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ABSTRACT 
 

We describe the use of quantum-mechanically 
entangled photons for sensing intrusions across a 
physical perimeter. Our approach to intrusion detection 
uses the no-cloning principle of quantum information 
science as protection against an intruder’s ability to 
spoof a sensor receiver using a ‘classical’ intercept-
resend attack. We explore the bounds on detection 
using quantum detection and estimation theory, and we 
experimentally demonstrate the underlying principle of 
entanglement-based detection using the visibility 
derived from polarization-correlation measurements. 
 
 

1. INTRODUCTION 
 

Quantum information science (QIS) underlies a 
new paradigm for processing information in which the 
quantum mechanical nature of the physical substrate is 
taken into account. By drawing on uniquely quantum 
mechanical features, novel approaches to information 
processing can be developed, e.g., quantum computing 
and quantum key distribution (QKD). Some of the 
most remarkable examples include quantum 
teleportation for the non-local transfer of information, 
quantum algorithms for accelerating the time-to-
solution of select problems, and quantum sensing 
strategies for resolving signals with a precision limited 
by the Heisenberg uncertainty principle.  

 
In this report, we describe the adaptation of 

quantum information to sensing intrusions across a 
physical perimeter. Specifically, we suggest that a 
‘quantum fence’ based on the transmission of 
entangled photon pairs provides a unique capability for 
sensing when an intruder attempts to spoof a receiver 
using an intercept-resend attack. Underlying our 
proposal is the no-cloning principle, a tenet of QIS that 
prohibits perfect cloning of an arbitrary quantum state 
(Wootters and Zurek, 1982). As discussed below, the 

no-cloning principle ensures that an adversary cannot 
replicate the transmitted signal, while the nonlocal 
correlations established by entanglement reveal any 
attempts at deception. We propose implementing this 
idea using polarization-entangled biphoton states, and 
we present an experimental demonstration of how the 
polarization-correlation visibility readily identifies 
intrusion attempts. We further characterize the 
performance of a hypothetical sensor based on these 
visibility measurements as well as on the direct 
detection of the entangled quantum state. We conclude 
by summarizing these results and suggesting 
applications for this new application of QIS. 
 
 

2. POLARIZATION-ENTANGLED STATES 
 

In this section, we review some properties of 
polarization-entangled photon pairs. In particular, we 
introduce the polarization-correlation visibility as a 
measure of the entanglement carried by a biphoton 
polarization state, and we discuss how entangled states 
can be discriminated from unentangled states based on 
this measure. 
 
2.1 Single-mode, polarization-entangled biphotons 
 

The simplest example using polarization-entangled 
photons to detect intrusions considers a photon-pair 
source that outputs single-mode, entangled states of the 
form 

!PG =
1
2

hP , vG + vP ,hG( ) ,  (1) 

where the horizontally and vertically polarized states of 
photon j are denoted |hj〉  and |vj〉, respectively. The 
indices P and G refer to the patrol and guard photons 
shown in Fig. 1, where the patrol photon traverses the 
monitored boundary while the guard photon remains in 
a secure location, perhaps near the source. Note that 
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the entangled state in Eq. (1) differs from the 
unentangled state 

hP , vG = hP ! vG     (2) 
in that the latter can be factorized as a product of 
single-photon polarization states while the former 
cannot. A key element in our detection strategy is the 
ability to discern between entangled and unentangled 
states.  
 

 
 
 
Fig. 1 A schematic implementation of a photonic 
quantum fence to monitor intrusions along a corridor. 
Polarization analyzers for the patrol and guard photons 
provide measurement data to an alarm system that 
validates the entanglement between the transmitted 
photon pairs using the visibility. If the expected 
entanglement is absent, then the alarm sounds. 
 

