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ABSTRACT 

Our research is mainly motivated first by our desire to develop a theoretical foundation for hier- 
archical dynamic game framework and secondly by the desire to demonstrate the applicability of 
such theory in the area of for sensor resource management of large sensor networks of highly 
decentralized, distributed nature for the purpose of multi-level data fusion. We briefly describe 
the historical context of game theory over the past 80 years out of which our research ideas were 
engendered. We then present three new enabling approaches to game theory that makes it more 
applicable than past applications of 2-person static game, and describe them in detail, including 
results of simulations. 
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1. INTRODUCTION 

1.1. BRIEF HISTORY 

Game theory, a mathematical study of strategies in games, has a long and rich history dating all 
back to early 1700's, and found a firm mathematical footing in 1928 when von Neumann pub- 
lished his famous paper. In his work, Von Neumann showed that every two-person zero-sum 
game has a maxi-min solution in either pure or mixed strategies. In other words, in games in 
which one player's winnings equal the other player's losses, Neumann and Morgenstern showed 
that it is rational for each player to choose the strategy that maximizes his minimum payoff, giv- 
ing rise to a notion of equilibrium solution, i.e. a pair of strategies, one for each player, with 
which each player can be most satisfied with, given that the other play does not alter his strategy. 

W1M 
Figure 1: Von Neumann, Nash, Aumann, & Harsanyi - pioneers of 2-person, N-person, Dynamic and Uncertain Games 

This seminal work brought to the field of game theory quite an excitement and even daring hope 
among some mathematicians that it would do to the field of economics what Newtonian calculus 
did for physics. Most importantly, it ushered in to the field two bright young researchers who 
would significantly extend the outer limits of game theory. A few such young minds particularly 
stand out. One is John F. Nash, a Princeton mathematician who, in his 1951 Ph.D. thesis, [give 
reference here] extended Neumann's theory to N-person non-cooperative games and established 
the notion of what is now famously known as Nash-equilibrium that eventually brought him the 
Nobel recognition in 1994. Another is Robert Aumann, who took a departure from this fast de- 
veloping field of finite static games in the tradition of Neumann and Nash, and instead studied 
the dynamic version of games, where the strategies of players and sometimes games themselves 
change along a time-parameter / according to some set of dynamic equations that govern such a 
change. Aumann contributed much to what we know as theory of dynamic games today and his 
work eventually also garnered him a Nobel Prize in 2002. Rufus Isaacs, who took a departure 
from this fast developing field of finite discrete-time games in the tradition of Neumann, Nash, 
and Aumann, instead studied the continuous-time version of games, where the way in which 
strategies of players determine the state (or trajectories) of players depends continuously on 
time-parameter t according to some partial differential equation. Isaacs, who worked as engineer 
on warplane propellers during World War II, joined the mathematics department of RAND cor- 
poration, a cold war think tank after the war, and there he passionately developed the theory of 
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such game-theoretic differential equations, a theory now called differential games, with the topic 
of warfare strategy as the foremost application in his mind. Around the same time, John Har- 
sanyi made a key recognition of the imperfectness and incompleteness of information that is in- 
herent in many practical games, and thus started a theory of uncertain games (often also known 
as games with incomplete information) and was also awarded a Nobel prize in 1994 along with 
John F. Nash. 

1.2. CURRENT RELEVANCE AND NEED FOR NEW APPROACHES 

Despite the preponderance of their military applications, however, the two-person games, re- 
search of which flourished under the clouds of the two super-power-cold-war, have limitations in 
this post cold war, post September 11 era. One obvious limitation is the apparent lack of an effi- 
cient 2-person game-solver. Of course, Neumann and Nash showed that such a solution exists 
and later in 1980's, it was shown that every finite 2-person game can be turned into a linear pro- 
gramming problem, which then can be solved using a number of different techniques, say, by a 
simplex method for example. However, such a translation is not only computationally cumber- 
some, but furthermore, some structure of the game, such as symmetry, asymmetry, dominance, 
etc., and thus some potential insight into the game are often lost during this translation, making it 
desirable for an efficient 2-person game-solver that preserves and even exploits structures of the 
game in question. Our research is in part motivated by our desire to look for just such an effi- 
cient 2-person game solver. 

Moreover, game theory research applied to defense-related problems has heretofore mostly fo- 
cused on static games. This was consistent with the traditional belief that our adversary has a 
pre-defined set of military strategies that he has perfected over many years (especially during 
the cold-war) as well as relatively short time of engagement during which one fixed adversarial 
strategy is committed. However in this post September-11 era, there is an increasing awareness 
that the adversary is constantly changing his attack strategies, and such variability of adversarial 
strategies and even of the game from which these strategies are derived call for application of 
dynamic games to address the current. However, although solutions of any dynamic 2-person 
game are known to exist by the Folk theorem, apparent lack of an on-line technique to solver dy- 
namic games in an iterative fashion has stymied such an application. In our research, we present 
just such an on-line iterative method to solve dynamic games using insights from Kalman filter- 
ing techniques. 

Furthermore, while the interaction between offense and defense can be effectively modeled as a 
2-person game, the resource allocation problem among different assets of a sensor system can 
further be modeled as an N-person game. Thanks to Nash's seminal work in this area, we know 
an equilibrium solution exists for such N-person games, though actually finding an equilibrium is 
a highly non-trivial task (we recall Nash's proof of his theorem is a non-constructive theorem). 
There do exist a number of heuristic methods to estimating and finding the equilibrium solutions 
of N-person games, but in this research, we propose a new method of solving N-person games 
inspired by the Brouwer 's fixed point theorem (a crucial ingredient in Nash's doctoral thesis), 
and show how such methods can be employed to optimally manage assets of a sensor system in 
competition, coordination and cooperation against a common adversary. 
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Finally, we present a sensor network simulation environment with sensor resource management 
(SRM) algorithms that brings the three aforementioned ideas together in a hierarchical and dy- 
namic way, which not only validates our ideas but also can serve as a predictive tool of what the 
adversary may do in future and what the corresponding defensive strategy should be. Our ap- 
proach is based on realization that there is a natural hierarchical breakdown between a 2-person 
game that models the interaction between a sensor network and its common adversary; and an N- 
person game that models the competition, cooperation, and coordination between asset of the 
sensor network. We have developed a concept of operations as well as SW prototypes to simu- 
late such an environment to corroborate our theory. 

The ultimate goal of developing these approaches is that they would be used for improving the 
importance of Space Situational Awareness (SSA), whose importance cannot be 
overemphasized. In fact, according to 2005 Quadrennial Defense Review (QDR), the United 
States must have "unfettered, reliable, and secure" access to its space assets, assured, for now, by 
"improving space situational awareness and protection, and through other space control 
measures." [1] This echoed the findings of the earlier 2001 version, which strongly insisted that 
"the US must not only exploit the advantages of the "high ground" of space, but that it also 
should develop a robust means to deny the use of space assets to any adversary." We strongly 
believe one rigorous theoretical foundation to improve SSA is by means of game theory, and it is 
our ardent hope that the new approaches that were developed through this research will make a 
positive contribution in this regard. 
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2. THEORY 

2.1. CONOPS, GAMES, OVERALL APPRAOCH 

Advanced optimization-based algorithms for Sensor Resource Management (SRM) have been a 
research focus area for multi-sensor ISR systems. However, these algorithms usually offer the 
potential for automating the sensor control process in response to level 1 sensor data fusion (ob- 
ject or track-level) estimates, even though studies have indicated that such SRM algorithms may 
have limited value because the algorithms are optimized for track maintenance without any as- 
sessment of overall situation context. To overcome such inadequacies, we had begun developing 
a framework for representing the expected information value of planned sensor measurements as 
it contributes to higher-level situational inferences, in our previous SBIR Phase II effort called 
RESE. In this effort, we developed a hierarchical valuation model that estimates target value on 
the basis of Level 2 fusion information (group identity) as well as Level 1 information, and 
showed that the optimization algorithms that maximizes this newly augmented value function 
gave better results not only for classifying group identity but also for track qualities of targets on 
the ground. 

