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Figure 1. Urban environment classification with our approach. This paper is best viewed in color. Unless otherwise noted, the same color
code labeling is used throughout the paper: brown for ground, red for facade, green for scatter, dark blue for pole/trunk, skye blue for wire.

Abstract

This paper addresses the problem of assigning a la-
bel to three-dimensional data points collected from laser
scanners. We are specifically interested in the application
of environment modeling for autonomous robot navigation
in natural and urban terrains. To capture contextual in-
formation, we choose to work within the Markov Random
Field framework. The approach used in this paper is a vari-
ant of the Associative Markov Network (AMN), extended to
learn directionality in the clique potentials, resulting in a
new anisotropic model that can be efficiently learned us-
ing a gradient-based method for non-differentiable func-
tion. We validate the proposed approach using data col-
lected from different range sensors.

1. Introduction

In this paper, we address the problem of automated
interpretation of 3-D point clouds from scenes of urban and
natural environments; our analysis is performed off-line,
from data acquired by two mobile mapping systems. An
example of our approach is illustrated in Figure 1 with five
commonly found object classes : ground, facade, scatter,
pole/trunk, wire. We are interested in context-based 3-D
point classification where, in addition to local features, a
point’s label is based on its neighboring points’ label con-

figuration. Markov Random Fields (MRFs) (Li, 1995) con-
stitute one of the options to account for neighboring infor-
mation. Such techniques proved to outperform classifiers
based only on local features ((Lalonde et al., 2007)) but
tend to smooth out small components in the scene. To ad-
dress this problem, we are interested in using a MRF vari-
ant called an Associative Markov Network (AMN) (Taskar
et al., 2004).

AMNs and its variants in the literature (Anguelov
et al., 2005; Triebel et al., 2007, 2006) rely on local features
and isotropic contextual information. With the isotropic
model, the influence from surrounding points is only based
on their label, regardless of their relative direction. We pro-
pose to extend the AMN to account for local directional
information, thus producing an anisotropic model. The di-
rectional information can come from the relative position
of the two points, or from a non-geometric feature, or from
the local point topology. Our proposed approach is differ-
ent, as we will show, from using local directional features.
This natural extension is enabled by utilizing the recently
proposed subgradient method shown to solve AMNs effi-
ciently (Ratliff et al., 2007). Originally, learning for AMNs
was formulated as quadratic program which is very mem-
ory intensive when applied to 3-D point cloud processing;
however, with the subgradient method, memory constraints
are only linear in the amount of training data, thus allowing
the development of a more expressive model. We compare
the improvement in our model against the standard AMN
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and a linear Support Vector Machine (SVM) (Joachims,
1999).

This paper reuses the formulation and some mate-
rial presented in (Munoz et al., 2008). The emphasis is
put here on experimentation and new results are presented
including results produced using data from the Demo-III
XUV (Bornstein and Shoemaker, 2003).

The paper is structured into five sections. In the
next, various notations are introduced and background on
the AMN and subgradient method is presented. The con-
tributions of the paper follows in Section 3 and results in
Section 4. Section 5 concludes the paper.

2. Associative Markov Network
2.1. Problem

Following the notation from (Taskar et al., 2004),
our classification task can be formalized as follows. Given
a set of N random variables Y = {Y1, . . . ,YN}, where each
variable can obtain a value Yi ∈ {1, . . . ,K}, find the assign-
ment of values of y = {y1, . . . ,yN} to Y that maximizes
some scoring function. In the context of 3-D point clas-
sification, each random variable represents a 3-D point and
its value corresponds to the label it can be assigned. Formu-
lating the classification task as a supervised learning prob-
lem, we want to learn a discriminative model that condi-
tions the joint distribution on the features x that we can
extract from the scene Pw(y|x), where w are the model pa-
rameters. The classification procedure is then broken into
two steps: (1) learning the model parameters given labeled
data (x, ŷ) and then (2) inferring the best assignments of a
novel scene given its features.

