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A new approach is described for combining range and
Doppler data from multiple radar platforms to perform
multi-target detection and tracking. In particular, azimuthal
measurements are assumed to be either coarse or unavailable,
so that multiple sensors are required to triangulate target tracks
using range and Doppler measurements only. Increasing the
number of sensors can cause data association by conventional
means to become impractical due to combinatorial complexity,
i.e., an exponential increase in the number of mappings
between signatures and target models. When the azimuthal
resolution is coarse, this problem will be exacerbated by the
resulting overlap between signatures from multiple targets and
clutter. In the new approach, the data association is performed
probabilistically, using a variation of expectation-maximization
(EM). Combinatorial complexity is avoided by performing
an efficient optimization in the space of all target tracks and
mappings between tracks and data. The full, multi-sensor,
version of the algorithm is tested on simulated data. The
results demonstrate that accurate tracks can be estimated by
exploiting spatial diversity in the sensor locations. Also, as a
proof-of-concept, a simplified, single-sensor range-only version
of the algorithm is tested on experimental radar data acquired
with a stretch radar receiver. These results are promising, and
demonstrate robustness in the presence of nonhomogeneous
clutter.
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I. INTRODUCTION

We present a new approach for multi-target
detection and tracking, in which information from
multiple, spatially diverse, radar sensors is combined
to improve track reliability and accuracy. In particular,
we treat the difficult case in which azimuthal
measurements are either coarse or unavailable, so
that multiple sensors are required to triangulate
target tracks using range and Doppler measurements
only. However, data association in this problem is
extremely complex for several reasons. First, the
coarse azimuthal resolution can result in significant
overlap between the signatures of the multiple
targets and clutter. Second, increasing the number
of sensor platforms leads to an exponential increase
in the number of mappings between signatures and
hypothesized targets. Thus, it becomes impractical
to sort out the associations using combinatorial
approaches.
Multiple hypothesis tracking (MHT) [1, 2], a

benchmark multi-target tracking algorithm, performs
data association using an exhaustive evaluation of
all mappings between targets and data samples, and
is therefore subject to a combinatorial explosion
as the amount of data and the number of sensors
increase. Pruning or gating are typically used to
alleviate the computational burden by eliminating
the less likely hypotheses, however valid hypotheses
may also be eliminated in the process. Therefore,
data having low signal-to-clutter ratio (S/C) may
be discarded, which can lead to missed detections.
An alternative to MHT is joint probabilistic data
association (JPDA) [3—5] which is more efficient
than MHT because one only needs to evaluate the
association probabilities separately at each time step.
Whereas more simplistic single scan methods (such
as nearest neighbor approaches) consider only the
single observation closest to the predicted state, JPDA
is more robust since the state of each track is updated
using a weighted average of all measurements falling
within its validation region at the current time step.
However, since it is a single scan process, not all
possible data-to-track mappings are considered. A
drawback of JPDA is that while it is appropriate for
track maintenance, it lacks an explicit mechanism for
track initiation [6]. Both MHT and JPDA have been
adapted for multi-sensor scenarios [5].
A data association approach based upon linear

programming has been proposed which, like JPDA,
updates the track states using weighted averages of
measurements [6]. Results from computer simulations
indicate significantly lower computational complexity
than JPDA, as well as improved accuracy. Moreover,
this method provides an explicit mechanism for track
initiation.
Recently, sequential Monte Carlo methods, a.k.a.

“particle filters,” have been adapted for multi-target
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tracking problems [7—9]. Whereas Kalman filters
are used in traditional JPDA methods for updating
track states, particle filters are more appropriate for
situations involving nonlinear state and measurement
equations and non-Gaussian noise. Data association
for particle filter methods can be performed in various
ways, as described in [8].
Both MHT and JPDA assume–often

correctly–that a target can generate at most one
measurement per scan. However, if this constraint
is relaxed, data association can be formulated
using a continuous optimization procedure, notably
expectation-maximization (EM) [10—12], rather than
combinatorics. Thus, an efficient “hill climbing”
optimization is performed in the space of all model
parameters and all possible mappings between data
samples and hypothesized targets. An important
advantage of this formulation is that computational
complexity scales only linearly with the number
of targets and sensors, whereas combinatorial
approaches such as MHT scale exponentially. Thus,
trackers based upon the EM formulation would, in
principle, be practical for scenarios with high clutter
and/or high densities of targets. Streit, et al. [13—15]
developed the probabilistic multihypothesis tracker
(PMHT) that utilizes EM to perform data association
while simultaneously estimating tracks based upon
multiple scans of data. This approach has also been
extended by other authors, for example to cases
with multiple sensors [16—18] and maneuvering
targets [19]. Avitzour [20] and Perlovsky [21, 22]
also, independently, developed maximum-likelihood
procedures for multi-target tracking which use
EM for data association. Perlovsky demonstrated
mathematically [22, 23], using Cramer-Rao bound
analysis, that the utilization of classification features
within the tracker is equivalent to an improvement
in S/C ratio in high-clutter tracking environments.
Subsequently, he developed a version of the algorithm
in which classification and tracking are performed
concurrently [22, 24—26]. Here, if they are available,
classification features (e.g., radar cross section (RCS),
length, etc.) are placed on an equal footing with
tracking features (e.g., range, Doppler, bearing, etc.).
The model is then a mixture of different types of
target and clutter components in the combined space
of tracking and classification features. Like PMHT,
Perlovsky’s approach is a multi-scan (i.e., “batch”)
algorithm.
Perlovsky’s approach differs from PMHT chiefly

in the choice of track model. In PMHT the motion
of each target is modeled using a set of discrete-time
state transition equations, and therefore a Kalman
smoother is used to estimate track parameters
in the M-step of the EM iterations [13—15] (in
nonlinear/non-Gaussian cases the target states are
obtained using dynamic programming rather than
Kalman smoothers). In contrast, Perlovsky’s approach

is flexible with respect to the choice of track model,
but normally the choice is to include continuous
polynomial models (e.g., constant velocity, constant
acceleration, etc.), or piecewise polynomial models,
for target trajectories. The use of polynomial models
leads to very simple parameter update formulas in the
M-step, for example, simple matrix inversions which
are similar in structure to polynomial regression [22].
Of course, under certain conditions the discrete-time
state transition equations used in PMHT would be
equivalent to polynomial models. Another difference
is in the choice of optimization criterion. Whereas in
PMHT the goal is maximization of the a posteriori
probability (MAP) [15], Perlovsky uses maximum
likelihood estimation (MLE) in the case of sampled
data, and minimization of the cross-entropy in the
case of pixelated data [22]. Avitzour’s procedure
is maximum likelihood, like Perlovsky’s, however
different tracking models are specified due to
differences in the particular applications.
The algorithm described in the present paper is

developed along the lines of Perlovsky’s general
approach, and utilizes EM for data association.
However, a major new aspect considered here is
the data model, which is particularly complicated,
and arises from combining data from multiple
sensors, where azimuthal measurements are absent.
Thus, the goal here is to use multiple sensors to
triangulate target tracks using range and Doppler
measurements only, while performing data association
probabilistically. An abbreviated version of this work
was published previously [30, 31], although some
results and most of the mathematical details were not
included.
An important consideration for any tracking

algorithm is computational cost. When applied to
a benchmark (single-sensor, single-target) tracking
problem, it was found that the computational
cost of PMHT is roughly the same order of
magnitude as the cost of MHT and JPDA [27]. The
computational cost of PMHT versus other methods
has also been evaluated for multi-target tracking
[28, 29]. Perlovsky’s approach would likely have
a computational cost similar to PMHT, since they
share a similar structure, and are both based upon
EM. For multi-sensor, multi-target applications,
MHT and JPDA would likely require hypothesis
pruning in order to avoid an exponential increase
in computational cost. Since the computational cost
of EM-based approaches scale only linearly with
increasing numbers of sensors, it is expected that the
advantages of EM-based approaches would become
increasingly evident for multi-sensor applications,
such as the one considered in this paper.
The paper is organized as follows. In

