
Ontogenetic Reasoning System
for Autonomic Logistics

Joel R. Bock∗ and Tom W. Brotherton∗ and Doug Gass†
∗Intelligent Automation Corporation

13029 Danielson Street, Suite 200, Poway, CA 92064
Tel: 858-679-4140, Fax: 858-679-4144

E-mail: {joel.bock,tom.brotherton }@iac-online.com
†NAVAIR-JSF Program Office, 22195 Elmer Road, Bldg. 106, Rm. 228, Patuxent River, MD 20670

Tel: 301-757-0477, E-mail:frank.gass@navy.mil

Abstract— Joint Strike Fighter Autonomic Logistics will mini-
mize operational and support costs by increasing system reliabil-
ity, while reducing maintenance requirements to essential levels.
Using Prognostics and Health Management, parts and service are
ordered or performed only when needed, obviating costly routine
scheduled maintenance, and reducing aircraft downtime.

Realizing this vision requires communication between the air-
craft, industrial contractors and suppliers, and the maintenance
and support team. Management of interactions between these
entities is challenging, characterized by uncertain information,
and conflicting demands for resources. A system is needed
to encode the knowledge of maintenance personnel, suggest
corrective actions in fault conditions, and learn from previous
decisions. Integration with the supply chain would free human
resources for more critical decision making tasks.

IAC is developing an intelligent software infrastructure to
manage these complexities. ThisOntogenetic Reasoning System
features an adaptive knowledgebase of maintenance information,
and autonomous software agents which (1) analyze on-board
sensor and model data, and past behaviors; (2) recommended
actions under dynamic and uncertain conditions; (3) manage
knowledgebase evolution; (4) connect maintenance activities to
the supply chain; and (5) perform various communications,
security and support functions.

This paper presents the architectural design of the system,
describes an example application scenario, and concludes with
an assessment of the technical challenges in developing such a
system using the multi-agent systems approach.

CONTENTS

I Introduction 1

II System Description 2
II-A System overview 2
II-B Information flows 2
II-C Web-enabled architecture 2
II-D Agents and Components 3

III Example PHM Scenario 4
III-A Agent and user interaction 4
III-B ELAS maintenance database 5
III-C Aircraft fault conditions 5

IV Methods of Inference and Self-Evolution 5
IV-A Knowledge base engineering 5

IV-B Propositional logic 6
IV-C Fault condition and maintenance rules . 6
IV-D Ontogenesis 6

V Technical Challenges 7

VI Conclusions 7

Acknowledgment 8

References 8

I. I NTRODUCTION

The Joint Strike Fighter (JSF) Autonomic Logistics Program
aims to minimize operational and support costs by increasing
system reliability, while reducing maintenance requirements
to essential levels. Using Prognostics and Health Management
(PHM), components and maintenance are ordered or per-
formed only when needed, obviating costly routine scheduled
maintenance, and reducing aircraft downtime.

This vision of efficiency and responsiveness requires asyn-
chronous communication between the intelligent air vehi-
cle, industrial contractors, their suppliers, and the aircraft
maintenance and support team. All of these entities utilize
prognostics from on-board sensor data or life cycle models,
as well as historical maintenance information, in order to
optimize PHM decision making. It is a considerable challenge
to manage the interactions between the entities comprising this
dynamic aggregation; by nature, the logistics are fraught with
missing or ambiguous information, and conflicting demands
for resources. Flight line maintenance logs are often observed
to contain incorrect or suboptimal diagnostics and corrective
actions in the face of specific fault conditions.

There is a need for a system which encodes the applied
knowledge of engineering and maintenance personnel, au-
tonomously recommends actions to correct fault conditions,
and is capable of learning from previous decisions, both
erroneous and correct. Integration with the supply chain would
facilitate planning, ordering and logistics, freeing human re-
sources for more critical decision making tasks. A system
providing some or all of this functionality would make a

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 MAR 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Ontogenetic Reasoning System for Autonomic Logistics

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Intelligent Automation Corporation 13029 Danielson Street, Suite 200,
Poway, CA 92064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

significant contribution towards realization of the goals of
Autonomic Logistics.

Intelligent Automation Corporation (IAC) is developing an
intelligent software infrastructure to manage these complex-
ities. This Ontogenetic Reasoning System(ORS) features an
adaptive knowledgebase of maintenance information, and au-
tonomous software agents which serve a variety of functions,
including (1) analysis of on-board sensor and model data,
and past behaviors; (2) recommended actions under dynamic
and uncertain conditions; (3) management of knowledgebase
evolution; (4) connection of maintenance activities with the
supply chain; and (5) a variety of other communications,
security and support functions.