2.2. Standard AMN formulation

A MRF, also called a Markov Network, defines a
joint distribution for random variables Y; it is represented
as an undirected graph with N nodes for each random vari-
able and edges E = {(i, j)}|(i < j) that define the inter-
actions between variables. Generally, a non-negative po-
tential function is defined for cliques of arbitrary size in
the graph; however, due to the requirement of efficient in-
ference techniques, focus is generally on pairwise Markov
Networks. This model only defines a node potential φi(yi)
for each node i and an edge potential φi j(yi,y j) for linked
nodes i and j. These potentials measure the affinity1 of
the assignment to the variables in the cliques. A log-linear
model is used to represent the dependence of the potentials
on the features x = {xi,xij} where xi ∈ Rdn and xij ∈ Rde

are the features that describe node i and the relationship
between nodes i and j, respectively. The log of the node
potential is defined as logφi(k) = wk

n ·xi where k = yi (the
label value of node i) and wk

n ∈ Rdn are the weights used
when a node is assigned k.

1The affinity value is also referred to as the energy of the clique.

Under the AMN framework, a variant of the
Pott’s model is used that penalizes differing assignments
across an edge: ∀k 6= l, logφi j(k, l) = wk,l

e · xij = 0 and
logφi j(k,k) ≥ 0, where wk,l

e ∈ Rde are the weights used
when linked nodes are assigned k and l. In order to en-
sure non-negativity in the edge potentials, the feature and
weight vectors are constrained by xij ≥ 0 and wk,k

e ≥ 0. Fi-
nally, changing the representation of an assignment y with
a vector of K ·N indicator variables where y = {yk

i ,k, i|yk
i =

I(yi = k)}, the log of the joint-conditional probability
logPw(y|x) is given by:

N

∑
i=1

K

∑
k=1

(wk
n ·xi)yk

i + ∑
(i j)∈E

K

∑
k=1

(wk,k
e ·xi j)yk

i yk
j − logZw(x)

(1)
where Zw(x) = ∑y′ ∏

N
i=1 φi(y′i)∏i j∈E φi j(y′i,y

′
j) is the par-

tition function. Note although this value is intractable to
compute, it does not depend on y which is essential for per-
forming inference.

To abbreviate notation, define a K(dn + de) length
row vector w = {wn,we} with wn = {w1

n, . . . ,wK
n } and

we = {w1
e , . . . ,wK

e }. Also redefine y to be a K(N + |E|)
column vector y = {yn,ye}T with yn = {. . . ,y1

i , . . . ,y
K
i , . . .}

and ye = {. . . ,y1
i j, . . . ,y

K
i j, . . .} where yk

i j = yk
i ∧ yk

j. Finally,
construct X to be a K(dn + de)×K(N + |E|) matrix such
that logPw(y|x) = wXy− logZw(x). This matrix will con-
tain the features repeated multiple times in the columns and
padded with zeros appropriately.

Note that the inference task y∗ =
argmaxy Pw(y|x) = argmaxy wXy is an integer pro-
gram and is NP-hard. In (Taskar et al., 2004), the authors
show how to relax the integral constraints on y, resulting
in a linear program that finds the optimal solution when
K = 2. For K > 2, a rounding procedure is performed that
achieves an approximation. The authors also state that
when K = 2, exact inference can be done by finding the
min-cut of a specially constructed graph because the asso-
ciative constraints on the negative edge potentials define a
submodular2 function (Kolmogorov and Zabin, 2004). For
K > 2, performing an iterative min-cut algorithm, called
α-expansion, also achieves an approximation. We refer to
(Taskar et al., 2004) and (Kolmogorov and Zabin, 2004)
for more details.

Finding the optimal w is formulated as a max-
margin learning problem. Given labeled data (x, ŷ), the
goal is to find the weights that maximize the margin of con-
fidence in Pw(ŷ|x) versus Pw(y|x) ∀y 6= ŷ. This learning
problem is formulated as the following convex program:

min
w,ξ

1
2‖w‖2 +ξ

s.t wXŷ+ξ ≥ max
y

wXy+L(y)
(2)

2A function of two binary variables E(α,β) is submodular if and only
if E(0,0)+E(1,1)≤ E(0,1)+E(1,0)
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where ξ is a slack variable that represents the gap in the
total energy between the optimal and achieved solutions
and L(y) is a loss function which measures the error of
classification. As in (Taskar et al., 2004) and (Anguelov
et al., 2005), we use the Hamming distance between the
true and achieved assignments for our loss function. In
(Taskar et al., 2004), the authors show how to substitute
the dual of the inference LP to bound the non-linear con-
straint which then results in a valid quadratic program and
can then be solved by optimization software. Again, we
refer to (Taskar et al., 2004) for more details.