Sections II—IV the mathematical approach is
developed for the full, multi-sensor, version of the
algorithm. The EM algorithm is a well-established
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mathematical tool for estimating the parameters in
mixture models [10—12], and could certainly be
used as a framework for deriving the solution to
our problem, as was done for the PMHT [13—15].
However, in this paper a different approach is
offered, which Redner and Walker [12] refer to as
the “traditional general approach.” Here, a system
of likelihood equations is derived, then solved using
the partial derivatives of the optimization criterion,
as described in [22], [32]. This derivation does not
require an understanding of EM. In addition to the
full, multi-sensor, algorithm, a simplified version
is also derived in Section V which is appropriate
for performing range-Doppler-only tracking from
single-sensor data. In this case, the update formula
for track parameters is particularly simple and
efficient–it consists of a small matrix inversion for
each target component. Most of the mathematical
details are contained in the appendices. Appendix
A contains a derivation of the parameter estimation
equations for general mixture models, and also
tailors these equations to the tracking model used
in this paper. Appendix B contains a convergence
proof which, again, is within the structure of the
traditional general approach rather than depending
upon EM. Finally, in Section VI results are presented
from experiments designed to test the algorithm.
The simplified, single-sensor version is tested on
experimental radar data, while the full, multi-sensor,
version is tested on synthetic data. The results,
although preliminary, demonstrate robustness in the
presence of nonhomogeneous clutter, and uncertainty
in the number of targets present. Section VII provides
a summary and discusses directions for future
research.

II. DESCRIPTION OF THE SENSORS AND DATA

The sensor model for this discussion incorporates
a ground-based radar antenna having poor azimuthal
resolution. In fact, we will assume the extreme case in
which each sensor measures target range and Doppler
(range-rate) only, but no azimuth. Thus, the track of
each target can only be estimated by triangulation
from multiple, spatially diverse, sensor platforms. In
this work, we focus on the 2-dimensional tracking
problem in which targets are assumed to lie on the
zero-elevation plane, while sensors have arbitrary
3-dimensional positions.
Our method is appropriate for any collection of

range/Doppler data, although as a working model
it is assumed the data are acquired using a stretch
receiver [33]. Here, a suite of long-duration chirps
is transmitted from a stationary ground-based radar,
and the corresponding suite of received signals within
the coherent processing interval (CPI) is processed
jointly to produce a two-dimensional digitized image
in range/Doppler coordinates, referred to as a “scan

Fig. 1. Sample stack of three pixelated scan frames acquired
with a particular sensor. Target signature appears as high intensity
(dark) blob centered around its true range/Doppler coordinate.

Since target is in motion, signature position is slightly different in
each scan frame. Similar data stacks would be acquired using
other sensors, and entire set of stacks from all sensors is

processed jointly to estimate target tracks.

frame.” Examples of scan frames are shown in Figs. 2
and 3 in Section VI, where the target and clutter
signatures appear as blobs of energy centered upon
their true range and Doppler. The brightness (strength)
of each blob is proportional to the range and RCS
of the reflectors. The target and ground clutter may
occupy several range-Doppler resolution cells. Of
course, the range resolution is inversely proportional
to the bandwidth of the transmitted signal, and
is degraded by the associated pulse compression
processing. Similarly, the Doppler resolution is
inversely proportional to the CPI, and is degraded
by sensor platform vibration, system instability, and
processing. The spreading of the target signature
across several range-Doppler cells may be associated
with target speed and acceleration, target size, and
scintillation of target cross section. Ground clutter
appears in the scan frame image as a ridge centered at
zero Doppler and spread across all range bins (again,
refer to Figs. 2 and 3 in Section VI). The spread of
the ridge beyond the Doppler resolution cell may be
caused by antenna scan modulation, sensor platform
vibration, as well as internal motion of the clutter
(e.g., movement of leaves and branches in the wind).
Depending on its width, this clutter ridge may in some
cases obscure or partially obscure the signatures from
targets with small radial velocities. Finally, there will
be a certain amount of background noise (receiver
noise) which is uniformly distributed in range/Doppler
over the image.
It is assumed the data are collected as follows

(Fig. 1). At each time tj , for j = 1,2,3, : : : ,J , the
received signals within the CPI centered at tj are
processed jointly to yield a sampled or pixelated
range/Doppler image (scan frame) as described above.
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Thus, for each sensor m= 1,2,3, : : : ,M we acquire a
stack of J range/Doppler scan frames corresponding
to the different times tj . Note that, due to the irregular
overlap in the fields-of-view of the different sensors,
the signatures from some targets may not appear
in the images from all sensors at all times. Each
range/Doppler scan frame image is described using
the notation p0(wjmn), where p0 is the pixel intensity
at the range/Doppler coordinate wjmn = (rjmn,djmn),
which is indexed by time index j (i.e., scan frame
number j), sensor m, and pixel n= 1,2,3, : : : ,N.
The total number of pixels in each scan frame is
N =Nr£Nd, where Nr and Nd are the number of bins
in range and Doppler, respectively. The width of each
pixel with respect to range and Doppler is ¢r and
¢d, respectively. The data from the multiple sensor
platforms are combined noncoherently to estimate
target tracks, as described in the following sections.

III. MODEL FOR THE DATA

A model for the data p0(wjmn) can be developed
which depends upon the target trajectories as well
as the sensor parameters and coordinates. Suppose
the coordinates of target k at time tj are given by
the (east, north) coordinate (xk(tj),yk(tj))´ (xjk,yjk).
Using a constant acceleration model, the trajectories
are described by

xjk = x
0
k + x

0
ktj + x

00
k t
2
j (1)

yjk = y
0
k + y

0
ktj + y

00
k t
2
j : (2)

Here (x0k ,y
0
k ) is the time-zero position of target k,

while (x0k,y
0
k) is the time-zero velocity and (x

00
k ,y

00
k )

are proportional to the x and y components of the
acceleration. The targets are assumed to lie at zero
elevation, which simplifies the discussion, as well as
reducing the number of track parameters that need
to be estimated. The sensors are allowed to have
arbitrary 3-dimensional coordinates. Suppose there
are M sensor platforms, where sensor m is fixed at the
(east, north, elevation) coordinate (xm,ym,zm). Then,
the range Rkm(tj)´ Rjkm from sensor m to target k at
time tj is given by the equation

Rjkm =
q
(xm¡ xjk)2 + (ym¡ yjk)2 + z2m: (3)

The Doppler (range-rate) Dkm(tj) = [@Rkm(t)=@t]t=tj is
then

Dkm(tj)´Djkm

=¡
Ã
xm¡ xjk
Rjkm

!
(x0k +2x

00
k tj)

¡
Ã
ym¡ yjk
Rjkm

!
(y0k +2y

00
k tj): (4)

As described in Section II, the target signatures
appear as blobs of energy in the scan frame images
p0(wjmn), where recall that wjmn = (rjmn,djmn) is
the range and Doppler value of the nth pixel in
the frame pertaining to the mth sensor at the jth
time. The signature corresponding to target k is
roughly centered at the true range Rjkm and Doppler
Djkm, measured relative to sensor m at time tj .
We wish to construct a mathematical model that
approximates these signatures, and for target k we
denote this model as pk(wjmn j£k), where £k is the
set of model parameters. In this case it makes sense
to use Gaussian distributions to model the target
signatures (blobs of energy), so that the signature
due to target k for sensor m and time tj is modeled
by

pk(wjmn j£k) =

¢r¢d

2¼¾rk¾dk
exp

(
¡1
2

"μ
rjnm¡Rjkm

¾rk

¶2
+

μ
djnm¡Djkm

¾dk

¶2#)
:

