

An Evaluation and Development Environment for an

ARM7-Based Autopilot Using the Atmel
SAM7S256 Microcontroller

by Justin L. Shumaker and Ainsmar X. Brown

ARL-TN-367 August 2009

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TN-367 August 2009

An Evaluation and Development Environment for an
ARM7-Based Autopilot Using the Atmel

SAM7S256 Microcontroller

Justin L. Shumaker

Vehicle Technology Directorate, ARL

Ainsmar X. Brown
National Institute of Aerospace

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

August 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

March 2009–April 2009
4. TITLE AND SUBTITLE

An Evaluation and Development Environment for an ARM7-Based Autopilot
Using the Atmel SAM7S256 Microcontroller

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Justin L. Shumaker and Ainsmar X. Brown*
5d. PROJECT NUMBER

9BU1C2
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-VTU
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TN-367

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
*National Institute of Aerospace, 100 Exploration Way, Hampton, VA 23666

14. ABSTRACT

This report provides a detailed procedure for interfacing an Atmel SAM7S256 board with a Linux-based PC. The environment
and interface are related to a new autopilot project that is designed around the ARM7 architecture used within the U.S. Army
Research Laboratory’s Vehicle Technology Directorate. An example project is also discussed as a means to see how the
environment operates.

15. SUBJECT TERMS

ARM7, Atmel, microcontroller, autopilot

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Justin L. Shumaker
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-2834
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

1. Introduction 1

2. Procedure 2

3. Future Applications 6

Appendix. Sample Code 7

Distribution List 11

 iv

List of Figures

Figure 1. Atmel SAM7S256 development header board. ...1

Figure 2. Linux4SAM Web site screenshot. ...4

Figure 3. Example .sh file. ..4

Figure 4. Diagram of header board with TST jumper removed. ..4

Figure 5. SAM-BA graphical user interface screenshot. ..5

 1

1. Introduction

The Advanced RISC Machine (ARM) architecture has become popular by its integration into
many embedded applications. Platforms include mobile phones, handheld game systems, and
industrial control systems since the 1980s. The ARM architecture has since found a niche in the
embedded programming community, striking an often-needed balance between power and size.
These microcontrollers provide more computational ability than smaller Microchip peripheral
interface controllers or AVR microcontrollers, while at the same time requiring less power and
consuming less volume than larger von Neuman-based computing systems.

The particular application being presented uses the Atmel SAM7S256 board (figure 1), which is
readily available in the United States from several commercial online vendors such as Sparkfun.
The AT91SAM7S256 chip is currently being used internally as the centerpiece of a new small-
scaled autopilot for unmanned air and ground vehicles. Though many parts of the development
environment stem from already available open source material, other components were prepared
internally. The most daunting task was deciphering the more than 700-page-long manual on
programming the ARM7. The results were distilled into several example files as well as the
accompanying header files used to program the chip accordingly.

Figure 1. Atmel SAM7S256
development header board.

The following section includes step-by-step instructions on acquiring the needed hardware and

software and setting up the development environment in Ubuntu Linux 8.04 for programming the

ARM7 chipset. The appendix includes sample files for process verification. In order to make

the material tractable to all users, including non-Linux users, additional process details are

included to improve consistency in the results.

 2

2. Procedure

The first step is to have a working installation of the Linux operating system available. It is
recommended to start from a fresh Linux installation, preferably the latest version of Ubuntu.
This setup has been tested with Ubuntu 8.04 long-term support but should be compatible with
future iterations of the operating systems. Once Ubuntu has been properly installed, the update
manager should update the system. Though it may be enough to only include the Subversion
version repository control program and libmpfr from the Synaptic Package Manager, it is also
recommended that the user installs the build-essential, autoconf, automake, and libtool packages
as well. These files will update the compilation environment as discussed later on. The apt-get
command in a terminal window is also an alternative to the Synaptic Package Manager method
of downloading the updates, e.g., apt-get install libtool.