This paper presents the architectural design of the system.
A practical example application scenario demonstrating the
system follows, involving learning from a maintenance and
logistics database currently in use on U.S. Army aircraft.
The mechanisms of learning and automatic adaptation of the
knowledgebase will be demonstrated. The paper concludes
with a realistic assessment of the major technical challenges
in development of the system associated with the multi-agent
systems approach.

II. SYSTEM DESCRIPTION

A. System overview

The architecture of the distributed Ontogenetic Reasoning
System software system is shown schematically in Figure 1.
At this abstract level of generalization, the system comprises
two types of entities: physical entities (air vehicles, human
operators, industrial contractors, etc.) and virtual entities,
which include runtime containers, agents, and databases, for
example. ORS elements are virtual; entities which interact with
ORS may be either physical or virtual in general. Autonomous
Agentsare runtime processes that execute within aContainer,
and may be distributed across aNetwork. A Knowledge Base
is a repository for data and information, and other entities may
create, read, update or delete records if they possess the proper
privileges to do so.

B. Information flows

The problem domain of theOntogenetic Reasoning Sys-
tem is established by describing information between entities
within the system, as introduced in Figure 1. This view is
high-level–the entities shown subsume a variety of functional
groups, perhaps not physically co-located; for example,Oper-
ations and Planningor Supply Chain Management. Figure 2
presents a diagram summarizing typical data flows between
ORS and client entities soliciting services. Inputs to ORS
are denoted by the blue arrows, while outputs from ORS are
colored in red. Note that this view is neither a complete nor
definitive depiction of entities and data flows to and from
ORS. In particular, the linkages connecting entities within
the system should not be taken to necessarily reflect actual
data transmission channels; some of the data flows may well
be mediated by theAutonomic Logistics Information System,
for example. Furthermore, practical boundaries defining these

Fig. 1. Conceptual overview of the Ontogenetic Reasoning System. These in-
clude a Knowledge Base of maintenance information, an Ontogenetic Engine
to manage evolution of the knowledge base, and a number of autonomous
Software Agents performing analysis, decision making, communication and
other support functions. These agents are distributed both locally and across
the World Wide Web. This system offers a novel solution to management of
the complex dynamic relationships and information flows characterizing JSF
Autonomic Logistics. Under Phase I SBIR funding, IAC has concentrated on
components surrounded by the dashed line in the figure.

conceptual groupings are not sharp; it is easy to identify
overlapping functions that could be characterized as belonging
to bothLogisticsandOperations and Planning. This view of
the system will be continually modified and updated as the
program evolves over time, and architectural implementation
details become more concrete.

C. Web-enabled architecture

A detailed view of the current architecture of the On-
togenetic Knowledge Base (OKB) component of ORS in
client-server mode is illustrated in Figure 3. Clients gain
access through nodes connected to the internet. The user
interface is constructed from Java Server Pages (JSP) and
are rendered in conventional web browser applications. Any
number of clients can be distributed across the network; each
client may host agents of varying levels of responsibility
and embedded “intelligence”. The multi-agent architecture
enables these distributed components to communicate with one
another asynchronously, while providing a way to incorporate
learning algorithms which implicitly handle uncertainty, and
may be programmed to automatically evolve the knowledge
base over time. In the early stages of system development,
graphical displays enable human experts to directly oversee
the initial knowledge base development, by encoding facts
and knowledge specific to the aircraft maintenance domain,
and providing immediate feedback regarding the correctness
of decisions. These decisions might be made by the system
in response to fault conditions detected by PHM hardware, or
in response to queries posed by maintenance personnel, for
example.

Fig. 2. Notional data flow diagram for the Ontogenetic Reasoning System
(ORS). This view depicts interactions between external entities and the system
under development, shown in the center of the figure. Inputs to ORS are
denoted by blue arrows, while outputs from ORS to external entities are
colored red. This view will be continually updated as the program evolves
over time.

Fig. 3. Current architecture of the Ontogenetic Knowledge Base component
of ORS in client-server mode. Clients gain access through nodes connected
to the internet. The user interface is constructed from Java Server Pages (JSP)
that are rendered in conventional web browser applications.

