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ABSTRACT

The predictability of coastal ocean circulation over the central Oregon shelf,

a region of strong wind-driven currents and variable topography, is studied using

ensembles of 50-day primitive-equation ocean model simulations with realistic

topography, simplified lateral boundary conditions, and forcing from both ide-

alized and observed wind time-series representative of the summer upwelling

season. The main focus is on the balance, relevant to practical predictability,

between deterministic response to known or well-predicted forcing, uncertainty

in initial conditions, and sensitivity to instabilities and topographic interactions.

Large ensemble and single-simulation variances are found downstream of topo-

graphic features, associated with transitions between along-isobath and cross-

isobath flow, which are in turn related both to the time-integrated amplitude of

upwelling-favorable wind-forcing and to the formation of small-scale eddies. Sim-

ulated predictability experiments are conducted and model forecasts are verified

by standard statistics including anomaly correlation coefficient, and root mean

squared error. A new variant of relative entropy, the forecast relative entropy,

is introduced to quantify the predictive information content in the forecast en-

semble, relative to the initial ensemble. The results suggest that, even under

conditions of relatively weak wind forcing, the deterministic response is stronger

than instability growth over the 3-7 day forecast intervals considered here. Con-

sequently, important elements of the coastal circulation should be accessible to

predictive, dynamical forecasts on the nominal 7-day predictability timescale of

the atmospheric forcing, provided that sufficiently accurate initializations are
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available. These results on predictability are consistent with inferences drawn

from recent modeling studies of coastal ocean circulation along the central Ore-

gon shelf, and should have general validity for other, similar regions.
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1. Introduction

Over the last decade, numerical simulations of coastal ocean flows have begun to provide

credible representations of three-dimensional, wind-forced, continental shelf circulation on

horizontal scales of several to several hundred kilometers. On the central Oregon shelf, for

example, primitive-equation ocean models have been shown to yield useful comparisons with

in-situ and remote-sensing observations, and have been used to obtain new insights into

the structure and dynamics of wind-driven circulation over the complex bathymetry of the

Heceta Bank region (Oke et al. 2002a,c; Kurapov et al. 2005a).

At the same time, advances in satellite observing systems and mesoscale atmospheric

modeling have greatly improved both our understanding of coastal wind fields and our ability

to simulate and predict their structure. In addition, new observing technologies with real-

time data reporting, such as autonomous underwater vehicles, land-based radars, and data-

transmitting moorings, have been developed, which promise in the near future to provide

the regular availability of synoptic data describing coastal ocean conditions on a regional

scale. Thus, a practical opportunity is arising to combine these elements - numerical ocean

models, coastal wind fields from operational weather forecast models, and real-time data

from coastal ocean observing systems - into operational ocean prediction systems for the

continental shelf.

The potential success and value of such systems will depend fundamentally on the in-

trinsic predictability properties of the coastal ocean. Thus far, however, these properties

have received little direct attention, and been subject to little quantitative analysis. While

it has long been known that a large fraction of some components of shelf flows, such as
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coastal sea level and depth-integrated alongshore currents, can be understood as a linear,

deterministic response to wind forcing (Battisti and Hickey 1984; Halliwell and Allen 1984),

evidence for the importance of eddy processes has also existed (Bryden et al. 1980). Re-

cent numerical studies, extending previous linear analyses such as that of Barth (1989b)

and McCreary et al. (1991) have explored the nonlinear evolution of instabilities on coastal

upwelling fronts and the finite-amplitude flow structures that can result (Durski and Allen

2005; Durski et al. 2007). Presumably, the presence of these instabilities will lead to distur-

bance and error growth dynamics that limit the skill of coastal ocean predictability in the

same way that baroclinic instability and related processes in the mid-latitude atmosphere

impose predictability limits on numerical weather prediction.

In the atmosphere, the literature on predictability of synoptic-scale flow for global mod-

els is vast. Perhaps more relevant by analogy to the problem of regional ocean model

predictability is the smaller literature on mesoscale atmospheric predictability (Anthes et al.

1985; Errico and Baumhefner 1987; Vukicevic and Errico 1990; Zhang et al. 2002, 2003),

which similarly involves the use of nested models with improved resolution of topography

and improved representation of mesoscale physical processes. These models suggest that,

in the atmospheric case, errors in initial and lateral boundary conditions may often limit

mesoscale predictability, but, if convective or other similar processes are involved, small-scale

instabilities can also play a role. There is a substantial amount of work on predictability of

the coupled ocean-atmosphere ENSO phenomenon (Chen et al. 1995; Moore and Kleeman

1996), but otherwise the predictability of ocean circulation remains relatively unexplored,

with a few exceptions, such as the studies by Moore and Mariano (1999) and Moore (1999)

of error growth in models of the baroclinically unstable Gulf Stream jet.

4



In the following, a primitive-equation ocean model with realistic bathymetry is used to

explore the balance, relevant to practical predictability of the coastal circulation, between

deterministic response to known or well-predicted forcing, uncertainty in initial conditions,

and sensitivity to instabilities and topographic interactions. The general object is to begin

to develop quantitative characterizations of the intrinsic predictability of wind-driven coastal

ocean flows, and of the processes that control or affect that predictability. The specific focus

is on the wind-driven coastal flow over topography representing the central Oregon shelf,

which is dominated by Heceta Bank, an elongated submarine ridge oriented roughly northeast

to southwest across the shelf. Section 2 describes the model and its implementation in a

domain representing the Oregon coastal zone. In section 3, the basic physical characteristics

of the circulation in the simulations is described. The ensemble-based predictability results

are discussed in section 4, along with a new variation of the relative entropy statistic. A

discussion and summary are given in section 5.

2. Model formulation

For this study, a primitive-equation ocean circulation model with a terrain-following

vertical coordinate (Shchepetkin and McWilliams 2003, 2005) was configured for the Oregon

continental shelf and slope region (Fig. 1). The model configuration is similar to those in

Oke et al. (2002a,b,c) and (Kurapov et al. 2005a,b). The model adopts the Mellor-Yamada

level 2.5 turbulent closure scheme for the vertical mixing (Mellor and Yamada 1982), and

Laplacian mixing along coordinate surfaces with horizontal viscosity and diffusivity equal to

2 m2 s−1. The bottom stress is calculated with a quadratic drag using a bottom roughness of
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3 · 10−3 m. The grid resolution is 2 km for both Latitude (41.2◦N to 46.8◦N) and Longitude

(−127◦W to −123◦W), with 120 and 312 grid points in the offshore and alongshore direction,

respectively, while in the vertical 31 sigma levels are used, with finest resolution near the

surface and bottom with hc = 10 m, θ = 4, and b = 0.9. Realistic bottom topography is used,

including the Heceta Bank submarine feature near latitude 44◦N (Fig. 1). The boundary

conditions are periodic in the alongshore direction (northern and southern boundaries), with

rigid boundaries (no-normal flow) at the coast and the artificial offshore wall (eastern and

western). The bathymetry and coastline are smoothed and matched near the south and

north ends of the domain. All variables are periodic along the both ends, and f-plane is used

with f = 1.013 · 10−4 throughout the domain.

