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Adaptive Spatial-Temporal Filtering Methods for
Clutter Removal and Target Tracking

Alexander G. Tartakovsky, Senior Member, IEEE and James Brown

Abstract— In space-based infrared ballistic missile defense
sensor systems, cluttered backgrounds are typically much more
intense than the equivalent sensor noise or the targets being
detected. Therefore, the development of efficient clutter removal
and target preservation/enhancement algorithms is of crucial
importance. To meet customer requirements, the advanced clutter
rejection algorithms should provide more than 20 dB improve-
ment in detection sensitivity. We propose an adaptive parametric
spatial-temporal filtering technique together with the jitter com-
pensation (scene stabilization). The results of simulations and
processing of real data show that the developed adaptive spatial-
temporal clutter suppression algorithms allow for efficient clutter
rejection in all tested situations. Proposed algorithms completely
remove heavy clutter in the presence of substantial jitter and
do not require expensive sub-pixel jitter stabilizers. In contrast,
spatial-only filters and temporal differencing methods can be used
only for weak and relatively correlated clutter. A stand-alone
simulator was developed to demonstrate capabilities and per-
formance of various algorithmic approaches. Simulations model
various geometries, resolutions, illuminations and meteorological
conditions for space-based IR staring sensor systems.

Index Terms— Infrared sensors, solar cloud clutter, spatial-
temporal image processing, clutter removal, scene stabilization,
jitter compensation, detection, tracking.

I. INTRODUCTION

THE problem of efficient clutter rejection is a challenge
for Space-Based Infrared (IR) and Space Tracking and

Surveillance System (STSS) sensors with chaotically vibrating
lines-of-sight (LOS) that have to provide early detection and
mid-course tracking of missile launches in the presence of
highly-structured cloud backgrounds. In such systems, the
intensities of cluttered backgrounds due to solar scattering by
clouds, aerosols and earth surface (ground, sea, etc.) or by IR
airglow emissions are typically dozens and even hundreds of
times greater than either sensor noise or the intensities of the
targets that are to be detected and then tracked. As a result,
reliable target detection and subsequent tracking is impossible
without clutter rejection to, or even below, the level of sensor
noise.

Most existing clutter rejection technologies for unstabilized
or mechanically stabilized platforms rely on spatial-only or
simple image differencing methods. There are many spatial
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filtering methods [2]-[5],[12], [13], [26] such as matrix filters
of various orders, fast Fourier filters, wavelet filters, parametric
and nonparametric (kernel) regression filters, rank-order filters,
etc. Median filters and, more generally, rank-order filters are
robust and particularly useful for extracting smooth objects
with sharp edges [26]. However, the results of our study
presented below show that even the best spatial-only filters are
not efficient enough, especially in unfavorable conditions that
are typical for applications of interest. Moreover, these filters
cannot be combined with temporal processing in cases where
clutter is non-stationary in time due to platform vibrations
(jitter), which is always the case. A similar conclusion holds
for an industry standard differencing method, as can be seen
from Section IV.

To be more specific, MTI (Moving Target Indicator) al-
gorithms have attempted to exploit the relative motion be-
tween the target and the background. The classic differencing
paradigm has been to register the backgrounds in two suc-
cessive frames and then subtract one image from the other. In
theory, the background in the difference image will be reduced
to twice the noise level of the sensor while the level of the
target above the background will remain unchanged. The result
is an increase in the S(C+N)R (signal to clutter +noise ratio)
of the target. The success of this approach is highly dependent
upon, and extremely sensitive to, the accurate registration of
the two images. The ability to achieve the requisite registration
accuracy is frustrated by the sensor platform motion.

Theoretically, in order to interpolate or reconstruct the
intensity of an image at points not directly on the pixel
or sample grid, the image must be sampled at 2-3 times
above the highest frequency of the image being sampled. This
requirement places a significant constraint upon the design
and performance of the system and impacts the timeline and
reduces the tracker update rate. Therefore, differencing tech-
niques require autonomous, very accurate frame registration
methods. In principle sufficiently accurate frame registration
and resampling are possible, as was shown by Lucke &
Stocker [16] and Schaum [18], [19]. However, experience
shows that even with all these sacrifices and an excellent
registration algorithm, there is an unacceptable amount of
clutter leakage past the differencing operation. In space-based
IR applications this will be exacerbated by the movement of
clouds and other natural phenomena.

In this paper, we argue that the level of clutter suppression
required for reliable detection and tracking (20 dB and higher)
can be achieved only by implementing spatial-temporal and/or
space-temporal-spectral (i.e., multispectral) filtering rather
than spatial filtering alone. Note that in order to make temporal
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processing and multispectral fusion efficient, clutter rejection
algorithms must be supplemented by very accurate jitter esti-
mation and scene stabilization techniques that compensate for
platform vibrations and eliminate residual frame misalignment.
Our image registration/stabilization techniques are entirely
different from those previously used [1], [16], [17], [18],
[19]. Stabilization is performed iteratively in the course of
clutter rejection, and the corresponding stabilization algorithm
is a part of the clutter rejection architecture. We show that
this novel approach is extremely efficient in applications of
interest. Our spatial-temporal iterative method allows not only
for very accurate interpolation but also for very accurate image
reconstruction and, therefore, clutter suppression in a wide
spectrum of conditions, including highly structured scenes
characteristic for IR solar cloud clutter.

To address super-stabilization and super-rejection chal-
lenges, we further develop the idea that has been proposed
by Tartakovsky and Blažek [23], which allows us to avoid
the use of expensive equipment for super-stabilization. The
idea is to use clutter itself for stabilization. Indeed, since
clutter is typically highly correlated in time and changes
slowly during certain periods of time, i.e., quasi-stationary
(depending on weather conditions, season, etc.), substantial
temporal changes in these intervals occur only due to jitter.
Since clutter is normally much more intense than sensor
noise, it can be effectively used for instability estimation and
compensation. When the registration problem is solved, i.e.,
the scene is stabilized, we can build an effective spatial-
temporal scheme for clutter rejection, in which case, clutter
can be suppressed to the level of sensor noise or even lower.
We develop novel statistical parametric and nonparametric
spatial-temporal-spectral techniques for clutter suppression
(CLS) and scene stabilization. The corresponding stabilization
and CLS algorithms are robust since they are invariant to
prior uncertainty with respect to clutter statistical properties
and adaptive with respect to clutter variability. An important
feature of the developed CLS algorithms is that they allow
for reducing the cost of expensive mechanical and electronic
stabilizers.

Experiments and simulations presented below show that
the proposed algorithm gives a substantial gain compared to
the best existing spatial techniques as well as to the industry
standard temporal differencing method in certain difficult sce-
narios that are typical for applications of interest. The results
of simulations also show that any particular clutter rejection
filter is not uniformly optimal for all possible conditions. Since
environmental conditions may change quite dramatically, it
is important to develop a bank of CLS filters along with
a procedure of automatic selection of the best filter and its
parameters for specifically encountered conditions. To this end,
a reconfigurable CLS system that includes a bank of filters was
developed. This system utilizes auto-tuning and auto-selection
procedures for optimal configuration, reducing susceptibility to
sensor vibrations and to changes in environmental conditions.
These procedures use an overall system quality metric that
is a function of the current sub-system performance indices,
including expected SNR, clutter severity metric, false alarm
rate, and tracking quality.

