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Mitigating Error Propagation Effects in a Decision
Feedback Equalizer

Michael Reuter, Member, IEEE, Jeffery C. Allen, Member, IEEE, James R. Zeidler, Fellow, IEEE, and
Richard C. North, Member, IEEE

Abstract—We present an approximate analysis approaeh to the
eomputation of probability of error and mean burst error length for
a decision feedbaek equalizer (DFE) that takes into account feed-
back of decision errors. The method uses a reduced-state Markov
model of the feedback process and is applieable to linear modula-
tion formats. We use this technique to analyze a DFE design that
mitigates the effeets of feedbaek error by ineorporating a soft de-
eision deviece into the feedback path and a norm eonstraint on the
feedback filter weights. We apply the DFE design and analysis ap-
proach to a dispersive multipath propagation environment.

Index Terms—Deeision feedback equalizers, error analysis,
error propagation, Markov proeesses.

1. INTRODUCTION

HE DECISION feedback equalizer (DFE) is an impor-
T tant component in many digital communieation receivers
and is used to suppress intersymbol interferenee (IS1) caused
by dispersive propagation channels 1], [2], as well as reject
in-band interference [3], [4]. The DFE ineorporates a feedfor-
ward filter that operates on the received signal to suppress pre-
cursor ISI, with a feedbaek filter that operates on previously
detected ehannel symbols to suppress posteursor ISI. The DFE
generally outperforms the traditional linear equalizer, partieu-
larly if the ehannel has deep spectral nulls in its response [1].

However, degradation in DFE performance oceurs when in-
correetly deteeted symbols are fed through the feedback filter.
Then instead of mitigating ISI from the eursor sample, the DFE
enhances ISI. Error propagation may result that causcs bursts
of decision errors and a corresponding increase in the average
probability of bit and symbol error. Moreover, the bursty nature
of DFE errors has implications for error correction coding and
interleaver depth that may be ineorporated into the reeeiver de-
sign [5], [6]).

Error propagation generally does not severely affect DFE per-
formanee if the channel delay spread is on the order of a symbol
duration or less [1], [7]. However, as bandwidths increasc to ac-
eommodate high data rates, the assoeiated inerease in relative
delay spread may result in error propagation for a given ehannel.
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Also, high-order modulation formats may be more suseeptible
than low-order formats. Therefore, a need exists to quantify
DFE performance in the presence of decision error feedback and
to mitigate the effects of error propagation.

Performance analysis of a DFE that ineludes deeision error
feedback is a difficult problem and has reeeived considerable
theoretical attention. Using an independence assumption on the
noise and assuming no precursor ISI, Monsen used a Markov
model of the error feedback proeess to derive probability of error
for the DFE [1]. The mean burst error length also ecan be de-
rived using this theory [8]. Although this approach is aceurate,
it becomes computationally burdensome beeause the number of
Markov states exponentially increases as the number of feed-
back taps inereases. Duttweiler, Mazo, and Messersechmitt sim-
plified the analysis by aggregating the Markov states into a re-
dueed-state model and then bounding the state transition proba-
bilities [9]. Bounds on the probability of error [9] and the burst
error length [10] are obtained. Tighter bounds are possible by
refining the definition of the aggregate states [11], [12].

Various techniques for mitigating error propagation also have
been proposed. Large taps in the fecdback filter of an equalizer
designed using the minimum mean-square-error (MSE) critc-
rion cause significant self-generated IS] if deeision errors are
made. A potential solution is to jointly optimize the feedfor-
ward and feedback filtcrs with an additional constraint on the
norm of the fecdback filter taps. This regularization approach
was applied to the magnetie reeording channel in [13], [14].
DFE structures also have been proposed recently that eontain
a soft decision device in the fecdback path to eompensate for
unreliable deeisions [15]-[18].

Combining these techniques, we present a minimum MSE
DFE design that incorporates both a diserete soft deeision deviee
and a norm constraint on the feedbacek filter to mitigate error
propagation. Reliable deviee inputs that are elose with respeet
to the L? norm to a component of the symbol eonstellation are
fed back as hard decisions. Unreliable deviee inputs that are
not close are fed back as intermediate deeisions. Also, feedbaek
gain is controlled by the norm eonstraint.

To eapture the bursty nature of the DFE errors, we use both
the probability of symbol error Pp;, and the mean burst error
length ppr, as the primary DFE performanee measures. We de-
termine these quantities analytically using the fundamental ap-
proach of [ 1], but we derive an approximate Markov model with
signifieantly fewer states by making an independence assump-
tion involving the feedback error sequence. We demonstrate
that design trade-offs between P and ppp result in a classie
“L-eurve.” From this geometrie interpretation, an optimum de-
sign beeomes evident.
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Fig. 1. Recceiver front end.

