x 4/87 C7H14,1-heptene x10/83 C7H15,n-heptyl x10/85 C7H16,2-methylh x10/85 C7H16,n-heptane x 4/89 C8H8,styrene x10/86 C8H10,ethylbenz x 4/87 C8H16,1-octene x10/83 C8H17,n-octyl x 4/85 C8H18,n-octane x 4/85 C8H18, isooctane x10/83 C9H19, n-nonyl g 8/93 C10H8, naphthale x10/83 C10H21,n-decyl g12/84 C12H9,o-bipheny g12/84 C12H10,biphenyl tpis89 CLO g 7/97 *CL g 7/93 CLO2 tpis89 CL2O g 6/97 *H tpis89 CL2 g 9/96 HCO tpis89 HCL tpis89 HOCL g 8/88 HCHO, formaldehy g 5/99 HO2 tpis78 *H2 g 8/88 HCOOH g 8/89 H2O g 6/99 H2O2

g 8/88 (HCOOH)2	2. g 7/97 *K	J 3/66 KCL
J 3/63 KH	J12/67 KO	g 9/97 KOH
j12/83 K2	tpis82 K2CO3	tpis82 K2CL2
tpis82 K2O	tpis82 K2O2	g 9/97 K2O2H2
g 5/97 *O	tpis78 *OH	tpis89 *O2
tpis89 O3	x 4/83 C(gr)	x 4/83 C(gr)
x 4/83 C(gr)	g 8/89 H2O(s)	g 8/89 H2O(L)
coda89 K(cr)	coda89 K(L)	tpis82 KCL(cr)
tpis82 KCL(cr)	tpis82 KCL(L)	tpis82 KH(cr)
tpis82 KH(L)	g 8/97 KOH(a)	g 8/97 KOH(b)
g 8/97 KOH(c)	g 8/97 KOH(L)	tpis82 KO2(b)
tpis82 KO2(a)	tpis82 KO2(L)	tpis82 K2CO3(a)
tpis82 K2CO3(b)	tpis82 K2CO3	(L) tpis82 K2O(c)
tpis82 K2O(b)	tpis82 K2O(a)	tpis82 K2O(L)
tpis82 K2O2(cr)	tpis82 K2O2(L)	· ·

O/F = 0.000000

EF: ENTHALPY	FECTIVE FUEL h(2)/R	EFFECTIVE OX h(1)/R	XIDANT MIXTURE h0/R
(KG-MOL)(K)/K	KG -0.3898406	0E+03 0.00000	0000E+00 -0.38984060E+03
KG-FORM.WT.	/KG bi(2)	bi(1)	b0i
*K 0	.75890864E-02	0.0000000E+00	0.75890864E-02
*C 0	.93725755E-02	0.0000000E+00	0.93725755E-02
*H 0	.88063060E-02	0.0000000E+00	0.88063060E-02
*O 0	.21900654E-01	0.0000000E+00	0.21900654E-01
*CL (0.65279904E-02	0.0000000E+00	0.65279904E-02
POINT ITN T CL	г к с	H O	
1 27 2524.30 -24.01		9.220 -12.501	-16.827

THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED

PRESSURES

CASE = WM1

NAME

REACTANTWT FRACTIONENERGYTEMP(SEE NOTE)CAL/MOLKKBenz0.1700000-146018.164298.150

B - 16
NAME	KClO3	0.8000000	-92973.231	298.150
NAME	RedGum	0.0300000	-65965.583	298.150

O/F= 0.00000 %FUEL= 0.000000 R,EQ.RATIO= 1.070663 PHI,EQ.RATIO= 0.000000

THERMODYNAMIC PROPERTIES

P, ATM	1.0003
Т, К	2524.31
RHO, G/CC	2.2268-4
H, CAL/G	-774.70
U, CAL/G	-883.48
G, CAL/G	-4923.24
S, CAL/(G)((K) 1.6434

M, (1/n)	46.113
(dLV/dLP)t	-1.02052
(dLV/dLT)p	1.4407
Cp, CAL/(G)((K) 0.7146
GAMMAs	1.1169
SON VEL,M/	SEC 713.0

MASS FRACTIONS

*CO	0.06272
*CO2	0.31393
*CL	0.00107
*H	0.00006
HCL	0.00521
*H2	0.00037
H2O	0.06593
*K	0.02106
KCL	0.47253
KH	0.00001
KO	0.00049
KOH	0.03851
K2CL2	0.00122
*0	0.00074
*OH	0.00400
*02	0.01213