2.3. Subgradient method for learning

In (Ratliff et al., 2006, 2007), the authors show that
it is possible to solve Program 2 by writing the constraint in
the objective function, due to the slacks being equal at the
optimal condition, and then taking the subgradient of the
resulting objective function. Thus, the AMN regularized
cost function is:

c(w) =
λ‖w‖2

2
+max

y
(wXy+L(y))−wXŷ (3)

The key to compute the subgradient of Equation
3 is to use the property: if f (a,b) is differentiable in a,
then ∇a f (a,b∗) is a subgradient of the convex function
maxb f (a,b) for b∗ ∈ argmaxb f (a,b). Therefore, a sub-
gradient gw ∈ ∂c(w) is:

gw = λw+Xy∗−Xŷ

As previously mentioned, solving maxy(wXy +
L(y)) can be done with graph cuts or an LP. Starting with
w = 0, the solution is then achieved through descent until
convergence, or T iterations, using the update rule at time
t:

wt+1 = PW [wt−αgwt ]

where PW projects w onto a convex set W formed by any
specific convex constraints on w; for AMNs, this projection
enforces any negative we to become 0. Typical step-sizes
are α = c

t and α = c√
t , for some positive c.

3. Directional Associative Markov Network
3.1. Motivation

Applications of AMNs for 3-D point cloud classifi-
cation have proved to do well when classifying large, domi-
nant structures in the scene such as vegetation, buildings or
walls, and the ground plane (Triebel et al., 2006; Anguelov
et al., 2005). However, in most urban environments, there
exist finer objects such as branches, posts, utility poles, and
power-lines that are harder to perceive with laser scanners.
In addition, these labels prove more challenging to classify
when in the vicinity of data from more dominant labels,

such as vegetation, because the AMN prefers to spatially
maintain the same labels. Observe that Equation 1 is max-
imized when the labels of two nodes in an edge potential
agree and the combination of the features and correspond-
ing chosen weights is highest. Thus, when indicative fea-
tures for the label cannot be computed, the label assignment
is chosen to agree with its surroundings which may smooth
away these small structures we are interested in.

3.2. Directionality

By accounting for directional information when
computing our edge potentials we propose to address the
limitations presented above. A basic way to accomplish
this is to utilize the edge orientation when computing the
energy. However, for 3-D point cloud processing the edge
orientation is not expressive enough as the created edges
will depend on the point density. Fortunately, most objects
in the world often have an associated and well-defined di-
rection that we can estimate. For example, tree trunks gen-
erally grow vertically, power-lines usually lie horizontally
and we can estimate a local tangent vector at each point for
both labels. Our goal is utilize this intrinsic information in
our model so that a node’s context accounts for its neigh-
bors’ local directions in addition to the labels. The idea
behind this approach is to create a more expressive model
that learns how to classify the data correctly when the esti-
mated features, and consequentially the estimated local di-
rection, are in a less separable or in a lower density region
of the feature space. That is, we do not learn a single set
of weights that tries to, overall, best model one class’ fea-
tures. Instead, we want to account for variation in feature
estimation and learn multiple sets of weights for different
locations in feature space that best model the class. By
incorporating directional information in the AMN frame-
work, we show how we can better preserve these smaller
structures and improve the overall classification rate.

3.3. Anisotropic model

The standard AMN formulation is an isotropic
model, that is, regardless of the orientation of the edge,
the potentials are computed in the same manner. We pro-
pose using an anisotropic model where the weights chosen
to compute the edge potentials depend on its label and de-
fined direction; we call this new model a Directional AMN.
We note that our approach extends to cliques of arbitrary
size and is not limited to those of size two. The directional
information is obtained by comparing a clique’s intrinsic
direction against a predefined reference direction when the
clique is labeled k. The resulting angle between the intrin-
sic and reference directions is then binned. In addition to
the label, the binned angle determines the sets of weights
used to compute the clique potential, thus producing an
anisotropic model. Figure 2 illustrates the following expla-
nation of computing an anisotropic edge potential when its

3



nodes are labeled k. For the two linked nodes (ni, n j) an in-
trinsic direction (~DI

i j) is computed that describes the direc-
tion of the clique (edge) when its nodes are labeled k. This
intrinsic direction can be defined arbitrarily. For example,
the intrinsic direction could simply be the direction of the
edge (~de), however, as previously mentioned, this would
not provide much utility. Another example is to define a
local feature direction for each node (~di) that describes the
local direction when labeled k, such as the normal vector
when fitting a plane, and then define the clique’s intrinsic
direction to be a function of each node’s feature direction.
The reference direction can be an absolute direction (~DA),
such as the vertical axis, or based on the local point cloud
topology.