(5)
Here, the set of model parameters is £k =
f¾2dk,¾2rk,x0k ,y0k ,x0k,y0k,x00k ,y00k g where, in (5), the
track parameters fx0k ,y0k ,x0k,y0k,x00k ,y00k g are contained
implicitly within the quantities Rjkm and Djkm
according to (3) and (4). Also, ¢r and ¢d define
the pixel size relative to the range and Doppler
coordinates, as discussed in Section II. Note
that the distribution in (5) is normalized1 so thatPN
n=1pk(wjmn j£k) = 1. The variance parameter

¾2rk specifies the spread (width) of the signatures
with respect to the range coordinate in the scan
frame image, and is related to the range resolution
of the sensor and the range extent of the target.
The other variance parameter ¾2dk specifies the
width of the signature in Doppler, and depends
both on the sensor resolution and the target motion,
including internal (micro) motion. It should be
noted that the model could alternatively have
been formulated so that the variance parameters
depend upon time index j or sensor m, as well as
sensor k.
The interference also requires a model, and we

approximate this using two components, one for
the uniform background noise (receiver noise), and
one for the stationary clutter. We designate the two
interference indices as k = (K ¡ 1), K and the target
indices as k = 1,2,3, : : : , (K ¡ 2). The background
noise (receiver noise) component k =K ¡1, uniform
(constant) in both range and Doppler, is described by

pK¡1(wjmn j£K¡1) =
1
N

(6)

1Actually, the normalization is approximate, and assumes the pixel
dimensions (¢r,¢d) are small relative to (¾rk ,¾dk).
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where N is the number of pixels in each
range/Doppler image, as discussed above. The
1=N factor is necessary for normalization, i.e., to
insure

PN
n=1pk(wjmn j£k) = 1. Note, here the set of

parameters £K¡1 is empty. The other interference
component k = K, which models the reflected energy
from stationary ground clutter, is uniform (constant) in
range, and zero-mean Gaussian in Doppler, i.e.,

pK(wjmn j£K) =
¢dp
2¼¾dkNr

exp

(
¡1
2

μ
djnm
¾dK

¶2)
:

(7)

Here, Nr is the number of range bins in each pixel
array, as discussed in the previous section. Note,
here the set of parameters is £K = f¾2dKg. A further
discussion of clutter modeling is given in [22].
The total model for the image data is the weighted

summation (mixture) of individual target and clutter
components

p(wjmn j£) =
KX
k=1

Ekmpk(wjmn j£k): (8)

Here, Ekm is the relative weighting for each of the
model components, which we refer to as the mixture
weight. For target components, the mixture weight is
proportional to the target’s RCS and range as viewed
by sensor m. Since RCS can be strongly dependent
upon aspect angle, we allow Ekm to depend upon both
target k and sensor m. This dependence upon sensor
m also allows for the fact that the fields-of-view for
the different sensors overlap in an irregular manner, so
that a signature from a certain target may not appear
in the data from all sensors. In (8), the total set of
model parameters is denoted by £ = fEkm,£kg, where
k = 1,2, : : : ,K and m= 1,2, : : : ,M.
The well-known problem of estimating the best

number of components K in mixture models is
discussed in the literature. For example, mathematical
strategies are described in [34], [35], [36] and the
references therein. In our application, this so-called
“model selection” problem stems from the fact that the
true number of targets is not known in most contexts,
and therefore we must make an educated guess for
the appropriate number of model components K.
If there are more model components than targets,
unneeded components can presumably be eliminated
automatically as their mixture weights Ekm adapt
to small values. A tracking example is presented in
Section VI where this type of process is illustrated.
In cases where the true number of targets exceeds
the number of model components, the behavior
of the model during its adaptation is not as well
understood. It is speculated that either the process
will lock onto K ¡ 2 targets, ignoring the rest, or
some model components will lock onto multiple
targets sharing similar parameters. In a future study,

we will investigate how model selection strategies
described in the literature can be adapted to the
tracking problem, for choosing the number of target
components, pruning unneeded components, and
adding components when necessary.
A useful result can be obtained by summing both

sides of (8) over the pixel index n, and using the
(previously stated) fact that

PN
n=1pk(wjmn j£k) = 1,

to obtain X
n

p(wjmn j£) =
X
k

Ekm (9)

for each j = 1,2, : : : ,J . Here we have assumed that if
a target is in the field-of-view of a particular sensor
m, it will remain in the field-of-view for the entire
set of scan frames j = 1,2, : : : ,J . Thus, the sum of
the relative model weights is independent of j. It
is sensible to place a constraint so that, for each
scan frame j and sensor m, the total energy in the
model equals the total energy in the measured data,
i.e.,

P
n p(wjmn j£) =

P
n p0(wjmn). Combining this

constraint with (9), we obtain the following constraint
on the mixture weight parameters, valid for every scan
frame j and sensor m:X

n

p(wjmn j£) =
X
n

p0(wjmn) =
X
k

Ekm: (10)

IV. PARAMETER ESTIMATION

The goal is to find the set of model parameters
£ = fEkm,£kg providing the best match between
the the model p(wjmn j£) and the data p0(wjmn).
The model, described in Section III, is completely
specified by the the mixture weights Ekm,
the variances ¾2dk and ¾

2
rk, and the parameters

fx0k ,y0k ,x0k,y0k,x00k ,y00k g describing the target trajectories.
In this paper the Einsteinian log-likelihood [22,
ch. 4.4.1]

LL(£) =
X
j,m,n

p0(wjmn) lnp(wjmn j£)

=
X
j,m,n

p0(wjmn) ln
KX
k=1

Ekmpk(wjmn j£k)

(11)

will serve as a criterion to quantify the similarity
between the model and the data. Given the constraint
in (10), it can be shown that LL will be maximized
when the model and the data match, i.e., for
p(wjmn j£) = p0(wjmn). Note that maximizing LL is
equivalent to minimizing the cross-entropy, a.k.a, the
Kullback-Leibler (KL) divergence, a well-established
metric from the information theory arena [41].
Mathematical and physical justifications for both
Einsteinian log-likelihood and the KL divergence
have been discussed in detail [22, 37—40]. It should
be emphasized that the tracking algorithm described
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here is a “batch” processing approach, i.e., the frames
from all time indices j are processed jointly. This is
apparent in (11) since the log-likelihood includes a
summation over j.
The mathematical details of the optimization

are contained in Appendix A. Briefly, a system
of equations is derived which is satisfied by the
parameters maximizing LL, subject to the constraint
of (10). Unfortunately, an analytical solution is
intractable since the system of equations is large,
coupled, and nonlinear. However, iterative techniques
can be employed to solve the system of equations
and, in Appendix A, an efficient recursive technique
is described which is a special case of EM. This
technique defines a recursive update formula for each
parameter. For example, using the notation E(I)km and
£(I)k to indicate the estimates of the parameters at the
Ith iteration, the recursive update formulas for Ekm,
¾2dk, and ¾

2
rk are

E(I+1)km =
1
J

X
j,n

p0(wjmn)P
(I)(k j jmn) (12)

(¾2dk)
(I+1) =

P
j,m,n p0(wjmn)P

(I)(k j jmn)(djnm¡Djkm)2P
j,m,n p0(wjmn)P(I)(k j jmn)

(13)
and

(¾2rk)
(I+1) =

P
j,m,n p0(wjmn)P

(I)(k j jmn)(rjnm¡Rjkm)2P
j,m,n p0(wjmn)P(I)(k j jmn)

(14)
where

P(I)(k j jmn) = E(I)kmpk(wjmn j£(I)k )P
k0 E

(I)
k0mpk0(wjmn j£(I)k0 )

=
E(I)kmpk(wjmn j£(I)k )
p(wjmn j£(I))

: (15)

There is an analogous rule for updating the tracking
parameters fx0k ,y0k ,x0k,y0k,x00k ,y00kg, which is described
later in this section. The equations above imply
starting with an initial guess for the parameters
fE(0)km ,£(0)k g, then alternating between updating
P(I)(k j jmn) using (15), then updating the parameters
fE(I+1)km ,£(I+1)k g using (12)—(14). In fact, these steps
correspond to the E-step and the M-step, respectively,
of the EM algorithm. This iterative procedure is
guaranteed to converge to a local maximum of LL, as
shown in Appendix B. Note that the mixture weights
Ekm are updated using (12) for all target and clutter
components k = 1,2, : : : ,K. In fact, (12) is appropriate
for updating the weights of arbitrary mixture models,
not only the tracking model considered here. The
variances ¾2dk and ¾