One of the most important purposes for multi-sensor ISR system, however, is to infer the 
adversarial intent given the current estimate of the adversarial observables, which is the focus of 
level-3 information fusion. This is a hard problem, especially given that such intent changes over 
time and depends on the enemy's perception of the blue force's intent. However, as we briefly 
saw at the end of our RESE effort, it is possible to use one mathematical framework, namely 
game theory, to make such reasoning rigorous and effect a high-level data fusion, which utilizes 
all level-1, level-2 and level-3 information. 

Buoyed by this encouraging yet ad-hoc limited result near the end of RESE effort, we decided to 
find a theoretical foundation upon which we would be able to explain these results, which led us 
to the discovery of Kalman-filtering techniques for 2-person dynamic game through this current 
research. Furthermore, aware of the current and future operational need to manage heterogeneous 
set of multiple sensors in a highly dynamic, distributed, and decentralized environment, we again 
looked to game theory (this time N-person game theory), treating the sensors in the network, 
each endowed with different capabilities, modalities, and communication bandwidth, as a player 
in a N-person game (N-person coalitional game, especially if N becomes large). This has the ad- 
vantage of providing common framework where the needs and capabilities of different sensors 
can be compared and coordinated, allowing multiple sensors to work together through binding 
agreement to achieve the most optimal cooperative resource allocation. 

Figure 2 shows how our overall approach will work. To begin with, as two-person game is 
defined by a set of strategies for each player and the payoff matrix which assigns a value that 
each player perceives for himself given an ensemble of strategies that each player has made, we 
will begin by defining an overall adversarial space interaction between blue and red in order to 
turn this into a 2-person game, where blue is our sensor network and red is the network of 
adversarial entities. Though our setup is general enough for either zero-sum game or bi-matrix 
game, we have chosen a zero sum game for the sake of simplicity. Then, by solving such a game 
for the adversarial strategy as well as the blue strategy, we attempted to infer as well adversarial 
intent as well as how the sensor network should respond to such an intent. 
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Figure 2: Hierarchical Dynamic-Game Theoretic Approach 

Inevitably, such definition of 2-person games will depend on many factors, which come with 
unavoidable variability (environmental as well as human), and thus, we will use the theory of 
uncertain game (otherwise known as theory of games with incomplete information) throughout 
our effort. This means that the games we consider actually become a probability distribution over 
the space of possible games, allowing us to experiment over a number of different games that 
model the interaction between the offense and defense, one by one or even all at once. 

We will then use the innovative approaches mentioned in the previous and expounded further in 
the following section to build our hierarchical dynamic game-theoretic SRM approach, which is 
depicted schematically in Figure 3. As we described above, the 2-person game that models the 
interaction between the offensive entity and defensive sensor network, which results in the 
common strategy that the sensor assets need to achieve together, in response to the strategy that 
the adversary will likely adopt. Such a common strategy is then passed onto different sensor 
assets at which point Common Asset Coordinator (CAC) will then solve an N-person game in a 
competitive, coordinated, or a cooperative fashion for an equilibrium solution which will give 
rise to a strategy that each asset will need to adopt, in order to ensure optimal resource allocation 
among all the assets. Finally, each sensor asset, coupled with its GMTI tracker, forms a TSP 
(Tracker Sensor Pair) and locally employs a 2-person dynamic game of its own in order to make 
its most optimal local decision, which then makes a decision about whether to choose this local 
decision or the decision produced from the N-person game or a combination of both. We now 
describe this in more detail in the next section, and we begin by reviewing the result of the RESE 
effort. 
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Figure 3: Interplay between 2-person game and N-person Game 

2.2. DEVELOPMENT OF EFFICIENT TWO-PERSON GAME SOLVER 

We have developed a prototype software tool, GameSolver, for solving mathematical games that 
are relevant for this research effort. Of course, the most crucial aspect of using game theory is 
the determination of equilibrium solutions (i.e. Nash Equilibrium solution). This is usually a 
difficult problem, but for a two- person, zero sum game, i.e., blue's gain equals red's losses and 
vice versa, there are known solution methods for specific payoff matrix structures (combinatorial 
solution methods exist also for 2-person non-zero sum games, but we concentrated our efforts to 
zero-sum games for the sake of simplicity). More specifically, these solution methods are 
adaptable to the form of the payoff matrix: 

•    2x2 matrix - This is the simplest case. For example, the enemy has two strategies: wait 
or attack, and the blue force has two strategies: wait or defend.   For a payoff matrix of 
'a   b\ 

\c      / , the solution can be written explicitly: 

d-b 
Pi 

1 

a+d-b-c 
d-c 

a+d-b-c 

, P2
=1"A 

. a2"l-q, 

where (pi, P2) represents the blue force mixed strategy solution, i.e., the blue force should adopt 
strategy 1 and strategy 2 with probability pi and p2, respectively; similarly for the red force and 
(qi»<*2). 
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• Severely Asymmetric matrix (m x 2 or 2 x n) - This describes when one side has a much 
richer set of strategies than the other. This often describes situations in unconventional, 
asymmetric warfare in this age of GWOT, where insurgents and terrorist are known to 
have a wide variety of strategies against more conventional blue force strategies. These 
types of games can be readily solved with graphical analysis on the set of linear functions 
of two variables (i.e. lines). 

• Square payoff matrix (m x m) - The offense and defense have an equal number of 
strategies. However, unlike the 2 x 2 case, there is no explicit solution formula for blue 
and red strategies. Instead, the well-known principle of indifference can be used to set up 
a linear system of m equations with m unknowns. 

• Non-square payoff matrix (m x n) - The most general case where one's number of 
strategies is not limited by one's opponents. In this case, we follow the clever trick first 
realized by G. Owen in 1982 to turn this problem into a linear programming problem, and 
then apply the well-known simplex method. 

• Invariant games - The payoff between blue and red do not change under some 1-1 
mapping of blue and red strategies onto themselves. In this case, the Nash solution is 
also invariant, thus making the solution easier to find. We should first reduce the game 
by the mapping. 

Figure 4 summarizes our approach: 

Figure 4: Case by case analysis for Efficiently solving 2-person games 

2.3. FILTERING TECHNIQUES FOR SOLVING DYNAMIC GAMES 
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As much as the two-person game theory aptly describes the adversarial situation that must be 
considered, in particular, for space situation awareness, and as important as Neumann's and 
Nash's equilibrium results of two-person games are, they are fundamentally about static games. 
Therefore, they do not easily give insights to a dynamic situation where the game is repeated 
many or even infinite number of times (repeated games), where the memory of players add 
dynamics to the games, or where the rules of the games themselves change (fully dynamic 
games). 

There are theorems, such as Folk Theorem [2], which proves that an infinitely repeated game 
should permit the players to design equilibriums, supported by threats, with outcomes being 
Pareto efficient. Also, at the limit case of continuous time case, instead of discrete time, we may 
bring to bear some techniques of differential games, which are inspired mostly by well-known 
techniques of partial differential equations applied to Hamilton-Jacobi-Bellman equation, as 
pioneered by Rufus Issacs [3]. However, unfortunately, these approaches do not readily give 
insights to how to select and adapt strategies as the game changes from one time epoch to the 
next, as is necessary in order to gain space situational awareness in all of its dynamics. 

A*"1 

t 

Enemy Dynamic Model Operator 

Strategy Transition Model Operator 

Analyst Reasoning Model Operator 

Filtering Gain 

^^—^^— True strategy 

 •   Nash Equilibrium 
————  Estimated Strategy 
    Predicted Strategy 

• — • — Observed Strategy 
Measurement Cov. 

