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Abstract 

A new numerical method, "Wave Confinement" (WC), is developed to efficiently solve the linear 
wave equation. This is similar to the originally developed "Vorticity Confinement" method for 
fluid mechanics problems. It involves modification of the discrete wave equation by adding an 
extra nonlinear term that can accurately propagate the pulses for long distances without numerical 
dispersion/diffusion. These pulses are propagated as stable codimension-one surfaces and do not 
suffer phase shift or amplitude exchange in spite of nonlinearity. The pulses remain thin unlike 
conventional higher order numerical schemes, which only converge as N (number of grid cells 
across the pulse) becomes large. The additional term does not interfere with conservation of the 
important integral quantities such as total amplitude, centroid. Also, properties like varying index 
of refraction, diffraction, multiple reflections are included and tested. 

The generated short pulses can be best described as solitary waves, which can recover the shape 
after a collision due to nondestructive interaction between the pulses. Within the pulse, the 
dissipative effects due to the numerical errors are balanced with those of nonlinearity and the 
pulse will its their original form and speed even after many collisions. The pulse is also used as a 
carrier wave to propagate other properties such as direction. Wave equation solutions in the high 
frequency approximation can be generated using the carrier wave approach. WC, together with 
Keller's Approximation is then used to capture diffraction effects from a straight edge. 

Scattering over complex bodies can be modeled with no use of complicated adaptive grid 
generation schemes around the bodies. The confinement term smoothens the boundary and 
prevents stair casing effects but the boundary remains thin. Validation studies have been 
performed for a number of real flow models and compared to the exact solutions. It is observed 
that the solutions match quite well with the exact solution. 

1.   INTRODUCTION 

The main objective of this dissertation is to develop a new and efficient algorithm to accurately 
solve the linear wave equation. The idea comes from an already existing method "Vorticity 
Confinement" (VC), which was developed for a vast range of fluid dynamics problems [lj. 
Hence, the new method "Wave Confinement" (WC) is named after the existing approximation 
(VC). The linear wave equation can describe different classes of wave phenomena. Such classes 
include acoustics, electro-magnetics, microwave theory, etc. This dissertation focuses on scalar 
wave propagation over long distances. Effects to be accommodated include variation of the index 
of refraction, multiple scattering from complex surfaces, and some cases of diffraction. 

2.   APPROACH 

2.1 Introduction 

Let us consider a scalar field,  </>, which satisfies the one sided wave equation (advection 
equation) advecting with constant speed c: 



84      34    n -Z- + c— = 0 2.1 
dt       dx 

Evidently, if the above equation is numerically solved using a conventional, discrete finite 
difference scheme, it tends to develop discretization errors. The conventional Eulerian schemes 
[8] suffer dissipation no matter what the order is. Many higher order schemes have been proposed 
to reduce the numerical diffusion/dispersion, but they only reduce the error if the number of grid 
points across the pulse, N is relatively large. As the present work involves treating thin pulses - 
2-3 grid cells in size, the method is not necessarily going to be more accurate with increasing 
order. To keep the pulse confined on the discrete domain, numerical dissipation/dispersion must 
be counter-acted by adding a new term to the advection equation that will not interfere with the 
essential properties of the pulse. This term is called the "Confinement" term and hence the 
method is named "Wave Confinement" (WC). Ideas of adding extra terms to prevent numerical 
dissipation were previously proposed by Harten [9] to capture ID contact discontinuities in 
compressible flows. The discretized form can only conserve a limited number of physical 
quantities of the pulse corresponding to the limited number of grid nodes across the pulse. Here, 
these are taken to include total amplitude at each grid point and the centroid speed. The modified 
form of equation (2.1) with the confinement term is then 

54 64     _ 
-T- = -c-r- + E 2.2 
dt dx 

where, E = -^-j-. The idea is that the second order form of Facts as a "pulse shaping" term and, 
82F 

dx2 

as long as F -* 0 as |JC| -> <=°, the quantities of interest are conserved. A simple form of F can be 
taken as 

F^ti'i-e'Q, 2.3 

where // , s'. Here, constants and O is the harmonic mean given as 

*(*) = • III 2.4 • + + 
4{x-h)    A{x)    6(x + h) 

where h is the distance between two points, which tends to zero in the continuous limit. The 
confinement term is chosen such that it acts as an "expansion" or positive diffusion for shorter 
wavelengths and a "contraction" or negative diffusion for longer wavelengths. Also, the method 
must have a nonlinear term, otherwise some modes will decouple and diverge. The nonlinear term 
prevents the amplitude to escape to long wavelengths and can keep the pulse confined to a few 
grid cells. 

2.2 WC as a Nonlinear Partial Differential Equation 



To better understand the properties of the WC method, the harmonic mean, Q>, given in equation 
(2.4) is approximated as a partial differential equation. The Taylor expansions for f(x + h) and 

$(x - h) to second order are 

2.5 

where #' = dx(j), $" = d]f. By substituting the Taylor expansions into equation (2.4), and 

neglecting the higher order terms, the nonlinear term, <t>, is then approximated as 

2A2/V21 
3  I  i J 

,2j» AM 
+ A4   ^r + 

2,.\ #'V 
V3      3^2 J 

2.6 

where A —» 0 in continuous limit and terms of the order h can be neglected. Using equation 
(2.6), equation (2.2) becomes 

dj = -cdxt + d] '-at-Adxt + 2A&$- 2.7 

e'h2 

where a = £' - n', X = . All the parameters, ft', e', a, and X, are chosen to be positive. 

When <f> = 0, the above equation fails but, it is important to note that the discretized form of 
equation (2.7) used for computations is given in equation (2.17). The harmonic mean in equation 
(2.21) is still finite for <f> = 0 . 