Experimentally, the amount of polarization 
entanglement carried by a biphoton state can be 
detected from polarization-correlation measurements 
and quantified in terms of the correlation visibility. 
The polarizations correlations are obtained from an 
ensemble of identically prepared states using a pair of 
polarization analyzers, i.e., polarization detectors 
variably rotated with respect to one another. For the jth 
photon, the analyzer measurement can be modeled 
using the rotated creation operator 

aj
†(! j ) = hj

† cos! j + vj
† sin! j ,    j = P, G. (3) 

The probability that both photons are detected is         
PPG (!P ,!G ) = aP (! p ),aG (!G ) "PG aP (! p ),aG (!G )  (4) 
where ρPG is the density operator of the pair. The 
probability to detect one photon at the jth analyzer is  

Pj (! j ) = aj (! j ) " j a j (! j )   (5) 
with ρj the single-photon density operator obtained by 
tracing out the unmeasured photon. For the maximally 
polarization-entangled state of Eq. (1), the single-
photon detection probabilities are 

Pj (! j ) = 1 / 2 ,   (6) 
for j = P, G, while the joint detection probability is 

PPG (!P ,!G ) =
1
2

sin2 (!P +!G ) .  (7) 

This yields a conditional joint detection probability 
           PPG

C (!P ,!G ) = PPG (!P ,!G ) PG (!G )  
= sin2 (!P +!G ) .              (8) 

Compelling evidence for quantum entanglement arises 
when a similar conditional probability is measured 
after the incoming photons undergo a change in basis. 
In particular, inserting a half-wave plate into the path 
of each photon performs the unitary transformations 

U j
! /2 hj =

1
2

hj + vj( )  (9) 

and 

U j
! /2 vj =

1
2

hj " vj( ) . (10) 

Remarkably, the resulting conditional joint detection 
probability remains sinusoidal for the case of entangled 
states (albeit phase-shifted relative to Eq. (8)). In 
contrast to an entangled state, neither the unentangled 
state in Eq. (1) nor any unentangled state, demonstrates 
a similar behavior for the correlation measurement, 
e.g., when the two photons exist in a classical mixture 
described by the density matrix 

! = h1, v2 h1, v2 + v1,h2 v1,h2"# $% / 2 . (11) 
This state corresponds to a mixture of correlated 
polarizations. In the h-v basis, the mixed state yields a 
sinusoidal conditional joint detection probability 
identical to Eq. (8). However, changing the basis of the 
incoming photons according to Eqs. (9) and (10), the 
sinusoidal variation is replaced by a flat distribution 
representing a lack of coherence between detections. 
Thus, experimentally acquired polarization-correlation 
measurements can be used to identify whether 
entanglement is present in an ensemble of identically 
prepared biphoton states. 
 
2.2 Identifying polarization-entangled biphotons 
 

A convenient and compact figure of merit for 
characterizing the entanglement carried by a pair of 
photons is the visibility V, which is defined in terms of 
the maximal and minimal values of the conditional 
joint detection probability as 

V = (Pmax
C
! Pmin

C ) (Pmax
C + Pmin

C ) ,  (12)  
The extremal values are determined experimentally by 
measuring the conditional detection probability as a 
function of the polarization-analyzer angles, cf. Eq. (8). 
A maximally polarization-entangled state yields unit 
visibility in either basis, while an unentangled state 
yields a vanishing visibility in at least one basis. 
Furthermore, the visibility serves as a quantifying 
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measure of the polarization entanglement, with a 
higher visibility indicating greater entanglement. This 
approach to quantifying visibility has traditionally been 
useful for estimating the losses in bench-top quantum 
optical setups, where visibilities above 99% are 
routinely observed. 
 

At the heart of the quantum fence is the ability to 
validate that the entangled biphoton states are reliably 
transmitted. This includes the secured transmission of 
the guard photon, as well as the potentially 
compromised transmission of the patrol photon along 
the monitored perimeter. Under normal conditions, the 
polarization analyzers register correlations indicative 
of the presence of entanglement. The certainty of this 
can be quantified using the visibility. On the other 
hand, if an intruder interacts with the patrol photon, 
then the entanglement with the guard photon is 
destroyed and the visibility measured by the receivers 
vanishes. The interaction can arise from either 
unintentional destruction of the photon (absorption, 
scattering) or an intentional attempt by the intruder to 
replace the patrol photon with a doppelganger. In 
subsequent sections we discuss the reliability with 
which these distinctions can be made. 
 