This paper is organized as follows. In Section II, we
outline the signal-data processing system being developed. In
Section III-A, we formulate the problem of clutter rejection
and describe basic assumptions and constraints. In Section III-
B, we develop the CLS algorithms that include the jitter
estimation and compensation algorithm. In Section IV, the
results of simulations are presented. These results allow us
to evaluate the performance of the developed algorithms and
to make important practical conclusions that are outlined in
Section V.

II. THE DEVELOPED SYSTEM

In this research, we focus on developing algorithms and
software for adaptive clutter suppression, target detection and
multiple target tracking for a variety of observation conditions;
tuning and optimization of these algorithms for particular sce-
narios; and testing and validation through synthetic simulations
and processing of real data. The primary goal is to develop
a viable prototype of the multiple target tracking system that
includes a reconfigurable, adaptive clutter suppression system
that can be tested using a built-in simulator which mimics real
environments. The developed system and corresponding soft-
ware tools have the following functionalities and capabilities:

1) Possibility of working with external data sets of interest
for users (e.g., real data) which are presented in a
specific standard format.

2) Built-in generator of image sequences with moving point
illumination sources (targets), background clutter due to
cloud cover, jitter due to platform vibrations, and sensor
noise.

3) A bank of clutter suppression filters with a reconfig-
urable architecture and ability to compensate for strong
signals from bright targets and outliers.

4) Auto-tuning and auto-selection algorithms that allow for
automatic selection of the optimal filter from the bank
for current conditions.

5) In-frame detection algorithms with constant false alarm
rate (stabilization of false alarms).

6) Multitarget tracking algorithms, in particular:
a) Change-point detection-based track initiation algo-

rithms
b) Identification of detections as belonging to existing

tracks
c) Forming new tracks and deletion of false tracks
d) Change-point detection-based track termination

7) Preliminary target track classification in 2D space.
8) Performance evaluation (probability of detection, false

alarm rate, tracking accuracy) for synthetic data
(physics-based models) and real data.

9) Graphical user interface (GUI) for visualization of the
results of processing and for input data and parameters.

A general block-diagram of the system with the correspond-
ing data/signal processing flow is shown in Fig. 1.

The strong signal estimation block shown in Fig. 1 detects
bright targets in the raw image Zn and estimates its parameters
(e.g., intensities and positions). The signal estimates ŝn are
subtracted from the raw data to form the statistic Ẑn =
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Fig. 1. Block-diagram of the CLS-detection-tracking system

Zn− ŝn. Spatial-temporal CLS filters process the sequence of
statistics Ẑn, . . . , Ẑn−m+1 in the time window m to estimate
the background. The resulting estimate b̂n is subtracted from
Zn to form the residuals Z̃n = Zn−b̂n which are the output of
the CLS filter. The data at the outputs of all filters in the bank
are analyzed by the auto-selection block to choose the best
configuration for the current conditions. The feedback from
the target detection and tracking blocks is used to provide
more comprehensive filter selection and tuning based on the
evaluated detection and tracking performance (e.g., based on
the Q−factor; see Section III-A).

The processed data from the chosen CLS filter come to
the Target Detection Block. The output of this block are
the instantaneous detections and their attributes, such as the
estimates of the target positions and intensities. The in-frame
detection algorithm realizes either a generalized likelihood
ratio hypothesis test or its modification under the conditions
of prior uncertainty. See Ref [22] for further details.

The processed data from the output of the Target Detection
Block come to the tracking subsystem (Track Initiation Block)
along with the data Z̃n from the output of the Auto-selection
Block. The multitarget tracking scheme (including track man-
agement) is more or less standard in terms of the sequence
of operations (see, e.g., [6], [8], [9]). However, the following
important innovations are used: (1) global data association
(optimal for association of all detections but not locally
optimal for a particular detection); (2) adaptive selection of the
polynomial power for current conditions through introduction
of virtual tracks in the polynomial filter; and (3) optimal and/or
quasi-optimal procedures for track initiation and termination
based on change-point detection methods.

The track initiation algorithm is based on sequential change-
point detection methods [7], [20], [21], [25]. This algorithm

detects and estimates the moment of target appearance with
a minimal detection delay for a given false alarm rate [15],
[22], [24].

The initialized tracks are transferred to the Track Confirma-
tion/Deletion Block. If the track is not confirmed, it is deleted.
The confirmed tracks are further processed in the tracking
block.

The tracking process is interrupted (tracks are terminated)
in the Track Termination Block according to sequential al-
gorithms that detect target disappearance with a minimal
detection delay for a given false termination rate. Further
details may be found in [15], [22], [24].

Finally, the parameters of the confirmed and terminated
tracks go to the Target Classification Block where the targets
are classified as belonging to the class of interest versus
“everything else” in 2D space. We stress that classification
is done in 2D space, not in 3D space.

The GUI is being used as a part of a testbed to test the
system performance for particular scenarios and to visualize
the results of data processing. See Section IV and Fig. 3 for
further details.

Comprehensive target detection, tracking, and classification
with their full set of problems are out of the scope of this paper.
The major problem that is of interest in the present paper is
the development of efficient spatial-temporal algorithms for
clutter rejection. This problem is addressed in the subsequent
sections in detail.

III. PARAMETRIC CLUTTER SUPPRESSION ALGORITHMS

The developed baseline CLS technique is based on a multi-
parametric approximation of clutter (regression-type model-
ing) that leads to an adaptive spatial-temporal filter. The
“coefficients” of the filter are calculated adaptively according
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to the minimum distance algorithm. The adaptive spatial-
temporal filter allows one to suppress any background, re-
gardless of its spatial variation. It not only whitens the data
but also corrects all translational distortions.1 The results of
an experimental study presented in Section IV show that the
proposed algorithm gives a substantial gain compared to the
best existing spatial techniques as well as to the industry
standard temporal differencing method.

A. Problem Formulation, Assumptions, and Operating Char-
acteristics

We now turn to a formal problem setting. It is assumed that
we observe a sequence of 2D Nx ×Ny images (frames) that
are registered by an IR sensor:

Zn(rij) =
Kn∑
k=1

In(k)S(rij − rn(k)− δn)

+ bn(rij − δn) + ξn(rij), n = 1, 2, . . . ,

(1)

where ξn(rij) is sensor noise; b(rij) is clutter (background);
In(k)S(rij−rn(k)) is a signal from the k-th target with spatial
coordinates rn(k) = (Xn(k), Yn(k)) and maximal intensity
In(k); S(rij) is the target signature related to the sensor’s
point spread function (PSF); Kn is an unknown number of
targets in the n-th frame; δn = (δx(n), δy(n)) is an unknown
2D shift due to the jitter (LOS vibrations); rij = (xi, yj) is
the pixel in the plain image with coordinates (xi, yj), i =
1, . . . , Nx, j = 1, . . . , Ny .

In the following we denote as (∆x,∆y) effective pixel sizes
in x and y directions. For the convenience’s sake and without
loss of generality we will assume that ∆x = ∆y = 1, which
can always be done by normalization.

We will also use boldface for a vector/matrix notation, e.g.,

Zn = {Zn(rij), i = 1, . . . , Nx, j = 1, . . . , Ny},
ξn = {ξn(rij), i = 1, . . . , Nx, j = 1, . . . , Ny},
bn = {bn(rij − δn), i = 1, . . . , Nx, j = 1, . . . , Ny}.

The goal is to build a spatial-temporal filter that rejects
clutter (suppresses it to the level of noise or below) and
simultaneously compensates for the jitter (stabilizes the scene),
while preserving signals from targets as much as possible.