In previous studies, simulations with very similar model configurations have been favor-

ably compared with detailed physical observations in the Heceta Bank region (Oke et al.

2002a,b,c; Kurapov et al. 2005a,b). These studies establish that this ocean model configura-

tion produces a representation of the flow in this region that is sufficiently realistic to provide

a rational basis for the predictability experiments considered here. However, some important

features of coastal flow fields cannot be represented in this idealized domain: for example,

large-scale alongshore pressure gradients cannot develop, and exchange with the deep ocean

interior is prevented. To minimize any artificial boundary effects, the present study focuses

on the flow in a limited, centrally located sub-domain, between latitudes 43◦N and 45◦N

and from the coastline to longitude 125.5◦W, including and surrounding the Heceta Bank

feature (Fig. 1). This reduces the influence of the artificial western boundary, and limits

the direct, local influence on the flow of the artificial smoothed and matched topography at

the northern and southern ends of the periodic channel. However, artificial “wrap-around”

6



effects may still arise from the periodic boundary condition.

For the simulations considered here, the applied wind stress is spatially uniform, with

temporal variations from wind stress measured during summer 2001 at the National Data

Buoy Center (NDBC) buoy 46050, located 20 km west of Newport, Oregon, at 44.62◦N

124.53◦W (Fig. 2). Only the meridional (alongshore) component of the buoy wind stress is

used; the zonal component, which is relatively small in the observed record, is set to zero.

The mean alongshore wind stress is 0.0298 N m−2 southward. For simplicity, no surface heat

flux is applied.

For the predictability experiments, a 16-member ensemble of 50-day simulations was

constructed, with identical forcing but differing initial conditions. The initial conditions for

the ensemble members were obtained by adding i.i.d. white noise with maximum amplitude

0.5◦C to the temperature field of a single solution that was initialized at rest with monthly

climatology for June 2004 and forced for 10 days by a spatially uniform constant southward

wind stress of 0.05 Pa. The initial field for the ensemble, after the 10-day constant forcing,

has cold upwelled water along the coast and an upwelling jet over the mid-shelf, qualitatively

similar to but slightly weaker than the flow during the first forecast interval discussed below

(e.g., Fig. 1-b). The ensemble size of 16 was motivated by the analysis of a 30-member

ensemble with idealized periodic winds, which, along with subsequent analyses of subsets of

the 16-member buoy wind ensemble, indicated that the 16 members would be sufficient to

capture essential aspects of the variability. A second motivation for limiting the ensemble

to 16 members was computational efficiency.
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3. Ensemble simulations

a. Wind-forced response

The central feature of the simulations is the formation of a coastal upwelling circulation

with an associated alongshore coastal jet. In response to the coastal Ekman divergence

produced by the mean southward wind stress, subsurface water upwells along the coastal

boundary, and the resulting pool of cold, saline, dense upwelled water fills the inner shelf

along the entire domain (Figs. 1,3). The upwelled water is separated from the warm, fresh

offshore water by a front with a nominal width of 20 km, which tends to lie over the outer

shelf, where the bottom depth is 100 - 200 m. Associated with the front is a baroclinic,

geostrophic jet, with surface meridional velocities exceeding −0.65 m/s (Fig. 4). The position

of this front and jet fluctuates with time and in space, in response to wind forcing, alongshore

variations in shelf topography, and internal instability processes.

The region of most intense variability is located on the southern, downstream side of

the topographic feature representing Heceta Bank (Fig. 5). An isolated maximum in sea-

surface height (SSH) variance is located off the southern edge of the Bank. The surface

density variance reaches its maximum slightly farther offshore, and the surface vector velocity

attains a maximum variance [defined as the time-mean of (v − v̄)2 + (u− ū)2, where v and

u are meridional and zonal velocities, respectively, and v̄ and ū are the corresponding time-

averages] at the southern side of Heceta Bank. The surface current speed [where the speed

q = (u2 + v2)1/2] variance has a different spatial structure, with maxima at the edges of the

region of large SSH variance, indicating that the maximum of the vector velocity variance is

associated with changes in flow direction, rather than speed. The fluctuating flow direction
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is in turn related to the passage of eddy features through the region south of the Bank.

During the first several weeks of all of the simulations, the frontal jet follows the topo-

graphic contours back toward the coast around the southern side of Heceta Bank (Fig. 6-a).

Eventually, a transition occurs to a separated flow configuration, in which the jet flows di-

rectly southward off the southern side of the Bank, crossing topographic contours into deeper

water (Fig. 6-b). Prior to and during the transition to separated flow, cyclonic eddies form

in the frontal jet over Heceta Bank and propagate downstream, frequently merging to form

a larger eddy over the outermost, southern portion of the Bank. During the transition, the

onset of cross-isobath flow of the frontal jet tends to occur in conjunction with the arrival

and intensification of these eddies at the southern edge of the Bank. Transitions to sepa-

rated flow occur between days 25 and 30, and again between days 45 and 50, for all ensemble

members (Fig. 6-c). The separated jet reattaches to the shallower topographic contours far-

ther downstream, near latitude 43◦N, just north of Cape Blanco. Smaller scale fluctuations,

presumably arising from short wavelength instabilities (Fig. 1-b) of the type discussed by

Barth (1989b), Durski and Allen (2005), and Durski et al. (2007), also form along the coastal

upwelling front and jet, and give rise to variance maxima near the mean position of the front

and jet.

Many aspects of the behavior of the wind-forced flow in the simulation are consistent

with observations of coastal ocean circulation over the central Oregon shelf. A qualitatively

similar flow separation has been observed, with the frontal jet crossing isobaths southward off

Heceta Bank (Castelao and Barth 2005). High-frequency radar observations have revealed

suggestive evidence for the presence of similar eddy features over Heceta Bank (Kosro 2005).