Equation (2.7) describes the conservation of the following integral quantities: 
total amplitude, 

and centroid speed, 

AT=l^dx, 

di _ \*cdx 

di       AT 

2.8 

2.9 

where x is the centroid, given by 

\x<fidx 
2.10 



It is important to note that all the terms in equation (2.7) are homogenous of degree one unlike 
many non-linear equations, which use non-homogenous terms for the nonlinear term [10]. Thus, 
the confinement does not depend on the scale of the quantity to be convected (which is, of course, 
a property of the original linear equation (2.1)). Defining the confinement term in the equation 
(2.7) as the sum of three terms gives, 

£ = £„+£,+£,, 2.11 

where £0 = -ad\</>, £, = -Ad'j, and E2 = 2A3 . It is interesting that the role of the 

second order term (£0) in equation (2.11) is different from typical nonlinear pde's studied, such 
as KdV, that harbor solitary waves: In these, the linear second order term is the "expansion" term, 
and the "contraction", or "steepener" term is the nonlinear Burgers-like convection: (dr#

212). 

In WC, the linear second order term, E0, contracts the pulse and the nonlinear term, £2, 

prevents {^ from changing sign and transfers amplitude from long wavelength to short, and the 

fourth order term, £,, acts as a diffusion for short wavelengths and prevents the solution from 
diverging. The amplitude imparted to the field by the WC terms remains confined and propagated 
as stable wave packets without dispersion/diffusion. The appearance of <f> in the denominator of 
equation (2.7) makes E2 diverge as ^ —»0. This prevents </> from changing sign. Since the total 
amplitude, AT, is conserved, the integral of <f> over any finite region cannot then diverge. In the 
discretized version defined in Section 2.3, none of the grid values can diverge in appropriate 
ranges of a and X. This ensures readability if <f> is a physical quantity. Smolarkiewicz [II] 
also has rearranged the discretized convection equation so that there is such a term in the 
denominator for this reason. 

By rearranging the terms, equation (2.7) may be expressed as 

dj = -cdj + 3'/-L(-a^ + ^ >)j. 2.12 

where y/ = l/f>. In the convecting frame, £ = x - cf, the above pde simply reduces to the heat 
equation, 

d,t = d]F 2.13 

1 
where F = —- (- a\y + Xd^iy). At convergence, F -> 0, and therefore reduces to 

- ay/ + Ad2
(i// = 0. 2.14 



It can be seen that the above equation is similar to the simplest form of Sturm-Liouville 

eigenvalue equation with fi = y]a/A. The solution to the equation (2.14) will then be of the 

form, 

y/ = Cl{e* +e'*). 2.15 

Then the solution for j is 

# = /bech[/?(£)], 2.16 

where C,, C, and A are arbitrary constants. 

2.3 Discretization 

Using first order upwind in time and second order centered in space, the discretized form of 
equation (2.2) is written as 

C'M;-^;W;-,)+<W 2.17 

where 62F}' = F"+l -2F" + fjl,, v = — , A/ is the time step and h is the grid cell size. Even 

on the discrete domain, the confinement term, F, conserves the essential quantities such as total 
amplitude, 

J 
Ar=^j= const, 2.18 

and centroid speed, 

J 

2.19 

AT 

where J is the total number of grid points. The confinement term F is defined as 

Fj-ftf-gtVj, 2.20 

where n = -75-, £ = -7T-, // is a diffusion coefficient and e' is the confinement coefficient. 
M'At e^t 

h2   'E~ h2 

e' along with /i', control the width and rate of convergence of the pulse, and 0 is the nonlinear 
harmonic mean of N (IncludingN-l neighboring nodes) grid points. For ID, N =3, and, 



&.= 
!>;-/)- 

2.21 

Equation (2.17) would simply reduce to the Euler explicit form, which is unconditionally unstable 
when £ = 0 and fi = 0. The two (positive) parameters, £ and fx, are determined by the 

requirements for convergence, such that the small features relax to their solitary wave shape in a 
small number of time steps and can have an effective support (to have a significant magnitude) of 
a small number of grid cells. In the semi-discrete limit, the scalar field <f> relaxes to a definite 

shape as derived in Section 2.3.1. In the moving frame (v = 0), equation (2.17) reduces to a 
discrete heat equation, 

#*•"*;+w 2.22 

that simulates the stationary pulse. At convergence, the positive and negative artificial dissipation 
terms are balanced with the nonlinearity to produce stable pulses that can stay confined and 
structurally stable to numerical perturbations (caused, for example, by the discrete convection 
term or another wave passing through). 

2.3.1 Convergence 

At convergence, SJF -> 0, F-*0 and (//^-£O)->0. If N = 3 in the harmonic mean, the 

equation for F at a point is 

1 

SJ- 

1 
— + -*«0. 2.23 

Solutions to equation (2.23) that satisfy the boundary conditions: F -» 0, |y) -> oo are of the 

form, 

#->Asech[y(J-j0)], 2.24 

where j0 is the approximate position of the centroid. Here, y is a pulse width coefficient and is 

determined by substituting equation (2.24) into (2.23): 

'KH coshf = 

Furthermore, the above equation can be reduced to a quadratic form in er, 

2.25 



>»<H' + 1 = 0, 2.26 

for which the solution is 

e' =• 
6±Vi2-4 

2.27 

or 

3« 

y = ln 'b±Jb2-4) 
2.28 

. The solution is real if 62 — 4 > 0 and this requires that ej^ £ 1. If s = 0, where £ = 1 
KM      J 

F acts as a positive diffusion for all wavelengths and the solution decays. When // = 0, the 

solution becomes unstable even if E = 0. So, a minimal amount of diffusion is essential for the 
stability purpose. If Ji £ £, F acts as negative diffusion for longer wavelengths so that the 

features remain confined and stable to perturbations against spreading. 

