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Mitigating Error Propagation Effects in a Decision 
Feedback Equalizer 

Michael Reuter, Member, IEEE, Jeffery C. Allen, Member, IEEE, James R. Zeidler, Fellow, IEEE, and 
Richard C. North, Member, IEEE 

Abstract—We present an approximate analysis approach to the 
computation of probability of error and mean burst error length for 
a decision feedback equalizer (DFE) that takes into account feed- 
back of decision errors. The method uses a reduced-state Markov 
model of the feedback process and is applicable to linear modula- 
tion formats. We use this technique to analyze a DFE design that 
mitigates the effects of feedback error by incorporating a soft de- 
cision device into the feedback path and a norm constraint on the 
feedback filter weights. We apply the DFE design and analysis ap- 
proach to a dispersive multipath propagation environment. 

Index Terms—Decision feedback equalizers, error analysis, 
error propagation, Markov processes. 

I. INTRODUCTION 

THE DECISION feedback equalizer (DFE) is an impor- 
tant component in many digital communication receivers 

and is used to suppress intersymbol interference (ISI) caused 
by dispersive propagation channels [1], [2], as well as reject 
in-band interference [3], [4], The DFE incorporates a feedfor- 
ward filter that operates on the received signal to suppress pre- 
cursor ISI, with a feedback filter that operates on previously 
detected channel symbols to suppress postcursor ISI. The DFE 
generally outperforms the traditional linear equalizer, particu- 
larly if the channel has deep spectral nulls in its response [1], 

However, degradation in DFE performance occurs when in- 
correctly detected symbols are fed through the feedback filter. 
Then instead of mitigating ISI from the cursor sample, the DFE 
enhances ISI. Error propagation may result that causes bursts 
of decision errors and a corresponding increase in the average 
probability of bit and symbol error. Moreover, the bursty nature 
of DFE errors has implications for error correction coding and 
interleaver depth that may be incorporated into the receiver de- 
sign [5], [6]. 

Error propagation generally does not severely affect DFE per- 
formance if the channel delay spread is on the order of a symbol 
duration or less [1], [7], However, as bandwidths increase to ac- 
commodate high data rates, the associated increase in relative 
delay spread may result in error propagation for a given channel. 
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Also, high-order modulation formats may be more susceptible 
than low-order formats. Therefore, a need exists to quantify 
DFE performance in the presence of decision error feedback and 
to mitigate the effects of error propagation. 

Performance analysis of a DFE that includes decision error 
feedback is a difficult problem and has received considerable 
theoretical attention. Using an independence assumption on the 
noise and assuming no precursor ISI, Monsen used a Markov 
model of the error feedback process to derive probability of error 
for the DFE [1]. The mean burst error length also can be de- 
rived using this theory [8]. Although this approach is accurate, 
it becomes computationally burdensome because the number of 
Markov states exponentially increases as the number of feed- 
back taps increases. Duttweiler, Mazo, and Messerschmitt sim- 
plified the analysis by aggregating the Markov states into a re- 
duced-state model and then bounding the state transition proba- 
bilities [9], Bounds on the probability of error [9] and the burst 
error length [10] are obtained. Tighter bounds are possible by 
refining the definition of the aggregate states [11], [12], 

Various techniques for mitigating error propagation also have 
been proposed. Large taps in the feedback filter of an equalizer 
designed using the minimum mean-square-error (MSE) crite- 
rion cause significant self-generated ISI if decision errors are 
made. A potential solution is to jointly optimize the feedfor- 
ward and feedback filters with an additional constraint on the 
norm of the feedback filter taps. This regularization approach 
was applied to the magnetic recording channel in [13], [14]. 
DFE structures also have been proposed recently that contain 
a soft decision device in the feedback path to compensate for 
unreliable decisions [15]-[18]. 

Combining these techniques, we present a minimum MSE 
DFE design that incorporates both a discrete soft decision device 
and a norm constraint on the feedback filter to mitigate error 
propagation. Reliable device inputs that are close with respect 
to the L2 norm to a component of the symbol constellation are 
fed back as hard decisions. Unreliable device inputs that are 
not close are fed back as intermediate decisions. Also, feedback 
gain is controlled by the norm constraint. 

To capture the bursty nature of the DFE errors, we use both 
the probability of symbol error P& and the mean burst error 
length fiuL as the primary DFE performance measures. We de- 
termine these quantities analytically using the fundamental ap- 
proach of [ 1 ], but we derive an approximate Markov model with 
significantly fewer states by making an independence assump- 
tion involving the feedback error sequence. We demonstrate 
that design trade-offs between PE and ^BL result in a classic 
"L-curve." From this geometric interpretation, an optimum de- 
sign becomes evident. 
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Fig. 1.    Receiver front end. 