2
rk are updated for the appropriate

model components, as indicated by the target and
clutter model equations. Since the variance parameters

are initialized to large values, the components are
initially fuzzy and indistinct. However, with increasing
iterations, the variances tend to adaptively decrease,
and the individual components gradually converge and
lock on to the target signatures, or to portions of the
clutter. Thus, the model iteratively adapts to fit the
data, as we demonstrate with the results in Section VI.
If the model is viewed probabilistically

[22, ch. 4.4.8], then (15) is simply a form of
Bayes’ rule, and the quantities P(I)(k j jmn) can
be construed as the probabilities that the energy
in pixel (j,m,n) originates from target or clutter
component k. Therefore, P(I)(k j jmn) are referred
to as the “association probabilities” [22]. Equation
(12) therefore makes intuitive sense–it simply states
that E(I+1)km is the sum of all pixel values p0(wjmn),
where the pixels are weighted by their association
probabilities. Similarly, (13) and (14) correspond
to the usual definition of sample variance, with
the distinction that the pixels are weighted by their
association probabilities. From (15) it is apparent thatX

k

P(I)(k j jmn) = 1 (16)

for any iteration I.
For compactness, we define the angled bracket

notation

h¤i(I) ´
X
j,n

p0(wjmn)P
(I)(k j jmn)(¤) (17)

where the asterisk ¤ denotes a generic quantity. Thus,
(12)—(14) can be rewritten in the compact form

E(I+1)km =
h1i(I)
J

(18)

(¾2dk)
(I+1) =

P
mh(djnm¡Djkm)2i(I)P

mh1i(I)
(19)

and

(¾2rk)
(I+1) =

P
mh(rjnm¡Rjkm)2i(I)P

mh1i(I)
: (20)

The converged values of Doppler variance
parameters ¾2dk are related to the radar Doppler
resolution and target dynamics, and are thus difficult
to estimate a priori. On the other hand, the converged
values of the range variance parameters ¾2rk are
related to the radar range resolution, modified by
the range extent of the target, and are assumed to
be better known a priori. Therefore, rather than
adaptively estimating range variance using (20), it
may be advantageous to evolve ¾rk according to a
predetermined schedule [22, 25, 26]. For example,
¾rk can be initialized to a rather large value, so that
the target components can “see” large sections of the
pixel data, then decreased according to an exponential
decay during EM iterations to a steady state value
corresponding to the appropriate sensor resolution.
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Finally, we derive the recursive update formula for
each of the tracking parameters fx0k ,y0k ,x0k,y0k,x00k ,y00kg,
k = 1,2,3, : : : , (K ¡ 2). In the single-sensor case,
described below in Section V, the update formula for
these parameters is a simple closed-form expression,
analogous to (18)—(20). Unfortunately, a closed-form
update formula cannot be derived for the general
multi-sensor case. However, local convergence is
still guaranteed (see Appendix B) if the tracking
parameters are simply “nudged” along the uphill
gradient of LL during each iteration. This actually
corresponds to a special case of the generalized
EM (GEM) procedure [11]. Using sk as a generic
placeholder for any one of the tracking parameters
fx0k ,y0k ,x0k,y0k,x00k ,y00k g, the update formula is given by

s(I+1)k = s(I)k + h ¢
·
@LL

@sk

¸
(21)

where h is the gradient ascent stepsize, and

@LL

@sk
=
X
m

¿μ
rjnm¡Rjkm

¾2rk

¶μ
@Rjkm
@sk

¶À(I)

+
X
m

¿μ
djnm¡Djkm

¾2dk

¶μ
@Djkm
@sk

¶À(I)
:

(22)

This expression is derived in Appendix A. It is
straightforward to compute explicit expressions for
@Rjkm=@sk and @Djkm=@sk for each of the parameters
sk = fx0k ,y0k ,x0k,y0k,x00k ,y00k g using (3) and (4). For
example, @Rjkm=@x

0
k =¡(xm¡ xjk)=Rjkm. Although

(21) describes a single gradient ascent step during
each iteration, multiple steps can be taken during each
iteration while holding the association probabilities
P(k j jmn) fixed. In practice, the convergence rate
can be optimized, using trial-and-error to determine a
suitable combination of stepsize h and steps/iteration.
Although the present study is mainly concerned

with tracking, it is important to consider the issue
of automatic detection and target declaration. The
standard detection approach, e.g., described in [22,
sect. 7.2.9], utilizes a log-likelihood ratio test which
operates on the converged parameter values. The
issue of detection will be studied in more detail in the
future.

V. RANGE-ONLY TRACKING FROM A SINGLE
SENSOR

If only a single sensor platform is available, and
measurements of azimuth are unavailable, it may still
be desirable to perform range-Doppler-only tracking.
Here, the target and interference (clutter plus noise)
models given by (5)—(7) remain valid, as well as
the total model for the data given by (8). Also, the
variance (¾2dk,¾

2
rk) and mixture weight Ekm parameters

are still updated using (18)—(20). However, in the
single-sensor case the target track parameters can be
updated using a closed-form formula, which is simpler
and more efficient than the gradient ascent procedure
described by (21) used for the multi-sensor case. Note
that the analysis in this section is very similar to the
analysis given in [22, ch. 7.2.6]. However, whereas the
the previous work utilized a constant velocity model,
here a constant acceleration model is used which is
slightly more complicated.
Suppose the range between the targets and the

(single) sensor can be described using a constant
acceleration model, i.e.,

Rjkm = R
0
k +R

0
ktj +R

00
k t
2
j (23)

where R0k is the time-zero range of target k, R
0
k is the

time-zero range-rate, and R00k is proportional to the
range-acceleration. Although there is only a single
sensor m= 1, the m subscript is maintained in the
quantity Rjkm for consistency with the expression for
the target model in (5). The Doppler (range-rate) at
time tj is the derivative of range with respect to time
evaluated at tj , i.e.,

Djkm = R
0
k +2R

00
k tj : (24)

In Appendix A, an update formula is derived for
iteratively adjusting the values of fR0k ,R0k,R00kg in order
to maximize LL which, as in the multi-sensor case, is
described by (11). This update formula is described
by the following 3£ 3 set of linear equations:

H̄k

8><>:
(R0k )

(I+1)

(R0k)
(I+1)

(R00k )
(I+1)

9>=>;=
8><>:

hrjnmi=¾2rk
hrjnmtji=¾2rk + hdjnmi=¾2dk
hrjnmt2j i=¾2rk + h2djnmtji=¾2dk

9>=>;
(25)

where

H̄k =
1
¾2rk

8><>:
h1i htji ht2j i
htji ht2j i ht3j i
ht2j i ht3j i ht4j i

9>=>;+
1
¾2dk

8><>:
0 0 0

0 h1i h2tji
0 h2tji h4t2j i

9>=>; :
Here, for example, (R0k )

(I+1) denotes the updated
estimate for R0k computed at the (I+1)th iteration. For
the sake of compactness, the (I) superscript has been
omitted from the angled bracket notation h¤i used for
the elements in the above matrices. However it should
be understood that here

h¤i ´
X
j,n

p0(wjmn)P
(I)(k j jmn)(¤): (26)

It can be shown that, in the absence of Doppler
measurements, the set of equations (25) is equivalent
to second-order polynomial regression in which
data samples are weighted by their association
probabilities.
Unlike the update formulas for Ekm, ¾dk, and

¾rk, given by (18)—(20), the matrix expression
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Fig. 2. Upper left: scan frame data acquired at time t= 0 s in which a single target signature appears at Doppler and range values of
roughly (¡12 m/s) and (258 m), respectively. Remaining three plots show evolution of model, which adapts to fit data as iterations
increase. White Xs in lower right plot indicate converged range/Doppler coordinates R0

k
and R0k for target components in model.