2.4 Results 

For the evaluation of the scheme and to demonstrate the efficient properties of the WC method, a 
number of tests are performed and presented. To show convergence, a single point pulse of 
arbitrary amplitude chosen to be 2, 

'    [0,   j*Jo\ 
2.29 

with parameters f = 0, £ = 0.3, // = 0.2 and _/0 =128 is simulated on a grid of 256 points 
using periodic boundary conditions. The discretized equation used for this computation is 

*r=*;+/?;.-2/p;+/?y- 2.30 

When the solution reaches convergence, the pulse is relaxed to a hyperbolic secant given by 
equation (2.24). In Figure 2.1, the solid line is the algebraically calculated hyperbolic secant with 
width given by equation (2.28), and the points are computed using equation (2.30). For better 
comparison, the normalized function, <f>/A is plotted against the hyperbolic secant. It can be 

clearly seen that the solution matches quite well with the analytically calculated hyperbolic 
secant. When discretized form of equation (2.1) is solved using a higher order method, the 
solution quickly spreads to a large number of grid points. It can be seen in Figure 2.2 that the 



solution from a higher order method spreads by large amount after only 100 times steps, but the 
confinement method keeps the pulse compact. 

3.   FORMULATION 

As in convection, a nonlinear term, E is added to the one dimensional full wave equation. The 
wave equation with confinement terms, that control the shape of the pulse, is 

d1,<f> = c1d\<f> + E 3.1 

where E = 8,d]F. A simple discretization for the above pde will be 

*;•' = 2<>; - *;-' + v'S)*+S;S]F 3.2 

cAt 
where 8~f = f- /""', 5)fj = fH - 2f} + /}_,, v = —- , At is the time step and h  is the 

n 
grid cell size, and F is defined as in the advection case. 

FJ-fit-OV, 3.3 

u'M s'At 

solution to the equation (3.2) is 

where // = -jy-, £ = —— • At convergence (when the propagating pulse shape converges), the 

<p -> A{ sech{y{j-j0+vn)) + A2 sech(y(j-j0 -vnj) 3.4 

where A, and A2 are arbitrary constants, j0 is the initial position of the centroid and the pulse 

width coefficient, /, is defined as in equation (2.28). Equation (3.4) describes two pulses moving 

forward and backward. It is shown in Section 2 that the addition of WC terms in the form of 
second derivatives of a function that has short range do not change the propagation speed or the 
total amplitude. The same is true for the wave equation, if an additional time derivative is applied. 
The main constraint on the confinement term, F, as in advection is that it forces an initial isolated, 
propagating short range pulse with single maxima to remain short range and also not develop any 
additional maxima. An important property of the wave equation is that it is linear. Therefore, 
properties of the computed solution should not depend on the amplitude. The behavior of solution 
computed using equation (3.1) is shown in Figure 3.1. When // = 0 and £- = 0, the solution 

becomes unstable. A little amount of diffusion (fj = 0.2) will prevent the unstable behavior but 

the solution suffers large amount of spreading. Now, when the confinement term (c -- 0.3 ) is 
added, the pulse becomes stable and at the same time, remains thin. The dissipative/dispersive 
effects are balanced with those of the nonlinearity to produce stable localized structures [13]. 

3.2 Results 



In this section, numerical examples are provided to confirm that no discretization errors are 
developed in the quantities of interest and that there is no significant spreading of the pulses 
during propagation. The formulation given by equation (3.4) is used for the numerical 
experiments. While analyzing the formal accuracy of the present scheme, a theoretical error 
estimate is beyond the scope, because the equation is nonlinear. However, evaluation of 
numerical error is done experimentally, and demonstrated that the scheme possesses the 
convergence that was discussed in the previous chapter. 

3.2.1 Long-time propagation 

To begin with, the propagation of pulses for long distances is observed. This is the idealization of 
waves without dissipation. Convergence analysis is illustrated by examining the behavior of a 
delta function as an initial pulse. Let the initial pulse be 

M* J*h\ 
atn = Oandn = l 3.5 

where j0 = 128 and the computation is done on 256 grid points. The pulse from WC is compared 

to the solution from a conventional higher order method and is shown in Figure 3.2. The two 
pulses in the plot are the forward and backward propagating scalar functions. It is obvious that 
WC preserves the thickness and total amplitude of the pulse with no significant numerical 
dissipation. Higher order methods do not help because increasing the order of the numerical 
scheme is only efficient when there are a large number of points across the propagating function. 

3.2.2 Wave Interaction 

Before moving to higher dimensions, the pulse interaction phenomenon is discussed to 
understand the performance of WC during multiple collisions of pulses. To represent interacting 
wave equation solutions, when pulses pass through each other, there must be no amplitude 
exchange or phase shift. Otherwise, the actual wave equation being studied could not be 
accurately simulated, since it is linear. However, a nonlinear term is required in the WC equation 
in order to create a solitary wave representation of the pulse, which will be non-diffusing when 
discretized. Interaction between soliton-like pulses is an important property, which has been 
studied for a long time using nonlinear equations [14]. It is more appropriate to only re-introduce 
the nonlinear pde for WC, which was derived in Section 2, to establish a relation to other existing 
nonlinear pde's. The nonlinear pde for WC is 

9,^ = 5 
( fa ^a\ 

3.7 

The above equation has a similarity to the Cahn-Hilliard (CH) equation, which describes the 
process of phase separation, by which the two components of a binary fluid spontaneously 
separate and form domains pure in each component. A simple form of the CH equation is 

d^ = d]{-a^-a2d
2J + a}^) 3.8 



where a,, a,, a, are arbitrary, positive constants. The commonality includes the same linear 
terms and the appearance of a Laplacian in front of the non-linear term. This commonality is not 
surprising since the CH equation was one of the leading models proposed for a phenomenological 
description for a fluid interface and phase separation (decomposition into pure phases) [15]. The 
CH equation describes the evolution of concentrated fields (like thin pulses evolved from WC). 
Though the equations are similar, the resulting non-linear term is not exactly the same as in the 
commonly used form of the CH equation. 

