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Abstract. We report results from a systematic program of changing composition of alloys in the
system TiNiX, X= Cu, Pt, Pd, Au, to pursue certain special lattice parameters that have been
identified previously with low hysteresis. We achieve λ2 = 1, where λ2 is the middle eigenvalue
of the transformation strain matrix, for alloys with X = Pt, Pd, Au. In all cases there is a sharp
drop of the graph of hysteresis vs. composition at the composition where λ2 = 1. When the size
of the hysteresis is replotted vs. λ2 we obtain an universal graph for these alloys, which also agrees
with trends in an earlier combinatorial study of alloys in the system TiNiCu. Motivated by these
experimental results, we present a new theory for the size of the hysteresis based on the growth
from a small scale of fully developed austenite martensite needles. In this theory the energy of the
transition layer plays a critical role. New methods for calculation the optimal layer are developed
that rely on Γ-convergence arguments, the small parameter being |λ2 − 1|. The limiting energy of
the transition layer is found to be governed by a nonstandard linear elasticity problem. Overall,
the results point to a simple systematic method of achieving low hysteresis and a high degree of
reversibility in transforming materials.
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1 Introduction

This paper concerns the hysteresis that accompanies martensitic phase transformations. We focus
mainly on thermal hysteresis.

The work reported here follows up a conjecture of [17] that asserts a relation between the condi-
tions of compatibility between two phases and the hysteresis seen during cyclic transformation. The
conjecture was formulated by looking at the literature (references in [17]) and trying to understand
what is common among alloys with particularly low hysteresis. A special focus of this literature
search was on data from repeated experiments on the same specimen, restored to its original shape
after each test by heating, in a material with minor training effects, so as to factor out as much as
possible processing conditions. Three conditions of compatibility were conjectured to be relevant to
the minimization of hysteresis and the reversibility of transformation: 1) detU = 1, where the sym-
metric positive-definite matrixU is the transformation strain matrix, 2) λ2 = 1, where λ1 ≤ λ2 ≤ λ3
are the ordered eigenvalues of U, and 3) the conditions λ2 = 1 and 
a ·U1cof(U2

1−I)n) = 0, together
called the cofactor conditions. In the latter the vectors 
a and n are certain vectors that describe the
twin system, as explained below (see (3)). The first of these conditions summarizes a well-accepted
idea in the community.

Jun Cui et al. [8] noticed that the system Ti50Ni50−xCux for small values of x nearly satisfies the
first two of these conditions, and they measured over a wide composition range both the eigenvalues
of U and the hysteresis, using combinatorial synthesis methods. Their results showed a strong cor-
relation between the second of these conditions (λ2 = 1) and the size of the hysteresis. Surprisingly,
the measurements showed only a weak correlation between the size of the hysteresis and the volume
change, even though detU varied widely from about 0.96 to 1.07, with quite a few alloys near the
extremes of this range. More surprisingly, the alloys with detU very near 1 included some alloys
with the largest, and others with the smallest hysteresis among all the alloys measured. All this is
surprising because, since the earliest days of the study of martensite, the condition detU ∼ 1 has
been widely considered important for reversibility of the transformation, and elementary elasticity
calculations of the stress field and energy surrounding an island of martensite growing in a hole of
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austenite of a different volume suggests the presence of a rather large energy barrier associated with
detU 6= 1.

The main purpose of this paper is two-fold: to describe the results of a program of alloy devel-
opment in which the composition of alloys was systematically tuned to pursue the relation λ2 = 1,
and to give a new theory for the prediction of hysteresis.

We are able to achieve λ2 = 1 in the systems TiNiPd, TiNiPt, and TiNiAu, and we exhibit
alloys in each of these systems with λ2 < 1 (like TiNi itself) and with λ2 > 1. There is a sharp drop
of the hysteresis for alloys with λ2 = 1 with the most dramatic example being Ti50Ni37Au13, which
shows a decrease in the size of the hysteresis of about a factor of 10. When the size of the hysteresis
is plotted as a function of composition, it has no particularly distinguishing features, but, when
it is replotted as a function of λ2, there is a collapse of the data onto an approximately universal
curve. The combinatorial data of Jun Cui et al. [8] also fall near this curve. This graph has some
interesting features, including an apparent singularity at λ2 = 1. This also is quite surprising, as
hysteresis could well be expected to be sensitive to many other physical parameters besides λ2, as
well as processing conditions.

To understand this dominance of λ2, we are led to propose a new theory of hysteresis. The
condition λ2 = 1 is the condition that there is an exact interface between austenite and martensite,
and such an interface does not contribute the usual bulk energy of its transition layer, nor its
interfacial energy on twin bands. The theory of hysteresis we propose is based on the hypothesis that
the main energy barrier leading to hysteresis arises from these contributions. Thus, we propose that
the main energy barrier leading to hysteresis is the growth of fully developed austenite/martensite
interfaces. We implement this idea via a nucleation calculation. Ours is not the first nucleation
calculation that has been done for martensite, but, as far as we can determine, previous calculations
have not allowed such fully developed interfaces.

Recently, the interfaces between austenite and martensite in one of the alloys with λ2 = 1
in the system TiNiPd has been observed using high resolution electron microscopy by Delville et
al. [10]. These observations confirm the presence of untwinned, atomically sharp interfaces. The
microstructures observed are unusual as compared with normal (λ2 6= 1) martensites.

This theory predicts a dramatic sensitivity of the size of the hysteresis to λ2. In particular, the
predicted graph of hysteresis vs. λ2 has a singularity at λ2 = 1, like the measured data. The theory
predicts that this graph depends on other physical parameters including the critical nucleus size,
the other eigenvalues λ1, λ3, the interfacial energy constant, an elastic modulus, the transformation
temperature and the latent heat. However, for the alloys studied, the dependence on these other
parameters, to the extent we can estimate them, is weak, consistent with the universality of the
measured graphs. The graph of hysteresis vs. λ2 is not predicted to be universal among all other
alloys of other symmetries and properties.

Our prediction is not completely quantitative because of lack of knowledge of the interfacial
energy constant, the critical nucleus size, and the fact that our model of the transition layer is not
optimal. Because of recent and ongoing work [16, 32, 37, 38, 42, 45] on various new methods of
measuring interfacial energy, progress is expected on the former.

Regarding the optimality of the transition layer, we present a new approach to the calculation of
the optimal layer. We want to do this in order to lay the groundwork for a quantitative calculation
of the hysteresis, but also for another reason suggested by this paper. That is, when we use a
naive but reasonable calculation of the energy of the layer, we find a dramatic dependence of the
energy of layer on the twin system that participates in the austenite/martensite interface, Table
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4. For the lattice parameters of Ti50Ni50−xPdx, x ∼ 11, this energy varies almost two orders of
magnitude, depending on the twin system, even within a given twin type. This is quantified by a
certain geometric factor. If this property extends to the optimal layer, then it could explain why
certain twin systems are preferred in martensitic phase transformations.

Normally, the energy of the transition layer is thought to depend on the nonlinear elastic proper-
ties of the material. However, the elastic energy minimization problem for determining the structure
of the layer contains a small parameter for these alloys, namely |λ2 − 1|. This opens the way for
the use of Γ-convergence arguments to derive a limiting variational principle for determination of
the elastic energy of the layer for alloys with λ2 near 1. We do this in Section 8. As is typical in
such arguments the limiting variational principle has a universal status. That is, the input for the
calculation of the limiting energy involves only the lattice parameters of austenite and martensite
and the linear elastic moduli. In our derivation we consider only minimization of the elastic energy
of the martensite. Future work should consider also relaxation of the austenite as well as the pos-
sibility of branching of the twins in the martensite [20, 21, 19]. We believe that our derivation lays
the groundwork for these further calculations, which can lead to accurate evaluation of the energy
in the transition layer. A side benefit of such a derivation is it will give a way to measure interfacial
energy constant, by balancing bulk and interfacial energy in the usual way by studying alloys with
λ2 near 1 and using the measured fineness of the twins these alloys.

The full statement of the Γ-limiting problem is the problem of minimizing the following elastic
energy,
∫

Ω`

1

2

[

(v,1⊗A−Tm+ (a+
1

ζ
v,2 )⊗A−Tn) · C[v,1⊗A−Tm+ (a+

1

ζ
v,2 )⊗A−Tn]

]

ζdt1dt2, (1)

over functions v and parameters 
η subject to the boundary conditions,

v(t1, 0) ‖ a, v(t1, 1) ‖ a, (v(t1, 0)− v(t1, 1)) · a ≥ 0, −` ≤ t1 ≤ 0,

v(0, t2) = 0, v(−`, t2) = ζ(1− t2 + 
η)a, 0 ≤ t2 ≤ 1. (2)

The notation is the following. Ω` is a rectangular domain of length `, m is the normal to the habit
plane when the condition for exact compatibility (λ2 = 1) is satisfied, a is the amplitude of the twin
and n is its normal at λ2 = 1, A = I+b⊗m is the deformation gradient of the martensite variant
that is compatible with austenite at λ2 = 1, C is the elasticity tensor at A, i.e., of the martensite at
the compatible variant, ζ is the periodicity (length scale) of the twin bands, and 
η is a length that
describes the offset of the vanishingly small twin band; essentially, it describes asymptotic bending
of this band. It is believed that, without the rigorous Γ-convergence argument presented here, it
would not be possible to guess this detailed form of this linear elasticity problem for the transition
layer.

Reversibility, measured for example by fatigue life under cyclic transformation, is as important
as low hysteresis for actuator applications. The connection between size of the initial or stabilized
hysteresis loop and the fatigue life has been investigated by Gall and Maier [13], and Kato et al. [18],
and recently by Moumni et al. [31]. All of these authors show a correlation between the hysteresis
and fatigue life. The latter authors conclude that “it is shown that the dissipated energy of the
stabilized cycle is a relevant parameter for the estimation of lifetime�.

There are many papers that discuss hysteresis in martensites. These include papers that propose
constitutive equations for martensitic materials from which hysteresis loops are computed ([43],
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[24], [6], [44], [26], [48]), those that discuss hysteresis in martensites in the presence of disorder
([39], [46]); papers that relate hysteresis to the attainment of a self-organized critical state [34],
to metastability induced by incompatibility [2], and to pinning of interfaces by defects ([22], [49]).
Another line of work models hysteresis using the Preisach model and its generalizations [4]. Not all
of these theories are in direct contradiction with the one proposed here. Some of these theories are
“micromechanical� and contain the parameter λ2 that plays such an important role in this paper,
and thus these theories can be implemented with λ2 near 1 so as to examine their consistency with
the measured hysteresis given here.

The notation is similar to that in the book of Bhattacharya [5]. In particular a ⊗ n is the
3 × 3 matrix with rectangular Cartesian components ainj, defined from two vectors a,n ∈ R3.
SO(3)= {R ∈ R3×3 : RTR = I, detR = 1} denotes the set of 3 × 3 rotation matrices. Additional
background for the Γ-convergence argument is given in Section 8.4.1.

2 Experimental methods

The main experimental results reported in this paper are measurements of hysteresis vs. lattice
parameters in a family of TiNiX alloys, X = Cu, Pd, Pt, Au, in which the composition was system-
atically tuned to make the middle eigenvalue of the transformation strain matrix equal to 1. For
the interpretation of these results in terms of energy barriers, measurements of transformation tem-
perature, latent heat and density are needed, and these are also reported. The experimental results
are presented in Section 4. In this section we briefly summarize the experimental methods that
were used. More detailed information, particularly concerning uncertainty and the repeatability of
the measurements, can be found in the thesis of Zhang [50].

