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ABSTRACT 
 

Advancing the development of a net-centric Army 
depends on our ability to understand the benefits and 
costs of information flow through networks.  Networks 
can vary in composition and expanse, with a variety of 
examples present in daily life (e.g., the internet, 
acquaintances, animal groups).  The functionality of a 
given network generally depends upon the connectivity 
among its constituent members (nodes).  As with 
acquaintances and popular web sites, these connections 
often change over time.  Most network analyses focus on 
static systems using snapshots of data taken in time.  
Investigators then search for correlations between the 
degree of connectivity within the network and the 
network’s ability to resist interference (i.e., noise) or 
external perturbation (e.g., power loss, attack).  We seek 
insight into the capability of network analysis to discern 
properties of a dynamic network (of collective behavior) 
shaping its structure, function, and resilience using 
swarming behavior as our model system.  Specifically, in 
this paper we begin answering the question: how many 
neighbors should an individual in a networked swarm 
track for maximum efficiency of information transfer, 
critical to survival under attack and failure scenarios. 

 
Through numerical systems based on ecological 

theory we seek to better understand networked collective 
behavior, e.g., susceptibility to outside attack, which can 
be used to guide the engineering design of artificial 
networks.  We believe this work presents an opportunity 
to mine the assets of ecology for improved development 
of disruptive technologies and a net-centric Army. 

 
 
 
 
 
 
 
 

1.  INTRODUCTION 
 

Most networks rely for their function on their 
connectivity, i.e., the existence of paths leading between 
pairs of individuals (Newman, 2003).  Interaction among 
individuals (collective behavior) has proven to be an 
evolutionarily robust tactic in mobile organisms and the 
resiliency of this tactic to environmental perturbation and 
noise is exceeded only by its prevalence across taxa.  
Animals often organize as a network shaped by 
evolutionary pressure for survival that can react 
differently to various density-dependent (e.g., prey 
availability) and density-independent (landscape 
complexity) factors.  Structure of an animal group is 
fundamental to its biology, influencing its pathways of 
information transfer and the way that the population 
exploits its environment (Lusseau et al., 2006).  In 
ecology, swarms are a group of networked individuals, 
with the main goal of the interaction among individuals 
being the maintenance of cohesion in the face of strong 
perturbations, of which predation is the most relevant 
(Ballerini et al., 2008). 

 
The numerical analysis of swarms is based on the 

premise that individuals align and attract each other, with 
interaction decaying with increasing distance between 
individuals.  To date, the vast majority of swarm models – 
and resulting theory – are based on the definition of 
“distance” as “metric distance”: individuals follow a 
correlated random walk with specified, non-overlapping 
behavioral zones with the highest priority for individuals 
being maintenance of a minimum distance between 
themselves at all times to avoid collisions.  Individuals 
move away from others within a close-range spherical 
“zone of repulsion” with radius rd.  Individuals align with 
others outside rd but within a “zone of orientation” with 
radius ro and are attracted to individuals outside ro but 
within a “zone of attraction” with radius ra (Couzin et al., 
2002; 2005).  While interaction based on metric distance 
seems natural given the sensory systems of many 
swarming species, it is unable to reproduce the density 
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changes typical of animal aggregations because cohesion 
is lost when mutual distances become large compared 
with the interaction range (Ballerini et al., 2008). 

 
Noting that structure is the foremost effect of 

interaction, and, conversely, interaction is ciphered in the 
inter-individual spatial structure, Ballerini et al. (2008) 
offer empirical and modeling results to support an 
alternative theory of “topological distance”.  Topological 
distance is the number of intermediate individuals 
separating two individuals, not how far apart they are, 
with each individual interacting with a fixed number of 
neighbors irrespective of their metric distance.  The 
crucial difference between metric and topological 
interaction comes in when the density varies: in the 
topological case, two individuals 5 m apart in a sparse 
flock attract each other as much as two individuals 1 m 
apart in a denser flock provided the number of individuals 
between the two is the same. 

 
Theoretically, topological distance is more suitable 

for maintaining cohesion in the face of strong density 
fluctuations and strong perturbations, including predation 
(Ballerini et al., 2008).  While tracking more neighbors 
provides redundancy against misinformation and 
robustness against loss of transmitting neighbors, it comes 
with additional bioenergetic and cognitive processing 
costs necessary to resolve conflicts. 