Figure 5: Pictorial View of Filtering Techniques for Dynamic Games 

Therefore, based on our experience in Kalman filtering techniques for estimating states of 
moving targets, we propose a different approach to solve dynamic games in order to help figure 
out the intent of an adversary to gain superior space situational awareness. The key observation 
in our approach is, ironically speaking, not to be overly concerned about Nash equilibrium. We 
recall that Nash equilibrium is useful when a player does not know what the other player may do, 
and thus it is some sense a safe strategy that each player in a game can adopt. However, when a 
sensor network is employed to gain awareness of a situation in space, each time a measurement 
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is made by a sensor (kinematic state, classification state, etc., depending on the sensor modality), 
a measure of understanding about the adversary is gained, however incremental it may be. Our 
approach exploits this incremental gain each time a sensor in a sensor network is employed in 
order to solve the dynamic game in question and gain the best estimate of the intent the 
adversarial space entities, which may still continue to change. 

Our approach is inspired by our experience with Kalman filtering, as described pictorially in 
Figure 5, where y-axis represents adversarial strategy and x-axis represents time. As in Kalman 
filtering paradigm, our approach tries to find the right balance in combining the prediction of 
what the adversarial intent may next be, governed by a model of adversarial strategy transition 

(operator 3> ~ in the figure) and the most recent measurement of the adversarial intent, given by 
another model of how an analyst may process the sensor data to map the sensor measurement to 

a given set of adversarial strategies (operator A in the figure). However, unlike Kalman 
filtering, a third factor is also balanced with the prediction of adversarial strategy and the 
measurement of adversarial strategy, namely Nash equilibrium strategy for the adversary (the 
strategy that the adversary will most likely adopt without any further insight into friendly force's 
intent). 

Mathematically, this insight translates into adding a third-term to the famous Kalman filtering 
equations. Let us start from the original Kalman filtering equations as below: 

p; = (i-KtB)pt'-
1 

Kt=Pt'-
lBT(R + BPt'

lBTyl 

where 

yt , yt     is state estimate of a target at time instance t, given observation up to time t, t-1 

X, is the observation at time instance t 
* t   ft/-i 
Pt ,P,     is the covariance at time instance t, given the measurement up to time /, t-1 

Kt is the Kalman gain at time instance / 

B is the measurement operator 

Starting from these equations, we derive the following set of equations, described in the picture 
form below in Figure 6: 
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PI-V-K^P;-' 
K, - P;-\M)

T
(R+rtp^irtyy1 

i man Filter Equations 
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1 
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st - true strategy at time t 
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A' £ HOM (2',2'; 9t), models IA' s understand ing of enemy strategy 
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N(Gt) - a Nash equil. solution for the game G, at time t 
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and measures how much analyst1 s reasoning should be trusted 

Figure 6: Mathematical View of Filtering Techniques for Dynamic Games 

The first question in Figure 6: 
y\ - O'X1 + KXKs, - A'-'O'-'i,';,1) + ct(Prl)N(Gt) 

shows how §',, next estimate of the adversarial intent given by its next strategy, is a combination 
of three terms, namely: 
• 0'"'i'_1: prediction of the next adversarial strategy given strategy transition model O' 

• K,(A!s, - A'^O'"1^'!,1):   measurement   of   the   current   adversarial   strategy   given   IA 
(Intelligence Analyst's model of process sensor measurement data 

• c, (/)'"' )N(Gt): Nash equilibrium tempered by a discount factor 

Furthermore, the next two equations describe how uncertainty of adversarial strategy (given by 
the covariance term P' ) and Kalman gain (K, ) grow under this dynamic system. To gain 
further understanding of this dynamic system, we plan to ask the following questions (& more as 
we continue the research): 

1) Does S] converge to true strategy? 
2) If the answer to 1) is yes, how fast does it converge? 
3) How stable is this dynamic system? 
4) What is a natural non-linear extension of this system? (e.g. what is its analogue to scented 

Kalman filter)? 
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Though convergence and stability of these new dynamic equations above still need to be proved, 
through a prototypical simulation environment that we have used in this research, we have a 
preliminary empirical verification the effectiveness of these techniques though an extensive 
Monte-Carlos runs, as we will see in later sections. We plan to focus our future research on these 
questions we raised above, and in so doing, we solidify the theory of our fdtering techniques for 
dynamic games and present a practical and computationally feasible way to understand 
adversarial interactions for future applications. 

2.4. BROWDER'S FIXED POINT APPORACH FOR N-PERSON GAMES 

Through this research effort, 
we also developed innovative 
approaches to solve N-person 
game, for which there is no 
known general approach, as 
Nash's    famous    result    on 
equilibrium was an existence 
proof only, not a constructive 
proof. The key idea for N- 
person game is not to resort to 
some  heuristic  approach   in 
order to solve N-person games, 
as it is usually done for static N- 
person game, but rather to use the techniques inspired by Browder's Fixed Point theorem (Figure 
7) used in Nash's original Ph.D. thesis. For example, Nash's arguments rest upon the following 

equations [5] that describe a transformation from one strategy £ = (sl,S2,S3,...,Sn) to another 

£  = (sl,S2,S3,...,Sn)by the following mapping: 

Pictorial view of Browdefs fixed point theorem 

Thm (Browder): A continuous 
function from a ball (of any 
dimension) to it self must leave 
at least one point fixed. 

Figure 7: Fixed Point Theorem forB*2 

5.. = 

a 

where 
<p,.a-max(0,/?,„(£ )-/>,(£)) 

£ is an n-tuple of mixed strategies 

/>,(£) is the corresponding strategy to player i 

/?,„(£) is the payoff to player /' if he changes to OL   pure strategy 

We note the crux of Nash's proof of the existence of equilibrium solution(s) boils down to this 
fixed theorem (see a pictorial explanation description of the theorem above) applied to the 
following mapping T : £ —* £, and by investigating the delicate arguments that Nash used to 
convert these fixed points into his famous Nash equilibrium solutions, we also plan to use these 
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arguments to find a constructive methods to find the solutions of N-person games. One possible 
approach we have in mind is to first start from a set of sample points in the space of strategies, 
and compute: 

C(£) measures the degree to which a strategy £, is changed by the map T '.t, —*£,'. We will 

look for a strategy £ where C(£) is close to 1, as the possible initial search points to look for 
equilibrium points to start such iterative search process. 

2.5. FICTIOUS PLAY FOR DYNAMIC N-PERSON GAMES 

Whenever sensor nodes can establish effective communication with each other, we propose to 
use the theory of bargaining, well understood in game theory community, to model their 
cooperation and coordination among sensors in order to achieve the most optimal solution 
(Praeto optimal), which may not be sometimes achievable in non-cooperative games. 

Fictitious Play for Dynamic Game 

Sample 
Actuator 

1 

Sample 
Actuator 

n 

Simul^tio 
n 

Actuator 
1 

 Best  
Respons 

e 

Play 
I /I is tor 

Actuator 
n 

 Best  
Respeas- 

e 

Figure 8: Fictitious Play for N-person games ofPatek, .et al. 

Furthermore, for dynamic N-person games with a common objective among the players, we plan 
to investigate for future research the applicability of the techniques that Prof. Steve Patek and his 
colleagues at the University of Virginia have developed for generating endogenous Nash 
equilibrium, which is schematically depicted in Figure 8, using fictitious play learning algorithm. 
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In considering optimal architecture for command and control of large system (which is a key 
issue for any future sensor systems), Dr. Patek and his colleagues have studied the use of game 
theoretic techniques in distributing the search for global extrema in large-scale, discrete 
stochastic optimization problems. In their work, they attribute "player" status to each asset 
involved in the search for a globally optimal solution, each having a utility function equal to the 
objective function of the optimization problem being solved. Then, generalizing the "fictitious 
play" algorithm of game theory, they engage all players in a repeated process of "best 
responding" to the past search activities of all other players along with their observations about 
what constitutes an optimal solution. In applying this algorithm to resource allocation problems 
in a variety of application domains, it was observed that the algorithm converges in the sense that 
all players will eventually converge on a pure strategy Nash equilibrium, corresponding to a 
globally optimal solution when the underlying objective function is convex. Under suitable 
regularity assumptions, this result holds in general, and we plan to explore further the suitability 
of fictitious play-based optimization algorithms for managing sensor assets. Through such 
investigation, we hope to understand coordination needed among sensors to respond to threats 
exogenous to the network, especially for the purpose of distributed resource management for 
sensors. 

