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Learning from the Brain with Applications to Scene Understanding 
and to Speech Synthesis and Understanding 

Executive Summary 

The problem of learning represents a gateway to understanding intelligence in brains and 
machines and to making intelligent machines that learn from experience. Since our brain 
represents the best known example of a learning machine, we have developed algorithm 
directly based on the architecture of the cortex. In the process we have demonstrated systems 
in applications of interest to IPTO. In particular, we have demonstrated 

o   a system for scene understanding in street environments 

o    videorealistic synthesis of a speaking agent. 

In the more recent phases of the project, we have explored architectures for learning and for 
visual recognition process that have a deeply hierarchical organization and incorporate 
attentional feedbacks and top-down priors. We have also extended our demonstration to video 
and the recognition of actions. In particular, we have developed 

o   A system, derived form our model of visual cortex, for the automatic, quantitative 
phenotyping of mouse behavior from videos. 

o   A mathematical framework - a theory of hierarchical kernel machines - to characterize 
the properties and limitations of deep learning networks with a hierarchical architecture 
similar to the cortex. 



A Brief History of the Projects 

We started the project with the plan of a) extending supervised learning algorithms to the 
fundamental ability to learn from just a few examples, and (b) to apply existing learning 
techniques and their extensions to an important application domain for the DoD, eg scene 
understanding tasks in street images, using a database - that we created -- of images of streets 
in Cambridge, with a variety of objects, from buildings to stores, people, traffic lights, cars, 
trucks, buses. The system we proposed had the goal of describing a street scene by identifying 
the key objects in it and ultimately, by understanding video. 

In addition, we proposed to develop learning techniques for multimodal human-computer 
interfaces (computer graphics and speech synthesis) and in particular videorealistic synthesis of 
a speaking agent. From short video segments, we had developed a technique for learning how 
a person speaks, and then generated a synthetic video of the person's face speaking an 
arbitrary segment of somebody else's speech, even in another language. We had planned to 
extend the system to synthesize 3D videos and to synthesize the voice of a person by learning 
from a very small speech corpus. 

We have worked on extending supervised learning algorithms for the last four years with a 
number of achievements on the theoretical side. The most recent one concern the development 
of a mathematical framework for hierarchical learning systems, inspired by the architecture of 
the visual cortex. 

We achieved most of our goals on the multimodal human-computer interfaces project at the end 
of the first two years (see Appendices). 

Our main project - of scene and video understanding using a small number of training images - 
reached most of the planned results after the first three years. Afterwards, it successfully 
explored new architectures for learning and recognition directly derived from cortical 
architectures. 



Background and Goals 

Developing systems that can truly learn from experience, mostly by themselves, in an 
incremental way, would ultimately be relevant for many DARPA projects. Our applications ~ 
scene understanding and monitoring in street environments and videorealistic synthesis of a 
speaking agent -- should have a direct impact on the technology of surveillance in general and 
on electronic disinformation techniques. 

In particular, we worked on Scene understanding and monitoring tasks in street environments. 
We collected a database of images of streets in Cambridge, with a variety of objects, from 
buildings to stores, people, traffic lights, cars, trucks, buses. The system we proposed should 
describe a street scene by identifying the key objects in it. Ultimately, such a system may 
understand video and report anomalous events. The system must be able to learn from a 
relatively just a few example images of each object. 

We also planned to work on multimodal human-computer interfaces (computer graphics and 
speech synthesis) and in particular videorealistic synthesis of a speaking agent. From short 
video segments, we had already developed a technique for learning how a person speaks, and 
then generated a synthetic video of the persons face speaking an arbitrary segment of 
somebody else speech, even in another language. We planned to extend the system to 
synthesize 3D videos and especially the voice of a person by learning from a small speech 
corpus. 

Main Accomplishments Over the Course of the Project 

• Following a model of the ventral stream of visual cortex, we developed a novel set of 
features for visual recognition. These features outperformed state of the art features on 
several datasets used in computer vision benchmarks. 

• A system for object recognition in street scenes was built on top of these features. The 
system can reliably identify several different object types such as cars, bikes, pedestrians, 
sky, road, buildings and trees. While the performance is not fully satisfactory, the system 
outperforms state of the art systems that we implemented for comparison. 

• A novel learning algorithm was developed for learning from few examples. The algorithm is 
a variant of gentleBoost and was especially designed to avoid overfitting on small datasets. 
The algorithm selects relevant features and provides a considerable speed-up for our object 
recognition system. It was shown to outperform existing boosting algorithms not only on a 
variety of vision datasets but also on various genomic datasets, where learning from few 
examples is also a concern. 

• We completed the development of hierarchical feedforward architecture for object 
recognition based on the anatomy and the physiology of the visual cortex, and showed that 
the resulting performance on several databases of complex images is as good as or better 
than the best available computer vision systems (2007 PAMI paper). 

• We have developed the notion of "audio flow", which is inspired by the notion of "optical 
flow" from computer vision, and which models the shifting which occurs in the formants 
during speech. Audio flow defines the correspondence from one vocal tract filter to another. 