(25) actually represents a set of three coupled
update formulas for the three tracking parameters
fR0k ,R0k,R00kg. Upon each iteration, these parameters
are updated by inverting (25). Note that a separate
3£ 3 matrix inversion is performed for each target
component k = 1,2, : : : , (K ¡ 2).

VI. RESULTS

In this section, we describe results when the
algorithm is applied to two cases. First, the algorithm
is tested against experimental stretch radar data
[33] from a single sensor using only the range and
Doppler data from the sensor. The single sensor
results are presented as a proof of concept and to
illustrate the performance of the algorithm in realistic,
inhomogeneous clutter, variable signal to interference,
and accelerating and maneuvering targets. In the
second case, we consider multiple sensors viewing
the same scene. The sensors are assumed to have poor
or no azimuth resolution but good range and Doppler
resolution. Combining the data from multiple sensors
offers the opportunity to more accurately locate
and track targets using triangulation of the sensor
data if the difficult problem of target association
can be solved. In the second case we present results
from computational experiments designed to test the
algorithm since experimental multi-sensor data are not
available to us.
Let us now describe the single-sensor results

computed from experimental data, using the simplified
version of the algorithm described in Section V. These
results will be mainly qualitative since neither true

target tracks nor detailed information about the radar
were provided. Nevertheless, this analysis serves
as a useful proof-of-concept for the algorithm. The
experimental setup consisted of a stretch receiver
mounted on a tower overlooking a wooded area,
and data were collected as various targets moved
through the area. The raw data were converted to a
suite of range/Doppler scan frames using standard
processing techniques [33], as discussed in Section II.
The algorithm described in Section V was used to
jointly process multiple sets of scan frames, where
each scan frame is computed from data centered
around a different time tj , j = 1,2, : : : ,J .
The upper left plot of Fig. 2 shows a single scan

frame acquired at a reference time of t= 0 s. A
target signature appears as a “blob of energy” at
Doppler and range values of roughly (¡12 m/s) and
(258 m), respectively. There is a significant ridge
of ground clutter from the stationary background
centered at zero Doppler, extending across all range
bins. There is also a noise background which is
roughly uniform in range/Doppler, although with
some significant inhomogeneities. For the model
we used five components: three target components,
one uniform background noise component, plus one
clutter component shaped like a ridge centered at zero
Doppler.
The remaining three plots of Fig. 2 show how

the model evolves with increasing iterations. Since
the model variances are initialized to large values,
the model is initially broad, fuzzy, and indistinct
(upper right). However, as the iterations progress, the
parameters adapt in such a way as to eventually define
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Fig. 3. Same as Fig. 2, however here scan frame was acquired at a later time of t = 6 s. Target signature has now moved to Doppler
and range values of roughly (¡9 m/s) and (195 m), respectively.

Fig. 4. Left-hand plot shows same scan frame shown in Fig. 3, however a large amount of artificial noise was added which almost
completely obscures target signature. Nevertheless (right-hand plot), one of the model components was able to adapt to range/Doppler

coordinate in close vicinity of target signature.

a model which shares most of the significant features
of the data. The lower right plot in Fig. 2 shows
the converged model after 200 iterations. The white
Xs indicate the converged range/Doppler estimates
R0k and R

0
k for the three target components. Notice

that one of the three target components has properly
converged to the true target signature, while the extra
two target components have converged to portions
of the inhomogeneous background clutter. Although
Fig. 2 shows the data and model corresponding to
only a single scan frame, it is important to note that
the results were computed by jointly processing
10 scan frames, starting at t= 0 and proceeding in
intervals of 0.25 s.
The upper left plot of Fig. 3 shows scan frame

data corresponding to a different time, t= 6 s. The
target signature has now moved to Doppler and range
values of roughly (¡9 m/s) and (195 m), respectively.
Here, the inhomogeneities in the background are

even more extreme than for the t= 0 case shown in
Fig. 2. However, the model was able to adapt quite
nicely, with one of the target components locking on
to the true target signature, and the extra components
adapting to fit the clutter.
In Figs. 2 and 3, the target signatures were rather

strong, with signal-to-interference ratios of roughly
3 dB (computed from the peak value of the signature
relative to an average background value in the image
frame). Next, the tracking experiment was repeated
for the same case shown in Fig. 3. However the
problem was intentionally made more difficult by
adding a large amount of artificial noise, so that the
signal-to-interference ratio was reduced to roughly
0 dB. This noise is uniformly distributed in range
and Doppler, and is signal-independent, i.e., it was
simply added to the intensity image. The data and
the converged model for this noisy experiment are
shown in Fig. 4, which shows that one of the model
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Fig. 5. Tracking over extended time interval for smoothly decelerating target. Each scan frame corresponds to different time instance
with 12 s interval. Overlaid is dark line showing track computed using our method.

components locked on to the target signature in the
data, despite the fact that the target signature is almost
completely obscured by noise.
Although the present study is mainly concerned

with tracking, it is important to consider the issue
of automatic detection and target declaration. For
example, in the converged model shown in the lower
right plot of Fig. 3 there are three target components
which converged to the three different range/Doppler
coordinates indicated with white Xs. One component
has locked on to the target signature, while the other
two have adapted to fit portions of the clutter. Here,
the detection problem consists of automatically
declaring the true target, while disregarding the other
two components.
The standard detection approach, e.g., described

in reference [22, sect. 7.2.9], utilizes a log-likelihood
ratio test evaluated at the converged track and variance
parameter values. In the examples shown thus far, it
appears that perhaps a simple detection rule could
be devised based upon the compactness of the target
component, i.e., based upon the converged values
of the variance parameters ¾dk and ¾rk. The issue of
detection will be studied in more detail in a future
publication.
Next, sample results are presented in which

tracking was performed over longer time intervals.
Here, a sliding window approach was used to
estimate tracks along extended, irregular, paths in the
range/Doppler space. Overlapping sets (“batches”) of
6 scan frames were used to compute each point along
the path. For example, the first point on the path was
computed by jointly processing 6 scan frames within
the time interval 0· tj · 1:25 s, the second point

on the path was computed by jointly processing 6
scan frames within the time interval 0:5· tj · 1:75 s,
etc. Fig. 5 shows results from tracking a smoothly
decelerating target. Four different scan frames are
shown corresponding to times of t= 0, 2.5, 6, and
12 s. Superimposed on the images is a dark line
which indicates the extended track computed using
the sliding window method over a 12 s interval.
Notice the close agreement between the location of
the target signatures and the computed track. Next,
Fig. 6 shows results from tracking a maneuvering
target. Here the target accelerates significantly over
the time observation interval, whereas previously
the target velocity changed relatively slowly. Each
scan frame in Fig. 6 corresponds to a different time
instance within a 15.5 s interval. Overlaid is a dark
line showing the track computed using the sliding
window method which, again, shows close agreement
between the location of the target signatures and the
computed track.
In the remainder of this section results are

presented for the full, multi-sensor, version of the
algorithm described in Section IV. Since experimental
multi-monostatic data were unavailable to us, the
results are based on sets of synthetic range/Doppler
scan frames of the type that would be produced from
UHF stretch radar data [33]. In these simulations,
emphasis was more on data association than on
detection performance. Therefore, the data were
generated with a relatively high signal-to-interference
ratio of approximately 8 dB, computed from the
peak value of the signature relative to an average
background value in the image frame. However,
the zero-Doppler ridge from stationary clutter was

602 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 45, NO. 2 APRIL 2009

Authorized licensed use limited to: AFRL. Downloaded on July 13, 2009 at 14:21 from IEEE Xplore.  Restrictions apply.



Fig. 6. Tracking over extended time interval for maneuvering target. Each scan frame corresponds to different time instance within
15.5 s interval. Overlaid is dark line showing track computed using our method.