Alloys of TiNiX, X = Cu, Pd, Pt, Au, were arc-melted on a water cooled copper hearth from high
purity elemental materials under argon protection, after purging the chamber several times under
vacuum. Ti was used as an hydrogen-getter. The resulting buttons were sliced using an electrical
discharge machine (EDM) and then heat treated under vacuum in quartz ampoules, followed by
a water quench. For the various compositions the annealing temperature was 700-850◦C, and
quenching water temperature was 0-40◦C. A careful electrolytic polishing gave samples for both the
x-ray measurements and differential scanning calorimetric (DSC) measurements. The electrolyte
was 85-90% glacial acetic acid (CH3COOH) and 10-15% perchloric acid (HCLO4) by volume, the
cathode was stainless steel, the anode was stainless steel or Ti, the voltage was 35-40V, and the
temperature of the bath was 0◦C.

Lattice parameters of the alloys were measured on a Scintag x-ray diffractometer outfitted with a
temperature controlled stage. Special attention was paid to alignment by using an internal standard
(NIST standard reference 640c) and periodically doing in-situ alignment at different temperatures.
The eigenvalues λ1, λ2, λ3 were calculated directly from the lattice parameters and formulas given
below. The density of the alloys was calculated from atomic composition of the starting materials
and measured unit cell volume.

The DSC measurements were conducted on the TA Instruments Q1000 according to the ASTM
standard F2004-03. The DSC samples were thinned to 100 µm, and electrolytically polished by the
method described for the x-ray specimens.

Both the x-ray diffraction and calorimetry methods were used to determine the transformation
temperatures. Austenite is stable at high temperature and martensite is stable at low temperature.
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At some temperature θc in between, the two phases have the same bulk free energy. Because of
the presence of hysteresis, θc is difficult to measure directly. When austenite is cooled down to a
certain temperature, it begins to transform to martensite. This temperature is the martensite start
temperature Ms. With further cooling, the transformation is completed at the martensite finish
temperature Mf . When martensite is heated, it transforms back to austenite. The austenite start
temperature and austenite finish temperature are denoted by As and Af , respectively. To get these
four temperatures from the DSC measurements we used the standard procedure of constructing
intersections of approximate asymptotic lines. Operationally, we defined θc as the average of the
four characteristic temperatures, i.e., (As+Af+Ms+Mf )/4. In the x-ray measurements, the trans-
formation temperature θc was defined as the intensity of austenite peak at half of its maximum
value. The hysteresis was defined as (As+Af )–(Ms+Mf ).

In the x-ray method we determined the temperatures Ms, Mf , As, Af using the following
procedure. The 2θ angle was first confined to the interval 39◦ to 46◦ because the (110) peak of B2
phase, the (111) peak of B19 phase, and the (1̄11), (111) peaks of the B19′ phase of the TiNiX
alloys, which are the strongest among all peaks of the corresponding phases, are within this range.
We then scanned the sample at high temperature to obtain a pure austenite pattern. Using the
same method, we scanned the sample at low temperature to get a pure martensite pattern. Then
we gradually decreased the scan interval of temperature. Because x-ray patterns are sensitive to
a change of lattice structures, they can detect a tiny phase change which would be difficult to
quantify by other methods. To have a definite criterion for “start� and “finish� we established a
convention. We let the pure austenite pattern at high temperature and the pure martensite pattern
at low temperature be standards. Then, the temperatures at which the corresponding major peaks
decreased 2% from those of the standard patterns were taken to be As or Ms, respectively. Af and
Mf were defined by a similar criterion using 98% of the standard peaks.

The latent heat L was defined as the area within the triangle with base (Af – As)/2 and
height equal to the maximum height of the DSC peak, divided by heating/cooling speed, which was
typically 10◦C/s. These were measured on the heating part of the cycle because the cooling part
exhibited a longer tail that made the definition of Mf somewhat difficult.

3 Theoretical methods

The variable λ2 will denote the middle eigenvalue of the transformation strain matrix. For example,
in the case of a cubic to orthorhombic phase transformation, the six linear transformations that
map the cubic structure to the six orthorhombic variants of martensite are given by (15) in the
cubic basis. Their eigenvalues are assumed to be ordered, λ1 ≤ λ2 ≤ λ3. The alloys of interest in
this paper have λ2 near 1.

The theoretical part of this paper relies on a technique called Γ-convergence, due in its abstract
form to De Giorgi [9]. This method allows one to pass from a variational principle depending
on a small parameter to a limiting variational principle. In the present case the small parameter
is1 |λ2 − 1|, and the variational principle is the minimization of the free energy stored near the
austenite/martensite interface. As is typical, the limiting variational principle is not obtained by
putting λ2 = 1 (or expanding the energy density in a Taylor series about λ2 = 1). While one could

1Or, equivalently, the small parameter can be chosen as λ, the volume fraction appearing in the crystallographic
theory of martensite, this being related to λ2 − 1 by (34).
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imagine finding the minimizers of the original variational principle, calculating their asymptotic
form as λ2 approaches 1, and then seeking a variational principle for these asymptotic limits, the
method of Γ-convergence gives the limit directly, without the intermediate step of calculating the
minimizers of the original variational principle. The method involves the careful calculation of
upper and lower bounds on low energy deformations as λ2 tends to 1. It follows from the method
that the limit, in a well-defined sense, of a sequence of minimizers (parameterized by λ2) of the
original variational principle is a minimizer of the limit energy, and their energies also converge to
the minimum of the limiting energy.

As is typical with Γ-convergence, the limiting variational principle is simpler than the original
one and has a universal status. In the present case this is realized by the fact that the limiting energy
only depends on knowledge of the linearized elastic moduli of austenite and martensite, whereas the
original principle depends on their nonlinear elastic properties. Once these moduli are measured
for λ2 ∼ 1 alloys, and the interfacial energy on the twins are measured, the kinds of scaling laws
discussed by Schryvers [38] can be investigated on a quantitative basis. Recent advances on the
measurement of interfacial energies (see [37], [42], [45]) make this a realistic possibility.

4 Measurements of hysteresis, transformation temperature
and latent heat in alloys whose lattice parameters have
been tuned to make λ2 = 1

For this study we began with the Ti50Ni50−xCux system, relying on a paper of Moberly and Melton
[30] that showed the presence of twin-free habit planes in this alloy at x = 10. A closer examination
of the original thesis of Moberly [29] revealed that these twin-free interfaces were rather rare: the
photographs in the original thesis mainly showed twinned interfaces in the same alloy. In hindsight,
we believe that the pictures chosen for publication were found are places in the specimen where, due
to the presence of stress, the lattice parameters were perturbed from the stress-free, equilibrium
values. (In our subsequent x-ray measurements this could be understood as arising from lattice
parameters corresponding to points near the tails of the x-ray peaks in this system.) As is known,
at about x = 10 at. % Cu this alloy loses the monoclinic martensite in favor of an orthorhombic
martensite. We prepared a matrix of alloys of Ti = 48, 49, 50, 51, 52 at.%, Cu = 0, 5, 10, 15,
20, 25, 35 at.% with Ni = 100 - Ti - Cu and measured lattice parameters. The variation of λ2 vs.
composition for these alloys is shown in Figure 1.

For the case Ti = 50 at.% we also prepared alloys with Cu = 25, 30, 35 but these contained
excessive TiCu precipitates and are not discussed here.

This data motivated the wider combinatorial study [8] of this system. Taken together, and
accounting for the slightly decreased accuracy of the combinatorial measurements, we did not find
convincing evidence that λ2 = 1 was achieved at any composition the TiNiCu system, although, as
seen in Figure 1, Ti49Ni31Cu20 comes quite close. Thus, we shifted further study to other alloys.

The Hume-Rothery rules for atomic size and valence indicated that Rh, Ir, Pd, Pt, Ag, and
Au, all substituting for Ni, would be good candidates for stabilization of the orthorhombic phase.
Extensive work on the alloys Ti50Ni50−xAgx revealed a maximum soluability of x = 2 at. % Ag
which we were not able to overcome by heat treatment, and therefore did not yield any useful
alloys. We note that λ2 < 1 is satisfied by all the TiNiCu alloys mentioned above, and also by
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Figure 1: Measurements of λ2 vs. composition in the TiNiCu system, Ti = 48, 49, 50, 51, 52 at.%,
Cu = 0, 5, 10, 15, 20, 25, 35 at.% with Ni = 100 - Ti - Cu.

TiNi itself. Thus, the identification of starting alloys with λ2 > 1 was critical for an interpolation
scheme. We noticed from work of Donkersloot and van Vucht [11] that measured lattice parameters
at the martensitic transformation in TiPd have λ2 > 1, and our subsequent measurement of lattice
parameters in Ti50Ni34Pd16 showed λ2 > 1. With regard to the basic hypothesis of a connection
between hysteresis and λ2 = 1, we were also motivated by the data collected in US Patent 5,951,793
which did not report lattice parameters but indicated a sharp drop in hysteresis for Ti49.5Ni40.5Pd10.
The review article of Miyazaki and Ishida [28] also indicated a sharp drop of the hysteresis near 10
at. % Pd in the data they report on films, although the interpretation suggested by the authors was
of a continuous decrease of hysteresis with increasing Pd. Referring to their data, Miyazaki and
Ishida state that this is a surprising result.

Having found that Ti50Ni34Pd16 has λ2 = 1.005 > 1 we did a straightforward interpolation. A
similar procedure was followed with Ti50Ni50−xXx, X = Pt, Au: first locate one alloy with λ2 > 1,
then interpolate backward. The data for hysteresis vs. composition for X = Pd, Pt, Au are shown
in Figure 2. Note the drop of hysteresis of a factor between 5 and 10. Although the minimum
hysteresis in all cases occurs at different values of x, in each case the minimum occurs very near the
composition where λ2 = 1.
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Figure 2: Width of the hysteresis vs. x for alloys Ti50Ni50−xXx, X = Pd, Pt, Au.

At each data point of Figure 2 we also measured lattice parameters of the two phases at the
same temperature. From this we calculated λ2 corresponding to each point in Figure 2. It becomes
more interesting to eliminate x and plot hysteresis directly vs. λ2. This is done in Figure 3. The
combinatorial data from [8] on TiNiCu is also included in this plot. One can see a remarkable collapse
of the data onto two lines shaped like a V. The suggestion of this plot is of a universal behavior.
However, one should note that, while latent heats, elastic moduli and the other lattice parameters
vary somewhat among these alloys, the crystallography is in all cases (except the TiNiHf data, see
below) cubic to orthorhombic. Thus, one can conjecture that, within a certain crystallographic
change, the main parameter that controls hysteresis is λ2 and the behavior is universal. The theory
presented later in this paper supports this viewpoint. We have also included on Figure 3 data on
the system TiNiHf, which undergoes a cubic to monoclinic (B2 to B19’) as in TiNi. The line is
drawn using data of Matveeva et al. [27] and Potapov et al. [35] and was confirmed by our own
measurements on this system. Alloys in the family TiNiHf, once considered promising candidates
as high temperature shape memory alloys, show excessive hysteresis at concentrations of Hf that
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Figure 3: Width of the hysteresis vs. λ2

raise the transformation temperature significantly. This can be understood from the following
simple observation. Binary TiNi has λ2 < 1. Increase of the percentage of Hf (substituted for Ti)
decreases the value of λ2 making it further from 1, significantly raising the hysteresis as indicated
in Figure 3.

We note that we have previously reported [17] an extension of alloys satisfying λ2 = 1 to the
quaternary system TiNiCuPd.

