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ABSTRACT 
 

Infectious diseases such as malaria, leishmaniasis and 
a plethora of bacterial diseases have been and continue to 
be among the major problems for United States Military 
personnel deployed in disease endemic regions of the 
world. We currently employ computer-aided rational drug 
design and discovery methods to discover new and better 
drugs. Here, we compute the mathematical equation 
correlating the observed biological activity of the drug 
molecule to the various descriptors, such as 
physicochemical properties, electrostatic and steric fields 
and chemical functions of the drug molecules.  

 
In brief, QSAR involves computation of the 

conformational model of the drug molecules, alignment of 
the conformers in a biologically meaningful way, 
computation of the descriptors, and lastly using statistical 
techniques such as linear regression analysis to compute 
the QSAR model. The traditional approach of global 
minimum energy conformation of the drug molecules 
fails to deliver good predictive QSAR models for flexible 
molecules. To address this issue we have developed a 
novel method viz. bioactive conformation mining, which 
consistently delivered good predictive QSAR models. 
 
Development of Antimicrobial peptides (AMP) based 
antibacterials: 

Antimicrobial peptides (AMP) are involved in the 
defense mechanism of animals against invading 
microorganisms. The mechanism of action for AMP is via 
disruption of cell membranes. We have developed a series 
of AMPs employing unnatural amino acids by 
strategically controlling the 3D-physicochemical 
properties to exhibit different in vitro activity against 
Staphylococcus aureus (SA) and Mycobacterium ranae 
(MR) bacteria. We present the PC based 3D-QSAR 
studies, which provide valuable insights in the design of 
novel AMPs and also the mechanism of action. 
 
Development of novel DEET based insect repellents: 

Mosquitoes transmit a variety of parasites and 
pathogens. Keeping the mosquitoes away using insect 
repellents is, therefore, a significant preventive approach 
against these deadly diseases. N,N-diethyl-3-methyl 
benzamide (DEET) is the most effective and widely used 

insect repellent.  We computed a PC based 3D-QSAR 
model to assist in prediction of insect repellency 
protection time of novel DEET based insect repellents. 
The QSAR model also provides valuable insight into the 
mechanism of action of DEET analogs and derivatives.  
 
 

1. INTRODUCTION 
 

1.1 DEET based insect repellents 3D-QSAR 
 

Mosquitoes and many other insects transmit a variety 
of parasitic and pathogenic diseases including malaria, 
yellow fever and viral encelphalitis.(Brewste 2001) Thus, 
using insect repellents for keeping the insects away is an 
important and significant strategy in the fight against 
these deadly diseases. Presently, the reported participating 
entities in the mechanism of action (Justice; Biessmann et 
al. 2003) of DEET based insect repellents are the odorant-
binding protein (OBP), the neuronal G-protein coupled 
receptors (GPCRs) and the odorant degrading enzymes 
(ODEs). It is reported that the OBP binds to odorant 
which are typically hydrophobic and facilitates their 
movement through the hydrophilic hemolymph towards 
the olfactory neuronal GPCRs. Then, the OBP-odorant 
complex binds with the GPCR causing the repellency 
effect. The ODE is reported to degrade the odorants 
thereby preventing continued stimulation of the olfactory 
receptors. 
 
1.2 AMP based antibacterials 3D-QSAR 
 

Antimicrobial peptides (AMPs) have evolved in 
many  classes of living organisms, as a host defence 
mechanism against invading micro-organisms.(Dennison; 
Wallace et al. 2005) AMPs may be divided into two super 
families as membrane-disruptors and non-membrane –
disruptors based on their mechanism of action.(Brogden 
2005) All membrane-disruptors are reported to follow 
specific steps in the process of binding to the target 
cells.(Blondelle; Lohner et al. 1999) The AMPs are first 
attracted to the surface of the membrane by the 
electrostatic interactions between the positively charged 
amino acids of the AMP and the negatively charged 
phospholipids of the cell membrane.(Dennison; Wallace 
et al. 2005) The next step involves the binding of the 
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AMPs to the surface of the membrane. (Brogden 2005) 
Our guiding hypothesis based on the above assertion is as 
follows: the target cell membrane (bacterial or 
mammalian) interacts with the approaching AMP in a 
very specific way (via bioactive conformation) through 
the mutually complementary 3D-physicochemical surface 
properties and thus defining the resulting organism 
selectivity and potency.  Here in we describe the 
computation of 3D-QSAR models for the Staphylococcus 
aureus ME/GM/TC resistant (ATCC 33592) (SA) and 
Mycobacterium ranae (ATCC 110) (MR) activity of 
AMPs. 

2. RESULTS & DISCUSSIONS 
 

2.1 DEET based insect repellents 3D-QSAR 
 

We chose a collection of forty benzamides, benzyl 
amides and cyclohexyl amide DEET (4c) analogs and 
derivatives that were reported earlier (Suryanarayana; 
Pandey et al. 1991) for this QSAR study.  The chemical 
structures, vapor pressures @ 30deg C and their 
respective protection times are summarized in Table–1. 

We used Cerius2 (C2) to build and minimize the 
molecular structures using the 3D-sketcher module. For 
the minimization process we  employed Gasteiger-Marsali 
(Marsali; Gasteiger 1980) charges and Drieding force 
field (Mayo; Olafson et al. 1990). We computed the 
conformational models by performing exhaustive 
conformational search using the Grid Scan method 
(Accelrys 2005) followed by cluster analysis based on the 
root mean squares (RMS) differences of the torsion 
angles. We aligned the cluster nuclei using the amide 
group common core as the template.  