We have successfully created a morphable model of the vocal tract filter space, in which any 
filter is viewed as a "morphed" combination of prototype filters extracted from a small 20 
second corpus. In the morphable model we define audio flow between 60-80 prototype 
filters. Any novel vocal tract filter is modeled as a morph between those 60-80 prototype 
filters 

We have also successfully created a vector space for the excitation signal, in which any 
pitch period in the excitation signal is viewed as a linear combination of prototype pitch 
periods extracted from a small 10 sec corpus. 

We developed the feedforward path of a new architecture for object recognition based on 
the anatomy and the physiology of the visual cortex. 

We showed that the resulting performance on complex imagery outperforms state-of-the-art 
vision systems. 

We also showed for the first time that a neurobiological model of cortex does as well as 
humans and better than state-of-the-art computer vision systems on a challenging, natural 
image recognition task (2007 PNAS paper).. 

We have collected a database of images of streets in Cambridge, with a variety of objects, 
from buildings to stores, people, traffic lights, cars, trucks, buses and completed a first 
version of a system capable of scene understanding in such a domain (street images). See 
http://cbcl.mit.edu/software-datasets/streetscenes/ 

We have obtained preliminary results of speech synthesis from very short training 
sequences. Separately, we improved a system for learning how a person speaks, and for 
then generating a synthetic video of the persons face speaking an arbitrary segment of 
somebody else speech, even in another language. 

We investigated the use of morphable models for audio synthesis, which enabled us to 
synthesize a voice from a very small audio corpus (< 1 minute). A crucial component in 
achieving this goal was to develop a representation of speech that is smooth and which can 
accurately reconstruct speech. If the representation is smooth, it may then be placed in a 
morphable model framework, and we can then morph segments of speech to produce new 
realistic utterances from very small amounts of data. 

We have made significant progress in this regard; in particular, we have developed a novel 
representation called Max-Gabor analysis, which produces a smooth representation of 
speech. This analysis is inspired mainly by the work of Shamma and colleagues, who have 
developed a two-stage auditory model based on psycho-acoustical and neurophysiological 
findings in the early and central stages of the auditory pathway. Also this representation 
borrows from the work of Riesenhuber and Poggio, who developed a model of object 
recognition in visual cortex by embedding a MAX operator in a hierarchical neural model. 

Max-Gabor analysis works by analyzing small spectro-temporal patches P of a two- 
dimensional magnitude spectrogram S(f,t), and representing each patch by its locally 
dominant spectro-temporal periods T(f,t) and orientations Theta(f.t). The method also 
estimates local patch amplitudes A(f,t) and phases Phi(f.t) as well.  Since the local patches 



are Gabor-like, Max-Gabor analysis operates by performing a two-dimensional Gabor-like 
analysis of the spectrogram, retaining only the parameters of the 2D-Gabor filter with 
maximal amplitude response within the local region. Hence we call our technique a Max- 
Gabor analysis of spectrograms. Given the estimated local periods T(i,j), orientations 
Theta(iJ),amplitudes A(i,j), and phases Phi(ij), the spectrogram S(f,t) can be reconstructed 
by synthesizing individual local 2D Gabors Gij(f,t) for each patch, and overlap-adding them 
together. 

We analyzed and re-synthesized several test utterances of different speakers uttering the 
phrase     "Hi     Jane". Our     results     may     be     seen     on     the     web     at 
http://cuneus.ai.mit.edu:8000/research/ maxgabor. In general, we have found that the Max- 
Gabor parameters are smooth, meaningful, and capable of reconstructing the original 
spectrogram. Our future goal is to see if it is possible to morph the Max-Gabor parameters 
to generate novel speech. 

We have extended the model of the ventral stream to incorporate neuroscience data on 
backprojections and control of attention and eye movements in collaboration with Bob 
Desimone (McGovern Institute and BCS). Preliminary results show that this extended model 
can predict human eye movements in top-down tasks better than other standard models of 
saliency. 

We are developing - with neuroscience details - an extension of the model to the dorsal 
stream for the recognition of actions. 