I1. SYSTEM DEFINITIONS

We are concerned with coherent demodulation of data trans-
mitted through a discrete multipath environment. The channel
symbol modulation is M -ary phase shift keying (M-PSK). We
operate on the complex baseband signal using the receiver front
end shown in Fig. 1. The down-converter is locked to the car-
rier frequency f. but not the phase. Therefore, any phase com-
pensation is done by the equalizer [19]. The noise at the input
to the ideal lowpass filter is modeled as a circularly symmetric
complex white Gaussian process with two-sided power spectral
density V.

The signal at the output of the ideal lowpass filter is modeled

as
L =]
z(t) =Y At) Y. s(m)pr(t—mT —Ar—r)
=1 m=—co
x e~i2mfe(BitT) | n(t) (1)
where
L number of discrete multipath components;

A;  relative path delays;

s(m) channel symbols;

T symbol duration.
The multiplicative fading terms /3;(t) incorporate all channel
effects and are modeled as mutually indcpendent random
processes with zero mean and power a?‘. The corresponding
path delays A; are deterministic. The symbol pulse pr(?) is
a squarc-root raised cosine waveform with unit energy. The
variable 7 represents symbol timing error and is modeled as
a continuous random variable uniformly distributed between
—T/2 and T/2. The M-PSK symbols s(m) are mutually
independent random variables with unit power. The noise
n(t) is a circularly symmetric Gaussian process with power
02 = 2Ny/T. Using these assumptions and by averaging over
all random quantities, we define the received signal-to-noise
ratio (SNR) to be [20]

L
1 2
oinr = 33 ; b @)

The fading on all paths is slow with respect to 1" so that we can
assume a quasistatic channel with a given delay structure. All
performance results are based upon the minimum MSE Wiener
filter that is optimized with respect to a static rcalization of the
channel defined by the set of parameters {/31, 32, ..., 3L, 7}.

Also, the bandwidth of the lowpass filter in Fig. 1 accommo-
dates sampling z(t) at the rate 2/T to get the discrete samples
z(kT/2). This allows us to incorporate a fractionally spaced
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Fig. 2. DFE structurc with soft decision feedback and hard decision output.

feedforward filter into the DFE dcsign to provide robustness
against timing error 7 as well as matched filtering to the trans-
mitted pulse pr(t) and the propagation channcl [2].

11I. DFE DESIGN

A schematic of the DFE design is given in Fig. 2. The sym-
metric fractionally spaced feedforward filter w has 2V + 1
taps with IV taps leading and IV taps lagging the cursor tap. The
symbol-spaced feedback filter wg operating on the output of thc
soft decision device has N taps. We define the feedforward and
feedback data vectors as

x(k) = [z(kT + NT/2) (kT + (N - 1)T/2)
z(kT) z(kT — NT/2)]'
d(k) =[d(k—1) d(k-2) d(k— Ng)'  (3)

where t denotes the matrix transpose. Then the input to the
hard decision device used to estimate the cursor symbol s(k)
1s written as

y(k) = wi'x(k) + wii d(k) (4)

where H denotcs the Hermitian transpose.

There are many ways to define the soft decision device in
Fig. 2. We propose the discrete implementation shown in Fig. 3
for 4-PSK. Decision regions for higher-order M -PSK scale ac-
cordingly. The shaded areas reprcsent the intermediate decision
regions and arc defined by the angle 8. The intermcdiate deci-
sions are averages of the adjacent complex M-PSK symbols.
The intent is to minimize the distance betwecn the intermediate
decision and the adjacent symbols. Applying this reasoning to
2-PSK modulation results in the erasure scheme presented in
[16].

We derivc the optimum constrained Wiener wcights for the
DFE by assuming error-free past decisions obtained from a
training sequence so that d(k) = s(k). The Wiener realization
of the DFE is the solution of the regularization problem [21]

min{E[|s(k) — v(k)|?]}
subjectto ||wp||* = ~|lwp, |I? )

where E[ ] is the expectation operator taken over the informa-
tion and noise processes, and ||wp,, || is the norm of the uncon-
strained feedback weights. The parameter v controls the norm
constraint where 0 < v < 1.
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Fig. 3.
regions.

Soft decision regions for 4-PSK with intermediate decisions in shaded

Using the method of Lagrange multipliers, the optimum
Wiener weights are readily shown to be the solution of the set
of linear equations [2]

[P ol R
Q (1+NIn ) lwal ™ Loy,

where R = E[x(k)x(k)7], Q = E[d(k)x(k)"],
p = E[s*(k)x(k)], and * denotes complex conjugation.
In, is the identity matrix of size Np, O, is the all-zero
column vector of length Np, and A is the Lagrange multiplier
A > 0. Equation (6) shows that the norm constraint analytically
introduccs synthetie white noise with power A into the feedback
path.