 
We found that the clusters with 20-25 nuclei showed good 
3D sampling of the space around the amide, the putative 
pharmacophoric moiety, with little or no vacant volume 
and with much less crowding or over  representation. The 
overlay of all conformers is depicted in Figure 1. 
 

 
 
           
 
 
 

                        Cmpd 7 
 

 
 

           
 

         Cmpd 1 – 6                         Cmpd 8 

Compound Structures for C# in Table 1. 

Table 1 Compounds Structure & Bioactivity Data 
 

C# X R1 R2 PT 
Hrs R/T  VP  

1a Et H 0.08 T 0.0062 
1b CH3 CH3 1.00 R 0.0039 
1c Et Et 1.00 R 0.0037 
1d iPr iPr 1.17 R 0.0155 
1e 

4-
OCH3 

C5H10 0.75 R 0.1486 
2a Et H 0.08 R 0.0063 
2b CH3 CH3 4.00 R 0.0110 
2c Et Et 2.83 R 0.0244 
2d iPr iPr 0.50 T 0.0159 
2e 

4-CH3 

C5H10 1.00 R 0.0313 
3a Et H 0.58 R 0.0015 
3b CH3 CH3 1.67 T 0.0015 
3c Et Et 4.00 R 0.1015 
3d iPr iPr 3.00 R 0.0116 
3e 

H 

C5H10 3.00 T 0.0559 
4a Et H 0.67 R 0.0013 
4b CH3 CH3 3.00 R 0.0055 
4c* Et Et 5.00 T 0.0260 
4d iPr iPr 2.67 T 0.0151 
4e 

3-CH3 

C5H10 1.42 R 0.0001 
5a Et H 0.58 R 0.0006 
5b CH3 CH3 5.00 R 0.0076 
5c Et Et 3.00 R 0.0602 
5d iPr iPr 1.00 T 0.7728 
5e 

2-Cl 

C5H10 1.00 R 0.0281 
6a Et H 0.08 R 0.0003 
6b CH3 CH3 2.83 R 0.0264 
6c Et Et 3.50 R 0.0012 
6d iPr iPr 1.08 T 0.0144 
6e 

2-OEt 

C5H10 1.33 R 0.0030 
7a Et H 1.00 R 0.0058 
7b CH3 CH3 2.17 T 0.0020 
7c Et Et 6.00 R 0.1043 
7d iPr iPr 1.00 T 0.0014 
7e 

  

C5H10 2.58 R 0.1814 
8a Et H 0.50 R 0.0168 
8b CH3 CH3 3.00 R 0.0136 
8c Et Et 4.00 R 0.1638 
8d iPr iPr 2.00 R 0.2843 
8e 

  

C5H10 2.00 R 0.0315 
 

PT = Protection Time; VP = Vapor Pressure @ 60° C. 
* = DEET. 
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Fig 1 Alignment overlay of all 940 conformers. 

 
The data set was divided in two sets as training and 

test set of thirty and ten compounds respectively. We 
computed a total of 127 descriptors comprising of 
ADME, electrotopological state (Kier; Hall 1992), 
thermodynamic (Ghose; Crippen 1986), Ghosh and 
Crippen atom types, Kiers shape indices (Kier 1985), Jurs 
(Stanton; Jurs 1990) partially charged surface areas, 
shadow indices (Rohrbaugh; Jurs 1987) and quantum 
chemical descriptors. The descriptor selection was 
performed (Yao; Lopes et al. 2003) by first discarding all 
descriptors with poor correlation with bioactivity (|r| < 
0.1) followed by discarding the highly collinear 
descriptors with cross correlation coefficients greater than 
0.9. To juxtapose the traditional 3D-QSAR methodology 
of the global minimum conformation with our novel 
methodology we computed 3D-QSAR models using the 
global minimas of the training set compounds with 127 
descriptors and also with 30 selected descriptors using 
genetic function algorithm (GFA), partial least square 
(PLS) and genetic partial least square (G/PLS) methods. 
This effort furnished models with non-validated R2 
(nvR2) ranging from 0.792 to 0.935 and internal cross 
validation tests, leave-one-out (q2

LOO), leave-10%-out and 
leave-20%-out greater than 0.7. However, all models 
performed poorly when subjected to the rigorous external 
validation with the test set compounds, they yielding a 
predictive r2 of 0.349 or less. The contemporary approach 
of using the global minimum conformation does not 
furnish good QSAR models probably because the 
bioactive conformations are quite different than the global 
minimum conformations. Thus, the novel methodology 
we have devised to discover the bioactive conformation is 
by mining through a set of conformations within the 
energy range of 20 Kcals/mol of the global minimum 
such that the conformations have a good representation in 
the 3D space around some putative pharmacophoric 

moiety for all of the compounds in  the training set. The 
set of all 20-25 conformers of all of the 30 training set 
compounds totaled to 706 conformations.  
 