D. Agents and Components

In this section, we summarize Java package hierarchy of
components that have been designed IAC during Phase I
SBIR development. Java packages are a convenient means
to group software components according to their conceptual
or functional similarities, or to enforce data encapsulation
requirements. Presently, six packages constitute the ORS soft-
ware system:

1) Packagecom.iac.agent contains software agents
and peripheral classes;

2) Packagecom.iac.gui has a preliminary set of com-
ponents for graphical user interfaces to agents and the

knowledge base;
3) Package com.iac.okb implements the persistent

knowledge base, including data access objects and
database connectivity components;

4) Package com.iac.properties contains various
configuration files used throughout the system;

5) Packagecom.iac.rules holds a set of components
implementing propositional logic for the rule base;

6) Packagecom.iac.www consists of JSPs, HTML and
image files designed to facilitate distributed human in-
teraction with the system components.

The most fascinating elements of this system areAgents.
Multi-agent technology is perfectly compatible with the adap-
tive knowledge base infrastructure described here, for a num-
ber of reasons. Agent-based technologies are appropriate in
applications with some or all of the characteristics summarized
in the following [8], the first three of which are highly relevant
to the Autonomic Logistics Program:

• The environment is open, highly dynamic, uncertain, or
complex.

• Distributed data, control or expertise are hallmarks of the
system.

• Agents are a natural metaphor to model interacting en-
tities collaborating (or competing) to solve a complex
problem or achieve a goal.

• Use of legacy systems requiring ”wrapping” for compat-
ibility is mandated.

At this stage of development, IAC has integrated several
fundamental software agents within the system. The most
important of these are

1) The OKBAgent, responsible for managing knowledge-
base access, ontogenesis, and security tasks.

2) The FaultReasoningAgent, responsible for oversight of
the analysis of fault conditions recorded in the knowl-
edgebase, and for recommending actions by querying its
rule base in uncertain conditions.

Packagecom.iac.agent includes auxiliary agents that
facilitate decomposition of processing tasks according to the
“Model-View-Controller” (MVC) software engineering design
pattern. MVC creates three distinct groupings of components.
The Model implements business logic (here, the knowledge
base, intelligence in the form of propositional logic, and
Agents); the View is obviously the user interface for posing
queries and displaying results; and the Controller logic medi-
ates communications between clients (JSP or other agents) and
the Model. While adherence to the MVC design pattern intro-
duces some programming complexity early in a system design
cycle, once put in place it promotes component reuse, and
overall system maintainability and testability. Furthermore, it
is our experience that new client applications are more easily
developed within the existing software infrastructure. Figure
4 presents the Phase I system components considered in the
MVC context.

All agents have been designed to extend the class
jade.core.Agent , found within the JADE Agent Frame-

Fig. 4. Phase I system components, from the Model-View-Controller perspec-
tive. The Model implements business logic (the knowledge base, intelligent
agents); the View provides a user interface for querying the knowledge
base and displaying results; the Controller mediates communications between
distributed clients and the Model.

Fig. 5. Example PHM scenario as a conversation between agents.

work [1]. JADE is both an open-source software framework
to write agent applications conforming to the Foundation
for Intelligent Physical Agents (FIPA) specifications, and a
runtime execution environment (Container) for the agents
developed using the JADE application programming interface
(API). FIPA defines a reference model of an agent platform,
and a set of services that should be provided. Adherence to
FIPA standards ensures that JADE agents can communicate
with other agents in compliance with these specifications.

III. E XAMPLE PHM SCENARIO

A. Agent and user interaction

This section presents a hypothetical PHM scenario involving
the ORS system in one mode of operation. This scenario is
considered as a “conversation” between agents in Figure 5.

In this figure, a symbolicUserInteractionAgentis shown.
This agent is a proxy for any client application, and is
presently embodied as a series of JSPs and their composite
logic for navigation, querying by the user, and rendering of
results retrieved from the OKB. The agents are represented
using cartoon graphics to underscore the idea that they have
beliefs, desires and intentions (BDI) [2], and carry out actions
autonomously according to these humanistic characteristics.

The Directory Facilitator Agentmaintains a directory of
services (“yellow pages”) for other agents to access, such that
they might contact purveyors of services of interest. This agent
is part of the JADE installation.