2.6. SRM ENVIRONMENT FOR HIGH LEVEL FUSION (LOCAL) 

Figure 9 shows how we may put together some of the approaches we described so far to devise a 
local version of hierarchical dynamic game-theoretic sensor simulation environment, which we 
started in our RESE effort. We now describe this in more details, making connection with multi- 
level date fusion: 

Dynamic Game Module 

(unit decomposition, 
red strategy) 

- 
Baycsian 
Response 
Generator 

Noah 
Equilibria 

Solver 

Simulation Module 

(blue strategy, red strategy) 

p<Off»IMlV«^    7T 

Figure 9: Sensor Simulation Environment 
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2.6.1.   From Level 1 to Level 2 via Statistical Modeling 

The key connection between level 1 and level 2 fusions is an estimation technique that we have 
developed to determine the identity of a group of objects, given the identities of the individual 
objects themselves. The basic paradigm is as follows: 

• We are given a set of measurements, associated in a non-redundant manner with objects. 

• Objects are known to submit to a finite number of distinct and exhaustive classifications. 

• Objects are known to co-occur in groups, where each group is defined uniquely by its 
object composition. 

Notional Scenario 
Aggreate-Hypo Pr(h) Pr( h | y) 
Tank Platoon: 0.33    0.10 
SAM Unit: 0.33    0.82 
Supply Unit: 0.33    0.08.  

a 
% 

Class p(y2f(2) Pr(x2|y) 
Tank:    4.6     0.84 
Tnick:    0.77    0.07 
SAM:   0.1      0.05 

Class p(y1pt1)Pr(x1|y)     Radar:   2.3     0.04 
Tank:     3.4     0.76 
Truck:    0.04    0.13 Class p(y3><3) Pr(x3|y) 
SA.M:   2.8     0.10 Tank:     3.4     0.76 
Radar:  3.2     0.01 Truck:   0.04   0.13 

$ 

% 
Class p(y6tx6) Pr(x5|y) 

TnTck:    0M    oiSl SK. «***> •«!?« 
0 

SAM:   2.8      0.10 
Radar:   3.2     0.01 

SAM:   9.3      0.38 
Radar:   9.5     0.60 

Tank: 0.4 0.01 
Truck: 0.04 0.02 
SAM: 6.8 0.95 
Radar: 12.1 0.01 

Figure 10: Notional scenario for group and target classification 

Given prior knowledge on the relative frequency or probability of specific object groupings, how 
are we then to judge which hypothesis of group identity best explains the available object-level 
observations? We must also consider the impact of this prior knowledge upon the classification 
of individual objects. That is, how should the context in which an object is observed (the pres- 
ence of other observed objects) affect our classification of that object? More precisely, given the 
following: 

• o\, ...on: the set of n objects in the group G 

• x\,.., xq: possible object types 

• v = (yl,.., vn): the set of object measurements on the n objects 

• h: a group type hypothesis on group G, 
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and assuming that we have per-object measurement likelihoods conditioned on the target type 
p(yi | xj), we would like to (a) evaluate the probability of various group hypotheses Pr(h | y), and 
(b) evaluate the updated target probabilities Pr(xj | y) (see Figure 10 for a notional scenario). We 
tackle the problem by laying out a precise probabilistic model for the occurrence and observation 
of groups of objects. This model consists of three components, namely (i) a prior model, (ii) a 
detection model, and (iii) a measurement model. More precisely: 

(i) The Prior Model: The prior model specifies what groups of objects may occur and the 
relative frequencies with which these groups occur. Group hypotheses are specified by the group 
composition, i.e., the number of instances of each object class are present within the group. 

(ii) The Detection Model: Our observation of a group may be incomplete in that the objects 
themselves may be difficult to identify. To model our uncertainty as to whether or not the "cor- 
rect" objects were detected we introduce a detection model, using the Poisson process based 
upon the probability of detection, false alarm rate that is consistent with expected clutter density. 

(iii) The Measurement Model: The measurement model specifies the probabilistic distribu- 
tion of measurements conditioned upon each of the possible target classifications. Ambiguity as 
to the correct classification of an observed object is created by overlap of measurement models 
for different object classes. 

Overall Model Structure" 

Prior Mood 

Q Hidden Aggregate 

Detection Model 

Observed Aggregate 

MeMurerneffi Model 

Joint State Assignment 

Q Marginal State Assignments 

r~\      r") Q Marginal Measurements 

Figure 11: Model Structure 

These three processes may be thought of as being "piped" in that the output of each feeds into 
the next, as illustrated in Figure 11. The tree diagram shown there illustrates the top-down struc- 
ture of our model. The prior model specifies the prior probabilities of the states at the root node. 
The Detection Model determines the transition probabilities from the hidden aggregate to the de- 
tected aggregate - fundamental considerations determine the probabilistic mapping from the ob- 
served aggregate state to the various object classifications.   Finally, the measurement model 
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gives the transition probabilities from an object-classification node to the associated measure- 
ment. 

The calculation of likelihoods under this model is then summarized as follows. Using Bayes' 
rule, the probability of an aggregate hypothesis (//) conditioned upon all observations (y) is 

p(y) 

where Pr(h) is given by the prior model, p(y | h) is the likelihood of the measurements condi- 
tioned upon h, and p(y) is a normalizer: 

P(y)~y^p(y\h)*m 

Using the detection model, the mapping from the aggregate hypothesis, h, to the detected distri- 
bution, d, may be computed by calculating transition probabilities, Pr(d | h). Using these transi- 
tion probabilities and the chain-rule we have: 

Pty\h)-   ySp{y\d)?r{d\h) 

where the summation is taken over D(n,q), the set of all possible distributions of n objects into q 
classes, where n is the number of detected objects. 

Finally, using the measurement model, we compute the likelihood of a set of observations y con- 
ditioned upon the distribution of detected objects, d, by direct calculation using the chain-rule as: 

p'yW-JzWamaU)-WiXt\p{yM 

The former sum is over the set of all possible assignments of q object-classifications to n objects. 
The latter formula indicates the "brute-force" method of calculating the measurement likelihoods 
conditioned upon a distribution hypothesis. The summation is over all assignments a consistent 
with the hypothesized distribution d. In general, this computation could be very time consuming 
and may not be feasible. To avoid that, we propose to develop an approximate evaluation proc- 
ess by collapsing the entire object classification probability distributions into one aggregated 
"group classification vector" and skip the enumeration of an exponentially growing set in the 
joint state assignment. 

Impact of Group Hypotheses on Value Functions for Sensor Resource Management 

Given the set of track-level measurements v and the probability distribution over all group hy- 
pothesis {Pr(h \y)}h, we can construct a value function (VL\2) for the group that incorporates 
both level 1 and level 2 fusion measurements: 

VuAG\y)-^V(h)?r(h\y)Jv(oj\yJ)?r(xj\y) 
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In this value function, the first summation represents the level 2-fusion value, where V(h) is the 
commander's preference (importance) of a particular group type. The second summation repre- 
sents the level 1 fusion value, where V(oj \ yj) is the value of object j given yj, the object level 
measurement of objecty (note that this valuation is itself determined via the commander's prefer- 
ence on the object type as well as the target probabilities ?r(xj | v)). 

To utilize this value function for sensor resource management, we rely on sensor models for gen- 
erating expected object level measurements y, thereby yielding varying level 1 and level 2 val- 
ues, hence varying total value, for alternative sensors and sensor modes. This value function can 
thus be used to determine sensor resource allocation decisions that reflect the commander's pref- 
erence in terms of object or group types as well as the capabilities of the various sensors avail- 
able. 

2.6.2.   From Level 2 to Level 3 via Uncertain Games 

Exploitation of level 1 and level 2 (red force) data tends to be a local (in time and space) process 
that analyzes data within a particular field of view for a short period of time. In contrast, level 3 
data exploitation, determining the intent of the enemy, tends to be a more global process (longer 
time-horizon, looking at the entire AOI). Inferring the red force intent is a difficult problem, es- 
pecially given that it changes over time and depends on the enemy's perception of the blue force 
intent. As we argued thus far, we have used one mathematical framework for making such rea- 
soning rigorous, namely game theory. 