For our later purpose of evaluating certain quantities in the theory, we will need the detailed
data on lattice parameters (i.e., also λ1 and λ3) and latent heat. This data is reported in Table 1.
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Table 1: Eigenvalues of the transformation strain matrix, latent heat and density of TiNiPd alloys

alloy θc(
◦C) λ1 λ2 λ3 latent heat (J/g) density (g/cm3)

TiNi 80 0.36 6.44
TiNi43Pd7 -20 0.9398 0.9970 1.0606 0.30 6.75
TiNi41Pd9 40 0.9341 0.9988 1.0635 0.14 6.76
TiNi39Pd11 25 0.9280 1.0001 1.0674 0.23 6.85
TiNi34Pd16 20 0.9280 1.0050 1.0633 0.38 7.11
TiNi32Pd18 113 0.9227 1.0050 1.0710 0.58 7.20
TiNi28Pd20 103 0.9244 1.0060 1.0691 0.56 7.35
TiNi28Pd22 155 0.9186 1.0060 1.0753 0.70 7.40
TiNi25Pd25 189 0.9167 1.0070 1.0775 0.60 7.54

5 Background on the crystallographic theory and special
relations among lattice parameters

We consider a material transforming from austenite to martensite. Figure 4 sets the notation. We
assume |m| = 1, |n| = 1 and of course m not parallel to n. The vectors n⊥ and m⊥ lie in the
(m,n) plane and are uniquely determined by n⊥ ·n = 0, m⊥ ·m = 0, |n⊥| = |m⊥| = 1, m⊥ ·n > 0,
n⊥ ·m = m⊥ · n. (This normalization is not the standard one, but it is more convenient here.)

Figure 4: Austenite/martensite interface with a simple transition layer (C).

We assume a basic framework for martensitic phase transformations. That is, we consider a free
energy density ϕ(F, θ) as a function of deformation gradient and temperature defined onM3×3×R≥.
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We hold θ fixed, below transformation temperature, and drop it from the notation until later in
this paper. At this temperature ϕ is assumed to have a local minimum at I and a lower global
minimum on the martensite energy wells, SO(3)U1, . . ., SO(3)UN . We assume the distinct matrices
U1, . . . ,UN are positive-definite, symmetric, and symmetry related: there exists R̃2, . . . , R̃N ∈
SO(3) such that Ui = R̃iU1R̃T

i , i = 2, . . . , N . We also assume that that the wells SO(3)U1 and
SO(3)U2 are rank-1 connected, i.e., there are 
a,n ∈ R3, |n| = 1, and R ∈ SO(3) such that

RU2 −U1 = 
a⊗ n. (3)

To do the asymptotic analysis we stay away from the singular situation λ2 = 1 by assuming that
det(U2

1 − I) 6= 0. The matrices A = 
RU1 and B = 
RRU2, 
R ∈ SO(3), are assumed to satisfy the
equations of the crystallographic theory of martensite,

(λB+ (1− λ)A)− I = b⊗m, (4)

for suitable 0 < λ < 1, b,m ∈ R3, |m| = 1 and 
R ∈ SO(3). Given the assumptions above, necessary
and sufficient conditions that there is a solution 
R ∈ SO(3), b,m ∈ R3 and 0 < λ < 1 of (4) are
that (see [3])

δ ≤ −2, and trU2
1 − detU2

1 +
|
a|2|n|2

2δ
≥ 2,

where δ = 
a ·U1(U
2
1 − I)−1n. (5)

When these conditions are satisfied there are two solutions for λ given by λ = λ? and λ = 1 − λ?
where:

λ? =
1

2
+

1

2

√

2

δ
+ 1. (6)

Remark. (Brief summary of the crystallographic theory; see [47], [25], [7], and [3] for the version
given here.) After substituting for B using (3), the equation (λB + (1 − λ)A) − I = b ⊗ m
becomes 
R(U1 + λ
a⊗ n) = I+ b⊗m, which has a solution if and only if the middle eigenvalue of
Gλ = (U1 + λn⊗ 
a)(U1 + λ
a⊗ n) is 1. This matrix has an eigenvalue equal to 1 if and only if

g(λ) = det[(U1 + λn⊗ 
a)(U1 + λ
a⊗ n)− I] = 0. (7)

Although it appears to be a sixth order polynomial, g(λ) is actually quadratic in λ and symmetric
about 1/2, so it can be written

g(λ) = ζ(λ− 1

2
)2 + η. (8)

The simplest evaluation of ζ and η follows from the equations

1

4
ζ + η = det(Gλ − I)|λ=0 = det(U2

1 − I)

−ζ =
d

dλ
det(Gλ − I)|λ=0 = 2(det(U2

1 − I))(
a ·U1(U
2
1 − I)−1n) (9)

The condition that g(λ) has a root on (0, 1) is that g(0)g(1/2) ≤ 0 which gives the first of (5).
Suppose this holds and call the roots λ?, 1 − λ?. A necessary and sufficient condition that these
roots are associated to the middle eigenvalue is that

0 ≤ (λ1 − 1)(1− λ3) = λ1 + λ3 − 1− λ1λ3 = trGλ? − 2− detGλ? , (10)
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which gives the second of (5). We note that the cofactor conditions discussed in [17] are the
conditions that i) the middle eigenvalue of U1 is 1 and ii) g(λ) is identically 0, i.e., that both ζ and
η vanish. In this case det(U2

1− I) = 0, and the second equation in (9) remains valid in the modified
form ζ = −2
a ·U1cof(U2

1 − I)n) = 0.

We let a = 
R
a with 
R obtained as in this remark, that is, B−A = a⊗ n. A simple transition
layer is the one shown in Figure 4. It is kinematically possible because, using (5), there is a matrix
C such that

C− I = f⊗m, Cv = Av, Cw = Bw. (11)

(see Figure 4). To verify this, note first that

v =
1

n ·m⊥
(

(1− λ)εm⊥ − αn⊥
)

, w =
1

n ·m⊥
(

λεm⊥ + αn⊥
)

(12)

for some α > 0, which is the height of the triangle as shown in Figure 4 as one can see by computing
−v ·m.

Now it can be seen that the following expression for C satisfies (11):

C = I+ f⊗m, f = b+
ε

α
λ(1− λ)a. (13)

The matrix C is of course not on the energy wells.

6 Energy barrier of a fully developed austenite/martensite
interface

Consider the case of cooling from austenite to form martensite. We picture a lenticular nucleus,
stabilized by a defect (e.g., precipitate, triple junction on a grain boundary), and we imagine that
this nucleus is already present at temperatures above Ms. Our main hypothesis is that this nucleus is
already twinned, so its boundary consists of two fully developed, slightly bowed austenite/martensite
interfaces. We ignore the ends of the nucleus, and picture simply a twinned laminate of martensite
of length ` (i.e., the half-width of the nucleus) meeting austenite. As sources of energy, we consider
the interfacial energy on the twin boundaries modeled by a sharp interface theory, the bulk elastic
energy stored near the austenite/martensite interface, and the bulk free energies of the two phases.
We analyze the energy as a function of ` accounting for the possibility that the twin density and
elastic transition layer may relax as ` is changed. In this section we consider a simple model for the
transition layer that is improved later in this paper.

We consider the case in which the middle eigenvalue λ2 of the matrix U1 is close to 1 and, for
simplicity, we fix the other eigenvalues2. In a basis for which U1 is diagonal, we then evaluate the
formula (5) for δ:

δ = (a1n1)
λ1

λ21 − 1
+ (a2n2)

λ2
λ22 − 1

+ (a3n3)
λ3

λ23 − 1
. (14)

2The other eigenvalues λ1, λ3 could also be allowed to vary as long as they are bounded away from 1; this of
course forbids the cubic to tetragonal case, since in that case λ2 = 1 and λ1 ≤ λ2 ≤ λ3 imply that λ1 = 1 or λ3 = 1.
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This is dominated by the middle term and we note that, typically, as λ2 approaches 1, the quantity
a2n2 does not tend to zero3. In view of the first condition of (5) we have the following: assuming
that a2n2|λ2=1 6= 0 then for a given twin system the crystallographic theory has solutions
for at most one of the regions λ2 & 1 or λ2 . 1. (See also Items 1 and 2 below.)

We now give a more detailed study of this in the cubic-to-orthorhombic case, which applies to
all the NiTiX alloys described above. In this case the six transformation strain matrices are,

U1 =





λ2+λ3
2

λ2−λ3
2

0
λ2−λ3

2
λ2+λ3

2
0

0 0 λ1



 , U2 =





λ2+λ3
2

λ3−λ2
2

0
λ3−λ2

2
λ2+λ3

2
0

0 0 λ1



 ,

U3 =





λ2+λ3
2

0 λ2−λ3
2

0 λ1 0
λ2−λ3

2
0 λ2+λ3

2



 , U4 =





λ2+λ3
2

0 λ3−λ2
2

0 λ1 0
λ3−λ2

2
0 λ2+λ3

2



 ,

U5 =





λ1 0 0
0 λ2+λ3

2
λ2−λ3

2

0 λ2−λ3
2

λ2+λ3
2



 , U6 =





λ1 0 0
0 λ2+λ3

2
λ2−λ3

2

0 λ2−λ3
2

λ2+λ3
2



 . (15)

Written this way λ1, λ2, λ3 are the eigenvalues of each of these matrices, and, for the application
to the TiNiX alloys studied here, we can without loss of generality assume these are ordered,
λ1 ≤ λ2 ≤ λ3. We consider twin systems that consist of variant 1 twinned with all other variants;
it is sufficient to consider these by symmetry. Variant 1 is compound twinned with variant 2, but it
forms Type I/Type II twins with the other four variants. (Thus, all pairs of variants are twinned).
By direct calculation, in the notation of (14), we have the expressions for a2n2 listed in Table 2 at
λ2 = 1.

Table 2: Values of a2n2 for various twin systems at λ2 = 1. Cubic-to-orthorhombic case.

twins between variants 1 and 2 twins between variants 1 and 3, 4, 5, 6
value of a2n2
(Type I twins)

λ23−1
λ23+1

λ21(3λ
2
3−1)−2λ23

2(2λ23+λ
2
1(1+λ

2
3))

value of a2n2
(Type II twins)

λ23−1
λ23+1

λ23+2λ21−3
2(λ23+2λ21+1)

The numerators of the expressions in the last column of Table 2, for eigenvalues near 1, are close
to λ23 − 1 + 2(λ21 − 1) which is typically negative for experimental cases and also for any case which
is nearly volume preserving. Hence, under this typical situation that entries in the last column of
Table 2 are negative, we reach the following conclusions:

1. λ2 . 1. Only compound twins form austenite/martensite interfaces. Altogether, there are
only six of these twin systems, two each for variants 1-2, 3-4, 5-6.

2. λ2 & 1. All of the Type I and Type II twin systems can form austenite/martensite interfaces.

3“Typically”, here means that if U1 is changed to ρU1 for ρ near 1, the middle eigenvalue of ρU1 can be made
to pass through 1 but a2n2 is only changed to ρa2n2.
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This striking conclusion is consistent with results of Hane and Shield [14]. Experimental values of
the dominant factor a2n2 for alloys in which λ2 = 1 are given in Table 3. Within a given twin type,
these numbers do not vary greatly among these various systems.