The optimum fecdforward and feedback filter weights are
written explicitly as

we =(R-aQ"Q)7'p
wp = —'(YQWF (7)

where « = 1/(1 + A)and 0 € a £ 1. If @ = 1, the optimum
weights reprcsent the standard unconstrained DFE. As o —
0, the feedback path diminishes and the feedforward filter wg
approaches the optimum linear equalizer [13].

For convenience, we will define the norm constraint in terms
of the parameter v in (5). However, there is no closed-form re-
lationship between « and 7y exeept at the extreme valucs where
~ = 0and v = 1 correspond to a = 0 and o = 1, respectively.
Therefore, when invoking a constraint with arbitrary -y, we use
(7) in a rccursive search strategy to find the corresponding .
Although we are not concerned with implementation issues, we
note that if thc DFE weights are adaptcd with the least mean
square algorithm (LMS), thc constraincd equalizer can be im-
plemented with only a minor increase in eomplexity using leaky
LMS [13], [22, pp. 746-747].
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1V. DFE PERFORMANCE ANALYSIS

We usc the average probability of symbol error Pr; and mean
burst error length gy as the two primary measures of perfor-
manee for the DFE. The approach we take to compute these two
values is to separate the decision deviee input y(k) into com-
ponents representing the self-generated ISI resulting from de-
cision error feedback, the remaining residual ISI not spanncd
by the feedback filter wg, and noise. We further separate thc
error feedback sequence of length Ny into the actual transmitted
sequencc and a multiplicative process that rcpresents potential
M-PSK phase shift errors at the output of the soft decision de-
vice. Wc then make a simplifying assumption that this multi-
plieative error proeess, the transmittcd symbols, and thc noise
process are statistically independent of cach other. An approxi-
mate Markov model of the DFE follows in which each Markov
state is defined by a permutation of the multiplicative error se-
quence. Using this independence assumption, we caleulate com-
ponents of the corresponding Markov probability transition ma-
trix by averaging over the noise and all possible permutations of
the transmitted M -PSK symbols eontained within thc sample
y(k) using a computational techniquc prescnted in [23]. Then
straightforward computations producc thc approximatc valucs
Pg and ppy.

The analysis begins by decomposing the feedforward data
vector using (1) and (3) as

1
x(k) = > AiTis(k) + n(k) (8)

=1

where 5(k) is the infinitc-length symbol vector

sy=[- s(k+1) sk) sk=1) ' (9
and n(k) is a (2N + 1) x 1 white complex Gaussian vector
process with power o2, Each column of the (2N + 1) x oo
channel matrix T is a replica of the fractionally samplcd wave-
form pp(t — & — 1) exp(—i27 fo(A; + 7)), down-shiftcd by
two samples with respect to the column on the left and truncated
by the obscrvation window of length 2N + 1. By construction,
the equalizer is coarse-synchronized to the path with A; = 0 so

that the center row of each T is given by

T[(N-l—l, 2)
=[ pr(T+Ai+7) pr(di+71)

pr(=T+Ar+71) - e (Bt (10)

Because the computational techniquc in [23] requires a finitc
number of I1SI symbols, we truncate cach T; to get the (2N +
1) % (2d + 1) matrix T; such that we maintain d columns on
either side of the column containing the sample pr(A; + 7)
corresponding to the cursor symbol s(k) in (10). Becausc of the
fast roll-off of the square-root raised cosinc pulse, the choiee
of the truncation paramcter d is not critical, although it must
be chosen with respect to the largest multipath delay such that
d » max{|A;|}/T and d > Np (d = 30 in all numcrical
results prescntcd here).




REUTER ¢1 al.: MITIGATING ERROR PROPAGATION EFFECTS IN A DFE

Then by defining the composite channel matrix T as

L
T= Zﬂsz (1)
=1
the feedforward data vector is well approximated by
x(k) = Ts(k) +n(k), (12)
where s(k) is the truncated symbol veetor given by
s(k) =[s(k+d) s(k+d-1)
s(k) s(k=a)t. (13)

We next partition T and s(k) such that

Sl(k)
Ts(k)=[E: f Ep Eq| 0
Sz(k)
Sg(k)
= Elsl(k) + fS(k) + Ezsz(k) + Egsg(k) (14)
where
su(k) =[s(k+d) s(k+d—1) s(k+ 1)),
sa(k) =[s(k = 1) s(k—2) s(k — Np)Jt,
sa(k) =[s(k— Np —1) s(k— Np-—2) s(k—d)].