We have used the system above to phenotype mice behavior - developing a vision system 
that could be developed into a useful tool for biologists. We have a prototype system that we 
will test in several labs at MIT and the Broad Institute working with mutant mice as models of 
mental and neurological diseases. 
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Some of the recent articles on our research 
(more information is at http://cbcl.mit.edu/news/index-news.html) 
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transformed... 
Technology Review - By Anne-Marie Corley, A Robot that Navigates Like a Person: A new robot 
navigates using humanlike visual processing and object detection.. Tuesday, June 30, 2009 
Biomedical Computation Review - by Roberta Freidman, PhD, "Reverse Engineering the Brain", 
Volume 5, Issue 2, pages 10-17, ISSN 1557-3192, Spring 2009 
LaStampa.it Tecnologia News, Tomaso Poggio, uno dei padri della neuroscienza e professore al 
MIT di Boston: "I robot non saranno una minaccia per almeno altri 10 anni. Oggi e Google un 
potenziale pericolo" (translation: Tomaso Poggio, one of the fathers of the neuroscience and 
university professor at MIT, Boston: "The robots will not be a threat for at least another 10 years. 
Today it is Google which is a potential danger"), February 26, 2009 
Masterminds of Artificial Intelligence - Evolutionary Portrait Art by Gunter Bachelier, Janaury 2009 
PC Magazine: Future Watch: Understanding the Brain. August 2008 
TERRA ACTUALIDAD - INTERNACIONAL - Tecnalia desarrolla en Massachussets la tesis doctoral 
de una investigadora vasca sobre biolooia informatica v neurologia 
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Poggio. 
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shows work performed at CBCL (MIT) about a computational neuroscience model of the ventral 
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task. Visions of the Future - Tomaso Poggio, Thomas Serre and Aude Oliva. 
SCIENTIFIC AMERICAN - by Larry Greenemier (February 20, 2008): Visionary Research: Teaching 
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IEEE Journal: COMPUTING IN SCIENCE & ENGINEERING- by Pam Frost Gorder (March/April 
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(Genova, June 14-16, 2007): A Journey through Computation - A. Verri, G. Geiger, F. Girosi, and C. 
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RAI International (Salimbeni, May 4, 2007):   Tomaso Poggio and His Thinking Machines - Tomaso 
Poggio. 
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Poggio and Thomas Serre.> 
MIT NEWS OFFICE: TECH TALK by Cathryn M. Delude  (February 27, 2007):   Computer Model 
Mimics Neural Processes in Object Recognition  - applications include surveillance, visual search 
engines, biomedical imaging analysis and robots with realistic vision    - Tomaso Poggio, Thomas 
Serre, Stanley Bileschi, Maximilian Riesenhuber and Lior Wolf. 
TECHNOLOGY REVIEW by Duncan Graham-Rowe   (February 21, 2007):    Biologically Inspired 
Vision Systems    - a computer model of the brain has learned to detect and classify objects 

Thomas Serre, Stanley Bileschi and Tomaso Poggio. 
SLASHDOT - news for Nerds, Stuff that Matters (February 11, 2007):   Recognizing Scenes Like the 
Brain Does    - Tomaso Poggio. 
MCGOVERN INSTITUTE NEWS by Cathryn M. Delude (January, 2007): Mimicking How the Brain 
Recognizes Street Scenes - Tomaso Poggio. 
LA STAMPA WEB (September 29, 2006): Capire Come Funziona il Cervello e la Sfida Piu Grande 
del XXI Secolo     - Tomaso Poggio. 
TECHNOLOGY REVIEW by Fred Hapgood (July 11, 2006): Reverse-Engineering the Brain - at 
MIT, neuroscience and artificial intelligence are beginning to intersect - Earl Miller, Jim DiCarlo and 
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MCGOVERN INSTITUTE NEWS by Cathryn M. Delude (February 21, 2006): New Approach 
Bridges the Gap between Neuronal Activity and Human Brain Imaging - Tomaso Poggio and James 
DiCarlo. 
MIT NEWS OFFICE: TECH TALK by Cathryn M. Delude (November 3, 2005): Neuroscientists 
Break Code on Sight - Tomaso Poggio and James DiCarlo. 
NEWSCIENTIST.COM by Anna Gosline (June 22, 2005):   Why Your Brain has a 'Jennifer Aniston 
Cell'   - Itzhak Fried, Rodrigo Quiroga, Christof Koch and Gabriel Kreiman. 
YAHOOINEWS by Malcolm Ritter (June 22, 2005):   Brain Cells 'Recognize' Famous People    - 
Itzhak Fried, Rodrigo Quiroga, Christof Koch and Gabriel Kreiman. 

CALTECH MEDIA by Dan Page (June 22, 2005):   Single-Cell Recognition: A Halle Berry Brain Cell 
- Itzhak Fried, Rodrigo Quiroga, Christof Koch and Gabriel Kreiman. 