II. SYSTEM DEFINITIONS 

We are concerned with coherent demodulation of data trans- 

mitted through a discrete multipath environment. The channel 

symbol modulation is M-ary phase shift keying (M-PSK). We 
operate on the complex baseband signal using the receiver front 

end shown in Fig. 1. The down-converter is locked to the car- 

rier frequency fc but not the phase. Therefore, any phase com- 

pensation is done by the equalizer [19]. The noise at the input 
to the ideal lowpass filter is modeled as a circularly symmetric 

complex white Gaussian process with two-sided power spectral 

density No. 

The signal at the output of the ideal lowpass filter is modeled 

as 

L oo 

<t)=YJfti(
t)   Yl   s(m)PT(t - mT - A, - T) 

l=L m=—oo 

X e -t2jr/c(A,+r) 
+ n{t) (1) 

where 
L 

A, 
s(m 
T 

number of discrete multipath components; 

relative path delays; 

channel symbols; 
symbol duration. 

The multiplicative fading terms lh{t) incorporate all channel 

effects and are modeled as mutually independent random 
processes with zero mean and power o\ . The corresponding 

path delays A; are deterministic. The symbol pulse pr{t) is 

a square-root raised cosine waveform with unit energy. The 

variable r represents symbol timing error and is modeled as 

a continuous random variable uniformly distributed between 

-T/2 and T/2. The M-PSK symbols s(m) are mutually 

independent random variables with unit power. The noise 
n(t) is a circularly symmetric Gaussian process with power 

o\ = 2N0/T. Using these assumptions and by averaging over 
all random quantities, we define the received signal-to-noise 

ratio (SNR) to be [20] 

2 1     r-»    2 

2N0 
(2) 

1=1 

The fading on all paths is slow with respect to T so that we can 

assume a quasistatic channel with a given delay structure. All 

performance results are based upon the minimum MSE Wiener 

filter that is optimized with respect to a static realization of the 

channel defined by the set of parameters {fli, fh, • • •, PL, 
T}- 

Also, the bandwidth of the lowpass filter in Fig. 1 accommo- 

dates sampling x(t) at the rate 2/T to get the discrete samples 
x(kT/2). This allows us to incorporate a fractionally spaced 

t(kT/2) Feedforward 
Filter 

WF (T/2) 
—© y(k) 

H 
D 

I) 
d{k) 

Feedback 
Kilter 

WB(T) 

Fig. 2.    DFE structure with soft decision feedback and hard decision output. 

feedforward filter into the DFE design to provide robustness 

against timing error T as well as matched filtering to the trans- 
mitted pulse pr{t) and the propagation channel [2], 

III. DFE DESIGN 

A schematic of the DFE design is given in Fig. 2. The sym- 

metric fractionally spaced feedforward filter wF has 2N + 1 

taps with N taps leading and N taps lagging the cursor tap. The 

symbol-spaced feedback filter WB operating on the output of the 

soft decision device has NB taps. We define the feedforward and 

feedback data vectors as 

x(&) = [x{kT + NT/2) 

• • •    x(kT)     • 

d{k) = [d{k - 1)   d{k - 

x{kT+(N - l)T/2) 

• •    x{kT - NT/2)]* 

2)     • • •    d(k - NB)]i (3) 

where t denotes the matrix transpose. Then the input to the 

hard decision device used to estimate the cursor symbol s(k) 

is written as 

y(k) = wf x(A:) + wB'd(fc) (4) 

where H denotes the Hermitian transpose. 

There are many ways to define the soft decision device in 

Fig. 2. We propose the discrete implementation shown in Fig. 3 

for 4-PSK. Decision regions for higher-order M-PSK scale ac- 

cordingly. The shaded areas represent the intermediate decision 
regions and are defined by the angle 8. The intermediate deci- 

sions are averages of the adjacent complex M-PSK symbols. 

The intent is to minimize the distance between the intermediate 
decision and the adjacent symbols. Applying this reasoning to 

2-PSK modulation results in the erasure scheme presented in 

[16]. 

We derive the optimum constrained Wiener weights for the 
DFE by assuming error-free past decisions obtained from a 

training sequence so that d{k) = s(k). The Wiener realization 

of the DFE is the solution of the regularization problem [21] 

imn{E[\s(k)-y(k)\2]} 

subject to    ||wD||2 =7||wDl. (5) 

where E[ ] is the expectation operator taken over the informa- 
tion and noise processes, and ||WBV || is the norm of the uncon- 

strained feedback weights. The parameter 7 controls the norm 
constraint where 0 < 7 < 1. 



2030 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 11, NOVEMBER 2001 

Fig. 3.    Soft decision regions for 4-PSK with intermediate decisions in shaded 
regions. 

Using the method of Lagrange multipliers, the optimum 
Wiener weights are readily shown to be the solution of the set 
of linear equations [2] 

R Q" 

Q   (l + A)I/vB 

WF 

WB 

p 

0.vBJ 
(6) 

where R = £[x(fc)x(fc)H], Q = E[d{k)x(k)H], 
p = E[s* (k)x(k)}, and * denotes complex conjugation. 
IjVe is the identity matrix of size NQ, 0/VB is the all-zero 
column vector of length ND, and A is the Lagrange multiplier 
A > 0. Equation (6) shows that the norm constraint analytically 
introduces synthetic white noise with power A into the feedback 
path. 