(15)

Then the eross-correlation components eomprising the optimum
Wiener weights in (7) are given by R = TTH 4 62Iyn 4,
Q = E¥ and P = {. Also, using (4), (7), (12), and (14), we
ean write the decision deviee input as

y(k) = wi (x(k) — «Q d(k))
=wH (Ts(k) — aEyd(k)) + wiln(k)
= w{;’(Elsl (k) + fs(k) “+ Egsg(k))

+ wiE,(sy(k) — ad(k)) + win(k). (16)
The fcedback soft decisions can be represented as
d(k) = r(k) © sa(k) 17)

where ® denotes element-wise produet and r(k) is a random
Ny x 1 vector in which each term reprcsents the rotation and
sealing of the output of the soft deeision deviee with respect to
the transmitted A/ -PSK symbol (Fig. 3). If there are no deeision
errors, r(k) is a vector of ones (r(k) = 15y, ). From (16) we see
that if the norm eonstraint is used (« < 1), and r(k) = 1y,
the feedback filter does not cancel all of the postcursor symbols
within its span.
The feedback error term in (16) then can be written as

s2(k) — ad(k) =(1n, — ar(k)) ® sz(k)

=e(k) ®sa(k) (18)

where e(k) is the random multiplicative error vector. The pos-
sible values for each element of e(k) are displayed in Fig. 4 for

b o

| €1 (L,a)
.x,

€81~ a/2.0/3)+_€6 (1 +a/2.a/2)
x
u" \‘u T

- et
€10 ~-a,0 1 €5 (14.a,0)

x ,x"
€2 -a/2-a/2f €4 (1 +a/3,~a/3)

"
-1 €3 (1,-a)

Fig. 4. Multiplicative feedback crror values for 4-PSK with soft decisions
(f > 0) and a norm constraint (v < 1).

4-PSK using the soft decisions (# > 0) given in Fig. 3. 1f6 = 0,
the intermediate (even) terms in Fig. 4 do not occur. The deei-
sion device input then can be decomposed in terms of the eursor
symbol ISI and noise as

y(k) = aps(k) + ays (k) + ag(e(k) @ sp(k))
+assa(k) + wiln(k) (19)

where ag = w{! f, and the remaining ISI coefficient row vectors
are given by a; = wi'E;.

The approach taken by Monsen [1] assumes the rcsidual ISI
involving the terms s; (k) and s3(k) in (19) is negligible. Then,
making the reasonable approximation that the noise term is
white Gaussian and therefore independent of the feedback error
process, a Markov modcl of the DFE results in whieh each
state is defined by a realization of the feedback error sequence
e(k) ® sz(k). By eonditioning y(k) on thc cursor symbol s(k)
and each realization of e(k) ® sp(k), a Gaussian variate results
and is used to eompute components of the transition probability
matrix P. Although wc could take this approach by expanding
the definition of each state to inelude realizations of the residual
ISI, the number of states would be M?4~V8(2M2)Ne for
M-PSK with soft decisions, and thercfore computationally
unwieldy.

The approach proposed in [24] accomplishes a significant re-
duction in statcs by assuming the residual ISI not spanned by
the feedback filter is statistically independent of e(k) ® sa(k)
and thc noise. The statcs are defined as in [1] but the transi-
tion probabilities are computcd by averaging over the residual
ISI using an efficient numerieal teehnique. Adapting this ap-
proximate method to M-PSK with soft decisions would result
in (2M2)™e states.

We achieve a further reduction in statcs (RIS) by making the
following assumptions:

RIS-1. The multiplicative error vector e(k) is statistically
independent of the noise n(k).

RIS-2. e(k) is independent of s(k) and the residual ISI
represented by sy (k) and s3(k).
RIS-3. e(k) is independent of s2(k), the symbol compo-

nents spanned by the feedback filter.
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Although not defined in terms of e(k), RIS-1 was used in [1]
and RIS-2 was used in [24]. RIS-3 was uscd in [4] for 2-PSK,
and amounts to lumping together in the same state all feedback
error sequences e(k) @ sy(k) corresponding to the same e(k)
and assuming they have equal probability of occurring. In ef-
fect, because the distribution of the error sequences is unknown,
we make the approximation that they are uniformly distributed.
This is the key assumption in this paper and is a generalization
of [4] to M-PSK. An approximate Markov model of the DFE
follows from RIS-3 in which each of the (2M)™® states is de-
fined by a realization of e(k).