We will restrict ourselves to the class of residual-type
filtering algorithms of the form

Z̃n(rij) = Zn(rij)− b̂n(rij), (2)

where Z̃n(rij) is the output of the filter and b̂n(rij)
is an estimate of clutter bn(rij) in the pixel (i, j) of
the current n-th frame based on the previous frames
Zn−m+1(rij), . . . , Zn(rij) in a sliding window of the size m
(n ≥ m). The filtering procedure will be considered ideal if
the clutter component in (1) is completely suppressed and the
signal components In(k)S(rij − rn(k)− δn) are completely

1In this paper, we are interested in geostationary staring IR sensors for
which rotational distortions can be neglected. The algorithm can be modified
to compensate for rotational and zooming distortions which is important in
certain conditions, e.g., for low-earth orbit and airborne platforms.

preserved (no degradation). For brevity the residual frame
Z̃n(rij) will be sometimes called “whitened.”

Suppose that in the time interval m (frames) the function
bn(r) is a slowly varying function, so that one can neglect
changes of this function due to physical causes such as
wind, illumination conditions, temperature, convection, etc.
In practice this condition requires a proper choice of the
frame rate. Under this assumption, the clutter function bn(rij)
changes in time in each pixel only because of the sensor (LOS)
vibrations. Thus, the condition of local stationarity is invoked.
It should be noted, however, that changes that occur in time
intervals bigger than m are treated by the algorithms and so
global non-stationarity is allowed.

In real conditions statistical properties of neither clutter
bn(r) nor vibrations are known. The development of the CLS
algorithms will be performed under almost complete prior
uncertainty with respect to the properties of clutter and jitter.
This guarantees robustness of the algorithms with respect
to variations of the statistical properties of clutter and jitter
over wide ranges. More specifically, we will suppose that
translations δn are arbitrary unknown variables bounded by
a maximum possible amplitude of the sensor vibrations and
bn(r) is an arbitrary unknown non-negative function with a
bounded spatial band.

Specifically, the following assumptions on noise, clutter, and
jitter are used throughout the paper:

1) Noise ξn(r) is uncorrelated in time and space with mean
zero and variance σ2

N .
2) Clutter bn(r) is an arbitrary, unknown function of r

and is a slowly-changing function of n in the following
sense: there exists an interval m such that

|bn+m(r)− bn(r)| ≤ σN for all n and r. (3)

3) Vibrations of the platform can be very fast such that the
jitter δn can change abruptly from frame-to-frame, but
these changes do not exceed some known value δmax

that depends on the mechanical stabilizers and other
conditions.

It is worth noting that in a variety of airborne and low-earth
orbit satellite scenarios the shift δn(rij) depends on the pixel
rij due to rotations and parallax. However, in the geostationary
staring IR sensor scenario that is of major interest in this paper,
rotations can be neglected, and the value of δn(r) = δn is just
the parallel shift that does not depend on r.

The value of m defines the length of the interval in which
clutter does not change substantially (slowly varying). This
value is estimated experimentally and corresponds to the
length of the temporal window where temporal filtering may
be performed. In other words, spatial-temporal filtering for
clutter rejection is based on the data (Zn−m+1, . . . ,Zn) in
the sliding window m.

Assuming, without loss of generality, that there is only one
target in the scene with maximal intensity In = 1, the output
of the CLS filter can be written as follows

Z̃n(i, j) = S̃(i, j) + Vn(i, j), (4)

where S̃(i, j) is the signal from a target and Vn(i, j) is residual
clutter (plus sensor noise) after CLS filtering. Hereafter we
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write Y (i, j) in place of Y (rij) = Y (xi, yj) when it is possi-
ble. Indeed, there is no loss of generality in assuming that there
is only a single target, since the evaluation of the capabilities of
the CLS algorithms can be performed independently for each
point target based on the background suppression and signal
preservation indices defined below in (5)–(7). For point and
slightly extended targets, inter-occlusions can be neglected,
in which case it suffices to evaluate the effective signal-to-
clutter-plus-noise ratio for a single target. (This ratio is given
by the Q-factor defined in (7), which is the most comprehen-
sive index.) The situation, however, changes when detecting
substantially extended targets when often inter-occlusions may
occur. This latter case is not of interest for our applications.

Good filtering algorithms have to preserve the signal as
much as possible (i.e., minimize the discrepancy between
S(i, j), the signal at the CLS filter input, and S̃(i, j), the
signal at its output) and, at the same time, suppress clutter
as much as possible (the minimal level is of course limited by
sensor noise).

The quality of the CLS filtering algorithms will be charac-
terized by the following indices:
• G-factor that defines the relative value of the residual

clutter standard deviation:

G = σout/σN , (5)

where σ2
N is the variance of sensor noise and σ2

out =
E[Vn(i, j)]2 is the variance of the output (filtered) frame.
Obviously, G ≥ 1 and the ideal value of this factor is equal
to 1, which means complete clutter rejection.
• D-factor that defines the coefficient of signal degradation:

D = 1−
∑

i,j S(i, j)S̃(i, j)√∑
i,j S̃2(i, j)

∑
i,j S2(i, j)

. (6)

In the ideal case, D = 0, which means precise signal recovery
(no signal degradation).
• Q-factor that defines the relative value of the effective

signal-to-clutter-plus-noise ratio (S(C+N)R):

Q =

(∑
i,j S(i, j)S̃(i, j)

)1/2

/σout(∑
i,j S2(i, j)

)1/2

/σN

. (7)

Because of the signal degradation, Q ≤ σN/σout = 1/G. The
ideal value of the Q-factor is equal to 1, which means that
clutter is suppressed completely without signal degradation
(i.e., S̃(i, j) = S(i, j) and σout = σN ).

In experiments with synthetic targets presented in Section
IV, the signal at the input S(i, j) is known, while the values
of the output signal S̃(i, j) are estimated after detection along
with the input and output background standard deviations. This
allows us to evaluate both the D-factor and Q-factor in a
straightforward manner.

B. Adaptive Spatial-Temporal CLS Filter

1) The Idea of the Parametric CLS Filter: We start with
a description of the basic idea and a generic CLS algorithm
for the class of parametric problems that involve parametric

approximations of the function bn(r). This approach was first
proposed by Tartakovsky and Blažek [23]. Recall that we do
not use any assumptions on the statistical properties of clutter.
All we assume is that clutter is an arbitrary function of spatial
coordinates (may be a quite sharp function) and a slowly
varying function of time in a certain time interval m.

Assume that the function bn(r) can be approximated by a
parametric model

b̃θ
n(r) = fT (r)θ(n), (8)

where θ(n) = (θ1, . . . , θM ) is a vector of unknown,
slowly changing in the interval m parameters, f(r) =
(f1(r), . . . , fM (r)) is a known (chosen) vector-function, and
T denotes a transpose. The model b̃θ

n(r) determines clutter in a
“non-inertial” coordinate system that corresponds to a nominal
translation value δ, which without loss of generality may be
assumed 0. In what follows, for the sake of simplicity, the
parameters θ(n) are assumed constant, i.e., θ(n) = θ.

The choice of the “basis” function f(r) and its dimension-
ality M is determined by the allowed approximation error of
real clutter that may have very high spatial variation.

Therefore, according to the model (8), it is proposed to use
the following parametric approximation of clutter:

bn(r) ≈
M∑

k=1

θkfk(r), (9)

where θk are unknown parameters and fk(r) are given func-
tions chosen from the best fitting criterion.