 
The ability to track individuals (numerosities) decays 

beyond a certain number and range of perception.  The 
literature has yet to settle on a fixed number of 
numerosities, but the maximum range is generally 
suggested as three to seven: six to seven (for birds; 
Emmerton and Delius, 1993; Ballerini et al., 2008), three 
to five (for fish; Tegeder and Krause, 1995), three to five 
(based on numerically modeling of collective behavior; 
Inada and Kawachi, 2002), and three to four (based on 
limits of visual working memory; Luck and Vogel, 1997; 
Vogel et al., 2001; Bays and Husain, 2008).  An improved 
understanding of the topological distance associated with 
maximum efficiency of information transfer is critical to 
the engineering design of bio-inspired artificial networks.  
Towards this end, three critical questions emerge: (1) how 
many neighbors should be tracked for maximum 
efficiency of information transfer, (2) how are the few 
neighbors tracked discerned from the collective of many 
neighbors, and, later, (3) what tradeoffs exist for (1) and 
(2) under attack and failure scenarios.  To simplify the 
problem at this stage we assume all individuals are within 
the range of perception. 

 
To explore (1) and (2), we employ a two-pronged 

approach.  First, we merge concepts from neuroscience, 
sensory biology, optics, and physics to develop a first-
principles based algorithm of swarming behavior.  Our 
swarm model uses elementary optical information 

processing to infer traffic rules within the collective.  
Employing optical rules facilitates improved biological 
realism over existing swarm models, and allows us to 
explore the rate of information transfer using a bottom-up, 
mechanistic approach (Lemasson et al., 2008).  This 
approach is applicable to many taxa as well as to artificial 
sensor networks.  Second, in this paper, properties of 
these self-organized networks are analyzed using a top-
down approach based in network theory to discern the 
theoretical maximum rate of information transfer 
according to topological distance. 

 
The two-pronged approach explores the attributes of 

ecological swarms from two sides.  The bottom-up, 
mechanic approach affords, and burdens, the analysis 
with elements of animal sensory ecology important to 
taxa that swarm.  In this paper, the top-down approach 
does not account for sensory ecology at the individual 
level; it strictly analyzes the theoretical potential of 
information transfer.  In other words, network analysis of 
our numerical swarms should provide some guidance into 
the theoretical potential of information transfer.  This 
potential is then subject to the benefits and costs imposed 
by ecology (Lemasson et al., 2008).  Specifically, 
information in real systems transfers imperfectly so real 
systems may require more redundancy than is 
‘theoretically’ required to achieve a certain level of 
performance.  On the other hand, information in real 
systems may transfer through pathways not immediately 
intuitive from the perspective of a top-down analysis. 
 
 

2.  METHOD 
 
 To discern the theoretical maximum rate of 
information transfer as a function of topological distance, 
we employ analyses based in network theory.  We apply 
our analyses to four numerical, simulated swarms 
embodying sensory and emergent properties of real 
swarms (Lemasson et al., 2008).  Specifically, we seek to 
corroborate or challenge existing values of topological 
distance cited in the literature. 
 
2.1  Terminology 
 
 The ecological and network literature are fraught 
with inconsistent terminology.  To assist the reader in 
navigating the terminology, we make the following 
equivalences: 
 

Group = Network = Graph 
Subgroup = Subnetwork = Community 
Individual = Vertex = Node 
Relationship = Link = Tie = Edge 
Path length is the number of relationships (links) 

between source and destination.  A path in a 
group (network) is a sequence of individuals 
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(vertices) traversed by following relationships 
(links) from one to another across the group 
(network). 

Geodesic path is the shortest path, in terms of 
number of relationships (links) traversed, 
between a specified pair of individuals (vertices).  
Two unique paths can tie for the title of shortest 
(Newman, 2008). 