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*Ċ CCL CCL2 CCL3 CCL4 CHCL *CH CHCL2 CHCL3 CH2 CH2CL CH2CL2 CH3 CH3CL CH2OH CH3O CH4 CH3OH COCL COCL2 COHCL COOH *C2 C2CL C2CL2 C2CL3 C2CL4 C2CL6 C2H C2HCL C2HCL3 CHCO, ketyl C2H2, vinylidene C2H2, acetylene C2H2CL2 CH2CO, ketene C2H3, vinyl C2H3CL CH3CO.acetyl C2H4 C2H4O, ethylen-o CH3CHO, ethanal CH3COOH C2H5 C2H6 C2H5OH CH3OCH3 C20 *C3 C3H3,1-propynl C3H3,2-propynl C3H4,allene C3H4, propyne C3H4, cyclo-C3H5.allvl C3H6, propylene C3H6, cyclo-C3H6O C3H7,n-propyl C3H7,i-propyl C3H8 C3H8O, 1 propanol C3H8O, 2 propanol C3O2 C4 C4H2 C4H4,1,3-cyclo-C4H6,butadiene C4H6,1-butyne C4H6,2-butyne C4H6.cvclo-C4H8,1-butene C4H8,cis2-buten C4H8,tr2-butene C4H8,isobutene C4H8,cyclo-(CH3COOH)2 C4H9,n-butyl C4H9,i-butyl C4H9,s-butyl C4H9.t-butyl C4H10, isobutane C4H10, n-butane C5 C5H6.1.3cvclo-C5H8,cyclo-C5H10,1-pentene C5H10,cyclo- C5H11,pentyl C5H11,t-pentyl C5H12,n-pentane C5H12,i-pentane CH3C(CH3)2CH3 C6H2 C6H5, phenyl C6H5O, phenoxy C6H6 C6H5OH, phenol C6H10, cyclo-C6H12,1-hexene C6H12,cyclo- C6H13,n-hexyl C6H14,n-hexane C7H7,benzyl C7H8 C7H8O,cresol-mx C7H14,1-heptene C7H15,n-heptyl C7H16,2-methylh C7H16,n-heptane C8H8, styrene C8H10, ethylbenz C8H16, 1-octene C8H17, n-octyl C8H18, n-octane C8H18, isooctane C9H19, n-nonyl C10H8, naphthale C10H21, n-decyl C12H9, o-bipheny C12H10, biphenyl CLO CLO2 CL2 CL2O HCHO, formaldehy HCOOH HCO HOCL HO₂ H2O2 (HCOOH)2 K2 K2CO3 K20 K2O2 K2O2H2 O3 C(gr) H2O(s)KCL(cr) H2O(L)K(cr) K(L)KCL(L) KH(cr) KH(L) KOH(a) KOH(b) KOH(c) KOH(L) KO2(b)KO2(a) KO2(L)K2CO3(a) K2CO3(b) K2CO3(L) K2O(c) K2O(a) K2O(b)K2O(L) K2O2(cr) K2O2(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS And OF OXIDANT IN TOTAL OXIDANTS

B - 18

Combustion Products of RNX-6

NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA, NOVEMBER 5, 1999 BY BONNIE MCBRIDE And SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 And NASA RP-1311, PART II, 1996

reac

name KNO3 K 1 N 1 O 3 wt%=70.0 t,k=298.15 rho,g/cc=2.109 h,cal/mol=-11 7760.0

name Fe2O3 Fe 2 O 3 wt%=4.0 t,k=298.15 rho,g/cc=5.24 h,kJ/mol=-8 25.50

name epoxy C 21 H 24 O 1 wt%=26.0 t,k=298.15 rho,g/cc=1.1 h,kJ/mol=-1 662.39

prob case=rnx-6 hp equil p(psia)=14.7

outp cal massf

end

OPTIONS: TP=F HP=T SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F

RKT=F FROZ=F EQL=T IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

P,BAR = 1.013525

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY EXPLODED FORMULA N: KNO3 0.700000 -0.592588E+05 298.15 2.1090 K 1.00000 N 1.00000 O 3.00000 N: Fe2O3 0.040000 -0.992843E+05 298.15 5.2400 FE 2.00000 O 3.00000 N: epoxy 0.260000 -0.199938E+06 298.15 1.1000 C 21.00000 H 24.00000 O 1.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM

(CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) LAST thermo.txt UPDATE: 11/08/99