The optimum feedforward and feedback filter weights are 
written explicitly as 

Wp ,/;n\-i. (R-«Q"Q)   ' 

: -rtQwp (7) 

where a = 1/(1 + A) and 0 < a < 1. If « = 1, the optimum 
weights represent the standard unconstrained DFE. As a —> 
0, the feedback path diminishes and the feedforward filter wp 
approaches the optimum linear equalizer [13]. 

For convenience, we will define the norm constraint in terms 
of the parameter 7 in (5). However, there is no closed-form re- 
lationship between a and 7 except at the extreme values where 
7 = 0 and 7 = 1 correspond to a = 0 and a = 1, respectively. 
Therefore, when invoking a constraint with arbitrary 7, we use 
(7) in a recursive search strategy to find the corresponding a. 
Although we are not concerned with implementation issues, we 
note that if the DFE weights are adapted with the least mean 
square algorithm (LMS), the constrained equalizer can be im- 
plemented with only a minor increase in complexity using leaky 
LMS [13], [22, pp. 746-747], 

IV. DFE PERFORMANCE ANALYSIS 

We use the average probability of symbol error PE and mean 
burst error length ^BL as the two primary measures of perfor- 
mance for the DFE. The approach we take to compute these two 
values is to separate the decision device input y(k) into com- 
ponents representing the self-generated ISI resulting from de- 
cision error feedback, the remaining residual ISI not spanned 
by the feedback filter WB, and noise. We further separate the 
error feedback sequence of length JVB into the actual transmitted 
sequence and a multiplicative process that represents potential 
A/-PSK phase shift errors at the output of the soft decision de- 
vice. We then make a simplifying assumption that this multi- 
plicative error process, the transmitted symbols, and the noise 
process are statistically independent of each other. An approxi- 
mate Markov model of the DFE follows in which each Markov 
state is defined by a permutation of the multiplicative error se- 
quence. Using this independence assumption, we calculate com- 
ponents of the corresponding Markov probability transition ma- 
trix by averaging over the noise and all possible permutations of 
the transmitted M-PSK symbols contained within the sample 
y(k) using a computational technique presented in [23]. Then 
straightforward computations produce the approximate values 
PE and/iBL- 

The analysis begins by decomposing the feedforward data 
vector using (1) and (3) as 

t(fc) = ^J,T,s(fc) +n(fc) (8) 
1--1 

where s(k) is the infinite-length symbol vector 

s(k) = [•••     s{k + 1)    s{k)        4k - 1)     • • •]*       (9) 

and n(A;) is a (2N + 1) x 1 white complex Gaussian vector 
process with power a?,. Each column of the (2N + 1) x 00 
channel matrix Tj is a replica of the fractionally sampled wave- 
form pr(t — Aj — T) exp(—i2nfc(At + r)), down-shifted by 
two samples with respect to the column on the left and truncated 
by the observation window of length 2N + 1. By construction, 
the equalizer is coarse-synchronized to the path with A; = 0 so 
that the center row of each T; is given by 

T,(AT + 1, :) 

= [•••    pT(T + A;+r) 

pT{-T + A, +T) 

Pr(A, +T) 

I.-»2IT/«(AI+T) (10) 

Because the computational technique in [23] requires a finite 
number of ISI symbols, we truncate each T; to get the (2N + 
1) x (2d + 1) matrix T; such that we maintain d columns on 
either side of the column containing the sample PT(A; + r) 
corresponding to the cursor symbol s(k) in (10). Because of the 
fast roll-off of the square-root raised cosine pulse, the choice 
of the truncation parameter d is not critical, although it must 
be chosen with respect to the largest multipath delay such that 
d ~3> max{\At\}/T and d > N& (d — 30 in all numerical 
results presented here). 



REUTER elal.: MITIGATING ERROR PROPAGATION EFFECTS IN A DFE 2031 

Then by defining the composite channel matrix T as 

T = £/J,T, (11) 
1=1 

the feedforward data vector is well approximated by 

x(Jfc) = Ts(Jfc) + n(fc), (12) 

where s(k) is the truncated symbol vector given by 

s(A:) = [s(k + d)    s{k + d-l) 

•••    s(k)    •••    s(k-d)?.    (13) 

We next partition T and s(Ar) such that 

-si(fc)- 

s(k) 
Ts(/c)=[E1    f   E2    E3]      v' 

s2(fc) 

-«s(*)J 
= ElSl(A;) + fs(fc) + E2s2(fc) + E3s3(A;)   (14) 

where 

Bt(k) = [«(Jfc + d)   s{k + d-l)    •••    s(k + l)Y, 

s2(k)=[s{k-l)    s{k-2)    •••    s{k-N3)]\ 

s3(k)=[s{k-NB-l)    s(k-NB-2)    •••    s(k-d)]*. 