Let θ̂k(n) denote an estimate of θk based on the data
Zn−m+1, . . . ,Zn in the time window [n − m + 1, n] of the
length m, where Zk = {Zk(i, j)}, i = 1, . . . , Nx, j =
1, . . . , Ny . According to (9), for any shift δ, the prediction
estimate of the background at time n has the form:

b̂n(r− δ) =
M∑

k=1

θ̂k(n)fk(r− δ). (10)

Assume that the shifts δs were somehow estimated for all
frames s = n−m+1, . . . , n and let δ̂s denote these estimates.
Write

En(θ, {δ̂s}) =
Nx∑
i=1

Ny∑
j=1

n∑
s=n−m+1

(
Zs(rij)

−
M∑

k=1

θkfk(rij − δ̂s)
)2

.

The estimate θ̂n is found from the following optimality
criterion:

θ̂n = argmin
θ

En(θ, {δ̂s}), (11)

which is nothing but the least squares method.
The parameter estimation algorithm requires a reasonably

accurate estimation of the shift δ, i.e., jitter compensation.
This latter estimation/compensation can be done either by an
independent jitter estimation algorithm or iteratively in the
course of estimating parameters θ.
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We now turn to the explanation of the iterative algorithm,
which is usually the most accurate. To this end, suppose that
the estimate b̂n−1(r) is already obtained.

For jitter estimation in the n-th frame, we will use the min-
imum distance (MD) estimate δ̂n = (δ̂x(n), δ̂y(n)), which is
the solution of the following nonlinear minimization problem:

δ̂n = argmin
|δ|≤δmax

Nx∑
i=1

Ny∑
j=1

(
Zn(rij)− b̂n−1(rij − δ)

)2

. (12)

Note that we did not use any assumptions on noise distribution
so far. In the case where the distribution of ξn(rij) is Gaussian,
this estimate corresponds to the maximum likelihood (ML)
estimator. The alignment of frames according to the method
(12) will be called the MD/ML-alignment.

2) A Generic Iterative CLS / Jitter Compensation Algo-
rithm: We now describe the generic CLS filtering algorithm
that uses an iterative procedure for jitter compensation (frame
alignment) and the background estimation within the class
of parametric models. This algorithm was first proposed in
Tartakovsky and Blažek [23]. The abbreviations RCS and CCS
are used for the reference coordinate system and corrected
coordinate system, respectively.

The basic iterative CLS algorithm that includes jitter com-
pensation has the following form:

1. Initialization. This step can be performed in various
ways. Typically this step requires about m observations and
the result of the initialization stage are the pilot estimates
θ̂k(m), (δ̂1, . . . , δ̂m), and b̂m(rij) =

∑M
k=1 θ̂k(m)fk(rij −

δ̂m). Initialization schemes include autonomous algorithms
of estimation of shifts between two frames based on simple
spline-approximations. One simple but particularly efficient
scheme is described below.

2. Typical Step n, n > m.
(a) Jitter Estimation. The estimate b̂n−1(rij) obtained

from the previous step is compared with the n-th frame
(starting with n = m), and the ML/MD estimate of jitter
δ̂n is computed as the solution of the nonlinear optimization
problem (12) with

b̂n−1(rij − δ) =
M∑

k=1

θ̂k(n− 1)fk(rij − δ).

(b) Estimation of Parameters in CCS. Having the estimates
δ̂n−m+1, . . . , δ̂n, the estimates θ̂k(n) are computed for the n-
th frame from the minimization problem (11). This recomput-
ing in the corrected coordinate system is equivalent to frame
alignment.

(c) Clutter estimation in CCS. Using the estimates obtained
from (11) and (12), compute the estimate of bn(rij) for all i
and j in the corrected coordinate system,

b̂n(rij) =
M∑

k=1

θ̂k(n)fk(rij − δ̂n). (13)

(d) Clutter Rejection. Using the estimate (13), compute the
residuals (filtered background)

Z̃n(rij , δ̂n) = Zn(rij)−
M∑

k=1

θ̂k(n)fk(rij − δ̂n).

The following autonomous algorithm of jitter compensation
is simple but fairly efficient and can be recommended for
initialization.

Consider the following simplest linear model for back-
ground prediction:

b̃(xi − δx, yj − δy) = ai,j + gi,jδy + hi,jδx. (14)

This model is used for any frame ‖Zn(i, j)‖ that is shifted
with respect to a reference frame ‖ZR

n (i, j)‖ by (δx, δy).
Assuming a grid with a unit step (i.e., ∆x = ∆y = 1), for

each pixel (i, j), the “optimal” estimates âi,j , ĝi,j , and ĥi,j

are found from the following least squares criterion

min
a,g,h

∑
k,m

(
ZR

n (i + k, j + m)

− [ai,j + gi,jm + hi,jk]
)2

,

(15)

where the summation is performed over the values

{(k,m) = (0, 0), (0,−1), (0,+1), (−1, 0), (+1, 0)}.

The jitter estimate δ̂n = (δ̂x(n), δ̂y(n)) is found as

(δ̂x(n), δ̂y(n)) = argmin
(δx,δy)

Nx∑
i=1

Ny∑
j=1

(
Zn(i, j)

− [âi,j + ĝi,jδy + ĥi,jδx]
)2

.

(16)

The minimization problem (16) admits an explicit solution,
i.e., the shift estimates can be written in an explicit form.

This algorithm can be improved by introducing higher order
approximations. For example, the second order approximation
gives slightly better estimation accuracy in certain situations
at the expense of higher computational complexity.

As has been discussed above, the proposed autonomous
jitter estimation algorithm is needed at the initialization stage
of the parametric CLS filters. In stationary modes, the shift
can be determined based on the comparison of the parametric
model with the current data frame as follows

(δ̂x(n), δ̂y(n)) = argmin
δx,δy

∑
i,j

(
Zn(xi, yj)

− b̂n−1(xi − δx, yj − δy; θ̂(n− 1))
)2

(17)

(see (12)).
Assuming that the shifts δn are estimated by an independent

algorithm (e.g., by the one described above), computing the
estimate θ̂(n) is reduced to computing the matrix Rn and the
vector hn according to the following formulas

Rn =
1

mNxNy

∑
i,j

n∑
k=n−m+1

fi,j(k)fT
i,j(k),

hn =
1

mNxNy

∑
i,j

n∑
k=n−m+1

fi,j(k)Zk(i, j),

(18)

where fi,j(k) = f(xi− δ̂x(k), yj− δ̂y(k)), with the subsequent
solving the system of linear equations

Rnθ̂(n) = hn. (19)
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It is worth mentioning that in general an implementation of
the identification algorithm (18)–(19) may be complicated by
the curse of dimensionality. For example, usually the method
of parametric approximation (the spatial functions fk(r) and
the number M ) has to satisfy the following requirements [23]:

• The error of approximation should be small.
• The system {fk(r)} should be quasi-orthogonal:∑Nx

i=1

∑Ny

j=1 f`(rij)fk(rij) ≈ 0 for all ` 6= k.

The first requirement may necessitate the use of a very
large number M in the clutter approximation (9) in cases
where clutter has fast spatial variations. In fact, M may be
comparable or may even exceed N2, where N = Nx ×Ny is
the number of pixels in the frame. This number is typically in
the order of 106. In the latter case, the size of the matrix Rn

is equal to 1012 and straightforward realization of the CLS
filtering algorithm becomes impossible.

Therefore, it is important to find approximation models that
allow for a decomposition of the vector θ into independent
blocks and of the equation (19) into a set of independent
equations for these blocks. In other words, parallelization is
crucial for the real-time implementation of this very powerful
but computationally intense parametric method.