The conversation suggested in Figure 5 does not necessarily
proceed in any deterministic sequence. Agents communicate
by sending and receiving messages asynchronously; if a mes-
sage of the appropriate type appears in an agents’ message
queue, he responds with a behavior that is consistent with
his preprogrammed BDI characteristics. The timing of this
response depends upon other tasks that have been previously
scheduled in the agent behavior queue. From the client’s
point of view, the only temporal relationship perceived in this
situation is that a query is posed to the OKB system, followed
by a response some time later.

The principal events in this PHM demonstration scenario
can be summarized in the following script.

1) Login to OKB.The user navigates to the main client page
in a web browser. He logs into the system, supplying a
valid username and password.

2) Select Vehicle for PHM.

• Aircraft Type: The user specifies an aircraft type
for analysis. Upon this selection, anOKBAgent-
Controller agent is added to the JADE platform.
This agent contacts theOKBAgent, which retrieves
relevant information on the designated aircraft from
the knowledge base. This data is rendered within a
dynamically-populated table for the user.

• Aircraft Serial Number: User selects a row from the
Aircraft Types table. AgentsOKBAgentController
andOKBAgentare called again, this time returning
information on all serial numbers in the knowledge
base corresponding to the specified vehicle type. A
second table is displayed, showing all available tail
numbers. Once choosing a row from this table, the
user constrains subsequent processing to a single
aircraft.

3) Display Fault History.The designated aircraft identifiers
are passed to this JSP. AgentFaultReasoningAgentand
its proxy FaultReasoningAgentControllerare created,
and proceed to access fault condition information in
the knowledge base viaOKBAgent. Faults are grouped
according to date of occurrence, severity, etc., and are
displayed in a scrollable table for the user’s review. The
user now selects an individual fault or fault cluster; the
corresponding information is used to initiate reasoning
by FaultReasoningAgent.

4) Maintenance Reasoning.This page presents informa-
tion comprising guidance on appropriate maintenance
action(s) to correct the currently-selected fault condition.
The source of the recommendations (from maintenance
manual, reasoning algorithms or models) is be displayed
for the user’s information. Currently, the reasoning is
carried out by accessing the rule base of theFaultRea-
soningAgent.

5) Order Parts or Service.This page provides form for
entering part numbers, selecting vendors, etc., to order
parts or servicing that may be needed based upon the
fault condition at hand. The OKB is updated to record
all actions carrried out by the user and agents during the
current PHM session.

B. ELAS maintenance database

To demonstrate the concepts and technical objectives set for
Phase I, IAC chose to use a Logistics Management Database
satisfying United States Army requirements for systems to
control and manage aircraft, aviation-associated equipment,
mission related equipment, and maintenance [7]. That doc-
ument provides instructions for the use, preparation, and
disposition of forms and records used to control and manage
aircraft, aviation-associated equipment, mission related equip-
ment, and maintenance. The specifications described therein
apply to the Active Army, U.S. Army National Guard of
the United States (ARNGUS), U.S. Army Reserve (USAR),
Department of Defense (DoD), and other U.S. Government
agencies that operate and maintain Army aircraft. Also cov-
ered are aircraft and aviation-associated equipment operated,
maintained, and stored by DoD contract support maintenance
activities.

The Enhanced Logbook Automation System (ELAS) is an
attempt to encode the requirements and guidelines for main-
tenance and logistics as set forth within [7]. The back-end of
ELAS includes a database providing for information storage in
a loosely-relational set of tables. The ELAS database schema
is highly relevant to the objectives of this SBIR project, which
aims to develop a Self-Evolving Maintenance Knowledgebase
to support JSF Autonomic Logistics. Records contained within
the ELAS database represent actual field maintenance logs,
work orders, and other information. In particular, this database
• is an abundant source of free-text entries, for example

describing faults or maintenance actions, containing re-
dundant information due to lack of ontologies prescribing
bounds for descriptive information;

• has annotations on errors in maintenance judgments and
actions;

• includes multiple-record histories of actions relating to a
particular fault over the course of time.

These characteristics can be found in most maintenance
databases in field application on real vehicles. Therefore,
the ELAS database is an ideal data resource to provide the
foundation for development of prototype agents representing
the core autonomous processing entities described in Section
II.