DISCOVER by John Hogan (June 2005):   Can a Single Brain Cell Think? - Itzhak Fried, Rodrigo 
Quiroga, Christof Koch and Gabriel Kreiman. 
IL SOLE 24 ORE by Rosanna Mameli  (December 31, 2004):    La Formula dell' Apprendimento    - 
Tomaso Poggio. 
SALK INSTITUTE FOR BIOLOGICAL STUDIES, La Jolla, CA (September 27, 2004): Remembering 
Francis Crick. 
INCONTRI DELLA LOGGIA, Levanto, Italy (July 16, 2004): "Geni e Memi" - Incontro Dibattito: 
Scienza e Futuro della Nostra Societa - Tomaso Poggio. 
MIT NEWS OFFICE: TECH TALK, Source: Picower Center for Learning and Memory (April 2004): 
"Experimental Evidence for an Old Theory" - See: Brain Circuitry Findings Could Shape Computer 
Design   - Guosong Liu (and T. Poggio). 
MIT NEWS OFFICE: TECH TALK by Elizabeth Thomson (April 1, 2004):   MIT Team Reports New 
Insights in Visual Recognition - Pawan Sinha, David Cox and Ethan Meyers. 
NEWS AND VIEWS by Carlo Tomasi (March 25, 2004):   Past Performance and Future Results   - 
Tomaso Poggio. 
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YAHOO!  FINANCE, Source: The McGovern Institute for Brain Research   (March 25, 2004): 
McGovern Institute's Tomaso Poqqio Offers New Paradigm for Understanding Learning   - Tomaso 
Poggio, Ryan Rifkin, Sayan Mukherjee, and Partha Niyogi. 
IL SECOLO XIX by Gilda Ferrari  (February 14, 2004):   Lo Scienziato Del MIT - Poggio: L'llT. Un 
Soqno Americano   - Tomaso Poggio. 
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Appendices: details on some of the accomplishments 

1. Model of the ventral stream of visual cortex for object recognition 

We have been using the quantitative model of visual cortex for object recognition tasks. The 
model achieves outstanding performance on a detection task involving a variety of object 
categories and simultaneously enables learning from only a few training examples. The 
resulting system outperforms state-of-the-art systems over a variety of object image data sets 
from different groups. The model detects both the large amorphous objects (trees, sky, 
buildings and road), and the rigid objects (cars, pedestrians, bikes). On both of these tasks the 
system outperforms other systems on a very large and challenging data set we collected as a 
benchmark. Moreover, the features used by the model are excellent features for learning from 
only few training examples. Table 1 summarizes the comparisons we performed between the 
model and other state-of-the-art computer vision systems on datasets from several groups 
(including our own StreetScene Database). 

The model fits well neuroscience data. 

This new set of features is indeed qualitatively and quantitatively consistent with several 
properties of cells in V1, V2, V4, and IT, PFC as well as several fMRI and psychophysical data. 
For instance, the model predicts, at the C1 and C2 levels respectively, the max-like behavior of 
a subclass of complex cells in V1 and V4. It also agrees with other data in V4 (Reynolds ef a/., 
1999) about the response of neurons to combinations of simple two-bar stimuli (within the 
receptive field of the S2 units) and some of the C2 units in the model show a tuning for 
boundary conformations (Pasupathy & Connor, 2001) which is consistent with recordings from 
V4 (Serre ef a/., 2005). Read-out from C2b units in the model predicted (Serre ef a/., 2005) 
recent read-out experiments in IT (Hung ef a/., 2005), showing very similar selectivity and 
invariance for the same set of stimuli. 

The model mimics human performance on a challenging detection task. 

The new set of features, when used to classify between animal and non-animal images 
performed at the level of human observers (with rapid presentations). The model was shown to 
predict the pattern of performance of human observers on different animal subcategories (see 
Fig. 1). Additionally we found that both the model and human observers tend to produce similar 
responses (both correct and incorrect). The overall image-by-image correlation between the 
model and human observers is high (specifically 0.71, 0.84, 0.71 and 0.60 for heads, close- 
body, medium-body and far-body respectively, with p value p < 0.01). Finally we found that 
surprisingly the model and human observers exhibit a similar robustness to image orientation 
(90° rotation and inversion). 

The model's implementation has been improved significantly. 

In the last year many improvements to the model occurred. These include more effective 
representation at the higher level of the model, the addition of image descriptors that capture 
important gestalt properties and a significant speedup (see slide #). In the last year the model 
improved significantly in accuracy while achieving a considerable drop in run time. 
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Weizmann CalTech MIT-CBCL 

Fac      Cow      Lea       Car       Fac       Air       Mot        Fac       Car 

Model 

[Serreetal, 20051 
97.0      99.7 1.2      96.7      98.0      95.9      95.1 

Constellation [Weber et al, 

2000, Fergus et al, 2003] 
84.0      84.8      96.4      94.0      95.0 

I 
Component-based 

[Heisele et al, 2002] 
90.4 

Component-based 

[Leung, 2004] 
75.4 

1 
oO 

5 

Model 

[Serre et al, 2005] 
100.0     92.0      97.9 94.5 96.5 

Fragments 

[Epshtein & Ullman, 2005] 
I.0      78.7      87.4 66.8 52.6 

Single template SVM 100.0     77.3      71.6 62.2 65.6 

Bik 

MIT-CBCL Street Scene Database 

Ped Car Bui Tre Sky 

Model 

[Serre et al, 2005) 

87.8 

84.1 

81.7 

88.8 

89.6 

92.9 
90.8 88.9 94.7 

Component-based 

[Torralba et al, 2004] 
68.5 79.8 69.9 

Part-based 

[Leibeetal, 2004] 
80.9 85.2 85.9 

Single template SVM 67.8 70.0 85.0 

Btobworid 

[Carson etal, 1999] 
1.1 85.8 73.1 68.2 

Texton 

[Renninger & Malik, 2002] 
I.7 70.4 58.1 65.1 

Histogram of edges 63.3 63.7 73.3 68.3 

Table 1: Summary of the comparisons performed between the model and other computer vision 
systems. For all comparisons, all systems were trained and tested on the same sets. 
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Figure 1: Comparison between the model and human observers on a rapid animal vs. non-animal 
categorization task, (left) The stimulus dataset, i.e., four animal subcategories with matching distractors. 
(right) Performance of the model and human observers. The error measure reported is the d' which is a 
sensitivity measure that combines both the hit and false-alarm rates of each observer into one 
standardized score. 