Similar patterns of model variability have also been found previously, in analyses of model
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simulations with realistic topography that focused on instabilities of the coastal upwelling jet

(Durski and Allen 2005). The dynamics of the observed and modeled separation processes,

including the apparent role of the eddies, are not currently understood. A more complete

analysis, in this context, of the model separation dynamics is in progress and will be reported

on elsewhere. The focus here is instead on direct analysis of the predictability characteristics

of the modeled coastal circulation.

b. Ensemble statistics

Large temporal and ensemble averaged variances of surface density, SSH, and surface

current speed are found downstream (south) of the Heceta Bank topographic feature; the

spatial structure of this ensemble-averaged variability (not shown) is very similar to that

of the analogous time-averaged statistics from single ensemble members (Fig. 5). The first

five days of each simulation were excluded from the averaging, to allow adjustment to initial

conditions, so the corresponding interval length was 45 days. The upwelling front and

southward-flowing geostrophically balanced coastal jet, and the dense (relatively cold and

saline) upwelled water along the coastal boundary, are clearly evident in the ensemble mean.

The mean cross-front differences in surface density, and SSH were roughly 2 kg m−3, and 0.15

m, and maximum speeds in the mean jet exceed 0.5 m s−1. Maximum standard deviations

in these regions reach 0.6 kg m−3, and 0.05 m, and 0.25 m s−1.

Two different dimensionless root-mean-square norms are used here to compute the stan-

dard deviation of ensemble spread and, below, the differences between individual solutions
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over the sub-domain (Fig. 1). The first, N3(t), is based on the full three-dimensional fields:

N3 = V
1/2
3 , V3 =

1

2

[
ρ′2

xyz

E3(ρ′2)
+

u′2 + v′2
xyz

E3(u′2 + v′2)

]
. (1)

Here ρ′(x, t) = ρ(x, t)− ρ̄(x), u′(x, t) = u(x, t)− ū(x), with ρ̄, and ū representing ensemble-

and time-averaged mean density and horizontal vector velocity fields, respectively, x =

(x, y, z), and (u′, v′) = u′. In (1), the notation (·)
xyz

denotes a volume average, and E3(A)

indicates the ensemble-, time-, and volume-average of quantity A. The second norm, N2(t),

is based only on surface variables:

N2 = V
1/2
2 , V2 =

1

3

[
ζ ′2

xy

E2(ζ ′2)
+

ρ′2s
xy

E2(ρ′2s )
+

u′2s + v′2s
xy

E2(u′2s + v′2s )

]
. (2)

Here ζ, ρs, and [us, vs] = us are the SSH, surface density, and surface horizontal velocity, re-

spectively, and the decomposition into mean and fluctuations is as in (1). In (2), the notation

(·)
xy

denotes an area average, and E2(A) indicates the ensemble-, time-, and area-average

of quantity A. The volume-averaged quantities in N3 yield a relatively complete estimate

of differences between the fields, while the surface variables in N2 are of special interest

for many potential practical uses, such as SST prediction for meteorological forecasting or

surface current prediction for search and rescue operations. Although other choices of norms

would, of course, lead to slightly different results, the present results are unlikely to change

for any norm that is sensitive to the dominant features of the flow.

The ensemble spread N ens
3 for the N3 norm is computed according to

N ens
3 =

(
1

J

∑
j

V3j

)1/2

, (3)

where the sum is over the J ensemble members (J = 16) and V3j is the quantity V3 in (1)

computed for the difference of the j-th solution Yj from the full ensemble mean fields Yens
m ,
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where

Yens
m (x, y, z, t) =

1

J

∑
j

Yj(x, y, z, t). (4)

The computation for the ensemble spread N ens
2 in the N2 norm is analogous such that

N ens
2 =

(
1

J

∑
j

V2j

)1/2

, (5)

where V2j is the quantity V2 in (2).

For the full ensembles of simulations, the quantities N ens
3 and N ens

2 grow slowly over

most of the simulation interval, with final values of the corresponding norms less than twice

their minimum values (Fig 8). The initial decrease, during Days 5-10, is associated with

adjustment of the random initial perturbations, in which the damping of most of the initial

perturbation variance exceeds the growth of jet-scale instabilities. There is some indica-

tion of more rapid growth toward the end of the period, but little suggestion overall of the

sustained exponential growth that would characterize an ensemble of linearly unstable dis-

turbance fields. On the other hand, the slow but persistent increase in ensemble variance

N ens
3 throughout the period is also different than would be expected for linear instabilities

that have equilibrated at a (statistically) steady finite amplitude, for which the ensemble

variance should be essentially constant in time. This suggests that the increasing ensemble

spread may be related to the integrated wind forcing, either directly, through differing state-

dependent responses to the given wind forcing, or indirectly, through episodes of instability

of wind-forced jets that intermittently exceed stability thresholds when the wind-driving is

sufficiently strong.
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c. Dynamics

In many respects, the spatial structure of the ensemble statistics is similar to that of

the corresponding time-averaged statistics for individual ensemble members (Figs. 5,9). Ev-

idently, the alongshore structure in the variance fields is controlled by topography, and not

by the initial perturbations of the ensemble members, which were random and thus would

have instead resulted in an ensemble variance distribution that was uniform alongshore or

along the jet axis. Similarly, the timing of the jet separation events is relatively uniform

across ensemble members, and does not depend sensitively on the initial perturbations, sug-

gesting that the separation is largely a deterministic response of the wind-driven flow over

topography, despite the apparent role of nonlinear eddy formation in the separation process.

However, it is not straightforward to disentangle completely the different processes that

may contribute to the growth of the ensemble variance (Fig 8). The spatial structure of

the ensemble variance is different for different variables and at different times during the

simulation interval (Fig. 9). For SSH, the ensemble variance at fixed times is tightly con-

centrated in localized regions that are associated with specific large-amplitude meander or

vortex features, and represent relative displacements of these features in the different en-

semble members (Fig. 9-d). Surface current variability is also largest near these features,

but extends more uniformly along the coastal jet (Fig. 9-e). Surface density variability is

less strongly correlated with these features, and late in the simulation may be largest well

offshore of the jet (Fig. 9-a,b,c).

The different degrees to which SSH, surface current, and surface density variability are

tied to the locations of these features can be partially rationalized, as follows. SSH, and
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to a lesser extent surface currents, are surface variables whose values can be considered

depth integrals of pressure and thermal wind gradients, provided that pressure gradients

and geostrophic flow at depth are weak. Thus, these variables can be expected to show a

directly discernable influence of the shelf topography. Surface density, however, is subject

to strong advection by surface currents, is not naturally related to the depth integral of a

three-dimensional property, and will tend to act more like a passive tracer. The resulting

time-dependent advection process can be anticipated to lead to a decorrelation of surface

density variability from the three-dimensional flow structures that dominate the SSH and

surface current fields.

