
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5540--09-9198

Double Rail Tests
Gerard allwein

ira S. MoSkowitz

Center for High Assurance Computer Systems
Information Technology Division

July 24, 2009

Approved for public release; distribution is unlimited.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Double Rail Tests

Gerard Allwein and Ira S. Moskowitz

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

Office of Naval Research
One Liberty Center
875 North Randolph Street, Suite 1425
Arlington, VA 22203-1995

NRL/MR/5540--09-9198

0601153N

8966

Jan 2008 – Dec 2008

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 12

Gerard Allwein

(202) 404-3748

Reliability
Software metrics

Shannon channels
Algebra of tests

We present algebraic operators useful in constructing models for software engineering applied to reliability and security. Double rail testing
is a mathematical formalism for analyzing testing situations that have both false positives and false negatives, as well as true positives and true
negatives. Furthermore, tests are qualitatively modeled via channel theory, and their quantitative behavior is described as a Shannon binary
communication channel. Tests, viewed strictly quantitatively, form a domain (domain theory) and the domain order is determined by the
probability of error for tests. The language for tests includes operators for convex sum, sequential (Markov) composition, parallel conjunction
and parallel disjunction, and an involution.

24-07-2009 Memorandum Report

Double Rail Tests

Gerard Allwein & Ira S. Moskowitz
Center for High Assurance Computer Systems, Code 5540

Naval Research Laboratory
Washington, DC 20375 USA

Abstract

We present algebraic operators useful in constructing models for software engineering applied to re-
liability and security. Double rail testing is a mathematical formalism for analyzing testing situations
that have both false positives and false negatives, as well as true positives and true negatives. Further-
more, tests are qualitatively modeled via channel theory, and their quantitive behavior is described as a
Shannon binary communication channel. Tests, viewed strictly quantitatively, form a domain (domain
theory) and the domain order is determined by the probability of error for tests. The language for tests
includes operators for convex sum, sequential (Markov) composition, parallel conjunction and parallel
disjunction, and an involution.

Keywords: reliability, software metrics, Shannon channels, algebra of tests.

1 Introduction

In [6], Shannon’s work in reliability [5] was applied for the first time in applications for high assurance
systems. The current paper generalizes and extends [6] with an algebra that can be used for software
engineering metrics. In some areas of realtime control systems, probability analysis must be substituted for
more precise analytical models. The systems can easily become too complicated for the direct analytical
approach. Another area that could be addressed using our techniques is hardware-software co-design where
the interaction between hardware and software is sometimes not well understood. The complexity issue
comes up again in large systems where the system is so complex that a probabilistic model must be used
to determine system behavior. The algebra of tests presented in the current paper is intended for use in
constructing probabilistic models of systems.

A test is considered to be a channel in the sense of information flow, but what kind of channel is it? It
cannot be strictly a communication channel since the objects moving through the channel are objects to be
tested, not simply symbols. The objects could be elements which must be managed for secure information
flow. In addition, a test may also modify the objects. Hence, certain testing operations might be quite
expensive since one cannot test the same object twice. To capture this level of complexity, a more intricate
notion of channel is required. This notion is supplied by Barwise and Seligman’s channel theory [1].

The framework of channel theory, and the quantitative algebra of tests in this paper, can be used in
performing risk analysis. Various kinds of assurance can be enhanced by the repetition of tests. However,
what is also important is to measure how much of an increase will result from the expense of repeating tests.
Repeating tests is not a particularly sophisticated notion and can easily result in poorer performance than
if the test were not repeated. The configuration of how tests are combined matters significantly, and this is
formalized in the algebra. Another way to view the algebra for a network of tests is as a formal method for
composition of tests via a network of subtests, which is the view in this paper. The analysis and algebra in
this paper will support formal tools.

A basic reference for the some of the quantitative mathematics in this paper is a classic paper by Moore
and Shannon [5]. This mathematics is augmented by the domain theory contained in [4].

