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Abstract

Aircraft collision avoidance maneuvers are important and complex applications. Curved flight
exhibits nontrivial continuous behavior. In combination with the control choices during air traffic
maneuvers, this yields hybrid systems with challenging interactions of discrete and continuous
dynamics. As a case study illustrating the use of a new proof assistant for a logic for nonlinear
hybrid systems, we analyze collision freedom of roundabout maneuvers in air traffic control, where
appropriate curved flight, good timing, and compatible maneuvering are crucial for guaranteeing
safe spatial separation of aircraft throughout their flight. We show that formal verification of hybrid
systems can scale to curved flight maneuvers required in aircraft control applications. We introduce
a fully flyable variant of the roundabout collision avoidance maneuver and verify safety properties
by compositional verification.





(a) Linear (b) Circular (c) Counterexample (d) Tangential

Figure 1: Evolution of collision avoidance maneuvers in air traffic control

1 Introduction
In air traffic control, collision avoidance maneuvers [23, 13, 5, 6, 10] are used to resolve conflicting
flight paths that arise during free flight. See Fig. 1 for a series of increasingly more realistic—yet
also more complicated—aircraft collision avoidance maneuvers. Fig. 1c shows a malfunctioning
collision avoidance attempt. Collision avoidance maneuvers are a “last resort” for resolving air
traffic conflicts that could lead to collisions. They are important whenever conflicts have not been
detected by the pilots during free flight or by the flight directors of the Air Route Traffic Control
Centers. Consequently, complicated online trajectory prediction or maneuver planning may no
longer be feasible in the short time that remains for resolving the conflict. In the tragic 2002 mid-
flight collision in Überlingen [3], the aircraft collided tens of seconds after the on-board traffic
alert and collision avoidance system TCAS [13] signalled a traffic alert. Thus, for safe aircraft
control we need particularly reliable reactions with maneuvers whose correctness has been estab-
lished previously by a thorough offline analysis. To ensure correct functioning of aircraft collision
avoidance maneuvers under all circumstances, the temporal evolution of the aircraft in space must
be analyzed carefully together with the effects that maneuvering control decisions have on their
dynamics. This results in complicated superpositions of physical system dynamics with control,
which is an example of a hybrid system [7].

Several numerical [23, 11, 2, 9, 10] or optimization-based [11, 2, 8, 10] approaches have been
proposed for air traffic control. It is difficult to give sound formal verification results for these
approaches due to errors in numerical computations or implicit definition of maneuvers in terms
of complicated optimization processes. Formal verification is important to avoid collisions, see
Fig. 1c. Formal results have been given by geometrical reasoning [5, 6, 24, 25] in PVS. Yet,
one still has to prove by other techniques that the hybrid dynamics of a flight controller actually
follows the geometrical shapes. In contrast, we verify the hybrid system dynamics directly using
a formally sound approach (assuming sound elementary decision procedures), consider curved
flight, and achieve better automation.

Control Challenges Because of the complicated spatio-temporal movement of aircraft, their
maneuvers are challenging for verification. Unlike in ground transportation, braking and waiting
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is not an option to resolve conflicts. Consequently, aircraft maneuvers have to be coordinated
such that the aircraft always respect minimal and maximal lateral and angular speed constraints
yet always remain safely separated. Further, angular velocity for curving is the primary means of
control, because changes in thrust and linear speed are less efficient for aircraft.

Technical Challenges Complexities in analysis of aircraft maneuvers manifest most promin-
ently in difficulties with analysing hybrid systems for flight equations. General solutions of flight
equations involve trigonometric functions that depend on the angular velocity ω and the orient-
ation of the aircraft in space. For straight line flight (ω = 0), the movement in space is just
linear so that classical analysis techniques can be used [7]. These include pure straight line man-
euvers [23, 14, 5, 6, 10]; see, e.g., Fig. 1a. They have to assume instant turns for heading changes of
the aircraft between multiple straight line segments. Instant turns, however, are impossible in mid-
flight, because they are not flyable: Aircraft cannot suddenly change their flight direction from 0 to
45 degrees discontinuously but need to follow a smooth curve instead, in which they slowly steer
towards the desired direction by adjusting the angular velocity ω appropriately. Further the area
required by maneuvers for which instant turns could possibly be understood as adequately close
approximations of properly curved flight is prohibitively huge. Curved flight is thus an inherent
part of real aircraft control.

During curved flight, the angular velocity ω is non-zero. For ω 6= 0, flight equations have
transcendental solutions, which generally fall into undecidable classes of arithmetics; see Ap-
pendix A.1. Consequently, maneuvers with curves, like in Fig. 1b–1d, are more realistic but also
substantially more complicated for verification than straight line maneuvers like that in Fig. 1a.
We have recently developed a sound verification algorithm that works with differential invari-
ants [17, 20, 22] instead of solutions of differential equations to address this arithmetic. In the
associated report [21], we have shown that 3 kinds of properties can be verified with this approach
for some phases of curved flight. Now we prove a significant extension and show that, indeed,
a full curved flight maneuver is amenable to formal verification and we verify 12 corresponding
properties.

In this paper, we introduce and verify the fully flyable tangential roundabout maneuver (FTRM).
It refines the non-flyable tangential roundabout maneuver (NTRM) from Fig. 1d, which has dis-
continuities at the entry and exit points of roundabouts, to a fully flyable curved maneuver. Unlike
most previously proposed maneuvers [23, 2, 14, 5, 4, 6, 10], FTRM does not have non-flyable in-
stant turns. It is flyable and smoothly curved. Unlike other approaches emphasizing the importance
of flyability [11], we give formal verification results.

Contribution Our main contribution is to show that reality in model design and coverage in
formal verification are no longer incompatible desires even for applications as complex as air-
craft maneuvers. As a case study illustrating the use of differential dynamic logic for hybrid sys-
tems [18], we demonstrate how tricky and nonlinear dynamics can be verified with our verification
algorithm [20, 22] in our verification tool KeYmaera. We introduce a fully curved flight maneuver
and verify its hybrid dynamics formally. In contrast to previous approaches, we handle curved
flight, hybrid dynamics, and produce formal proofs with almost complete automation. Manual
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effort is still needed to simplify arithmetical complexity and modularize the proof appropriately.
We further illustrate the resulting verification conditions for the respective parts of the maneuver.
Finally, we identify the most difficult steps during the verification and present new transformations
to handle the enormous computational complexity. To reduce complexity, we still use some of
the simplifications assumed in related work, e.g., synchronous maneuvering (i.e. aircraft make
simultaneous maneuver choices).

2 Related Work
Lafferriere et al. [12] gave important decidability results for hybrid systems with some classes
of linear continuous dynamics but only random discrete resets. These results do not apply to air
traffic maneuvers, because these maneuvers have non-trivial resets: the aircraft’s position does not
just jump randomly when switching modes but, rather, systematically according to the maneuver.

Tomlin et al. [23] analyze competitive aircraft maneuvers game-theoretically using numerical
approximations of partial differential equations. As a solution, they propose roundabout maneuvers
and give bounded-time verification results for straight-line approximations (Fig. 1a). We verify
actual curved roundabout maneuvers with up to 28 variables and use a sound symbolic approach
that avoids numerical approximation errors.

Flyability has been identified as one of the major challenges in Košecká et al. [11], where
planning based on superposition of potential fields has been used to resolve air traffic conflicts.
This planning does not guarantee flyability but, rather, defaults to classical vertical altitude changes
whenever a nonflyable path is detected. The resulting maneuver has not yet been verified. The
planning approach has been pursued by Bicchi and Pallottino [2] with numerical simulations.

Numerical simulation algorithms approximating discrete-time Markov Chain approximations
of aircraft behavior have been proposed by Hu et al. [9]. They approximate bounded-time probab-
ilistic reachable sets for one initial state. We consider hybrid systems combining discrete control
choices and continuous dynamics instead of uncontrolled, probabilistic continuous dynamics.

Hwang et al. [10] have presented a straight-line aircraft conflict avoidance maneuver that in-
volves optimization over complicated trigonometric computations, and validate it using random
numerical simulation and informal arguments.