Rather than attempt here to analyze in detail the dynamics that control the evolution

of the individual ensemble members, we focus instead on the immediate consequences of the

ensemble characteristics on the predictability of the coastal flow fields. In interpreting the

results of the predictability experiments discussed in the next section, it is nonetheless useful

to keep in mind the following general inferences with regard to the dynamics: The initial

evolution of the random perturbations is complex, consisting of damping at most of the small

scales and growth at some of the larger scales, presumably associated with flow instabilities;

(2) The growing disturbances apparently equilibrate at relatively small amplitude, but the

different ensemble members show different timing and position of large-amplitude meanders

and vortices associated with wind-driven flow over topographic features; (3) The ensemble

variance generally remains associated with topographic features throughout the simulation

period, rather than being uniform alongshore, as might be anticipated in the absence of

topographic influences; (4) There is slow overall growth in ensemble variance during the

course of the simulation interval, apparently resulting either from flow-dependent differences
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in the direct response to forcing, or from intermittent episodes of instability of the wind-

forced flow.

4. Ensemble-based predictability experiments

a. Approach

There are three primary competing elements that will determine the predictability of

coastal ocean circulation in the regime considered here: the deterministic response to the

forcing (which may itself be either well-known or uncertain), the uncertainty in initial con-

ditions, and error growth associated with nonlinearity and instability of the flow. In this

section, we analyze the ensembles of simulations described above in order to quantify the

relative importance of these elements in the context of the present model. For the general

predictability problem, a fourth element of likely significance is model error, which is not

addressed here.

In the standard ensemble forecast approach, a new ensemble is constructed at each ini-

tialization time, using information from the previous forecast cycle. In the present case,

a simple empirical approach is used instead to construct simulated ensembles for different

initialization times from the two ensembles of long-term simulations described above. The

predictability experiments are constructed from the simulation ensembles as follows. For a

specific choice of initial time t0, such as t0 = 24 days, the ‘true’ solution X(t; t0) is defined as

the single ensemble member that is closest to the ensemble mean at the initial time t = t0,

with respect to a specific norm. For this true solution X(t; t0), with initial time t0, a sim-
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ulated forecast ensemble is then constructed from the remaining members of the long-term

simulation ensemble. The predictability of the true solution is examined by analyzing the

evolution of the forecast ensemble and the differences between the forecast ensemble mem-

bers and the true solution at various forecast times. This procedure is then repeated for a

new initial time t′0, for which a new true solution X(t; t′0) is chosen in the same way from the

full ensemble at t = t′0. These predictability experiments are all conducted in a pure forecast

setting, in which no data from the true solution is used to guide the predictive solutions.

By construction, the mean of the simulated forecast ensemble will, for each t0, initially

be relatively close to the true solution X(t; t0). As the members of the ensemble of long-term

simulations diverge over time, the initial variance of the corresponding simulated forecast

ensembles for successively larger values of t0 will grow. In general, for sufficiently large t0,

this empirical construction may not yield a useful simulated forecast ensemble, because the

ensemble members may be too widely spread. Nonetheless, it is shown below that useful

simulated forecast solutions, with error substantially smaller than a persistence forecast, can

be obtained from the ensemble throughout the entire simulation interval.

Four different forecast quantities are considered here: climatology Y0, persistence Yp,

control Yc, and ensemble mean Ym. Of these, all but the climatology, which is constant,

depend on the initialization time t0, while only the control and ensemble mean depend on

the the forecast time t. The climatology Y0 is simply the time and ensemble mean of the

full ensemble of simulations, over the entire integration interval. Persistence forecast Yp is

the simplest forecast that can be made, given approximate, or exact, knowledge of the initial

state of a system: for a forecast from initial time t0, the forecast state Yp(t; t0) at time t ≥ t0

is presumed to be the same as the initial state Yp(t0; t0). For simplicity, the exact initial
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state is used here for the persistence forecast, so that Yp(t; t0) = X(t0). The persistence

forecast provides a basic estimate that a dynamical prediction must be able to improve upon

if the utility of dynamical forecasting is to be established.

The control and ensemble mean forecasts are derived from the J − 1 simulated forecast

ensemble members Yj, j ∈ I = {1, · · · , k − 1, k + 1, · · · , J}, where J is the total ensemble

size (J = 16). Here k is the omitted index for the true solution X(t), which is excluded from

the simulated forecast ensemble. The control forecast Yc is defined as the single ensemble

member that is initially closest to the true solution X(t) at t = t0: Yc(t; t0) = Yj(t), j = jc,

where jc is the value in the index set I for which ||Yj(t0) − X(t0)|| is minimum over all

possible j ∈ I. This is a natural proxy for an optimal deterministic forecast. For a given

ensemble, the specific choice of the control solution Yc(t) depends on the definition of the

norm || · || that is used to measure the initial differences.

The ensemble-mean forecast Ym is defined as the mean state at each time t of the J − 1

forecast ensemble members,

Ym(t; t0) =
1

J − 1

∑
j∈I

Yj(t), (6)

where again I = {1, · · · , k−1, k+1, · · · , J}, J is the total ensemble size, and k is the omitted

index for the true solution X(t; t0). Since the dynamical equations are nonlinear, Ym is not in

general a solution of the dynamical equations, and represents instead a probabilistic forecast

based on the solution ensemble.
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b. Simulated forecasts

If the variability in the true solution is due primarily to a deterministic response to the

wind forcing, then dynamical forecasts should yield useful predictive skill on intervals limited

only by the atmospheric predictability timescale. On the other hand, if the variability is

dominated by instability processes, then initial errors in the forecast fields will grow rapidly,

and the dynamical forecasts will be of limited value. The relative importance of these

two sources of variability and their influence on prediction accuracy are assessed here, in

the context of the model simulations, by consideration of the control and ensemble-mean

forecasts.

In the following predictability analysis and discussion, three choices of initial time t0 are

considered for the buoy wind case: t0 = {16.5, 24, 37} days. These three initialization

times correspond to periods of weak-mixed upwelling and downwelling, strong upwelling,

and strong-mixed winds, respectively (Figs. 2,8); the latter period includes an interval of

upwelling after the strong downwelling pulse. Note that the evolution of the true solution

X(t; t0) during each of these intervals can be inferred by comparing the true field X(t; t0) to

the persistence forecast Yp = X(t0; t0): since Yp is equal to X(t; t0) at time t = t0, these

differences of X(t; t0) and Yp are equivalent to the differences between X(t; t0) at time t and

at time t0, and thus represent the evolution of the field X over the interval [t0, t].