1.1 Formalism

The goal of a test is to classify a collection of objects with respect to some criteria. Let us presume there
is a predicate (in the Fraktur font) P(x) which, when given an object, determines whether the object has a

1

Manuscript approved June 24, 2009.

particular property. P(x) is much too ideal or perfect to be considered a test. Without confusion, let the
property associated with P(x) be called P. x satisfies P is denoted x |= P. At this level of discourse, x is a
variable and P is an indeterminate. P is an element of a Platonic world that is always accurate and never
makes a mistake. Most of us live in a non-Platonic world and we must evaluate P(x) via a test,M. The test
M might consist of a fair amount of preparation using chemicals, apparatus, etc. Consequently, the actual
predicate embodied by a test is something other than P. Let the predicate embodied by a test be denoted
by (the Roman font) P . x satisfying P is denoted as x |= P .

One might initially consider that to test for P might mean to “prove” of an object x to be tested that
x satisfies the conditional P → P , i.e., that if P is true of x, then P must be true of x. However, if P is
not true of x, there is something a bit odd if it were also the case that P were true of x. The test is not
doing the correct classifying even though the conditional P → P holds of x. Tests are expected to classify
correctly with respect to P and the negation of P. The term “double rail” comes from CMOS circuits, and
refers to the notion that both the positive and negative of a predicate are to be managed.

If M were a test in a programming language, every state (every x) will force either x |= P or x 6|= P ,
and P is truth functionally equivalent to P. This kind of test might be pictured via the diagram on the left
(below)

B

p C1 = {a | a |= P}

p C0 = {a | a 6|= P}

B1
1

C1

B0
1

C0

where the p and the p represent the proportion of objects of a bin B that the test sorts or classifies either
into bin C0 or into bin C1. Also, assuming classical probability p = 1 − p. If P were accurate with respect
to P, then x |= P iff x |= P.

As a step towards a representation, consider that from a Platonic viewpoint, B is already classified into
two bins, say B0 and B1 where B0 = {a | a 6|= P} and B1 = {a | a |= P}. The diagram we would be tempted
to draw if P were accurate for P is the diagram on the right (above).

There is a probability distribution for just the (B0, B1); let the probability distribution associated to
(B0, B1) be (p, p) where p represents the proportion of elements that pass the test. This is not represented
in the diagram. Thinking of (B0, B1) as a set variable, (p, p) becomes a probability distribution variable and
the diagram is accurate as long as the test P is accurate, i.e., it moves elements of B0 to C0 with probability
1 and elements of probability B1 to C1 with probability 1.

Tests in the real world are rarely as antiseptic. False negatives and false positives are a problem that
must be handled when dealing with these kinds of tests. In the case above, elements of B0 will find their way
to C1 when the test gives a false positive and from B1 to C0 for a false negative. Probabilities are associated
with these false results. This may be diagrammed as:

B1
m1

C1

B0
m2

C0

m2

m1

where the curious labeling of m2 for the probability of a false positive and m2 for an accurate negative is for
simplifying the mathematics in the sequel. This diagram represents only the probabilistic nature of the test.
It does not explain details about what the test is for, how the test is performed, or allow us to compare the
workings of two different tests except for their probabilistic behavior.

Consider the diagram in terms of B, B0, and B1 and observe that B = B0 ∪B1 and B0 ∩B1 = ∅. Recall
B0 represents elements that truly do not satisfy P and B1 represents elements that truly do satisfy P. Now
consider how the test M sorts B into bins C1 and C0. Let a ∈ B, the argument proceeds by cases since,
from the conditions on B, a ∈ B0 or a ∈ B1 but a 6∈ B0 ∩ B1. Let a |= P and further let a |= P , then P is
accurate for a and throws a into bin C1. Suppose a 6|= P , then P is not accurate for a and throws a into
bin C0. By sufficient “runs”, a probability m1 can be assigned to P for accurately sifting elements of B1 in

2

which case 1 −m1 = m1 is the probability P is inaccurate for sifting elements of B1. A similar argument
holds for bin B0 and assigning m2 for false negatives 1−m2 = m2 for true negatives.