Figure 2. Directionality illustration.

It is important to note that the anisotropic model is
different from an isotropic model with directional informa-
tion in the features space; Figure 3 illustrates this claim. In
this example, two artificial data sets were generated that
contain two intersecting lines, parallel to the x-y plane,
and are surrounded by randomly generated scattered points
at two different locations. Note that this synthetic point
cloud configuration mimics a common natural scene where
power-lines are embedded in the vegetation. In the training
set, illustrated in Figure 3-(a), the scattered points lie at the
extremity of the lines, and for the testing set, illustrated in
Figure 3-(b), the scattered points are moved to the intersec-
tion of the lines. In this example we use a standard and
Directional AMN with the features defined in Section 4.3.
Figure 3-(c), shows that the standard AMN smoothes out
the classes we are interested in, while Figure 3-(d) shows
that the Directional AMN performs a better job of preserv-
ing the small linear structure while increasing overall clas-
sification rate.

3.4. Directional AMN formulation

Incorporating the anisotropic potentials involves
modifying the higher-order clique potentials from the orig-
inal formulation, that is, modifying the edge potentials in
the pairwise model. These clique potentials must now
consider a direction term when computing the potential.
For each label k, we parameterize a direction by binning
the possible angle-space formed by the intrinsic direction
against the reference direction when all nodes in the clique

(a) (b)

(c) (d)
Figure 3. Difference between directional features and directional
potentials, with the lines/scatter points in blue/green. (a) Training
data. (b) Ground truth for the testing data. (c) Standard AMN. (d)
Directional AMN.

are labeled k. Remember that the intrinsic and reference
directions are specific to each label. We denote the set of
bins that constitute this space for label k as Θk. Note that
the number of bins |Θk| for each label’s angle-space are
not necessarily equal. Therefore, the weight vector chosen
when computing the clique potential is dependent on the
clique’s label k and the computed bin θ ∈ Θk that the angle
between the intrinsic and reference directions falls under,
for label k. In the pairwise model, the anisotropic edge po-
tentials are then defined logφi j(k,k) = wk,θ

e ·xij ≥ 0 where
θ∈Θk is the computed bin, and ∀k 6= l, logφi j(k, l) = 0. In-
corporating these changes, logPw(y|x) is proportional to:

N

∑
i=1

K

∑
k=1

(wk
n ·xi)yk

i + ∑
(i j)∈E

K

∑
k=1

∑
θ∈Θk

(wk,θ
e ·xi j)yk

i yk
jΩ

θ

i j,k (4)

where Ωθ

i j,k is an indicator function defined to be one if the
nodes in edge/clique (i j) are both labeled k and the angle
between its intrinsic and reference direction lies in bin θ ∈
Θk.

As done with the standard AMN, we can relax
Equation 4 into a linear combination. This is achieved by
introducing indicator variables yk,θ

i j = yk
i ∧ yk

j ∧Ωθ

i j,k and
redefining ye to be a |E| ∗ K ∗ ∑

K
k=1 |Θk| length indica-

tor vector: ye = {. . . ,yk,1
i j , . . . ,yk,|Θk|

i j , . . .}. Similarly, re-
define we to be a K ∗ de ∗∑

K
k=1 |Θk| length vector: we =

{. . . ,wk,1
e , . . . ,we

k,|Θk|, . . .}. Appropriately redefining X,
we can now rewrite Equation 4 in matrix form wXy and
solve the new model using the subgradient method as be-
fore. Inference is easily performed through the min-cut
framework with the α-expansion algorithm (Boykov and
Kolmogorov, 2004). At each expansion step, we compute
the potential of each clique. If all the nodes’ labels in a
clique agree, then the associated intrinsic and reference di-
rections are determined for that clique and label. Using
the resulting computed bin and label, the appropriate set of
weights are then selected to compute the potential.
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4. Experiments
4.1. Data sets and features