However, we found that just a textbook static 2-person game in the spirit of von Neumann 
wasn't quite sufficient for our research. This was due to the uncertainty in our problem domain 
which stems from the uncertainty in the red force identity, which then has a direct bearing on the 
red force intent. Different units do have different strategies and payoff functions, which conse- 
quently define different games with different equilibrium solutions. To illustrate, consider the 
example shown in Figure 12, where the blue force must choose among five possible strategies 
against a red force whose identity is unknown but is assumed to be either a defensive, offensive, 
or supply unit. The red force unit would have different strategy choices depending on its identity 
- for example, six possible attack strategies for an offensive unit, three counter measures for a 
defensive unit, and three transport strategies for a supply unit. Given the uncertainty of the red 
force identity and the assumed possible strategies for each red force unit type, the blue force 
must choose its strategy that will be most successful. 

To resolve the red force identity uncertainty and thus the identity of the game, we have used the 
output of the level 2 data exploitation, in particular {Pr(/j | y)}h, the probability distribution over 
all group hypothesis h given the track-level measurements y. This is how our level 2 analysis and 
algorithms are related to those of level 3. 
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Figure 12: The blue force must determine which strategy to adopt unsure of the identity of the red force 

Under an assumption of the red force identity, we can define the two person game that the blue 
force and red force should play, for which we know that a Nash solution exists, thanks to the 
work of von Neumann and Nash. Therefore, we first develop a mapping between red force unit 
types and the set of strategies and related payoff functions, which define the game. As contex- 
tual information such as weather, doctrines, and terrain information will affect red force strate- 
gies and payoffs, such information will be taken into account in this mapping, in future research. 

Next, given the game defined by this mapping, it still remains to determine the Nash equilibrium 
of the game, and thus the intent of the red force. This is in general a difficult problem. How- 
ever, in the special case of two-person non-zero sum game as we have in this context, Mangasar- 
ian and Stone showed that the Nash equilibrium can be systematically found using techniques of 
quadratic programming. Further, given the uncertainty in the enemy's identity, our analysis will 
result in a Nash equilibrium solution, i.e., an intent distribution, for each of m defined games, 
each game corresponding to an assumption (hypothesis) on the red force identity (m=3 in the ex- 
ample in Figure 12). Though this set of intent distributions can then be incorporated back into 
our hierarchical value function, we have set aside this for future research. 

2.6.3.   SW Prototype Architecture for Game theoretic L1/L2/L3 Fusion 

Figure 13 shows a prototypical view of the software architecture for the simulation environment 
that we have built which simulates game theoretic multi-level fusion. L1/L2/L3 SRM module is 
as we described already in 2.6.1 and 2.6.2. We now proceed to describe the rest of modules in 
more details. 
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Figure 13: Prototypical SW Architecture for Game Theoretic SRM for High Level Data Fusion 

Dynamic Game Module 

A finite game is defined by a set of strategies for each player and the payoff matrix, representing 
numerically how valuable each player views a particular set of strategy choices. The situation 
modeled here between the blue and red forces can be described as a two-person zero sum game 
(in future work we will consider extensions to non zero sum games). As we mentioned in Section 
2.6.2, since the blue force is uncertain of the enemy type, we define a game between the blue 
force and each of the possible red brigade type. To simplify the simulation and ensuing analysis, 
without loss of generality, we will assume that each enemy brigade type has the same set of 
strategies. Namely, we have (for this simulation): 

•    Blue Strategies = {act, wait} 

Red Brigade Types 
where 

(offensive brigade, defensive brigade, deceptive brigade) 

o   Offensive Brigade: consists of 2 units of type A. 

o   Defensive Brigade: consists of 2 units of type B. 

o   Deceptive Brigade: consists of 1 unit of type A and 1 unit of type B. 

Red strategies = {attack, defend, deceive} 

Payoff Matrix: 
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o    A(offensive) = 

o    A(defensive) = 

o    A(deceptive) = 

5   -2 1 

-5    3 2 

-1   2 2" 
1   -1 1 

2-13 

-2   1   -2 

where the first and second row of each payoff matrix corresponds to the blue force act and wait 
strategies, respectively, while the first, second, and third columns correspond to the red brigade 
attack, defend, and deceive strategies, respectively. 

To illustrate further, we look at the A(offensive) payoff matrix in more details: 

• If the enemy offensive unit is attacking (column 1), the blue force gains 5 (in 
some measure of utility) if it employs its sensors to act, i.e., sense the attack (and 
the offensive unit loses 5). However, the blue force loses 5 if it fails to act when 
the offensive unit is attacking, while the offensive enemy unit gains 5 as it is at- 
tacking and thereby achieving its goal without being sensed. 

• If the enemy offensive unit is defending (column 2), the blue force loses 2 if it 
employs its sensors to act in that (a) the blue force loses sensor resources and (b) 
it makes it easier for the enemy brigade to determine that they are being sensed 
(which may prompt the enemy to change its strategy - the dynamics of the en- 
emy strategies will be explained more later). By waiting, the blue force saves 
sensor resources and avoids being observed, gaining 3. 

• If the enemy offensive unit is deceiving (column 3), while there is some utility 
(gain of 1) in employing blue force sensors, it is of greater utility (gain of 2) for 
the blue force to wait before committing sensor resources given that the enemy is 
trying to deceive. 

The payoff matrices for the defensive and deceptive red force brigades are similarly defined. 
The values of the entries of all the payoff matrices are determined somewhat arbitrarily as a 
means for generating proof-of-concept results in our simulation exercises. A rigorous methodol- 
ogy for determining the matrix values would require a thorough understanding of the red and 
blue force interactions and is itself a topic of considerable research and should be investigated as 
a top research for future research. In our current framework, however, the payoff matrices are 
treated as input to the simulation, and, therefore, different matrices define different games, one 
example of which is described above. 

Bavesian Response Generator 

Given the set of payoff matrices as defined above and the blue force estimate of the enemy strat- 
egy, represented by a probability distribution q (which is an input from L2/L3 simulation mod- 
ule), where: 
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and 

qx = probability that the red force is executing the attack strategy 

q2= probability that the red force is executing the defend strategy 

qi = probability that the red force is executing the deceive strategy, 

one can then calculate the Bayes Response, i.e., the best strategy that blue force should take. The 
Bayes response is the mixed strategy p in the space of mixed strategies X* that achieves the fol- 
lowing maximum: 

where ay represents the (i, j)th element of the payoff matrix (a mixed strategy is a probability dis- 
tribution over the strategy space, e.g., a 2-dimensional probability vector over the two blue force 
strategies in our case; a pure strategy is the special case of a unitary mixed strategy). As we are 
uncertain as to the enemy type (offensive brigade, defensive brigade, deceptive brigade), we 
compute the Bayes response for each of the three payoff matrices corresponding to the enemy 
type given the enemy strategy q as follows: 

• Bayes _p(ojfensive) = argmax(p)      . pTA{offensive)q 

• Bayes_p(defensive) = argmax(p)     . pT A(def ensiv$ q 

• Bayes _p(deceptive) = argmax(p)     . pTA(decep five) q 

Then we define the best response (Bayes response), BayesJJ, as follows: 

Bayes _p   =  Pr(offensive)*Bayes_p(offensive)   +  Pr(defensive)*Bayesjj(defensive)   + 
Pr(deceptive)*Bayes_p(deceptive) 

where 

• Pr(offensive) = probability that red is an offensive brigade, i.e. both units are of 
type A 

• Pr(defensive) = probability that red is a defensive brigade, i.e. both units are of 
typeB 

• Pr(deceptive) = probability that red is a deceptive brigade, i.e., 1 unit each of 
types A and B. 

These probabilities over brigade types are computed via the individual unit probabilities of the 
units forming each brigade, the output of the level 1/level 2 SRM module. 