A feature of representing tests in the above manner is that a test labels the objects it tests. This is
important in further classifying objects undergoing testing. The Platonic device of dividing the original bin
B into B0 and B1 is for the care and feeding of composing tests.

The information about the probabilistic properties of the test P is represented with the following row
stochastic matrix (RSM):

〈m1, m2〉
def=
[
m1 m1

m2 m2

]
=
[

K(C1|B1) K(C0|B1)
K(C1|B0) K(C0|B0)

]
where K is the (Kolmogorov) probability of an event associated with the set, e.g., satisfying P is associated
with B1. The set of tests is in bijective correspondence with the set of 2× 2 RSMs . The input probability
of the bins, represented with (p, p), is operated on by the RSM to yield another probability distribution:

[p p] ◦
[
m1 m1

m2 m2

]
= 〈pm1 + pm2, pm1 + pm2〉

with (p, p) represented by the 2-vector [p p]. The output vector of the output represents the probabilistic
behavior of test P given its input.

The qualitative behavior of a test is represented by the channel theoretic account in the Appendix where
the Gentzen sequents are of the form P P . An entire channel contains a lot of information, however, the
rest of this paper is concerned with quantitative behavior. In the sequel, when there is no confusion, a test
referred to as m = 〈m1,m2〉 really stands for all that is included in a test; a different test would be denoted
n = 〈n1, n2〉.

2 Connecting Tests

The Appendix shows how a test is conceived as a channel of channel theory. Connecting tests via parallel
conjunction and/or parallel disjunction may require that objects to be tested be cloned or divided, say, in
the way a vial of blood may be divided into two vials with half as much in each. The mechanisms of channel
theory do not require this since one could use the identity relation in the channel if the objects for testing
require no cloning.

The operations of parallel conjunction, parallel disjunction, and involution of this section indicate functors
on the category of test channels. In the succeeding section, the operations of fusion and convex sum also
indicate functors. Space restrictions prevent us from exploring this here. These operations (except for convex
sum) appear to be similar in spirit (but different in details) from the Dialectica interpretation of linear logic
[2].

One could also add a further operation, “best of” as in “best 3 out of 5. An object passes the test if
it passes the best 3 out of 5 repetitions of the test. These kinds of prescriptions are not always possible
given the nature of a test however when present, represent a best case scenario [5]. Space prevents us from
addressing these kinds of connections here.

2.1 Parallel Conjunction

Consider two tests where the expectation is that an element satisfies the combined test when and only when
it satisfies both of the tests separately. The feel of this test is that an element of an input bin is being
tested simultaneously by both tests. This conjunction can be expressed in English by calling it a parallel
conjunction.

What does it mean to pass both tests? If something starts as satisfying P, it must satisfy P for both
tests, this is simple—no failure. However, if something does not satisfy P, it is considered to not satisfy P

3

if it is recognized by as such by at least one of the tests. One can picture parallel conjunction with

B1

C1, D1

C1, D0

C0, D1

C0, D0

m1·n1

B0

where Bi, Cj are as before and Di refers the output bins of a test with output predicate Q on the same
input and 〈n1, n2〉 its quantitative behavior. The test results are “vectorized”. The first test is the first
entry in the 2-vector, and the second test is the second entry in the 2-vector. The line from B1 to C1, D1

has probability m1 · n1; this probability represents the only correct way for an element from B1 to test as
C1, D1, it must pass both tests. Therefore the upper left hand entry of m · n should be m1 · n1.