An important point is that other nonlinear pde's like Kdv, which can successfully propagate 
localized structures, suffer phase shift after collision [16]. This is not present in WC. For the new 
formulation used, this interaction effect vanishes. This vanishing is due to the fact that both the 
Laplacian and the time derivative operator operate on the nonlinear term. 

The preservation of centroid speed during interaction is shown in Figure 3.3 for an initial 
condition given by equation (3.5). The centroid positions of forward and backward propagating 
pulses are plotted. Periodic boundary conditions are used for this simulation over a grid of 256 
grid points. It can be noticed that even after many collisions, no jump in the centroid position is 
noticed after interaction. The importance of preserving the right speed plays a dominant role in 
generating constant phase surfaces, which will be discussed in Section 5. The same is true for 
preservation of total amplitude. In Figure 3.4, it can be seen that two pulses of different 
amplitudes are effectively transparent (after a short relaxation time) to one another and do not 
lose their amplitudes during collisions. For this computation, the initial conditions used are, 

2, j-j„ 

0.   y*y0|andy>y02 

The two initial pulses are first relaxed to hyperbolic secants of respective amplitudes using heat 
equation (c=0). So, the two initial conditions of the two pulses are then 

[^sec^y-^J + ^sec/^y'-^)], « = 0 

[/f,sec/i[r(y-y01-»')]+^2sec/i[r(7-yaj+V')])      n = \ 
3.10 

where A2 = —-, J0] = 128 and j01 = 140. The pulses are then propagated towards each other to 

observe the interaction between the pulses. 

3.3 WC for higher dimensions 

3.3.1 2D 

In higher dimensions, WC behaves the same way as in ID. The essential physics is accurately 
preserved as analyzed in Section 2. The discretized equation in 2D is 

<C = W, - <;* + "2vV + s; (V'F ) 3.11 



where i is the grid index in x-direction, j is the grid index in y-direction and V2 is the 2D 
extension of the discrete Laplacian used in ID . For convenience the aspect ratio of the grid is 1. 
However, behavior of WC with different aspect ratios is studied in Section 4. The nonlinear 

factor, <X>"j , in the confinement term F is 

ct>"  = tej"1+(</*.r+(<>r 
N 

3.12 

where the number of terms in the sum, N = 5. Here, it is assumed that #"y > 0. Negative values 

can also be accommodated with a small extension. Both /u and s are positive. Assuming 

convergence as n —> °o (for v = 0), 

for which the solution at convergence is 

tIJ=Astx:K[y(rIJ-r0)] 

where 

r,j =x,cos# + j', sintf 

3.13 

3.14 

3.15 

A, z„, 9 are constants, JC, =ih, yt = jh, h is the grid cell size, and y is the inverse pulse 

width. The solution converges to a straight pulse (in 2-D) concentrated about a line at angle, 0 
and at any position. By substituting the solution in equation (3.13), it is easy to see that y 

satisfies 

- = [1 + 2ch{yhcos0) + 2c7i(^sin<9)]/5. 3.16 

The solution has translational invariance and y depends (to a small extent) on orientation, 9. 

However, the centroid speed and amplitude in the normal direction is independent of 9 as can be 
seen from equation (3.16). To demonstrate long distance propagation with no increasing 

numerical errors, a diverging circular wave of speed, v = 0.23 is simulated on a (128)2 cell grid 

with periodic boundary conditions. Confinement values used were /.i = 0.2, e = 0.3. The initial 
conditions for this computation are 

#;0 = XoSecA|>0] 

3.17 



where r is the radius of the wave. The actual wave equation exhibits a "tail" behind a pulse in 2- 
D, which can be seen to be suppressed by the Confinement, and, effectively, only the steep pulse 
front is accurately computed. In Figure 3.5, the circular wave for different time steps is presented. 
It can be seen that the wave persists on the grid for very long time. Also, as in 1-D, there is no 
discernable interaction between intersecting waves. The waves retain their form and orientation in 
spite of multiple head-on collisions. 

3.3.2 3D 

In 3D, the discretized form of the wave equation with the confinement term is 

#;;; -wJJt -tti+vWfj* •*(•*!&») 3.18 

where V2 is the 3D extension of the discrete Laplacian used in ID, and the nonlinear harmonic 
mean at a point, <t>"jk, is 

*",.* = 

•i   +i   +i _, 

2- Z-i Z- (^"«J*PMx ) 

27 
3.19 

Long distance propagation in 3D is simulated for an expanding, initially spherical wave and is 
shown in Figure 3.6. The computation is done on a coarse, (64)3 cell grid with periodic 
boundary conditions. The initial diameter for this computation is 32 grid cells. Confinement 
values used were n = 0.2 and e = 0.3. As in the 2-D case, the wave remains completely 
confined. Unlike in 2D, the actual solution does not exhibit a tail behind the front and the solution 
corresponds to the full physical solution rather than just the wavefront. The solution at a given 
point P(x, y, z), depends only on the information on the sphere and not on the interior of the 
sphere. Thus the interior of the sphere is a lacuna for the solution. It is true for odd numbers of 
space dimension. 

WAVE FRONT PROPAGATION 

4.1 Focusing 

Focusing is the phenomenon of the waves converging on a point or line. This is important in 
studying caustic regions. A common situation where caustics are visible is when light shines on a 
drinking glass. Focusing phenomenon has been extensively applied in a variety of engineering, 
optics, computer graphics and medical applications. In caustic regions, many waves intersect. 
Fixed grid Eulerian methods have limits on the effective resolution due to the limited number of 
grid points in a caustic unlike Ray Tracing schemes [4] [17]. To overcome this problem, complex 



schemes have been considered such as Osher's higher dimensional Liouville equation 
representation [18] and localization of caustics [19]. However, these seem to be complex and 
computationally costly. 