C. Aircraft fault conditions

Fault conditions within ELAS are noted by maintenance op-
erators according to the U.S. Army Maintenance Management
System-Aviation (TAMMS-A) [7]. The fault conditions may
be detected by on-board sensor hardware, by computations
that predict component degradation based on hours of use,
or perhaps may be first noticed during routine inspection or
service of non-related components or subsystems. Each fault
condition is assigned a priority score, the numerical value of
which is inversely proportional to the severity of the condition.
The highest-priority fault conditions are considered to be those
that require immediate maintenance or service to correct.
Such conditions are annotated in the knowledge base using
a “Red X”, signifying a serious deficiency that may endanger
flight crew, maintenance personnel, or the asset itself. In the
TAMMS-A nomenclature, a deficiency is defined as “a fault,
defect, or problem so severe that it causes an item, system, or
subsystem to be inoperative or inaccurate”.

In ELAS, once corrective actions have been taken to address
identified faults, these actions noted in the sameFAULT table
record as the associated fault. For theFaultReasoningAgent,
this presents a technical problem–i.e., unravelling the temporal
relationship between a fault declaration and its correction.
It is not known whether or not this type of maintenance
logging is performed in other aircraft maintenance systems.
The immediate application assumes that fault and correction
are coincident, clearly an incorrect assumption that is how-
ever necessary, given the current ELAS database maintenance
logging procedures.

Maintenance actions are encoded by an alphanumeric code
and associated with a textual description; this ontology of
actions is defined in theACTION CODEtable, reproduced
here in Table I. Note that many descriptions listed in the
table use past-tense verbs, illustrating the problem with fault-
corrective action timing alluded to above. It is further evident
that semantic gradations and redundancies are present in this
ontology, allowing for imprecise documentation of mainte-
nance performed.

IV. M ETHODS OFINFERENCE ANDSELF-EVOLUTION

The FaultReasoningAgentdeveloped during Phase I SBIR
research uses an internal rule base to map fault conditions
to appropriate maintenance actions. This section outlines the
propositional logic used by this agent to perform inference.

A. Knowledge base engineering

There are five basic procedural steps that must be followed
in the construction and practical use of a knowledge base [5]:

1) First, the knowledge engineer must determine which ob-
jects and facts within the problem domain are important,
and which are not.

2) Second, an ontology appropriate for the problem domain
must be conceived and implemented. This formalizes a
specification of the important objects and facts such that
they may be subjected to propositional condition-action
logical statements for inference production.

TABLE I

MAINTENANCE ACTION CODES AND THEIR DESCRIPTIONS. THESE ARE

USED IN THE ELAS DATABASE, AND IN THE CONSTRUCTION OF RULES

USED BY THE FAULT REASONINGAGENT.

Action Description Action Description

Code Code

1 Svc.-sched. I Corrosion rem.

2 Svc.-unsched. J Tested

3 Prev. maint. K In-process insp.

4 Maint. test flt. L Remvd./Reinst.

5 Prev. maint.-insp. M Checked NRTS

6 Spec. insp. N Checked-can’t repair

7 Grd. handling O Ovrhld./Reblt.

8 Maint. can’t do P Checked-Svcable.

9 Modif. by repl. Q MWO Removal

10 No action R Removed

A Replaced S Installed

B Adjusted T SOF compliance

C Repaired U Decontam.

D Manuf./Fab. W Hr. meter Chg.

E Not used for A/C X Gun Change

F Initial insp. Y Spec. mission chg.

G Final insp. Z Safety/Slipmark

H MWO applied

3) The delineation of such sentences or axioms is the third
step in knowledge base engineering. Once programmed,
these logic statements provide for automated evaluation
of consequences associated with a predicate state as
represented in the knowledge base.

4) The fourth step is to encode a specific problem instance
using the ontological framework that has been developed
previously.

5) Finally, the system may be queried given this particular
problem instance, and the knowledge base will produce
an answer using the semantics encoded during its con-
struction.

B. Propositional logic

Propositional logic is constructed from sentences that are
admissible under the defined syntax. These sentences comprise
symbols (perhaps joined by connective operators) representing
logical propositions that evaluate toTRUE or FALSE. For
example, an expression such as

P ∧Q ⇒ A (1)

in the present context is interpreted to read

IF CONDITION (P AND Q) THEN DO A (2)

to accentuate the fact that we are connecting a conjunctive
antecedent fault condition (P ∧ Q) with its consequent rec-
ommended maintenance actions (A). Of course, any number
of predicates may be combined to create more complex
expressions as needed.

C. Fault condition and maintenance rules

Inference within the first-generationFaultReasoningAgent
is carried out using the propositional logic, proceeding from a
Knowledge Baseof rules using forward and backward chaining
algorithms [4]. Rules construction is the third step of the
knowledge base engineering process described in Section IV-
A.