What about an element from B0? As long as it does not pass both tests, it is still considered a failure.
Intuitively, if one took a medical test and only passed one test, would the person be confident that they did
not have a condition? The failure of test m ·n can be seen by following the paths of the three dashed arrows
(above) B0 → (C1, D0), B0 → (C0, D1), and B0 → (C0, D0). The sum of the probabilities along these three
dashed paths are m2 · n2 + m2 · n2 + m2 · n2 = 1 −m2 · n2. Therefore the lower right hand entry of m · n
should be 1−m2 · n2. Collecting together the conditions leads to:

Definition 2.1.1 The parallel conjunction of two tests m and n is defined on the left and represented on
the right (below):

m · n def= 〈m1 · n1, m2 · n2〉 x x
m n

It is tempting to think of elements to be tested as “flowing” from left to right. This is misleading. The
language only shows logical configuration of tests, it is not a flow diagram. Note that m·m = 〈(m1)2, (m2)2〉.

2.2 Parallel Disjunction

Consider two tests where the expectation is that an element satisfies the combined test just when it satisfies
either of the tests. The feel of this test is that an element of an input bin is being tested simultaneously by
both tests and success with either constitutes success with the test. This disjunction can be expressed in
English by calling it a parallel disjunction. One would use this when testing for two disparate properties.
As above we “vectorize” the test outputs.

For an element of B1 going to C0, both tests must fail; this probability is m1 · n1. Therefore, the
probability of B1 going to B1 is simply m1 · n1.

The probability of 1 going to 1, which is (1,1) is as above and is m2 · n2. Therefore, the probability of 1
going to 0 is m2 · n2.

Definition 2.2.1 The parallel disjunction of two tests m and n is on the right and represented on the left
(below)

m ‖ n def= 〈m1 · n1, m2 · n2〉,

x
m

x
n2.3 Involution

There is an involution of the matrices:

Definition 2.3.1
∼〈m1,m2〉

def= 〈m2,m1〉.

Clearly, ∼∼m = m. This corresponds to swapping satisfying the test with not satisfying the test.

4

Lemma 2.3.2
m2 ≤ n2 ≤ n1 ≤ m1 implies m1 ≤ n1 ≤ n2 ≤ m2.

Theorem 2.3.3
m ‖ n = ∼(∼m · ∼n)

where ∼ binds more tightly than · in algebraic expressions.

3 Partial Order on Tests

A partial order on tests can be defined from the notion of probability of error.

3.1 Probability of Error

The probability that a test is wrong depends on the initial probabilities (associated events are disjoint) B0

and B1. A test is wrong if it misclassifies an input. So the probability that the test is wrong is:

K(test wrong) = K(C0|B1)K(B1) + K(C1|B0)K(B0).

The notation is simplified for the test input distribution by setting p = K(B1) and p = 1− p = K(B0). The
random variable describing the test inputs is represented as (p, p).

Definition 3.1.1 Let (p, p) be an input distribution for a test m, then the probability of error of the
test is

em(p) def= (p ·m1) + (p ·m2).

Note that if m1 = m2 = x, that is the false positive and false negative probabilities are equal, then
em(p) = x.

Let us isolate the reasoning for thinking of a test as being a communication channel. Each element of
the bin B can carry a lot of information. However, this information is sorted Platonically by P into two
bins. In effect, there is only one bit of information one can extract from P for each element of B; either
x |= P or x 6|= P. To extract other information, we need another predicate. Here, the term “bit” is being
used both colloquially and in the Shannon interpretation. The job of the test M is to transmit information
about B. If P were accurate for P, then P is transmitting precisely the information about the elements of
B as reported by P, i.e., x |= P or x 6|= P. To the extent P fails to be accurate about P, P fails to transmit
accurately information about the elements of B. The source of the transmission is the bin B, the sink is us
or whatever is the consumer of what P can say about elements of B.

For the rest of the paper, we restrict ourselves to the subset N of RSMs that have non-negative determi-
nant. This set N has been well-studied in [4]. Geometrically N is the lower right hand triangle of the unit
square.