2. Comparison with physiological observations 

The quantitative implementation of the model allows for direct comparisons between the 
responses of units in the model and electrophysiological recordings from neurons in the visual 
cortex. Here we illustrate this approach by directly comparing the model against recordings from 
the macaque monkey area V4 and inferior temporal cortex while the animal was passively 
viewing complex images. 

The model includes several layers that are meant to mimic visual areas V1, V2, V4 and IT 
cortex. We directly compared the responses of the model units against electrophysiological 
recordings obtained throughout all these visual areas. The model is able to account for many 
physiological observations in early visual areas. For instance, at the level of V1, model units 
agree with the tuning properties of cortical cells in terms of both frequency and orientation 
bandwidth, as well as peak frequency selectivity and receptive field sizes (see (Serre and 
Riesenhuber, 2004)). Also in V1, we observe that model units in the C1 layer can explain 
responses of a subpopulation of complex cells obtained upon presenting two oriented bars 
within the receptive field (Lampl et al., 2004). At the level of V4, model C2 units exhibit tuning for 
complex gratings (based on the recordings from (Gallant et al., 1996)), and curvature (based on 
(Pasupathy and Connor, 2001)), as well as interactions of multiple dots (based on (Freiwald et 
al., 2005)) or the simultaneous presentation of two-bar stimuli (based on (Reynolds et al., 1999), 
see (Serre et al., 2005) for details). 

Here we focus on one comparison between C2 units and the responses of V4 cells. Figure 3 
shows the side-by-side comparison between a model C2 unit and V4 cell responses to the 
presentation of one-bar and two-bar stimuli. As in (Reynolds et al., 1999) model units were 
presented with either 1) a reference stimulus alone (an oriented bar at position 1, see Figure 
3A), 2) a probe stimulus alone (an oriented bar at position 2) or 3) both a reference and a probe 
stimulus simultaneously. We used stimuli of 16 different orientations for a total of 289 = (16 + 1)2 
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total stimulus combinations for each unit (see (Serre et al., 2005) for details). Each unit's 
response was normalized by the maximal response of the unit across all conditions. As in 
(Reynolds et al., 1999) we computed a selectivity index as the normalized response of the unit 
to the reference stimulus minus the normalized response of the unit to one of the probe stimuli. 
This index was computed for each of the probe stimuli, yielding 16 selectivity values for each 
model unit. This selectivity index ranges from -1 to +1, with negative values indicating that the 
reference stimulus elicited the stronger response, a value of 0 indicating identical responses to 
reference and probe, and positive values indicating that the probe stimulus elicited the strongest 
response. We also computed a sensory interaction index which corresponds to the normalized 
response to a pair of stimuli (the reference and a probe) minus the normalized response to the 
reference alone. The selectivity index also takes on values from -1 to +1. Negative values 
indicate that the response to the pair is smaller than the response to the reference stimulus 
alone (i.e., adding the probe stimulus suppresses the neuronal response). A value of 0 indicates 
that adding the probe stimulus has no effect on the neuron's response while positive values 
indicate that adding the probe increases the neuron's response. 