The work of Dowek et al. [5] and Galdino et al. [6] is probably closest to ours. They consider
straight-line maneuvers and formalize geometrical proofs in PVS.

A few attempts [14, 4] have been undertaken to Model Check discretizations of roundabout
maneuvers, which indicate avoidance of orthogonal collisions (Fig. 1b). However, counterexamples
found by our Model Checker in previous work [19] show that collision avoidance does not extend
to other initial flight paths of the classical roundabout; see Fig. 1c.

Pallottino et al. [16] have presented a spatially distributed pattern for multiple roundabout
circles at different positions. They reason manually about desirable properties of the system and
estimate probabilistic results as in [9]. Pallottino et al. thus take a view that is complementary
to ours: they determine the global compatibility of multiple roundabouts while assuming correct
functioning within each local roundabout. We verify that the actual hybrid dynamics of each local
roundabout is collision free. Generalizing our approach to verify a spatial pattern of verified local
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roundabouts could be interesting future work.
Similarly, the work by Umeno and Lynch [25, 24] is complementary to ours. They consider

real-time properties of airport protocols using Timed I/O Automata. We are interested in proving
local properties of the actual hybrid system.

Our approach has a very different focus than other complementary approaches:

• Our maneuver directly involves curved flight unlike [23, 9, 5, 6, 10, 25, 24]. This makes our
maneuver more realistic but much more difficult to analyze.

• Unlike [11, 9, 10], we do not give results for a finite (sometimes small) number of initial
flight positions (simulation). Instead, we verify uncountably many initial states and give
unbounded-time horizon verification results.

• Unlike [23, 11, 2, 9, 8, 10], we use symbolic instead of numerical computation so that nu-
merical and floating point errors cannot cause soundness problems.

• Unlike [2, 14, 9, 5, 6, 10, 25, 24], we analyze hybrid system dynamics directly.

• Unlike [11, 23, 2, 9, 10, 14, 16] we produce formal, deductive proofs. Further unlike the
formal proofs in [5, 6, 25, 24], our verification is much more automatic.

• In [5, 6, 10, 25, 24], it remains to be proven that the hybrid dynamics and flight equations
follow the geometrical thoughts. In contrast, our approach directly works for the hybrid
flight dynamics. We illustrate verification results graphically to help understand them, but
the figures do not prove anything.

• Unlike [15], we consider collision avoidance maneuvers, not just detection.

• Unlike [2, 8], we do not guarantee optimality of the resulting maneuver.

3 Background: Differential Dynamic Logic
Hybrid Programs We use a hybrid program (HP) notation [18] for hybrid systems that include
hybrid automata (HA) [7]. Each discrete and continuous transition corresponds to a sequence of
statements, with a nondeterministic choice (∪) between these transitions. Line 2 in Fig. 2 repres-
ents a continuous transition in a simplistic altitude controller. It tests (denoted by ?q = up) if the
current location q is up, and then follows a differential equation restricted to invariant region z ≤ 9
(conjunction z′ = 1 ∧ z ≤ 9). Line 3 tests guard z ≥ 5 when in state up, resets z by a discrete
assignment, and then changes location q to down. The ∗ at the end indicates that the transitions
of a HA repeat indefinitely. We will build HP directly, which gives more natural programs than
HA-translation.

As terms we allow polynomials over Q with variables in a set V . Hybrid programs (HP) are
built with the statements in Table 1. The effect of x := θ is an instantaneous discrete jump assign-
ing θ to x. Instead, x := ∗ randomly assigns any real value to x by a nondeterministic choice. Dur-
ing a continuous evolution x′1 = θ1 ∧ . . . ∧ x′n = θn ∧ χ with terms θi, all conjuncts need to hold.
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Table 1: Statements and (informal) effects of hybrid programs (HP)

notation statement effect
x := θ discrete assignment assigns term θ to variable x ∈ V
x := ∗ nondet. assignment assigns any real value to x ∈ V
x′1 = θ1 ∧ . . . continuous evolution

diff. equations for xi ∈ V and terms θi,
. . . ∧ x′n = θn ∧ χ with formula χ as evolution domain

?χ state check test formula χ at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or β
α∗ nondet. repetition repeats HP α n-times for any n ∈ N

Its effect is a continuous transition controlled by the differential equation x′1 = θ1, . . . , x
′
n = θn

that always satisfies the arithmetic constraint χ (thus remains in the region described by χ). This
directly corresponds to a continuous evolution mode of a HA. The effect of state check ?χ is a skip
(i.e., no change) if χ is true in the current state and that of abort, otherwise. Non-deterministic
choice α ∪ β expresses alternatives in the behavior of the hybrid system. Sequential compos-
ition α; β expresses a behavior in which β starts after α finishes (β never starts if α continues
indefinitely). Non-deterministic repetition α∗, repeats α an arbitrary number of times (≥0). If
F is a differential equation system and G is a first-order formula, the operation doF until G ex-
presses that the system follows differential equation F exactly until condition G is true. It is defin-
able by a HP. We define doF until G as the HP F ∧ (¬G ∨ ∂G); ?G. There F evolves while
¬G ∨ ∂G holds and can only stop when G holds. There ∂G denotes the border of G. For instance,
doF until x1 ≥ 0 is F ∧ x1 ≤ 0; ?x1 ≥ 0.

Formulas of dL To express and combine correctness properties of HP, we use a verification logic
for HP: The differential dynamic logic dL [18] is an extension of first-order logic over the reals
with modal formulas like [α]φ, which is true iff all states reachable by following the transitions of
HP α satisfy property φ (safety). Reachability properties are expressible using the dual modality
〈α〉φ, which is true iff there is a state satisfying φ that α can reach from its initial state. Formulas
of dL are defined by the following grammar, where θ1, θ2 are terms, ∼ ∈ {=,≤, <,≥, >}, φ, ψ
are formulas, x ∈ V , and α is an HP (Table 1):

Formula ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ .

up
z′ = 1
z ≤ 9

down
z′ = −1

z ≥ 5

z := z − 1

z ≤ 2

q := up; /* initial location is up */(
(?q = up; z′ = 1 ∧ z ≤ 9)

∪ (?q = up ∧ z ≥ 5; z := z − 1; q := down)
∪ (?q = down; z′ = −1)

∪ (?q = down ∧ z ≤ 2; q := up; ?z ≤ 9)
)∗

Figure 2: Hybrid automaton vs. hybrid program (simplistic altitude control)
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A Hoare-triple {ψ}α{φ} can be expressed as ψ → [α]φ, which is true iff all states reachable by
HP α satisfy φ when starting from an initial state that satisfies ψ.

The semantics of dL and HP is a Kripke semantics over R; see appendix B

4 Curved Flight in Roundabout Maneuvers

4.1 Flight Dynamics

x1

x2

y1

y2

d

ω e

ς

̺

Figure 3: Aircraft flight

The parameters of two aircraft at (planar) position x = (x1, x2)
and y = (y1, y2) in R2 flying in directions d = (d1, d2) ∈ R2

and e = (e1, e2) are illustrated in Fig. 3. Their dynamics is determined
by their angular speeds ω, % ∈ R and linear velocity vectors d and e,
which describe both the linear velocity ‖d‖ :=

√
d2

1 + d2
2 and orient-

ation of the aircraft in space. Roundabout maneuvers are horizontal
collision avoidance maneuvers so that, like [23, 14, 8, 4, 16, 6, 10],
we simplify to planar positions. We denote the flight equations for
the aircraft at x and y with angular velocities ω, % by F(ω) and G(%)
respectively, see [23] and Appendix A.1:

[x′ = d d′ = ωd⊥] (F(ω))

[y′ = e e′ = %e⊥ ] (G(%))

There d⊥ := (−d2, d1) is the orthogonal complement of vector d. Differential equations F(ω)
express that x is moving in direction d, which is rotating with angular velocity ω, i.e., evolves
orthogonal to d. Equations G(%) are similar for y, e and %. In safe flight configurations, aircraft
respect protected zone p. That is, they are separated by at least distance p, i.e., the state satisfies
formula S(p):

S(p) ≡ ‖x− y‖2 ≥ p2 ≡ (x1 − y1)
2 + (x2 − y2)

2 ≥ p2 for p ∈ R (1)

Like all other parameters, we treat p purely symbolically without a specific value. In practice,
horizontal separation should be ≥5mi, vertical separation ≥1000ft.