 

3. QUANTUM DETECTION THEORY 
 

As described in Sec. 2, polarization entanglement 
can be quantified by performing a series of 
measurements on an ensemble of identically prepared 
system, e.g., by measuring the visibility using 
polarization-correlation measurements taken with 
different analyzer settings. However, this approach to 
quantifying entanglement is not direct detection. In 
fact, a direct measure (detection) of entanglement is 
not possible because entanglement is regarded as an 
amplitude-level descriptor of the quantum state and is, 
therefore, not a physical observable. From the 
standpoint of sensor development, however, a pertinent 
question is how well a sensor can directly discriminate 
between an entangled state and an unentangled state 
(perhaps with some error). As described below, we 
formulate this question within the context of quantum 
detection theory and find that for certain scenarios the 
entangled and unentangled states can be discriminated. 

 
3.1 Quantum binary decision problem 

 
We consider a binary decision problem, in which a 

single measurement results is used to identify which of 
two hypotheses is most likely. Quantum detection 
theory for the binary decision problem considers 

hypothesis H0 to assert that the quantum state of an 
observed system is ρ0 and hypothesis H1 to assert that 
the quantum state is ρ1. The binary decision problem 
devises a decision rule to optimize selection of the 
correct hypothesis based on the outcome of a detection 
operator, i.e., we define a decision rule (strategy) with 
respect to a detection operator Π such that 

for ! = 1 , choose H1   
                        for ! = 0 , choose H0                  (13) 
The accuracy of the decision rule is characterized by 
the probability for detection 

Qd = Tr[!"1 ]    (14) 
and the false alarm rate 

Q0 = Tr[!"0 ] .   (15) 
In determining the optimal detection operator Π, we 
employ the Neyman-Pearson criterion, for which the 
detection scheme is designed to give a fixed false 
alarm rate Q0 (and does not require a priori 
probabilities about the intruder’s intentions). These 
considerations lead to the quantum detector equation 

       Qd ! "Q0 = Tr[#($1 ! "$0 )] ,    (16) 
which is maximized with respect to the detection 
operator. Employing the eigenstates of the difference 
operator 

(!1 " #!0 ) $k = $k $k ,  (17) 
the optimal detection is defined in terms of the matrix 
elements 

!k " !k =
1   if !k # 0 
0   otherwise
$
%
&

. (18) 

As a result, the optimal detection operator is 

! = "k "k
k

"k #0

$ ,   (19) 

which yields a detection probability 

Qd = !k "1 !k
k

!k #0

$   (20) 

and a false alarm rate 

Q0 = !k "0 !k
k

!k #0

$ .  (21) 

 
3.2 Biphoton pure states 

 
As an applicable example of the binary decision 

problem, consider the biphoton pure states 
!k = " k "k .   (22) 

where the normalized pure states are defined as 
!k = ak h1, v2 + bk v1,h2 ,  (23) 

and ak
2

+ bk
2

= 1  for k = 1, 2. It is straightforward to 
show that the eigenvalues of the difference operator are  
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!k = a " "1( )k R    (24) 
with a = (1! ") / 2  and R2 = a2 + !q , where 

q = 1! "0 "1
2

   (25) 
measures the distinguishability of the two pure states. 
Hence, the optimal detection operator is 

! = "1 "1    (26) 
with the eigenstate given up to a phase factor by 

a1
2

=
1!"1

2

2R "1 ! q( )
 and b1

2
=

1! q 2

2R "1 ! q( )
. (27) 

 
Using these results, we obtain the detection 

probability and false alarm rate for discriminating 
between two pure states as 

Qd =
!1 + "q

2R
   (28) 

and  

Q0 =
!1 " q( )

2R
,   (29) 

respectively. Helstrom has shown that by eliminating 
the dependence on the threshold λ this set of equations 
can be expressed more compactly as (Helstrom, 1976) 
0 !Q0 ! 1" q  

    Qd = Q0 1! q( ) + 1!Q0( )q( )
2

 (30) 

and 
1! q "Q0 " 1   

Qd = 1 .               (31) 
The results of this analysis yield the receiver operating 
characteristic (ROC) curves shown in Fig. 2. The 
curves are parameterized by the value of q. Note that as 
the value of q approaches 1, the states are quantum 
mechanically more distinguishable and the 
performance of the sensor improves, as indicated by 
the ROC curve. As a specific example, when the first 
state is equivalent to the entangled state in Eq. (1) and 
the second state is equivalent to the unentangled state 
in Eq. (2) then the quantity q equals ½ and we see that 
Qd = ½ for Q0 = 0 and Qd = 1 for Q0 = ½. 
 