It is worth mentioning that the number of parameters to
be estimated does not determine the absolute computational
complexity of the algorithms. Parallelization of computations
is the most important factor.

C. The Bank of CLS Filters

Our study of various algorithms showed that the following
parametric models and corresponding spatial-temporal filters
are feasible for implementation in the bank of CLS filters.

1. Two-dimensional Fourier Series with Double Nyquist
Rate —“Fourier.” From the point of view of the approxi-
mation error, a good choice is the 2D Fourier decomposition
with the double Nyquist rate. In this case, the function b(x, y)
is represented by the Fourier series with spatial frequencies

2π`
Nx∆x

and 2πk
Ny∆y

, ` = 1, . . . , Nx, k = 1, . . . , Ny . The
spectrum of the function b(x, y) can be recovered in a larger
frequency band than the Nyquist band namely because of
platform vibrations, since vibrations allow us to observe the
values of the function b(x, y) in intermediate points and
recover its spectrum in any frequency band.

The Fourier method has at least two merits. First, the param-
eters θk are the coefficients of the orthogonal decomposition,
which automatically solves the problem of parallelization.
Second, the form of the function bn(x − δx, y − δy) is very
simple (the values of δx, δy determine phases of the terms
of the Fourier series), which makes it easier to compute the
shift estimates. The drawback is that it does not allow for an
accurate estimation of sharp edges.

2. Two-dimensional Wavelet Series —“Wavelet.” This
method is similar to the previous method. Instead of the
Fourier basis, it uses wavelet bases. In our model, the main
benefit of using a wavelet basis is that, as opposed to the
Fourier basis, wavelets have compact support. Wavelets are
very efficient when describing functions with many jumps,

edges, and similar local and “sharp” features with “bad fre-
quency properties.” This is often the situation in the case
of clutter. In addition, they require a smaller number of
parameters to be estimated (2 to 3 times smaller). In our
experiments we used Daubechies wavelets [11].

3. Local Polynomial Approximation —“Pol.” This model
exploits an approximation of the function b(x, y) by a k-
th order polynomial surface independently for each pixel.
Specifically, for each pixel (xi, yj) the frame shifted with
respect to the reference frame by (δx, δy) can be approximated
as in (8), i.e., has the form

b(xi − δx, yj − δy) = fT (δx, δy)θi,j , (20)

where
fT (δx, δy) =∥∥1, δy, . . . , δk

y , δx, . . . , δk
x, δxδy, . . . , δk

xδk
y

∥∥ ,
(21)

and θi,j = (θ0
i,j , . . . , θ

p−1
i,j ) is the p−dimensional vector of

coefficient of the k-th order polynomial, p = (k+1)(k+2)/2.
The reference frame is the first component θ0

i,j , i = 1, . . . , Nx,
j = 1, . . . , Ny .

This model leads to a decomposition of the identification
problem into NxNy independent problems of estimation of
the p−dimensional vectors θi,j .

Under certain “regularization” (adding pseudo-noise and
initial conditions) the least squares method (11) and (19) may
be reduced to the recursive Kalman filter (see, e.g., [10], [14]).
As a result, the optimal estimates θ̂i,j(n) of the parameters θij

are calculated independently for each pixel according to the
following recursive Kalman equations [10], [14]

θ̂i,j(n) =θ̂i,j(n− 1) + KnẐn(i, j);

Kn =Γn−1fT
n /(σ2 + fT

n Γn−1fn);

Ẑn(i, j) =Zn(i, j)− fT
n θ̂i,j(n− 1);

Γn =Γn−1 −KnfT
n Γn−1

(22)

with the initial conditions θ̂i,j(0) = 0 and Γ0 = γI , where I is
a unit matrix, γ is a large constant, and fn = f(δ̂x(n), δ̂y(n))
is given by (21). The estimates of the shifts (δ̂x(n), δ̂y(n)) are
found from (17).

Thus, the identification problem is reduced to the parallel
implementation of linear Kalman filters. To limit the filter
memory the update of the covariance matrix Γn is stopped
for n ≥ m. Note that fn, Γn, and Kn are the same for all
pixels, which substantially simplifies the algorithm.

We implemented the approximation with a two-dimensional
polynomial of the third order in discrete points with the step
of a pixel size.

4. Spline-based Interpolation Methods with Double Res-
olution. Let f(x, y) = f(x)f(y) be a symmetric spline and
let b∗k,` = b(xk, y`) denote the values of the background in
the discrete points xk = k/2, y` = `/2, k = 1, . . . , 2Nx, ` =
1, . . . , 2Ny (i.e., double resolution grid). The approximations
(8) and (9) are used with θ = {b∗k,`} and f(r) = f(x)f(y).
We implemented two particular splines – bilinear (triangular
in both coordinates) and cubic that are shown in Fig. 2.

4.A. Regression with Bilinear Double-resolution Interpola-
tion — “DRbil.” In this method, for prediction of the function
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Fig. 2. The form of f(t) for natural cubic (solid) and bilinear (dashed) splines

b(x, y) between grid points a bilinear transformation (see
Fig. 2) and the values b∗k,` in the discrete points xk = k/2,
y` = `/2, k = 1, . . . , 2Nx, ` = 1, . . . , 2Ny are used. More
specifically, the vector f(x, y) (see (8) and (9)) is determined
by a bilinear interpolation of the function b(x, y) based on
its discrete values b∗k,` at points (xk, y`), i.e., the prediction
background estimate at the pixel (i, j) shifted by (δx, δy) (with
respect to the reference frame) is calculated as

b(p)(xi − δx, yj − δy) = fT (δx, δy)b∗i,j ,

where b∗i,j = ||b∗k,`, b
∗
k+sx,`, b

∗
k,`+sy

, b∗k+sx,`+sy
||, k = 2i +

1, l = 2j + 1 and

f(δx, δy)

= ((1− δ̃x)(1− δ̃y), δ̃x(1− δ̃y), (1− δ̃x)δ̃y, δ̃xδ̃y).

Here δ̃x = 2δx, δ̃y = 2δy , sx = sign(δx), and sy = sign(δy).
The parameter θ = b∗i,j as well as the values of shifts are
estimated, i.e., the estimate (δ̂x, δ̂y) is used in the algorithm.

Obviously, under the condition that the amplitude of vibra-
tions (after jitter compensation) does not exceed one-half of
a pixel size (i.e., δx ≤ 1/2 and δy ≤ 1/2), the interpolated
value b(p)(xi−δx, yj−δy) depends only on the four values of
b∗k,` that correspond to the four (xk, y`) closest to this pixel.

Furthermore, a Kalman procedure similar to (22) is used for
updating the estimate b̂i,j(n) obtained based on the previous n
observations. The estimate (δ̂x, δ̂y) is used in place of (δx, δy),
which is computed as discussed above. As a result, the output
of the CLS filter at the pixel (i, j) has the form

Z̃n(i, j) = Zn(i, j)− fT (δ̂x(n), δ̂y(n))b̂i,j(n).

Ideal independent decomposition (parallelization) is auto-
matically guaranteed whenever δx ≤ 1/4 and δy ≤ 1/4.
For larger shifts it is approximate but the algorithm has high
performance unless the shifts exceed half of a pixel size.

4.B. Double-resolution Cubic Spline Interpolation —
“DRspl.” This method is absolutely similar to DRbil. The

difference is in the form of interpolation: we used cubic
spline-interpolation with a so-called natural cubic spline (see
Fig. 2). A natural cubic spline is produced by piecewise
third-order polynomials with the second derivative of each
polynomial being set to zero at the endpoints. This provides a
boundary condition that leads to a simple tridiagonal system
which can be solved easily to calculate the coefficients of the
polynomials.