It was first thought that, since during focusing, the number of grid points on the wave decreases, 
WC is not going to help to retain the information at focusing regions. It was later shown that WC 
accurately computes waves through caustic regions and is stable to discretization effects produced 
on the grid. Since the interest is in the long distance propagation, the detailed resolution at the 
focusing itself was not an issue and that focusing in intermediate regions does not interfere with 
the long distance wave propagation. In Figure 4.1, amplitude contours are compared to 
Lagrangian markers (exact solution in high frequency approximation). It can be seen that the 
wave contours match quite well with markers. Also, the basic information defined by the initial 
conditions is not lost, even though only the simple Eulerian algorithm was used, with no 
additional logic. Recent developments in level set methods can capture focusing regions [21]. 
However, these are computationally complex unlike WC. 

4.2   Reflection from Complex Boundaries 

The property of waves to reflect from boundaries is captured accurately using WC without having 
to use adaptive grids around the boundaries. This reflection of waves is responsible for echoes, 
interference, etc. The energy and momentum of the waves is reflected back with or without 180 
degrees phase change depending on the properties of the boundary. The form of a reflected wave 
front is determined by those of the incident wave front and the surface. Boundaries many contain 
many irregularities and for short pulses (high frequency content), these irregularities can be larger 
than the wavelengths. Higher order discretization may be needed for conventional treatments of 
long distance propagation to reduce numerical diffusion in the propagation. Since WC does not 
have this diffusion problem, complex configurations can be accurately captured using very 
efficient, lower order discretizations with no loss of accuracy. A very effective method for 
treating reflections can then be implemented that does not require complex surface fitted grids, 
but allows the surface to be simply 'immersed' in a uniform Cartesian grid as shown in Figure 
4.2. This method employs a "level set" representation of the surface and can easily accommodate 
very complex topography with little computational effort. For example, reflection from a 

boundary of function, f(i,j) m 0, is shown, where, 

^"=0,   /<0, atalln. 4.1 

The effects of boundaries are smooth and no stair casing is observed. Reflection from complex 
terrains with many irregularities is important to capture interference effects in radio wave 
propagation. The irregularities can be very much larger than the wavelength of the short of waves 
that are propagated. 

4.2.1 Scattering from Cylinder 

Scattering is a physical process in which the direction of a wave deviates from its normal 
trajectory due to non-uniformities in the medium or interaction with boundaries. A wave packet 
with a bundle of rays parallel to each other will reflect in different angles if they encounter a non- 



uniform obstacle (diffuse reflection or scattering). If such a bundle encounters a smooth surface 
such as mirror, the rays remain as bundle upon leaving the surface (specular reflection). 

Scattering from the cylinder is diffuse reflection and is simulated accurately using WC. Consider 
the oblique incidence of a plane wave on a perfectly conducting infinite cylinder. The scalar field, 

<j>, is set to zero inside the cylinder of radius 32 grid cells. The reflected surface is manipulated 

to re-direct or re-shape the plane wave front into a cylindrical scattered field. If the plane wave is 
polarized, the polarity is reversed when it encounters perfectly conducting obstacles or hard 
boundaries (This is not demonstrated here). The confinement term, F is diffusive in the tangential 
direction and contracting in the normal direction. This prevents stair-casing effects and generates 
a smooth scattered field, which can be seen in Figure 4.3. The scattered field does not quickly 
diffuse on the grid and can be detected near the receiver, which is located far away from the 

target. This is important in applications such as target detection. The scalar quantity, <j>, is very 
sensitive and can be used to detect targets smaller than the grid cell size. When the field of 
computation is very large, the number of grid points across the target will be relatively small. The 
direct scattering problem involves determining the scattered field, which depends on the 
characteristics of the scatterer studied in this section for different cases. However, a lot of work is 
yet to be done in inverse scattering, which is considered for future research. 

Before proceeding to the study of complex configurations of obstacles, a plane wave reflection 
from a sine wave boundary is computed and shown. The same can be effectively captured using 
WC and is shown in Figure 4.4. It can be seen that WC itself can capture the effects of the 
boundary. 

4.3 Varying Index of Refraction 

When a wave interacts with the medium of varying density, it refracts (scatters). Refraction can 
be described by Snell's law, which states that the angle of incidence is related to the angle of 
refraction. 

sin 6,     v,     nr __L = _L = -^ 42 
sinf?2     v2     n, 

where «,, n2 are the indices of refraction of the two layers of medium, 0,, 62 are the angles of 

incidence and refraction respectively and vx, v2 are the speeds of the pulse in the respective 
layers. One example of refraction in the atmosphere is mirage. 

In acoustics, refraction is the bending or curving of a sound ray that results when the ray passes 
through a sound speed gradient from a region of one sound speed to a region of a different speed. 
The amount of ray bending is dependent upon the amount of difference between sound speeds. 
For water, sound speed depends on the variation in temperature, salinity, and pressure of the 
water. Similar acoustics effects are also found in the Earth's atmosphere. The phenomenon of 
refraction of sound in the atmosphere has been known for centuries; however, beginning in the 
early 1970s, widespread analysis of this effect came into existence through the designing of urban 
highways and noise barriers to address the meteorological effects of bending of sound rays in the 



lower atmosphere. Refraction of radio waves in evaporated ducts (formed due to variations in 
humidity near sea) and ionospheric ducts (formed due to variation in solar radiation) is important 
in radio wave propagation. 

4.3.1 Profile of varying index of refraction: Converging waves 

Consider a profile for varying speed, 

v(j) = const *exp(a(j-j0)
2), 4.3 

which has maximum speed (v) at j = j0. An isolated plane wave propagated across the medium 

with the profile given in equation (4.3) is computed. The discretized equation used for the wave 
propagation is, 

When the index of refraction is non-uniform, the waves tend to bend towards regions of higher 
index. It can be seen in Figure 4.8 that the computed pulses travel without diffusion and 
numerical errors in speed were insignificant to plottable accuracy. The computed pulse is 
compared to Langrangian markers (the blobs in Figure 4.S) for validation, which are calculated 
as, 

4.5 
y»e„=yold+VSy.n«, 

where s, and -svare the components of the propagating direction. The direction is updated 

according to the gradient in index of refraction on that marker as, 

Sx* ~Sx.old 

dv 4.6 
sy.' ~ sy.oid     J. dy 

and the normalized components of the direction are, 

s       = bl 
x,new 

\jSx*   +Sy? 
4.7 

s V 
\K«2+v2 



When the index of refraction is randomly varying and does not have a smooth profile, curve 
fitting methods must be used to fit the random variations. This becomes very complex when the 
index of variation is a function of time. But, for a smooth profile, the computation of markers is 
exact and is used for validation. 