Fault conditions described in theFAULT table in ELAS
are combined with the action codes listed in Table I, provide
a minimal but sufficient set of data to construct a rule base
using the propositional logic. As the Phase I research comes
to a close, IAC is in the process of constructing a rule base
to associate descriptive fault text with corrective actions. The
process is labor-intensive, and involves analyzing records in
the FAULT and ACTION CODEtables, and the articulation
and programming of expressive rules (of the form shown
in Equation 2) to execute this mapping. These rules are in
turn added to the rule base of theFaultReasoningAgent, and
tested for accuracy by comparing the observed result upon rule
firing to the anticipated result. As each rule is programmed,
debugged and tested, the knowledge base continues to grow.
All previous rules must be continually evaluated to ensure
accuracy of the forward chaining algorithm with the newly-
added rule.

An example display of intermediate results used in the rule
construction procedure appears in Figure 6, which presents
the results of an SQL query of the ELAS database. All
faults and corresponding action codes for a specific aircraft
have been returned. TheFAULT field is expanded to display
more detail of the fault descriptive text. The reader should
note the heterogeneity of content exemplified in this field.
This characteristic of the data presents significant technical
difficulties for the knowledge engineer.

D. Ontogenesis

Strictly speaking, we consider an ontogenetic component
as responsible for “managing the evolution of the knowledge
base”, and one aspect of that responsibility is embodied within
the OKBAgent that was designed, developed and integrated
during Phase I research. Ontogenesis implies much more
than database connectivity, however–the vision of this project
is to create a system that is self-evolving, that is, capable
of augmenting its base of knowledge by consumption of
new information that accumulates over time. Certain classes
of learning algorithms are relevant to such an endeavor. In
particular, we anticipate that reinforcement learning algorithms
[6] will play an important role towards realizing ontogenesis
of the Ontogenetic Knowledge Basein software. IAC has
developed and tested prototype reinforcement learning com-
ponents as stand-alone applications; these are currently being
incorporated into the JADE Agent Architecture developed in
Phase I and reported herein.

Reinforcement learning is intriguing because it is data
driven (like forward chaining for propositional logic). “Data-
driven” implies automation, after adequate training and eval-

Fig. 6. . Results of specific SQL queries are analyzed to construct the OKB
rule base. TheFAULT field is expanded to display more of the returned
text. Notice the heterogeneity of content in this field. The corresponding
ACTION CODEis shown.

uation of the system by human experts. Autonomy obviously
is a focus of Autonomic Logistics for JSF.

The application of reinforcement learning to induction from
databases is an exciting topic of machine learning research that
naturally integrates with autonomous agent-based learning. For
example, in [3] the idea is advanced that this type of learning
may have utility in situations where the effects of the actions
of agents are unknown.

V. TECHNICAL CHALLENGES

Rule base development proved to be the most demanding
technical task of this Phase I SBIR program, due primarily to
several factors. Looking to future development, list the most
significant challenges below. It is noteworthy that most of these
are related to the area of natural language processing (NLP),
generally considered to be among the most difficult sub-
disciplines within the broader field of artificial intelligence.
We anticipate that many of the technical challenges identified
here are instrinsic to most aircraft maintenance databases in
real-world use.

1) We have noted thatfaults and corrective actionsare
coincident within ELAS database records. This presents
a minor technical problem to unravel the temporal rela-
tionship between a fault declaration and its correction.

2) The ELAS database was observed to contain many

instances of redundant information, due to weak or non-
existent ontologies setting bounds for descriptive infor-
mation. For example, theACTION CODEtable presents
one ontology that maps action code to description
(shown in Table I). TheACT CODEfield in theFAULT
table provides a foreign key to this table. However,
FAULT also contains anACTION field with descriptive
information that may be completely different than the
ontology ostensibly represented by theACTION CODE
table. Lack of referential integrity may invalidate as-
sumptions underlying the propositional logic.

3) Many of the so-called “faults” were in fact notations
that inspections were due in some time in the near
future. This creates the need to parse the descriptive
fields for certain keywords or word fragments that are
semantically associated with inspections, in order to
discriminate between inspections and faults.

4) ELAS includes multiple-record histories of actions re-
lating to a particular fault condition over the course of
time.

5) Faults are not an associatedFAULT CODE, which would
simplify the conceptualization and programming of rules
significantly. Faults are described by free-text anno-
tations made by multiple maintenance technicians at
different times, with apparently no formal rules for
production of the descriptive content. This is a major
technical obstacle.

