
ANALYSIS OF ATOMISTIC/CONTINUUM COUPLING USING MESHLESS METHODS 
M. Macri, P. W. Chung 

U.S. Army Research Laboratory 
Aberdeen Proving Ground, MD 

 

ABSTRACT 

In this paper, we compare three interpolation 
functions in a discretized continuum when used in 
coupled dynamic atomistic-to-continuum simulations.  
The focus is on assessing the ability of the discrete 
continuum model to capture and accurately represent 
transient effects, namely a travelling longitudinal wave, 
through both the mixed atomistic-continuum interface and 
the non-uniform continuum mesh beyond.  We 
specifically examine the differences among Bubnov-
Galerkin, partition of unity, and moving least squares 
finite element methods in the continuum part of the 
multiscale model. Our study shows that using partition of 
unity interpolation functions in the continuum produces 
superior results compared to the other two approaches. 

INTRODUCTION 

It is well known that continuum based techniques 
such as Lagrangian or Eulerian numerical methods, which 
use constitutive relations that do not account for the 
atomistic structure, are invalid beyond the scope of their 
calibration. In regions containing dislocations, mobile 
defects, or nonlinear material, these numerical methods 
have to be modified to capture important phenomena. 
Molecular dynamics (MD) is an excellent means for 
predicting interactions on an atomic scale as well as 
predicting the response when sub-micron scale 
phenomena occur. However, MD can be computationally 
expensive beyond small sample sizes and has difficulty 
implementing boundary conditions applied at a continuum 
scale. Therefore, to alleviate these problems multiscale 
methods have been developed in recent years to couple 
the continuum and atomistic scales together.  

There has been extensive work on developing novel 
coupling techniques for linking atomistic and continuum 
scales.  These techniques include the quasicontinuum 
method [1], bridging domain method [2], bridging scale 
method [3] and homogenization techniques [4,5], among 
others.  A thorough review of several recent techniques is 
given in [6]. These techniques have been developed using 
the finite element method within the continuum scale.  
Though seemingly well known, to our knowledge, an 
examination of the level of approximation and choice of 
interpolation in the continuum region in and around the 
discrete atomistic domain has not been shown. 

In this paper we show a comparative study of the 
quality of interpolation that best suits continuum methods 
in regions at and near the interface with a molecular 
dynamics region.  We specifically examine interpolation 
functions prominent in general finite element methods 
and meshless methods – Bubnov-Galerkin, partition of 
unity [7], and moving least squares [8] – and assess their 
ability to capture a travelling wave through a 
discrete/continuum interface and a non-uniform finite 
element mesh (increasing element size away from the MD 
region).  Within the interface region, where the continuum 
and atomistic scales overlap, the displacements on the 
continuum are dictated by the atomistic results generated 
from MD.  In this study, the forces between the domains 
are communicated from the atoms to the continuum 
through ghost nodes.   

CONTINUUM FORMULATION 

We begin by reviewing the governing equations on 
the continuum scale. The conservation of momentum can 
be defined as: 

 ( ) ufP &&0000000 VVV ρρ =+∇   (1) 

where P is the first Piola-Kirchoff stress tensor, f0 is the 
body force, ρ0 is the density, V0 is the initial volume and 

 is the acceleration.   u&&

From classical hyperelastic continuum approximation we 
can define the first Piola-Kirchoff stress as: 
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where W is the potential energy density, and F is the 
deformation gradient defined as: 
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where X denotes the reference configuration and x 
denotes the spatial or current configuration. In order to 
use equation (1) for numerical techniques such as general 
finite elements we use the principal of virtual work to 
obtain the variational form: 
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where w is the virtual displacement. In the next two 
sections we define two different approaches to 
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approximating the displacement and virtual displacement, 
such that: 
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where h is a vector of interpolation functions and α is a 
vector of coefficients.   

PARTITION OF UNITY  

For the partition of unity paradigm [6], define a 
weighting function, W, on each node that is compactly 
supported on IB  with the following properties: 
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The symbol ( )I
s BC0  stands for the space of functions that 

are compactly supported on IB , where in the case of 
general finite elements IB  is generated using neighboring 
elements,  which have continuous derivatives of order s. 
We define the Shepard partition of unity function at each 
node I as: 
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From the partition of unity property it follows that the 
functions satisfy zeroth order consistency, i.e. they ensure 
that rigid body modes are exactly satisfied. The next step 
is to develop, at each node I, a local approximation space 
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where h is a measure of the size of the spheres, p is the 
polynomial order, ξ  is an index set, H1 is the first order 
Hilbert space, and  is a polynomial or other 
function. Finally, the global approximation space is 
defined by pasting together the local spaces as follows:  
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and hIm is the shape function at node I corresponding to 
the mth degree of freedom.  