4.2 Roundabout Maneuver Overview
FTRM consists of the phases in the protocol cycle in Fig. 4a which correspond to the marked
flight phases in Fig. 4b. During free flight, the aircraft move without restriction by repeatedly
choosing arbitrary new angular velocities ω and % respectively (as indicated by the self loop of
phase free in Fig. 4a). When the aircraft come too close to one another, they agree on a compatible
roundabout maneuver by negotiating a compatible roundabout center c = (c1, c2) in coordination
phase agree by communication. Next, the aircraft approach the actual roundabout circle in a right
curve with ω < 0 (entry mode) according to Fig. 4b, thereby approaching a tangential configuration
around center c. During the circ mode, the aircraft follow the circular roundabout maneuver around
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free

ω := ∗
% := ∗ agree

entry

circ
exit

(a) Collision avoidance protocol

c

entry

r

r

h

x r
ω < 0

ex
it

ω > 0

circ y

(b) Maneuver construction

Figure 4: Protocol cycle and construction of flyable roundabout maneuver

the agreed center c with a left curve of common angular velocity ω > 0. Finally, the aircraft leave
the circular roundabout in cruise mode (ω = 0) in their original direction (exit) and enter free flight
again when they have reached sufficient distance (the protocol cycle repeats as necessary). The
collision avoidance maneuver is symmetric when exchanging left and right curves.

4.3 Compositional Verification Plan
For verifying safety properties and collision avoidance of FTRM, we decompose the verification
problem and pursue the following overall verification plan:

AC1 Tangential roundabout maneuver cycle: We prove that the protected zones of aircraft are
safely separated at all times during the whole maneuver (including repetitive collision avoid-
ance maneuver initiation and including multiple aircraft) with a simplified but not yet flyable
entry operation entryn. Subsequently, we refine this verification result to a flyable maneuver
by verifying that we can replace entryn with its flyable variant entry.

AC2 Bounded control choices for aircraft velocities: We show that linear speeds remain un-
changed during the whole maneuver (the aircraft do not stall).

AC3 Flyable entry: We prove that the simplified entryn procedure can be replaced by a flyable
curve entry reaching the same position as entryn.

AC4 Bounded entry duration: Flyable entry procedure succeeds in bounded time, i.e., the aircraft
reach the roundabout circle in some bounded time ≤T .

AC5 Safe entry separation: Most importantly, we prove that the protected zones of aircraft are
still respected during the flyable entry procedure.

AC6 Successful negotiation: We prove that the negotiation phase (agree) satisfies the respective
requirements of multiple aircraft simultaneously.
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AC7 Safe exit separation: We show that, for its bounded duration, the exit procedure cannot
produce collisions and that the initial far separation for free flight is reached again so that
the FTRM cycle repeats safely.

This plan modularizes the proof and allows us to identify the respective safety constraints imposed
by the various maneuver phases successively. We present details of these verification tasks in
the sequel and summarize the respective verification results into a joint safety property of FTRM
in Section 6. The proof and formulation for AC2 is a simple variation of AC1 and will not be
discussed. It is a consequence of previous results [17].

4.4 Tangential Roundabout Maneuver Cycles (AC1)
First, we analyze roundabouts with a simplified instant entry procedure and without an exit pro-
cedure (AC1), i.e., the non-flyable NTRM depicted in Fig. 1d. We refine this maneuver and its
verification to the flyable FTRM afterwards.

Modular Correctness of Tangential Roundabout Cycles We verify that NTRM safely avoids
collisions, i.e., the aircraft always maintain a safe distance ≥p during the curved flight in round-
about. In addition, these results show that arbitrary repetitions of the protocol cycle are always
safe when, as a first step, we simplify the entry maneuver. The NTRM model and property are
summarized in Fig. 5.

ψ ≡ S(p)→ [NTRM]S(p)

NTRM ≡ (free; agree; entryn; circ)∗

free ≡ (ω := ∗; % := ∗; F(ω) ∧ G(%) ∧ S(p))∗

agree ≡ ω := ∗; c := ∗
entryn ≡ d := ω(x− c)⊥; e := ω(y − c)⊥

circ ≡ F(ω) ∧ G(ω)

Figure 5: Nonflyable tangential roundabout
collision avoidance maneuver NTRM

The simplified flight controller in Fig. 5
performs collision avoidance maneuvers by
tangential roundabouts and repeats these
maneuvers any number of times as needed.
During each cycle of the loop of NTRM,
the aircraft first perform arbitrary free
flight (free) by choosing arbitrary new an-
gular velocities ω and % (repeatedly as in-
dicated by the loop in free). Aircraft only fly
freely while they are safely separated, which
is expressed by constraint S(p) in the differ-
ential equation for free. Then the aircraft agree on an arbitrary roundabout center c and angular
velocity ω (agree). We model this communication by nondeterministic assignments to the shared
variables ω, c. Refinements include all negotiation processes that reach an agreement on com-
mon ω, c in bounded time. Next, they perform the simplified non-flyable entry procedure (entryn)
with instant turns (Fig. 1d). This operation identifies the goal state that entry needs to reach:

R ≡ d = ω(x− c)⊥ ∧ e = ω(y − c)⊥ (2)

It expresses that, at the positions x and y, respectively, the directions d and e are tangential to the
roundabout circle at center c and angular velocity ω; see Fig. 6. Finally, the roundabout maneuver
itself is carried out in circ. The collision avoidance roundabouts can be left again by repeating the
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c

x

y

d

e

Figure 6: R

loop and entering arbitrary free flight at any time. When further conflicts occur during free flight,
the controller in Fig. 5 again enters roundabout conflict resolution maneuvers.

Multiple Aircraft We prove separation for up to 5 aircraft participating in the roundabout at
the same time. There, the safety property is mutual collision avoidance, i.e., each aircraft has a
safe distance ≥p to every other aircraft, which yields a quadratic number of separation properties
that have to be verified. This quadratic increase in the size of the property that actually needs
to be proven for a safe roundabout of n aircraft and the increased dimension of the underlying
continuous state space increase verification times. Also see Appendix A.2.

4.5 Flyable Entry Procedures (AC3)
For property AC3 in Section 4.3, we generalize the verification results about NTRM with simplified
entry procedures (Fig. 1d) to FTRM (Fig. 4b) by replacing the non-flyable entryn procedure with
flyable curves (called entry). This turns the non-flyable NTRM into the flyable FTRM maneuver.

c

r

r

h

x
ω < 0 ω > 0

y

(a) Flyable entry characteristics

x

d ω

ye

≥p

(b) Entry separation by overapproximation

Figure 7: Flyable entry maneuver: characteristics and separation
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Flyable Entry Properties A flyable entry maneuver that follows the smooth entry curve from
Fig. 4b is constructed according to Fig. 7a and specified formally as:

(rω)2 = ‖d‖2 ∧ ‖x− c‖ =
√

3r ∧ ∃λ≥0 (x+ λd = c) ∧ ‖h− c‖ = 2r ∧ d = −ω(x− h)⊥

→ [F(−ω) ∧ ‖x− c‖ ≥ r]
(
‖x− c‖ ≤ r → d = ω(x− c)⊥

)
(3)

The assumptions in formula (3) express that r is the radius corresponding to speed ‖d‖ and
angular velocity ω ((rω)2 = ‖d‖2) and that entry starts with distance

√
3r heading towards c

(∃λ≥0 (x+ λd = c)). For the construction of the maneuver and positioning in space, we use
the auxiliary anchor point h ∈ R2 identified in Fig. 7a and line 1 of (3). It is positioned relative to
the roundabout center c and the x position at the start of the entry curve (i.e., with x at the right
angle indicated in Fig. 7a). The entry curve around h is similar to the roundabout curve around
c. Formally, h is characterized by distance r to x, distance 2r to c (‖h− c‖ = 2r) and, further,
vector x− h is orthogonal to d and obeys the relative orientation of the curve belonging to −ω
(hence d = −ω(x− h)⊥). The property in (3) specifies that the tangential goal configuration (2)
around c is reached by a flyable curve when waiting until aircraft x and center c have distance r,
because the domain restriction of the dynamics is ‖x− c‖ ≥ r (line 2) and the postcondition as-
sumes ‖x− c‖ ≤ r, which imply ‖x− c‖ = r. The feasibility of choosing anchor point h can be
shown by proving an existence property; see Appendix A.3.