g 7/97 *C tpis79 *CH g 8/99 CH2 g 8/99 CH3 g12/92 CH2OH g10/92 CH3O g 8/99 CH4 g 8/88 CH3OH g 8/99 *CN g12/89 CNN tpis79 *CO g 9/99 *CO2 tpis91 COOH tpis91 *C2 g 1/91 C2H g 6/89 CHCO,ketyl g12/89 C2H2, vinylidene g 1/91 C2H2, acetylene g 5/90 CH2CO,ketene g 2/92 C2H3,vinyl g12/92 CH3CN g 6/96 CH3CO, acetyl g 1/91 C2H4 g 8/88 C2H4O,ethylen-o g 8/88 CH3CHO, ethanal g 8/88 CH3COOH g12/92 C2H5 g 8/88 C2H6 g 8/88 CH3N2CH3 g 8/88 C2H5OH g12/92 CH3OCH3 g12/92 CCN tpis91 CNC tpis79 C2N2 g12/89 C2O tpis79 *C3 x 4/98 C3H3,1-propynl x 4/98 C3H3,2-propynl g12/92 C3H4,allene g12/92 C3H4,propyne g 5/90 C3H4,cyclo- bur 92 C3H5,allyl g 2/95 C3H6, propylene g 1/93 C3H6, cyclog 6/90 C3H6O g 6/90 C3H7,n-propyl g 9/85 C3H7,i-propyl g 6/90 C3H8 g 9/88 C3H8O,1propanol g 9/88 C3H8O,2propanol g 7/88 C3O2 g 2/93 C4H2 g 7/88 C4 g 5/90 C4H4,1,3-cyclox10/92 C4H6,butadiene x10/93 C4H6,1-butyne x10/93 C4H6,2-butyne g 5/90 C4H6,cyclo- x 4/88 C4H8,1-butene x 4/88 C4H8,cis2-buten x 4/88 C4H8,tr2-butene x 4/88 C4H8,isobutene g 5/90 C4H8,cyclog 6/90 (CH3COOH)2 x10/84 C4H9,n-butyl x10/84 C4H9,i-butyl g 1/93 C4H9,s-butyl g 1/93 C4H9,t-butyl g 6/90 C4H10,isobutane g 7/88 C5 g 6/90 C4H10,n-butane j 3/61 C4N2 g 5/90 C5H6,1,3cyclo- g 1/93 C5H8,cyclo- x 4/87 C5H10,1-pentene g 6/90 C5H10,cyclo- x10/84 C5H11,pentyl g 1/93 C5H11,t-pentyl x10/85 C5H12,n-pentane x10/85 C5H12,i-pentane x10/85 CH3C(CH3)2CH3 g 2/93 C6H2 g 1/91 C6H5, phenyl g 6/90 C6H5O, phenoxy g 1/91 C6H6 g 6/90 C6H5OH, phenol g 1/93 C6H10, cyclox 4/87 C6H12,1-hexene g 6/90 C6H12,cyclo- x10/83 C6H13,n-hexyl g 6/96 C6H14,n-hexane g 1/93 C7H7,benzyl g 1/93 C7H8 g 1/93 C7H8O, cresol-mx x 4/87 C7H14,1-heptene x10/83 C7H15, n-heptyl x10/85 C7H16,2-methylh x10/85 C7H16,n-heptane x 4/89 C8H8,styrene x10/86 C8H10,ethylbenz x 4/87 C8H16,1-octene x10/83 C8H17,n-octyl x 4/85 C8H18,n-octane x 4/85 C8H18,isooctane x10/83 C9H19,n-nonyl g 8/93 C10H8, naphthale x10/83 C10H21, n-decyl g12/84 C12H9, o-bipheny g12/84 C12H10, biphenyl g 5/97 *Fe J 3/78 FeC505 J 9/66 FeO J12/66 Fe(OH)2 g 6/97 *H g 7/88 HCN g 9/96 HCO tpis89 HCCN g11/92 HNC g 2/96 HNCO g 5/99 HNO tpis89 HNO2 g 5/99 HNO3 g 5/99 HO2 tpis78 *H2 g 8/88 HCHO, formaldehy g 8/88 HCOOH g 8/89 H2O g 6/99 H2O2 g 8/88 (HCOOH)2