The RSM 〈1, 0〉 is the identity matrix. The set D of RSMs of the form md = 〈a, a〉, a ∈ [0, 1] are in
obvious bijective correspondence with the main diagonal of the unit square.

〈0,0〉 〈1,0〉

〈0,1〉
〈1,1〉

Positive Tests
m2 ≤ m1

Negative Tests
m2 ≥ m1

There is a natural order on tests determined from the probability of error:

Definition 3.1.2
m v n iff ∀p(em(p) ≤ en(p)).

5

This definition yields an interval order from domain theory (see [3]). The only part of domain needed in this
paper is that the interval order is a partial order.

That the probability of error defines the interval order was observed by Keye Martin and Catuscia
Palamidessi (private communication). Interpretations of this order by viewing m and n in their matrix form
says that m v n means m is closer to the identity matrix and n is closer to a matrix with equal rows.

Theorem 3.1.3 (Martin & Palamidessi)

m v n iff m2 ≤ n2 and n1 ≤ m1.

The import of this theorem says that one can compare two tests m and n with respect the errors they
generate on all input distributions by simply comparing their respective values, i.e., m1 with n1 and m2 with
n2. This relation can be depicted as

n2 n1

| | | | | |
0 m2 m1 1

It makes sense here to invert the order so that the error decreases as one moves further away from the main
diagonal towards 〈1, 0〉.

Definition 3.1.4
m vi n iff n2 ≤ m2 and m1 ≤ n1.

This partial order is the reverse of the domain order from [4], although itself is not a domain order.

3.2 Networks

Each network is assumed to be made of identical and independent copies of a single test connected in certain
ways. The tests are all done simultaneously, much like all coils [5] are energized simultaneously. The network
then shows how to combine the test results. Consider the network from [5] now interpreted as a network of
test copies of the test m connected as in the diagram on the left:

x

x

x

x

m m

m m

1
4

1
2

.618 3
4

1
4

1
2

.618

3
4

This network is represented as the test n, where n = m · m ‖ m · m. Direct calculations show that
n = 〈2(m1)2 − (m1)4, 2(m2)2 − (m2)4〉. Is n better than m? Using the partial order, this becomes, does
m vi n hold? Consider the function h(x) = 2x2 − x4 which is plotted above (right diagram).

We wish to solve 2x2 − x4 = x, which is equivalent to solving −x4 + 2x2 − x = 0 (this has four roots, we
only care about the ones between 0 and 1). Since −x4 + 2x2 − x = x(1 − x)(x2 + x − 1), we see that the
solutions are 0,1, and the roots of x2 + x − 1. The root of x2 + x − 1 in the unit interval is −1+

√
5

2 ≈ .618
(note that −1+

√
5

2 is the multiplicative inverse of the golden mean1 in and also the golden mean less 1.
If m1 ≥ −1+

√
5

2 and m2 ≤ −1+
√

5
2 , then m vi n. Thus, it is possible to improve a test by composition.

The 2-dimensional structure for holding m1 and m2 shows how to compose tests in order to improve their
accuracy. Of course, one may combine tests that are not identical.

1We thank Keye Martin for seeing Shannon’ s use of .618 in [5] and “knowing” that the inverse of the golden mean had to
be a root.

6

All parallel compositions of tests have the same general form. That is, they look like an S and cross the
diagonal exactly once (see [5]) in the open interval (0, 1).

In terms of the order, the diagram on the left (below) shows the region upon which h is guaranteed to
iterate channels towards (0, 1).