Fig. 7. Geometry for multi-sensor simulation. Each arrow shows
direction of motion for corresponding target, and numbers in
parentheses are x (east) and y (north) components of velocity

(x0k ,y
0
k).

generated with roughly the same peak amplitude as
the peak amplitude of the target signatures. Therefore
this ridge overlaps and obscures the target signatures
having low Doppler, as illustrated in Fig. 8. The
synthetic data were generated by placing “blobs” of
energy at appropriate target and clutter locations at
each frame time without errors or biases, other that
those associated with the dimensions of the “blobs”
which are related to system resolution and target
spreading effects. While errors and biases may be
important in the ultimate application, we want to
illustrate by this example the native data association
performance of the proposed multi-sensor algorithm
with multiple targets and sensors.
Fig. 7 shows the geometry for the experiment.

There are 5 sensors and 4 targets, two of which

have constant velocity and two of which are turning
and accelerating. These four targets have x (east)
and y (north) components of their velocities given
by (x0k,y

0
k) = (0,¡4),(7,5), (3,2),(¡15,1) m/s, and

corresponding acceleration components proportional
to (x00k ,y

00
k ) = (¡0:4,1), (¡2,0),(0,0), (0,0) m/s2. Sensors

1—3 are spaced roughly 10 meters apart,2 while the
positions of sensors 4 and 5 are more widely spaced.
The spatial diversity is exploited to “triangulate”
accurate track estimates for the targets. The targets
were observed by all five sensors at 4 different times
separated by 0.25 s. During the 4 frames of data the
targets move a distance comparable to the sensor
range resolution. Thus, the algorithm was required
to jointly process a total of twenty scan frames in
order to estimate target tracks. Fig. 8 shows four of
these twenty scan frames, corresponding to sensors
1 and 5 at times t1 = 0 and t4 = 0:75 s. From this
figure it is apparent that the data association problem
is not trivial. For example, it is not obvious “by eye”
which signatures in the bottom-right plot of Fig. 8
correspond to which signatures in the top-left plot.
The model was constructed of 8 components, i.e.,

6 target components plus a uniform noise component,
plus a zero-Doppler clutter ridge component. We
assumed no prior knowledge about how many targets
were actually present, and therefore 2 more target
components were used than actual targets present.
The code seemed to converge most quickly by starting
off with 30 iterations using data only from sensors
1—3 (these sensors are relatively close together),

2Sensors 1—3 do not operate as an array since their data are
processed noncoherently.
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Fig. 8. Synthetic range/Doppler image data showing scan frames for sensor 1 (time = 0,0:75 s) and sensor 5 (time = 0,0:75 s). There
are 4 target signatures present. Note that signatures of lower velocity targets significantly overlap clutter ridge centered at zero Doppler.

Fig. 9. Model evolution for sensor 1, time = 0 data. Compare converged model (bottom-right plot here) to actual data
(top-left plot of Fig. 8).

followed by 80 additional iterations after adding the
data from sensors 4 and 5. Note that for each of these
iterations, the tracking parameters were adjusted using
50 gradient ascent steps, as discussed in Section V.
The evolution of the model is shown in Fig. 9

for the scan frame acquired by sensor 1 at t1 = 0 s.
The model is initially fuzzy and indistinct (top-left
plot), but after 30 or more iterations it converges to an
accurate approximation of the data, as can be seen
by comparing the bottom-right plot in Fig. 9 with
the top-left plot in Fig. 8. In Fig. 10 it is shown how
the parameter values evolve during the adaptation

of the model. Separate plots are given for the east
(x) components of time-zero velocity x0k, time-zero
position x0k , and acceleration x

00
k . Similar plots were

obtained for the y (north) components y0k, y
0
k , and y

00
k ,

but they are not shown here. In Fig. 10, a plot is also
given showing the evolution of the mixture weights
Ek for each of the target components (Ek of clutter
components are not shown).
As mentioned above, the first 30 iterations were

performed using data only from sensors 1—3 while
the remaining iterations were performed using all
data from sensors 1—5. There are curves in the
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Fig. 10. Evolution of parameter estimates with iterations. Notations c1, c2, etc., in legend refer to target components 1—6 used in
model. Although we only show plots for x (east) components of position, velocity, and acceleration, similar plots were obtained

for y (north) components.

plots of Fig. 10 for each of the 6 target components
labelled “c1—c6,” and these are compared with
the true parameter values (dashed lines). Recall,
there are only 4 targets actually present. From the
plots, it can be seen that components c1, c4, and c5,
converge asymptotically to the true target parameters.
In contrast, component c2 seems to drift around
without locking onto a target, and its corresponding
mixture weight parameter decreases toward zero
with increasing iterations. Based upon its dwindling
Ek value, component c2 could easily be pruned
from the model. The most interesting case involves
components c3 and c6, which seem to lock onto the
same target, as shown by the fact that their velocity,
position, and acceleration estimates converge together
in order to share a true target track. The mixture
weight parameter Ek plot (right-most plot) shows
that the weights for c3 and c6 roughly sum up to the
true mixture weight of 100. Presumably, it would be
straightforward to detect this condition in which two
components lock onto the same target. Then one of
the two could simply be pruned from the model if
necessary. It is an open question how the model would
adapt for cases in which the true number of targets
exceeds the number of model components. Strategies
for handling this so-called “model selection” problem
for general mixture models are described in [34], [35],
[36] and the references therein.

VII. CONCLUSIONS

In this paper we describe a mathematical algorithm
for robust multi-target tracking from multiple radar

platforms, for difficult cases in which measurements
of azimuth are unavailable. A simplified version of the
algorithm is also presented which is appropriate for
tracking from a single radar platform.
The single-sensor version of the algorithm is tested

on experimental data. These results show the approach
to be very promising, and robust in the presence of
significant, inhomogeneous, background clutter. The
full, multi-sensor, algorithm is tested on synthetic
data. These results demonstrate that accurate tracks
can be estimated by exploiting spatial diversity in the
sensor locations. Furthermore, the algorithm appears
to be robust in the presence of significant clutter, and
uncertain knowledge regarding the number of targets
present.
It should be emphasized that while the initial

results are promising, they are only preliminary.
Significant issues require further study in order to
make the algorithm practical. For example, it is well
known that EM can converge to local maxima in the
optimization criterion, and therefore initialization
will likely affect the converged solution. We still
need to determine how often these “traps” will occur,
under which conditions they can cause the algorithm
to fail, and how we can initialize the algorithm to
prevent them. Also, since the true number of targets
is seldom known a priori, more work is needed to
develop strategies for choosing the number of target
components, pruning unneeded components, and
adding components when necessary. Furthermore,
automatic detection strategies and performance will
need to be studied to judge our ability to distinguish
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targets from nonhomogeneous clutter. Finally, more
study is required to determine the robustness of the
algorithm in the presence of sensor platform errors
and vibrations.