The results presented below were obtained using
data collected using two different mapping systems: a ve-
hicle equipped with a set of SICK lasers and Demo-III
XUV. In both cases the vehicle was used to collect spatially
aligned data and no data processing occurred onboard the
vehicle. The first data set, coined the ”push-broom” data
set, was produced using a set of static SICK laser mounted
on a moving platform equipped with a navigation system.
The vehicle drove in an urban environment at up to 20
km/h. The second data set, coined ”XUV” data set, was
produced using the Demo-III XUV equipped with a 3-D
mobility ladar mounted on a turret, in the front of the XUV.
The Demo-III XUV was tele-operated in forested environ-
ments and a mock-up urban environment at 2 m/s.

The various data sets were hand labeled systemat-
ically into more than fifty different classes. Labels were
filtered out or collapsed into one of five labels (wire,
pole/trunk, scatter, ground and facade). A total of half
million 3-D points were labeled and used to produce re-
sults with ground truth for this paper. A total of more than
five millions 3-D points corresponding to more than two
kilometers traversed were classified and analyzed for the
”push-broom” data set. In the ”XUV” data set, the data
were first collapsed into 10 cm edge-voxels. Half million
of voxels were labeled from a total of 140 millions voxels
collected over 10 km of traverse.

We implemented three geometric features com-
monly used in spectral analysis of point clouds. We de-
fine λ2 ≥ λ1 ≥ λ0 to be the eigenvalues of the scatter ma-
trix M defined over a local neighborhood Np around point
p. These features capture the {point, surface, linear}-
”ness” of the local geometry: {σp = λ0,σs = λ1−λ0,σl =
λ2−λ1}, respectively. We will refer to these as the spectral
features. Next, we estimate the local tangent ~vt and normal
~vn vectors for each point by using the principal and least
principal eigenvectors of M, respectively. We then compute
the cosine and sine of the angles formed between the direc-
tions of ~vt and ~vn against the vertical and horizontal plane,
resulting in four values. Though, depending on the local
neighborhood, the estimated directions may be arbitrary.
We estimate a confidence by scaling the values when using
{~vt ,~vn} by {σl ,σs}/max(σl ,σp,σs), respectively. We will
refer to these scaled values as the directional features. The
actual node and edge features used for each experiment will
be defined in their upcoming and respective subsection.

4.2. Model parameters and timing

Optimal parameters were obtained by maximizing
the classification rate of various labeled data sets. For re-
sults reported on both data sets, we obtained the subgradi-
ent parameters λ = 0.005 and α = 1

2t . For the ”sweeping”
data, T = 500 and for the ”push-broom” data, T = 800.

The Np was defined with a radius of 0.6 m for the ”push-
broom” data; we disregard points where |Np|< 4.

Results were computed on a Intel(R)-based 2.40
GHz processor with 4 GB RAM. We present timing analy-
sis on the ”push-broom” data set. The training set consisted
of a graph with 18 898 nodes and 55 507 edges. Train-
ing took 151 minutes for the Directional AMN versus 148
minutes for the standard AMN. The ground truth testing
set consisted of a graph with 385 611 nodes and 1 077 968
edges; 4 690 points were disregarded due to neighborhood
size. On the test data set, feature computation and graph
construction completed in under 6.5 minutes, combined.
Inference for the Directional AMN required 9.3 minutes
versus 9 minutes for the standard AMN.

We constructed the graphs by iterating over the
nodes and linking each node to its five nearest neighbors.
We observed that the facade had the least amount of inter-
actions with the other labels while scatter had the most.

4.3. Classifying the ”push-broom” data set

We compare Directional AMN (facade, ground
pole/trunk, wire) against the standard AMN, where facade
binned the angles between ~vn and the horizontal plane into
bins {[0,π/6],(π/6,π/2]}. Anisotropic potentials are de-
fined for both the pole/trunk and wire label to bin the space
between ~vt and the horizontal plane and vertical, respec-
tively, into bins {[0,π/6],(π/6,π/2]}. For these results
we found using the directional features in both models
increased performance, and we note that the Directional
AMN performed better in both. For the edge features, we
concatenate two linked nodes’ spectral features and com-
pute a similarity feature for the directional features. This
similarity feature is defined to be 1/(1+ |d fi−d f j|) where
d fi is a directional feature of node i.