To compute the state transition probabilities of the Markov
matrix P, we condition y(k) in (19) on e(k) representing each
state. The transition probabilities from the pth state are given by

o} = Pr(y(k) € Sglep, s(k) = 1), 1<g<2M (20)
where e, is the multiplicative error sequence of the pth state,
and S, is the soft decision region in the eomplex plane corre-
sponding to thc transmitted symbol s(k) = 1 and the multi-
plicative feedback error ¢,. We construct the matrix such that
the transition probabilities from the pth statc reside in the pth
row of P. Also, the first row of P eorresponds to the error-free
state in which cach element of e; is e; (Fig. 4).

Once we have construeted P, we compute the stcady-state
probability vector v as

Plv=v 2n
whcre the component v(p) represents the probability of being in
the pth state {1]. Then the probability of M-PSK symbol crror
at the output of the hard decision deviee is [16]

(2M)Np

Po= Y v(p)Pr(y(k) € Hilep, s(k) = 1)

p=1

(22)

and the probability of bit error is

(2M)VB A1
1

B e pz

=1

xv(p)WnPr(y(k) € Hple,, s(k) =1) (23)

m=2

where H,, is the hard deeision region in the complex plane eor-
responding to the transmitted symbol s(k) = m, and W, is the
Hamming weight of the bits assigned to symbol m with respeet
to symbol m = 1. Wc calculate the probabilities in (20), (22),
and (23) by averaging over the noise and all permutations of the
symbol vectors s;(k), s2(k), and s3(k) in (19) using a compu-
tational technique. Details are in thc Appendix.
Next we partition the Markov matrix as

[ &l

c GJ’
Ifwesety = 1and § = 0(S, = Hy), then the probability
of symbol error assuming error-free feedback for the standard

(24)
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TABLE |
CHANNEL MODEL WITH PATH POWERS AND NORMALIZED DELAYS

Path o7 (dB) A,/T

1 -6.0 -0.8

2 0.0 0.0

3 -2.0 1.8

4 -4.0 287

5 -6.0 3.6
TABLE 11

STATIC CHANNEL REALIZATIONS

Channel 1 Channel 2
/T 0.3837 -0.4498
Jif! 0.1916 + i0.3570 0.0346 + 10.3766
i 0.4836 + 10.2146 0.5033 - i0.2058
B3 -0.3314 - i0.4589 -0.8192 + i0.4337
B4 -0.1165 - i0.2191 0.4052 + 10.5288
Bs 0.5376 + 10.3074 -0.0024 + i0.1326

DFE is given by Pxg = 1 — p}, and is the traditional optimum
measure of DFE performance. By making the error-frce statc
absorbing [8], we define the mean burst error length as [25, pp.
43-52]

ppL = x)N1 — (Np — 1) (25)

where N = (I — G)™!, and =y is the initial error state proba-
bility vector that we define as

L (26)

We includc the term Ny — 1 in the definition of pepp so that
the minimum mean burst error length is 1. Also, the variancc of
the burst error length is readily eomputed with this theory and
is given by [8], {25, p. 52]
o3, =7)(2N - )N1 - (x]N1)2. (27

Components of x rcpresent transition probabilities out of
the error-free state weighted by the probability of an error. This
definition of @ is convenient for high-order modulation and
soft decision feedback because it takes into account that ccrtain
errors are much more likely than others, c.g., e; and eg are more
likely than ¢4 and ¢¢ for 4-PSK in Fig. 4.

We also can further reduce the computational complexity of
this approximate Markov DFE model by eombining states con-
taining unlikely errors using

RIS-4.  Allstate probabilities p, in (20) that transition to er-
rors e, with magnitude that cxceed some threshold,
are lumped into the worst-case crror represcnted by
CAM+1-

Consequently, Markov states decfincd by e, that differ only in
elements corrcsponding to these unlikely errors are incorpo-
rated into an aggregate state with eas4 in these error loca-
tions. For instance, for 4-PSK we might usc only the errors
{e1, ez, €3, €5, e7, eg} in Fig. 4 with ¢, and e¢ incorporatcd
into e, resulting tn 6"V® Markov states rather than 82, Wc
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set the threshold such that the deerease in ecomputational com-
plexity is worth the potential loss in accuraey.
V. NUMERICAL RESULTS

To demonstrate the utility of the DFE design and the per-
formanee analysis approach, we present results for two statie

channel realizations derived from the ehannel model given in
Table I. The fading parameters are Rayleigh distributed with
given powers. The corresponding normalized path delays are
also shown. The equalizer is coarse-synchronized to the second
path. The two static channels extracted from this model are
given in Table 11, and present different degrees of challenge to
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Fig. 6. Theoretical performance curves over soft decision angle (#) and norm constraint () for Channel 1 with 4-PSK. (a) SNR = 11 dB. (b) SNR = 19 dB.