The first generation 3D-QSAR model based on the 
selected 30 descriptors using PLS method for the 706 
conformations gave a model with nvR2 of 0.883, q2

LOO of 
0.877 and prediction error sum of squares (PRESS) of 
200.06. The predicted residual values of several 
conformers showed identical values and on closer 
examination of the descriptor values they were also 
almost identical. On removal of such ‘duplicate’ 
conformers we got a set of 501 conformers, which on PLS 
analysis furnished the second generation 3D-QSAR 
model with nvR2 of 0.879, q2

LOO of 0.869 and PRESS of 
135.01. The conformers selected for all of the subsequent 
generation models were the ones with least residual 
(Predicted – Actual PT) values. The next generations 
QSAR models were built by selecting aforementioned 
number of conformers from their respective previous 
generation QSAR models. Thus, 10 conformers for the 
IIIrd generation (300 conformers), 5 conformers for the 
IVth generation (150 conformers) and 2 conformers for 
the Vth generation (60 conformers) QSAR models were 
selected to give nvR2 of 0.921, 0965 & 0.988, q2

LOO of 
0.911, 0.956 & 0.977 and PRESS values of 60.43, 15.12 
& 3.10 respectively. For the VIth generation QSAR 
model the data was divided into two sets with most active 
PT cut off value of 3.0 hrs and not active PT values of 
less than 3.0. Thus, for the 9 compounds viz. C#(PT): 
2b(4.0), 3c(4.0), 3d(3.0), 5b(5.0), 5c(3.0), 6c(3.5), 
7c(6.0), 8b(3.0) and 8c(4.0) two  conformers were 
retained and for the remaining 21 training set compounds, 
the least residual value conformer were selected for the 
VIth generation 3D-QSAR model. The VIth generation 
3D-QSAR model showed nvR2 of 0.991, q2

LOO of 0.974 
and PRESS of 2.565. The final VIIth generation QSAR 
model can be computed by choosing either one conformer 
for the nine most active compounds in 29 or 512 different 
ways. The computation of 512 3D-QSAR models using a 
TCL-based Cerius2 script yielded six VIIth generation 
models with q2

LOO of 0.67 or larger. The best VIIth 
generation 3D-QSAR model showed nvR2 of 0.989, q2

LOO 
of 0.701 and PRESS value of 20.37. Figure 2 shows the 
observed and predicted activity plot for the best VII 
generation QSAR model. The final 3D-QSAR model 
showed and excellent predictive r2 of 0.845. 
 

The gradual refinement of successively generated 
3D-QSAR models computed by selecting the least 
residual value conformers gives the conformations that 
best correlate with the observed bioactivity. Thus, we 
argue that these are indeed the bioactive conformations of 
the respective compounds. The shapes of these selected 
‘bioactive conformers’ allude to the roles of the various 
moieties around the putative amide pharmacophore in the 
mechanism of action as also in the structure activity 
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relationship. There are three important conclusions about 
the role of DEET analogs and derivatives in the insect 
repellency mechanism of action, viz. 
1) The 3D-spatial location of the group (phenyl, benzyl & 

cyclohexyl) attached to the carbonyl C does not have 
significant effect on the bioactivity, which probably 
dock with the OBP to form the complex. 

2) There is a preferential positioning of the methyl, ethyl, 
isopropyl etc moieties on the amidic N within a narrow 
range of 60° to 70°, which probably interacts with the 
neuronal GPCR in the rate limiting step. 

3) The compounds with poor hydrophobic group (e.g. para 
or ortho methoxy / phenyl / benzyl) cannot dock 
effectively with the OBP and thus irrespective of the 
groups on the amidic N exhibit poor repellency activity, 
which probably also alludes to the competing nature of 
the OBP and ODE. 

 

VIIth Generation QSAR Model

R2 = 0.9894
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Fig 2 Observed and predicted Bioactivity plot for the 

best VIIth generation 3D-QSAR model. 
 

The following equation describes the best 3D-QSAR 
model: 

 
Pred Bioactivity =  0.538 * ADME_Absorption_T2_2D   
- 0.682 * ADME_BBB_2D  - 0.042 * Energy   
- 0.689 * ADME_BBB_Level_2D - 0.531 * S_dssC     
- 1.209 * ADME_Solubility_Level - 0.192 * S_aasC  
- 0.367 * S_ssNH + 0.054 * S_ssO + 0.531* Jurs-FNSA-2 
+ 0.001 * LUMO_MOPAC + 0.433 * DIPOLE_MOPAC 
+ 0.004 * HF_MOPAC  - 0.0001 * Jurs-DPSA-2  - 0.014 
* Jurs-DPSA-3 + 1.288 * Jurs-FPSA-1 + 66.492 * Jurs-
FPSA-3 + 0.536 * Jurs-RPCS + 12.508 * Jurs-RASA  - 
0.008 * Shadow-XY  - 0.531 * Shadow-nu  - 0.285 * 
Shadow-Xlength  - 0.057 * Shadow-Zlength + 0.312 * 
Density  - 0.001 * PMI-mag  - 0.074 * Atype_C_5 + 
0.196 * Atype_H_47 + 0.097 * Fh2o + 1.515 * JX + 
1.299 * Kappa-3-AM  - 12.4913   