Figure 4 shows results on part of the section used
for quantitative performance evaluation. Note the close-up
view of the pole and wires correctly labeled. Points not be-
longing to the five labels used for this evaluation were fil-
tered out from the fully labeled ground truth data. We chose
this approach to be able to correctly compare the classifi-
cation results of the standard and Directional AMN with
different features.

Table 1 presents the recall and precision, for the
Directional AMN, and standard AMN, computed over the
subset with ground truth, over 390 000 points. As shown
the Directional AMN is producing better precision and re-
call than the standard AMN for all labels. The most com-
mon error in classification is due to point density variation.
This is clear with the precision of the wire and pole/trunk
labels. Sections of ground far from the sensor tend to be
mislabeled as wire. Low density coupled with occlusions,
generate facade points being mislabeled as pole/trunk. The
second common source of error is the inability of the fea-
tures to capture the scene. For example bundle wires are
misclassified as facade in Figure 4. A second example is
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Figure 4. Push-broom” data set. First example of the classification of part of the ground truth subset into five labels. Top, scene overview.
Bottom: left and center, scene picture, from Google StreetView; right, classification close-up view.

Figure 5. ”Push-broom” data set. Second example of the classification of part of the ground truth subset into five labels. Left, directional
amn; center and right, scene picture, from Google StreetView.

presented in figure 5.

Recall Precision
scatter 0.881 (0.856) 0.974 (0.973)
wire 0.789 (0.778) 0.125 (0.124)

pole/trunk 0.926 (0.899) 0.287 (0.230 )
load bearing 0.949 (0.945) 0.982 (0.963)

facade 0.786 (0.672) 0.908 (0.865)
Table 1. ”Push-broom” data set. Precision and recall for the di-
rectional AMN and standard AMN for the ”push-broom” data set.
The overall classification rate is 91.66% versus 89.67% for the
standard AMN on the same features.

We processed the non-ground truth subsection of
the ”push-broom” data set, over 4.5 millions 3-D points.
In such a case, all scene elements from the raw data are
present. We present results for the best classifier, the Di-
rectional AMN; qualitatively the classifier performs well,
as shown in Figure 6 and Figure 7. Objects not part of the
training data, such as traffic signs, traffic lights and their
support post are actually assigned to the closest geometri-
cal label, respectively facade and linear.

4.4. Classifying the ”XUV” data set

We present here preliminary qualitative results ob-
tained with data collected using the Demo-III XUV, in ur-

Figure 6. ”Push-broom” data set. Classification on raw data with
five labels: left, standard AMN; center, directional AMN; right,
scene picture, from Google StreetView.

ban (Figure 8) and natural environment (9). Note that the
Demo-III XUV could not be deployed in the same environ-
ment as the one used for the ”push-broom” data set, and
that the environment available did not contain power lines.
In Figure 8, the utility pole is segmented correctly as well
as the ground, the facade and the small retaining wall on the
right hand side of the image. The column are also classi-
fied correctly. A noticeable error is the misclassification of
the junction with the ground as ”foliage”. The quantitative
analysis of those results is not yet available. In Figure 9, the
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Figure 7. ”Push-broom” data set. Classification on raw data with five labels. Top: Left, standard AMN; center, directional AMN; right,
scene picture, from Google StreetView.

short grass tend to be classified as (rough) ground while the
Jersey barrier is not segmented because of the clutter and
occlusion by vegetation.

5. Conclusion
In this paper we present a contribution to the prob-

lem of automated 3-D point cloud classification for scene
interpretation. We extend the standard Associative Markov
Network model to account for directional information, thus
producing a new anisotropic model capable of represent-
ing accurately more complex scene structures than before.
Recent developments in optimization with the subgradient
method have allowed us to develop and learn this more
complex model. We show how the proposed Directional
AMN is different from using directional features with the
standard AMN formulation. The approach is validated us-
ing data accumulated by two different mobile mapping sys-
tems. We produced quantitative performance evaluations
on a very large manually labeled set (over 400 000 points)
and qualitative on the remaining data for a total of more
than 12 km of terrain traversed. We are currently integrat-
ing this approach onboard the Demo-III XUV for on-line,
on-board data processing for environment modeling.
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