the DFE. The normalized timing error is also given. The DFE 4. Channel 1: 4-PSK

design consists of a fractionally spaced feedforward filter wp We begin by equalizing Channel | with 4-PSK modulation
with V = 10 pre- and postcursor taps, and a feedback filter wp  and 02y = 15 dB. Fig. 5(a) displays mean burst error length
with N = 4 taps. The transmitted square-root raised cosine  ppp versus probability of symbol error Py as the soft decision
pulse has 30% excess bandwidth. angle @ varics from 8 = 0° to @ = 30° in two-degree incre-
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ments. No norm constraint is used (y = 1). Also shown is the cision device in Fig. 2 and are defined to contain no morc than
probability of error of the standard unconstrained DFE givenno N — 1 consecutive correct decisions. However, the theoretical
feedback error Pxg. Theoretical and simulation results taken  definition of ppr. in (25) is defined with respect to the soft deci-
over 2 X 108 transmitted symbols arc displayed. In the simula-  sion device. And because an adjacent soft decision error (¢ and
tions, crror bursts are determined at the output of the hard de- s in Fig. 4) may not necessarily trigger a hard decision error,
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thcoretical and measurcd ppr tend to deviate for large values
of 8.

Fig. 5(a) revcals that the traditional DFE using no soft deci-
sions ( = 0°), suffers degradation in Pr with respect to the
crror-free feedback case Pyg. Howevcr, as we increase 8, an
“L-curve” [21] develops in which therc is a decrease in P that
is accompanicd by a significant dcereasc in ppL until 8 =~ 10°
when Fg begins to increase. Also shown is the considcrable im-
provement in standard deviation of the burst error length op1,
determined theoretically from (27) for # = 0° and 8 = 10°.

Next, by setting § = 10°, we begin at the knee of the L-curve
in Fig. 5(a) and plot sep1, versus g over the norm constraint -y
in Fig. 5(b). Wc see that further improvement in Py and ppL
is obtained by incorporating the norm constraint with the soft
dccision device. Again an L-curve develops in which both P
and ppp decrcasc until v & 0.70. After this point, any dccrease
in a1 comes at the expense of increasing Pg. At the operating
point 4 = 0.70, wc have decreased Pg approximately by half
with respect to thc standard DFE, and have come closer to the
optimum Pyg. We have also dramatically decreased p1p1. and
opL. For thc purpose of comparison, estimated ppr. and opL
derived from the simulations are jig;, = 7.1 and 6p. = 6.9
for the. parameter set (§ = 0°, v = 1.0), and fizp. = 2.4 and
&pL = 3.2 for (8 = 10°, v = 0.70). Wc refer to the knec of
this L-curve as thc “optimum’” operating point. Also, we achieve
the same result if we generate the L-curves first over <y and then
over 8.

The “optimum” set of parameters (8, ) gencrally is dcpen-
dent on SNR. To dcmonstrate, Fig. 6 contains three dimen-
sional plots of theoretical DFE performance for Channel 1 with
o2ng = 11dB and 02\g = 19 dB. The standard deviation o

is plotted on the z-axis. In cach plot, thc pcrformance curve over
# with v = 1 is combined with the curve over 7y with 8 = 10°.
These plots reveal that although wc can achicve better pcrfor-
mance at the low SNR using a differcnt parameter set, thc exact
choice of # and v is not critical because a range of parameters
produces approximately the same pcrformance. Howcver, the
sct (§ = 10°, v = 0.70) represents a good compromise be-
tween the low and high SNRs. These plots also demonstrate the
substantial improvement in oy, that can bc obtained using the
constraincd DFE with soft decision fecdback, particularly at the
high SNRs.

B. Channel 2: 4-PSK

Fig. 7 contains results for the morc benign Channel 2 with
o2yr = 12 dB. Although the performancc gains are morc
modest, wc still see the characteristic L-curve in both plots.
Also, it is interesting that (§ = 10°, v = 0.70) is close to the
optimum operating rcgion of the DFE for both channcls as in-
dicated by Figs. 5(b) and 7(b). This was obscrved ovcr a varicty
of channcl realizations for 4-PSK.