6) It is likely that ELAS records contain erroneous informa-
tion. Careful, retrospective analysis by domain experts
must be carried out to identify errors in annotation,
including misdiagnoses that may not be recognized until
some time after the presumed corrective action (repair,
replacement) has been completed.

VI. CONCLUSIONS

Under Phase I SBIR funding, IAC designed, developed and
integrated software components of theOntogenetic Reason-
ing System. The system design includes adaptive knowledge
base of maintenance information; autonomous software agents
which evaluate and interpret data, model outputs and past
behavior to recommend actions under uncertain conditions,
and handle external communications; an ontogenetic engine
which manages the evolution of the knowledge base; and
web-based agents to perform security functions and broker
immediate communication between entities in the system.

We offer these conclusions drawn from our experience on
this project.

1) The Ontogenetic Reasoning Systemarchitecture pre-
sented in this manuscript addresses many of the require-
ments and goals for Autonomic Logistics. Preliminary
efforts have been concentrated on designing a system
that will scale, and provide for the worldwide distri-
bution and access of components and services without
compromising security. This architectural design of the
includes implicit support for internationalization. There-
fore, international partners of JSF will have access to

the system functionality in their native language, with
little additional programming required.

2) The system design and prototype components developed
in Phase I will be immediately applicable to other related
systems in Phase II. In particular, our plans include
applying this system to a turbofan faults database with
direct relevance to the Joint Strike Fighter.

3) Although not discussed herein, a central focus of future
development is to encompass the supply chain side of
the system. A copious supply chain management design
is included within the Phase I Knowledge Base schema.

4) The system design presented in this report is sufficiently
detailed to enable continual development by a team
of software engineers, working in collaboration with
domain experts in aircraft maintenance, logistics and
supply chain management.

5) The ELAS database used for system development was an
excellent resource for Phase I development, because its
records contain free-text entries, redundant information,
lack of ontological rigor, and errors in corrective actions
for certain fault conditions. These are likely character-
istics found in most maintenance databases, which are
updated by diverse groups of individuals.

6) Software agents are a sensible technical solution for
Autonomic Logistics. They operate within dynamic and
uncertain data environments, are trivially distributed
over a network, and may be programmed to carry out
complex behaviors that are goal-oriented, providing a
potentially high degree of autonomous processing. For
self-evolving knowledge bases, the use of some variant
of agent technology appears to be inevitable.

7) We anticipate that reinforcement learning algorithms [6]
will play an important role towards realizing ontogenesis
of the Ontogenetic Knowledge Basein software. These
algorithms are “data-driven”, facilitating automation,
after adequate training. Autonomy is a focal point of
Autonomic Logistics for JSF.

ACKNOWLEDGMENT

This work was supported by the Naval Air Warfare Center
in Patuxent River, MD, under SBIR contract No. N683335-
04-C-0179. JRB and TWB gratefully acknowledge the support
and encouragement provided by our co-author, Mr. Doug Gass,
and by Mr. Michael Begin of the NAVAIR Joint Strike Fighter
Program Office.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent
systems with a FIPA-compliant agent framework,”Software Practice &
Experience, vol. 31, no. 2, pp. 103–128, February 2001.

[2] M. Bratman, D. Israel, and M. Pollack, “Plans and resource-bounded
practical reasoning,”Computational Intelligence, vol. 4, no. 4, pp. 349–
355, 1988.

[3] S. Dzeroski, L. De Raedt, and H. Blockeel, “Relational reinforcement
learning,” inProceedings of the 8th International Workshop on Inductive
Logic Programming (ILP ’98), D. Page, Ed. Springer-Verlag, 1998, pp.
11–22.

[4] A. Goodall, The Guide to Expert Systems. Oxford, England: Learned
Information, 1985.

[5] S. Russell and P. Norvig,Artificial Intelligence: A Modern Approach.
Upple Saddle River, NJ: Prentice-Hall, 1995.

[6] R. Sutton and A. Barto,Reinforcement Learning: An Introduction. Cam-
bridge, MA: MIT Press, 1998.

[7] U.S. Army, Functional Users Manual for the Army Maintenance Man-
agement System–Aviation (TAMMS-A), United States Army, Washington,
DC, March 15 1999.

[8] M. Woolridge, An Introduction to MultiAgent Systems. Chichester,
England: John Wiley, 2002.