g 7/97 *K	J 3/66 KCN	J 3/63 KH
tpis82 KNO2	tpis82 KNO3	J12/67 KO
g 9/97 KOH	j12/83 K2	tpis82 K2CO3
J 3/66 K2C2N2	tpis82 K2O	tpis82 K2O2
g 9/97 K2O2H2	g 5/97 *N	g 2/96 NCO
g 4/99 *NH	g 5/99 NH2	tpis89 NH3
tpis89 *NO	g 4/99 NO2	j12/64 NO3
tpis78 *N2	g12/89 NCN	g 5/99 N2H2
tpis89 NH2NO2	g 4/99 N2H4	g 4/99 N2O
g 4/99 N2O3	tpis89 N2O4	g 4/99 N2O5
tpis89 N3	g 4/99 N3H	g 5/97 *O
tpis78 *OH	tpis89 *O2	tpis89 O3
x 4/83 C(gr)	x 4/83 C(gr)	x 4/83 C(gr)
j 3/78 Fe(a)	j 3/78 Fe(a)	j 3/78 Fe(a)
j 3/78 Fe(a)	j 3/78 Fe(c)	j 3/78 Fe(d)
j 3/78 Fe(L)	J 3/78 FeC5O5(L)	J 3/78 FeC5O5(L)
J 6/65 FeO(s)	J 6/65 FeO(s)	J 6/65 FeO(L)
J 6/66 Fe(OH)2(s)	J 6/66 Fe(OH)2	2(s) J 6/66 Fe(OH)3(s)
J 6/66 Fe(OH)3(s)	J 6/65 Fe2O3(s) J 6/65 Fe2O3(s)
J 6/65 Fe3O4(s)		g 8/89 H2O(s)
g 8/89 H2O(L)	coda89 K(cr)	
J 3/66 KCN(s)	J 3/66 KCN(L)	• •
tpis82 KH(cr)	tpis82 KH(L)	tpis82 KNO2(II)
tpis82 KNO2(I)	tpis82 KNO2(L	
tpis82 KNO3(b)	tpis82 KNO3(L	
g 8/97 KOH(b)	g 8/97 KOH(c)	
tpis82 KO2(b)	tpis82 KO2(a)	tpis82 KO2(L)
tpis82 K2CO3(a)	tpis82 K2CO3(· · · · · · · · · · · · · · · · · · ·
tpis82 K2O(c)	tpis82 K2O(b)	tpis82 K2O(a)
tpis82 K2O(L)	tpis82 K2O2(cr)	tpis82 K2O2(L)

O/F = 0.000000

ENTHALPY	EFFECI	TIVE FUEL h(2)/R	EFFE h(1		XIDANT h0/R	MIXTURE
(KG-MOL)(K	C)/KG	-0.612929			00000E+00	-0.61292957E+03
KG-FORM.W	/T./KG	bi(2)		bi(1)	b0i	
*К	0.6923	6159E-02	0.0000	0000E+0	0 0.6923	6159E-02
*N	0.6923	6159E-02	0.0000	0000E+0	0 0.6923	6159E-02
*O	0.2241	1460E-01	0.0000	0000E+0	0 0.2241	1460E-01
*Fe	0.5009	7628E-03	0.0000	0000E+0	0 0.5009	7628E-03
*C	0.1867	2114E-01	0.0000	0000E+0	0 0.18672	2114E-01
*H	0.2133	9559E-01	0.0000	0000E+0	0 0.2133	9559E-01
POINT ITN	Т	K I	N () F	Έ	

B - 21

		C	H				
1	42			-12.584	-62.106	36.385	
			-12.490				
		c(gr)					
1	10	661.435	-22.452	-12.792	-49.511	18.359	•
		-1.040					
1	0	661.439	-22.452	-12.792	-49.511	18.359	
		-1.040	-9.736				
AD	D F	e(a)					
1	5	687.029	-21.859	-12.842	-48.171	-4.179	
		-1.075	-9.635				
AD	D K	2CO3(a)					
1	10	948.468	-26.553	-13.267	-39.399	-4.943	
		-1.449	-9.186				
PH	ASE	CHANGE,	REPLAC	E K2CO3((a) WIT	H K2CO3(b)
1	2	951.100	-26.429	-13.273	-39.345	-4.950	
		-1.453	-9.188				
1	0	951.102	-26.429	-13.273	-39.345	-4.951	
		-1.453	-9.188			-	
AD	D F	eO(s)					
1	3	976.309	-25.333	-13.301	-38.924	-5.024	
		-1.489	-9.179				
RE	MON	/E Fe(a)					
1	3	959.045	-26.083	-13.282	-39.206	-5.263	
		-1.464	-9.184				

THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED

PRESSURES

CASE = rnx-6

REACTANT		WT FRACTION ENERGY TEMP
		(SEE NOTE) CAL/MOL K
NAME	KNO3	0.7000000 -117760.000 298.150
NAME	Fe2O3	0.0400000 -197299.235 298.150
NAME	epoxy	0.2600000 -397320.746 298.150

REACTANT DENSITY= 1.736388 G/CC

O/F= 0.00000 %FUEL= 0.000000 R,EQ.RATIO= 2.330383 PHI,EQ.RATIO= 0.000000

THERMODYNAMIC PROPERTIES

P, ATM	1.0003
Т, К	959.04
RHO, G/CC	5.9375-4
H, CAL/G	-1218.02
U, CAL/G	-1258.82
G, CAL/G	-2624.65
S, CAL/(G)(K) 1.4667

M, (1/n) 46.714 MW, MOL WT 30.885 (dLV/dLP)t -1.08676 (dLV/dLT)p 2.5220 Cp, CAL/(G)(K) 1.5634 GAMMAs 1.0945 SON VEL,M/SEC 432.2

MASS FRACTIONS

CH4	0.00742
*CO	0.15871
*CO2	0.09125
*H2	0.01619
H2O	0.03085
NH3	0.00003
*N2	0.09696
C(gr)	0.08418
FeO(s)	0.03599
K2CO3(b)	0.47844