MOVING LEAST SQUARES 

In moving least squares we set the approximation to: 
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where p is a vector composed of the monomial basis 
functions as in equation (7) and β(x) is a vector composed 
of their coefficients. These coefficients are obtained by 
using a weighted least square fit for the local 
approximation. We can derive this by minimizing the 
difference between the local approximation and the 
function, such that: 
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where P is a matrix composed of the monomial basis 
functions and ψ is a matrix composed of the weighting 
functions having the same properties as those used in 
partition of unity interpolation functions.   This results in: 
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And the shape function is defined as: 
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MOLECULAR DYNAMICS 

For the atomistic scale the governing equation for 
MD is Newton’s equation of motion defined as 

 aaa fm =u&&     (17) 

where ma is the mass,  is the acceleration and fau&& a is the 
force acting on discrete atoms, a. For our study we will 
only examine short range interactions.  The force is 
defined as: 
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where abφ  is the interatomic potential.    
     

In this paper we specifically examine a linear 
harmonic potential and a non-linear Lennard-Jones 
potential, where the harmonic potential is given as: 

 ( )20,2
1

abab
H
ab rrk −=φ     (19) 



where k is a constant and r0 is the zero potential distance 
between two atoms. The Lennard-Jones potential is 
defined as: 
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where ε and σ and constants. 

 

COUPLING 

In figure 1 we define the domain as discretized into a 
region in which the continuum equations are applied, ΩC, 
and a region in which MD is applied, ΩA.  There is an 
overlap between these two regions defined as the interface 
region ΩI.  

 
Figure 1: Coupling Domain  

The constraint that matches atoms to nodes in the 
interface is applied through a penalty formulation. The 
result is a modified variational form of (4): 
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Where  is the penalty constant which is generally a large 
positive number.  To enforce the interface conditions for 
MD, ghost atoms are placed in the continuum region (see 
figure 1) to avoid a surface layer or unphysical 
termination in the interface. 

NUMERICAL EXAMPLES 

We present three examples of a Gaussian wave 
propagating through atomic medium to illustrate the 
preliminary results.  The first two examples are 
demonstrated in a 1D domain, while the third is example 
is in two dimensions.  

For the first two examples the analysis is preformed 
on a 1D section of atoms and compared with simulation 

performed using MD throughout the entire model using 
79 atoms.  For the comparative study, the domain is 
discretized such that for  each atom is 
individually resolved and from 

22 ≤≤− x
210 ≤≤− x  and 

102 ≤≤ x  the different numerical interpolation schemes 
are applied. We compare the use of Bubnov-Galerkin, 
finite elements, partition of unity and moving least 
squares interpolation functions to full MD throughout the 
domain. The initial wave function is shown in figure 2. 
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Figure 2: 1D Example formulation 

For the first example we use a harmonic interatomic 
potential.  The results of the error in the displacements as 
the wave propagates are shown in figure 3. The red line 
represents the error in a continuum disctretized using 
finite elements the green line represents moving least 
squares functions and the blue represents partition of 
unity functions. 

 

Figure 3: Error comparisons for Harmonic potential. 

From this result, the partition of unity interpolation 
scheme is perform extremely well when compared to the 
full-MD analysis. Whereas finite elements and MLS 
functions perform about the same.  Spikes in the error 
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occur for wall three techniques when the wave passes 
through the boundaries.  
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shown in figure 2 using a Lennard-Jones potential.  The 
results are shown in figure 4. The results colaberate the 
above example with partition of unity functions 
performing better then the other two techniques. 
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Figure 4: Error comparisons for Lennard-Jones 
potential 

For the 2D example the domain is discretized such 
that for  each atom is individually resolved 
and from  and  the different 
numerical interpolation schemes are applied. We compare 
the use of Bubnov-Galerkin, finite elements and partition 
of unity interpolation functions to full MD throughout the 
domain. We use a harmonic interatomic potential in this 
example.   The initial wave function is shown in figure 5. 
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Figure 5: 2D example formulation 

The results, shown in figure 6, demonstrate again that 
partition of unity shape function out perform finite 
elements, however, the margin is much less. 

 

Figure 3: Error comparisons for 2D example. 
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