〈.618, .618〉

〈1, 0〉〈0,0〉

〈1,1〉

〈.618,0〉

〈1,.618〉

〈.618, .618〉

〈1, 0〉

〈0,0〉 〈1,1〉

〈.618,0〉

〈1,.618〉

The region above 〈−1+
√

5
2 , −1+

√
5

2 〉 in the partial order on tests does form a domain and is pictured with the
diagram on the right where the up direction represents an increase in the partial order. Every matrix above
〈−1+

√
5

2 , −1+
√

5
2 〉 is in the rectangle bordered by 〈−1+

√
5

2 , −1+
√

5
2 〉, 〈−1+

√
5

2 , 0〉, 〈1, −1+
√

5
2 〉, and 〈1, 0〉.

h is strictly increasing in the domain where ⊥ = (−1+
√

5
2 , −1+

√
5

2) and has the inverse order to the usual
interval domain order. Let the extension of h to pairs (determining domain elements) be denoted ĥ. In this
example, ĥ(m) = (2(m1)2 − (m1)4, (2(m2)2 − (m2)4). ĥ is monotone and iteratively increasing above ⊥ and
below 〈1, 0〉, i.e., ĥi(m) <i ĥi+1(m) in the pointwise order. Hence if m1 > π1(⊥) and m2 < π2(⊥) (πi are
projections), h(m1) > m1 and h(m2) < m2.

This says that if m2 is below roughly .61 and m1 is above roughly .61, the network of tests (m·m) ‖ (m·m)
is a better test than the test m by itself. Hence, one can make good tests out of mediocre tests.

From [5], the formula h is arrived at via the prescription

h(x) =
n∑

i=0

Aix
i(1− x)n−i

where n is the number of contacts (our tests) in a circuit and Ai is the number of ways a circuit’s input can
be connect with its output by turning on i contacts and turning off n − i. Using the algebra developed in
the preceding section,

ĥ(m) = (m ·m) ‖ (m ·m) = 〈1− (1−m2
1)2, 1− (1−m2

2)2〉.

Computing these formulas via the algebra is much easier than attempting to figure out the number of paths
through the graphical circuit of tests.

3.3 Trajectories

The functions defined by iteration or best-of prescriptions define a trajectory for a test in the partial order.
Suppose there is a test with characteristics m = (m1,m2) = (.7, .55) and the function h = 2x2 − x4 from
the previous section is applied repeatedly to this test. There will be a sequence of points determined by the
iteration, i.e., ĥ(m), ĥ2(m), ĥ3(m), etc. These points fall along a parametric curve defined by h.

Consider a m = 〈m1,m2〉 and the curve defined by h(x) = 2x2 − x4. As long as m1 >
−1+

√
5

2 , h will
move, via its iterates, m1 along its curve. Since h is a continuous and strictly increasing curve in the interval
[0, 1], it has a unique inverse. Also, the interval [h−1(m1),m1] is in the domain of h where h is above the line
y = x for m1 >

−1+
√

5
2 . Using the scheme from [7] [8], successive arcs from the intervals [hi(m1), hi+1(m1)]

can be computed from the arc generated from [h−1(m1),m1)] (see diagram on the left below).
The parametric form of the trajectory generated from h is then

ht(m1) = (t(m1 − h−1) + h−1(t), h(t)).

7

This represents the continuous iteration ht starting from the fixed position m1 and t is in the range [0,+∞).
The limit of ht(m1) as t approaches +∞ is 1. Using ht(m2) for x < −1+

√
5

2 yields a similar analysis and
the limit of ht(m2) is 0. Combining the two trajectories for m = (m1,m2) = (.7, .55) yield a trajectory (see
diagram on the right below) in the domain whose bottom point is ⊥ = 〈.7, .55〉 and where 0 ≤ t ≤ 3 (t is a
real number):

x

m1

h(x)

h−1(m1)

m1

h(m1)

h(m1)

h2(m1)

h2(m1)

h3(m1)

〈1, 0〉

〈0,0〉 〈1,1〉

〈.7,0〉

〈1,.55〉

This allows one to take derivatives in the domain where the partial derivative in the increasing m1 direction
and the partial derivative in the decreasing m2 direction are taken using ht with respect to t. Thus, the
speed at which iteration of a function improves the overall test can be ascertained precisely.