3.3 Direct discrimination of mixed states 
 

The solution to the quantum binary detection 
problem depends on the two states being discriminated 
against. For the case that the unentangled biphoton 
state ρ0 is given the mixed polarization state in Eq. 
(11), a straightforward solution of the eigenvalue 
problem yields an optimal detection operator that is 
identical to the entangled biphoton density matrix ρ1, 
i.e., Π=ρ1. It is important to note that this result is 

independent of the threshold λ. Consequently, the 
detection probability Qd = 1 and the false alarm rate Q0 
= ½ can not be improved upon by lowering the 
threshold for detection. This result arises because the 
correlations exhibited by the entangled state cannot be 
distinguished from classical correlations through direct 
detection. 
 

 
 

Figure 2. The ROC curve for discriminating between 
two pure states. The curves are parameterized by the 
value of q, which measures the orthogonality of the 
quantum states. When q = 0, the states are identical and 
the probability for detection Qd equals the false alarm 
rate Q0. As q approaches unity, the states become more 
quantum mechanically distinct and the detection 
strategy improves. 
 

This last example emphasizes that entanglement is 
not a physical observable and that a sensing strategy 
based on direct detection of the quantum state is not a 
useful means to identify the presence of an active 
intruder. However, the density matrices ρ1 and ρ0 lead 
to distinctively different results for the polarization-
correlation visibility, cf. Sec. 2, and we discuss using 
this metric for detection next. 

 
3.4 Using visibility to discriminate states 
 

In this section, we formulate the binary decision 
problem using the polarization-correlation visibility. 
As noted previously, the visibility is unity for a pure, 
entangled biphoton state and vanishes for an 
unentangled state (in at least one basis). We expect 
experimental noise to blur this distinction. Moreover, 
the accuracy of the visibility measurement should be 
strongly dependent on the number of biphoton states 
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that are sampled. We consider two hypotheses for the 
ith sample si, 

  H0: si = V0 + n    and    H1: si = V1 + n,   (32) 
where V0  = 0 and V1 = 1 are the expected visibilities 
for the unentangled and entangled photon pairs, and n 
denotes a zero-mean Gaussian random noise variable 
of variance σ 2. For M measurements, this leads to the 
log likelihood ratio test 

  

!si
i=1

N

!
>

H1

<
H0

ln!
d

+
d
2

   (33) 

where 
 
!si =si / σM1/2 is the normalized sample data, λ is 

the threshold and d = M1/2ΔV/σ is the normalized value 
of ΔV = V1 – V0.  

 

 
 
Figure 3. The ROC curve using the polarization-
correlation visibility. The curves are parameterized by 
the dimensionless displacement d = M1/2ΔV/σ. For σ = 
1/ 4 and M1/2 = 1, the visibility offset is in parentheses. 
 

Discriminating between two signals values in 
additive Gaussian noise leads to well known results for 
the detection and false alarm probabilities (Van Trees, 
2001) 

 Qd = erfc x1( )    and    Q0 = erfc x0( )  (34) 
where the complementary error function is defined as 

 
erfc y( )! 2!( )

"1/2 exp["x2 / 2]dx
y

#

$  (35) 

and the lower limits  

 
x0 = (ln!) / d + d / 2  and  

 
x1 = (ln!) / d!d / 2   (36) 

are given in terms of the threshold and the 
displacement.  

The associated ROC curve is shown in Fig. 3 for 
different values of visibility. Note that this detection 
strategy succeeds in discriminating entangled states 

from classical mixed states. This detection strategy 
does not require that the underlying quantum states be 
known. Rather, this strategy determines whether the 
guard-patrol photon pair was entangled. As noted 
above, only when an intruder has not interacted with 
the transmitted patrol photon will a high visibility be 
obtained. 
 