APPENDIX A. DERIVATION OF PARAMETER
ESTIMATION EQUATIONS

Here the equations are derived which are satisfied
by the parameters maximizing LL subject to a
constraint. The general procedure is first developed,
valid for an arbitrary mixture model. These results
are then used to derive the particular equations
corresponding to the tracking model. Good references
for the general procedure described here are
Perlovsky’s book [22], and the seminal work by Duda
and Hart [32]. The notation we use is very similar to
[32].
First, consider maximizing LL using a general

mixture model. One might seek to maximize LL
directly, by finding values for the set of parameters
£k for which all partial derivatives @LL=@£k are zero.
Using the expression for LL from (11),

@LL

@£k
=
X
j,m,n

p0(wjmn)
@

@£k

"
ln
X
k0
Ek0mpk0 (wjmn j£k0 )

#

=
X
j,m,n

·
p0(wjmn)P

k0 Ek0mpk0 (wjmn j£k0 )

¸
@

@£k
[Ekmpk(wjmn j£k)]

=
X
j,m,n

p0(wjmn)

·
Ekmpk(wjmn j£k)P
k0 Ek0mpk0 (wjmn j£k0 )

¸

£
@

@£k
[Ekmpk(wjmn j£k)]
Ekmpk(wjmn j£k)

=
X
j,m,n

p0(wjmn)P(k j jmn)
@

@£k
ln[Ekmpk(wjmn j£k)]:

(27)
Here, we made use of the well-known identity
@ lny(x)=@x= [1=y(x)]@y(x)=@x, and the definition of

P(k j jmn) = Ekmpk(wjmn j£k)P
k0 Ek0mpk0(wjmn j£k0)

: (28)

Using (27), the set of parameters £k that maximize LL
will satisfy

@LL

@£k
=
X
j,m,n

p0(wjmn)P(k j jmn)
@

@£k
lnpk(wjmn j£k) = 0,

k = 1,2, : : : ,K: (29)

The maximization of LL must also be performed
with respect to the mixture weights Ekm. However it is
now necessary to incorporate the constraint from (10)
using the method of Lagrange multipliers. Thus we

seek to minimize the Lagrangian

F =¡LL+¸
ÃX

k0
Ek0m¡

X
n

p0(wjmn)

!
(30)

with respect to Ekm, where ¸ is the Lagrange
multiplier. Setting the partial derivative of F to zero,
i.e.,

@F

@Ekm
=¡ @LL

@Ekm
+¸= 0 (31)

the following value for ¸ is obtained

¸=
@LL

@Ekm
: (32)

An expression for @LL=@Ekm is now needed, and its
derivation is similar to (27). We obtain

@LL

@Ekm
=
X
j,n

p0(wjmn)P(k j jmn)
@

@Ekm
ln[Ekmpk(wjmn j£k)]

=
1
Ekm

X
j,n

p0(wjmn)P(k j jmn):

Combining this with (32),

¸Ekm =
JX
j=1

NX
n=1

p0(wjmn)P(k j jmn): (33)

Next we perform the summation over k on both sides
of (33), then use (10) and (16) to simplify. This
results in the solution for the Lagrange multiplier
¸= J , where J is the number of scan frames (time
indices) from each sensor used in the estimation.
Substituting this value back into (33), we obtain

Ekm =
1
J

X
j,n

p0(wjmn)P(k j jmn): (34)

Equation (34) is satisfied by the set of mixture
weights Ekm that maximize LL, subject to the
constraint in (10).
A set of equations has now been derived governing

the complete set of model parameters £ = fEkm,£kg,
for k = 1,2, : : : ,K and m= 1,2, : : : ,M. Equation (29)
governs the parameters £k, while (34) governs the
mixture weights Ekm. Unfortunately, solving for
the parameters directly from these equations can be
problematic. The difficulty arises because P(k j jmn) is
a function of all of the unknown parameters fEkm,£kg
(see (28)). Thus, if there are Q unknown parameters,
it would be required to solve a coupled set of Q
nonlinear equations. However, the problem is not
hopeless, and the maximum of LL can be reached
in an iterative fashion, alternating between updating
P(k j jmn), then updating the set of parameters
fEkm,£kg. We use the notation P(I)(k j jmn) and
fE(I)km,£(I)k g to indicate the values of these quantities
at the Ith iteration. Then, the explicit update formula
for P(I)(k j jmn) is given by (15), while the parameters
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are updated in order to satisfy modified versions of
(29) and (34), i.e.,

E(I+1)km =
1
J

X
j,n

p0(wjmn)P
(I)(k j jmn) (35)

andX
j,m,n

p0(wjmn)P
(I)(k j jmn)

·
@

@£k
lnpk(wjmn j£k)

¸
£k=£

(I+1)
k

= 0:

(36)

This iterative procedure is guaranteed to converge to
a local maximum of LL, as shown in Appendix B. It
will be of later use to note thatX

k

E(I)km =
X
n

p0(wjmn) (37)

for all iterations I. This follows from (35) by using
the fact that

P
k P

(I)(k j jmn) = 1, as can be shown
from (15).
The update formula in (35) for the mixture weight

parameter is a simple, closed-form expression. The
precise form of the update equation for £k depends
upon the particular model pk(wjmn j£k) that gets
plugged into (36). In some cases, this leads to
closed-form expressions, for example when estimating
the covariance and mean parameters of Gaussian
mixtures. Also, in this paper closed-form equations
are obtained when estimating ¾2dk using (13) or when
estimating the single-sensor range-only tracking
parameters using (25). However, sometimes the model
is specified such that a closed-form expression is
not possible, for example when estimating the track
parameters using multi-sensor data, as described at the
end of Section IV. In this case, as an alternative to the
closed-form update formula of (36), the parameters £k
can be updated by moving along the uphill gradient of
LL, i.e.,

£(I+1)k =£(I)k + h ¢
·
@LL

@£k

¸
£k=£

(I)
k

=£(I)k + h ¢
X
j,m,n

p0(wjmn)P
(I)(k j jmn)

£
·
@

@£k
lnpk(wjmn j£k)

¸
£k=£

(I)
k

: (38)

Here h is the stepsize which can be chosen, for
example, by trial and error. Note that the procedure
described by (38) is not pure gradient ascent, since
this step is alternated with updating P(I)(k j jmn) via
(15) and E(I)km using (35). In fact, this procedure is a
special case of GEM [11]. Note that in some cases
the set of parameters £k may be split, with some
members being updated using gradient ascent (38)
and some being updated using a closed-form equation
(36).

The general procedure, developed above, is valid
for an arbitrary mixture model. These results are
now used to derive the specific parameter estimation
equations for the tracking application considered in
this paper.
Variance Parameters: The recursive update

formula is now derived for the variance parameter ¾2dk.
In order to use the update formula given by (36), it
is necessary to compute an explicit formula for the
factor within the square brackets, by substituting the
specific model pk(wjmn j£k) used for the tracking
application. Both the target model of (5) and
the clutter model of (7) give the following result
(neglecting irrelevant terms):

@

@(1=¾2dk)
lnpk(wjmn j£k)

=
@

@(1=¾2dk)

·
1
2
ln(1=¾2dk)¡

1
2
(1=¾2dk)(djnm¡Djkm)2

¸
=
1
2
¾2dk ¡

1
2
(djnm¡Djkm)2:

Note, it is actually more convenient to work with the
inverse variance 1=¾2dk rather than the variance itself,
as shown in the above equation. Substituting this
expression into (36) leads to the update formula for
the variance parameter described by (13). The update
formula in (14) for the range variance ¾2rk is derived in
a similar fashion.
Track Parameters, Multi-Sensor Case: Due

to the model complexity, a closed-form update
formula cannot be derived for the tracking parameters
in the multi-sensor scenario. However, a GEM
update formula can be derived, starting with (38),
and computing the factor in square brackets by
inserting the track model given by (5). Using sk as a
generic placeholder for any of the track parameters
fx0k ,x0k,x00k ,y0k ,y0k,y00k g, we compute (neglecting irrelevant
terms)

@

@sk
lnpk(wjmn j£k)

=
@

@sk

·
¡ 1
2¾2rk

(rjnm¡Rjkm)2¡
1
2¾2dk

(djnm¡Djkm)2
¸

=

μ
rjnm¡Rjkm

¾2rk

¶μ
@Rjkm
@sk

¶
+

μ
djnm¡Djkm

¾2dk

¶μ
@Djkm
@sk

¶
:

Inserting this expression into (38), the parameter
update formula described by (21) and (22) is obtained.
Track Parameters, Single Sensor Case: The

problem of range-only tracking using a single sensor
is discussed in Section V. The goal is to find values
for the track parameters fR0k ,R0k,R00kg, for each target
component k = 1,2,3, : : : , (K ¡ 2), which maximize
LL. In this case the target model given by (5) is still
valid. However the equations relating fR0k ,R0k,R00kg
to the quantities Rjkm and Djkm are now given by
(23) and (24), respectively. Although there is only a
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single sensor m= 1, the m subscript is maintained in
the quantities Rjkm and Djkm for consistency with the
expression for the target model in (5).
The update formulas for fR0k ,R0k,R00kg, are derived

by starting with the general formula of (36), and
substituting an explicit formula for the factor in
square brackets, which is computed using the target
model pk(wjmn j£k) in (5). Using sk as a generic
placeholder for any of the parameters fR0k ,R0k,R00kg, the
square-bracketed factor in (36) is