As shown in Figure 4.S, the pulse does not lose information in spite of the limited number of grid 
points across the focusing regions. However, Lagrangian markers suffer inadequacy in number of 
grid points and fail to maintain continuity. 

4.3.2 Duct like profile used in EM propagation 

Electromagnetic waves propagating in the atmosphere encounter regions of varying density, 
which cause bending of the waves. One example is the evaporation duct, which is associated with 
a sharp drop in moisture immediately above water bodies. The drop in moisture decreases the 
density and in turn increases the speed. 
A predetermined profile of varying index of refraction, which imitates such a duct is treated: 

y(j) = 0.23- 0.0023 *\j-j0\ 4.10 

where j0 = 30. A curved surface configuration (for the ground) is employed, which is immersed 
in the uniform Cartesian grid. A plane wave propagating through the specified medium is shown 
in Figure 4.6. Lagrangian markers are also plotted for comparison purpose. The marker positions 
are computed as given in equations (4.S), (4.6), (4.7). It can be seen that the markers fail to 
maintain the continuous surface when the wave is diverging, but fall in the band of contours 
computed by WC. 

4.4 Multiple grids 

One other important use of WC for the wave equation involves cases with multiple grids with 
grid interfaces. This property plays an important role when a fine grid has to be used around the 
near field (source/antenna) and coarser grid in the far field. A fine grid is typically used near the 
antenna to resolve the high field gradients. To propagate the wave over long distances, a coarse 
grid scale must be used in the far field. The test case used only treats uniform grids, and not the 
antenna for illustration. If only the discretized wave equation is used, with no Confinement, 
reflections are produced from the grid interfaces, unless special care is taken. WC overcomes this 
problem and a pulse can propagate across the interface with no spurious reflections. 

The discretized equation used to solve the wave for multiple grids is 



where   ^-^-2^+^y,   %-<>.-2<,+<,.,,   £ «/"-/"-'.    "."T^-. 

cAf               i/Ar                  «'A/                f'A/                 £-'A/ ,  £,     f, 
f, = , //. = —-—r, //, = 7 , E, = r, £. = ^ and — = —-• const.. It 
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must be noted that the ratio — over the entire domain is constant and therefore, the number of 

grid cells across the pulse remains constant. 

At the grid interface, 

4.9 

where values at the interface are calculated as shown in Figure 4.7a. A cylindrical wave that 
passes through the variable grid interface is shown in Figure 4.7b. It can be seen that there is 
almost no production of reflected waves from the interface. The total amplitude as the wave is 
passing through fine grid/ coarse grid interface is shown in Figure 4.8. This is checked for a range 
of grid ratios and presented in Figures 4.8a, 4.8b, 4.8c for grid ratios equal to 2, 4, 6 respectively. 
Anomalous numerical reflections during transition from the fine grid to the coarse grid can be 
suppressed by using variable confinement parameters, which are dependent on grid size and yet, 

e 
the ratio — can be kept constant. 

M 

5.   CARRIER FUNCTION 

Developments that allow wave fronts to capture and propagate more details are described in this 
chapter. These details are required to compute interference. WC can be used to generate constant 
arrival time (Eikonal phase) surfaces accurately by storing the centroid arrival time at each grid 
point. Also, multiple-arrival times are easily accommodated, which is complicated using Eikonal 
schemes. Some recent developments in Eikonal methods [2] can treat multiple arrival times but, 
these methods require extra independent variables and complex data management schemes are 
used to control memory requirements. To demonstrate the ability of WC to capture these surfaces, 
arrival times for the wave fronts generated from a point source located at (128,128) on a 256x256 
grid. The parameters used for this computation are v = 0.23, n = 0.2, e = 0.3. The arrival time, 

i, is calculated for the passage of each wave as 

I'C 
4LI-*T=- 5.1 'ij I*, 



It can be seen in Figure S.la that the contours of arrival times are smooth with no stair-casing 
effects, which shows that there are no plottable discretization errors. The arrival times at the grid 
points in a cone with a range of angles, 0 = 29" -32", are compared to the exact values for 
validation purpose. For each i index, there are several grid points with varying j indices within the 
cone of 9 = 29° - 32". The computed arrival times at each these grid points is plotted against 
exact values in Figure S.lb. Assuming constant index of refraction, the exact arrival times are 
computed as 

<«*,('•. y) = -^. 5.2 

The direction of propagation, which is the gradient of the phase field, can also be accurately 
computed as 

where sx is the x-component of direction, and s  is the y-component of direction. However, it is 

required that the wave front has entirely passed the grid point to accurately compute these 
properties. For very small wavelengths, the wave fronts and grid cells are hundreds of 
wavelengths wide and it becomes difficult to accommodate multiple arrival times when the waves 
are close to each other. To overcome that problem, the scalar field, <f>, is used as a carrier 
function that can act as wave packet, which carries the required details of the propagating 
quantity. It is then not necessary for the wave front to entirely pass a grid point to capture the 
properties. The capability of WC is extended further using this "carrier" approach and numerous 
experiments are conducted. 