3.5 Experimental test for tampering 
 

We have experimentally tested the idea that the 
visibility can indicate that an intrusion has occurred 
using the setup shown in Fig. 4. In the experiment, the 
entangled photon pairs are generated using 
spontaneous parametric down conversion in a 
nonlinear optical crystal (BBO). The guard and patrol 
photons are sent to separate detectors where their 
polarizations correlations are analyzed using a high-
speed rotatable polarizer to enact a change of basis. 
The outcomes of the individual polarization analyzers 
are monitored for coincident detections, which are used 
to calculate the conditional correlation as a function of 
the analyzer angles. The maximum and minimum of 
this detection probability is then used to calculate the 
visibility V. 

 

 
 
Figure 4. The experimental setup used to generate the 
polarization entangled photon pairs and calculate the 
polarization-correlation visibility. 
 

We have validated that the visibility can be used to 
identify when an intrusion has taken place by 
examining the visibility acquired under both normal 
and abnormal (intrusion) conditions. The results of 
these experiments are shown in Fig. 5, where different 
scans are acquired under different tampering 
conditions. Scans 1, 2, and 3 give the visibility under 
normal conditions, while scans 4, 5, and 6 give the 
visibilities under different types of tampering. As 
expected, the visibility under normal conditions is high 
(above 90%), while the visibilities after tampering are 
considerably lower. In scan 4, a phase plate inserted 
into the path of the patrol photon randomizes the 
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overall polarization state and leads to a reduction in the 
correlations. In scan 5, the patrol photon is completely 
blocked, though stray light (noise) leads to a 
nonvanishing visibility. In scan 6, the polarization 
correlations between guard and patrol photons 
corresponding to different photon pair states are 
analyzed. This simulation of an intercept-resend attack 
most closely resembles an intrusion scenario. Notably, 
the visibility from this scan is much less than the 
visibility in the nominal case. 
 

 
 

Figure 5. Experimentally acquired polarization-
correlation visibility measurements under different 
intrusion conditions. Scans 1, 2, and 3 are visibility 
measurements in the absence of any tampering with the 
entangled photon pair, while scans 4, 5, and 6 each 
correspond to a different case of tampering: 4 – 
rotating the polarization of one photon, 5 – fully 
blocking transmission of one photon, and 6 – the 
visibility for photons that are unentangled. 
 

The experimental results presented in Fig. 5 
exemplify the argument that the visibility will 
drastically change when an entangled pair of photons is 
replaced by an unentangled pair. Moreover, the change 
in visibility with respect to scan is indicative of how 
the sensing strategy could be formulated, i.e., the 
difference in visibility from one scan to the next could 
be used to identify when transmission changes from a 
normal and to an abnormal cases. In this example, the 
sensor would be characterized by the ROC curve 
shown in Fig. 3 for the value of ΔV = 0.6. While the 
experimental setup in Fig. 4 has not been optimized for 
sensor performance, the distinction between the 
visibility in the tampering and no tampering cases 
clearly demonstrates the proof-of-principle. 
 
 
 

CONCLUSIONS 
 

We have reported on the detection of intrusions 
across a physical boundary using polarization-
entangled biphoton states. The ‘quantum fence’ offers 
a unique means for assessing the authenticity of a 
transmitted signal (the patrol photon) by checking if 
the patrol photon remains entangled with a securely 
transmitted guard photon. Because the no-cloning 
principle prohibits an intruder from duplicating the 
entangled state, any attempts at spoofing the sensor 
receiver, as well as blatant intrusions, can be identified 
using the quantum fence. 

 
The unique capability offered by the quantum 

fence is the ability to verify the authenticity of a 
transmitted signal. This capability should prove useful 
in applications where the integrity of the signal is of 
absolute importance, e.g., surveillance and 
reconnaissance. The idea of deploying the quantum 
fence to monitor a physical boundary, e.g., a perimeter, 
needs only slight modification to also incorporate 
monitoring of locks and seals (containment and 
surveillance technologies), as well as communication 
systems (detecting eavesdroppers on fiber networks). 
Research continues into the types of physical systems 
that could be utilized for these different tasks, but the 
development of a photonic quantum fence is, now, the 
most promising. 
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