Consider first the strong upwelling period, for which t0 = 24 days. For the three-day

forecast from day 24, the forecast time is t = 27 day and the initial time t0 = 24 day. Over

this interval, the evolution of the true solution X in the central region of interest is dominated

by cyclonic rotation of the vortex of dense, upwelled water that is initially over the northern
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part of Heceta Bank (Figs. 10,11). Surface density increases over southern Heceta Bank

between the 200-m and 300-m isobaths, and decreases over the shallower, inshore area. The

pattern of changes in SSH and surface currents follows that for surface density, and shows an

oscillatory development along the upwelling front, which is centered roughly on the 250-m

isobath. Differences between the true field and the persistence forecast of order +0.8/− 1.4

kg m−3, +10/ − 3 cm, and +0.5/ − 0.8 m s−1 arise in surface density, SSH, and surface

current speed, respectively, over central Heceta Bank (Fig. 11).

In the strong upwelling case, both the control and the ensemble mean forecast capture the

dominant evolution of the flow at day 27, the cyclonic rotation and southward movement of

the vortex of dense, upwelled water over the southern side of Heceta Bank (Figs. 10,11,12).

Comparison with the climatology and persistence forecast indicates that the control and

ensemble mean forecasts provide quantitatively useful predictions of the evolution of the true

solution from day 24 to day 27. The spatial averages on day 27 of the absolute difference

from truth for the control and ensemble mean forecast fields are less than half as large as the

corresponding differences for the difference of the persistence fields from truth (Table. 1).

This pattern of smaller differences for the control and ensemble mean forecasts than for

persistence extends throughout the 100-m depth of the water column over Heceta Bank

(Fig. 12).

Similar results for 3-day forecast periods are found in the the weak-mixed and strong-

mixed wind cases. In both, the dynamical forecasts generally represent well both the location

and the shape of the cyclonic eddies over the Bank. The maximum differences from the truth

for all forecasts are located over Heceta Bank for the weak-mixed case and southern part of

the Bank for the strong-mixed case. The quantitative accuracy of the dynamical forecasts
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is twice as good as persistence or climatology, and the ensemble forecasts are slightly better

than the control forecasts for all surface fields. Thus, the control and ensemble forecasts,

despite relatively large initial errors inherited through the long-integration ensemble method,

both evidently contain useful, quantitative, predictive information on the evolution of the

flow.

c. Predictability statistics

1) Root-mean-square errors

Each of the three simulated forecast cases (with t0 = {16.5, 24, 37}) involves complex

flow patterns with localized, energetic variability on scales of tens of kilometers, advective

modification of surface water properties, and a combination of along- and cross-isobath flow.

The evolution is thus evidently nonlinear, and with its development of wave-like alongfront

variability, seems likely to include instability processes. Consequently, a plausible expecta-

tion is that the evolution will be sensitive in detail to the specification of initial conditions,

and that small departures from the true initial state will in each case lead to large differences

in final forecast states, for the different members of the forecast ensemble.

This expectation, that the simulated forecast solutions will show rapid growth of initial

error and sensitivity to initial conditions, is not met. Error growth in the dynamical forecast

fields is essentially negligible, with no evident tendency toward exponential growth: the root-

mean-square error (RMSE) for these forecasts remains nearly constant over each of the three

forecast intervals (Fig. 13). In contrast, in all cases examined here, the error, relative to the

true solution, of the persistence forecasts grows rapidly, with the persistence RMSE rapidly
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exceeding twice the control and ensemble-mean RMSE for the first two forecast intervals

(Fig. 13), and the N3 and N2 norms of the difference fields Yp(t) − X(t) reaching values

of 0.8 or great within 1-2 days (Fig. 14). This rapid growth of the persistence RMSE, to

values substantially larger than the control and ensemble-mean RMSE within 1-2 days, is an

essential result of the analysis. It illustrates that the dynamical forecasts are able to capture

significant portions of the flow evolution, despite the errors inherited from the imperfect

representation of the initial state.

Similarly, there are only limited changes in the spread N ens
3 of the full simulated forecast

ensemble over the forecast interval (Fig. 14). Some growth in surface density ensemble

variance occurs along the southern edge of the upwelled pool, where initial surface density

ensemble variance is also concentrated. However, the amplitude and spatial scale of this

variance is significantly smaller than that of the changes associated with the evolution of

the true field over the three-day period. The SSH and surface current speed show even

less tendency toward amplification of initial ensemble variance. Figure 14 also shows that

a forecast of climatology possess errors much larger than either the ensemble spread of the

error of the control or ensemble-mean forecasts. In more familiar dynamical systems such

as that of Lorenz (1963) , in contrast, small differences between solutions grow until their

squared difference is comparable to twice the climatological variance of the system. (This is

the upper bound on the error of the persistence forecast as well.) Thus, the lack of growth

in ensemble spread occurs despite the fact that the spread is substantially smaller than the

climatological standard deviation, a situation in which solutions in other dynamical system

continue to diverge.

The individual components of the N3 norm, the root-mean-square errors, behave in a
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qualitatively similar fashion, but with some differences between terms (Figs. 13). In all

cases, the dynamical forecasts beat persistence after 1 day. The relative margin of difference,

measured in terms of the ratios of the respective components, in density is comparable to

that of vector velocity (Fig. 13) and SSH (not shown). The volume-averaged RMSE for

the control and ensemble-mean forecasts remains below 0.05 kg m−3, and 0.05 m s−1, for

the full 7-day forecast interval in all forecasting periods (Fig. 13), roughly equal to the

corresponding ensemble variances computed relative to the ensemble mean (Fig. 14). The

dimensional RMSE magnitudes for the dynamical forecasts are mostly less than half as large

as those for persistence, consistent with the corresponding N3 values generally less than 0.6

(Fig. 14). By all of these measures, all of the value of the persistence forecasts, relative to

the climatology, has been lost after only 1-2 days.