The next step is to download the development environment for the ARM7. The example files
are downloaded by entering the following into the command terminal after changing the
directory to the desired folder. One can create a directory src in the user’s home directory,
change to that directory, and then obtain the files as follows:

user@host:~$ sudo svn co --username=guest http://js.cx/svn/AT91SAM7 AT91SAM7

Once the files are retrieved, download the GNUARM (GNU is not Unix ARM) toolchain, which
provides the modified C compiler for the ARM7 architecture. This software and additional

mirrors can be found on the GNU ARM Web site.1,2 Depending on whether the user is running a
32- or 64-bit system, a set of precompiled binaries may or may not be available. If the binaries
are not available for the particular platform, then the source code must be downloaded and
compiled using the make file (a script that sends instructions on how the program should be
compiled), which will be identified as Makefile within the folder.

Because the current toolset is dependent on libraries from version 3.4.3 of the GNUARM
toolchain, the Makefile in the latest version of the toolchain will have to be modified to point to
the appropriate libraries. Inside the Makefile are hard-coded paths that may or may not point to
the correct location. Look over each path and update any that appear to point in the wrong
location. If it is unclear whether the paths are correct or not, check to see if the program or
library exists in the specified path. Next, edit the .bashrc in the user’s home directory through
the terminal by typing:

user@host:~$ nano –w ~/.bashrc

1 GNU ARM Home Page. http://www.gnuarm.com (accessed 3 March 2009).
2 Amontec Home Page. http://amontec.com (accessed 13 August 2009).

 3

Modify the .bashrc path file to reflect the addition of the GNUARM tool chain. Append the
export path to the end of the file and save:

export PATH=$PATH:/usr/local/gnuarm-4.3.2/bin

Compile the modules used by all the AT91SAM7 examples and projects by changing to the
modules directory, updating the Makefile if necessary, and typing make. This action will create
the libarm.a static library, which is essential for the examples and projects discussed herein. The
libarm.a library, provides a number of utility functions to make serial, I2C (Inter-Integrated
Circuit), and SPI (Serial Peripheral Interface Bus) communications possible using only a couple
lines of code. The library also provides additional utilities for configuring pins, setting the clock
speed, managing power, performing analog-to-digital conversions, etc.

With the libarm.a now compiled, change the directory into the timer directory. This is located
within the examples directory. Try to compile this example by typing the following two
commands: make clean followed by make. If the previous steps were successful, then the file
named main.bin will have been generated. This is the AT91SAM7S256-specific binary program
that will be placed in the flash memory of the microcontroller.

Next, download the Linux SAM (Smart ARM-based Microcontroller) boot assistant from
linux4sam.org3. Once again, the option is available to download either binaries or source code
from the software tools menu. An explanation is also provided on the linux4sam.org Web site3
for the procedure for mounting the USB (Univeral Serial Bus) to the serial device (figure 2) so
that the computer will communicate with the ARM7 kit. It is recommended that the lines in
figure 3 be inserted into a shell file for future use. If the .sh file is executed once, it should not
be necessary to run it again on the same machine until it is rebooted again. Write the instructions
in a preferred text editor such as Nano, VIM, or Emacs and save as configure_samba.sh. Then
type chmod +x configure_samba.sh to make the file executable. Finally, type
./configure_samba.sh to run the file.

At this time, the SAM7256 header board may be connected to the PC. To allow programming
initially, clear the lock from the device by moving the TST (test) jumper across the two available
pins and plugging in the USB outlet to a power source (figure 4). After 10 s, disconnect the USB
cable from the header board and move the jumper to its original open position.

3Linux4SAM Home Page. http://www.linux4sam.org/twiki/bin/view/Linux4SAM/SoftwareTools (accessed 3 March 2009).

 4

Figure 2. Linux4SAM Web site screenshot.

sudo rmmod usbserial
sudo modprobe usbserial vender=0x03eb product=0x6124
sudo lsusb –d 03eb:6124

Figure 3. Example .sh file.

Figure 4. Diagram of header board with TST jumper removed.

The device should now be ready for programming. A useful way to determine if the
communications are successful is to display a live system log in the terminal window to see if the
computer recognizes the device when it is plugged in. This can be accomplished by typing the
following line in the command window:

user@host:~$ tail –f /var/log/syslog

 5

The tail –f command appends the most recent lines from the file syslog in /var/log/ to the
command window display. From syslog, the user is able to view the current system actions
including the response to any external USB devices recently added. The display to the window
should resemble new full speed USB device using ehci_hcd and address X, where X may be any
number applicable to a particular machine.