The value and sign of the 3D-QSAR equation 
coefficients provide a qualitative insight into the 
correlation of the respective physicochemical (PC) 
property to the observed protection time. However, the 
quantitative contribution of any PC property to the 
protection time can only be judged from both the QSAR 
equation coefficient and the descriptor value quantifying 
it. We computed the mean descriptor values for this 
purpose as the arithmetic average of the descriptor values 
of all the training set compounds (i.e. MVD = { Σ 
descriptor value of all training set compounds} / 30). The 
product of the QSAR equation coefficient (QEC) and the 
mean descriptor value (MVD) would now provide the 
contribution of that PC property (CtoBA) to the protection 
time. (i.e. CtoBA = QSAR coefficient * MVD) Further, 
the significance of any PC property vis-à-vis all of the 
other PC properties appearing in the QSAR equation can 
be computed as the ratio of CtoBA to the sum total of all 
CtoBA. The percentage value of this quotient, is what we 
have termed as the ‘Descriptor Significance Percentage’ 
DSP (i.e. DSP = CtoBA * 100 / Σ abs(CtoBA) ). Thus, the 
DSP values provide a better insight into the quantitative 
contribution of each of the descriptors to the protection 
times. The list of descriptors and their QEC, MVD, 
CtoBA and DSP is shown in Table–2. 
 

The top five descriptors Jurs-RASA, Jurs-FPSA-3, 
JX, ADME-Solubility level and Shadow-Xlength 
contribute to 62% of the bioactivity. The largest 
contribution to the  bioactivity is from Jurs-RASA with a 
positive 25% contribution. Jurs-RASA is defined as the 
ratio between the total hydrophobic surface area (Jurs-
TASA) and the total solvent accessible surface area (Jurs-
SASA). This observation is consistent with the first step 
of the MOA where the odorant molecule binds to the OBP 
and hydrophobicity or lipophilicity play a key role. 
ADME-Solubility level with negative 8.5%, Atype_H_47 
with positive 3.5% and Fh2o with negative 1.1% also 
support the role of hydrophobicity in the MOA. This 
observation is in agreement with the earlier reports 
(McIver 1981: Suryanarayana; Pandey et al. 1991) that 
lipophillicity is directly related to repellency. The next 
largest contribution to bioactivity is from Jurs-FPSA-3 
with a positive 11% value. Jurs-FPSA-3 is the quotient of 
Jurs-PPSA-3 and Jurs-SASA, where Jurs-PPSA-3 is the 
summation of the products of solvent accessible surface 
area and partial charge of all positively charged atoms. 
Thus, the 3D-QSAR model suggests that larger partial 
positive surface areas and larger partial positive charge 
along with smaller total solvent accessible surface area 
would correlate with higher repellency activity. This 
probably alludes to the second step of the mechanism of 
action where the odorant-OBP complex binds the 
neuronal GPCR peptide residues. The diffused or soft 
positively charged moiety’s correlation with increased 
repellency activity is also corroborated by Jurs-FPSA-1 
(Jurs-Fractional Positive Surface Area-1) defined as the  
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Table 2 Computation of DSP: Descriptor Significance 
Percentage 

 
Descriptor QEC MVD CtoBA DSP 

Jurs-RASA 12.508 0.882 11.028 25.038 

Jurs-FPSA-3 66.492 0.074 4.916 11.161 

JX 1.515 2.527 3.828 8.690 

   ADME_Solubility_Level -1.210 3.100 -3.750 -8.514 

Shadow-Xlength -0.285 11.888 -3.393 -7.703 

Kappa-3-AM 1.299 2.568 3.337 7.577 

Energy -0.042 51.357 -2.164 -4.912 

Atype_H_47 0.196 7.933 1.555 3.530 

DIPOLE_MOPAC 0.433 3.553 1.537 3.490 

 ADME_Absorption_T2_2D 0.538 2.736 1.473 3.344 

Shadow-nu -0.531 1.909 -1.014 -2.301 

Jurs-FPSA-1 1.288 0.770 0.992 2.252 

   ADME_BBB_Level_2D -0.689 1.300 -0.896 -2.034 

Jurs - DPSA-3 -0.014 50.052 -0.717 -1.628 

Shadow-XY -0.008 59.513 -0.488 -1.109 

Fh2o 0.097 -4.866 -0.473 -1.073 

PMI-mag -0.001 324.800 -0.438 -0.993 

Shadow-Zlength -0.057 6.306 -0.359 -0.815 

Density 0.312 1.004 0.313 0.711 

Jurs-RPCS 0.536 0.488 0.262 0.595 

S_ssNH -0.367 0.642 -0.236 -0.536 

Jurs-FNSA-2 0.531 -0.438 -0.232 -0.528 

S_aasC -0.192 1.148 -0.221 -0.501 

Jurs - DPSA-2 0.000 808.217 -0.131 -0.298 

S_ssO 0.054 1.394 0.076 0.172 

ADME_BBB_2D -0.682 0.103 -0.071 -0.160 

S_dssC -0.531 0.114 -0.061 -0.138 

HF_MOPAC 0.004 -11.390 -0.047 -0.107 

Atype_C_5 -0.074 0.533 -0.040 -0.090 

LUMO_MOPAC 0.001 0.094 0.000 0.000 

QEC - QSAR Model A Equation Coefficient values 
MVD - Mean value of descriptors of all training cmpds = 
(Σdescriptor_value / 30) 

CtoBA - Contribution to bioactivity = (QEC * MVD) 