 
2.2  Defining the Network 
 

How the network is defined is critical for meaningful 
analysis.  The concept of topological distance means that 
interaction between individuals need not be mutual or 
symmetric.  For example, individual A may track its two 
closest neighbors B & C, but individual B may track its 
closest neighbors D & E.  We use in-degree (reception) as 
the basis for defining the network, whether a relationship 
(link) exists between two individuals and, if so, the 
direction information flows.  Information flows towards 
the receiving individual.  In other words, a transmitting 
individual is not concerned with whether information it 
emits is used by others, it is solely concerned with using 
information it receives. 
 
2.3  Metrics 
 

Centrality is a key attribute in the structure and 
function of networks.  There are several ways to describe 
centrality, a quantity describing an individual’s structural 
importance in a group (network).  One measure is vertex 
betweenness centrality (hereafter also referred to as 
simply betweenness centrality): the number of geodesic 
(shortest) paths between every pair of other group 
(network) members on which the focal individual lies 
(Wey et al., 2008).  Betweenness centrality is a measure 
of the influence of individuals in a group over the flow of 
information between others.  Thus, it is closely related to 
the concept of “load”, which quantifies the load of a 
vertex in the transport of data packets along the shortest 
pathways (Goh et al., 2001).  Individuals with the highest 
betweenness fall on the boundary between subgroups 
(communities) in the group, serving as brokers between 
communities (Lusseau and Newman, 2004).  In sociology, 
betweenness centrality quantifies how influential a given 
individual in a society is (Freeman, 1977).  Betweenness 
centrality can be viewed as a measure of network 
resilience (Newman, 2003). 

 
The second metric we use is average shortest path 

length: the average of all geodesic paths between all pairs 
of individuals in the group (network).  This metric relates 
to the speed with which information can propagate over 
the shortest paths within the group (network). 
 
 
 

2.4  Numerical Swarms 
 

We use four numerical swarms to explore the range 
of spatial orientations observed in nature presently 
afforded by our numerical models.  Three of the 
simulations (Figs. 1-3) are variants of our swarm model, 
presently 2-D, based on elementary optical information 
processing (Lemasson et al., 2008), which facilitates far-
improved biological realism over existing swarm models.  
For diversity, we also include a 3-D swarm (Fig. 4) 
generated using the principle of “metric distance”.  The 
method used to generate the swarm is not germane to this 
paper, as both models generate basic emergent spatial 
orientations and structures that are observed in nature.  
The swarms are all analyzed as networks defined through 
topological distance and in-degree (reception) of 
information flow. 
 
2.5  Analysis 
 

Exploring networks that are dynamic in time and 
space is more difficult than for static networks.  The 
spatial structure of the group (network) changes often and 
rapidly with time, with no single snapshot in time being 
necessary representative of the general properties of the 
system.  In nature, the collective may actually exploit 
these moment-to-moment changes, with emergent 
properties shaped by evolutionary pressure without 
constituent individuals having to be cognitively complicit.  
To distill multiple dimensions of information simply, we 
plot the average vertex betweenness centrality and 
average shortest path for our four numerical swarms 
versus time for topological distances of one to seven 
neighbors. 
 
 

3.  RESULTS 
 

Generally, in moving from a topological distance of 
two to three neighbors the average shortest path decreases 
most intensely.  Over this same interval there is a 
corresponding increase in average vertex betweenness 
centrality.  With further increases in topological distance 
both the average shortest path and average vertex 
betweenness centrality decrease, yet less appreciably. 

 
More specifically, for the numerical swarm in Fig. 1 

the greatest drop in average shortest path occurs between 
a topological distance of two to three neighbors, while the 
peak average vertex betweenness centrality occurs at a 
topological distance of three to four neighbors.  In Fig. 2, 
average shortest path decreases somewhat linearly with 
increasing topological distance.  The peak average vertex 
betweenness centrality generally occurs at six neighbors, 
with some time periods having peak values at five or 
seven neighbors.  In Fig. 3, as in Fig. 1, the greatest drop 
in average shortest path occurs moving from a topological 
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distance of two to three neighbors.  Peak average vertex 
betweenness centrality occurs at a topological distance of 
three neighbors.  In Fig. 4, as in Figs. 1 and 3, the greatest 
drop in average shortest path occurs moving from a 
topological distance of two to three neighbors.  Peak 
average vertex betweenness centrality is associated with a 
topological distance of four neighbors under the swarm 
formation, four to five neighbors under the torus 
formation, and three neighbors under the polarized 
formation. 