Spatial Symmetry Reduction The property in (3) can be verified in a simplified version. We use
a new spatial symmetry reduction to simplify property (3) computationally. We exploit symmetries
to reduce the spatial dimension by fixing variables. Without loss of generality, we recenter the
coordinate system with c at position 0. Further, we can assume aircraft x comes from the left by
changing the orientation of the coordinate system. Finally, we assume, without loss of generality,
linear speed 1 (by rescaling units appropriately). Observe that we cannot fix a value for both the
linear speed and the angular velocity, because the units are interdependent. In other words, if we
fix the linear speed, we need to consider all angular velocities in order to verify the maneuver
for each possible radius r of the roundabout maneuver (and corresponding ω). The x position
resulting from these symmetry reductions can be determined easily by Pythagoras theorem (i.e.,
(2r)2 = r2 + x2

1 for the triangle enclosed by h, x, c in Fig. 7a):

x = (
√

(2r)2 − r2, 0) = (
√

3r, 0) . (4)

Consequently, we simplify (3) by specializing to the following situation:

c := (0, 0); d := (1, 0); r := ∗; ?r > 0; ω := 1/r; x := (
√

3r, 0)

4.6 Bounded Entry Duration (AC4)
As the first step for showing that the entry procedure finally succeeds at goal (2) and maintains a
safe distance all the time, we show that entry succeeds in bounded time and cannot take arbitrarily
long to succeed (AC4 in Section 4.3).
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c
c c

Figure 8: Flyable aircraft roundabout (multiple aircraft)

By a simple consequence of the proof for (3), the entry procedure follows a circular motion
around anchor point h, see Fig. 7a. That is, when r is the radius belonging to the angular velocity ω
and the linear speed ‖d‖, the property ‖x− h‖ = r is an invariant of entry; see Appendix A.4. By
AC2, which can be proven easily, the speed ‖d‖ is constant during the entry procedure. Thus, the
aircraft proceeds with nonzero minimum progress rate ‖d‖ around the circle. The flight duration
for a full circle of radius r around h at constant linear speed ‖d‖ is 2πr

‖d‖ , because its arc length
is 2πr. From the trigonometric identities underlying equation (4), we can read off that the aircraft
completes a π

3
= 60◦ arc, see Fig. 7a. Hence, the maximum duration T of the entry procedure is:

T :=
1

6
· 2πr

‖d‖
=

πr

3‖d‖
(5)

Instead of π, which is not definable in first-order real arithmetic, we can use any overapproxima-
tion, e.g., 3.1415927 in (5). Roots like r =

√
3, instead, are definable easily via r2 = 3∧ ≥ 0.

4.7 Safe Entry Separation (AC5)
In Section 4.5, we have shown that the simplified entryn procedure from NTRM can be replaced by
a flyable entry maneuver that meets the requirements of approaching tangentially for each aircraft.
Unlike in instant turns (entryn), we still have to show that the respective flyable entry maneuvers
of multiple aircraft do not produce mutually conflicting flight paths, i.e., spatial separation of all
aircraft is maintained during the entry maneuvers of multiple aircraft (AC5). Fig. 8 illustrates
FTRM with multiple aircraft where separation is important.

Bounded Overapproximation We show that entry separation is a consequence of the bounded
speed (AC2) and bounded duration (AC4) of the flyable entry procedure when initiating the ne-
gotiation phase agree with sufficient distance. We prove that, when following bounded speed for
a bounded duration, aircraft only come closer by a bounded distance. Let b denote the overall
speed bound during FTRM according to AC2 and let T be the time bound for the duration of
the entry procedure due to AC4. We overapproximate the actual behavior during the entry phase
by arbitrary curved flight (see Fig. 7b). When the entry procedure is initiated with sufficient dis-
tance

√
2(p+ 2bT ), the protected zone p≥0 will still be respected after the 2 aircraft follow any

11



curved flight (including the actual choices during the entry phase and subsequent circ phase) with
speed ‖d‖ ≤ b and ‖e‖ ≤ b up to T ≥ 0 time units (see Fig. 7b):

‖x− y‖ ≥
√

2(p+ 2bT ) ∧ p ≥ 0 ∧ ‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ b ≥ 0 ∧ T ≥ 0

→ [entry] (‖x− y‖ ≥ p) (6)

In Appendix A.5, we show that this property follows from the more general fact that aircraft only
make limited progress in bounded time from some initial point z when starting with bounded
speeds (even when changing ω arbitrarily):

x = z ∧ ‖d‖2 ≤ b2 ∧ b ≥ 0 → [τ := 0; F(ω) ∧ τ ′ = 1] (‖x− z‖∞ ≤ τb) (7)

The maximum distance ‖x− z‖∞ from z depends on clock τ and bound b. To reduce the poly-
nomial degree and the verification complexity, we overapproximate distances from quadratic Euc-
lidean norm ‖ · ‖ in terms of linearly definable supremum norm ‖ · ‖∞, instead, which is

‖x‖∞ ≤ c ≡ −c ≤ x1 ≤ c ∧ −c ≤ x2 ≤ c

Far Separation By combining the estimation of the entry duration (5) at speed ‖d‖ = b with the
entry separation property (6), we determine the following magnitude as the far separation, i.e., the
initial distance which guarantees that the protected zone p is maintained during the full FTRM,
including entry:

f :=
√

2(p+ 2bT )
(5)
=
√

2

(
p+

2

3
πr

)
(8)

5 Synchronization of Roundabout Maneuvers
Following our verification plan in Section 4.3, we show that the various actions of multiple aircraft
can be synchronized appropriately to ensure safety of the maneuver. We analyze the negotiation
phase and compatible exit procedures.

5.1 Successful Negotiation (AC6)
For negotiation to succeed (AC6), we have to show that there is a common choice of the roundabout
center c and angular velocity ω (or radius r) so that multiple participating aircraft can satisfy the
local requirements of their respective entry procedures simultaneously, i.e., of the property (3) for
AC3.

We prove that all corresponding choices of agree satisfy the mutual requirements of multiple
aircraft simultaneously. As one possible option among others: when choosing roundabout center c
as the simultaneous intersection (intersection x+ λd = y + λe after time λ) of the flight paths of

12



the aircraft at x and y, the choices for c, r, ω are compatible for multiple aircraft; see Fig. 9a:

λ > 0 ∧ x+ λd = y + λe ∧ ‖d‖ = ‖e‖ →
[c := x+ λd; r := ∗; ?‖x− c‖ =

√
3r; ?‖y − c‖ =

√
3r; ω := ∗; ?(rω)2 = ‖d‖2](

‖x− c‖ =
√

3r ∧ λ ≥ 0 ∧ x+ λd = c ∧ ‖y − c‖ =
√

3r ∧ y + λe = c
)

(9)

The tests in the dynamics ensure that the entry curve starts when x, y and c have appropriate
distance

√
3r identified in Section 4 and that r is the radius belonging to angular velocity ω and

linear speed ‖d‖. This property expresses that, for aircraft heading towards the simultaneous in-
tersection of their flight paths with speed ‖d‖ = ‖e‖ (line 1), the intersection of the linear flight
paths (line 2) is a safe choice for c satisfying the joint requirements (line 3) identified in Section 4.
For an analysis of far separation during negotiation and of the feasibility of these choices, see-
Appendix A.6. Other choices of c, ω than Fig. 9a are possible for asymmetric initial positions of
aircraft, but computationally more involved.