(15) 

Then the cross-correlation components comprising the optimum 
Wiener weights in (7) are given by R = TTH + O^^N+I, 

Q = E^, and P = f. Also, using (4), (7), (12), and (14), we 
can write the decision device input as 

y(k)=vr?(x(k)-aQHd(k)) 

= w£(Ts(fc) - aE2d(A;)) + w^n(fc) 

= wf (E,sj.(fc) + fs(k) + E3s3(/c)) 

+ wf/E2(s2(A;) - ad(Jfc)) + w'Jn(k). 

The feedback soft decisions can be represented as 

d(A;) = r(A;)©s2(A;) 

(16) 

(17) 

where © denotes element-wise product and r(A;) is a random 
NQ X 1 vector in which each term represents the rotation and 
scaling of the output of the soft decision device with respect to 
the transmitted M-PSK symbol (Fig. 3). If there are no decision 
errors, r(A:) is a vector of ones (r(fc) = l/vD). From (16) we see 
that if the norm constraint is used (a < 1), and r(k) = ljvD, 
the feedback filter does not cancel all of the postcursor symbols 
within its span. 

The feedback error term in (16) then can be written as 

s2(fc) - ad(k) = (1NB - ar(fc)) 0 s2(fc) 

= e(A,-)Os2(fc) (18) 

where e(k) is the random multiplicative error vector. The pos- 
sible values for each element of e(A;) are displayed in Fig. 4 for 

X 

es,{l-n/l.<,/2).ef, d+o/2,0/3) 
X X 

ei o-o.o) 
I 

-I 

x x 
C2'14-<•/>.-a/ljr'Ct (1 +o/J,-o/J) 

ez (i,-=) 

Fig. 4.    Multiplicative feedback error values for 4-PSK with soft decisions 
(0 > 0) and a norm constraint (a < 1). 

4-PSK using the soft decisions (0 > 0) given in Fig. 3. Iff? = 0, 
the intermediate (even) terms in Fig. 4 do not occur. The deci- 
sion device input then can be decomposed in terms of the cursor 
symbol ISI and noise as 

y{k) = a0s(k) + aiSi(fc) + a2(e(fc) © s2(A;)) 

+a3S3(A;) + wf/n(A:)    (] V) 

where a0 = w"f, and the remaining ISI coefficient row vectors 
are given by a^ = WjfE,-. 

The approach taken by Monsen [1] assumes the residual ISI 
involving the terms Si(/c) and s3(A:) in (19) is negligible. Then, 
making the reasonable approximation that the noise term is 
white Gaussian and therefore independent of the feedback error 
process, a Markov model of the DFE results in which each 
state is defined by a realization of the feedback error sequence 
e(k) 0 s2(A;). By conditioning y(k) on the cursor symbol s(k) 
and each realization of e(Ar) © s2(fc), a Gaussian variate results 
and is used to compute components of the transition probability 
matrix P. Although we could take this approach by expanding 
the definition of each state to include realizations of the residual 
ISI, the number of states would be M2d~NB(2M2)NB for 
M-PSK with soft decisions, and therefore computationally 
unwieldy. 

The approach proposed in [24] accomplishes a significant re- 
duction in states by assuming the residual ISI not spanned by 
the feedback filter is statistically independent of e(k) © s2(/c) 
and the noise. The states are defined as in [1] but the transi- 
tion probabilities are computed by averaging over the residual 
ISI using an efficient numerical technique. Adapting this ap- 
proximate method to A'/-PSK with soft decisions would result 
in (2M2)A'D states. 

We achieve a further reduction in states (RIS) by making the 
following assumptions: 

RIS-1. The multiplicative error vector e(/c) is statistically 
independent of the noise n(A:). 

RIS-2. e(k) is independent of s(k) and the residual ISI 
represented by si(k) and s3(A:). 

RIS-3. e(/c) is independent of s2(A;), the symbol compo- 
nents spanned by the feedback filter. 
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Although not defined in terms of e(fc), RIS-1 was used in [1] 
and RIS-2 was used in [24], RIS-3 was used in [4] for 2-PSK, 
and amounts to lumping together in the same state all feedback 
error sequences e(A:) 0 S2(k) corresponding to the same e(k) 
and assuming they have equal probability of occurring. In ef- 
fect, because the distribution of the error sequences is unknown, 
we make the approximation that they are uniformly distributed. 
This is the key assumption in this paper and is a generalization 
of [4] to M-PSK. An approximate Markov model of the DFE 
follows from RIS-3 in which each of the (2M)N° states is de- 
fined by a realization of e(k). 

To compute the state transition probabilities of the Markov 
matrix P, we condition y(k) in (19) on e(k) representing each 
state. The transition probabilities from the pth state are given by 

p% = Px(y(k) € 5,|ep, s(k) = 1),        1 < q < 2M   (20) 

where er is the multiplicative error sequence of the pth state, 
and Sq is the soft decision region in the complex plane corre- 
sponding to the transmitted symbol s(k) = 1 and the multi- 
plicative feedback error eq. We construct the matrix such that 
the transition probabilities from the pth state reside in the pth 
row of P. Also, the first row of P corresponds to the error-free 
state in which each element of ei is ei (Fig. 4). 