Once the system log file indicates that a new device (i.e., /dev/ttyUSB0) has been created, run the
SAM-BA (Smart ARM-based Microcontrollers Boot Assistant) application to begin
programming the chip (figure 5). (Change the directory to where SAM-BA was installed, which
most likely will be /home/user_name/src/sam-ba_cdc_2.8.linux_01/. Run SAM-BA by typing
./sam-ba_cdc_2.8.linux_01 (one may have to input chmod +x sam-ba_cdc_2.8.linux_01 to mark
the file as executable). The current device should already be selected as the current connection
/dev/ttyUSBX, where X can be any number depending on the number of other serial-to-USB
devices connected to the machine. Also select AT91SAM7S256-EK as the board to program. In
the window that opens up, select the folder to the left of the send file button and locate the
main.bin from the timer directory. Once the main.bin is selected, click the send file button and
answer yes to any prompts regarding locking and unlocking the module.

Figure 5. SAM-BA graphical user interface screenshot.

At this point, the header boards should be programmed. Disconnect and then reconnect the USB
cable or power source from the development board. The status light-emitting diode (LED) on
the development board should now be blinking. The user may return to the main.c file for the
timer and change the frequency at which the LED on the header board will blink by changing the
DIV128 expression to DIV32. This same general procedure may be followed to run any of the

 6

other examples provided or any original code that may be generated by the user for future use. It
may be useful to copy a working Makefile from another example directory instead of modifying
it each time.

3. Future Applications

The development environment is arranged to allow easy transition when programming the
ARM7 autopilot. In the future, filtering and estimation methods will be applied to the autopilot,
which will then be used as a controller for small- and microscale air and ground vehicles within
the scope of the Vehicle Technology Directorate’s unmanned systems research.

 7

Appendix. Sample Code

 This appendix appear in its original form, without editorial change.

 8

#include "board.h"
#include "pio.h"
#include "tc.h"
#include "lowlevel.h"

unsigned int FiqCount = 0;

static void
TimerIrqHandler (void)
{
 AT91C_BASE_TC2->TC_SR; /* read TC Status Register to clear interrupt */

 if ((AT91C_BASE_PIOA->PIO_ODSR & LEDSTATUS) == LEDSTATUS)
 {
 AT91C_BASE_PIOA->PIO_CODR = LEDSTATUS; /* turn status on */
 }
 else
 {
 AT91C_BASE_PIOA->PIO_SODR = LEDSTATUS; /* turn status led off */
 }
}

int
main (void)
{
 low_level_init (EXT_OSC, PLL_DIV, PLL_MUL, PRESCALE);

 /* PIO Enable, AB Select (0=A), Output Enable, Default Output State, Pull-Up Enable, Filter
Enable, PCINT Enable, Multi-Drive Enable */
 pio_init (LED_MASK, 0xFFFFFFFF, 0, LED_MASK, LED_MASK, 0, 0, 0, 0);

 /* Timed Interrupt Example */
 tc_init (TC2, TC_DIV32, TC_COMPARE, 37500, TimerIrqHandler, 4);

 while (1) {}
}

Figure A-1. Time example.

 9

Makefile for flash execution
Use "make 64" for AT91SAM7S64 or "Make 256" for AT91SAM7S256.
Default is "make 64"

variables
CC = arm-elf-gcc
LD = arm-elf-ld -v
AR = arm-elf-ar
AS = arm-elf-as
CP = arm-elf-objcopy
OD = arm-elf-objdump

CFLAGS = -I./ -Imodules/ -c -fno-common -Wall -Os
CASMFLAGS = -Imodules/ -Os -c -g -Wa,-a,-ad
AFLAGS = -ahls -mapcs-32 -o crt.o
LFLAGS = -Map main.map -T$(LINKER_SCRIPT)
CPFLAGS = --output-target=binary
ODFLAGS = -x --syms
GNUARM = /usr/local/gnuarm-3.4.3
OUT = libarm7.a
#GNUARM = /c/Program\ Files/GNUARM