2) Anomaly correlations

A similarly rapid decline is found in the values of the anomaly correlation coefficient Cac

for the persistence forecast (Fig. 15). The Cac, defined as

Cac =
Cov(Y −M, X−M)√

V ar(Y −M) · V ar(X−M)
. (7)

is the volume-averaged correlation between the difference Y −M of the forecast Y and

climatological mean M (Fig. 7), and the difference X−M of the truth X and M; here the

correlation is the covariance of these quantities normalized by the square roots of the corre-

sponding variances. It is widely used to assess forecast skill in numerical weather prediction

(Miyakoda et al. 1986; Tracton et al. 1989; Palmer et al. 1990), for which experience suggests

that forecasts with Cac < 0.6 provide no useful guidance (e.g., Krishnamurti et al. (2003)
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and references therein).

In the present case, the values Cac of the persistence forecasts for the density and vector

velocity all drop below 0.6 within 1-2 days (Fig. 15). Thus, the persistence forecasts of

the structure of the anomaly fields, relative to the corresponding climatological means, also

retain little value after only 1-2 days. The values of Cac for the dynamical forecasts are

generally larger than 0.6, and generally similar for both wind cases for all fields, except for

vector velocity of the control forecast for t0 = 37 days, which declines below 0.6. This pattern

is consistent with that for N3 and the RMSE, such that the dynamical forecasts show robust

predictability even during the interval in which the transition to separated flow occurs.

In all cases examined here, and by all three measures introduced above (the N3 norm,

RMSE, and Cac), the control and the ensemble-mean forecasts are more accurate than per-

sistence for all forecast intervals between 1 and 7 days. For t0 = {16.5, 24, 37} days, for

example, the difference norm ||Yc,m(t) − X(t)||N3 of control or ensemble-mean and truth

have values less than half as large as the corresponding difference norms for persistence and

truth (Fig. 14). The improvement in accuracy is found despite the systematically larger

initial errors of the control and ensemble-mean forecasts, relative to persistence. This basic

comparison illustrates the potential predictive value of dynamical forecasting in the coastal

ocean. It appears to derive primarily from the strong response of the coastal ocean to the

imposed wind-stress forcing; note, however, that the dynamical forecasts are also successful

during the first forecast interval, which has only weak wind forcing (Table 1).

During the weak-mixed and strong upwelling wind periods, N3 difference norms for both

the control and ensemble mean forecasts do not change much, but during the strong-mixed

wind period, the norm for the control appear to increase more significantly (Fig. 14). The
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initial errors are also larger during the strong-mixed wind period, which may be partially

responsible for this difference. For all three of these time intervals, the ensemble-mean

forecast is comparable to, or more accurate than, the control forecast.

In these comparisons, the differences between persistence and truth continue to increase

with time for forecast intervals greater than 7 days, while the error growth for the dynamical

forecasts grows more slowly, which would appear to indicate the possibility of useful predic-

tion on longer time scales. Since practical predictions of wind-forcing in coastal zones are

themselves limited by uncertainty in atmospheric conditions, however, the forecast experi-

ments considered here are generally restricted to 7 days, a rough estimate of the timescale

for loss of predictive skill at mid-latitudes in current global numerical weather prediction

models.

3) Forecast relative entropy

A statistical quantity known as relative entropy has been recently introduced in geophysi-

cal fluid dynamics to quantify predictive information content in forecast ensembles (Kleeman

2002; Abramov et al. 2005). Here, we consider a new variant of the relative entropy that we

term the forecast relative entropy.

The relative entropy R is given in information theory (Cover and Thomas 1991) by

R(p|q) =

∫
p(x) · log

[
p(x)

q(x)

]
dx, (8)

where x represents the state variables of the system, and p and q are probability distribution

functions (PDFs). Thus, the dimensionless quantity R is a measure of the additional infor-

mation content in one PDF relative to another PDF . This is a convex, non-symmetric, and
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non-negative functional in p, and equal to zero only when p = q. The relative entropy also

has attractive properties as a measure of predictability; for example, it is invariant under

arbitrary changes of variables (Majda et al. 2002; Schneider and Griffies 1999). Moreover,

when the PDFs, p and q, are approximately Gaussian, the numerical calculation of R can

be simplified into two components (Kleeman 2002; Majda et al. 2002).

In this Gaussian case, the R becomes the sum of the signal S and dispersion D, so that

R = S + D, where

S =
1

2
(Θp −Θq)>Σ−1

q (Θp −Θq), (9)

D =
1

2

[
log{Det(Σq)

Det(Σp)
}+ Tr{ΣpΣ−1

q } − n
]
. (10)

Here Θ{p,q}, Σ{p,q} are the means and covariances of p, q, respectively, Det and Tr denote

the determinant and trace of the corresponding matrices, and n is the dimension of the

state space under consideration. The signal S is a statistical distance, also known as the

Mahalanobis distance (Mahalanobis 1936; Manly 2004), between the mean states of the

PDFs. When the difference of the two mean states Θ{p,q} is large relative to the covariance

Σq of the PDF q, the signal S is large, and the two mean states are statistically different

from each other. The dispersion D quantifies the difference in the ensemble spreads of the

two distributions, as measured by the covariances Σ{p,q} and is always a positive number

unless Σp = Σq. Note that if Θp = Θq, then S = 0, and if Σp = Σq, then D = 0. If p

is distributed either more narrowly or more broadly than q, then D will be positive, as the

change in the distribution p represents additional predictive information content relative to

the reference distribution q. Note that this means that an increase in ensemble spread for

p relative to q appears as a positive dispersion component contribution to the predictive
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information content, despite the growth in uncertainty regarding the value of the state itself.

In the conventional relative entropy, the distribution q is usually defined in terms of a

climatology such that the relative entropy monotonically decreases to zero in time, implying

that the forecast p converges asymptotically to the climatology q.

The object of the present study is to examine the potential value of dynamical forecasts of

certain coastal ocean flows, relative to the best available estimate of a given, initial estimate

of the ocean state. Thus, it is natural to seek a quantitative measure of the potential value

of the ensemble of dynamical forecasts, relative to the initial ensemble. In the framework

of the relative entropy, such a measure can be constructed by constructing a relative en-

tropy quantity for which q(x) represents the initial ensemble distribution (or analysis PDF)

and p(x) represents the forecast ensemble distribution (or forecast PDF). We shall refer to

this quantity as the forecast relative entropy Rf . We define it here in terms of a Gaussian

approximation to point-by-point PDFs,

Rf = Sf + Df , Sf =
1

2

(θp − θq)2

σ2
q

, Df =
1

2

[
log{

σ2
q

σ2
p

}+
σ2

p

σ2
q

− 1

]
, (11)

where θ{p,q}, σ{p,q} are respectively means and covariances of p, q at each grid point (n = 1),

and (·) denotes a volume average. Although the forecast relative entropy Rf does not

have the convenient asymptotic characteristics of the standard relative entropy, the forecast

relative entropy Rf does have the essential quantitative property that larger Rf indicates

more, and smaller Rf indicates less, predictive information content in the forecast ensemble

relative to the initial ensemble. Thus, it provides a direct measure of the utility of the

ensemble forecast relative to the analysis.