 
In summary, the greatest decrease in average shortest 

path occurs moving from a topological distance of two to 
three neighbors (with exception of Fig. 2).  Average 
shortest path decreasing asymptotically towards a 
minimum found at the maximum topological distance.  In 
contrast, average vertex betweenness centrality initially 
increases with increasing topological distance, peaks at an 
intermediate topological value, and then decreases with 
further increases in topological distance (with possible 
exception of Fig. 2). 
 
 

4.  DISCUSSION 
 

Average shortest path can be viewed as a metric 
describing the relative speed of information propagation 
within a group, with lower values of average shortest path 
reflective of high transfer rates across the group due to 
fewer numbers of individuals required to fully propagate 
the information.  Betweenness centrality can be viewed as 
a measure of network resilience (Newman, 2003), with 
higher average vertex betweenness centrality reflecting 
lower network resilience because more paths of 
communication pass through the same number of 
individuals necessary to fully propagate information 
amongst the group.  Elevated average vertex betweenness 
centrality would likely be due to (a) a few individuals 
with very high “loading” of information, (b) a larger 
number of individuals all with elevated loading, or (c) a 
combination of (a) and (b).  Regardless, higher loading on 
an individual means that attack or failure of that 
individual has greater impacts on the propagation of 
information with the group than if the information loading 
(measured as vertex betweenness centrality) is lower. 

 
Results suggest the intriguing possibility that a 

topological distance of three neighbors may largely 
provide the speed of information transfer required, with 
spatial structure or additional topological distance used 
for increasing network resilience when needed.  For 
instance, the torus formation (Fig. 4) often observed of 
species under predation threat greatly increases network 
resilience associated with a topological distance of three 
neighbors.  At the same topological distance, the highly 
polarized formation (Fig. 4) yields much faster 
information propagation speeds, yet the lowest network 

resilience.  It is possible that the polarized formation is 
best suited for migration absent predation threats, when 
the need to warn of a yet unrealized threat is greatest.  
When a threat first emerges, the low average shortest path 
suggests the polarized formation has the ability to quickly 
transmit this information.  One plausible response is 
increasing group (network) resilience through the torus 
formation, as insurance against the imminent loss of 
constituent members. 

 
This analysis provides some insight into the 

theoretical potential of information transfer.  This 
potential is subject to the benefits and costs imposed by 
ecology (Lemasson et al., 2008).  Information in real 
systems transfers imperfectly so real systems may require 
more redundancy than is ‘theoretically’ required to 
achieve a certain level of performance.  It is also possible 
that information in real systems transfers more efficiently 
through other pathways not immediately intuitive. 
 
 

CONCLUSIONS 
 

Results suggest the intriguing possibility that a 
topological distance of three neighbors may largely 
provide the speed of information transfer required, with 
spatial structure or additional topological distance used 
for increasing network resilience when needed.  Of the 
three critical questions we asked, the goal of this paper 
was to begin answering (1) how many neighbors should 
be tracked by an individual in a swarm for the collective 
to realize a maximum efficiency in information transfer.  
Values in the literature range from three to seven.  Our 
results corroborate the finding of three to four in Luck and 
Vogel (1997), Vogel et al. (2001), and Bays and Husain 
(2008), based on limits of visual working memory.  
Interestingly, this is at the low end of the range of values 
offered in the literature.  Also, this finding supports our 
use of optical information processing to infer traffic rules 
within the collective to improve biological realism over 
existing swarm models (Lemasson et al., 2008) as a 
means to begin answering the far more complex 
remaining questions: (2) how are the few neighbors 
tracked discerned from the collective of many neighbors, 
and (3) what tradeoffs exist for (1) and (2) under attack 
and failure scenarios.  Answers to these questions are 
critical to the engineering design of bio-inspired artificial 
networks robust under attack and failure scenarios. 
 
 

ACKNOWLEDGMENTS 
 

The tests described and the resulting data presented 
herein, unless otherwise noted, were obtained from 
research conducted under the sponsorship of the U.S. 
Army’s Network Science research initiative through the 
U.S. Army Engineer Research & Development Center 



5 

(ERDC) Environmental Quality & Installations (EQ/I) 
Basic Research Program.  Further information can be 
found at http://EL.erdc.usace.army.mil/emrrp/nfs/ 

 
Permission was granted by the Chief of Engineers to 

publish this information. 
 