Game Solver 

While the Bayes response provides the best response that blue should take given the current es- 
timate q of the red force strategies, the red force may change its strategy assuming that the blue 
will adopt a Bayes response. Of course, anticipating such a change from the red, the blue may 
change strategies again, thereby prompting a red strategy change, and so on. Therefore, each 
side must determine the best strategy to adopt without knowledge of the opposing side's strategy 
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choice. Assuming that each side acts rationally, the Nash solution provides the strategies that 
each side is most likely to adopt. For each of the three games defined above, the Nash equilib- 
rium is determined as follows: 

•    For 

i  2- 0 
3    3 

•     A(qffensive) = 
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We then define Game_p and Gameq, the weighted Nash equilibrium over the three payoff ma- 
trices corresponding to the enemy brigade types, analogously as the Bayes response: 

• Gamejy = Pr(offensive) *p(offensive) + Pr(defensive) *p(defensive) + 
Pr(deceptive) *p(deceptive) 

• Game_q =Pr(offensive) *q(offensive) + Pr(defensive) *q(defensive) + 
Pr(deceptive) *q(deceptive) 

We next combine the Bayes Response and the weighted Nash solution as follows: 

• Output_ p- tx Bayes_ p+(l- f)x Game_ p 

• Output_q= txq+(l-t)x Game_q, 

where the parameter t is the measure of how much one wants to emphasize the current estimate 
of the enemy's strategy as opposed to the Nash equilibrium solution (this is akin to the usual 
technique in linear filtering theory, where (Bayes _p, Bayesq) is an observation and (Game_p, 
Gameq) is a prediction). (Output_p, Output_q), a pair of mixed strategies, is then sent to L2/L3 
Simulation Module which we now discuss. 

L2/L3 Simulation Module 

The Dynamic Game Module provides Output_p, the blue force next sensor decision (action or no 
action), and Output_q, a probabilistic assessment of the enemy strategy. The L2/L3 Simulation 
Module utilizes these output strategies as follows: 
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Using the Blue Strategy 

The blue force strategy (act or wait) is determined via the generation of a random variable 
against the output probability vector Outputjy. In the case of action, we utilize the level I and 
Level II valuation function to select a sensor mode as described in 2.6.1. The current track qual- 
ity state used in the level II valuation function for SRM includes a 24 Joint Kinematic and Clas- 
sification (JKC) state Markov model. These JKC states discretize the tracking and classification 
quality into a finite number of possibilities so that one could relate the sensor management deci- 
sion to the valuation function in a compact and computationally efficient manner. In the case of 
no action, we extended our simulation algorithms to evolve the JKC state under the assumption 
of no look. 

Using the Red Strategy 

The assessed enemy strategy Outputq is used to predict the enemy strategy for the next time 
step via a two-step process. First, we model the evolution of the enemy strategy from one time 
step to the next in the Strategy Dynamic Model module, and then we update the strategy prob- 
ability based on analyst assessment given sensor observation in the Analyst Reasoning module 
and Strategy Dynamic Module. 

Strategy Transition Model Module: We utilize a Markov transition model to represent the evolu- 
tion of the enemy strategy, and thus this module models how adversarial strategy transitions 
when the adversary is confident that it is not being watched. We used a linear map (transition 
matrix) for starters and will investigate more complicated model in future research. Example of 
this linear map where the adversary employs three strategies (i.e. sl=Attack; s2=Defend; 
s3=Deceive), is given below: 

A<-' = 

0.95 0.25 0.25 

.025 .95 .025 

.025    .025     .95 

-jt-i 2< 

The three rows and columns represent the three enemy strategies (attack, defend, deceive). To 
illustrate, the first row indicates that if the enemy is currently attacking, at the next time step, the 
enemy will attack with probability .95, and defend or deceive with probability .025 respectively. 

Analyst Reasoning Module: We utilized a confusion matrix as a function of sensor mode to 
model the analyst assessment (a more elaborate model can be developed in the future). For in- 
stance, GMTI mode has a better ability to detect moving targets and therefore the analyst can 
better identify the enemy strategy with the observation. The confusion matrices are used to gen- 
erate random hypothetical observations based on true enemy strategy. The confusion matrices 
for GMTI and HRR currently utilized are as follows: 

<T'(GMTI) = 
(.1 .1 •2\ 

.2 .4 .4 

I4 
.2 •4J 

<T'(HRR) = 
/.5 .2 .3\ 

.2 .6 .2 

I-4 .1 •5i 

25 Final Report on Game-Theoretic Sensor Resource Management 



To illustrate, the first row of the GMTI confusion matrix indicates than if the enemy is attacking, 
an analyst receiving a GMTI report will identify the enemy strategy as attacking with probability 
.7, defending with probability .1, and deceiving with probability .2. 

We utilize the confusion matrix corresponding to the sensor mode chosen by the blue force under 
the blue force action strategy decision. To determine the correct row of the given confusion ma- 
trix, we utilized enemy ground truth via the Enemy Dynamic Model. 

Enemy Dynamic Module 
This module models by a Markov process how an adversary may adapt strategy when detecting 
surveillance from the ballistic missile defense system. An example is pictorially depicted below: 

Attack 

.95 .025 .025 
.025 .95 .025 
.025  .025   .95 

Stay Quiet 

Figure 14: Markov Chain for Enemy Dynamic Module 

2.6.4.   Simulation and Results 

We conduct a number of Monte Carlo simulations where the initial enemy strategy was selected 
either randomly or based on the enemy unit composition. In each trial, we conduct 100 time 
steps where a dynamic sensor decision is made at each step. In the simulation, we try three sce- 
narios where each scenario consists of different composition of units (AA, AB, and BB). We 
assume that the value of the two unit types can be chosen based on the commander's preference. 
Similarly, the value of each target types can also be assigned accordingly. 

In the simulation, we run 50 Monte Carlo trials for each scenario. In each scenario the window 
size for sensor action is set to be 10 and the decision threshold is set differently in each test. For 
example, with threshold equal to 40%, Figures 15-1 thru 15-3 show the results of a typical trial. 
Figure 15-1 shows that about 36% of the time sensor is off (mode #3) and the rest sensor is on 
(mode#l for GMTI, mode#2 for HRR on unit 1, and mode #2 for HRR on unit 2). Figure 15-2 
shows that in this trial, the enemy's strategy has changed from 1 (offense) to 2 (defense), then 
back to 1 and then later move to 3 (deceptive), and back to 1. Figure 15-2 also shows that about 
44% of the time, the most likely strategy of our assessment is the true one.  Figure 15-3 shows 
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the assessed probability of the three strategies as well as the assessed probability of the true strat- 
egy- 

In each test, we also compare the game solver with heuristic algorithm where the sensor ac- 
tion/no-action decision was assigned based on a pre-specified probability. We have found out in 
general, the performance of heuristic solver is significantly worse than the one with game solver. 
This is understandable since the enemy strategy changes frequently due to our sensor actions. It 
is much more difficult to assess enemy's strategy without an interactive game theoretic strategy 
analyzer. 

Figures 15-4 thru 15-9 shows the overall performance comparison between the heuristic ap- 
proach and the game solver approach. In this test, we set the size of time window for enemy 
strategy policy to be 10 and the decision threshold for change is 80% (i.e., our sensor will need 
to be on greater than 80% of time in the preceding time window of size 10 before the enemy will 
potentially change strategy). Note that in the figures, we display both the mean and the one- 
sigma confidence interval for both probability of correct decision (Pcd) and probability of correct 
classification (Pec). 

For example, Figure 15-4 compares the average game solver performance with the average heu- 
ristic solver performance. The x-axis represents the probability of sensor action for the heuristic 
approach. Note that in the Figure, the performance is obtained by averaging over different cases 
where each case represents a specific level-1 and level-2 value combination. Figure 15-5, on the 
other hand, shows the performance of a specific case (case 13, where the unit type 1 (A) and tar- 
get type 3 are the emphasis) under the same scenario. 