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*C *CH CH2 CH3 CH2OH CH3O CH3OH *CN CNN COOH *C2 C2H CHCO,ketyl C2H2, vinylidene C2H2, acetylene CH2CO,ketene C2H3,vinyl CH3CN CH3CO,acetyl C2H4 C2H4O, ethylen-o CH3CHO, ethanal CH3COOH C2H5 C2H6 CH3N2CH3 C2H5OH CH3OCH3 CCN CNC C2N2 C20 *C3 C3H3,1-propynl C3H3,2-propynl C3H4,allene C3H4,propyne C3H4,cyclo- C3H5,allyl C3H6, propylene C3H6,cyclo- C3H6O C3H7,n-propyl C3H7,i-propyl C3H8 C3H8O,1propanol C3H8O,2propanol C3O2 C4 C4H2 C4H4,1,3-cyclo-C4H6,butadiene C4H6,1-butyne C4H6,2-butyne C4H6,cyclo-

C4H8,1-butene C4H8,cis2-buten C4H8,tr2-butene C4H8,isobutene C4H8,cyclo-(CH3COOH)2 C4H9,n-butyl C4H9,i-butyl C4H9,s-butyl C4H9,t-butyl C4H10, isobutane C4H10, n-butane C4N2 C5 C5H6,1,3cyclo-C5H10,1-pentene C5H10,cyclo- C5H11,pentyl C5H11,t-pentyl C5H8.cvclo-C5H12,n-pentane C5H12,i-pentane CH3C(CH3)2CH3 C6H2 C6H5, phenyl C6H5O, phenoxy C6H6 C6H5OH, phenol C6H10, cyclo-C6H12.1-hexene C6H12,cyclo- C6H13,n-hexyl C6H14,n-hexane C7H7,benzyl C7H8 C7H8O, cresol-mx C7H14, 1-heptene C7H15, n-heptyl C7H16, 2-methylh C7H16, n-heptane C8H8, styrene C8H10, ethylbenz C8H16, 1-octene C8H17, n-octyl C8H18, n-octane C8H18, isooctane C9H19, n-nonyl C10H8, naphthale C10H21, n-decyl C12H9, o-bipheny C12H10, biphenyl *Fe FeC5O5 FeO Fe(OH)2 *H HCN HCO HCCN HNC **HNCO** HNO HNO2 HNO3 HO2 HCHO, formaldehy HCOOH H2O2 (HCOOH)2 *K KH KCN KNO3 KNO2 KO KOH K2 K2CO3 K2C2N2 K20 K2O2 K2O2H2 *N NCO *NH NH2 *NO NO2 NO3 NCN N2H2 NH2NO2 N2H4 N20 N2O3 N2O4 N2O5 N3 N3H *0 *OH *02 O3 Fe(c) Fe(a) Fe(d) Fe(L) FeC5O5(L) FeO(L) Fe(OH)2(s)Fe(OH)3(s) Fe2O3(s) Fe3O4(s) H2O(s)H2O(L)K(cr) K(L)KCN(s) KCN(L) KH(cr) KH(L) KNO2(II) KNO2(I) KNO2(L) KNO3(a) KNO3(b) KNO3(L) KOH(a) KOH(b) KOH(c) KOH(L) KO2(b) KO2(a) KO2(L)K2CO3(a) K2CO3(L) K2O(c)K2O(b)K2O(a) K2O(L)K2O2(cr)K2O2(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS And OF OXIDANT IN TOTAL OXIDANTS

Combustion Products RNX-17

NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA, NOVEMBER 5, 1999 BY BONNIE MCBRIDE And SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 And NASA RP-1311, PART II, 1996

reac

name KNO3 K 1 N 1 O 3 wt%=70.0 t,k=298.15 rho,g/cc=2.109 h,cal/mol=-11 7760.0

name B B 1 wt%=8.0 t,k=298.15 rho,g/cc=2.355 h,cal/mol=0

name epoxy C 21 H 24 O 1 wt%=22.0 t,k=298.15 rho,g/cc=1.1 h,kJ/mol=-1 662.39

insert B2O3(L)

prob case=rnx-4 hp equil p(psia)=14.7

outp cal massf

end

```
OPTIONS: TP=F HP=T SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F
```

RKT=F FROZ=F EQL=T IONS=F SIUNIT=F DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

P,BAR = 1.013525

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY EXPLODED FORMULA N: KNO3 0.700000 -0.592588E+05 298.15 2.1090 K 1.00000 N 1.00000 O 3.00000 N: B 0.080000 0.000000E+00 298.15 2.3550 B 1.00000 N: epoxy 0.220000 -0.199938E+06 298.15 1.1000 C 21.00000 H 24.00000 O 1.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM

(CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) LAST thermo.txt UPDATE: 11/08/99

g 9/98 *B g 9/98 BC g 9/98 BC2 g 9/98 *BH tpis96 BH2 tpis96 BH3 tpis96 BH3NH3 g 9/98 BN g 9/98_*BO tpis96 BOH g10/97 BO2 g 9/98 B(OH)2 g 9/98 B2 g 9/98 B2C tpis96 B2H6 g 9/98 B2O tpis96 B2O2 tpis96 B2O3 g 9/98 B2(OH)4 tpis96 B3N3H6 g 7/97 *C tpis79 *CH g 8/99 CH2 g 8/99 CH3 g12/92 CH2OH g10/92 CH3O g 8/99 CH4 g 8/88 CH3OH g 8/99 *CN g12/89 CNN tpis79 *CO g 9/99 *CO2 tpis91 COOH tpis91 *C2 g 1/91 C2H g 6/89 CHCO, ketyl g12/89 C2H2, vinylidene g 1/91 C2H2, acetylene g 5/90 CH2CO, ketene g 2/92 C2H3, vinvl g12/92 CH3CN g 6/96 CH3CO, acetyl g 1/91 C2H4 g 8/88 C2H4O,ethylen-o g 8/88 CH3CHO,ethanal g 8/88 CH3COOH g12/92 C2H5 g 8/88 C2H6 g 8/88 C2H5OH g12/92 CH3OCH3 g 8/88 CH3N2CH3 g12/92 CCN tpis91 CNC tpis79 C2N2 g12/89 C2O tpis79 *C3 x 4/98 C3H3,1-propynl x 4/98 C3H3,2-propynl g12/92 C3H4,allene g12/92 C3H4, propyne g 5/90 C3H4,cyclobur 92 C3H5,allyl g 2/95 C3H6, propylene g 1/93 C3H6,cyclog 6/90 C3H6O g 6/90 C3H7,n-propyl g 9/85 C3H7,i-propyl g 6/90 C3H8 g 9/88 C3H8O,1propanol g 9/88 C3H8O,2propanol g 7/88 C3O2 g 7/88 C4 g 5/90 C4H4,1,3-cyclo- x10/92 C4H6,butadiene g 2/93 C4H2 x10/93 C4H6,1-butyne x10/93 C4H6,2-butyne g 5/90 C4H6,cyclox 4/88 C4H8,1-butene x 4/88 C4H8,cis2-buten x 4/88 C4H8,tr2-butene x 4/88 C4H8, isobutene g 5/90 C4H8, cyclog 6/90 (CH3COOH)2 x10/84 C4H9,n-butyl x10/84 C4H9,i-butyl g 1/93 C4H9,s-butyl g 1/93 C4H9,t-butyl g 6/90 C4H10,isobutane g 6/90 C4H10,n-butane j 3/61 C4N2 g 7/88 C5 g 5/90 C5H6,1,3cyclog 1/93 C5H8,cyclox 4/87 C5H10,1-pentene g 6/90 C5H10,cyclox10/84 C5H11,pentyl g 1/93 C5H11,t-pentyl x10/85 C5H12,n-pentane x10/85 C5H12,i-pentane x10/85 CH3C(CH3)2CH3 g 2/93 C6H2 g 1/91 C6H5, phenyl g 6/90 C6H5O, phenoxy g 1/91 C6H6 g 6/90 C6H5OH, phenol g 1/93 C6H10, cyclox 4/87 C6H12,1-hexene g 6/90 C6H12,cyclox10/83 C6H13,n-hexyl g 6/96 C6H14,n-hexane g 1/93 C7H7, benzyl g 1/93 C7H8 g 1/93 C7H8O, cresol-mx x 4/87 C7H14,1-heptene x10/83 C7H15,n-heptyl x10/85 C7H16,2-methylh x10/85 C7H16,n-heptane x 4/89 C8H8,styrene x10/86 C8H10,ethylbenz x 4/87 C8H16,1-octene x10/83 C8H17,n-octyl x 4/85 C8H18,n-octane x 4/85 C8H18, isooctane x10/83 C9H19, n-nonyl g 8/93 C10H8, naphthale x10/83 C10H21,n-decyl g12/84 C12H9,o-bipheny g12/84 C12H10,biphenyl