5.1 Propagation Directions 

The carrier approach is used to accurately propagate other properties of the wave with scalar 
function, <fi . For example, to propagate the directions in 2D, the wave equation is solved three 

times for three quantities, <p, t/>sx and <j>sy as 

4fr = v2v V," + us; (w;) - «£ (v2o;) 5.4 

where / = 1, 2 and 3 and <j>, is defined as, 

5.5 

5.6 

4 = <* 

<V *t*x 
A- •*sy. 

The updated directions are computed using the normalized relations, 

5 
<i+l ff' 

^r')'+(*•')' 



jn+l 
ft 

'y     = 

^r')J+(r)2 

In the test computation described, the initial conditions for <f> are given as 

^-^sec*[rij.y] 

C'^sec/,^-,)]' " 

with initial directions, 

... .5.8 

ru 

where the radius of the wave, r,, - J(»-'o) +{j~Jo) w'm origin at the center of the domain 

{h'Jo)- The parameters, v, p, and e are the same for all three quantities and are v = 0.23, 

// = 0.2, and £=0.3. ^ and 0, behave as the scalar function itself during wave collision. In 
Figure 5.2, directions for the thin wave are shown at 4 different time steps. During interaction, 
directions temporarily are the mean values of the waves that are together. Then, they take their 
original forms after a short relaxation time. 

5.2 Edge Diffraction 

According to geometric optics, light travels in the form of rays and can bend in regions of non- 
uniformities in the medium. In isotropic media, the rays are normal to the primary wave fronts 
and fail to accommodate optical effects like diffraction. Since, diffraction was not described by 
the classical ray theory of light [30], it has been separately modeled using the Geometric Theory 
of Diffraction. On the other hand, Huygens principle (wave optics) postulates that every point on 
the wave front act as a point source for further propagation and can accurately account for 
diffraction. One such example is diffraction of a plane wave from a semi-infinite screen. The total 
field obtained by Sommerfeld [31] consists of incident, reflected and a cylindrical diffracted 
wave. According to Huygens principle, a secondary source is created at the edge and a part of the 
field from that source is transmitted into the non-illuminated (shadow). The incident field 
interferes with the diffracted field and interference fringes are observed in the illuminated region. 
At high frequency, the waves do not bend and maintain sharp shadows. 

5.2.1 Keller's Approximation 

The diffraction from a knife-edge can be computed using the Geometric Theory of Diffraction 
(GTD) developed by Joseph Keller [32] in the 1960s. It is an extension of geometric theory of 



optics. This approximation will incorporate diffraction effects into the ray theory of light. Also, it 
introduces secondary sources that generate diffracted rays from the edges and corners of 
boundaries. GTD has been successfully applied in acoustics and Optics. Let us consider an 
incident field propagating horizontally that encounters a knife-edge, as shown in Figure 5.3b. The 
fundamental principle of GTD is that ray propagation is a local phenomenon. Furthermore, all 
fields of any origin obey the laws of geometric optics locally. The same is also true for diffracted 
rays. When the incident field is propagated in the direction normal to the edge, the diffracted field 
is cylindrical with the edge as its axis. Now, the total field at a point is the sum of all fields that 
pass through a point. An interference pattern is observed due to superposition of the geometric 
incident wave (u') and diffracted edge wave (u"). 

« = w'+i/> 5.9 

where 

where (o is the frequency of the wave, r is the radius of the diffracted wave and D is the 
diffraction coefficient for the knife edge. The diffraction coefficient, D, developed by Keller is, 

5.11 
e'*"4       f . (0\        (0\ 

D= rp.    Sin    -    +COS   - 
(2>r*)1/2sin6>L    \2)        {2J 

where 6 is the angle between incident and diffracted rays, as shown in Figure 5.3b. 

5.2.2 WC with Keller's Approximation 

The high frequency approximation is achieved by WC (as a pde) by restricting the dissipation and 
contraction to the tangential and normal directions respectively. The incident wave propagation 
with a knife edge in the path has a sideward dissipation when computed using the equation, 

5.12 

As explained in Section 4.2, the nonlinear term acts as dissipation in the tangential direction to 
generate smooth wave fronts. Due to this effect, the arrival times start to bend as the wave 
encounters the edge, as shown in Figure 5.4. Even though this looks like diffraction, it actually is 
produced by dissipation from the confinement term to maintain the smooth field for <p • 



The scalar function can be treated as a wave packet, which can be used to propagate other 
variables such as direction, as demonstrated in Section 5.1. This allows WC to capture the 
resulting incident wave produced by a knife edge without numerical spreading. The equation used 
for the high frequency approximation is 

5.13 

where sxand sy are propagated as described in Section 5.1, the components of the normal 

direction are nx = -sy and ny=sx. These waves obey the principles of geometric optics and are 

called geometric waves. 

The arrival times of incident field, /', are computed using the relation given in equation (5.1). It 
can be seen in Figure 5.5a that a sharp shadow boundary is generated. The edge wave is 
propagated from a point source placed on the edge with the amplitude given by the incident field, 

A1. The arrival times of the diffracted wave, lD, are shown in Figure 5.5b. The total field is now 
calculated as 

A = A,(e*'<+^e'*,A. 5.14 

The interference pattern is computed using the equation 5.11 and compared to the Fresnel far 

field approximation [30], The intensity ratio, —, for planes, i = 62 and / = 68 is shown in 

Figure 5.6a and Figure 5.6b respectively. It can be seen that the results agree closely with the 
Fresnel far field approximation. 

6 CONCLUSION 

The wave equation is accurately solved using the newly developed, Wave Confinement method, 
which includes the realistic effects such as varying index of refraction, scattering from complex 
objects and interference. Unlike conventional Eulerian schemes, WC does not suffer from 
numerical dissipation and the properties such as total amplitude and centroid are conserved. It 
generates wave equation solutions as thin solitary waves that can persist on the grid indefinitely. 
WC involves a nonlinear term in the propagation equation, unlike the original linear wave 
equation. However, this nonlinear term in the WC does not produces amplitude exchange or 
phase shift during wave collisions. After collision, the waves take their correct speed and form 
after a short relaxation time. Also, the interactions behave in the same way in any dimension. 
This is an important property in capturing the effects of focusing, multiple scattering and all the 
cases where many waves simultaneously meet at a point. 