@

@sk
lnpk(wjmn j£k) =

@

@sk

·
¡1
2
(1=¾2rk)(rjnm¡Rjkm)2

¡1
2
(1=¾2dk)(djnm¡Djkm)2

¸
=
μ
rjnm¡Rjkm

¾2rk

¶μ
@Rjkm
@sk

¶
+
μ
djnm¡Djkm

¾2dk

¶μ
@Djkm
@sk

¶
:

Substituting this expression into (36), the parameter
update formula¿·μ

rjnm¡Rjkm
¾2rk

¶μ
@Rjkm
@sk

¶

+
μ
djnm¡Djkm

¾2dk

¶μ
@Djkm
@sk

¶¸
sk=s

(I+1)
k

+(I)
= 0

(39)

is obtained where, for compactness, we have used
the bracket notation h¤i(I) defined in (17). Note that
(23) and (24) are used to express Rjkm and Djkm and
their derivatives with respect to sk = fR0k ,R0k,R00kg so,
for example, @Rjkm=@R

0
k = 1 and @Rjkm=@R

0
k = tj . For

each target component k, (39) is used to produce
three different equations for the three track parameters
sk = fR0k ,R0k,R00kg. First, substituting sk = R0k into (39),
we obtain

(R0k )
(I+1)h1i(I) + (R0k)(I+1)htji(I) + (R00k )(I+1)ht2j i(I) = hrjnmi(I):

(40)
Here, for example, (R0k )

(I+1) denotes the updated
estimate for R0k computed at the (I+1)th iteration.
Note that (40) is linear with respect to the three
parameters R0k , R

0
k, and R

00
k . By substituting sk = R

0
k,

then sk = R
00
k , into (39) we obtain two additional

equations which are also linear with respect to R0k ,
R0k, and R

00
k . Thus there are three equations that are

linear with respect to three unknowns which, together,
can be expressed using matrix notation as shown
in (25) given in Section V. Note there is a separate
3£ 3 set of equations for each target component
k = 1,2, : : : , (K ¡ 2). In each iteration the tracking
parameters are updated by inverting these matrix
equations.

APPENDIX B. CONVERGENCE PROOF

This convergence proof generally follows the one
given in [22, ch. 5.6.3], although here we provide
some details that were left out in the reference. The
proof is valid for the general mixture model, and is
not restricted to the tracking model used in this paper.
In order to show convergence to a local maximum

of LL, we show that LL never decreases from one
iteration to the next, i.e., LL(£(I+1))¡LL(£(I))¸ 0,
where LL(£(I) is the log-likelihood computed in the
Ith iteration. From (11),

LL(£(I+1))¡LL(£(I))

=
X
j,m,n

p0(wjmn)[lnp(wjmn j£(I+1))¡ lnp(wjmn j£(I))]:

(41)

It is easy to see from (15) that
P
k P

(I)(k j jmn) = 1,
and therefore we can insert this unity factor into the
above expression, i.e.,

LL(£(I+1))¡LL(£(I))
=
X
j,m,n

p0(wjmn)
X
k

P(I)(k j jmn)

£ [lnp(wjmn j£(I+1))¡ lnp(wjmn j£(I))]:
(42)

We can further expand the expression by noting

lnp(wjmn j£(I)) = ln(E(I)kmpk(wjmn j£(I)k ))¡ lnP(I)(k j jmn)

as can be seen from the definition of P(I)(k j jmn) in
(15). Using this fact, and rearranging terms, we can
obtain

LL(£(I+1))¡LL(£(I))

=
X
j,m,n

p0(wjmn)
X
k

P(I)(k j jmn) ln
·
P(I)(k j jmn)
P(I+1)(k j jmn)

¸
+
X
j,k,m,n

p0(wjmn)P
(I)(k j jmn) ln(E(I+1)km pk(wjmn j£(I+1)k ))

¡
X
j,k,m,n

p0(wjmn)P
(I)(k j jmn) ln(E(I)kmpk(wjmn j£(I)k )):

(43)

Since
P
k P

(I)(k j jmn) = 1 and P(I)(k j jmn)¸ 0
for all iterations I, the log-sum inequality [41] or
Jensen’s inequality can be used to prove the first term
on the right-hand side of (43) is ¸ 0. Thus, in order
to show convergence we need to show the sum of
the second and third terms is ¸ 0, which can be done
by analyzing the rules governing the updates of the
parameters fEkm,£kg. The rule governing the update
of the weights Ekm is given by (35), which can be
rewritten asX

j,n

p0(wjmn)P
(I)(k j jmn) 1

E(I+1)km

¡ J = 0: (44)
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Then, since

1

E(I+1)km

=
·
@

@Ekm
ln(Ekmpk(wjmn j£k))

¸
Ekm=E

(I+1)
km

therefore (44) can be rewritten as324 @

@Ekm

8<:X
j,m0,n

p0(wjm0n)P
(I)(k j jm0n)

£ ln(Ekm0pk(wjm0n j£k))¡ JEkm

9=;
35
Ekm=E

(I+1)
km

= 0:

(45)

The rule governing the update of £k is given by (36),
which can be rewritten as24 @

@£k

8<:X
j,m0,n

p0(wjm0n)P
(I)(k j jm0n)

£ ln(Ekm0pk(wjm0n j£k))¡ JEkm

9=;
35
£k=£

(I+1)
k

= 0:

(46)
Observe that (45) and (46) contain the same
expression within the curly brackets, which is a
function of Ekm and £k for indices k = 1,2, : : : ,K
and m= 1,2, : : : ,M. Furthermore, (45) and (46)
imply the function within curly brackets has an
extremum at the point (Ekm = E

(I+1)
km ,£k =£

(I+1)
k ).

By computing the second derivatives of the curly
bracketed function with respect to Ekm and £k (not
shown here), it is straightforward to show that the
point (Ekm = E

(I+1)
km ,£k =£

(I+1)
k ) represents a global

maximum, given the Gaussian components used in
our model, and given that P(I) has been fixed using
parameter values from the previous iteration. Thus,24X

j,m0,n

p0(wjm0n)P
(I)(k j jm0n)

£ ln(E(I+1)km0 pk(wjm0n j£(I+1)k ))¡ JE(I+1)km

35
¸
24X
j,m0,n

p0(wjm0n)P
(I)(k j jm0n)

£ ln(E(I)km0pk(wjm0n j£(I)k ))¡ JE(I)km

35 :
(47)

3It is important to recall that P(I)(k j jmn) is fixed using the
parameter values E(I)

km
and £(I)

k
which were computed in the

previous Ith iteration (refer to (15)). Therefore P(I)(k j jmn) is not
a function of the variables Ekm and £k which we seek to optimize
in iteration I+1.

It should be noted that if GEM is used to update £k
according to (38), then the inequality in (47) is still
true (given a small enough stepsize) since (38) implies
gradient ascent of the function in curly brackets of
(46). Equation (47) can be modified by summing both
sides over k, using (37) to simplify, then cancelling
terms. The result isX

j,k,m,n

p0(wjmn)P
(I)(k j jmn) ln(E(I+1)km pk(wjmn j£(I+1)k ))

¸
X
j,k,m,n

p0(wjmn)P
(I)(k j jmn) ln(E(I)kmpk(wjmn j£(I)k )):

Thus, the sum of the second and third terms on
the right-hand side of (43) is ¸ 0, which means
LL(£(I+1))¡LL(£(I))¸ 0. This implies convergence
to a local maximum of LL.
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