5.2 Safe Exit Separation (AC7)
NTRM (Fig. 1d) does not need an exit procedure for safety, because the maneuver repeats when
further air traffic conflicts arise. For FTRM, instead, we need to show that the exit procedure
produces safe flight paths until the aircraft are sufficiently separated: When repeating the FTRM
maneuver, the entry procedure needs far separation (8) not just distance p for safety, see Fig. 4b.

Safe Separation If the aircraft enter simultaneously, they can exit simultaneously. For AC7, we
first show that aircraft that exit simultaneously (from tangential positions of the roundabout circle)
always respect their protected zones:

R∧ ‖x− y‖2 ≥ p2 → [x′ = d ∧ y′ = e] (‖x− y‖2 ≥ p2) (10)

This property expresses that safely separated aircraft exiting simultaneously along straight lines
from tangential positions (R by eqn. 2) of a roundabout will always remain safely separated. The

√
3r

c

√
3r

γ

≥
√

2(p+ 2
3
πr)

x
d

y
e

(a) Negotiation separation

c

(b) Exit ray separation

c

(c) Incompatible exit rays

Figure 9: Separation of negotiation and good and bad exit procedure separation
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ψ ≡‖d‖ = ‖e‖ ∧ r > 0 ∧ S(f)→ [FTRM∗]S(p)

C ≡‖x− c‖ =
√

3r ∧ ∃λ≥0 (x+ λd = c) ∧ ‖y − c‖ =
√

3r ∧ ∃λ≥0 (y + λe = c)

FTRM ≡ free∗; agree; Π(entry; circ; exit)
free ≡ω := ∗; % := ∗; F(ω) ∧ G(%) ∧ S(f)

agree ≡ c := ∗; r := ∗; ?(C ∧ r > 0); ?S(f);

ω := ∗; ?(rω)2 = ‖d‖2; x0 := x; d0 := d; y0 := y; e0 := e

entry ≡ doF(−ω) until ‖x− c‖2 = r2

circ ≡ doF(ω) until ∃λ≥0∃µ>0 (x+ λd = x0 + µd0)

exit ≡F(0); ?S(f)

Figure 10: Flight control with flyable tangential roundabout collision avoidance

proof for (10) uses overapproximations: even the whole exit rays (Fig. 9b–9c) are separated at all
times; see Appendix A.7.

Far Separation To show that the aircraft reach arbitrary separation when following the exit
procedure long enough, we prove that—due to different exit directions d 6= e—the exit procedure
will finally separate the aircraft arbitrarily far (starting from tangential configuration (2) of the
roundabout):

R∧ d 6= e → ∀a 〈x′ = d ∧ y′ = e〉 (‖x− y‖2 > a2) (11)

The proof uses the same ray overapproximations (Fig. 9b–9c), see Appendix A.7.

6 Flyable Tangential Roundabout Maneuver
We combine the results about the individual phases of flyable roundabouts into a full model of
FTRM that inherits safety modularly. We collect the maneuver phases according to the protocol
cycle of Fig. 4 and take care to ensure that the safety prerequisites are met, as identified for the
respective phases in Section 4-5.

One possible instance of FTRM is the hybrid program in Fig. 10, which is composed of previ-
ously illustrated parts of the maneuver. The technical construction and protocol cycle of the entry
procedure have already been illustrated in Fig. 4.

Finally, in FTRM, Π denotes the synchronous parallel product. Using communication, FTRM
operates synchronously, i.e., all aircraft make simultaneous mode changes like in [10]. Con-
sequently, the parallel product Π(entry; circ; exit) of HP simplifies to the conjunction of the re-
spective differential equations in the various modes and can be defined easily as follows (likewise
for more aircraft):

(entryx ∧ entryy) ; (circx ∧ circy) ; (exitx ∧ exity)

14



free
agree

entry

circ
exit

S(f) S
(f) ∧

C

S(
p)
∧
R

S(p) ∧R

S(
f

)

Decomposed property of system dynamics See
S(f)→ [free]S(f) Fig. 5
S(f)→ [agree](S(f) ∧ C) (9), (19)

C ∧ S(f)→ [entry]S(p) (6)
C ∧ S(f)→ [entry]R (3)
R∧ S(p)→ [circ](S(p) ∧R) Fig. 5
R∧ S(p)→ [exit]S(p) (10)
R∧ S(p)→ [exit]S(f) (10), (11)

Figure 11: Composing verification for flyable tangential roundabout maneuvers

where entryx is the entry procedure of the aircraft at position x, etc. Further Fig. 14 instantiates
Fig. 10 with all abbreviations resolved.

To verify this maneuver, we split the proof into the modular properties that we have already
shown previously following the verification plan from Section 4.3. Formally, we split the system
at its sequential compositions, giving the subproperties depicted in Fig. 11. Formula R is due to
equation (2) and S(p) by (1).

By combining the results about the FTRM flight phases as summarized in Fig. 11, we conclude
that FTRM avoids collisions safely. The modular proof structure in Fig. 11 still holds when re-
placing any part of the maneuver with a different choice that still satisfies the specification, e.g.,
for different entry procedures that still succeed in tangential configurationR within bounded time.
This includes roundabouts with asymmetric positions, i.e., where the initial distance to c can be
different, and with near conflicts, where the flight paths do not intersect in one point but in a larger
critical region [10]. Most notably, the separation proof in Section 4.7 is by overapproximation and
tolerates asymmetric distances to c (Fig. 7b).

Theorem 1 (Safety of flyable tangential roundabout maneuvers) FTRM is collision free, i.e.,
the collision avoidance property ψ in Fig. 10 is valid. Even any variation of FTRM with a modified
entry procedure that safely reaches tangential configuration R in some bounded time T is safe,
i.e., when the following formula holds, saying that, until time T , the aircraft have safe distance p
and will have reached configurationR at time T with τ as a clock:

S(f) → [τ := 0; agree ∧ τ ′ = 1]
(
(τ ≤ T → S(p)) ∧ (τ = T → R)

)
.

7 Experimental Results
Table 2 summarizes experimental results obtained using the tool KeYmaera1 for our verification
algorithm [20, 22] on a 2.6GHz AMD Opteron with 4GB memory. Rows marked with ∗ indicate
a property where simplifications like symmetry reduction have been used to reduce the compu-
tational complexity. Table 2 shows that even aircraft maneuvers with challenging hybrid curve

1KeYmaera verification tool is available at http://symbolaris.com/info/KeYmaera.html experi-
ments are available at http://symbolaris.com/pub/RCAS-examples.zip
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Table 2: Experimental results for air traffic control

Case study See Time(s) Memory(MB) Steps Dimension
tangential roundabout 2 aircraft 10.4 6.8 197 13
tangential roundabout 3 aircraft 253.6 7.2 342 18
tangential roundabout 4 aircraft 382.9 10.2 520 23
tangential roundabout 5 aircraft 1882.9 39.1 735 28
bounded maneuver speed AC2 0.5 6.3 14 4
flyable roundabout entry∗ (3) 10.1 9.6 132 8
flyable entry feasible∗ (14) 104.5 87.9 16 10
flyable entry circular (15) 3.2 7.6 81 5
limited entry progress (7) 1.9 6.5 60 8
entry separation (16) 140.1 20.1 512 16
mutual negotiation successful (9) 0.8 6.4 60 12
mutual negotiation feasible∗ (17) 7.5 23.8 21 11
mutual far negotiation (19) 2.4 8.1 67 14
simultaneous exit separation∗ (21) 4.3 12.9 44 9
different exit directions (23) 3.1 11.1 42 11

dynamics can be verified formally. Memory consumption of quantifier elimination is shown in
Table 2, excluding the front-end. The dimension of the continuous state space and number of
automatic proof steps are indicated. Except for simple manual steps during one property (16), the
proofs for Table 2 are 100% automatic.