As shown in figure 3B, model C2 units and V4 cells behave very similarly to the presentation of 
two stimuli within their receptive field. Indeed the slope of the selectivity vs. sensory interaction 
indices is about 0.5 for both model units and cortical cells. That is, at the population level, 
presenting a preferred and a non-preferred stimulus together produces a neural response that 
falls between the neural responses to the two stimuli individually, sometimes close to an 
average. 1 We have found that such a "clutter effect" also happens higher up in the hierarchy at 
the level of IT, see (Serre et al., 2005). Since normal vision operates with many objects 
appearing within the same receptive fields and embedded in complex textures (unlike the 
artificial experimental setups), understanding the behavior of neurons under clutter conditions is 
important and warrants more experiments (see later section 3.2.4 and section 4.2). In sum, the 
model can capture many aspects of the physiological responses of neurons along the ventral 
visual stream from V1 to IT cortex (see also (Serre et al., 2005)). 
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Figure 2: A quantitative comparison between model C2 units and V4 cells. A) Stimulus configuration 
(modified from Figure 1A in (Reynolds et al., 1999)): The stimulus in position 1 is denoted as the 
reference and the stimulus in position 2 as the probe. As in (Reynolds et al., 1999) we computed a 
selectivity index (which indicates how selective a cell is to an isolated stimulus in position 1 vs. position 2 
alone) and a sensory interaction index (which indicates how selective the cell is to the paired stimuli vs. 
the reference stimulus alone), see text and (Serre et al., 2005) for details. B) Side by-side comparison 
between V4 neurons (left, adapted from Fig. 5 in (Reynolds et al., 1999)) while the monkey attends away 
from the receptive field location and C2 units (right). Consistent with the physiology, the addition of a 
second stimulus in the receptive field of the C2 unit moves the response of the unit toward that of the 
second stimulus alone, i.e., the response to the clutter condition lies between the responses to the 
individual stimuli. 
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Figure 3: A comparison between the response of a single V4 neuron (corresponding to Fig. 4A in (Pasupathy and 
Connor, 2001)) (a) and a single model C2 unit (b) over the boundary conformation stimulus set. The gray level of 
the stimulus background indicates the response magnitude to each stimulus (the darker the shading the stronger 
the response). The model unit was picked from the population of 109 model C2 units under study. Both units 
exhibit very similar pattern of responses (overall correlation r = 0.78). The fit between the model unit and the V4 
neuron is quiet remarkable given that there was no fitting procedure involved here for learning the weights of the 
model unit: The unit was simply selected from a small population of 109 model units learned from natural images 
and selected at random. The inset on the lower right end of the figure at the bottom describes the corresponding 
receptive field organization of the C2 unit. Each oriented ellipse characterizes one subfield at matching 
orientation. Color encodes for the strength of the connection between the subfield and the unit. 
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Decoding object information from IT and model units 

We recently used a simple linear statistical classifier to quantitatively show that we could 
accurately, rapidly and robustly decode visual information about objects from the activity of 
small populations of neurons in anterior inferior temporal cortex (Hung et al., 2005). In 
collaboration with Chou Hung and James DiCarlo at MIT, we observed that a binary response 
from the neurons (using small bins of 12.5 ms to count spikes) was sufficient to encode 
information with high accuracy. This robust visual information, as measured by our classifiers, 
could in principle be decoded by the targets of IT cortex such as prefrontal cortex to determine 
the class or identity of an object (Miller, 2000). Importantly, the population response generalized 
across object positions and scales. This scale and position invariance was evident even for 
novel objects that the animal never observed before (see also (Logothetis et al., 1995)). The 
observation that scale and position invariance occurs for novel objects strongly suggests that 
these two forms of invariance do not require multiple examples of each specific object. This 
should be contrasted with other forms of invariance, such as robustness to depth rotation, which 
requires multiple views in order to be able to generalize (Poggio and Edelman, 1990). 

We examined the responses of the model units to the same set of 77 complex object images 
seen by the monkey. These objects were divided into 8 possible categories. The model unit 
responses were divided into a training set and a test set. We used a one-versus-all approach, 
training 8 binary classifiers, one for each category against the rest of the categories, and then 
taking the classifier prediction to be the maximum among the 8 classifiers (for further details, 
see (Hung et al., 2005; Serre et al., 2005)). Similar observations were made when trying to 
identify each individual object by training 77 binary classifiers. For comparison, we also tried 
decoding object category from a random selection of model units from other layers of the model. 
The input to the classifier consisted of the responses of randomly selected model units and the 
labels of the object categories (or object identities for the identification task). Data from multiple 
units were concatenated assuming independence. 

We observed that we could accurately read out the object category and identity from model 
units. In Figure 3A, we compare the classification performance, for the categorization task 
described above, between the IT neurons and the C2b model units. In agreement with the 
experimental data from IT, units from the C2b stage of the model yielded a high level of 
performance (> 70% for 100 units; where chance was 12.5%). We observed that the 
physiological observations were in agreement with the predictions made by the highest layers in 
the model (C2b, S4) but not by earlier stages (S1 through S2). As expected, the layers from S1 
through S2 showed a weaker degree of scale and position invariance. 

The classification performance of S2b units (the input to C2b units, see Figure 1) was 
qualitatively close to the performance of local field potentials (LFPs) in IT cortex (Kreiman et al., 
2006). The main components of LFPs are dendritic potentials and therefore LFPs are generally 
considered to represent the dendritic input and local processing within a cortical area (Mitzdorf, 
1985; Logothetis et al., 2001). Thus, it is tempting to speculate that the S2b responses in the 
model capture the type of information conveyed by LFPs in IT. However, care should be taken 
in this interpretation as the LFPs constitute an aggregate measure of the activity over many 
different types of neurons and large areas. Further investigation of the nature of the LFPs and 
their relation with the spiking responses could help unravel the transformations that take place 
across cortical layers. 

The pattern of errors made by the classifier indicates that some groups were easier to 
discriminate than others. This was also evident in the correlation matrix of the population 
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responses between all pairs of pictures (Serre et al., 2005; Hung et al., 2005). The units yielded 
similar responses to stimuli that looked alike at the pixel level. The performance of the classifier 
for categorization dropped significantly upon arbitrarily defining the categories as random 
groups of pictures. 

We also tested the ability of the model to generalize to novel stimuli not included in the training 
set. The performance values shown in Figure 3 are based on the responses of model units to 
single stimulus presentations that were not included in the classifier training and correspond to 
the results obtained using a linear classifier. Although the way in which the weights were 
learned (using a support vector machine classifier) is probably very different in biology (see 
(Serre, 2006)), once the weights are established the linear classification boundary could very 
easily be implemented by neuronal hardware. Therefore, the recognition performance provides 
a lower bound to what a real downstream unit (e.g., in PFC) could, in theory, perform on a 
single trial given input consisting of a few spikes from the neurons in IT cortex. 

Overall, we observed that the population of C2b model units yields a read-out performance level 
that is very similar to the one observed from a population of IT neurons. 
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Figure 4: Classification performance based on the spiking activity from IT neurons (black) and C2b units 
from the model (gray). The performance shown here is based on the categorization task where the 
classifier was trained based on the category of the object. A linear classifier was trained using the 
responses to the 77 objects at a single scale and position (shown for one object by "TRAIN"). The 
classifier performance was evaluated using shifted or scaled versions of the same 77 objects (shown for 
one object by "TEST"). During training, the classifier was never presented with the unit responses to the 
shifted or scaled objects. The left-most column shows the performance for training and testing on 
separate repetitions of the objects at the same standard position and scale (this is shown only for the IT 
neurons because there is no variability in the model which is deterministic). The second bar shows the 
performance after training on the standard position and scale (3.4 degrees, center of gaze) and testing on 
the shifted and scaled images. The dashed horizontal line indicates chance performance (12.5%, 1 out of 
8 possible categories). Error bars show standard deviations over 20 random choices of the units used for 
training/testing. 
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3. Comparison between the model and other state-of-the-art computer vision 
systems 

CalTech-101 

We compared the model to the SIFT features (Lowe 1999; Lowe 2004) on the CalTech-101 
database. As illustrated on Fig. 4, the model C2 features exhibit higher performance. 
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Figure 5: Comparison with SiFT features on the calTech-101. 

MIT face and car database 

We compared the performance of the C2 units to two computer vision systems that were 
developed in the lab. The two benchmarks are also hierarchical (a first layer of SVM classifiers 
detect object components and a second layer check for their configuration). Model C2 units 
outperform both systems. 

Datasets Benchmark Model 

MIT-CBCL faces (Heisele et al 
2002) 90.4% correct 95.9% correct 

MIT-CBCL cars (Leung 2004) 75.4% correct 95.1% correct 
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StreetScene database 

Rigid-objects: 

For comparison, we also implemented four other benchmark systems. Our most simple baseline 
detector is a single-template Grayscale system: Each image is normalized in size and histogram 
equalized before the gray-values are passed to a linear classifier (gentleBoost). Another 
baseline detector, Local Patch Correlation, is built using patch-based features similar to [45]. 
Each feature fi is associated with a particular image patch pi, extracted randomly from the 
training set. Each feature fi is calculated in a test image as the maximum normalized cross 
correlation of pi within a subwindow of the image. This window of support is equal to a rectangle 
three times the size of pi and centered in the image at the same relative location from which pi 
was originally extracted. The advantage of the patch-based features over the single-template 
approach is that local patches can be highly selective while maintaining a degree of position 
invariance. The system was implemented with N = 1,024 features and with patches of size 12 X 
12 in images of size 128 X 128. The third benchmark system is a Part-based system as 
described in (Leibe et al, 2004). Briefly, both object parts and a geometric model are learned via 
image patch clustering. The detection stage is performed by redetecting these parts and 
allowing them to vote for objects-at-poses in a generalized Hough transform framework. Finally, 
we compare to an implementation of the Histogram of Gradients (HoG) feature of (Dalai & 
Triggs, 2005), which has shown excellent performance on these types of objects. All benchmark 
systems were trained and tested on the same data sets as the SMFs-based system. They all 
use gentleBoost except (Leibe et al, 2004). 

The ROC results of this experiment are illustrated in Fig. 5. For the two (C1 and C2) SMFs- 
based systems, the Grayscale as well as the Local Patch Correlation system, the classifier is 
GentleBoost, but we found very similar results with both a linear and a polynomial-kernel SVM. 
Overall, for all thre object categories tested, the SMFs-based system performs best on cars and 
bicycles and second behind HoG on pedestrians (the HoG system was parameter-tuned in 
(Dalai & Triggs, 2005) to achieve maximal performance on this one class). Finally, for this 
recognition task, i.e., with a windowing framework, the C1 SMFs seem to be superior to the C2 
SMFs. 

Textured-obiects: 

We implemented four benchmark texture classification systems. The Blobworld (BW) system 
was constructed as described in (Carson et al, 1999.) Briefly, the Blobworld feature, originally 
designed for image segmentation, is a six-dimensional vector at each pixel location; three 
dimensions encode color in the Lab color space and three dimensions encode texture using the 
local spectrum of gradient responses. We did not include the color information for a fair 
comparison between all the various texture detection methods. 