Similarly, Figures 15-6 and 15-7 show the results for scenario BB and Figures 15-8 and 15-9 
show the performance of scenario AB. It is clear that in all cases, the game solver outperforms 
the heuristic solver most of the time. We then change the policy decision threshold from 80% to 
101% and test the performance. The corresponding performance results are shown in Figures 
15-10 thru 15-15. Note that the fact that the threshold is greater than 100% indicates that the en- 
emy strategy will not change throughout the simulation. In these cases, the heuristic strategy 
performs almost linearly proportion to the sensor action rate. This is intuitive since no correla- 
tion between the enemy strategy and our SRM decision and therefore more sensor action imply 
more sensor data and better performance. It is interesting to see that the game solver performs 
approximately the same as the heuristic solver at around 70% sensor action. 

We also change the policy decision threshold to 40% and compare the performance. The results 
are given in Figures 15-16 tO 15-21. The resulting performance curves are somewhat similar to 
that of Figures 5-9 thru 5-15 except in these cases, the heuristic solver performs better in terms of 
Pcd when the sensor action rate is small. Also, the overall performance is worse with 40% 
threshold than that of 101% threshold. Note that with 40% threshold, the enemy strategy 
changes much more rapidly and therefore is much harder to identify. 
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Finally, to test the robustness of the game solver, we modify the game solver ratio from 0.5/0.5 
to 0.9/0.1. This ratio is to balance between long term and short term prediction/assessment of 
enemy's strategy. The results are shown in Figures 15-22 thru 15-27. They are very similar to 
Figure 15-4 thru 15-8 which demonstrates the robustness of the algorithm. 

(set below stands for strategy change threshold) 
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Performance Comparison - Case 13/AA Performance Comparison - Average of all Cases/BB 
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Figure 15-5:AA(13), sct=0.80/fixed initial str. (1) 
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Figure 15-6: BB, sct=0.80/fixed initial str. (2) 
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Performance Comparison - Case 13/AA 
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Figure 15-11: Case 13/AA sct= 1.01/fixed initial str.(1) 
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Figure 15-14: AB, sct=: 1.01/fixed initial str. (2) 
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Figure 15-15: Case 21/AB, sct=1.01, fixed initial str. (2) 
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Figure 15-16: AA, sct=0.40/fixed initial str.(1) 
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Performance Comparison - Case 13/AA 
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Figure 15-17: Case 13/sct=0.40/fixed initial str(1) 
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Figure 15-18: BB, sct=0.40/fixed initial str. (2) 
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Figure 15-19: Case 21/BB,sct: 0.40/fixed initial str(2) 
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Figure 15-20: sct= 0.40 and fixed initial str.(2) 
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Figure 15-21: Case 21/AB, sct=: 0.40/fixed initial str.(2) 
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Figure 15-22: AA, game solver ratio 0.9/0.1 
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Figure 15-23: Case 13/AA, game solver ratio 0.9/0.1 
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Figure 15-24: BB, game solver ratio 0.9/0.1 
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Figure 15-25: Case 21/BB, game solver ratio 0.9/0.1 
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Figure 15-26: AB, game solver ratio 0.9/0.1 
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Figure 15-27: Case 21/AB with new game solver ratio 0.9/0.1 
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2.7. SRM ENVIRONMENT FOR HIGH LEVEL FUSION (GLOBAL) 
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Figure 16: Going from local to Global 

Figure 16 depicts how a local game theoretic SRM-Tracker pair (one akin to Figure 14 above) 
may be put together with other such pairs in a distributive and decentralized architecture. The 
key distinction between the local picture that was discussed in the previous section (2.6) and the 
global picture in Figure 16 is the presence of common global objective that was absent and does 
not arise in the local setting. In other words, as each local SRM-Tracker pair tries its best to 
maintain its local picture of situational awareness, there exists a global objective that these pairs 
are supposed to achieve together. Is it always the case that the decisions that Tracker-Sensor Pair 
has to make to optimize its local objective function coincide with the decisions that it needs to 
make to contribute maximally to the global objective? This is often the case, but unfortunately, 
not always true. It turns out that there is tension between the local decisions (which are results 
(i.e. Nash equilibrium) of solving local 2-person game) and the global decisions (which are re- 
sults (i.e. Nash equilibrium) of solving global N-person game), and each SRM-Tracker pair must 
be able to choose optimally in order not to neglect one in favor of the other. Exactly how to bal- 
ance these two competing needs is still very much an area of open research (even in the fields of 
economics where game theory plays a vital role), and a very difficult problem, which involves 
solving N-person games, which itself is a difficult problem, as we explained in previous sections. 
We made some modicum of progress through this research addressing this problem, which we 
explain now. 

2.7.1.   Uncertain Global Adversarial Identity 

The fact that there is an uncertainty regarding the identity of the global adversary should be of no 
surprise, as there is an uncertainty in the identity of the local adversaries (which make up the 
global adversary) as discussed in section 2.6. As such, we tackle this issue in the similar way, as 

33 Final Report on Game-Theoretic Sensor Resource Management 



we did for the uncertain games that arose in the local setting. In other words, we will take the 
probability distribution over all possible global adversary types and use that to define the uncer- 
tain game that the global blue force is engaged in against the global red force. To be more pre- 
cise, since we had the following for the local case (as defined in section 2.6) 

• Local adversary types for each TSP = {Offensive, Defensive, Deceptive}; 

If the number of TSP(Tracker-Sensor-Pair)'s = 3 for the global case, then we have: 

• Global adversary types = {Offensive, Defensive, Deceptive} 

where 

• Global offensive adversary consists of at least two local offensive adversaries 

• Global defensive adversary consists of at least two local defensive adversaries 

• Global deceptive adversary consists of at least two local deceptive adversaries 

Defined as above, number of each global adversarial type is 7 as 

• 7 = 1 (3 of a kind) + C(3,2) (2 of a kind) x 2 (remaining 2 choices) 

This still leaves cases where each TSP is of a different type. There are 6 (= 3!) of them and they 
will be classified as deceptive type. Therefore, we have in the end for the global adversary types: 

• 7 global offensive adversary consisting of at least two local offensive adversaries 

• 7 global defensive adversary consists of at least two local defensive adversaries 

• 13 global deceptive adversary consists of at least two local deceptive adversaries or of 3 
different local adversary types 

And the global adversary type at a given point will be a probability distribution over these three 
types calculated from the probability distribution of each of the 3 local adversary types. 

2.7.2.   Solving the global 2-person Game (Common Objective Generator) 

As the identity of the global adversary is being determined, so the payoff matrix for the 2-person 
game that the blue and the red are engaged in is also being determined. We show one particular 
payoff matrix we use extensively as follows: 

global_payoff_matrix = 

As this is the convention, the rows represent the strategy space of the blue (i.e. the sensor net- 
work of three TSP's) and the columns represent the strategy space of the global adversary, with 
the following strategies: 
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• Global Blue Strategies = {Sense A Lot (SA), Sense Little (SL), Don't Sense (DS)} 

• Global Red Strategies = {Attack (AT), Defend (DE), Deceive (DC)} 

In other words, global red adversary can employ the overall strategy/objective of "attack", "de- 
fend" and "deceive" strategy which it will try to achieve using its local agents to achieve. In re- 
sponse, sensor network can employ the overall strategy/objective of "Sense A Lot" which will 
then be communicated to the individual sensors in its network, (exactly how this global objective 
will be translated into a local strategy is a topic of the next section), and the same goes for the 
global strategy/objective of "Sense Little", and finally for "Don't Sense". Their relative measure 
of success & failure employing different strategies are reflected in the following table, which co- 
incides with the payoff matrix above: 

Attack (AT) Defend (DE) Deceive (DC) 

Sense A Lot (SA) 1 2 -1 

Sense Medium (SM) 2 -1 4 

Sense Little (SL) -1 4 -3 

For example, when the global adversary is in the attack mode, if the sensor system is not em- 
ploying its distributed sensors to monitor what the adversary is doing (i.e. DS strategy), the sen- 
sor system loses its measure of success (-1), and the adversary gains the measure of success (1). 
To the contrary, if the adversary is in the defensive mode, it is to the sensor network's advantage 
to not sense (DS), so as to not waste its sensing resources, as the adversary is in the defensive 
mode, and not at the current time doing something that is worthy of being sensed. 