WC has been shown to capture caustic regions with no additional steps in the computation 
process. It is also observed that WC in combination with Ray Tracing is accurate. This led to a 
new approximation called Eulerian/Lagrangian Transition. The smooth transition is observed 
even when there are irregular boundaries. In spite of having a nonlinear term in WC, the waves 



are observed to focus with no shift in centroid positions. WC is also shown to generate smooth 
scattered surfaces during reflection from complex objects, preventing the need to use complicated 
adaptive grids. These objects are immersed in a Cartesian grid with no grid refinement and 
complex logic. This is due to the confinement term being diffusive in the tangential direction, 
keeping the scattered field smooth with no stair-casing effects. WC can also accommodate very 
small objects compared to the physical domain, and does not require fine grids, unlike 
conventional Eulerian schemes. This is an important feature in electromagnetic wave propagation 
in the atmosphere when complex surfaces such as terrain, buildings, etc., have to be 
accommodated. 

Another important property of WC is its capability to capture the effects of varying index of 
refraction efficiently. This is an important feature in studying the effects of varying medium 
properties. Examples include evaporation or surface ducts (formed in atmosphere due to 
variations in density, temperature, etc), ionospheric ducts (formed in the ionosphere due to 
variations in electron density). These ducts can form caustic regions, multiple scattering etc. The 
confinement term is shown to treat such effects accurately and it is validated using Lagrangian 
method, which is an exact solution in high frequency approximation. Wave propagation across 
multiple grid interfaces is also proved to be accurate with no anomalous reflections. This will 
allow WC to use fine grids around an antenna and coarser grids in the far field. For the tested grid 
ratios, the transfer of amplitude across the interface is shown to be accurate. 

WC is shown to accurately generate contours of constant arrival times as the wave passes a grid 
point. The scalar function propagated using WC can also be used as a carrier wave to propagate 
directions along with the wave. This allows efficient computation of the propagation directions. 
The properties propagated with the scalar function behave the same way as the scalar function 
itself during multiple interactions. Using the propagated directions, the wave solution in the high 
frequency approximation can be computed. When the wave encounters an edge, this will prevent 
sideward bending of the waves into the shadow region due to numerical diffusion. Using Keller's 
GTD along with WC, the diffraction pattern from a knife edge is computed and is shown to match 
quite well with the Fresnel far field approximation. 

The local parabolic method is developed, which can compute propagation at any angle. It is an 
extension to the existing parabolic equation, which is confined to one preferred direction. 
Computations to simulate propagation at higher angles and single slit diffractions are done and 
validated using the exact analytical relations. Many computations are performed for a number of 
test cases and validated to check accuracy. The numerical properties of WC have to be well 
understood before using it for engineering applications. All the required validations have been 
performed for this new method to check the accuracy in actual complex conditions. WC still 
needs to be validated for propagation and interference effects for overlapping waves. As the 
pulsewidth will be relatively large compared to the wavelength in high frequency propagation, 
work has to be done to compute such effects within the wave. A more difficult, but widely 
studied challenge is the inverse scattering phenomena. This will be studied in the future to extend 
the applications of WC further. 
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Figure 2.1: Pulse simulation using equation (2.30). The initial conditions for this 
computation are defined in equation (2.29). 
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Figure 2.2: Comparison to higher order method. The pulse is propagated for 100 time 
steps using both WC and a higher order method. 
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Figure 3.1: Behavior of 1D wave equation solution 
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Figure 3.2: Computed pulses with and without confinement. The initial conditions are 
given in equation (3.5). 
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Figure 3.3: Centroid position.Collison of forward (j + vn) and backward (j -vn) 
propagating pulses with each other during propagation 
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Figure 3.4: Interaction between two pulses of different amplitudes. The pulses undergo 
head-on collision during propagation for the intial conditions given in equation (3.10). 
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Figure 3.5 : Diverging circular wave front solved using equation (3.11) 
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Figure 3.6: Spherical wave front propagation solved using equation (3.18) 
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Figure 4.1: Inward propagating wave front computed using WC. 
(a) n = 0, (b) n = 140, (c) n = 170, (d) n = 250 
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Figure 4.2: Immersed boundary to treat complex boundaries. 



ICO 1W 300 SM « I® 1H JOOISO 

(a) (b) 

»        im        iso       So Tfe- 

(C) (d) 

Figure 4.3: Scattering from Infinite Cylinder 
(a) n = 0, (b) n = 200, (c) n =400, (d) n = 600 
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Figure 4.4: Reflection from the boundary with shape of a sine wave 
(a) n = 0, (b) n = 200, (c) n - 300, (d) n = 500 
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Figure 4.5: Varying index of refraction. The plane wave propagation across medium of 
profile given in equation 4.8 
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Figure 4.6: Plane wave propagation above curved surface, The medium has a diverging 
profile given equation (4.13) to imitate surface duct in atmosphere 

(a) n = 0, (b) n = 200, (c) n = 400, (d) n = 600, (e) n = 800 
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Figure 4.7: Multiple grids 
(a) Computation of values at interface 

(b) Circular wave front propagating across multiple grid interface 
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Figure 4.8: Amplitude transfer 
(a) Grid ratio = 2 
(b) Grid ratio = 4 
(c) Grid ratio = 6 
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Figure 5.1 :Arrival times of cylindrical wave generated from point source 

(a) Contours of arrival time 
(b) WC Vs Exact for 9 = 29"- 32" 
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Figure 5.2: Propagation of directions 
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Figure 5.3: Knife edge diffraction 

(a) Huygens principle 
(b) Keller's geometric theory of diffraction 
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Figure 5.4 : Sideward bending of arrival time contours. 
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Figure 5.5: Arrival times for knife edge, 
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