g 6/97 *H	tpis96 HBO	tpis96 HBO2
g 7/88 HCN	g 9/96 HCO	tpis89 HCCN
g11/92 HNC	g 2/96 HNCO	g 5/99 HNO
tpis89 HNO2	g 5/99 HNO3	g 5/99 HO2
tpis78 *H2	g 9/98 HBOH	g 8/88 HCHO,formaldehy
g 8/88 HCOOH	g 8/89 H2O	g 6/99 H2O2
tpis96 H2BOH	tpis96 HB(OH)2	2 tpis96 H3BO3
tpis96 H3B3O3	tpis96 H3B3O6	g 8/88 (HCOOH)2
g 7/97 *K	tpis82 KBO2	J 3/66 KCN
J 3/63 KH	tpis82 KNO2	tpis82 KNO3
J12/67 KO	g 9/97 KOH	j12/83 K2
tpis82 K2CO3	J 3/66 K2C2N2	tpis82 K2O
tpis82 K2O2	g 9/97 K2O2H2	g ⁻ 5/97 *N
g 2/96 NCO	g 4/99 *NH	g 5/99 NH2
tpis89 NH3	tpis89 *NO	g 4/99 NO2
j12/64 NO3	tpis78 *N2	g12/89 NCN
g 5/99 N2H2	tpis89 NH2NO2	g 4/99 N2H4
g 4/99 N2O	g 4/99 N2O3	tpis89 N2O4
g 4/99 N2O5	tpis89 N3	g 4/99 N3H
g 5/97 *O	tpis78 *OH	tpis89 *O2
tpis89 O3	j 6/83 B(b) j	6/83 B(b)
j 6/83 B(L)	tpis96 BN(cr)	tpis96 BN(cr)
tpis96 BN(L)	tpis96 B2O3(cr)	tpis96 B2O3(L)
J 3/65 B3O3H3(c	r) J 3/65 B3O3H3	B(cr) tpis96 B4C(cr)
tpis96 B4C(cr)	tpis96 B4C(cr)	
x 4/83 C(gr)	x 4/83 C(gr)	tpis96 HBO2(cr)
tpis96 HBO2(L)		
tpis96 H3BO3(cr		, , , , , , , , , , , , , , , , , , ,
coda89 K(L)		tpis82 KBO2(cr)
tpis82 KBO2(L)		J 3/66 KCN(L)
J 3/66 KCN(L)	tpis82 KH(cr)	tpis82 KH(L)
tpis82 KNO2(II)	tpis82 KNO2(I)	tpis82 KNO2(L)
tpis82 KNO3(a)	tpis82 KNO3(b)	
g 8/97 KOH(a)	g 8/97 KOH(b)	g 8/97 KOH(c)
g 8/97 KOH(L)	tpis82 KO2(b)	tpis82 KO2(a)
tpis82 KO2(L)	tpis82 K2CO3(a)	
tpis82 K2CO3(L)		tpis82 K2O(b)
tpis82 K2O(a)	tpis82 K2O(L)	tpis82 K2O2(cr)
tpis82 K2O2(L)		•
B2O3(L) INS	ERTED	

O/F = 0.000000

EFFEC	TIVE FUEL	EFFECTIV	E OXIDANT	MIXTURE
ENTHALPY	h(2)/R	h(1)/R	h0/R	
(KG-MOL)(K)/KG	-0.5607100:	5E+03 0.0	0000000E+00	-0.56071005E+03

KG-FORM.WT./F	KG bi(2	2)	bi(1)	b0i
*K 0.6	9236159E-02	0.000	00000E+00	0.69236159E-02
*N 0.6	9236159E-02	0.000	00000E+00	0.69236159E-02
*O 0.2	1523204E-01	0.000	00000E+00	0.21523204E-01
*B 0.7	3998705E-02	0.000	00000E+00	0.73998705E-02
*C 0.1	5799481E-01	0.000	00000E+00	0.15799481E-01
*H 0.1	8056550E-01	0.000	00000E+00	0.18056550E-01
POINT ITN T	K	Ν	O B	
C	H		V D	
	-17.788	-13.982	-41.567	-11.374
	-9.780			
ADD C(gr)				
1 6 1138.172	-19.260 -	-13.607	-37.263	-18.646
-1.716	-9.457			
ADD KBO2(cr)				
1 7 1463.950	-20.064 -	-13.945	-34.870	-8.859
-2.145	-9.762			
PHASE CHANGE	, REPLACE	KBO2(cr) WITH	I KBO2(L)
1 3 1502.684	-20.223 -	-13.973	-34.644	-8.020
-2.194	-9.788			
ADD BN(cr)				
1 5 1394.090	-21.968 -	-14.711	-34.539	-11.659
-2.056	-9.721			
REMOVE B2O3(L)				
1 6 1478.046	-18.176 -	-14.044	-34.568	-11.318
-2.163	-9.772			

THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED

PRESSURES

CASE = rnx-4

RE	EACTANT	WT FRACTION ENERGY TEMP
		(SEE NOTE) CAL/MOL K
NAME	KNO3	0.7000000 -117760.000 298.150
NAME	B	0.0800000 0.000 298.150
NAME	epoxy	0.2200000 -397320.746 298.150