 

REFERENCES 
 
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., 

Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., 
Parisi, G., Procaccini, A., Viale, M., and Zdravkovic, 
V., 2008: Interaction ruling animal collective 
behavior depends on topological rather than metric 
distance: Evidence from a field study. Proceedings of 
the National Academy of Science, 105(4), 1232-1237. 

Bays, P. M. and Husain, M., 2008: Dynamic shifts of 
limited working memory resources in human vision. 
Science, 321, 851-854. 

Couzin, I. D., Krause, J., James, R., Ruxton, G. D., and 
Franks, N. R., 2002: Collective memory and spatial 
sorting in animal groups. Journal of Theoretical 
Biology, 218, 1-11. 

Couzin, I. D., Krause, J., Franks, N. R., and Levin, S. A., 
2005: Effective leadership and decision-making in 
animal groups on the move. Nature, 433, 513-516. 

Emmerton, J. D. and Delius, J., 1993: Beyond sensation: 
Visual cognition in pigeons. In: Vision, Brain, and 
Behaviour, H. P. Zeigler and H. J. Bischof (eds.), 
MIT Press, Cambridge, MA. 

Freeman, L. C., 1977: Sociometry, 40, 35-41. 
Goh, K.-I., Kahng, B., and Kim, D., 2001: Universal 

behavior of load distribution in scale-free networks. 
Physical Review Letters, 87, 278701. 

Inada, Y. and Kawachi, K., 2002: Order and flexibility in 
the motion of fish schools. Journal of Theoretical 
Biology, 214, 371–387. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Lemasson, B., Anderson, J. J., and Goodwin, R. A., 2008: 

Communication properties of self-organizing 
networks (swarms) as inferred from optical 
mechanics. Proceedings of the 26th Army Science 
Conference, 1 – 4 December 2008, Orlando, FL. 

Luck, S. J. and Vogel, E. K., 1997: The capacity of visual 
working memory for features and conjunctions. 
Nature, 390, 279-281. 

Lusseau, D. and Newman, M. E. J., 2004: Identifying the 
role that animals play in their social networks. 
Proceedings of The Royal Society of London series B 
(Suppl.), 271, S477-S481. 

Lusseau, D., Wilson, B., Hammond, P. S., Grellier, K., 
Durban, J. W., Parsons, K. M., Barton, T. R., and 
Thompson, P. M., 2006: Quantifying the influence of 
sociality on population structure in bottlenose 
dolphins. Journal of Animal Ecology, 75(1), 14-24. 

Newman, M. E. J., 2003: The structure and function of 
complex networks, SIAM Review, 45, 167–256. 

Newman, M. E. J., 2008: Mathematics of networks. In: 
The New Palgrave Encyclopedia of Economics, 2nd 
edition, L. E. Blume and S. N. Durlauf (eds), 
Palgrave Macmillan, Basingstoke. 

Tegeder, R. W. and Krause, J., 1995: Density dependence 
and numerosity in fright stimulated aggregation 
behaviour of shoaling fish. Philosophical 
Transactions of The Royal Society of London series 
B, 350(1334), 381–390. 

Vogel, E. K., Woodman, G. F., and Luck, S. J., 2001: 
Storage of features, conjunctions, and objects in 
visual working memory. Journal of Experimental 
Psychology: Human Perception and Performance, 
27, 92-114. 

Wey, T., Blumstein, D. T., Shen, W., and Jordán, F., 
2008: Social network analysis of animal behaviour: a 
promising tool for the study of sociality. Animal 
Behaviour, 75, 333-344. 



6 

 
 

Fig. 1.  Two-dimensional group (network) exhibiting fission and fusion. 
 

 
 

Fig. 2.  Two-dimensional group (network) exhibiting high polarization and loose cohesion. 
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Fig. 3.  Two-dimensional group (network) exhibiting mostly high polarization and cohesion. 
 

 
 

Fig. 4.  Three-dimensional group (network) exhibiting non-directional swarming, torus, and then high polarization. 
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