Since double resolution is implemented, the DRspl filter is
based on 5 discrete points independently in each coordinate,
in which case the output of the CLS filter has the form

Z̃n(i, j) = Zn(i, j)−
2∑

`,k=−2

f(xi − δ̂x(n))f(yj − δ̂y(n))b̂2i+1−`,2j+1−k(n),

where f(t) is the cubic spline shown in Fig. 2.
Again, a Kalman update similar to (22) is used for updating

the estimate b̂i,j(n).
In addition to the above spatial-temporal CLS filters, we

tested and included in the bank a number of the most efficient
spatial-only filters as well as purely temporal (without spatial
processing) differencing algorithms. In particular, spatial algo-
rithms include: “M ×M matrix of order k” with M = 3, 4, 5
and k = 0, 2, 4, kernel-type nonparametric filters, and a
“spatial in-frame adaptive” filter (based on the 2-D Fourier
transform). It turns out that the following window-limited
weighted algorithm with specially designed adaptive weights
(kernel) is typically the most efficient:

b̂n(i, j) =
∑

`,k∈Ω

Zn(i + `, j + k)W`,k, (23)

where Ω is a spatial window of a certain size and form.
The weights W`,k are chosen based on the trade-off between
the efficiency of the clutter suppression and computational
complexity. The results of experimental study given below
correspond to the case of simple but one of the most efficient
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spatial filters with the window size of 3×3 pixels and specially
designed weights.

The temporal CLS algorithm is based on a sliding window
of the size m, i.e., the estimate of the background is a moving
average with a finite window:

b̂n(i, j) =
1
m

n∑
t=n−m+1

Zt(i, j), n ≥ m. (24)

Note that for m = 1 this algorithm is nothing but a standard
differencing method. This algorithm works well when there are
no sensor vibrations and when the target velocity is greater
than 1.5 − 2 pixels/frame. In this case, it has the following
performance indices:

G =
√

(m + 1)/m, Q ≈
√

m/(m + 1), D ≈ 0.

Already for the memory m = 5, it gives Q ≈ 0.9, i.e., about
10% loss as compared to the ideal CLS algorithm. However,
when the target velocity decreases the signal degradation factor
D increases and the Q-factor rapidly decreases. For example,
for m = 5 and velocity 0.3 pixels/frame, the value of Q
drops to 0.2− 0.3. Also, the algorithm performance degrades
dramatically when the jitter amplitude exceeds one-half of
a pixel. Therefore, this algorithm requires a fairly accurate,
separate algorithm for jitter compensation. See Section IV-B
for further details.

IV. THE RESULTS OF EXPERIMENTS

The quality of clutter suppression algorithms should be
evaluated based on the global operating characteristics that
include the probability of detection, the track accuracy, and
the false alarm rate. The global operating characteristics are
monotone functions of intermediate indices that were dis-
cussed in detail in Section III-A. The following indices are
particularly important: (a) the relative clutter suppression index
G (G-factor, see (5)) that measures the degree of clutter
rejection; and (b) the relative effective S(C+N)R Q (Q-factor,
see (7)) that measures the degree of clutter rejection and signal
preservation simultaneously. Recall that G ≥ 1, Q ≤ 1 and
the ideal values are G = Q = 1, which means that clutter is
totally suppressed, while the signal is completely preserved.

Besides, the mean-squared error (MSE) of jitter estimation
is important. This error has a substantial impact on the
performance of CLS algorithms and estimation of the targets’
coordinates.

Despite the fact that the problems of target detection and
tracking is out of the scope of this paper, it is worth mentioning
that when comparing CLS algorithms, e.g., spatial-temporal
and spatial-only methods, a quasi-optimal (in-frame) adaptive
detection algorithm with constant false alarm rate (CFAR) in
each frame has been applied. When the sensor PSF is known,
the detection algorithm represents a generalized likelihood
ratio test (assuming Gaussian distribution of residuals) with
an adaptive threshold, which ensures an automatic adjustment
of the detection threshold with the use of the background esti-
mates. As a result, a density of false detections is maintained
approximately constant in different fragments of a frame. In
order to control the frequency of false detections (CFAR

property), the maximum number of instantaneous detections
is restricted by a certain value which is computed based on
the maximum expected number of targets and other similar
considerations. This strategy is being used for all CLS filters,
which guarantees an optimal threshold selection for each and
every CLS filtering algorithm so that the detection threshold
for any particular CLS filter could not have been selected
better.

A. Comparison of Developed CLS Algorithms in Various Con-
ditions

Extensive simulations and experiments in a variety of
conditions have been performed to estimate the capabilities
and performance of the jitter estimation, clutter suppression,
and target tracking algorithms. Sample results are shown in
Figures 3-5 and Tables I-V.

As it was discussed in Section II, the developed architecture
includes the built-in simulator that allows for simulating
backgrounds in various spectral bands, daytime, and whether
conditions as well as the Graphical User Interface (GUI),
which allows one to input/output synthetic and external real
data, specify and change parameters, and display all the results
(see Fig. 1). The GUI is an important part of the development
and Fig. 3 shows its general view. The windows on the top
show the raw image, the whitened image at the output of
the CLS filter, and target tracking results. Comments to each
window provide estimates of various important parameters
such as mean intensities, variances, jitter amplitudes (x, y
shifts), detection thresholds, number of detections (blips) part
of which are false, type of the best CLS filter in specifically
encountered conditions, etc. The two windows at the bottom
allow for a more detailed (magnified) view of the input frames
and the results of processing. One can switch between several
modes to view pure tracks, whitened frames with tracks, etc.
More detailed results are documented in files that can be
previewed off-line. In Fig. 3 squares correspond to instan-
taneous detections (part of which are false), which appear
and disappear with each frame, and solid lines correspond to
estimated and confirmed target tracks.

Let σ2
b and ρ denote the variance and correlation coefficient

of clutter, respectively. The clutter-to-noise-ratio will be de-
fined as CNR = σb/σN . In Tables I–V, we present the results
of simulations for the following three different scenarios:

1) Relatively weak clutter with moderate spatial correla-
tion: CNR = 5.4, ρ = 0.85.

2) Moderately intense clutter with very low spatial corre-
lation: CNR = 25.8, ρ = 0.2.

3) Very intense clutter with high spatial correlation:
CNR = 78.4, ρ = 0.95.

In all three simulation cases, the jitter was about half of a
pixel size.

It is seen that spatial-temporal algorithms work well in all
scenarios. However, there is no single optimal algorithm for
all conditions, which suggests using a bank of CLS filters with
a reconfigurable architecture. Spatial-only algorithms perform
moderately well only for weak and relatively correlated clutter.
In other conditions, spatial algorithms completely or almost
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Fig. 3. Graphical user interface

TABLE I
G−VALUES FOR THREE OBSERVATION CONDITIONS

Filter No Filtering Spatial DRbil Fourier Wavelet DRspl Pol
Scenario 1 5.40 1.73 1.25 1.07 1.06 1.06 1.20
Scenario 2 25.80 28.90 1.96 1.08 1.05 2.56 1.68
Scenario 3 78.4 4.29 1.26 1.26 1.18 1.16 1.22

TABLE II
Q−VALUES FOR SCENARIO 1: CNR= 5.4, ρ = 0.85, Tmem = 20T0

Target Velocity No Filtering Spatial DRbil Fourier Wavelet DRspl
0.2 pix/frame 0.18 0.38 0.53 0.70 0.72 0.73
0.5 pix/frame 0.18 0.38 0.62 0.82 0.83 0.88

TABLE III
Q−VALUES FOR SCENARIO 2: CNR= 25.8, ρ = 0.20, Tmem = 20T0

Target Velocity No Filtering Spatial DRbil Fourier Wavelet DRspl
0.2 pix/frame 0.04 0.02 0.27 0.61 0.60 0.30
0.5 pix/frame 0.04 0.02 0.35 0.71 0.72 0.38

completely fail. For example, if clutter has a very high spatial
variation (low correlation) it is even better not to apply any
filtering than to use spatial processing. See Table III for
moderately intense and weakly correlated clutter. The results

in Tables I–IV correspond to the best spatial filter among those
tested, which is a 3 × 3 matrix filter with specially designed
adaptive weights given by (23).