Once we have constructed P, we compute the steady-state 
probability vector v as 

TABLE   I 
CHANNEL MODEL WITH PATH POWERS AND NORMALIZED DELAYS 

Path   a\ (dB)    A,/T 
1       -6.0 -0.8 
2         0.0 0.0 
3       -2.0 1.8 
4       -4.0 2.7 
5       -6.0 3.6 

TABLE  II 
STATIC CHANNEL REALIZATIONS 

Channel  1 Channel 2 
T/T 0.3837 -0.4498 

(h 0 1916 + i0.3570 0.0346 + i0.3766 

ih 0 4836 + i0.2146 0.5033 - i0.2058 

ft -0 3314 - i0.4589 -0.8192 + i0.4337 

ft -0 1165 - i0.2191 0.4052 + i0.5288 

0s 0 5376 + i0.3074 -0.0024 +  i0.1326 

DFE is given by PNE = 1 — p\, and is the traditional optimum 
measure of DFE performance. By making the error-free state 
absorbing [8], we define the mean burst error length as [25, pp. 
43-52] 

fiaL = *SN1 - (Na - 1) (25) 

ptv (21) 
where N = (I — G)  l, and JT0 is the initial error state proba- 
bility vector that we define as 

where the component v(p) represents the probability of being in 
the pth state [1]. Then the probability of M-PSK symbol error 
at the output of the hard decision device is [16] 

(2M)'VD 

PE=    Y,   v(j>)Pi(y(k)tHl\ep,8(k) = l)       (22) 
P=i 

and the probability of bit error is 

(2M)
N

B    M 

Pn = 
1 

log2 M E E 
p=l       m = 2 

xv(p)WmPv(y(k) e Hm\ep, s(k) = 1)    (23) 

where H,n is the hard decision region in the complex plane cor- 
responding to the transmitted symbol s(k) = m, and Wm is the 
Hamming weight of the bits assigned to symbol m with respect 
to symbol m = 1. We calculate the probabilities in (20), (22), 
and (23) by averaging over the noise and all permutations of the 
symbol vectors si(k), s2(k), and s3(fc) in (19) using a compu- 
tational technique. Details are in the Appendix. 

Next we partition the Markov matrix as 

P = 
p\ r 

G 
(24) 

If we set 7 = 1 and 6 = 0 (Si = Hi), then the probability 
of symbol error assuming error-free feedback for the standard 

T|) 
i-pi 

(26) 

We include the term N^ - 1 in the definition of ^BL SO that 
the minimum mean burst error length is 1. Also, the variance of 
the burst error length is readily computed with this theory and 
is given by [8], [25, p. 52] 

2 
°T3L 4(2N - I)N1 - (TTJNI)

2 (27) 

Components of iro represent transition probabilities out of 
the error-free state weighted by the probability of an error. This 
definition of JTO is convenient for high-order modulation and 
soft decision feedback because it takes into account that certain 
errors are much more likely than others, e.g., e2 and eg are more 
likely than 64 and e$ for 4-PSK in Fig. 4. 

We also can further reduce the computational complexity of 
this approximate Markov DFE model by combining states con- 
taining unlikely errors using 

RIS-4. All state probabilities pq
p in (20) that transition to er- 

rors eq with magnitude that exceed some threshold, 
are lumped into the worst-case error represented by 

CM+1- 

Consequently, Markov states defined by ep that differ only in 
elements corresponding to these unlikely errors are incorpo- 
rated into an aggregate state with CM+L in these error loca- 
tions. For instance, for 4-PSK we might use only the errors 
{ei, C2, 63, 65, 67, eg} in Fig. 4 with c± and e§ incorporated 
into Co, resulting in 6A'B Markov states rather than 8A'B. We 
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PROBABILITY OF SYMBOL ERROR 

PROBABILITY OF SYMBOL ERROR 

(b) 

Fig. 5.   /»BL versus PE for Channel I with 4-PSK, and SNR = 15 dB. (a) Over soft decision angle t) with 7 = 1.0. (b) Over norm constraint 7 with B = 10° 

set the threshold such that the decrease in computational com-    channel realizations derived from the channel model given in 
plexity is worth the potential loss in accuracy. Table I. The fading parameters are Rayleigh distributed with 

given powers. The corresponding normalized path delays are 
V. NUMERICAL RESULTS a|so shown. The equalizer is coarse-synchronized to the second 

To demonstrate the utility of the DFE design and the per-    path. The two static channels extracted from this model are 
formance analysis approach, we present results for two static    given in Table II, and present different degrees of challenge to 
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Fig. 6.    Theoretical performance curves over soft decision angle (0) and norm constraint (7) for Channel I with 4-PSK. (a) SNR =11 dB. (b) SNR =19 dB. 