DSP - Descriptor Significance Percentage =  
(CtoBA * 100 / Σ  abs(CtoBA) ) 
 

sum of the solvent accessible surface area of all partial 
positively charged atoms with a positive 2.3% 
contribution and the positive 8.7% contribution from the 
Balaban index JX, which is inversely proportional to the 
electronegativities and covalent radii of the atoms in the 
repellent molecules. The fifth largest DSP contribution of 
negative 7.7% comes from the descriptor Shadow-
Xlength, which is the measure of the projection of the 
molecule on the x-axis. The contribution of other shadow 
indices are shadow-Zlength (projection measure on the z-
axis) of negative 0.8%, shadow-XY (the area of the 
shadow of the molecule in the XY plane) of negative 
1.1% and shadow-nu (ratio of the largest to the smallest 
shadow measures) of negative 2.3%. This combination of 
shadow indices indicate that elongated rectangular box 
(parallelepiped) like molecular structure correlate with 
repellency activity. This alludes to the shape of the 
binding pocket of the OBP involved in the first step of the 
mechanism of action. 
 
2.2 AMP based antibacterials 3D-QSAR 
 

We selected 28 AMPs (Table-3) with diverse activity 
against Staphylococcus aureus ME/GM/TC resistant 
(ATCC 33592) (SA) and Mycobacterium ranae (ATCC 
110) (MR) bacteria for this 3D-QSAR study. (Hicks; 
Bhonsle et al. 2007) Each peptide was constructed using 
the Biopolymer module of InsightII, energy minimized 
using the Steepest Descent Algorithm (Levitt; Lifson 
1969) and subjected to a brief (1000 cycles) MD 
simulation followed by exhaustive minimization to give 
the local minimum conformation of the peptide. The 
conformational search was done using Monte Carlo 
Algorithm (Chang 1989). The conformations were 
clustered using Root Mean Squares (RMS) difference of 
torsion angles of the peptides (Accelrys 2005). We 
selected sets of cluster nuclei that gave the best 3D spatial 
representations, which were 20-30 conformers for some 
and 30-40 conformers for the rest peptides. All of the 
conformers of all the peptides were aligned and added to a 
study table for descriptor computation with default 
settings. The correlation matrix was computed for all the 
descriptor values of all the conformers of all the peptides 
to obtain the cross correlation coefficients and correlation 
with bioactivity. The descriptors that showed very poor 
correlation with bioactivity (|r| < 0.01) were removed. The 
cross correlation matrix showed that 33 descriptors 
exhibited very high cross correlation coefficient values (|r| 
> ~0.9). Removal of these highly cross correlated 
descriptors left behind the final 22 and 21 descriptors for 
SA and MR QSAR models. The list of these final 
descriptors for the two 3D-QSAR models is presented in 
Table-4. Our novel, gradual and stepwise bioactive 
conformer mining methodology mines the clustered 
conformations and identifies the bioactive conformers that 
most closely correlate with the observed bioactivity.  
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Table 3: Peptide amino acid sequence and their anti-
bacterial activity  

C# Amino Acid Sequence SA 
μM†

MR 
μM†

1 NH2KLTcOcKTcOcFTcOcKTcOcFTcOcKTcOcK
RNH2 10 30

2 AcGFTcOcGKTcOcGFTcOcGKTcKKKK-NH2 3 10
3 NH2GFTcOcGKTcOcGFTcOcGKTcKKKK-NH2 10 10
4 NH2KLTcOcGKTcOcGFTcOcGKTcKKKK-NH2 30 3 
5 AcFTcOcKTcOcFTcOcKTcKKKKNH2 3 30
6 AcFTcOcKTcOcFTcOcKTcKKKKKKNH2 3 3 

7 AcGabaFTcOcGabaKTcOcGabaFTcOcGabaKTc
KKKKNH2 100 10

8 AcβAlaFTcOcβAlaKTcOcβAlaFTcOcβAlaKTcK
KKKNH2 

10 1 

9 AcAhxFTcOcAhxKTcOcAhxFTcOcAhxKTcKK
KKNH2 10 3 

10 AcGabaFTcOcGabaKTcOcGabaFTcOcGabaKTc
KKKKKNH2 30 3 

11 AcGTcOcKTcOcGTcOcKTcKKKKNH2 10 3 
12 AcGFOcGKOcGFOcGKKKKKNH2 105 100
13 AcGFGOcGKGOcGFGOcGKGKKKKNH2 105 100
14 AcGFTcGKTcGFTcGKTcKKKKNH2 105 30
15 AcGFTcGGKTcGGFTcGGKTcKKKKNH2 105 30
16 AcGFFOcGKFOcGFFOcGKFKKKKNH2 10 10
17 AcGFTcOcGKTcOcGFTcOcGKTcKKKKKNH2 3 3 
18 AcGFTcOcGKTcOcGFTcOcGKTcOOOONH2 10 10