The data in Table V show that the proposed jitter compen-
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TABLE IV
Q−VALUES FOR SCENARIO 3: CNR= 78.4, ρ = 0.95, Tmem = 20T0

Target Velocity No Filtering Spatial DRbil Fourier Wavelet DRspl
0.2 pix/frame 0.01 0.15 0.36 0.56 0.57 0.72
0.5 pix/frame 0.01 0.15 0.50 0.63 0.68 0.83

TABLE V
MSE OF JITTER ESTIMATION IN THE UNITS OF THE PIXEL SIZE

Filter Wavelet Fourier DRspl DRbil Pol
Scenario 1 0.007 0.008 0.036 0.069 0.024
Scenario 2 0.003 0.003 0.021 0.028 0.025
Scenario 3 0.056 0.058 0.014 0.013 0.026

sation algorithms are highly efficient and typically allow for
residual jitter in the range of 1− 3 percent of a pixel size.

Figures 4-5 illustrate the results of clutter suppression and
target detection and tracking for various observation condi-
tions. The following parameters were used in simulated ex-
periments: Geostationary orbit; FOV (field-of-view) 128×128
pixels with pixel size of 30− 35 microradians; instantaneous
FOV fluctuates around the reference FOV because of LOS
vibrations (vibration amplitude about one-half of a pixel size);
point targets move with constant velocity 0.5 − 1 pix/sec;
frame rate 1 fps; Gaussian PSF. The efficiency of the CLS
algorithms and software has been demonstrated by processing
data sets obtained from the simulator (the imitation model of
images) that takes into account generalized hardware/sensor
parameters, clutter and LOS vibrations. We have simulated
various scenarios under a variety of conditions.

Fig. 4 illustrates the tracking of two weak targets with
S(C+N)R = 0.1. In this particular example the simulated
sequence corresponds to the following conditions:

• Generalized sensor parameters: pixel size 35 µrad, stan-
dard deviation (STD) of Gaussian sensor noise 3 quants
of analog-to-digital converter (ADC).

• Meteorological conditions: two-layer clouds — height of
the upper boundary of clouds (HUBC) of the lower layer
≈ 3 km, HUBC of the upper layer ≈ 10 km, STD of
clutter ≈ 150 quants of ADC.

• Targets: 2 targets moving along perpendicular lines with
constant velocity ≈ 0.5 pix/frame.

• LOS vibrations: amplitude of vibrations 1 pix.
In this example, the auto-selection algorithm has chosen the

Fourier filter as the best filter from the bank. This filter almost
completely suppressed clutter (STD of residuals ≈ STD of
sensor noise). Targets were immediately detected and tracked
from the beginning to the end, as can be seen from Fig. 4(c).
Fig. 4(b) shows the results for the Spatial-only CLS filter (23).
The spatial filter fails: targets are not tracked when this filter
is used. In Fig. 4, boxes represent instantaneous detections
(mostly false), which appear and disappear with each frame,
and solid lines correspond to estimated target tracks which
were confirmed.

In the course of experimentation we discovered an interest-
ing effect related to the influence of bright targets (or other
point-like sources) on the CLS algorithm performance. It turns

out that in the presence of bright sources the performance
degrades dramatically. In particular, weak targets cannot be
detected and tracked in the presence of bright targets. There-
fore, a procedure for strong signal compensation that intends
to eliminate the influence of bright targets is needed. This
is crucial for improving the algorithm’s performance in the
presence of strong signals. The development of such a pro-
cedure has been performed but is out of the scope of this
paper and will be presented elsewhere. Here we only mention
that the signal compensation includes nonlinear estimation of
strong signals and subsequent subtraction of these resulting
estimates from the raw data. More specifically, the signal
estimates ŝn are subtracted from the raw data to form the
statistic Ẑn = Zn − ŝn. Spatial-temporal CLS algorithms are
then applied to the sequence of statistics Ẑn−m+1, . . . , Ẑn in
the time window m to estimate the background. The resulting
estimate b̂n is subtracted from Zn to form the residuals
Z̃n = Zn − b̂n which are the output of the CLS filters. The
data at the outputs of all filters in the bank are analyzed by
the auto-selection block to choose the best configuration for
the current conditions, as was discussed in Section II. In the
experiments below we used an ad hoc algorithm of bright
signal estimation that is based on a simple thresholding of
raw data (with thresholds higher than those used for the target
detection).

To illustrate the aforementioned effect, we present the
results of tracking one very strong point target with S(C+N)R
= 100 and one weak target with S(C+N)R = 0.04. The corre-
sponding results are shown in Fig. 5 where the squares with no
dots inside and no tracks attached represent instantaneous de-
tections part of which are false. False detections, however, did
not lead to real false alarms, since no false tracks were formed.
The squares with dots inside and with tracks attached represent
true target detections that were confirmed and tracked. The
polynomial (Pol) filter was used for clutter rejection — with
and without compensation of the strong signal. A strong target
was detected and tracked in both cases. The weak target
was tracked only when strong signal compensation was used.
Figures 5(b) and 5(c) also illustrate the difference in the
jitter compensation accuracy when there is no strong signal
compensation and when strong signal compensation is used.
This can be judged based on the “fuzziness” of the tracks.
Indeed, the track in Fig. 5(b) is substantially more fuzzy
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(a) Original data frame (b) Output of the Spatial-only CLS filter (c) Output of the Fourier CLS filter

Fig. 4. Target detection and tracking. Two weak targets: SNR=5, CNR=50, target velocity=0.5pix, jitter=1pix

(a) Original data frame (b) Output of the Pol CLS filter without strong
signal compensation

(c) Output of the Pol CLS filter with strong signal
compensation

Fig. 5. Target detection and tracking. One strong and one weak target: SNR(strong)=10000, SNR(weak)=4, CNR=100, target velocity=0.5pix, jitter=0.5pix

(even for a very bright target) because of the residual jitter
as compared to Fig. 5(c).

B. Comparison with Standard Differencing Methods

We performed a detailed comparative study of the “industry
standard” differencing method with our clutter rejection tech-
niques. The differencing clutter rejection method simply sub-
tracts two consecutive frames. It is therefore equivalent to our
temporal window-limited clutter rejection filter (implemented
in the bank of CLS filters) with the window size of 1 frame.
See (24) with m = 1.

We first comment on this algorithm in detail. The first
important observation is that the differencing algorithm may
work well if, and only if, almost complete stabilization (sub-
sub-pixel) is performed. It also requires an independent stabi-
lization algorithm in contrast to most our CLS filters where
stabilization is performed in the course of and jointly with
clutter rejection. The reason is obvious — this algorithm is not
only robust but, by contrast, it is quite sensitive to any changes
that occur between images. In addition, a simple subtraction of
frames doubles the intensity of sensor noise. Therefore, small
weak targets will not be detected and tracked even if clutter
is suppressed.