the DFE. The normalized timing error is also given. The DFE A. Channel I: 4-PSK 
design consists of a fractionally spaced feedforward filter wF        We begin by equalizing Channel 1 with 4-PSK modulation 
with N = 10 pre- and postcursor taps, and a feedback filter wD and cr|NR = 15 dB. Fig. 5(a) displays mean burst error length 
with iVrj = 4 taps. The transmitted square-root raised cosine /*OL versus probability of symbol error PE as the soft decision 
pulse has 30% excess bandwidth. angle 6 varies from 9 = 0° to 8 = 30° in two-degree incre- 
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Fig. 7.    /iDL versus PE for Channel 2 with 4-PSK, and SNR = 12 dB. (a) Over soft decision angle H with 7 = 1.0. (b) Over norm constraint 7 with fl = 10° 

merits. No norm constraint is used (7 = 1). Also shown is the cision device in Fig. 2 and are defined to contain no more than 
probability of error of the standard unconstrained DFE given no NB - 1 consecutive correct decisions. However, the theoretical 
feedback error PNE- Theoretical and simulation results taken definition of ^BL in (25) is defined with respect to the soft deci- 
over 2 x 108 transmitted symbols are displayed. In the Simula- sion device. And because an adjacent soft decision error (e2 and 
tions, error bursts are determined at the output of the hard de- e8 in Fig. 4) may not necessarily trigger a hard decision error, 
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Fig. 8.    PE versus SNR for Channel 2 with 4-PSK. 

theoretical and measured ^BL tend to deviate for large values 
off?. 

Fig. 5(a) reveals that the traditional DFE using no soft deci- 
sions (9 = 0°), suffers degradation in PE with respect to the 
error-free feedback case PNE- However, as we increase 9, an 
"L-curve" [21 ] develops in which there is a decrease in PE that 
is accompanied by a significant decrease in /UBL until 9 w 10° 
when PE begins to increase. Also shown is the considerable im- 
provement in standard deviation of the burst error length <TQL 

determined theoretically from (27) for 8 = 0° and 9 = 10°. 
Next, by setting 6 = 10°, we begin at the knee of the L-curve 

in Fig. 5(a) and plot /IDL versus PE over the norm constraint 7 
in Fig. 5(b). We see that further improvement in PE and ^BL 

is obtained by incorporating the norm constraint with the soft 
decision device. Again an L-curve develops in which both PE 

and ^BL decrease until 7 » 0.70. After this point, any decrease 
in ^BL comes at the expense of increasing PE. At the operating 
point 7 = 0.70, we have decreased PE approximately by half 
with respect to the standard DFE, and have come closer to the 
optimum PNE- We have also dramatically decreased /J-UL and 
CTBL- F°r tne purpose of comparison, estimated /UBL and CTDL 

derived from the simulations are ABL = 7.1 and <7BL = 6.9 
for the.parameter set {9 = 0°, 7 = 1.0), and £BL = 2.4 and 
aQL = 3.2 for [0 = 10°, 7 = 0.70). We refer to the knee of 
this L-curve as the "optimum" operating point. Also, we achieve 
the same result if we generate the L-curves first over 7 and then 
over 9. 

The "optimum" set of parameters {9, 7) generally is depen- 
dent on SNR. To demonstrate, Fig. 6 contains three dimen- 
sional plots of theoretical DFE performance for Channel 1 with 

IM„ = 11 dB and CT2NR = 19 dB. The standard deviation auL •'SNR 

is plotted on the 2-axis. In each plot, the performance curve over 
9 with 7 = 1 is combined with the curve over 7 with 0 = 10°. 
These plots reveal that although we can achieve better perfor- 
mance at the low SNR using a different parameter set, the exact 
choice off? and 7 is not critical because a range of parameters 
produces approximately the same performance. However, the 
set (9 = 10°, 7 = 0.70) represents a good compromise be- 
tween the low and high SNRs. These plots also demonstrate the 
substantial improvement in <TDL that can be obtained using the 
constrained DFE with soft decision feedback, particularly at the 
high SNRs. 

B.  Channel 2: 4-PSK 

Fig. 7 contains results for the more benign Channel 2 with 
<T|NR = 12 dB. Although the performance gains are more 
modest, we still see the characteristic L-curve in both plots. 
Also, it is interesting that (8 = 10°, 7 = 0.70) is close to the 
optimum operating region of the DFE for both channels as in- 
dicated by Figs. 5(b) and 7(b). This was observed over a variety 
of channel realizations for 4-PSK. 

DFE performance is given as a function of SNR for the two 
operating regions (t? = 0°, 7 = 1.0) and (9 = 10°, 7 = 0.70) 
in Figs. 8 and 9 for Channel 2 (similar effects are seen for 
Channel 1). Increasing SNR from 0 dB has the effect of im- 
proving PE and ^BL for both DFE designs because in this re- 
gion noise is the major cause of error bursts rather than decision 
error feedback. However, after approximately 11 dB, the mean 
burst error length of the standard DFE in Fig. 9 begins to in- 
crease even as PE in Fig. 8 decreases. At this point the norm 
of the feedback filter increases to the extent that decision errors 
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Fig. 9.    /IBL versus SNR for Channel 2 with 4-PSK. 