Table 3: Values of a2n2 for alloys of TiNiX, X = Cu, Pt, Pd, Au, at compositions where λ2 = 1

twins between var. 1 and 2 twins between var. 1 and 3, 4, 5, 6
Ti50Ni26Cu20Pd4
(Type I twins)

0.0534 -0.0137

Ti50Ni26Cu20Pd4
(Type II twins)

0.0534 -0.0103

Ti50Ni39Pd11
(Type I twins)

0.0651 -0.024

Ti50Ni39Pd11
(Type II twins)

0.0651 -0.018

Ti50Ni43Pt7
(Type I twins)

0.0645 -0.0212

Ti50Ni43Pt7
(Type II twins)

0.0645 -0.0157

Ti50Ni37Au13
(Type I twins)

0.0606 -0.018

Ti50Ni37Au13
(Type II twins)

0.0606 -0.0133

One should remark that even though the crystallographic theory forbids certain twins to par-
ticipate in the austenite/martensite interface, all the types of twins listed above are possible in the
martensite. For example, in cases where compound twins are forbidden by the crystallographic the-
ory to be present in austenite/martensite interfaces, they could still be observed in the martensite,
produced by stresses built up during transformation, especially in a polycrystal.

Assume that we are in one of the regions where the crystallographic theory has a solution, that
is, the second of (5) holds and either λ2 & 1 and a2n2 < 0 or λ2 . 1 and a2n2 > 0. From (6) we
then have that in the regime of interest in this paper λ? ∼ 1. We confine attention to the solution
λ = 1 − λ?. Thus, the volume fraction λ ∼ 0, i.e., it is the volume fraction of the variant that is
paired with variant 1 that is disappearing as λ2 → 1.

Thus the martensite region contains a large volume fraction where the deformation gradient is
A. Also, from equations (4) and (13) we have

A→ I+ b⊗m, C→ I+ b⊗m (16)

as λ2 → 1 with ε/α fixed. Since C is near A in this limit, it is natural to estimate the energy
of C using a quadratic approximation of the free energy density ϕ near A. We would also like
to optimize over the choice of α (see Fig. 4), but we keep ε fixed for now. Later, after we have
introduced interfacial energy, we will optimize over the choice of the “fineness� ε.

Note that C = I + f ⊗ m = I + b ⊗ m + (ε/α)λ(1 − λ)a ⊗ m, and from (4) we have A =

15



I+ b⊗m− λa⊗ n. Thus, as must be true, rank(C−A) = 1, i.e.,

C = A+ a⊗
[

λn+
ε

α
λ(1− λ)m

]

. (17)

For our simple estimate of the energy of C we let µ be a typical elastic shear modulus, we note
that the area of each triangle containing C is

εα

2m · n⊥
. (18)

(Recall that by definition m · n⊥ > 0.) At this point it is convenient to fix one value of the free
energy by putting ϕ(A, θ) = 0, so the free energy of C will be positive. This of course implies that
ϕ(I, θ) > 0. Suppose the width (into the page) of the martensite plate is w. Then, we can estimate
the energy of C by using a linear elasticity theory4 obtained by linearizing about A. Using (18)
and letting cλ = A−Tn+ (ε/α)(1− λ)A−Tm (so that CA−1 = I+ λa⊗ cλ), we have

energy of one triangle =
εαw

2m · n⊥

(

µ

2

∣

∣

∣

∣

1

2
[(CA−1 − I) + (CA−1 − I)T ]

∣

∣

∣

∣

2
)

=
εαw

2m · n⊥

(

µλ2

8
|a⊗ cλ + cλ ⊗ a|2

)

=
εαw

2m · n⊥

(

µλ2

4

(

(a · cλ)2 + |a|2|cλ|2
)

)

. (19)

The triangle height α is contained in the prefactor as well as in the expression for cλ. Minimization
of this energy over α > 0 gives

αmin = ε(1− λ)

√

(a ·A−Tm)2 + |a|2|A−Tm|2
(a ·A−Tn)2 + |a|2|A−Tn|2

. (20)

We insert this value of α from now on. Then, assuming the height of the martensite plate is h,
giving h/ε triangles, we then have

total energy of the triangles = εwhµλ2(1− λ)ξ, (21)

where the geometric factor ξ is given by

ξ =
1

4m · n⊥

(
√

(

(a ·A−Tm)2 + |a|2|A−Tm|2
)(

(a ·A−Tn)2 + |a|2|A−Tn|2
)

+ (a ·A−Tm)(a ·A−Tn) + |a|2(A−Tm ·A−Tn)
)

(22)

The geometric factor measures in a rough way, i.e., for a simple model of the transition layer,
the effect that different twin systems have on the elastic energy stored in the austenite/martensite

4Given that the crystallographic theory is geometrically exact, one could worry about the possible role of finite
rotations in this calculation, and therefore be led to use nonlinear elasticity instead of linear elasticity to estimate the
energy of C. The Γ-convergence argument given later in this paper justifies the use of linearized elasticity (linearized
about A) in this context for λ near 1.
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interface. It depends only on the data that goes into the crystallographic theory, that is, the energy
wells and lattice parameters. It is interesting to look at values of the geometric factor for various
twin systems. This is done in Table 4 for the alloy Ti50Ni50−xPdx, x ∼ 11. It can be seen that
there is a very wide variation of almost two orders of magnitude of this number, and it also varies
significantly within a given type of twin. This partly motivated the more careful treatment of the
transition layer given later in this paper. It may possibly explain why certain twins predominate in
certain alloys. It also suggests that within a certain twin type, certain pairs of variants would tend
to be rather strongly preferred.

Table 4: Geometric factor ξ for various twin systems for Ti50Ni50−xPdx, x ∼ 11. Note the wide
variation. Components in the cubic basis.

variants twin type habit plane ξ × 103

1 and 2 compound (-0.5005, 0.5005, -0.7064)
8.07
3.47

1 and 3
Type I
Type II

(-0.5005, 0.5005, -0.7064)
48.6
19.8

1 and 4
Type I
Type II

(-0.5005, 0.5005, -0.7064)
14.7
2.07

1 and 5
Type I
Type II

(-0.5005, 0.5005, -0.7064)
23.4
162

1 and 6
Type I
Type II

(-0.5005, 0.5005, -0.7064)
3.64
16.9

1 and 2 compound (0.5005, -0.5005, -0.7064)
3.47
8.07

1 and 3
Type I
Type II

(0.5005, -0.5005, -0.7064)
23.4
162

1 and 4
Type I
Type II

(0.5005, -0.5005, -0.7064)
3.64
16.9

1 and 5
Type I
Type II

(0.5005, -0.5005, -0.7064)
48.6
19.8

1 and 6
Type I
Type II

(0.5005, -0.5005, -0.7064)
14.7
2.07

Now we repeat the classical calculation with this model of the transition layer, except we have
the austenite and martensite wells at different heights. We introduce an interfacial energy per unit
area κ on the twins and write the total energy as

total energy =
2κwh`

ε
+ εwhµλ2(1− λ)ξ + ϕ(A, θ)wh`+ ϕ(I, θ)wh(L− `), (23)

where L is the total length of the strip, including martensite and austenite (L >> `). We minimize
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this expression over ε > 0 and get

ε =

√

2κ`

µλ2(1− λ)ξ
, (24)

giving an inverse relation between twin spacing ε and volume fraction λ in the limit as λ→ 0 (i.e.,
as λ2 → 1). This gives the total minimum energy

2whλ
√

2κµ`(1− λ)ξ + wh`
(

ϕ(A, θ)− ϕ(I, θ)
)

+ const. (25)

This has the typical form of an energy with a single barrier that arises in a nucleation calculation.
The

√
` term dominates for small ` and the linear term dominates for large `. Recall that we have

assumed that 0 = ϕ(A, θ) < ϕ(I, θ); thus, the energy goes to −∞ as `→∞. Focusing now on the
dependence of (25) on `, we see that the energy (25) has a single maximum at

`max =
2λ2κµ(1− λ)ξ

(ϕ(A, θ)− ϕ(I, θ))2
. (26)

The value of the total energy at `max is

energy at the barrier =
2λ2whκµ(1− λ)ξ
ϕ(I, θ)− ϕ(A, θ)

. (27)

Note that the energy at the barrier and `max are both proportional to λ2. Thus, as λ2 → 1 both
`max and the height of the barrier tend to 0 at the same rate.

Now we can make a simple criterion based on the idea that typical defects in the material
stabilize fully developed austenite/martensite interfaces at a value ` = `c. Then such interfaces are
expected to move when ϕ(I, θ)−ϕ(A, θ) is increased (by decreasing temperature) to a point where
`max given by (26) exceeds `c. This gives the criterion for the size of the hysteresis,

2λ2κµ(1− λ)ξ
(ϕ(A, θ)− ϕ(I, θ))2

= `c. (28)

To evaluate the denominator of this expression, consider a Taylor expansion of each energy well
about θ = θc. The minimizers A, I on the martensite and austenite wells, respectively, depend
weakly on temperature, so we expand the notation by writing A(θ), I(θ); these are still chosen to lie
on the wells and to satisfy the equations of the crystallographic theory as given above. Expanding
ϕ at each well about θ = θc we have

ϕ(A(θ), θ) = ϕ(A(θc), θc) +

(

∂ϕ(A(θ?), θ?)

∂θ
+
∂ϕ(A(θ?), θ?)

∂F
·A′(θ?)

)

(θ − θc),

ϕ(I(θ), θ) = ϕ(I(θc), θc) +

(

∂ϕ(I(θ?), θ?)

∂θ
+
∂ϕ(I(θ?), θ?)

∂F
· I′(θ?)

)

(θ − θc), (29)

where θ? is a suitable intermediate temperature between θ and θc (possibly different in the two lines
above). Since A(θ?), I(θ?) are local minimizers of ϕ at θ?, then the second terms within the large
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parentheses vanish. If we assume that the entropy density (= −∂ϕ/∂θ) is constant on the austenite
and martensite wells, respectively, for temperatures in the interval (θ, θc), identify the quantity

L = θc

(

∂ϕ(I(θc), θc)

∂θ
− ∂ϕ(A(θc), θc)

∂θ

)

(30)

as the latent heat, and use that the wells are at the same height at θc, we get by subtraction of (29)

ϕ(A, θ)− ϕ(I, θ) = L
θc − θ
θc

. (31)

We identify (1/2)H = (θc − θ) as the half width of the hysteresis when (28) holds. This gives the
criterion

λ

√

2κµ(1− λ)ξ
`c

= ϕ(A, θ)− ϕ(I, θ) = L
θc − θ
θc

=
1

2
HL

1

θc
, (32)

that is, the width of the hysteresis is

H =
2λθc
L

√

2κµ(1− λ)ξ
`c

. (33)

To compare with Figure 3, the dependence of H on λ2 near λ2 = 1 is of interest. This arises
from the dependence of λ on λ2 in (33). This is given by λ = 1 − λ? with λ? evaluated using (6)
and (14). Its dominant term as λ2 approaches 1 is

λ(λ2) =
1

2
− 1

2

√

√

√

√

−2|λ22 − 1|
|a1n1λ1(λ

2
2−1)

λ21−1
+ λ2a2n2 +

a3n3λ3(λ22−1)
λ23−1

|
+ 1

∼ 1

2
− 1

2

√

1− 4|λ2 − 1|
|a2n2|

. (34)

The slope at λ2 = 1 is

λ′(λ2) =

{

1/|a2n2|, λ2 = 1+,
−1/|a2n2|, λ2 = 1− . (35)

Putting (35) into (33) we get a formula for the asymptotic size of the hysteresis. This formula gives
a qualitative prediction like that seen in the experimental data (Figure 3): two lines meeting at a
sharp corner. Note that in Figure 5 the graph is not symmetric about λ2 = 1. That is because both
a2n2 and ξ depend on the twin system which, as noted above, is different on the different sides of
λ2 = 1.