DFE performance is given as a function of SNR for thc two
operating regions (§ = 0°, ¥ = 1.0) and (8 = 10°, v = 0.70)
in Figs. 8 and 9 for Channel 2 (similar effects arc secn for
Channel 1). Incrcasing SNR from 0 dB has the effect of im-
proving Pr and ppy for both DFE designs becausc in this re-
gion noise is the major cause of error bursts rather than decision
crror feedback. Howcver, after approximately 11 dB, the mean
burst error length of the standard DFE in Fig. 9 begins to in-
crease even as Pg in Fig. 8 decreascs. At this point thc norm
of the fecdback filtcr inereases to the cxtent that decision errors
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TABLE 111

BURST LENGTH (BL) SIMULATION STATISTICS, CHANNEL 2, 4-PSK, SNR = 15 dB

Number of Bursts Maximum
DFE Type BL=1 BL=2 BL>S BL> 10 BL > 15 BL
=1 = 1356 413 517 183 61 36
Ni=kil 010 2945 53 29 3 0 12

begin to dominate. As SNR inereases beyond 11 dB, initial de-
cision errors tend to cause longer and longer strings of crrors.
However, bursts occur less frequently as the SNR increases to
the extent that the longer bursts do not severely degrade the av-
erage probability of error. Conversely, jipr. of the constrained
DFE with the soft decision device eontinues to deerease as SNR
inereases. To further illustrate, Table Il eontains burst length
simulation statistics for SNR = 15 dB, measured over 10° trans-
mitted channel symbols. Although the constrained DFE exhibits
about twice as many single errors as the standard equalizer, there
is a significant decrease in the number of bursts of length 2 and
greater. Figs. 8 and 9 demonstratc the importance of ineluding
burst error statistics in the analysis of a DFE.

C. Channel 2: 8-PSK

This example demonstrates DFE performance with 8-PSK
modulation for Channel 2. Fig. 10 displays ppr versus Pg
in which we vary # and v with o2yg = 18 dB. To min-
imize computations, we use the aggregate-state approach
described by RIS-4 at the end of Section IV. Adapting the
sequencing from 4-PSK in Fig. 4 to 8-PSK, we use the errors
{e1, ez, e3, €4, ey, €14, €13, €16} to define the Markov states,
with the omittcd crrors lumped into cg. We then havc 8Ne

states, which is the same numbcr used to generate the perfor-
mance results for 4-PSK. Comparing Figs. 7 and 10 reveals
that we nccd to increase the SNR for 8-PSK by more than 6
dB to achieve approximatcly the Pg performance of 4-PSK.
Also, the burst error statisties ptpr, and opp have degraded
significantly for the standard equalizer with (68 = 0°, v = 1)
in Fig. 10(a). And yet, by using soft deeisions and invoking
the norm constraint, wc sec from Fig. 10(b) that we can gct
upL and opp values comparablc to those given in Fig. 7(b)
for 4-PSK. Also, given the results for 4-PSK, it is intuitively
satisfying that the optimum 8-PSK decision angle is 8 = 5°.

D. Channel 2: 4-PSK With Convolutional Coding

Although thc increase in I of the standard DFE with
respect to Pxg may appear minor in Fig. &, the associated burst
crrors havc significant implications for crror correction coding
and interleaving [6]. This is particularly truc when operating
at high SNR. To demonstrate, we ineorporate into the design
a simple rate 1/2 convolutional code with constraint length 3
and free distance 5 [26, p. 466] with hard-decision dccoding.
The channel symbols arc 4-PSK with Gray bit mapping. An
(Ni, N;) convolutional interlcaver is included betwcen the
output of thc encoder and the 4-PSK channcl symbol mapper,
incurring an cnd-to-cnd delay of N;(N; — 1) [27, pp. 347-349].
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Fig. 11 displays the probability of information bit crror P at
the output of the convolutional decoder as a function of SNR
for Channel 2. The theorctical upper bound on the error of the
constrained DFE (# = 10°, v = 0.70) assuming idcal bit inter-
leaving is plotted. This bound is given by P, < Y.~ ; fuF2(d),

(®

cr soft decision angle 8 withy = 1.0. (b) Over norm constraint 4 with 8 = 5°.

where 34 = (d — 4)2%7?, and the path error probability P (d)
is determined using the channel bit error probability of (23) 26,
pp. 463-466]. Also included are simulation results for the stan-
dard DFE and the constrained DFE with convolutional inter-
leaving and NV; = 11. Although the constrained DFE mitigates
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burst errors, it does not eliminate them. And because convolu-
tional codes are sensitive to burst errors, an interleaver is still
required to achieve the modest coding gain of this code. How-
ever, for P, = 10~%, approximately 2-dB improvement in SNR
is obtained with the constrained DFE versus the standard DFE.
To achieve this same performance, IV; must double for the stan-
dard DFE, resulting approximately in a four-fold increase in
end-to-end delay.

VI. CONCLUSION

We have demonstrated that a DFE design that combines dis-
crete soft decision feedback with a norm constraint on the feed-
back filter is an effective method of controlling error propaga-
tion with minor computational cost. We analyzed this structurc
using an approximate Markov model that predicts DFE perfor-
mance in terms of probability of symbol error as well as burst
decision error statistics and applied it to M -PSK modulation.