To be more specific, consider the following ideal situation.
Assume that the platform is completely stable (or stabilized)
so that there is no jitter, and also the background does not
change, i.e., completely “frozen.” Then the two subsequent
observations, for k = n and n + 1, are

Zk(rij) = S(rij − r(k)) + b(rij) + ξk(rij),

where r(k) is the location of the target at time k. Assuming
further that the target moves fast enough, so that the signals
do not intersect in successive frames, we obtain that at the
output of the differencing CLS filter we observe

Z̃n+1(rij) = S(rij − r(n + 1)) + ξn+1(rij)− ξn(rij).

Therefore, clutter will be completely suppressed but the inten-
sity of sensor noise will be doubled, since

E[ξn+1(rij)− ξn(rij)]2 = 2σ2
N ,

where σ2
N is the variance of noise. This means that the SNR

is S2/2σ2
N , i.e., twice lower than the potential maximal SNR

S2/σ2
N .

On the other hand, for most of our CLS algorithms the
SNR will be close to S2/σ2

N . For example, for our temporal
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(a) Original frame (b) Spatial-temporal Wavelet filter (c) Differencing CLS algorithm

Fig. 6. The results of clutter suppression and target tracking using spatial-temporal Wavelet and differencing CLS filters

algorithm (24) with the window size of m frames we have

Z̃n+1(rij) = S(rij − r(n + 1)) + ξn+1(rij)

− 1
m

n∑
k=n−m+1

ξn(rij),

i.e., the variance of noise at the output is

σ2
N + σ2

N/m =
m + 1

m
σ2

N .

For m ≥ 10, the SNR is mS2/(m + 1)σ2
N ≈ S2/σ2

N .
We now confirm these points by experiments with synthetic

data. In order to “enhance” the capability of the differencing
algorithm we used ideal conditions in terms of stabilization —
without jitter. As we will see, even in these conditions the
algorithm performs poorly, as can be expected from the above
argument.

We simulated an image sequence with moderately intense
clutter and sensor noise STD σN = 3. Two weak targets were
inserted in the sequence. We first used the Wavelet spatial-
temporal filter with window of 20 frames. The results were
very successful — the standard deviation of the residual clutter
plus noise was about 3 and both targets were tracked, as can be
seen in Fig. 6(b). By contrast, the differencing method was not
able to track targets, as seen from Fig. 6(c). As before, squares
with no tracks attached represent instantaneous detections part
of which are false, while solid lines correspond to confirmed
target tracks.

V. CONCLUSIONS

1. The results of experiments and realistic simulations
obtained with a Software Simulator show that the developed
adaptive spatial-temporal clutter suppression and image stabi-
lization algorithms, in particular spatial-temporal Wavelet and
Fourier parametric methods, allow for efficient clutter rejection
in all tested situations, especially when supplemented with
the additional strong signal compensator. These algorithms
completely remove heavy clutter (to or even below the level
of sensor noise) in the presence of substantial jitter and do not
require expensive sub-pixel jitter stabilizers.

2. Experimental study shows that the proposed jitter com-
pensation algorithms guarantee that the residual jitter is less
than 1/10-th of a pixel in all considered scenarios. Typically
the residual jitter can be made as low as 1−3% of a pixel. Note
that this result is somewhat unique. Indeed, our algorithmic
stabilization is better than can be achieved by the best available
commercial mechanical and/or electronic stabilizers. In fact,
the use of very expensive super-stabilizers is not necessary
and allows for cost reduction.

3. There is no single optimal CLS filter in all situations.
For this reason, a reconfigurable, adaptive architecture was
designed that allowed us automatic selection of the best filter
from the bank in specific conditions.

4. Spatial-only filtering can be used only for weak and
relatively correlated (smooth) clutter. Spatial methods have
poor performance for intense and relatively smooth clutter.
Spatial-only processing methods completely fail for heavy and
non-smooth clutter.

5. An industry standard differencing method may perform
relatively well if, and only if, an extraordinary jitter compen-
sation accuracy is achieved, and even in this case it performs
poorly when tracking relatively weak targets.
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[23] A.G. Tartakovsky and R. Blažek, “Effective adaptive spatial-temporal
technique for clutter rejection in IRST,” SPIE Proceedings: Signal and
Data Processing of Small Targets, Vol. 4048 , (O.E. Drummond, Ed.),
Orlando, FL, 2000.

[24] A. Tartakovsky, S. Kligys, and A. Petrov, “Adaptive sequential algo-
rithms for detecting targets in heavy IR clutter,” SPIE Proceedings:
Signal and Data Processing of Small Targets, (O.E. Drummond, Ed.),
Vol. 3809, pp. 119-130, Denver, 1999.

[25] A.G. Tartakovsky and V.V. Veeravalli, “Change-point detection in mul-
tichannel and distributed systems with applications,” In Applications
of Sequential Methodologies, (N. Mukhopadhyay, S. Datta and S.
Chattopadhyay, Eds.), Marcel Dekker, Inc., New York, pp. 339–370,
2004.

[26] J.B. Wilburn, “Theory of ranked-order filters with applications to feature
extraction and interpretive transforms,” Advances in Imaging and Elec-
tron Physics, (P. Hawkes, Ed.), Harcourt-Brace Academic Press, Vol.
112, pp. 233-332, 2000.

Dr. Alexander Tartakovsky is the Associate Direc-
tor of the Center for Applied Mathematical Sciences
and Professor in the Department of Mathematics at
the University of Southern California, Los Angeles.
He is also Vice President of Argo Science Corp.,
Rolling Hills Estates, CA. His research interests
include theoretical and applied statistics; sequential
analysis; change-point detection phenomena; adap-
tive, minimax and robust methods for overcoming
prior uncertainty; pattern recognition; speech recog-
nition and speaker identification; statistical image

and signal processing; image stabilization; video tracking; detection and
tracking of targets in radar and infrared search and track systems; information
integration/fusion; intrusion detection and network security; and detection and
tracking of malicious activity. He is the author of one book (“Sequential
Methods in the Theory of Information Systems”) and over 70 articles in the
areas indicated above. Dr. Tartakovsky obtained an M.S. degree in electrical
engineering from Moscow Aviation Institute (Russia) in 1978, a Ph.D. in
statistics and information theory from Moscow Institute of Physics and
Technology (Russia) in 1981, and an advanced Doctor-of-Science degree in
statistics and control from Moscow Institute of Physics and Technology (Rus-
sia) in 1990. He is a member of the Institute of Mathematical Statistics, SPIE,
Information Fusion Society, and a senior member of IEEE. Dr. Tartakovsky
is a recipient of the 2007 Abraham Wald Award in Sequential Analysis.

James Brown is research physicist, team leader,
and mission scientist within the Space Vehicles
Directorate, Battlespace Environment Division (Air
Force Research Laboratory, Hanscom AFB). Started
with the Air Force Cambridge Research Laboratory
in 1970 where he worked on chemilumenescent
reactions and cross-molecular beam dimerization
reactions. Continued in the 1980s as the Air Force
Geophysics Laboratory team leader for characteriz-
ing optical turbulence. Led AFRL high altitude radi-
ance and transmission model and code development

for Missile Defense Agency phenomenology program. Presently engaged in
experimental measurements of space objects for Air Force Space Situational
Awareness technologies.