REACTANT DENSITY= 1.767156 G/CC

B - 28

O/F= 0.00000 %FUEL= 0.000000 R,EQ.RATIO= 2.564156 PHI,EQ.RATIO= 0.000000

THERMODYNAMIC PROPERTIES

P, ATM	1.0003
Т, К	1478.05
RHO, G/CC	3.3731-4
H, CAL/G	-1114.25
U, CAL/G	-1186.07
G, CAL/G	-3705.18
S, CAL/(G)((K) 1.7529

M, (1/n) 40.900 MW, MOL WT 28.180 (dLV/dLP)t -1.29681 (dLV/dLT)p 6.6343 Cp, CAL/(G)(K) 5.6197 GAMMAs 1.0914 SON VEL,M/SEC 572.7

MASS FRACTIONS

CH4	0.00016
*CO	0.24405
*CO2	0.00011
HBO	0.00003
HBO2	0.00004
HCN	0.00012
*H2	0.01814
H2O	0.00012
*К	0.01522
KBO2	0.26997
KCN	0.00878
KH	0.00002
KOH	0.00007
K2	0.00001
K2C2N2	0.00002
*N2	0.08100
BN(cr)	0.02483
C(gr)	0.08329
KBO2(L)	0.25402

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*B BC BC2 *BH BH2 BH3 BH3NH3 BN *BO BOH BO2 B(OH)2 B2 B₂C B2H6 B20 B2O2 B2O3 B2(OH)4 **B3N3H6** *C *CH CH2 CH3 CH2OH CH3O CH3OH *CN CNN COOH *C2 C2H CHCO.ketvl C2H2, vinylidene C2H2, acetylene CH2CO, ketene C2H3, vinyl CH3CN CH3CO,acetyl C2H4 C2H4O, ethylen-o CH3CHO, ethanal CH3COOH C2H5 C2H6 CH3N2CH3 C2H5OH CH3OCH3 CCN CNC C2N2 C20 *C3 C3H3,1-propynl C3H3,2-propynl C3H4,allene C3H4, propyne C3H4,cyclo-C3H5,allyl C3H6.propylene C3H6.cvclo-C3H6O C3H7,n-propyl C3H7,i-propyl C3H8 C3H8O,1propanol C3H8O,2propanol C3O2 C4 C4H2 C4H4,1,3-cyclo-C4H6,butadiene C4H6,1-butyne C4H6,2-butyne C4H6,cyclo-C4H8,1-butene C4H8,cis2-buten C4H8,tr2-butene C4H8.isobutene C4H8,cvclo-(CH3COOH)2 C4H9,n-butyl C4H9,i-butyl C4H9,s-butyl C4H9,t-butyl C4H10, isobutane C4H10, n-butane C4N2 C5 C5H6.1.3cyclo-C5H8,cyclo-C5H10.1-pentene C5H10,cyclo- C5H11,pentyl C5H11,t-pentyl C5H12,n-pentane C5H12,i-pentane CH3C(CH3)2CH3 C6H2 C6H5, phenyl C6H5O, phenoxy C6H6 C6H5OH, phenol C6H10, cyclo-C6H12,1-hexene C6H12,cyclo- C6H13,n-hexyl C6H14,n-hexane C7H7,benzyl C7H8 C7H8O, cresol-mx C7H14, 1-heptene C7H15, n-heptyl C7H16, 2-methylh C7H16, n-heptane C8H8, styrene C8H10, ethylbenz C8H16, 1-octene C8H17, n-octyl C8H18, n-octane C8H18, isooctane C9H19, n-nonyl C10H8, naphthale C10H21, n-decyl C12H9, o-bipheny C12H10 biphenvl *H HCCN HCO HNC **HNCO** HNO HNO2 HNO3 HO₂ HBOH HCHO, formaldehy HCOOH H2O2 H2BOH HB(OH)2 H3BO3 H3B3O3 H3B3O6 (HCOOH)2 KNO2 KNO3 KO K2CO3 K20 K2O2 K2O2H2 *N NCO *NH NH2 NH3 *NO NO2 NO3 NCN N2H2 NH2NO2 N2H4 N20 N2O3 N2O4 N2O5 N3 N3H *0 *OH *02 O3 B(b)B(L)BN(L) B2O3(cr)B2O3(L) B3O3H3(cr) B4C(cr) HBO2(cr) HBO₂(L) H2O(s)H2O(L)H3BO3(cr) H3BO3(L)K(cr) K(L)KBO2(cr) KCN(s) KCN(L) KH(cr) KH(L) KNO2(II) KNO2(I) KNO2(L) KNO3(a) KNO3(b) KNO3(L) KOH(a) KOH(b) KOH(c). KOH(L) KO2(b)KO2(a) KO2(L)K2CO3(a) K2CO3(b) K2CO3(L) K2O(c)K2O(b) K2O(a) K2O(L) K2O2(cr)K2O2(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS