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ABSTRACT
We present a data-driven approach for target detection and
identification based on a linear mixture model. Our aim is to
determine the existence of certain targets in a mixture without
specific information on the targets or the background, and to
identify the targets from a given library. We use the maximum
canonical correlation between the target set and the observa-
tions as the detection score, and use coefficients of the canon-
ical vector to identify the indices of the present components
from the given target library. The performance of the detec-
tor is enhanced using subspace partitioning on the target li-
brary. Both simulation and experimental results are presented
to demonstrate the effectiveness of the proposed method in
Raman spectroscopy for detection of surface-deposited chem-
ical agents.

Index Terms— target detection, identification, canonical
correlation, subspace partitioning, Raman spectroscopy

1. INTRODUCTION

The aim of target detection in a linear mixture model is to
determine if certain components exist in a given set of obser-
vations. Linear mixture model has been widely used in signal
processing applications. It can be represented as

X = SA + V,

where X is an observation matrix, A a matrix of mixing co-
efficients, and S the component matrix, and V a noise matrix.

Here X, S, and V ∈ R
N×M , and A ∈ R

M×M where M
is the number of observations, which we assume is equal to
the dimension of the signal subspace, and N is the length of
observations.

The target in detection can be a specific component. Ap-
proaches such as generalized likelihood ratio test (GLRT) [1],
and detection with correlation bound (DCB) [2] have been
adopted and show satisfactory performance in these cases.
What we address in this paper is a more challenging prob-
lem, in which the target is a library of components of interest,
i.e., the present components are from a given library without
the knowledge of specific index information. This problem
can be divided into two steps:
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1. Hypothesis testing:
Given X = SA+V and spectrum library T = {t1, · · · , tL},
where L is the number of target components of interest,
determine whether one or more components in T exist
in the mixing components, i.e.,

H0 : S ∩ T = φ

H1 : S ∩ T �= φ

where φ denotes the empty set.

2. Identification:
If H1, identify the index of the component that is present
from the given library.

When background is known, and given that the library is
ensured to cover all possible present components, supervised
approaches such as GLRT or linear regression methods can
be used [1] for the problem. In practice, however, it is usually
difficult to obtain a reliable prior estimate of the background
components, and the accuracy and comprehensiveness of the
component library cannot be guaranteed, hence limiting the
utility of these methods.

The aim of this paper is to develop a data-driven detection
method without having to use a priori information. In prac-
tice, least squares (LS) or non-negative least squares (NNLS)
methods have been used in applications such as Raman spec-
troscopy [1] where the interference of background is ignored
in the detection. In this paper, we use the maximum canon-
ical correlation between the target library and a block of the
mixtures as the detection score, and use the coefficients of
canonical vector to determine which components are present
in the mixtures. Hence both the detection and the identifica-
tion problems can be solved by the approach at the same time
using detection with canonical correlation analysis (DCC).

In DCC, we use the target library as a projection subspace,
hence its condition number is crucial to the performance of
the detection algorithm. High canonical correlations between
linear combinations of spectra are major causes for false pos-
itives as well as incorrect identifications of components that
are actually present.

In this paper, we incorporate DCC detector with a library
partitioning scheme by posing the problem as a vertex col-
oring problem in graph theory, in which linear combinations
that cause high canonical correlations are regarded as adja-
cent vertices with different colors, hence leading to improve-
ment of the performance by performing DCC on the parti-
tioned subspace (DCC-P).
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We apply the proposed detection methods to Raman spec-
troscopy. A Raman spectrum gives a set of peaks that cor-
respond to the characteristic vibrational frequencies of the
material, which can be used as a signature for identification
of various materials. We consider the application of Raman
spectroscopy on non-contact detections of surface-deposited
chemical agents, which is particularly useful for detecting en-
vironmentally hazardous chemicals [1]. Both the simulation
and experimental results in Raman spectroscopy demonstrate
the effectiveness of the proposed approach for the problem.

2. DETECTION USING CANONICAL
CORRELATION

We investigate the relationship between the observation data
set and the target library using canonical correlation analysis
since it provides information on the closeness of two sets of
vectors.

Given two sets of vectors, X = [x1, · · · ,xM ] ∈ R
N×M ,

and Y = [y1, · · · ,yL] ∈ R
N×L, canonical correlation anal-

ysis seeks a pair of vectors, a∗ and b∗, that maximize the
correlation ρ = corr(Xa,Yb), such that

ρ∗ = max
a,b

corr(Xa,Yb). (1)

The solution of Eq. (1) can be obtained by solving the
following eigenvalue problems:

C−1
xx CxyC−1

yy Cyxa∗ = ρ2a∗

b∗ = C−1
xx Cxya∗, (2)

where Cxx = E
[
XXT

]
, Cyy = E

[
YYT

]
, Cxy = E

[
XYT

]
,

and Cyx = E
[
YXT

]
.

The square roots of the eigenvalues obtained from Eq. (2)
are called canonical correlations, and the vectors a∗ and b∗
canonical vectors.

To help explain the idea of DCC, we use a noiseless model
X = SA, and let T = [t1, · · · , tL] be the target set. The
maximum canonical correlation between X and T is given
by

ρ∗ = max
a,b

corr(Xa,Tb) = max
a,b

corr(SAa,Tb).

We can see that

• Under H0 :
S ∩ T = φ, hence

ρ∗ = 0

if the subspaces spanned by S and T are orthogonal.
Note that this orthogonality condition is just a simplifi-
cation to emphasize the general idea for this example,
and is not a requirement of the DCC method.

• Under H1 :
S ∩ T �= φ. Let s1 = tj , i.e., S = [tj , s2, · · · , sM ],
then

ρ∗ = 1.

An example solution is a∗ = A−1[1, 0, · · · , 0]T , and

b∗ = [0, · · · , 1(j), · · · , 0]T since SAa∗ = Tb∗ = tj .

Note that the non-zero element in b indicates the index of
component that is in the mixture X.

This observation suggests that we can use the maximum
canonical correlation,

ρ∗ = max
a,b

corr(Xa,Tb) (3)

to solve the D-Set problem using the following two steps:

1. Use ρ∗ for the hypothesis test to determine if any com-
ponent in the library is present,

2. Use canonical vector, b∗, to determine the indices of
those that are present.

3. LIBRARY PARTITIONING WITH GRAPH
COLORING

As seen in equations given in (2), the of spectrum library ma-
trix T is used in the solutions of DCC methods as a projection
subspace, hence its condition plays an important role on de-
tection performance. A canonical correlation value close to
one implies that a component in the library is approximately
equal to a linear combination of other components, as a result,
false positives and incorrect identifications might occur in de-
tection. The following are two examples based on the spec-
trum library that we use in our Raman spectroscopy study,
in which there are a total of 62 spectra, T = [t1, · · · , t62],
where the first 50 are spectra of target chemicals of interest,
and the last 12 are spectra of background materials.

• Example 1: False positive
The canonical correlation value between t54 and [t27, t28]
is close to 1, i.e., t54 ≈ αt27+βt28, where α and β are
scalars. Hence when t54 is background, high detection
index is obtained if using the whole spectrum library
because of the existence of the targets, t27 and t28 in
the library.

• Example 2: Misidentification
Similar to the example above, we have t1 ≈ αt7+βt6.
Hence when t6 and t7 are the mixing chemicals, t1

might be detected as the present chemical.

High canonical correlations also lead to an ill-conditioned
component matrix, which is well known as numerically un-
stable and suffers from sensitivity to round-off errors in the
computation.

Thus our objection to partition the library by splitting chem-
icals whose linear combinations cause high canonical corre-
lations by putting them into different clusters. Most cluster-
ing algorithms are based on point-to-point distance measures,
however, the canonical correlation is a measure on a point-to-
set basis. Therefore clustering algorithms are not useful for
our library partitioning problem.

To reduce canonical correlations among the spectrum li-
brary, we first take a close look at, for example, the compo-
nent t1. The canonical correlation between t1 and T\t1 is
ρ∗1 = 0.9983, and the mixing vector

b1 = [· · · , 0.01, 0.06, 0.43(6), 1.00(7), 0.03, · · · ].

The subscripts denote the indices of the coefficients in the
mixing vector, and b1 is normalized such that the maximum
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Cluster # Spectra in the each cluster
1 4 33 36 38 42 54 60
2 6 8 20 21 34 52 53
3 3 11 15 23 35 48 49
4 12 19 24 28 40 50 55
5 2 5 18 25 41 43 62
6 14 22 27 32 39 47 59
7 1 9 10 17 44 46 57

Table 1. Spectrum distribution in clusters after partitioning

coefficient is equal to one. We can see that targets t6 and t7

contribute most significantly for the high value ρ∗1 attains. We
call {t6, t7} a forbidden pair of t1 since they together cause
a high canonical correlation with t1. This also suggests that
ρ∗1 can be decreased by breaking up the pair of t6 and t7, i.e.,
putting t6 and t7 into different clusters. We continue finding
such forbidden pairs for t1 until ρ∗1 is below a given threshold
when all such pairs are split up.

After we find all forbidden pairs for each spectrum in the
library, the next step is the partitioning of the library into a
number of clusters such that the two elements of any forbid-
den pair are assigned into different clusters. This can be con-
verted into a vertex coloring problem in graph theory.

In vertex coloring problem, different colors are assigned
to the vertices of the graph such that no two adjacent vertices
are assigned the same color. In graph theory, adjacent refers
to vertices sharing the same edge. In our case, we consider
those forbidden pairs as adjacent vertices, and want the num-
ber of colors to be as small as possible while satisfying the
given constraints.

Graph coloring for an arbitrary graph is an NP-hard prob-
lem and has been well studied. A number of approximation
and exact algorithms have been proposed. In our problem,
library partitioning is a one-time procedure as long as the li-
brary does not change, hence an exact coloring algorithm is
desirable and affordable. We implement an implicit enumer-
ation algorithm using backtracking method [3].

The results of library partitioning are shown in Table 1,
where each row corresponds to a cluster with its elements.
Note that the goal of library partitioning is to reduce the canon-
ical correlation with linear combinations of spectra. The sin-
gle correlation (spectrum-to-spectrum) values are fixed and
can not be decreased by any means. In our implementation,
the spectrum pairs whose correlations are greater than the
threshold are determined first, and one of the spectrum in each
high correlated pair is extracted from the library before par-
titioning. In this report, 13 spectra are pulled out from the
library. The information of extracted spectra is stored in a list
of pairs. Whenever a spectrum in the list is detected, a sec-
ond stage classification is performed to identify the present
chemical between this spectrum and its counterpart.

To evaluate the condition of partitioned library, we need
to calculate both the canonical correlations of each spectrum
within its cluster and between the other clusters after parti-
tioning.

The intra-cluster canonical correlation for spectrum ti is
defined as

ρintra
i = max

b
corr

(
ti,

(
T(i)\ti

)
b
)

, i = 1, · · · , 62,

where T(i) denotes the cluster to which ti belongs.

The inter-cluster canonical correlation for ti with cluster
j is defined as:

ρinter
i,j = max

b
corr (ti,Tjb) , i = 1, · · · , 62, j = 1, · · · ,M,

where Tj is the j-th cluster, T = ∪M
j=1Tj , and M is the

number of total clusters, and i /∈ Tj .
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Fig. 1. Canonical correlations of each spectrum in the library
before partitioning

Fig. 1 shows both inter- and intra-cluster canonical corre-
lations for each spectrum in the library after partitioning, as
well as intra-cluster canonical correlation before partitioning
where the whole library is regarded as a cluster. Since there
are a total seven clusters, there is one ρintra

i and six ρinter
i,j val-

ues for each spectrum after partitioning in the library. We can
see that a lot of canonical correlations are close to one be-
fore partitioning, and all canonical correlation values are de-
creased below the selected threshold of 0.9 after partitioning,
thus decreasing the probability of false positives and misiden-
tifications.

In DCC-P, DCC detector is performed on all clusters of
the spectrum library, and the maximum DCC score is chosen
as the DCC-P score.

4. SIMULATION AND EXPERIMENTAL RESULTS
IN RAMAN SPECTROSCOPY

In simulations, we randomly create mixing matrices of which
the coefficients follow a uniform distribution from [0, 1]. Noise
is generated using Gaussian distribution. The signal-to-noise-

ratio (SNR) is defined as: SNR = 10 log10(
‖x‖2

σ2 ), where

‖x‖2 is the average energy of the observation vector in X,
and σ2 is the variance of the noise.

The detection performances of DCC, DCC-P, NNLS and
NNLS-P are evaluated by the receiver operating characteristic
(ROC) curves shown in Fig. 2. PFA is the probability of false
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Fig. 2. ROCs for DCC, DCC-P, NNLS, and NNLSP (Present
chemical=t1, background=t56, SNR= 5 dB)

alarm, or 1−specificity, and PD is the probability of detec-
tion, or sensitivity. The area under the ROC curve measures
discrimination, which is the ability of the test to make correct
decisions. The discrimination values are given in each ROC
plot.

In Fig. 2, we use t56 as the background, and t1 as the
target chemical. The SNR is 5 dB. For each detection run, we
use a block of 2 observations to form X. Each curve is drawn
using 200 runs.

We can see in Fig. 2 that DCC outperforms NNLS, and
library partitioning improves detection performances of both
the DCC and the NNLS detectors. The ROCs and discrimi-
nation values demonstrate the effectiveness of using the max-
imum canonical correlation as detection index in DCC. We
also calculate the coefficients of the canonical vector b for
each library spectrum in DCC-P, and first normalize the mean
value of each element by its standard deviation, then divide
the vector by its maximum value. The resulting largest ele-
ments in the canonical vector are given by

b = [1.00, 0.34, · · · , 0.09(9), · · · , 0.09(17), · · · ],

where the subscript denotes the index of corresponding ele-
ment in the 50-dimensional b. The indices of the largest co-
efficient in b indicate that the present chemicals is t1, which
is the correct identification in this simulation.

We also examine DCC-P with a total of 10000 observa-
tions in a laboratory experiment, where chemical MES (the
22-th spectrum in the library T) is dropped one segment of
a asphalt background. The solid line in Fig. 3(a) is a thresh-
old calculated from estimated background samples for each
block of 500 observations. A block-size of 10 observations is
used for DCC-P detector. Since the present positions of MES
are unknown, we are not able to obtain a ROC curve. The
obvious periodic pattern in Fig. 3(a), however, implies a suc-
cessful detection of DCC-P since the chemical is on a rotating
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Fig. 3. Detection results of a laboratory experiment

platform, and the correct identification rate is satisfactory in
Fig. 3(b).

5. CONCLUSION

In this paper, we propose a data-driven detection method for
subset target detection based on a linear mixture model. By
investigating canonical correlations and vectors between the
mixtures and the target library, we can both detect and iden-
tify the present components from a given target library. The
detector is incorporated with library partitioning to improve
the detection performance. Additional improvement can be
obtained by imposing a non-negativity constraint on CCA in
applications such as Raman spectroscopy and image process-
ing where contributions of mixing components can only be
non-negative [4]. Both simulation and experimental results
in Raman spectroscopy demonstrate the effectiveness of the
proposed method.

6. REFERENCES

[1] ITT Industries, “Tests of the laser interrogation of surface agents sys-
tem for on-the-move standoff sensing of chemical agents,” in Proc.
Int. Symp. Spectral Sensing Research, 2003.

[2] W. Wang and T. Adalı, “Detection using correlation bound in a linear
mixture model,” Signal Processing, vol. 87, no. 5, pp. 1118–1127,
May 2007.

[3] M. Kubale and B. Jackowski, “A generalized implicit enumeration
algorithm for graph coloring,” Communications of the ACM, vol. 28,
pp. 412–418, 1985.

[4] W. Wang, T. Adalı, and D. Emge, “Unsupervised detection using
canonical correlation analysis and its application to Raman spec-
troscopy,” in Proc. IEEE Workshop on Machine Learning for Signal
Processing, Thessaloniki, Greece, Aug. 2007.

2120