8 Summary
We have analyzed complex air traffic control applications. Real aircraft can only follow sufficiently
smooth flyable curves. Hence, mathematical maneuvers that require instant turns give physically
impossible conflict resolution advice. We have developed a new collision avoidance maneuver
with smooth, fully flyable curves. Despite its complicated dynamics and maneuvering, we have
verified collision avoidance in this flyable tangential roundabout maneuver formally using our
verification algorithm for a logic of hybrid systems. Due to the intricate spatio-temporal movement
of aircraft in roundabout maneuvers, some of the properties require intricate arithmetic, which we
handled by symmetry reduction and degree-based reductions. The proof is automatic except for
modularization and arithmetical simplifications to overcome the computational complexity.

While the flyable roundabout maneuver is a highly nontrivial and challenging study, we still
use modeling assumptions that should be generalized and relaxed in future work, including syn-
chronous conflict resolution. The proof structure behind Theorem 1 is already sufficiently general,
but the computational complexity high. It would be interesting future work to see if the informal
robustness studies of Hwang et al. [10] can be carried over to a formal verification result.
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[21] André Platzer and Edmund M. Clarke. Computing differential invariants of hybrid systems
as fixedpoints. Technical Report CMU-CS-08-103, Carnegie Mellon University, 2008.
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A Additional Verification Results for the Flyable Tangential
Roundabout Maneuver

In this appendix, we provide additional background and verification results for aircraft.

A.1 Transcendental Functions Make Flight Dynamics Difficult
Solutions of flight equations contain complicated transcendental functions that give undecidable
arithmetic. Consider, for instance, the differential equation system for relative positions x = (x1, x2)
of two aircraft with linear speed v1 and and v2 respectively, and angular velocity ω and %, respect-
ively; see [23] for details:

x′1 = −v1 + v2 cosϑ+ ωx2 x′2 = v2 sinϑ− ωx1 ϑ′ = %− ω (12)

Differential equation solving in Mathematica produces the solution depicted in Fig. 12. The “solu-
tion” (if it is one at all) in Fig. 12 is not suitable for verification purposes. It involves several
trigonometric functions and has an undefined singularity at ω = 0. Reachability verification
is not possible for trigonometric solutions like in Fig. 12, because the resulting formulas of the
form ∀t≥0G(x1(t), x2(t), ϑ(t)) involve quantified arithmetic over trigonometric functions, which
is undecidable.

x1(t) =
1

%ω

(
x1%ω cos(tω)− ω sin(ϑ)v2 cos(tω) + ω cos(t%) sin(ϑ)v2 cos(tω)

+ ω cos(ϑ) sin(t%)v2 cos(tω) + x2%ω sin(tω)− % sin(tω)v1

− ω cos(ϑ) cos(t%) sin(tω)v2 + ω sin(ϑ) sin(t%) sin(tω)v2

− ω
√

1− sin(ϑ)2 sin(tω)v2

)
x2(t) =

1

%ω

(
%v1cos(tω)2 + x2%ω cos(tω)− %v1 cos(tω)− ω cos(ϑ) cos(t%)v2 cos(tω)

+ ω sin(ϑ) sin(t%)v2 cos(tω)− ω
√

1− sin(ϑ)2v2 cos(tω)− x1%ω sin(tω)

+ %sin(tω)2v1 + ω sin(ϑ) sin(tω)v2

− ω cos(t%) sin(ϑ) sin(tω)v2 − ω cos(ϑ) sin(t%) sin(tω)v2

)
ϑ(t) = ϑ+ t(%− ω)

Figure 12: Formal but useless “solution” of flight equations produced by Mathematica

The flight equations F(ω) and G(%) given in Section 4.1 can be derived from equation (12).
These equations F(ω) and G(%) still have just as complicated trigonometric solutions, but the
differential equations themselves are polynomials in the state variables, which is crucial for differ-
ential invariants [17, 22].
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The derivation works as follows. The parameters of two aircraft at the respective (planar)
positions x = (x1, x2) ∈ R2 and y = (y1, y2) with angular orientation ϑ and ς are as in Fig. 3
(with ϑ = 0). Following [23], aircraft dynamics is determined by their linear speeds v, u ∈ R
and angular speeds ω, % ∈ R, respectively:

x′1 = v cosϑ x′2 = v sinϑ ϑ′ = ω y′1 = u cos ς y′2 = u sin ς ς ′ = % (13)

That is, position x moves with speed v into the direction with angular orientation ϑ, which rotates
with angular velocity ω (likewise for y, u, ς, %). To handle the transcendental functions in equa-
tion (13), we axiomatize sin and cos by differential equations and reparametrize the system using
linear velocity vectors

d = (d1, d2) := (v cosϑ, v sinϑ) ∈ R2 and e = (e1, e2) := (u cos ς, u sin ς) ∈ R2

which describe both the linear speed ‖d‖ :=
√
d2

1 + d2
2 = v and the orientation of the aircraft in

space, see vectors d and e in Fig. 3:

[x′1 = d1 x′2 = d2 d′1 = −ωd2 d′2 = ωd1]

[y′1 = e1 y′2 = e2 e′1 = −%e2 e′2 = %e1 ]

Using vectorial notation, these polynomial differential equations are the same as the earlier differ-
ential equations F(ω) and G(%), respectively. They can be verified using our verification algorithm
on the basis of differential invariants [22].

A.2 Non-Flyable Tangential Roundabout Maneuver for Multiple Aircraft
(AC1)

Concerning multiple aircraft, Fig. 13 contains the system and separation property specification for
the 5-aircraft NTRM. There, property ψ expresses that the 5 aircraft at positions x, y, z, u, v ∈ R2,
respectively, keep mutual distance ≥p.

A.3 Flyable Entry Procedure Proofs (AC3)
For AC3, we further prove that the anchor point h can always be chosen as illustrated in Fig. 7a.
That is we show feasibility of the assumptions of property (3) by the following existence property:

(rω)2 = ‖d‖2 ∧ ‖x− c‖ =
√

3r ∧ ∃λ≥0 (x+ λd = c)

→∃h (d = −ω(x− h)⊥ ∧ ‖h− c‖ = 2r)
(14)

A.4 Bounded Entry Duration Proof for Circular Flight (AC4)
For AC4, we prove constant distance to anchor point h, i.e., that, indeed, ‖x− h‖ = r is an invari-
ant of entry as conjectured in Section 4.6:

(rω)2 = ‖d‖2 ∧ ‖x− c‖ =
√

3r ∧ ∃λ≥0 (x+ λd = c) ∧ d = −ω(x− h)⊥ ∧ ‖h− c‖ = 2r

→ [F(−ω) ∧ ‖x− c‖ ≥ r]
(
‖x− h‖ = r

)
(15)
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ψ ≡ S(p)→ [NTRM∗]S(p)

S(p) ≡ (x1 − y1)
2 + (x2 − y2)

2 ≥ p2 ∧ (y1 − z1)
2 + (y2 − z2)

2 ≥ p2

∧ (x1 − z1)
2 + (x2 − z2)

2 ≥ p2 ∧ (x1 − u1)
2 + (x2 − u2)

2 ≥ p2

∧ (y1 − u1)
2 + (y2 − u2)

2 ≥ p2 ∧ (z1 − u1)
2 + (z2 − u2)

2 ≥ p2

∧ (x1 − v1)
2 + (x2 − v2)

2 ≥ p2 ∧ (y1 − v1)
2 + (y2 − v2)

2 ≥ p2

∧ (z1 − v1)
2 + (z2 − v2)

2 ≥ p2 ∧ (u1 − v1)
2 + (u2 − v2)

2 ≥ p2

NTRM ≡ free; agree; entryn; circ
circ ≡ x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωxd2 ∧ d′2 = ωxd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −ωye2 ∧ e′2 = ωye1