TABLE   III 
BURST LENGTH (BL) SIMULATION STATISTICS, CHANNEL 2,4-PSK, SNR = 15 dB 

DFE Type 
Number of Bursts 

BL - 1    BL » 2    BL > 5    BL >  10    BL >  15 
Maximum 

BL 
7 = 1, 0 = 0 
7 = .7, 0=10 

1356 
2945 

413 
53 

517 
29 

183 
3 

61 
0 

36 
12 

begin to dominate. As SNR increases beyond 11 dB, initial de- 
cision errors tend to cause longer and longer strings of errors. 
However, bursts occur less frequently as the SNR increases to 
the extent that the longer bursts do not severely degrade the av- 
erage probability of error. Conversely, ^BL of the constrained 
DFE with the soft decision device continues to decrease as SNR 
increases. To further illustrate, Table III contains burst length 
simulation statistics for SNR = 15 dB, measured over 109 trans- 
mitted channel symbols. Although the constrained DFE exhibits 
about twice as many single errors as the standard equalizer, there 
is a significant decrease in the number of bursts of length 2 and 
greater. Figs. 8 and 9 demonstrate the importance of including 
burst error statistics in the analysis of a DFE. 

C.  Channel 2: 8-PSK 

This example demonstrates DFE performance with 8-PSK 
modulation for Channel 2. Fig. 10 displays ^BL versus PE 

in which we vary 9 and 7 with <7§NR = 18 dB. To min- 
imize computations, we use the aggregate-state approach 
described by RIS-4 at the end of Section IV. Adapting the 
sequencing from 4-PSK in Fig. 4 to 8-PSK, we use the errors 
{d, e2, e3, e4, eg, ei4, 615, ei6} to define the Markov states, 
with the omitted errors lumped into e9. We then have 8

VB 

states, which is the same number used to generate the perfor- 
mance results for 4-PSK. Comparing Figs. 7 and 10 reveals 
that we need to increase the SNR for 8-PSK by more than 6 
dB to achieve approximately the PE performance of 4-PSK. 
Also, the burst error statistics HHL and C7BL have degraded 
significantly for the standard equalizer with (6 = 0°, 7 = 1) 
in Fig. 10(a). And yet, by using soft decisions and invoking 
the norm constraint, we see from Fig. 10(b) that we can get 
/^BL and CTBL values comparable to those given in Fig. 7(b) 
for 4-PSK. Also, given the results for 4-PSK, it is intuitively 
satisfying that the optimum 8-PSK decision angle is 9 = 5°. 

D.  Channel 2: 4-PSK With Convolutional Coding 

Although the increase in PE of the standard DFE with 
respect to AJE may appear minor in Fig. 8, the associated burst 
errors have significant implications for error correction coding 
and interleaving [6], This is particularly true when operating 
at high SNR. To demonstrate, we incorporate into the design 
a simple rate 1/2 convolutional code with constraint length 3 
and free distance 5 [26, p. 466] with hard-decision decoding. 
The channel symbols are 4-PSK with Gray bit mapping. An 
(Ni, Ni) convolutional interleaver is included between the 
output of the encoder and the 4-PSK channel symbol mapper, 
incurring an end-to-end delay of Ni(Ni — 1) [27, pp. 347-349]. 
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Fig. 10.    /IBL versus PE for Channel 2 with 8-PSK, and SNR = 18 dB. (a) Over soft decision angle 0 with -y = 1.0. (b) Over norm constraint 7 with 0 = 5° 

Fig. 11 displays the probability of information bit error Pb at 
the output of the convolutional decoder as a function of SNR 
for Channel 2. The theoretical upper bound on the error of the 
constrained DFE (9 - 10°, 7 = 0.70) assuming ideal bit inter- 
leaving is plotted. This bound is given by Pb < X^5 PdP-i{d), 

where fid = (d - 4)2<'~'\ and the path error probability P?{d) 
is determined using the channel bit error probability of (23) [26, 
pp. 463^66], Also included are simulation results for the stan- 
dard DFE and the constrained DFE with convolutional inter- 
leaving and Ni = 11. Although the constrained DFE mitigates 
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Fig. II.    Pi versus SNR for Channel 2 with rate 1/2 convolutional code, convolutional interleaving, and 4-PSK channel symbols. 

burst errors, it does not eliminate them. And because convolu- 
tional codes are sensitive to burst errors, an interleaver is still 
required to achieve the modest coding gain of this code. How- 
ever, for Pb — 10~6, approximately 2-dB improvement in SNR 
is obtained with the constrained DFE versus the standard DFE. 
To achieve this same performance, Ni must double for the stan- 
dard DFE, resulting approximately in a four-fold increase in 
end-to-end delay. 