The forecast relative entropy Rf for the three simulated forecast cases discussed above,
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with t0 = {16.5, 24, 37}, shows that the predictive information content of the forecast

ensemble, relative to the initial ensemble, is dominated by the signal, that is, by the difference

in the means of the forecast and initial ensembles (Fig. 16). Overall, the results show that

there is not much difference between the initial and the dynamical forecast ensembles during

the first day of the forecast interval, but after one day Rf indicates more information

content in the forecast ensembles, consistent with the results of the anomaly correlation

analysis. The magnitudes of the information gain vary in the three different experiments.

There is more predictability during the strong upwelling wind period (t0 = 24), slightly less

predictability during the weak-mixed upwelling and downwelling wind period (t0 = 16.5),

and least predictability during the strong-mixed wind period (t0 = 37).

The result that the signal component, associated with the ensemble means, of the forecast

relative entropy is significantly more important than the dispersion component, associated

with the ensemble spread, is consistent with the results in sections 4-b and 4-c. That is, as the

forecast progresses, the larger magnitude of signal than dispersion in forecast relative entropy

indicates that the directly wind-forced response and the deterministic internal dynamics

are a more important factor in the evolution of the flow than internal instabilities, which

would tend to spread the ensemble and increase the dispersion component. Since this is

true also for the weak-mixed wind interval, quasi-deterministic dynamics of the existing

wind-forced circulation and its interaction with topography must also contribute. If internal

instabilities were a major contributor to the evolution, one would instead anticipate a rapid

growth of ensemble variance such that the dispersion component would exceed the signal

component. The result that the signal component dominates the dispersion component in

the forecast relative entropy is similar to some recent results for the standard, climatology-
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based relative entropy in the context of large-scale atmosphere-ocean dynamics (Kleeman

et al. 2002; Kleeman and Moore 1999).

4) Cross-shelf velocity

A traditional and still outstanding problem in coastal oceanography is the determination

of the structure and dynamics of the cross-shelf circulation in coastal upwelling (Allen 1980;

Brink 1991). Comparison of wind-driven circulation models with current meter mooring

data has generally found that model skill in reproducing observed cross-shelf velocities is

substantially lower than for along-shelf velocities (Dever 1997; Pullen and Allen 2000; ?).

This issue is explored briefly here by repeating the ensemble skill measures in the previous

section with an alternative norm that focuses on the cross-topography circulation.

The cross-shelf or cross-topography velocity uh(x, y, z, t) is defined here by uh = u · nh

for all depth z, where u is a velocity vector and nh is the local direction of the topographic

gradient at each model grid point such that

nh =
∇h(x, y)

|∇h(x, y)|
.

The modified norm Nh is computed as the analog of the N3 norm in (1) for uh, and the

volume-averaged statistical quantities of predictive skill described previously, RMSE, ACC

and FRE are also calculated for the different forecasts such as persistence, control and

ensemble-mean. For all of these quantities, the upper 20 m of the water column is excluded,

so that the Ekman response to the wind forcing, which is known to be strongly predictable,

does not dominate the statistics. Note that observational analyses frequently define cross-

shelf as the direction of the minor-axis of the velocity variance ellipse, rather than the
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intrinsically topographic definition used here.

The ensemble spread calculated using the norm Nh shows a roughly linearly increasing

trend with time, as for the full norms (Fig 8), and the RMSE for the different forecasts

are qualitatively the same for the cross-shelf velocity uh and the full vector velocity in all

forecasts (Figs 13, 17). The FRE and ACC also show qualitatively similar results for the

vector and cross-shore velocity fields, with somewhat lower values for the cross-shore velocity

ACC during the strong-mixed wind period (Figs. 15,16).

Based on these statistics, the cross-shelf velocity shows quantitative predictability that

is similar to the other components of the flow. This is surprisingly large, since observational

studies have suggested that the cross-shelf flow is less predictable, or at least less reproducible

with existing models, than is the alongshore flow. Some of this difference may possibly arise

from the different definition of the cross-shelf direction; for example, with a definition based

on the observed velocity variance ellipse, persistent correlation of localized cross-shelf flow

features with topography may lead to the predictable component of the true cross-shelf

flow being excluded from the observationally defined cross-shelf flow. Examination of the

time- and depth-averaged variance of Nh shows that the peak values are localized along the

topography at the southern (where the bottom depth is 300-700 m) and northeast (where

the bottom depth is 50-150 m) edges of Heceta Bank. These are areas where the topographic

gradients are large.
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5) Additional sensitivity analysis

The preceding discussion has shown that similar predictability results were obtained for

the three different forecasting intervals, despite the different effective spin-up times, the

relatively large ensemble variances, and the different wind forcing during the three intervals.

This similarity suggests that the predictability results should not be overly sensitive to the

initialization procedure. An additional sensitivity study was carried out in order to test this

inference.

For the sensitivity study, the initial control state was taken to be the ensemble mean from

the original study at Day 35, when the wind stress has a zero crossing. The corresponding

initial perturbations, also obtained from the original ensemble, were the difference fields of

temperature between the individual members and the ensemble mean at Day 44, the end of

the third forecasting interval. The variability of the perturbations was between -1.5◦C and

2◦C, with high variances located around the coastal jet and having spatial scales similar to

scales of the instabilities studied by Durski and Allen (2005). The new set of 16 ensemble

members was then obtained by adding these perturbations, scaled down by 50%, to the

control state. All members in the new set were then integrated for 13.5 days with the wind

forcing from Day 10 to Day 23.5.

Statistics for the sensitivity study were computed for the last 7 days of the 13.5 day

integration, which has the same wind forcing as the first (Day 16.5 through Day 23.5)

forecast interval from the original ensemble. The corresponding N3, RMSE, ACC and FRE

statistics (Fig. 18) are qualitatively similar to the previous results, with the control and

ensemble-mean forecasts better than persistence after 1 day. The ensemble spread N ens
3
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also shows similar results: it does not show exponential growth, and instead increases until

around Day 10 and then saturates.

The sensitivity study was repeated with perturbations scaled by factors 0.05 and 1.