∧ z′1 = f1 ∧ z′2 = f2 ∧ f ′1 = −ωzf2 ∧ f ′2 = ωzf1

∧ u′1 = g1 ∧ u′2 = g2 ∧ g′1 = −ωug2 ∧ g′2 = ωug1

∧ v′1 = h1 ∧ v′2 = h2 ∧ h′1 = −ωvh2 ∧ h′2 = ωvh1

free ≡ (ωx := ∗; ωy := ∗; ωz := ∗; ωu := ∗; ωv := ∗;
x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωxd2 ∧ d′2 = ωxd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −ωye2 ∧ e′2 = ωye1

∧ z′1 = f1 ∧ z′2 = f2 ∧ f ′1 = −ωzf2 ∧ f ′2 = ωzf1

∧ u′1 = g1 ∧ u′2 = g2 ∧ g′1 = −ωug2 ∧ g′2 = ωug1

∧ v′1 = h1 ∧ v′2 = h2 ∧ h′1 = −ωvh2 ∧ h′2 = ωvh1 ∧ S(p))∗

agree ≡ ω := ∗; c := ∗
entryn ≡ d1 :=−ω(x2 − c2); d2 := ω(x1 − c1);

e1 :=−ω(y1 − c1); e2 := ω(y2 − c2);
f1 :=−ω(z1 − c1); f2 := ω(z2 − c2);
g1 :=−ω(u1 − c1); g2 := ω(u2 − c2);
h1 :=−ω(v1 − c1); h2 := ω(v2 − c2)

Figure 13: Tangential roundabout collision avoidance maneuver (5 aircraft)
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A.5 Safe Entry Separation Proof (AC5)
Cartesian Degree Reduction To simplify separation property (6), we use the (linearly definable)
supremum norm ‖ · ‖∞ in place of the (quadratically definable) Euclidean 2-norm ‖ · ‖2, thereby
yielding the following provable variant of (6):

‖x− y‖∞ ≥ (p+ 2bT ) ∧ p ≥ 0 ∧ ‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ b ≥ 0 ∧ T ≥ 0

→ [τ := 0;∃ωF(ω) ∧ ∃%G(%) ∧ τ ′ = 1 ∧ τ ≤ T ](‖x− y‖∞ ≥ p) (16)

Here, the angular velocity ω is allowed to change arbitrarily and nondeterministically during the
flight, which we indicate by the quantifier ∃ω in the continuous dynamics.Using standard equival-
ences of norms, we conclude that the following variant of (16) with Euclidean 2-norms is valid:

‖x− y‖2 ≥
√

2(p+ 2bT ) ∧ p ≥ 0 ∧ ‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ b ≥ 0 ∧ T ≥ 0

→ [τ := 0;∃ωF(ω) ∧ ∃%G(%) ∧ τ ′ = 1 ∧ τ ≤ T ](‖x− y‖2 ≥ p)

The extra factor of
√

2 in the separation requirement results from the relaxation of the 2-norm to
the ∞-norm. Using AC4, it is easy to see that the entry maneuver is a special case refining the
above nondeterministic curved flight dynamics. Thus we conclude that property (6) is valid.

A.6 Far Separation during Successful Negotiation (AC6)
Feasible Negotiation Choices We show that the choices for property (9) are feasible for simul-
taneous flight path intersections, i.e., there always is a mutually agreeable choice:

‖d‖ = ‖e‖ ∧ λ > 0 ∧ x+ λd = y + λe→
〈c := x+ λd; r := ∗; ?‖x− c‖ =

√
3r; ?‖y − c‖ =

√
3r; ω := ∗; ?(rω)2 = ‖d‖2〉(

‖x− c‖ =
√

3r ∧ λ ≥ 0 ∧ x+ λd = c ∧ ‖y − c‖ =
√

3r ∧ λ ≥ 0 ∧ y + λe = c
)

(17)

The essential difference to (9) is the use of a diamond modality, which expresses existence of a
corresponding transition that satisfies all the constraints of the dynamics.

Separation During Negotiation The entry procedure has to be initiated while the aircraft are
still sufficiently far apart for safety reasons. Otherwise, there may not be sufficient maneuvering
space for collision avoidance. Correspondingly, the agree procedure will negotiate a roundabout
choice while the aircraft have far distance. Thus, the agree procedure will have to maintain far
separation, i.e., satisfy the property

‖x− y‖ ≥
√

2(p+
2

3
πr) → [agree]

(
‖x− y‖ ≥

√
2(p+

2

3
πr)

)
(18)

This may seem like a trivial property, because agree models the successful completion of the
negotiation, so that no time elapses during the dynamics of agree, hence the positions x and y
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do not even change. Observe, however, that the far separation distance according to equation (8)
depends on the protected zone p and the radius r of evasive actions. Unlike p, radius r may
change during agree, which allows for the flexibility of changing the flight radius r adaptively when
repeating the roundabout maneuver loop at different positions. Consequently, the far separation
distance

√
2(p+ 2

3
πr) is affected when changing r.

To ensure that the new radius r is chosen such that far separation is still maintained, i.e.,
property (18) is respected, we add a corresponding constraint to agree. Thus, changes of r are
only accepted as long as they do not compromise far separation. We show that, when adding a
corresponding constraint to property (9), all choices by agree maintain far separation of the aircraft
at x and y according to (8):

‖d‖ = ‖e‖ ∧ λ > 0 ∧ x+ λd = y + λe→

[c := x+ λd; r := ∗; ?‖x− c‖ =
√

3r; ?‖y − c‖ =
√

3r; ?‖x− y‖ ≥
√

2(p+
2

3
πr);

ω := ∗; ?(rω)2 = ‖d‖2](
‖x− c‖ =

√
3r ∧ λ ≥ 0 ∧ x+ λd = c ∧ ‖y − c‖ =

√
3r ∧ λ ≥ 0 ∧ y + λe = c

∧ ‖x− y‖ ≥
√

2(p+
2

3
πr)
)

(19)

Finally, we analyze when such choices of agree are feasible using a diamond modality:

‖d‖ = ‖e‖ ∧ λ > 0 ∧ x+ λd = y + λe→

〈c := x+ λd; r := ∗; ?‖x− c‖ = ‖y − c‖ =
√

3r〉‖x− y‖ ≥
√

2(p+
2

3
πr) (20)

The corresponding distance constraints on x, y and c for agree, respectively, are depicted in Fig. 9a.
Using standard trigonometric relations for each half of the triangle, we can compute the result-
ing distance of x and y as ‖x− y‖ = 2

√
3r sin γ

2
. With Collins-Tarski quantifier elimination and

simple evaluation for the remaining trigonometric expressions, we can determine under which cir-
cumstances property (20) holds true, i.e., for all protected zones p there is a radius r satisfying the
distance requirements:(

∀p∃r≥0

(
2
√

3r sin
γ

2
≥
√

2(p+
2

3
πr)

))
≡ sin

γ

2
>

1

3

√
2

3
π ≡ γ > 117.527◦

Consequently, corresponding choices are feasible for all protected zones with flight paths that do
not intersect with narrow collision angles. The constraint on the flight path intersection angle
relaxes to γ > 74.4◦ when removing the extra factor of

√
2 from (8), which results from our com-

putational simplification of cartesian degree reduction in Section 4.7.
Despite the presence of trigonometric expressions, the above formula is a substitution instance

of first-order real arithmetic and can thus be handled by our quantifier elimination lifting [18].
Note that the primary difference to trigonometric expressions occurring in the solutions of flight
equations for curved flight—which do not support quantifier elimination—is that the argument γ

2

of sin is not quantified over, here.
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A.7 Safe Exit Separation Proof (AC7)
Safe Separation To reduce the arithmetical complexity, we overapproximate property (10) by
showing that even the whole exit rays never cross when the aircraft exit the same roundabout tan-
gentially (see Fig. 9b; the counterexample in Fig. 9c shows that the assumption ‖x− c‖2 = ‖y − c‖2
on identical radius is required for this relaxation):

R∧ ‖x− c‖2 = ‖y − c‖2 ∧ x 6= y → [x′ = d; y′ = e]x 6= y (21)

Property (10) clearly refines (21), because every synchronous evolution along the joint differential
equation system x′ = d ∧ y′ = e can be emulated by successive evolutions x′ = d; y′ = e with two
consecutive evolutions of identical duration.