VI. CONCLUSION 

We have demonstrated that a DFE design that combines dis- 
crete soft decision feedback with a norm constraint on the feed- 
back filter is an effective method of controlling error propaga- 
tion with minor computational cost. We analyzed this structure 
using an approximate Markov model that predicts DFE perfor- 
mance in terms of probability of symbol error as well as burst 
decision error statistics and applied it to M-PSK modulation. 

Other soft decision implementations than the simple one 
proposed here for M-PSK may offer further improvements 
in performance. For instance, we can quantize the decision 
space more finely or include an erasure region as in [16]. The 
applicability of the analysis approach to quadrature amplitude 
modulation (QAM) can be explored. Also, we may achieve 
better performance by using more complicated DFE designs 
that incorporate interleaving and error correction coding into 
the feedback path [28], [29]. Finally, we have considered only 
individual static channel realizations drawn from a fading 
propagation environment. Implementation issues related to an 
adaptive DFE operating in a time-varying environment and 
the effect of feedback errors on tracking performance warrant 
further analysis. 

APPENDIX 

PROBABILITY COMPUTATIONS 

We calculate the probabilities in (20), (22), and (23) using a 
computationally efficient technique. It can be shown that [23] 

Pr(y(fc) € £»|er, s(k) = 1) 

1      P        P 

7;2 
iQ=-ru=-r 

x hN(wh, w;Q)e'MiR*{ao}+u.-/Qim{o„}) + c      (28) 

where 
D region in the complex plane corresponding 

to either hard or soft M-PSK decisions; 
KQ ( W/I , UJIQ )      Fourier transform of the wedge-shaped re- 

gion D truncated at T0/2 (see Fig. 3 for 
D = 5X); 

hisii^h, UIQ)      characteristic function of the M-PSK ISI; 
/IN (uh, W/Q)       characteristic function of the noise process 

Wpii(k), and w = 2TT/T0. 

The term c is the numerical error associated with this method 
and can be chosen arbitrarily small with the proper choice of 
the parameters T0 and P [23]. 

The characteristic function of the ISI can be decomposed ac- 
cording to the symbol vectors si(fc), S2(k), S3(k), and the as- 
sociated coefficients from (19) as 

d A'B 

3=1 j = l 
d-ND 

x   H ftj.Mi,^).    (29) 
3=1 
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Each component of the ISI corresponding to Si(k) and S3(k) is 
given by 

h„j(ujli, U>IQ) 

= — y^cos(u;(Re{an,j}/i+Im{an,j}/Q)cosf — (m - 1)J 

+ u(R£{an]j}lQ-lm{an,j}li)sml— (m - 1)J j 

(30) 

where Re{anj} and hn{anj} are the real and imaginary parts 
of the jth element of a„ for n = 1, 3. The remaining error 
feedback terms are given by 

Il2j{u>li, U)IQ) 

M/1 
2 

M 
^ cos ( w(Re{a2,_,c,,? j}/i + Im{o2) JCPI j}lq) 

xcos( -j^(m- 1) 

+ u(Re{a2jerj}lQ - hn{a2jepj}li) 

(p(m-l)^ (31) x sin   —im — 1) 1 M 

where erj is the j/th element of the multiplicative error vector 
ep corresponding to the pth state. The characteristic function of 
the circular Gaussian noise is given by 

ftNMi> w/q) = e-
2('f+'2Q)-2/2 (32) 

where 2a2 is the variance of the complex process w7/n(/c). 
The Fourier transform of a truncated wedge that is symmetric 

about the real axis is given by 

K+(wh, u>lQ) = -^- {-i)1' (sine ( - {h + /Q tan(0)) 

-IKIQ tan(0)/2 

sine (|(/i - /Q tan(0))) ei7r'« tan^/2 

) 
;Q^o 

/^(0, 0) = tan(</>)- 

K^h, 0) = •->- (_(_,/. _ sm (_/r)J 
Zl5*0 (33) 

where tj> is the angle of the side of the wedge with respect to the 
real axis and sinc(a;) = sin(7r:r)/7r:c. 

For example, to determine the components of (22) for 4-PSK, 
we calculate 

Pr(j/(A:)^fr1|ep)«(fc) = l) 

= 1 - Pr(y(fc) e ffi|ep, s{k) = 1)    (34) 

using (28) and (33) with </> = 7r/4. The Markov transition prob- 
abilities of (20) are determined similarly using (33) and the re- 
lation 

KSq(uh, UIIQ) = K^iuiihcos{4>q) +lqsin{(pQ)), 

U)(IQ cos(<f>q) - h sin(</>,)))    (35) 

where <f>q is the angle of rotation of the soft decision region 
Sq with respect to the real axis. For the 4-PSK soft decisions 
defined in Fig. 3, we use the wedge angles </> 6 {6/2, 7r/4 - 
0/2} in (33). 
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