19 AcGFpaTcOcGKTcOcGFpaTcOcGKTcKKKKN
H2 10 3 

20 AcGFTcOcGOTcOcGFTcOcGOTcOOOONH2 3 10

21 AcGFTcOcGKTcOcGFTcOcGKTcKKKKCONH
CH2CH2NH2 3 10

22 AcGFTcOcGKTcOcGFTcOcGKTcKKKKCONH
CH2CH2CH2NH2 10 10

23 NH2ELMNSTcOcGLTcOcGKTcOcGLTcOcGKT
cOcELMNSNH2 105 105

24 NH2GKGLTcOcGKTcOcGFTcOcGKTcOcGFTc
OcGKTcOcGKRNH2 10 NT

25 NH2GKGLTcOcGRTcOcGFTcOcGRTcOcGFTc
OcGRTcOcGKRNH2 10 105

26 NH2GKGLTcOcGLTcOcGKTcOcGLTcOcGKTc
OcGLTcOcGLRNH2 100 NT

27 NH2GKGLTcOcGKTcOcGLTcOcGKTcOcGLTc
OcGKTcOcGKRNH2 10 NT

28 NH2GKGLTcOcFKTcOcKFTcOcFKTcOcKFTcO
cFKTcOcFKRNH2 30 105

C# = Compound #; Tc = Tetrahydroisoquinolinecarboxylic 
acid; Oc = Octahydroindolecarboxylic acid; Fpa = 4Fluoro 
Phenylalanine; Gaba = γAminobutyric acid; Ahx = 
εAminohexanoic acid; Ac = Acetyl; NT = Not Tested; † Since 
all analogs were screened in the concentration range of 0.1 μM 
to 100 μM, compounds with MIC of < 100 μM, were deemed to 
be active compounds.  For QSAR purposes all inactive 
compounds were assigned an MIC of 1.0 M.  

Table 4: A Rank ordering of the Physicochemical 
Properties defining anti-bacterial activity 

Physico-
chemical 
property 

Staphylococcus 
aureus 

QSAR_DSP 

Physico-
chemical 
property 

Mycobacterium 
ranae 

QSAR_DSP 

Jurs-FPSA-1 29.347 Density -30.784 
Density -16.01 Jurs-RASA 16.827 

Jurs-TASA -14.762 Jurs-PPSA-1 -15.494 
Jurs-PNSA-1 10.54 Jurs-TPSA 10.218 
Jurs-RASA 7.886 Jurs-RPSA -5.444 
Jurs-SASA 4.12 Hbond donor -3.905 

Jurs-DPSA-2 3.093 Hbond acceptor 3.729 
Jurs-PNSA-2 -2.911 Jurs-FPSA-1 -3.409 
Jurs-RPSA -2.492 Fcharge 2.892 
Rotlbonds -2.164 Jurs-PNSA-1 -1.244 

Hbond acceptor 1.91 RadOfGyration 1.164 
Jurs-FPSA-3 1.709 Rotlbonds -1.156 

Fcharge -0.742 Apol 1.148 
Jurs-RPCG -0.726 Jurs-PPSA-2 1.016 

Jurs-PPSA-1 0.555 Jurs-PNSA-2 -0.632 
Jurs-FNSA-3 -0.426 Jurs-RNCG 0.4 
Dipole-mag 0.162 Dipole-mag 0.298 

RadOfGyration -0.127 Jurs-FNSA-3 -0.127 
Jurs-RPCS -0.126 AlogP 0.051 

Hbond donor 0.113 Conformer 
Energy 0.037 

Jurs-DPSA-3 0.053 Jurs-RPCG -0.024 
AlogP -0.026 Jurs-DPSA-2 0 

 
Thus, the bioactive conformer mining method, over 

seven iterative generations(Bhonsle; Bhattacharjee et al. 
2007) resulted in two conformers each for the 12 peptides 
(C# 1, 2, 5, 6, 17, 19, 20, 21, 22, 24, 25 & 27 for SA and 
C# 4, 6, 8, 9, 10, 11, 17, 18, 19, 20, 21 & 22 for MR) and 
one conformer for each the remaining 16 peptides. There 
are 4096 (212) ways to select the best set of 12 
conformers, from the 24 conformers. The 4096 eighth 
generation models were computed employing a Tcl-based 
Cerius2 script. The final SA and MR 3D-QSAR models 
showed non-validated r2 of 0.988 and 0.997, leave-one-
out cross-validated r2 of 0.839 and 0.997 with PRESS 
values of 22.92 and 29.19 respectively. The 3D-QSAR 
equations for predicting the activity against SA is given in 
equation 1 and that against MR is given in equation 2.  
The correlation plots of the predicted vs. the observed 
anti-bacterial activities of these two 3D-QSAR models are 
shown in Figure 3. Internal validation (cross-validation) 
tests of the final 3D-QSAR models were performed at two 
levels. Both of the models showed q2

LOO > 0.83 for the 
leave-one-out (LOO) cross-validation tests. For the leave-
10%-out or leave-three-out (L10O) cross-validation tests, 
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SA model showed q2
L10O of 0.875, whereas MR model 

showed q2
L10O value of 0.537.  We performed 

randomization tests of ninety-nine trials each at 99% 
confidence level for SA and MR 3D-QSAR models.  
None of the random r values were found to be larger than 
the non-random r values for either the SA or the MR 
models.  The mean random r value for the SA model was 
0.572 (r2 = 0.327), and for the MR model was 0.617 (r2 = 
0.380).  This proved that the SA and MR QSAR models 
are not obtained by chance.  
 