Except for the ACC of density for control forecast with perturbation factor 1, all of the

results were very similar and consistent with the results reported above that were based only

on the original ensemble integrations.

5. Discussion and Summary

It is well known that the coastal ocean responds strongly to wind forcing (Allen 1980;

Brink 1991). That this response has a primary deterministic component is further evident

from the success of linear, one-dimensional, forced-damped coastal-trapped wave models

(Halliwell and Allen 1984; Chapman 1987), by which significant fractions of observed vari-

ance in alongshelf velocity and coastal sea level can be reproduced when the models are

forced with observed wind stress time series. The present simulations and analysis provide

evidence that this deterministic response can be translated into quantitative predictive skill

of regional circulation using numerical coastal ocean circulation models with realistic bottom

topography and coastline geometry. For a given initialization, this skill appears to be primar-

ily limited by the prediction timescale of the atmospheric variability that itself determines

the coastal wind fields.

In the central Oregon shelf region of interest, the dominant variability in these simu-

lations is associated with the transition to separated flow downstream of the Heceta Bank

topographic feature. This transition occurs roughly between days 25 and 30 in all of the en-
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semble members, and thus appears itself to be a quasi-deterministic response to the forcing.

This transition was seen more clearly in a set of simulations with time-periodic wind forc-

ing, which were not discussed here: in those simulations, the separation was found to occur

progressively earlier in simulations with successively stronger southward time-mean stress.

However, the details of the separation events appear to be connected with the formation and

propagation of eddies in the frontal jet over Heceta Bank, which differs among the ensemble

members and evidently involves instability processes. The dynamics of the separation pro-

cess remain poorly understood; an analysis of this process in the present simulations is in

progress and will be reported elsewhere.

Even during the separation events, however, the role of instabilities in limiting the in-

trinsic predictability of the model fields appears to be relatively small. This finding would

appear to be inconsistent with recent and earlier studies (Durski and Allen 2005; Barth

1989a,b) that have emphasized the importance of instabilities of coastal upwelling fronts,

and explored their characteristics. Under similar conditions, however, the variability exhib-

ited by models such as that considered by Durski and Allen (2005) is very similar to that

in the present model. For example, the patterns of surface density variability in the present

simulation (Figs. 3,5,7) are similar in structure to that found by Durski and Allen (2005)

(their Fig. 21). The present simulations and analysis suggest that, even under conditions of

relatively weak wind forcing, the deterministic response is substantially stronger than the

instability growth. Consequently, important elements of the coastal circulation should be ac-

cessible to predictive, dynamical forecasts, provided that sufficiently accurate initializations

and forcing fields are available. These conclusions should have general validity for similar

regions of strongly wind-driven flow over large-amplitude shelf topography.
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A critical element in any practical prediction scheme will, of course, be the initialization

procedure, and the acquisition of sufficient initialization data. This issue has not been

addressed by the present simulations and analysis. Rather, it has been implicitly assumed

that the control and ensemble-mean initializations provide a reasonable representation of

the accuracy at which initializations will be possible for practical schemes. Consideration of

the initial N2 and N3 norm, and RMSE values for these solutions place the corresponding

accuracy at values of one-quarter to one-half of the climatological variances. In dimensional

terms, this corresponds to volume-averaged RMSE for surface density, SSH, and surface

current of 0.03 kg m−3, 1 cm, and 0.02 m s−1, respectively. Analyses of surface and moored

current observations (Kosro 2005) indicate that substantial fractions of observed variance in

shelf flow fields can be captured by a relatively small number of empirical modes, suggesting

that usable initializations will be possible in spite of the sparseness of anticipated observing

systems, if the observing system assets are properly located. However, achieving this level

of initialization accuracy within the constraints of affordable observing systems will be a

significant challenge.
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Fig. 1. Model domain vs. longitude and latitude. The inner rectangle indicates the Heceta

Bank region, in which ensemble and forecast skill statistics are calculated. (a) Topographic

contours (0-, 100-, 200-, 500-, 1000-, and 2000-m contours; thin solid lines; 0 m, thick solid)

(b) Surface density (kg m−3 - 1000) at Day 16.5 for the single ensemble member #11.
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Fig. 6. Surface velocity vectors and speed at (a) Day 21, before separation, and (b) Day

30, after separation, for ensemble member #11. (c) Hovmuller diagram of surface current

speed (m s−1) vs. time (days) at Latitude 43.51◦N for ensemble member #11. In (c), the

longitudes of the 100-, 200-, 500-, 1000-, and 2000-m topographic contours are shown (white

thin lines).
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Fig. 9. Ensemble standard deviations of surface fields for surface density (kg m−3 - 1000)

at Day 16.5 (a), 24 (b), and 37 (c), SSH at Day 37 (d; m) and magnitude of surface vector

velocity at Day 37 (e; m s−1) vs. longitude and latitude. The 100-, 200-, 500-, 1000-, and

2000-m topographic contours are shown (white thin lines).
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Fig. 10. Simulated forecasts at Day 27 for surface density (upper panels; kg m−3 - 1000),

SSH (middle; m), and magnitude of surface vector velocity (lower; m s−1) vs. longitude and

latitude, with initialization on Day 24. Forecast states are shown for the true solution (left

panels), persistence (center left), control (center right), and ensemble mean (right). The

100-, 200-, 500-, 1000-, and 2000-m topographic contours are shown (white thin lines).
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Fig. 11. Absolute difference fields between the true and forecast solutions of persistence

(upper) and control (lower) at Day 27 for surface density (left panels; kg m−3 - 1000),

SSH (center; m), and magnitude of surface vector velocity difference (right; m s−1) vs.

longitude and latitude, with initialization on Day 24. The 100-, 200-, 500-, 1000-, and

2000-m topographic contours are shown (black thin lines).
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dispersion (dashed), and total forecast relative entropy (thin solid) for (d).
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Table 1. Spatial averages in order on days 19.5, 27, and 40 of the absolute difference from

truth for climatology, persistence, control and ensemble mean forecast fields.

Surface density (kg m−3) SSH (m) Surface current (m s−1)

Climatology 0.299 0.221 0.231 0.0160 0.0097 0.011 0.079 0.089 0.082

Persistence 0.212 0.379 0.192 0.0076 0.0176 0.012 0.073 0.103 0.111

Control 0.138 0.158 0.147 0.0030 0.0053 0.008 0.043 0.058 0.070

Ensemble Mean 0.125 0.143 0.119 0.0029 0.0048 0.007 0.038 0.050 0.054
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