Note that in Table 3 the values of a2n2 at λ2 = 1 for a given twin system do not vary much among
the alloys Ti-Ni-(Pd, Pt, Au, Cu-Pd). Similarly, the geometric factor for a given twin system also
varies only slightly among these alloys. The other parameters µ, θc, κ, L, `c that enter the formula
(33) for the hysteresis are also not expected to vary greatly among these alloys. Evidently, this
insensitivity suggests a reason for the universality of the measured graph of hysteresis vs. λ2, Figure
3. According to the present theory, this universality is not expected to extend widely to other alloys:

19



0.97 0.98 0.99 1.01 Λ2

0.005

0.010

0.015

0.020

0.025

Λ H1 - ΛL Ξ

Figure 5: Plot of the factor in the formula for the hysteresis H vs. λ2 that depends on lattice
parameters. For this plot the other eigenvalues are determined by λ1 = 0.93, λ1λ2λ3 = 1 and the
twin system is assumed to be the one with the lowest geometric factor ξ at the given λ2.

all of the parameters listed in this paragraph can be highly variable among different martensitic
materials.

These results are also valid away from λ2 = 1. Therefore it is interesting to plot the factor
λ
√

(1− λ)ξ in the formula for the hysteresis H vs. λ2. This is the factor that depends explicitly

on lattice parameters. A plot of λ
√

(1− λ)ξ vs. λ2 is shown in Figure 5. Comparing Figure 5 with
that of the data in Figure 3, one sees a remarkable similarity.

We cannot give more quantitative results because of the lack of knowledge of `c and of the
interfacial energy constant κ. Regarding the latter, among all shape memory alloys, there are very
few measured interfacial energies, those that are available are considered highly approximate by
most workers. Schryvers [38] studies the twin branching phenomenon in NiAl. From the associated
scaling law for twin spacing vs. distance from the habit plane he extracts a prefactor, and then, by
use of an estimate of the elastic energy of the transition layer (similar to that done here) he gets
an interfacial energy, roughly estimated at 1 mJ/m2. For Type I twins in CuAlNi Shilo et al.[42]
estimate 70 mJ/m2 by fitting measured profiles of twin boundaries to a Landau theory. Waitz et
al. [45] extracts atomic positions from high resolution images of twin boundaries and uses these to
assign atomic positions for density functional theory (DFT) calculations, arriving at a value of 14
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Table 5: Material constants used to estimate `c for Ti50Ni50−xPdx, x = 11

material constant reference
latent heat L = 0.231 J/g Table 1, this paper
transformation temperature θc = 298 K Table 1, this paper
elastic modulus µ = 27 GPa ref. [33]
density ρ = 6.85 g/cm3 Table 1, this paper
lattice parameters λ1 = 0.9280, λ2 = 1.0001, λ3 = 1.0674 Table 1, this paper
Interfacial energy density
(compound twins)

κ = 25 mJ/m2 estimated, see text

λ′(λ2)|λ2=1− = −1/a2n2 -15.36 Table 3, this paper
H ′(λ2)|λ2=1− -3000 K Figure 3, this paper

mJ/m2 for the compound twins and 187 mJ/m2 for the Type I twins in monoclinic TiNi. It should
be mentioned in this context that minimum energy calculations by Huang et al. [16] using several
different implementations of DFT do not give the accepted stable phase of NiTi at θ = 0 (i.e., the
one seen in the high resolution images of Waitz et al. [45]). O’Handley et al. [32] give 40 mJ/m2

for the compound twins in the tetragonal phase of an alloy of Ni2MnGa.
Despite these uncertainties, it is useful to work backwards from the hysteresis data in Figure 3

to a value of the critical length `c. To do this, we use twin systems with the smallest geometric
factor, as these will lose stability first according to the present viewpoint, and we consider the alloy
Ti50Ni50−xPdx, x ∼ 11. For this alloy, by direct calculation based on (22), the lowest geometric
factors are obtained from the Type II twins of variants 1 and 4 (geometric factor 2.07 × 10−3)
and the compound twins of variants 1 and 2 (geometric factor 3.47 × 10−3), and their symmetry
related twin systems. The slopes of the of the measured hysteresis data can then be used, together
with other assumed or measured material constants in Table 5, to give a value of `c using (33).
The values we obtain by that procedure are `c = 17.5µm (compound) and `c = 10.4µm (Type II).
Considering the uncertainty in the interfacial energy and other constants, these numbers could be
easily off by factors of 2 or 3. However, they do suggest rather large values of `c which is consistent
with the viewpoint adopted in this paper that the growth of fully developed austenite/martensite
interfaces is responsible for determining the size of the hysteresis.

7 Remarks and comparisons with other ideas about hys-
teresis

It should be emphasized that the simple theory given above gives zero hysteresis when λ2 = 1,
whereas the measured thermal hysteresis decreased to between 5 and 15 C in the alloys studied.
Possible reasons for this discrepancy are that 1) the alloys studied experimentally did not sufficiently
closely satisfy λ2 = 1 or were not sufficiently homogeneous, 2) the theory did not assign an energy to
the exact interface between austenite and martensite in the case λ2 = 1, and 3) other explanations
besides the crossing of an energy barrier associated with a fully developed austenite/martensite
interface, such as thermal activation (but see below) or pinning of interfaces by defects.
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In the above we have attributed the crossing of the barrier to the presence of defects in the
material, but a competing explanation is thermal activation, calculated, for example, by using
transition state theory. In this context it is useful to compare the barrier height we have calculated to
kθ. For this purpose we need also values of other dimensions h,w of the martensite plate. In almost
all observations of the first appearance of martensite, the plate is a thin plate, h� `c, w � `c. We
then obtain a highly conservative estimate of the applicability of transition state theory by putting
h = w = `c. Using the smallest value `c = 10.4 µm calculated above, we get a barrier height of
Eb = 9.0 × 10−11 J, while at θ = θc we have kθ = 4.4 × 10−21 J. Thus Eb/kθc ∼ 2 × 1010 and it
is seen that the crossing of the energy barrier we have calculated here by a thermal fluctuation is
exceedingly unlikely.

The latent heat L enters the formula (33) for the hysteresis in the denominator. In a sense θc/L
sets the scale for conversion of energy to temperature difference. All else the same, materials with
large latent heat will then have small apparent hysteresis. This is opposite to conventional wisdom,
which holds that large latent heat implies large hysteresis because of the difficulty of getting the heat
in and out of the material during transformation. The latter effect has been studied in detail by Leo
and Shield [23] and Shaw and Kyriakides [41]. As demonstrated by these authors, this is a dynamic
effect that has a negligible effect on the hysteresis loop with sufficiently slow transformation. Also,
the relative changes of the size of the hysteresis due to this effect are rather small. In any case the
formula (33) for H is not intended to capture this dynamic effect.

Materials with weak first order transformations often have relatively small hysteresis. In such
materials, all the eigenvalues of the transformation strain matrix are close to 1, and in materials
with small volume change, λ1λ2λ3 ∼ 1, λ2 is particularly close to 1. In addition, the predicted
asymptotic slopes of H vs. λ2 at λ2 = 1 tend to infinity as λ1, λ3 → 1, because in that case
a2n2 → 0 (see (35)). Thus, the predicted graph of hysteresis H vs. λ2 is sharper in the case of weak
transformations, implying that one needs to approximate λ2 = 1 with greater precision in order to
achieve minimal hysteresis. However, κ and L are also expected to be small for such cases, so it is
not clear how the hysteresis would be expected to behave for weak first order transformations. The
asymptotic behavior of κ and L in cases where λ1,2,3 ∼ 1 should be amenable to theoretical analysis
and it would be interesting to make predictions about this case.

While this paper has concentrated on cubic to orthorhombic NiTiX alloys, there is significant ev-
idence in the literature that the ideas presented here apply broadly. Some of this evidence, including
comparisons with Cu-based martensitic materials undergoing cubic to monoclinic transformations,
is given in [17]. The use of single crystals vs. polycrystals also does not affect greatly the hysteresis,
also in accord with the theory given here. Qualitatively, the ideas appear to extend to stress-induced
transformation. In principle, in the case of stress-induced transformation, one should have to ac-
count for the effect of stress on the local values of lattice parameters. The presence of a correlation
between λ2 ∼ 1 and the size of the hysteresis in stress-induced cases is evidently a reflection of
the smallness of the perturbation of the lattice parameters caused by the typical stresses used in
such experiments. The effect of orientation on hysteresis seen in the experiments of Horikawa et
al. [15] and of Shield [40] can be understood qualitatively [51] by using the measured elastic moduli
to estimate the effect of stress on lattice parameters, so as to determine whether the stress moves
the λ2 closer to or further from the value 1.

One puzzling fact about the experimental results concerns the numbers of strains and numbers
of variants. One would expect that these numbers might correlate with hysteresis, as large numbers
of strains, for example, would seem to give more alternatives for accommodating stresses built up
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in a polycrystal due to different grain orientations, and thereby would reduce or eliminate some
energy barriers. But the data shown in Figure 3 is fairly symmetric about λ2 = 1, even though
the number of twins that participate in the austenite/martensite interface is drastically different
for λ2 < or > 1, as indicated in Section 6. The actual numbers of twin systems participating are
6 systems for λ2 < 1 and 24 systems for λ2 > 1. There are 4 austenite/martensite interfaces per
twin system giving rise to 24 (resp., 96) interfaces for λ2 < 1 (resp., > 1). Exactly at λ2 = 1,
where the hysteresis is lowest, these degenerate to only 12 austenite/martensite interfaces. Thus,
surprisingly, there appears to be no obvious connection of the numbers of strains or numbers of
interfaces to the size of hysteresis. This indicates again that the main energy barrier is the growth
of an austenite/martensite interface, and the numbers of such interfaces is of secondary importance
for the size of the hysteresis. However, these numbers could well play an important role for other
properties, for example the lifetime of the material under repeated transformation. Interesting
unpublished data of Quandt [36] supports this view. The satisfaction of the cofactor conditions
described above achieves both a dramatically larger set of strains and interfaces, as well as λ2 = 1.

8 Theory of the transition layer between austenite and
martensite when λ2 ∼ 1

We now develop ideas for a transition layer that can provide a more accurate evaluation of the bulk
energy of the transition layer than the one given above by simply using the matrix C.

8.1 Kinematic assumptions and boundary conditions

We now formulate assumptions for a more general but still simplified transition layer. To begin, we
look at common features of the deformation gradients that enter the boundary conditions for the
transition layer. These are matrices A,B, I satisfying

B−A = a⊗ n, (λB+ (1− λ)A)− I = b⊗m. (36)

Let e be a unit vector perpendicular to both m and n, and let p be a unit vector perpendicular to
both a and b. From (36)

Ae = Be = Ie = e and ATp = BTp = ITp = p. (37)

Now we write the boundary conditions for a transition layer. On the left (see Figure 6) we
have a martensite laminate. Its deformation can be written with the aid of the following periodic
function with period 1:

χλ(s) =

{

1− λ, 0 ≤ s < λ,
−λ, λ ≤ s < 1.

(38)

Note that χλ has mean 0, so its integral is also 1-periodic. The deformation of the martensite phase
consistent with Figure 4 and the calculations above can be written

yM(x) = (λB+ (1− λ)A)x+ εa

∫ 1
ε
x·n

0

χλ(s) ds. (39)
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Figure 6: Austenite/martensite interface: notation for the Γ-convergence argument.

By direct calculation

∇yM(x) =

{

B, εi ≤ x · n < ε(i+ λ),
A, ε(i+ λ) ≤ x · n < ε(i+ 1),

i ∈ Z. (40)

In the austenite we have ∇yA = I, so yA(x) = x+
c. In principle, the presence of 
c may be impor-
tant; there should be a stiffness associated with changes of 
c. However, in the present treatment
we shall assume (below) that the deformation gradient in the B-layers is constant. This and the
continuity of the deformation at 0 will then give a formula for 
c.

We write
y(x) = z(x) + x. (41)

We note from the expressions for yM and yA that ∇yMe = ∇yAe = e. We assume that this
property also extends to the transition layer:

∇z e = 0. (42)

We can introduce coordinates

x = x1n
⊥ + x2m

⊥ + x3e. (43)

Then we have by assumption z(x1, x2) Note that these coordinates are non-orthogonal (typically,
m⊥ · n⊥ 6= 0) but recall we have assumed m⊥ ·m⊥ = n⊥ · n⊥ = 1 and m⊥ · n = m · n⊥. Note also
x · n = (n ·m⊥)x2. As pictured in Figure 6, the austenite/martensite interface is x ·m = 0, that
is, x1 = 0. The twin boundaries are planes x2 = const.
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Now we discuss conditions of periodicity, first for the boundary conditions. We note that both
yA(x)− x and yM(x)− x are periodic in the x2 direction with period ζ = ε/(m⊥ · n). That’s clear
for yA − x. For yM we have, using the second of (36),

yM(x+ ζm⊥)− yM(x)− ζm⊥ = (I+ b⊗m)(ζm⊥) + εa

∫ 1
ε
(x+ζm⊥)·n

1
ε
x·n

χλ(s) ds− ζm⊥,

= εa

∫ 1
ε
(x·n)+1

1
ε
x·n

χλ(s) ds = 0. (44)

Consistent with this, note that the construction of the transition layer usingC also had the property
that ∇y is periodic in the x2 direction with period ζ = ε/(m⊥ · n). Extending this hypothesis to
more general transition layers, we assume that

z(x1, x2 + ζ) = z(x1, x2), ζ =
ε

m⊥ · n
. (45)

We do not expect the twin boundaries necessarily to remain planar up to the austenite/martensite
interface so now we parameterize these boundaries. We assume a B-layer is confined by the two
surfaces (see Figure 6)

x2 = f+(x1), x2 = f−(x1), x1 ≤ 0,

f+ ≥ f−, f+(0) = f−(0) = 0. (46)

By assuming that f+(0) = f−(0) = 0 we have put the origin in its natural place at the intersection
of the pinched needle and the austenite/martensite interface. The needle is assumed to be pinched
because it is theA-layer that is nearly compatible with austenite when λ2 ∼ 1. We do not necessarily
want to assume the needle is symmetric, or even that the centerline of the B-layer (as obtained
from the boundary conditions) passes through the origin. Thus, we introduce a parameter η and
write the boundary conditions for a martensite plate of length ` as the following:

y(x) = yM(x− ηεn) at x1 = −`, where

f−(−`) = ηζ and f+(−`) = (η + λ)ζ, (47)

(Note for example that the B-layer ηε < x · n < (η + λ)ε corresponds to ηζ < x2 < (η + λ)ζ.) The
parameter η is also part of the solution; we expect it will emerge that η < 0. The displacement z
then satisfies the boundary condition

z(x) = yM(x− ηεn)− x, x1 = −`, (48)

In (47) and (48) we have imposed the left hand boundary condition of the A-layer at x1 = −`.
Typically, we will want `� ε so as to capture the full transition layer.

For simplicity we assume constant gradient in the B-layers:

z(x) = yM(x− ηεn)− x = (B− I)x− ηεBn = x1(B− I)n⊥ + x2(B− I)m⊥ − ηεBn
for f−(x1) < x2 < f+(x1). (49)
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This defines z on the B-layer attached to the origin. The periodicity condition z(x1, x2 + ζ) =
z(x1, x2) extends this function to the other B-layers. For the A-layer f+(x1) < x2 < f−(x1) + ζ we
therefore have the boundary conditions,

z(x1, f
+(x1)) = x1(B− I)n⊥ + f+(x1)(B− I)m⊥ − ηεBn,

z(x1, f
−(x1) + ζ) = x1(B− I)n⊥ + f−(x1)(B− I)m⊥ − ηεBn, (50)

for x1 < 0, and, on this layer (f+(x1) < x2 < f−(x1) + ζ) we expect ∇y ∼ SO(3)A. Making the
ansatz (49) for the B-layers now gives us a way to evaluate the constant 
c by continuity at x = 0:

y(0) = z(0) = 
c = −ηεBn. (51)

At the sharp interface with austenite as pictured in Figure 6 we also have the boundary condition

z(0, x2) = (yA(x)− x)|x1=0 = −ηεBn, 0 < x2 < ζ, (52)

in view of (51). Finally, we have the conditions at x1 = −∞ for the A-layer:

z(−`, x2) = yM(x− ηεn)− x = (A− I)x+ ελa− ηεAn at x1 = −`,
= x1(A− I)n⊥ + x2(A− I)m⊥ + ελa− ηεAn (53)

for (η+λ)ζ < x2 < (η+1)ζ. A summary of boundary conditions for the A-layer and the conditions
on f± is given below.

Boundary conditions on the A-layer

f−(−`) = ηζ and f+(−`) = (η + λ)ζ, ζ =
ε

m⊥ · n
,

z(x1, f
+(x1)) = x1(B− I)n⊥ + f+(x1)(B− I)m⊥ − ηεBn, x1 < 0,

z(x1, f
−(x1) + ζ) = x1(B− I)n⊥ + f−(x1)(B− I)m⊥ − ηεBn, x1 < 0,

z(0, x2) = −ηεBn, 0 < x2 < ζ,

z(−`, x2) = −`(A− I)n⊥ + x2(A− I)m⊥ + ελa− ηεAn,

(η + λ)ζ < x2 < (η + 1)ζ. (54)

8.2 Change of variables

We now make a change of variables that brings out the structure of the basic mathematical problem
and removes the solution-dependence of the domain of integration for the energy. The basic small
parameter for this problem can be taken as either λ or λ2 − 1, these being related by (34).

For the independent variables we change variables,

t1 = x1, t2 =
x2 − f+(x1)

ζ − (f+(x1)− f−(x1))
. (55)

The Jacobian of (the inverse of) this transformation is

J =
∂(x1, x2)

∂(t1, t2)
= ζ − (f+ − f−). (56)
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This transformation maps the domain {−∞ < x1 < 0, f+(x1) < x2 < f−(x1) + ζ} to the fixed
half-strip {−∞ < t1 < 0, 0 < t2 < 1}: the A-layer becomes a rectangular half-strip in these new
variables. For the dependent variables we make the change to

u(t1, t2) =
1

n⊥ ·m

(

z
(

t1, [ζ − (f+(t1)− f−(t1))]t2 + f+(t1)
)

− t1(A− I)n⊥ + ηεBn
)

. (57)

Recalling that y(x) = z(x) + x and x1 = x ·m/(n⊥ ·m), x2 = x ·n/(n⊥ ·m), (cf. (43)), we denote

g =
t2f
−′ + (1− t2)f+

′

ζ − (f+ − f−)
, h =

1

ζ − (f+ − f−)
, (58)

and then we have,

∇y = I+
1

n⊥ ·m
(z,1⊗m+ z,2⊗n)

= I+

(

u,1+
1

n⊥ ·m
(A− I)n⊥ − gu,2

)

⊗m+ hu,2⊗n

= I+
1

n⊥ ·m
(A− I)n⊥ ⊗m+ (u,1−gu,2 )⊗m+ hu,2⊗n. (59)

From the equations of the crystallographic theory we have λ(B −A) +A − I = b ⊗m, implying
that (A− I)n⊥ = (m ·n⊥)b. Substituting this into the second term on the right hand side of (59),
and then using that I+ b⊗m = A+ λa⊗ n we get the convenient form

∇y = A+ (u,1−gu,2 )⊗m+ (λa+ hu,2 )⊗ n. (60)

Finally, directly from (54), we have the boundary conditions for the function u.

Boundary conditions for u(t1, t2)

f−(−`) = ηζ and f+(−`) = (η + λ)ζ, ζ =
ε

m⊥ · n
,

u(t1, 0) = f+(t1)(1− λ)a, t1 < 0,

u(t1, 1) = f−(t1)(1− λ)a, t1 < 0,

u(0, t2) = 0, 0 < t2 < 1,

u(−`, t2) = ζ ((λ+ η)− λt2) (1− λ)a, 0 < t2 < 1. (61)

8.3 Scaling of the energy

At this point we could do a series of numerical energy minimizations to determine the energy in
the transition layer as a function of the parameters. We want to vary at least the small parameter
λ, the elastic modulus µ and the other two eigenvalues λ1, λ3 in the transformation strain matrix.
(The effect of varying the fineness ε, or, equivalently, the periodicity ζ, is determined by the basic
scale-invariance of elasticity). We may also wish to consider more general elastic energy functions.
Thus, a comprehensive series of numerical minimizations like this could quickly become unwieldy,
and it is not clear whether a simple understanding of the dependence of the parameters would be
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emerge. This is a good situation for Γ-convergence, as this method gives the leading order energy,
the leading order minimizer, and simple predictions of the effect of changing other parameters.

To begin, we first need to understand the basic scaling of the energy with λ. For this purpose
the earlier test function involving the triangles with deformation gradient C is expected to give
the correct scaling, though not the optimal energy. This test function is easily expressed in the
simplified variables of the preceding subsection. It corresponds to the choice

η = 0, f−(t1) = 0, f+(t1) =

{

λζ, −` < t1 < 
α,
λζ

α
t1, 
α ≤ t1 < 0,

(62)

where 
α = α/(n⊥ ·m), with α < 0 having the same meaning as in Section 5. The function u is
chosen as the simple continuous function

u(t1, t2) =







ζλ(1− t2)(1− λ)a, −` < t1 < 
α, 0 < t2 < 1,
ζλ(1− t2)(1− (λ/
α)t1)a, 
α ≤ t1 < 
α(t2 − 1)/(λt2 − 1), 0 < t2 < 1,
(ζλt1(1− λ)/
α)a, 
α(t2 − 1)/(λt2 − 1) < t1 < 0, 0 < t2 < 1.

(63)

With these choices one can see that all the boundary conditions (61) for u are satisfied, and, using
the expression (60) we find that the deformation gradient on the region 
α(t2−1)/(λt2−1) < t1 < 0,
is

∇y = A+ u,1⊗m+ λa⊗ n = A+ a⊗ (
ελ(1− λ)

α
m+ λn) = C, (64)

(cf., (17)), and of course outside this region ∇y = A. This is precisely the test function used earlier
in this paper, expressed in the new variables. Therefore we can rely on the earlier evaluation (19)
and we see immediately that the energy goes as λ2.

Beginning with a general expression for the energy, we therefore divide the energy by λ2 and
seek the Γ limit of

1

λ2

∫ 0

−`

∫ 1

0

ϕ̃
(

I+ (u,1−gu,2 )⊗A−Tm+ (λa+ hu,2 )⊗A−Tn
)

(ζ − (f+ − f−)) dt1dt2, (65)

where ϕ̃ is minimized on SO(3), that is, ϕ̃(F) = ϕ(FA, θ) where ϕ is the free energy used earlier in
this paper and the dependence on θ is suppressed.

By dividing by λ2 we are assured that the rescaled energy of the test function used earlier
in this paper is bounded away from 0 and ∞ as λ → 0 (cf., (21)). But of course, this test
function is not a minimizer of the energy. Note also that the integrand of (65) is minimized when
u,1= 0, u,2= −ζλ(1 − λ)a, f− = ηζ, f+ = (η + λ)ζ but of course this satisfies only some of the
boundary conditions. In particular it does not satisfy the boundary condition at t1 = 0.

8.4 Calculation of the Γ-limit of the energy

8.4.1 Hypotheses and summary of results used in the argument

In this section we collect the hypotheses used for the derivation of the Γ-limit and, for the con-
venience of the reader, we collect the various results and definitions used in the argument. The
main hypothesis is a bound on the slopes of the functions f± that has the effect of preventing very
thin fingers of the A-layer from penetrating into the B-layer. This assumption could be related to
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the possibility of formation of nonclassical austenite/martensite interfaces [1], a possibility that is
therefore being ruled out. A second main hypothesis says that ϕ̃ grows at least quadratically as we
move away from its energy well, SO(3).

Hypotheses 1) We assume f+ < f− + ζ and f± are Lipschitz functions with Lipschitz constant
c > 0. The latter means that |f±(s2)− f±(s1)| ≤ c|s2− s1| for all −` < s1 < s2 < 0. It also implies
that the region Ω` = {(x1, x2) : f+(x1) < x2 < f−(x1) + ζ,−` < x1 < 0} (called here the A-region)
is a Lipschitz domain, and therefore the rigidity lemma (see below) can be applied on Ω`. 2) The
energy density ϕ̃ is assumed to be twice differentiable and to satisfy ϕ̃(F) ≥ C dist2(F, SO(3)). 3) We
assume a solution A = Aλ and B = Bλ and b = bλ, m = mλ, mλ ·n⊥ = 1, of the crystallographic
theory (4) with Aλ → A0 ∈ SO(3)U1|λ2=1 6= I as λ→ 0, and Aλ −Bλ = aλ ⊗ n, a0 6= 0.

Summary of definitions and results used 1) The notation dist(F,S) denotes the shortest
Euclidean distance from the 3 × 3 matrix F to the (closed, bounded) set S. In the case rotation
matrices, S = SO(3) = {R : RTR = I, detR = 1}, and assuming detF > 0, an alternative
expression is dist(F, SO(3)) = |U − I| where U is the right stretch tensor of elasticity theory, i.e.,
F = RU is the polar decomposition of F. The notations L∞, L2, H1 denote spaces of functions
defined, respectively, as the set of functions for which the the following norms are finite: for L∞(Ω),
‖f‖L∞(Ω) = ess supΩ|f |; for L2(Ω), ‖f‖2L2(Ω) =

∫

Ω
|f |2 dx; for H1(Ω), ‖f‖2H1(Ω) =

∫

Ω
|f |2 dx +

∫

Ω
|∇f |2 dx. Something about weak convergence here, used in L2 and H1 so far. The

interpolation inequality used below states that for any Lipschitz function f , we have ‖f‖L∞(R) ≤
C‖f‖

2
3

L2(R)‖f
′‖

1
3
L∞(R). The following Rigidity Lemma [12] will also be used in the argument: for each

given function y ∈ H1(Ω) there is a corresponding rotation matrix R̄ ∈ SO(3) such that

∫

Ω

|∇y(x)− R̄|2 dx ≤ C

∫

Ω

dist2(∇y(x), SO(3)) dx. (66)

Here C depends only on Ω ∈ R3, which is assumed to be a Lipschitz domain. This is a quantitative
statement of the fact that, if a deformation gradient is at each x ∈ Ω near some rotation matrix,
which a priori could vary from point to point in Ω, it is actually near a single rotation matrix on
most of Ω.

Below, the “original variables� refers to deformations expressed as a function of x1, x2, x3 and
satisfying boundary conditions (54) while “new variables� refers to functions u (see (57)) expressed
as a function of t1, t2, t3 and satisfying the equivalent boundary conditions (61).

8.4.2 Use of the rigidity lemma to restrict the form of a minimizer

Suppose yλ, f
±
λ have less energy than the naive test function (63) and satisfy the boundary conditions

(54). Then yλ, f
±
λ satisfy

(

∫ 0

−`

∫ ζ+f−λ

f+λ

dist2(∇yλ, SO(3)Aλ) dx2dx1 ≤

)

∫ 0

−`

∫ ζ+f−λ

f+λ

ϕ(∇yλ, θ) dx2dx1 ≤ Cλ2, (67)

the lower bound in parentheses being part of our hypotheses above. We first use of the rigidity
lemma in the original variables to restrict the rotation. We note that the rigidity lemma (66)
remains true also with R̄ replaced by RAλ and SO(3) concurrently replaced by SO(3)Aλ, by a
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linear change of variables. Applying this lemma we therefore have the existence of Rλ ∈ SO(3) such
that

∫ 0

−`

∫ ζ+f−λ

f+λ

|∇yλ −RλAλ|2 dx2dx1 ≤ Cλ2. (68)

By passing to a subsequence we can assume Rλ → R0. In view of the uniform Lipschitz bound,
f±λ → f± uniformly. Thus, we can assert (68) on a fixed domain, i.e.,

∫ 0

−`

∫ ζ+f−−δ

f++δ

|∇yλ −RλAλ|2 dx2dx1 ≤ Cλ2. (69)

for δ > 0. Then we use the trace theorem applied to the sub-boundary S = {(x1, x2) : x1 =
0, f+(0) + δ < x2 < ζ + f−(0)− δ} to deduce that there is a constant cλ such that

∫

S
|yλ −RλAλx− cλ|2dx2 ≤ Cλ2. (70)

Let xλ0 ·mλ = 0, xλ0 ·n = (1/2)(f++ f−+ ζ)n ·m⊥ and let B(xλ0 , r) be a ball of radius r centered at
xλ0 . Written without coordinates, with the boundary condition yλ(x) = x inserted, and restricted
to a subdomain, (70) is

∫

{x·mλ=0}∩B(xλ0 ,r)
|(I−RλAλ)x− cλ|2dA ≤ Cλ2. (71)

Alternatively, putting Fλ = I−RλAλ,

∫

{x·mλ=0}∩B(xλ0 ,r)
|Fλ(x− xλ0)− cλ + Fλx

λ
0 |2dA ≤ Cλ2. (72)

Expanding the integrand and using that the domain of integration is symmetric about xλ0 we get

∫

{x·mλ=0}∩B(xλ0 ,r)
|(I−RλAλ)(x− xλ0)− cλ + (I−RλAλ)x

λ
0 |2dA

= (FTλFλ) ·
∫

{x·mλ=0}∩B(xλ0 ,r)
(x− xλ0)⊗ (x− xλ0) dx+ πr2|cλ − Fλx

λ
0 |2 ≤ Cλ2. (73)

Hence, the two positive semi-definite terms must satisfy,

|cλ − Fλx
λ
0 |2 < Cλ2 and (FTλFλ) · (I−mλ ⊗mλ) < Cλ2. (74)

We focus on the second of these and recall from the crystallographic theory that Aλ = I − λaλ ⊗
n+ bλ ⊗mλ. Using that (I−mλ ⊗mλ)mλ = 0 we have that

(FTλFλ) · (I−mλ⊗mλ) = (I−Rλ−λRλaλ⊗n)T (I−Rλ−λRλaλ⊗n) · (I−mλ⊗mλ) ≤ Cλ2. (75)

This yields

(I−Rλ)
T (I−Rλ) · (I−mλ⊗mλ) ≤ Cλ2 +2λ [(Rλ − I)aλ · n− (mλ · (Rλ − I)aλ)(n ·mλ)] . (76)
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Noting that max|s|=1 |(Rλ − I)s|2 = 2(1 − cos θλ) = (1/2)|Rλ − I|2, we have first from (76) that
|Rλ − I|2 ≤ Cλ and then, again from (76), that

|Rλ − I| ≤ Cλ. (77)

Using again the form of Aλ and the triangle inequality,

‖∇yλ −A0‖L2 ≤ ‖∇yλ −RλAλ‖L2 + ‖(Rλ − I)Aλ‖L2 + ‖Aλ −A0‖L2 , (78)

we have that
∫ 0

−`

∫ ζ+f−λ

f+λ

|∇yλ −A0|2 dx2dx1 ≤ Cλ2, (79)

(or, the same bound with A0 replaced by Aλ). In summary, the rigidity lemma implies that a
deformation with energy less than ∼ λ2 is actually be close to the matrix A0 in L

2, the quantitative
bound being given by (79).

8.4.3 Bounds on the positions f± of the twin boundaries arising from energy mini-
mization

We have assumed that 0 ≤ f+ − f− ≤ ζ. Staying for now with the original variables we have

∫ 0

−`

∫ ζ+f−λ

f+λ

|(∇yλ −Aλ)m
⊥|2 dx2dx1 ≤

∫ 0

−`

∫ ζ+f−λ

f+λ

|∇yλ −Aλ|2 dx2dx1 ≤ Cλ2. (80)

(Recall that ∇y = (1/m⊥ · n)(y,1⊗m + y,2⊗n) + y,3⊗e. An application of Jensen’s inequality

(
∫ b

a
f 2dx ≥ (1/(b− a))(

∫ b

a
fdx)2) to the inner integral gives

∫ 0

−`
|
∫ ζ+f−λ

f+λ

(∇yλ −Aλ)m
⊥ dx2|2dx1 ≤ Cλ2, (81)

that is,
∫ 0

−`
|
∫ ζ+f−λ

f+λ

(yλ,2−Aλm
⊥) dx2|2dx1 ≤ Cλ2. (82)

Integrating and using the boundary conditions (in the original variables, i.e., using the boundary
conditions (54)), we have,

∫ 0

−`
|
∫ ζ+f−λ

f+λ

(yλ,2−Aλm
⊥) dx2|2dx1

=

∫ 0

−`
|(f+λ − f

−
λ )(Bλ − I)m⊥λ + (ζ − (f+λ − f

−
λ ))(Aλ − I)m⊥λ |2dx1 ≤ Cλ2. (83)

Using once again the equations of the crystallographic theory, we have (Aλ−I)m⊥λ = −λ(n ·m⊥λ )aλ
and (Bλ − I)m⊥ = (1− λ)(n ·m⊥λ )aλ. Thus, from (83) we get

∫ 0

−`
|(f+λ − f

−
λ )− λζ|

2dx1 ≤ Cλ2. (84)
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By the triangle inequality, ‖f+λ − f
−
λ ‖L2 ≤ ‖f

+
λ − f

−
λ − λζ‖L2 + ‖λζ‖L2 ≤ Cλ, we get

∫ 0

−`
|f+λ − f

−
λ |

2dx1 ≤ Cλ2. (85)

This can be combined with the L∞ bound of the derivative by using the interpolation inequality
(fλ = f+λ − f

−
λ ),

‖fλ‖L∞(R) ≤ C‖fλ‖
2
3

L2(R)‖f
′
λ‖

1
3
L∞(R) ≤ C c

1
3λ

2
3 , (86)

yielding the L∞ bound,
|f+λ − f

−
λ | ≤ Cλ2/3. (87)

8.4.4 Lower bound of the energy

We continue to assume that yλ, f
±
λ is a low energy deformation, i.e., it has less energy than the

naive test function (63), and we seek a lower bound for its energy. We change to the new variables
uλ(t1, t2) and define Ω` = {(t1, t2) : −` < t1 < 0, 0 < t2 < 1}. Let vλ = 1

λ
uλ. The scaled energy of

yλ, f
±
λ in the new variables is

1

λ2

∫

Ω`

ϕ̃
(

I+ λ (vλ,1−gλvλ,2 )⊗A−Tλ mλ

+ λ (aλ + hλvλ,2 )⊗A−Tλ n
)

(ζ − (f+λ − f
−
λ )) dt1dt2 ≤ C, (88)

and we seek a good lower bound for the left hand side. First we note by the assumed lower bound
ϕ̃(F) ≥ C dist2(F, SO(3)), the L∞ bound on gλ (cf., (58), and the fact that the angle between the
two vectors A−Tλ mλ and A−Tλ n remains bounded away from zero in the limit λ → 0 (as we have
assumed), we have ‖vλ‖H1 ≤ C and therefore, for a subsequence (not relabeled), we have that
vλ ⇀ v in H1(Ω`).

We denote

Gλ = (vλ,1−gλvλ,2 )⊗A−Tλ mλ + (aλ + hλvλ,2 )⊗A−Tλ n,

Jλ = (ζ − (f+λ − f
−
λ )), (89)

and by (87) and the remarks just above, we have Jλ → ζ uniformly and Gλ ⇀ G in L2((−`, 0) ×
(0, 1)). The bound (88) becomes

1

λ2

∫

Ω`

ϕ̃ (I+ λGλ) Jλ dt1dt2 ≤ C, (90)

We now do a careful Taylor expansion of the integrand in the spirit of [12]. We introduce the “rare�
set where Gλ is large, i.e.,

Eλ = {x ∈ Ω` : |Gλ(x)| ≥ λ−
1
2} (91)

and we note that on Ω`\Eλ, we have λ|Gλ| ≤ λ1/2 → 0. Hence, using that ϕ̃ ∈ C2 and is minimized
at I, we have on Ω` \ Eλ,

ϕ̃(I+ λGλ) =
1

2

∂2ϕ̃(I)

∂F2
(λGλ, λGλ) + ω(|λGλ|)|λGλ|2, (92)
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where ω(s) → 0 as s → 0. Since we are only seeking a lower bound and ϕ̃ ≥ 0 we simply throw
away the set Eλ, and write,

1

λ2

∫

Ω`

ϕ̃ (I+ λGλ) Jλ dt1dt2 ≥
1

λ2

∫

Ω`\Eλ

[

1

2

∂2ϕ̃(I)

∂F2
(λGλ, λGλ) + ω(|λGλ|)|λGλ|2

]

Jλdt1dt2

=

∫

Ω`\Eλ

[

1

2

∂2ϕ̃(I)

∂F2
(Gλ,Gλ) + ω(|λGλ|)|Gλ|2

]

Jλdt1dt2

(93)

Since Gλ is bounded uniformly in L2(Ω`) and ω(|λGλ|)→ 0 uniformly, then the error term can be
neglected:

lim inf
λ→0

1

λ2

∫

Ω`

ϕ̃ (I+ λGλ) Jλ dt1dt2 ≥ lim inf
λ→0

∫

Ω`\Eλ

[

1

2

∂2ϕ̃(I)

∂F2
(Gλ,Gλ)

]

Jλdt1dt2

= lim inf
λ→0

∫

Ω`

[

1

2

∂2ϕ̃(I)

∂F2
(χΩ`\EλGλ, χΩ`\EλGλ)

]

Jλdt1dt2.

The quantity χΩ`\Eλ converges boundedly almost everywhere to χΩ` and therefore χΩ`\EλGλ ⇀ G
(i.e., the same limit as previously) in L2(Ω`). By the lower bound assumed on ϕ̃, we have ∂2ϕ̃(I)/∂F2

is a positive-definite quadratic form on symmetric matrices, that is, it is a positive-definite elasticity
tensor. Thus, using its weak lower semicontinuity, we have the desired lower bound,

lim inf
λ→0

1

λ2

∫

Ω`

ϕ̃ (I+ λGλ) Jλ dt1dt2 ≥
∫

Ω`

[

1

2

∂2ϕ̃(I)

∂F2
(G,G)

]

ζdt1dt2. (94)

It remains to identify the specific form of the limit G. By the definition (89) of Gλ we have

(vλ,1−gλvλ,2 )⊗A−Tλ mλ + (aλ + hλvλ,2 )⊗A−Tλ n⇀ G in L2(Ω`). (95)

Since hλ → 1/ζ uniformly, the only term whose limit is not completely clear is gλvλ,2. This term
has a uniform bound in L2(Ω`), so we can find its limit by testing against a function ψ ∈ C∞0 (Ω`)
and integrating by parts:

∫

Ω`

gλvλ,2 ψ dt1dt2 =

∫

Ω`

t2f
−′
λ + (1− t2)f+

′

λ

ζ − (f+λ − f
−
λ )

vλ,2 ψ dt1dt2

= −
∫

Ω`

f−
′

λ − f
+′

λ

ζ − (f+λ − f
−
λ )

vλψ dt1dt2 −
∫

Ω`

gλvλψ,2 dt1dt2. (96)

We claim that both of the latter integrals tend to zero. This is clearly true of the first one, as
f−
′

λ − f+
′

λ is bounded in L∞(Ω`) and therefore has a weak? limit; this limit must be zero since
|f−λ − f+λ | → 0. This combined with the strong convergence vλ → v in L2(Ω`) establishes the
assertion. For the second integral, we look at the boundary conditions (61),

λvλ(t1, 0) = f+λ (t1)(1− λ)aλ, λvλ(t1, 1) = f−λ (t1)(1− λ)aλ, −` < t1 < 0. (97)
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Since by the trace theorem vλ is bounded in L2(∂Ω`), then the uniform limits of f±λ , and therefore
weak? limits of both f±

′

λ individually must be zero. This shows that the second integral tends to
zero. Summarizing, we have that

G = v,1⊗A−T0 m0 + (a0 +
1

ζ
v,2 )⊗A−T0 n. (98)

Note that f± play no role in the lower bound, which later turns out to be the Γ-limit. The
boundary values of v determine the values of f±.

Also, since vλ is bounded in L2(∂Ω`), it follows from the boundary condition vλ(−`, t2) =
ζ(1− t2 + ηλ/λ))(1− λ)aλ that (passing, if necessary, to a subsequence),

ηλ
λ
→ 
η. (99)

We conclude that there are several vestiges of the boundary conditions on v and the presence of
f±. These are: (i) v(t1, 0) ‖ a0, v(t1, 1) ‖ a0, (ii) (v(t1, 0)− v(t1, 1)) · a0 ≥ 0, (iii) v(0, t2) = 0, and
(iv) v(−`, t2) = ζ(1− t2 + 
η)a0.

8.4.5 Upper bound

For the upper bound in the Γ-convergence argument, we have to show that, given v ∈ H1(Ω`)
satisfying the boundary conditions v(t1, 0) ‖ a0, v(t1, 1) ‖ a0, (v(t1, 0)−v(t1, 1)) ·a0 ≥ 0, v(0, t2) =
0, and v(−`, t2) = ζ(1− t2 + 
η)a0 there are vλ ∈ H1(Ω`), f

±
λ ∈W 1,∞(−`, 0) (Lipschitz constant c),

f+ ≥ f−, and ηλ ∈ R satisfying the boundary conditions

λvλ(t1, 0) = f+λ (t1)(1− λ)aλ, λvλ(t1, 1) = f−λ (t1)(1− λ)aλ, −` < t1 < 0,

vλ(0, t2) = 0, vλ(−`, t2) = ζ (1 + ηλ/λ− t2) (1− λ)aλ, 0 < t2 < 1, (100)

such that
1

λ2

∫

Ω`

ϕ̃ (I+ λGλ) Jλ dt1dt2 →
∫

Ω`

[

1

2

∂2ϕ̃(I)

∂F2
(G,G)

]

ζdt1dt2, (101)

where Gλ,G are calculated from vλ,v in the usual ways:

Gλ = (vλ,1−gλvλ,2 )⊗A−Tλ mλ + (a+ hλvλ,2 )⊗A−Tλ n,

G = v,1⊗A−T0 m0 + (a+
1

ζ
v,2 )⊗A−T0 n. (102)

If v ∈ C∞(Ω`) and satisfies the boundary conditions v(t1, 0) ‖ a0, v(t1, 1) ‖ a0, and (v(t1, 0)−
v(t1, 1)) · a0 ≥ 0, v(0, t2) = 0, and v(−`, t2) = ζ(1 − t2 + 
η)a0 then we simply take vλ = Lλv,
where Lλ ∈ R3×3 is a linear transformation satisfying Lλa0 = aλ and Lλ → I as λ → 0, and we
take ηλ = 
η/λ. Due to the differentiability of v on ∂Ω` we have for λ sufficiently small that f±λ
defined by (100) is Lipschitz with Lipschitz constant c. Then the conclusion (101) follows by direct
calculation using strong convergence and classical Taylor expansion.

If, however, we only know that v ∈ H1(Ω`) and satisfies the boundary conditions, then there is
a slight problem with satisfying the Lipschitz conditions on f±λ obtained from the (100). However,
in this case we first approximate v by v(δ) ∈ C∞(Ω`), v(δ) → v ∈ H1(Ω`) and v(δ) satisfying the
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same boundary conditions as v. Using the quadratic growth of the integrand on the right and side
of (101), we have that

∫

Ω`

[

1

2

∂2ϕ̃(I)

∂F2
(G(δ),G(δ))

]

ζdt1dt2 →
∫

Ω`

[

1

2

∂2ϕ̃(I)

∂F2
(G,G)

]

ζdt1dt2, (103)

where G(δ) = v(δ),1⊗A−T0 m0+(a0+
1
ζ
v(δ),2 )⊗A−T0 n. For the left hand side of (101) we now choose

vλ = Lλv(δ), λ < λδ, with λδ > 0 for δ > 0 chosen small enough to respect the Lipschitz conditions.
In particular, there are positive sequences λk = λδk → 0, δk → 0 such that vλk = λkLλkv

(δk) satisfies
the Lipschitz conditions. By Taylor expansion, strong convergence and (103) we have that (101) is
satisfied for the sequence vλk .

8.5 Summary of form of the limiting energy of the transition layer

The lower bound found above in Subsection 8.4.4 shows that the limiting energy of a low energy
sequence parameterized by λ is greater than or equal to

∫

Ω`

[

1

2

∂2ϕ̃(I)

∂F2
(G,G)

]

ζdt1dt2, (104)

with G replaced by v,1⊗A−T0 m0 + (a0 +
1
ζ
v,2 ) ⊗A−T0 n. We show in Subsection 8.4.5 that given

a function v ∈ H1(Ω`) satisfying the limiting boundary conditions, its energy (104) can be ap-
proximated arbitrarily closely by the original expression for the energy evaluated on an appropriate
sequence vλ satisfying the original boundary conditions. These two statements imply that the
energy (104) is the Γ-limit of the original (λ > 0) energy under its boundary conditions.

In particular, it follows that the limit of the family of minimizers of the original energy, param-
eterized by λ, is a minimizer of (104). Also, the energy of this family, rescaled by dividing by λ2,
converges to the energy of the Γ-limit.

The full statement of the Γ-limiting problem is:

min
v∈A

∫

Ω`

[

1

2

∂2ϕ̃(I)

∂F2
(v,1⊗A−T0 m0 + (a0 +

1

ζ
v,2 )⊗A−T0 n,

v,1⊗A−T0 m0 + (a0 +
1

ζ
v,2 )⊗A−T0 n)

]

ζdt1dt2, (105)

where

A = {(v, 
η) ∈ H1(Ω`)× R : v(t1, 0) ‖ a0, v(t1, 1) ‖ a0, (v(t1, 0)− v(t1, 1)) · a0 ≥ 0,

v(0, t2) = 0, v(−`, t2) = ζ(1− t2 + 
η)a0}. (106)

Observe that 
η, which describes the asymptotic lowering of the thin twin band, takes part in
the minimization.
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