Other soft decision implementations than the simple one
proposed here for M-PSK may offer further improvements
in performance. For instance, we can quantize the decision
space more finely or include an erasure region as in [16]. The
applicability of the analysis approach to quadrature amplitude
modulation (QAM) can be explored. Also, we may achieve
better performance by using more complicated DFE designs
that incorporate interleaving and error correction coding into
the feedback path [28], [29]. Finally, we have considered only
individual static channel realizations drawn from a fading
propagation environment. Implementation issues related to an
adaptive DFE operating in a time-varying environment and
the effect of feedback errors on tracking performance warrant
further analysis.

SNR (dB)

P, versus SNR for Channcl 2 with rate 1/2 convolutional code, convolutional interlcaving, and 4-PSK channcl symbols.

APPENDIX
PROBABILITY COMPUTATIONS

We calculate the probabilities in (20), (22), and (23) using a
computationally efficient tcchnique. It can be shown that [23]
Pr(y(k) € Dle,, s(k) =1)
1 & P
= T2 Z Z Kp(wl, wig)hsi{wlr, wlg)

® lq=—"rl=-"

x }LN(WII, le)ai(wllRe{an}+wlqlm{au}) il (28)

where

D region in the complex plane corresponding
to either hard or soft M -PSK dccisions;
Fourier transform of thc wedge-shapcd re-
gion D truncated at 7),/2 (sce Fig. 3 for
D = 8);
characteristic function of the A -PSK ISI;
characteristic function of the noise process
win(k), and w = 2n/7,.
The term ¢ is the numerical error associated with this method
and can be chosen arbitrarily small with the proper choice of
the parameters T, and P [23].

The characteristic function of the ISI can be decomposed ac-
cording to the symbol vectors s (k), sa(k), s3(k), and the as-
sociated coefhicients from (19) as

R’D(wl[, wlq)

hISI (wlI, le)
hN (wl[ 3 le)

d Np
hist(wlt, wlq) = [ hu jwit, wig) [] ha, j(wir, wig)

F=1 2=
d—Ng

x [ hsswh, wlg). (29)

j=1
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Each componcnt of the ISI corresponding to s) (k) and s3(k) is
given by

h,,,j(wl[, le)
M/2 o
= — Zcos(w(Rg{an,j}l[+Im{an,j}lq)cok = l))
M M
. f2m
+ w(Re{an, ;g — Infa,, ;})sin <M(m - l)))
(30)
where Re{a,,, ;} and in{a, ;} are the real and imaginary parts

of the jth clcment of a,, for n = 1, 3. The remaining error
feedback terms are given by

/L2,j(wl[. le)
M/2

=%Zcos

m=1

X COs <2M7r(m - l))

+ w(Re{ay, jep, jHq — Im{az, e, ;1)

% s <i—’;(m = 1)))

where e, ; is the jth clement of the multiplicative crror vector
e, corresponding to the pth state. The characteristic function of
the eircular Gaussian noise is given by

<w(1‘£{a2,j(’p,j}11 +Im{ay, jep, ;1 }Q)

€2))

WA +1G)0? /2

hn(wlp, wlg) =¢” (32)

where 202 is the variance of the complex process wi n(k).
The Fourier transform of a truncated wedge that is symmetric
about the real axis 1s given by

—i)b ( sine i (I1 + lg tan(¢))
w2lQ 2
x ¢~imla tan(¢)/2
— sinc (3 (It — g tan(g))) ¢™'e ‘a“(¢)/2) .
g #0
o~ 7|'2
K4(0,0) = Lan((/))ﬁ
i4 tan(¢)(—1i)"
w2i?
I#0
where ¢ is the angle of the side of the wedge with respect to the
real axis and sinc(z) = sin(nz)/mz.
For example, to determine the components of (22) for 4-PSK,
we calculate
Pr(y(k) € Hilep, s(k) = 1)
=1—Pr(y(k) € Hylep, s(k) =1) (34)
using (28) and (33) with ¢» = 7 /4. The Markov transition prob-
abilities of (20) arc determined similarly using (33) and the re-
lation
Ks,(wli, wlq) = Ky(w(lrcos(@,) + lgsin(#,)),
w(lqcos(¢q) — lisin(d,))) (35)

i

I?¢(wl[, le) =

Ky(wh, 0) =

(- (50)

(33)
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where ¢, is the angle of rotation of the soft decision region
S, with respect to the real axis. For the 4-PSK soft decisions
defined in Fig. 3, we use the wedge angles ¢ € {0/2, n/4 —
8/2} in (33).
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