EQUATIONS 
 
The SA 3D-QSAR model is described by equation: 1 
SA Predicted Activity = [(-1.49592 * Fcharge) + 
(0.0098147 * Dipole-mag) + (0.013993 * Jurs-SASA) + 
(0.00233 * Jurs-PPSA-1) + (0.187647 * Jurs-PNSA-1) + 
(0.0021686 * Jurs-PNSA-2) + (0.00036919 * Jurs-DPSA-
2) + (0.0015025 * Jurs-DPSA-3) + (438.251 * Jurs-
FPSA-1) + (267.258 * Jurs-FPSA-3) + (120.432 * Jurs-
FNSA-3) - (715.316 * Jurs-RPCG) - (12.8649 * Jurs-
RPCS) - (0.065752 * Jurs-TASA)  - (125.513 * Jurs-
RPSA) + (125.513 * Jurs-RASA) - (183.99 * Density) + 
(1.03397 * Hbond acceptor) + (0.039473 * Hbond donor) 
- (0.306856 * Rotlbonds) + (0.114808 * AlogP) - 
(0.10004 * RadOfGyration) - 225.589] 
 
The MR QSAR model is described by equation: 2 
MR Predicted Activity = [(-0.0083585 * Conformer 
Energy) + (2.05758 * Fcharge) + (5.3259e-05 * Apol) + 
(0.0061422 * Dipole-mag) - (0.023941 * Jurs-PPSA-1) - 
(0.008252 * Jurs-PNSA-1) + (5.5381e-05 * Jurs-PPSA-2) 
+ (0.00018566 * Jurs-PNSA-2) - (18.282 * Jurs-FPSA-1) 
+ (13.321 * Jurs-FNSA-3) - (8.46841 * Jurs-RPCG) + 
(66.6262 * Jurs-RNCG) + (0.052889 * Jurs-TPSA)  - 
(96.9761 * Jurs-RPSA) + (96.9761 * Jurs-RASA) - 
(127.577 * Density) + (0.768698 * Hbond acceptor) - 
(0.498282 * Hbond donor) - (0.060764 * Rotlbonds) - 
(0.075759 * AlogP) + (0.337835 * RadOfGyration) + 
110.841] 
 

The seventeen physiochemical properties common to 
the SA and MR 3D-QSAR models are shown in Table 4.  
The five physicochemical properties specific to the SA 
QSAR model are Jurs–Fractional-Positive-Surface-Area–
3 (Jurs-FPSA-3), Jurs-Relative-Positive-Charge-Surface-
area (Jurs-RPCS), Jurs-Differential-Positively-charged- 
Surface-Area-3 (Jurs-DPSA-3), Jurs-total-Solvent-
Accessible-Surface-Area (Jurs-SASA) and Jurs-TotAl-
hydrophobic-Surface-Area (Jurs-TASA).  While the five 
physicochemical properties specific to the MR QSAR 
model are sum-of-all-atomic-polarizabilities (Apol), 
Conformer Energy, Jurs-Partial-Positively-charged-
Surface-Area-2 (Jurs-PPSA-2), Jurs-Relative-Negative-
CharGe (Jurs-RNCG), and Jurs-Total-Polar-Surface-Area 
(Jurs-TPSA). The commonality of physicochemical 
properties   shows  the  minimal  requirement  for  activity 
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Fig 3  The correlation plot of predicted vs. observed anti-

bacterial activities of the two 3D-QSAR models. 

against SA and MR. The importance of electrostatic 
potential for the AMP bioactivity can be seen from the  
physicochemical properties such as Dipole-magnitude 
(Dipole-mag), Formal charge (Fcharge), Jurs-Fractional-
Negatively-charged-Surface-Area (Jurs-FNSA-3), Jurs-
Relative-Polar-Surface-Area (Jurs-RPSA), Jurs–
Fractional-Positive-Surface-Area–1 (Jurs-FPSA-1), Jurs–
Fractional-Negative-Surface-Area–1 (Jurs-PNSA-1), 
Jurs–Fractional-Negative-Surface-Area–2 (Jurs-PNSA-2), 
Jurs–Partially-Positive-Surface-Area–1 (Jurs-PPSA-1), 
and Jurs-Relative-Positive-CharGe (Jurs-RPCG). While 
the significance of the AMP molecular shape for 
bioactivity is evident from the physicochemical properties 
such as molecular Density (Density), number-of-H-bond-
acceptors (H-bond acceptor), Jurs-RelAtive-hydrophobic-
Surface-Area (Jurs-RASA), number-of-H-bond-donor  
(H-bond donor), molecular-Radius-Of-Gyration 
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(RadOfGyration), and number-of-Rotatable-bonds 
(Rotlbonds).  The importance of amphipathicity is alluded 
to by the physicochemical properties such as Jurs-RASA, 
Jurs-RPSA, and AlogP. The top six descriptors (DSP) viz. 
Jurs-FPSA-1 (29.35%), Density (-16.01%), Jurs-TASA (-
14.76%), Jurs-PNSA-1 (10.54%), Jurs-RASA (7.89%), 
and Jurs-SASA (4.12%) account for 82% of the SA 
predicted activity. The correlation of non-polar surface 
area to bioactivity is evident from the descriptors such as 
Jurs-TASA with –14.76% DSP contribution and Jurs-
RASA with 7.89% DSP contribution.  The significant 
descriptors accounting for 82% of MR predicted activity 
are Density (-30.78%), Jurs-RASA (16.83%), Jurs-PPSA-
1 (-15.49%), Jurs-TPSA (10.22%), Jurs-RPSA (-5.44%), 
and H-bond donor (-3.91%). The correlation of the polar 
surface area to the MR bioactivity is evident from the 
descriptors Jurs-PPSA-1 with –15.5% DSP, Jurs-TPSA 
with 10.5% DSP contribution & Jurs-RPSA with –5.44% 
DSP contribution.  The hydrophobicity and hydrophilicity 
correlation with the MR bioactivity is shown by the 
descriptors Jurs-RASA with 16.8% DSP contribution, and 
H-bond donor with –3.9% DSP. The contribution of shape 
to MR predicted bioactivity comes from the descriptor 
Density with –30.78% DSP contribution.  
 