The Nash equilibrium for this pay off matrix is as follows (using the techniques we described 
about 2-person games): 

Nash blue = —   —   — 
U    2    4 

Nash red = —   —   — 
\4    2    4 

Now in order to estimate the strategy or the intent of the global adversary, we then use the tech- 
niques that we developed in the local dynamic 2-person game situation to solve such games as 
above as in the following linear combination: 

global_red_strategy[r +1] = 0.2 • global_Nash_red[? + 1] + 

0.2 • global_red_strategy[r] + 

0.2 • local_red_strategy_pl[r] + 

0.2 • local_red_strategy_p2[/] + 

0.2 • local_red_strategy_p3[7] 
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In other words, in order to estimate the current global strategy, we combine the global red strat- 
egy of the previous time epoch, current observation of the adversarial global strategy seen from 
the current three local sensors and the current global Nash equilibrium (as a baseline estimate). 

However, there are a few assumptions that we made in writing down the above, which we must 
pursue in further research. They are: 

1. Even though we have used the equal waiting on all five components that contribute to the 
current global strategies, other weightings are certainly possible and we will explore 
more in future research. 

2. We have made an assumption that the strategy space of the local adversaries as well as 
that of the global adversary are all equal to each other, in order to map the local strategy 
space to global strategy space. Such assumption is rather strong, indeed, and in future re- 
search, we will explore exactly what the inverse (or pseudo-inverse) map V1 of 

XV • A' -* A' T • /Y global 'v local 

3. We have assume that the transition map: 

O' • A'     — A'+l 
^   • /vlocal /Ylocal 

is a simple identity map. However, this is too simplistic of an assumption and a simple 
linear map using a transition map, akin to what was done in local case, should be consid- 

"0.9   0.1    o.r 
ered (e.g. O = 0.05   0.8   0.15 

0      0.2    0.8 
) 

Similarly, for the blue, we proceed as we did before in the local case, i.e., linear combination of 
Bayesian response, best possible blue response if our estimate of the opponent is a perfect esti- 
mate, and Nash response, the equilibrium point, that is considered as a safe response given the 
opaqueness to the current adversarial strategy, as follows: 

global_blue_strategy[r + 1] = 0.5 • blue_global_Nash_strategy[f + 1] + 

0.5 • blue_global_Bayesian_Response[r +1] 

2.7.3.   N-person Game for Sensor Network Coordinator 

Now once we have a common objective (namely "Sense A Lot (SA)", "Sense Little (SL)", or 
"Don't Sense (DS)") come out from the Common Objective Generator, as we just described in 
the previous section, we then have to push down this global common objective to the local level 
and have it be distributed among TSP's (Tracker-Sensor Pair). Such push-down and distribution 
of the global objective can happen in two ways: 

1.   If the communication among the TSP's are robust), it can happen cooperatively among 
the TSP's and one way that this can be implemented is via the process of finding endoge- 
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nous equilibrium thru cooperative fictitious game structure of Patek, et. al., as was out- 
lined section 2.5 

2. If the communication among TSP's is limited or compromised, each of the common ob- 
jective can then be translated into a non-cooperative game which then each TSP can then 
play against other TSP's to ensure the global objective is met via their competition, rather 
than cooperation. 

In the current research, we chose the method #2 via Uncertain Game Maker, though # 1 is cer- 
tainly worthy of further investigation and future research. 

2.7.4.   Uncertain Game Maker 

We first let 

i = argmax(blue_global_strategy(y')) 

Now if /= 1 (i.e. global objective = "Sense A Lot (SA)"), we have the following 3-person matrix 
game: (recall, as is convention, rows represent strategy of first player (PI), and columns repre- 
sent strategies of the second player (P2). Also recall that locally each sensing agent has two 
strategies: {Sense} and {Not Sense}): 

P3 = {Sense} Sense Not Sense 

Sense 3 2 

Not Sense 2 1 

P3 = {Not Sense} Sense Not Sense 

Sense 2 1 

Not Sense 1 0 

Nash solution for this matrix game, using the principle of dominance is (1, 1, 1) as the pure Nash 
equilibrium strategy. 

Now, if / = 2 (i.e. the global objective = "Sense Medium (SM)"), we then have: 

P3 = {Sense} Sense Not Sense 

Sense 3 2 

Not Sense 2 3 
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P3 = {Not Sense} Sense Not Sense 

Sense 2 3 

Not Sense 3 0 

In this case, there is no pure Nash solution for this payoff matrix, which makes things more in- 
teresting. Also, notice there is payoff of 3 for (1, 1, 1). This reflects a bias towards coordination 
to achieve the common objective of "Sensing A Little (SM)". 

Finally, if /' = 3 (i.e. the global objective = "Sense Little (SL)"), we then have: 

P3 = {Sense} Sense Not Sense 

Sense 1 1 

Not Sense 1 2 

P3 = {Not Sense} Sense Not Sense 

Sense 1 2 

Not Sense 2 1 

Nash solutions for this matrix game are {(2, 2, 1), (2,1,2), (1, 2, 2)} as pure Nash equilibriums 
and 

{—(2,1,2) + —(1,2,2)} as a mixed Nash solution. 

Now whichever the global objective may be (thus whichever game we may be solving), the local 
strategy supporting the global objective will then be pushed down to each local sensing agent 
(TSP) and it is a (new) job/capability of each TSP to decide what to do with this new globally- 
inspired objective. 

2.7.5.   Balancing Global and Local Needs 

The figure below (Figure 17) captures pictorially the decision that each TSP needs to make. Lo- 
cally, at a given time, using the local L3 module that was described in section 2.6, each TSP 
needs to decide whether to activate its sensor or not (Level 3 decision) which then employs its 
Level 1 / Level 2 SRM algorithms to determine whether to use MTI mode or HRR mode. Fur- 
thermore, it also receives from Global Sensor Network Coordinator, as described in sections 
2.7.4 and 2.7.5, a decision whether to sense or not to sense, so as to help achieve the global ob- 
jective in concert with other TSP's. 
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Currently, for starters, we are using the equal balance between the two. In other words, we have 

Intent/ 
Mission Objectives 

global blue strategy 
against 

global red strategy! 

7 

*•>      ,? 

Sens* or NOT sense? 
Sometimes, even if we 
have the resource, It's 
better NOT to sense - 
for local reason or for 
a global objective 

Intent ® 

Figure 17: Balancing between local and global 

STSP       ~ Slocal + ~ Sglobal 

In future, a more effective balancing algorithm will be employed. The one currently envisioned 
takes into account the size of uncertainty that grows or shrinks over time at the global level and 
also at the local level. In other words, we could have: 

K 
~S local + 

size(local uncertainty)  '       size(g\oba\ uncertainty) 'global 

2.7.6.   Putting It Altogether 

We now put all these components together and run this hierarchical simulation loop as described 
in the following pseudo-code: 
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<hierarchical distributed game theoretic simulation algorithm> 

for (each simulation step) 

% First play three separate local 2-person games 

for (each player) 

Dynamic 2-person game_solver_for local sensing strategy 

If (sense) 

activate_sensor using SRM Module 

Evolve enemy strategy using Strategy Transition Module 

Monitor enemy strategy using Analyst Reasoning Module 

Update enemy strategy using Enemy Dynamics Module 

end 

end 

% Now play global 2-person game 

Calculate next global strategy via CommonObjectiveGenerator using 

Previous global strategy and previous local strategies. 

Find next global n-person game via UncertainGameMaker using 

current global strategy and local adversary types 

Find next globally inspired local strategies by solving the current n-person 

game via njperson_game_solver 

% Final Balancing act 

Compute new sensing strategies by balancing local sensor strategies 

and globally inspired local sensing strategies. 

end; 

And these algorithms are pictorially captured in the Figure 18 below: 
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Figure 18: Final Simulation Architecture 
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