The systems labeled T1 and T2 are based on (Renninger & Malik, 2004). In these systems, the 
test image is first processed with a number of predefined filters. T1 uses 36 oriented edge-filters 
arranged in five degrees increments from 0 degrees to 180 degrees. T2 follows (Renninger & 
Malik, 2004) exactly by using 36 Gabor filters at six orientations, three scales, and two phases. 
For both systems independently, a large number of random samples of the 36-dimensional 
edge response images were taken and subsequently clustered using k-means to find 100 
cluster centroids (i.e., the textons). The texton image was then calculated by finding the index of 
the nearest texton to the filter response vector at each pixel in the response images. A 100- 
dimensional texton feature vector was then built by calculating the local 10 X 10 histogram of 
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nearest texton indexes. Finally, the Histogram of edges (HoE) system was built by simply using 
the same type of histogram framework, but over the local 36-dimensional directional filter 
responses (using the filters of T1) rather than the texton identity. Here, as well, learning was 
done using the gentleBoost algorithm (again a linear SVM produced very similar results). The 
within-class variability of the texture-objects in this test is considerably larger than that of the 
texture classes usually used to test texture-detection systems, making this task somewhat 
different. This may explain the relatively poor performance of some of these systems on certain 
objects. 

As shown in Fig. 6, the SMFs-based texture system seems to consistently outperform the 
benchmarks (BW, T1, T2, and HoE). C2 compared to C1 SMFs may be better suited to this task 
because of their increased invariance properties and complexity. 
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Figure 6: Comparison between the model (C1 SMFs and C2SMFs) and other state of the art systems on 
the MIT StreetScene database for the recognition of rigid objects. 
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Figure: Comparison between the model (C1 and C2) with other state of the art systems on the MIT 
StreetScene database for the recognition of textured-objects. 

31 



4. Automatic recognition of actions in videos: a tool for behavioral phenotyping 

During the last year, we developed a prototype system for the recognition of basic rodent 
behaviors (see Fig. 1 for examples). The work was based on a model of the dorsal pathway in 
the visual cortex which also outlines a computer implementation and its state-of-the-art 
performance in the recognition of human actions. 

With the McGovern funding, we were able to collect about 100 hours of mouse monitoring to 
train and test the system. We video recorded singly housed mice from an angle perpendicular to 
the side of the cage (Figure below). In order to train a robust detection system, we used at least 
six different camera angles in our training (and test) set, all of which had slightly different lighting 
conditions. In addition, we utilized mice of different size, gender, and coat color. Several 
summer students manually annotated these videos. Table 1 gives a comparison between the 
performance of our system and comparisons with human labelers and with the Clever Sys. 
Commercial system. Our system achieves near-human level performance on this task and is 
significantly better than an existing commercial system. A demo of the system can be found at 
http://techtv.mit.edu/videos/1838. 

eat 

V ^^^^A^ 

groom hang 

V ^ 

^^^^^^^^^^^"^^^ 

micro-movement rear rest walk 

Figure 1: Snapshots taken from representative videos for 8 types of behavior that the system was trained 
to recognize. 

Our system Clever Sys. 
Commercial system 

Inter-human 
agreement 

Performance 71.0 56.0 71.6 

Table 1: Performance of the system (percent frames correctly classified) and comparison with an 
available commercial system and human as measured by the agreement on the labeling performed by 
two independent labelers. 
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5. Hierarchical Kernel Machines 

We have developed a mathematical framework to analyze hierarchical kernel machines 
motivated by the architecture of the primate visual cortex. The main motivations for the project 
are two: 1) primates seem to be able to learn complex tasks from far fewer examples than our 
present non-hierarchical kernel-based learning algorithms predict, e.g. they are able to solve 
the "poverty of stimulus" problem 2) a preliminary computational model at MIT of the 
feedforward flow of information in visual cortex performs well on difficult recognition tasks 
compared to existing computer vision systems. What is needed now is an approach based on a 
mathematical theory - to explain why a hierarchy is needed, under which conditions, and to 
provide a framework for optimizing the learning architecture and its parameters. A theory, such 
as the one of which we have the foundations, will explain why hierarchical models work as well 
as they do and what the computational reasons for the hierarchical organization of cortex are, 
leading to potentially significant contributions to outstanding challenges in machine learning and 
computer science. The development of new powerful learning techniques such as the 
hierarchical kernel machines we propose can be of pervasive importance for many capabilities 
of the DoD, because machine learning is becoming the common mathematics language across 
different areas of computer science and because of the reliance of the DoD on computers and 
algorithms. Our theory should be relevant to help preprocess and interpret the huge flow of 
electronic information -- such as images -- provided by different types of sensors. Navigation, 
surveillance and intelligence are just three of the areas that could be hugely impacted by the 
development of novel learning techniques, inspired by the brain and based on solid 
mathematical foundations. 
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