Again the computational complexity of proving this property can be simplified by adding
c1 := 0 ∧ c2 := 0 by symmetry reduction. From this property, the original separation property (10)
follows using the geometric fact that, for linearity reasons, rays that never cross cannot come closer
than the original distance p. This can be expressed elegantly in dL:

‖x− y‖2 ≥ p2 ∧ [x′ = d ∧ y′ = e]x 6= y → [x′ = d ∧ y′ = e](‖x− y‖2 ≥ p2) (22)

Thus, by combining (21) with (22) propositionally (modus ponens) and by the simple fact that the
sequential independent ray evolution x′ = d; y′ = e is an overapproximation of the synchronous
evolution x′ = d ∧ y′ = e, we conclude that property (10) is valid.

Far Separation To show that the aircraft reach arbitrary separation when following the exit pro-
cedure long enough, we prove that aircraft which enter roundabouts in different directions always
remain in different directions while following the roundabout:

R∧ d 6= e → [F(ω) ∧ G(ω)]‖d− e‖2 > 0 (23)

We combine (23) with the geometric fact that rays into different directions which never cross will
be arbitrarily far apart after sufficient time (Fig. 9b):

d 6= e ∧ [x′ = d ∧ y′ = e]x 6= y → ∀a 〈x′ = d ∧ y′ = e〉(‖x− y‖2 > a2)

By combining this geometric fact with (23), we obtain the final separation property by standard
propositional reasoning. It says that—due to their different directions—the exit procedure will
finally separate the aircraft arbitrarily far. This proves property (11).
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ψ ≡ d2
1 + d2

2 = e21 + e22 ∧ r > 0 ∧ (x1 − y1)
2 + (x2 − y2)

2 ≥ 2

(
p+

2

3
πr

)2

→ [FTRM∗] (x1 − y1)
2 + (x2 − y2)

2 ≥ p2

FTRM ≡

ω := ∗; % := ∗;

free: x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωd2 ∧ d′2 = ωd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −%e2 ∧ e′2 = %e1

∧ (x1 − y1)
2 + (x2 − y2)

2 ≥ 2

(
p+

2

3
πr

)2∗;
agree: c := ∗; r := ∗; ?r > 0; ?(x1 − c1)2 + (x2 − c2)2 = 3r2;

?∃λ≥0 (x1 + λd1 = c1 ∧ x2 + λd2 = c2);

?(y1 − c1)2 + (y2 − c2)2 = 3r2;

?∃λ≥0 (y1 + λe1 = c1 ∧ y2 + λe2 = c2);

?(x1 − y1)
2 + (x2 − y2)

2 ≥ 2

(
p+

2

3
πr

)2

;

ω := ∗; ?(rω)2 = d2
1 + d2

2

x0
1 := x1; x

0
2 := x2; d

0
1 := d1; d

0
2 := d2;

y0
1 := y1; y

0
2 := y2; e

0
1 := e1; e

0
2 := e2;

entryx ∧ entryy: x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −(−ω)d2 ∧ d′2 = −ωd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −(−ω)e2 ∧ e′2 = −ωe1;
?(x1 − c1)2 + (x2 − c2)2 = r2;

circx ∧ circy: x′1 = d1 ∧ x′2 = d2 ∧ d′1 = −ωd2 ∧ d′2 = ωd1

∧ y′1 = e1 ∧ y′2 = e2 ∧ e′1 = −ωe2 ∧ e′2 = ωe1

∧ (¬
(
∃λ≥0∃µ>0 (x1 + λd1 = x0

1 + µd0
1 ∧ x2 + λd2 = x0

2 + µd0
2)

∧ ∃λ≥0∃µ>0 (y1 + λe1 = y0
1 + µe01 ∧ y2 + λe2 = y0

2 + µe02)
)

∨ ∂
(
∃λ≥0∃µ>0 (x1 + λd1 = x0

1 + µd0
1 ∧ x2 + λd2 = x0

2 + µd0
2)

∧ ∃λ≥0∃µ>0 (y1 + λe1 = y0
1 + µe01 ∧ y2 + λe2 = y0

2 + µe02)
)
);

?
(
∃λ≥0∃µ>0 (x1 + λd1 = x0

1 + µd0
1 ∧ x2 + λd2 = x0

2 + µd0
2)

∧ ∃λ≥0∃µ>0 (y1 + λe1 = y0
1 + µe01 ∧ y2 + λe2 = y0

2 + µe02)
)
;

exitx ∧ exity: x′1 = d1 ∧ x′2 = d2 ∧ y′1 = e1 ∧ y′2 = e2;

?(x1 − y1)
2 + (x2 − y2)

2 ≥ 2

(
p+

2

3
πr

)2


Figure 14: Flight control with FTRM (synchronous instantiation)
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B Semantics of Differential Dynamic Logic
The semantics of dL [18] is a Kripke semantics in which states of the Kripke model are states
of the hybrid system. A state is a map ν : V → R; the set of all states is denoted by Sta. We
write ν |= φ if formula φ is true at state ν (Def. 2). Likewise, [[θ]]ν denotes the real value of
term θ at state ν. The semantics of HP α is captured by the state transitions that are possible by
running α. For continuous evolutions, the transition relation holds for pairs of states that can be
interconnected by a continuous flow respecting the differential equation and invariant region. That
is, there is a continuous transition along x′ = θ ∧ χ from state ν to state w, if there is a solution of
the differential equation x′ = θ that starts in state ν and ends in w and that always remains within
the region χ during its evolution. As in [7], we assume non-zeno behavior, for simplicity.

Definition 1 (Transition system of hybrid programs) The transition relation, ρ(α), of a hybrid
program α, specifies which state w is reachable from a state ν by operations of α and is defined as
follows

1. (ν, w) ∈ ρ(x := θ) iff the state w is identical to ν except that w(x) = [[θ]]ν .

2. (ν, w) ∈ ρ(x := ∗) iff the statew agrees with ν except for the value of x, which is an arbitrary
real value.

3. (ν, w) ∈ ρ(x′1 = θ1 ∧ . . . ∧ x′n = θn ∧ χ) iff for some r ≥ 0, there is a functionϕ:[0, r]→ Sta
with ϕ(0) = ν, ϕ(r) = w, such that,

• The differential equation holds, i.e., for each xi and each time ζ ∈ [0, r],

d [[xi]]ϕ(t)

dt
(ζ) = [[θi]]ϕ(ζ) .

• For other variables y 6∈ {x1, . . . , xn} and ζ ∈ [0, r], the value remains constant, i.e.,
[[y]]ϕ(ζ) = [[y]]ϕ(0).

• The invariant is always respected, i.e., ϕ(ζ) |= χ for each ζ ∈ [0, r].

4. ρ(α ∪ β) = ρ(α) ∪ ρ(β)

5. ρ(α; β) = {(ν, w) : (ν, z) ∈ ρ(α), (z, w) ∈ ρ(β) for a state z}

6. (ν, w) ∈ ρ(α∗) iff there are an n ∈ N and ν = ν0, . . . , νn = w such that (νi, νi+1) ∈ ρ(α)
for all 0 ≤ i < n.

Definition 2 (Interpretation of dL formulas) The interpretation |= of a dL formula with respect
to state ν uses the standard meaning of first-order logic:

1. ν |= θ1 ∼ θ2 iff [[θ1]]ν ∼ [[θ2]]ν for ∼ ∈ {=,≤, <,≥, >}

2. ν |= φ ∧ ψ iff ν |= φ and ν |= ψ, accordingly for ¬,∨,→,↔
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3. ν |= ∀xφ iff w |= φ for all w that agree with ν except for the value of x

4. ν |= ∃xφ iff w |= φ for some w that agrees with ν except for the value of x

It extends to correctness statements about a HP α as follows

5. ν |= [α]φ iff w |= φ for all w with (ν, w) ∈ ρ(α)

6. ν |= 〈α〉φ iff w |= φ for some wwith (ν, w) ∈ ρ(α)
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