OBJECTS = tc.o isrsupport.o lowlevel.o status_led.o usart.o adc.o pio.o pmc.o
usb.o pwm.o spi.o vreg.o wdt.o aic.o twi.o pdc.o
OBJECTS_LST = tc.lst isrsupport.lst lowlevel.lst status_led.lst usart.lst
adc.lst pio.lst pmc.lst usb.lst pwm.lst pwm.lst spi.lst vreg.lst wdt.lst
aic.lst twi.lst pdc.lst

64: CFLAGS += -DMCU=64
64: LINKER_SCRIPT = AT91SAM7S64.ld
64: $(OUT)

256: CFLAGS += -DMCU=256
256: LINKER_SCRIPT = AT91SAM7S256.ld
256: $(OUT)

clean:
 -rm -f $(OBJECTS) $(OBJECTS_LST) $(OUT)

$(OUT): $(OBJECTS) $(LINKER_SCRIPT)
 @ echo "..linking"
$(AR) rcs $(OUT) $(OBJECTS)
 $(AR) rcs $(OUT) $(OBJECTS) $(GNUARM)/arm-elf/lib/libc.a $(GNUARM)/arm-
elf/lib/libm.a $(GNUARM)/lib/gcc/arm-elf/3.4.3/libgcc.a $(GNUARM)/arm-
elf/lib/libg.a

lowlevel.o: lowlevel.c
 $(CC) $(CASMFLAGS) lowlevel.c > lowlevel.lst
 $(CC) $(CFLAGS) lowlevel.c

tc.o: tc.c
 $(CC) $(CASMFLAGS) tc.c > tc.lst
 $(CC) $(CFLAGS) tc.c

isrsupport.o: isrsupport.c

Figure A-2. Makefile for building modules.

 10

 $(CC) $(CASMFLAGS) isrsupport.c > isrsupport.lst
 $(CC) $(CFLAGS) isrsupport.c

status_led.o: status_led.c
 $(CC) $(CASMFLAGS) status_led.c > status_led.lst
 $(CC) $(CFLAGS) status_led.c

usart.o: usart.c
 $(CC) $(CASMFLAGS) usart.c > usart.lst
 $(CC) $(CFLAGS) usart.c

adc.o: adc.c
 $(CC) $(CASMFLAGS) adc.c > adc.lst
 $(CC) $(CFLAGS) adc.c

pio.o: pio.c
 $(CC) $(CASMFLAGS) pio.c > pio.lst
 $(CC) $(CFLAGS) pio.c

pmc.o: pmc.c
 $(CC) $(CASMFLAGS) pmc.c > pmc.lst
 $(CC) $(CFLAGS) pmc.c

usb.o: usb.c
 $(CC) $(CASMFLAGS) usb.c > usb.lst
 $(CC) $(CFLAGS) usb.c

pwm.o: pwm.c
 $(CC) $(CASMFLAGS) pwm.c > pwm.lst
 $(CC) $(CFLAGS) pwm.c

spi.o: spi.c
 $(CC) $(CASMFLAGS) spi.c > spi.lst
 $(CC) $(CFLAGS) spi.c

vreg.o: vreg.c
 $(CC) $(CASMFLAGS) vreg.c > vreg.lst
 $(CC) $(CFLAGS) vreg.c

wdt.o: wdt.c
 $(CC) $(CASMFLAGS) wdt.c > wdt.lst
 $(CC) $(CFLAGS) wdt.c

aic.o: aic.c
 $(CC) $(CASMFLAGS) aic.c > aic.lst
 $(CC) $(CFLAGS) aic.c

twi.o: twi.c
 $(CC) $(CASMFLAGS) twi.c > twi.lst
 $(CC) $(CFLAGS) twi.c

pdc.o: pdc.c
 $(CC) $(CASMFLAGS) pdc.c > pdc.lst
 $(CC) $(CFLAGS) pdc.c

Figure A-2. Makefile for building modules (continued).

NO. OF
COPIES ORGANIZATION

 11

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 only) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC HRR
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CIM L
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CIM P
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 RDRL CIM G (BLDG 4600)

 12

INTENTIONALLY LEFT BLANK.