 

3. CONCLUSION 
 

The 3D-QSAR modeling efforts presented herein 
demonstrate the utility and advantages of the novel 
bioactive confirmation mining methodology in the quest 
of predictive 3D-QSAR models.   
 

4. REFERENCES 

Accelrys, Inc., 2005: Performing a conformaitonal 
analysis. Cerius2 Version 4.10L Manual, 49. 

Bhonsle, J. B., A. K. Bhattacharjee, and R. K. Gupta, 
2007: Development of QSAR models for insect 
repellent amides. J Mol Model, 13, 179-208. 

Blondelle, S. E., K. Lohner, and M.-I. Aguilar, 1999: 
Lipid-induced conformaiton and lipid-binding 
properties of cytolytic and antimicrobial peptide: 
determination and biological specificity. Biochimica et 
Biophysica Acta, 1462, 89-108. 

Brewste, D., 2001: The story of mankind's deadliest foe. 
BioMedical Journal, 323, 289. 

Brogden, K. A., 2005: Antimicrobial peptides: pore 
formers or metabolic inhibitors in bacteria? Nature 
Reviews Microbiology, 3, 238-250. 

Chang, G., Guida, W.C., Still, W.C., 1989: An internal 
coordinate Monte Carlo method for searching 
conformational space. J. Am. Chem. Soc., 111, 4379-
4386. 

Dennison, S. R., J. Wallace, F. Harris, and D. A. Phoenix, 
2005: Amphiphilic α-helical antimicrobial peptides and 
thier structure/function relationships. Protein and 
peptide Letters, 12, 31-39. 

Ghose, A. K. and G. M. Crippen, 1986: Atomic 
physicochemical parameters for three-dimensional 
structure-directed quantitative structure-activity 
relationships. I. Partition coefficients as a measure of 
hydrophobicity. Journal of Computational Chemistry, 
7, 565-77. 

Hicks, R. P., J. B. Bhonsle, D. Venugopal, B. W. Koser, 
and A. J. Magill, 2007: De novo design of selective 
antibiotic peptides by incorporation of unnatural amino 
acids. J Med Chem, 50, 3026-36. 

Justice, R. W., H. Biessmann, M. F. Walter, S. D. 
Dimitratos, and D. F. Woods, 2003: Genomics spawns 
novel approaches to mosquito control. BioEssays, 25, 
1011-1020. 

Kier, L. B., 1985: A shape index from molecular graphs. 
Quan Structure-Activity Relationships, 4, 109-16. 

Kier, L. B. and L. H. Hall, 1992: The Electrotopological 
State Index: An Atom-Centered Index for QSAR. Vol. 
22, Advances in Drug Research, Academic Press, 205. 

Levitt, M. and S. Lifson, 1969: Refinement of protein 
conformations using a macromolecular energy 
minimization procedure. J Mol Biol, 46, 269-79. 

Marsali, M. and J. Gasteiger, 1980: Charge distribution 
from molecular topology and orbital electronegativity. 
Journal Croatica Chimica Acta, 53, 601-614. 

Mayo, S. L., B. D. Olafson, and W. A. I. Goddard, 1990: 
DREIDING: A generic force field. J. Phys. Chem., 94, 
8897-8909. 

McIver, S. B., 1981: A model for the mechanism of action 
of the repellent DEET on Aedes aegypti 
(Diptera:Culicidae). J Medical Entomology, 18, 357-61. 

Rohrbaugh, R. H. and P. C. Jurs, 1987: Descriptions of 
molecular shape applied in studies of structure/activity 
and structure/property relationships. Analytica Chimica 
Acta, 199, 99-109. 

Stanton, D. T. and P. C. Jurs, 1990: Development and use 
of charged partial surface area structural descriptors in 
computer-assisted quantitative structure-property 
relationship studies. Analytical Chemistry, 62, 2323-9. 

Suryanarayana, M. V. S., K. S. Pandey, S. Prakash, C. D. 
Raghuveeran, R. S. Dangi, R. V. Swamy, and K. M. 
Rao, 1991: Structure-activity relationship studies with 
mosquito repellent amides. Journal of Pharmaceutical 
Sciences, 80, 1055-7. 

Yao, S. W., V. H. Lopes, F. Fernandez, X. Garcia-Mera, 
M. Morales, J. E. Rodriguez-Borges, and M. N. 
Cordeiro, 2003: Synthesis and QSAR study of the 
anticancer activity of some novel indane carbocyclic 
nucleosides. Bioorg Med Chem, 11, 4999-5006. 

 
DISCLAIMER 

Material has been reviewed by the WRAIR.  There is 
no objection to its presentation and/or publications.  The 
opinions or assertions contained herein are the private 
views of the authors, and are not to be construed as 
official, or as reflecting true views of the Department of 
the Army or the Department of Defense. 