3.4 Convex Sum

The convex sum of two tests is used to combine a proportion of one test’s output with a proportion of
another’s. The usual convex sum is m⊕p n

def= 〈pm1 + pn1, pm2 + pn2〉. Shannon states that one method of
deriving the formula for a network is to pick a contact and replace it twice, once with a short circuit and
the resulting network having equation f(p), and once with an open circuit having equation g(p) where p is
either m1 or m2 when the mesh is constructed with contacts of type m. Hence

x

x

x

x

m m

m m
x
m becomes x

x

x

x

m m

m m

and x

x

x

x

m m

m m

Then f(p) = p · p · p · p, g(p) = p · p · p · p, and h(p) = pf(p) + pg(p). where f is the formula for the network
of the middle diagram above and g is the formula for the right hand diagram. This is very close to the
convex sum except that the convex sum requires both m1 and m2. Since the equation must be computed
twice,

ĥ(m) = 〈m1f(m1) +m1g(m1),m2f(m2) +m2g(m2)〉.

A new operator similar to a convex sum will capture this:

n©m n′ = 〈m1n1 +m1n
′
1,m2n2 +m2n

′
2〉,

Diagrammatically, the test x
m

becomes the connective©m that connects the two diagrams on the right
above.

The following theorem is trivially true:

Theorem 3.4.1
m©m m = m.

8

3.5 Serial Conjunction (Fusion) or Sequencing Tests

Consider two tests where the bins for the first test’s output bins (recall that a test labels the elements by
selecting which bin they fall into) become the second test’s input bins. This serial conjunction or fusion
gives a notion of sequencing tests.

Definition 3.5.1 The serial conjunction or fusion of two tests m◦n is simply matrix multiplication of their
respective behaviors m and n:

m ◦ n = 〈m1, m2〉 ◦ 〈n1, n2〉
def= 〈m1(n1 − n2) + n2, m2(n1 − n2) + n2〉.

Since fusion is matrix multiplication it is not, in general, commutative.
Referring to the image below, the thick arrows represents the two paths from B1 to a D1. The probability

that the first path is taken is m1 · n1, and the probability that the second path is taken is m1 · n1 =
m1(n1 − n2) + n2. Therefore, m2 · n1 + m2 · n2 = 1 − (m2(n1 − n2) + n2) is the probability K(D1|B1).
Similarly, the dashed arrows below show that path of a B0 correctly going through the fusion of tests and
coming out a D0; this has probability m2 · n2 +m2 · n2 = 1− (m2(n1 − n2) + n2), which is K(D0|B0).

B1

m1
C1

B0
m2

C0

m2

m1

n1
D1

n2
D0

n2

n1

More information can be extracted from fusion with respect to tests. Let m = 〈m1, m2〉. There is a
unique line through m that connects (1, 0) to the diagonal. To derive this equation, note that the slope must
be negative and is rise over run, hence the slope must be −m2/(1−m1). This gives us

y =
−m2

1−m1
x or x = −

(1−m1

m2

)
y

but this must be displaced a bit. Namely, when y is 0, x must be 1, so

x = 1−
(1−m1

m2

)
y.

Solving for x = y gives the intersection < 0m, 0m >. Writing out the definition of m =< m1, m2 > and
noting that det(m1,m2) = m1 −m2, gives us

m = 〈m1, m2〉 = (1− t)〈0m, 0m〉+ t〈1, 0〉 = 〈m1 = (1− t)0m + t,m2 = (1− t)0m〉.

Hence, m1 = m2 + t, so t = m1−m2 = det(m1,m2). Since the determinant of m is the length of the interval
[m2,m1], we let |m| mean det(m). So the determinant gives us the parameter t. Plugging in |m| for t yields
0m = m2

1−|m| . It helps a bit to see this graphically:

<0m, 0m>

<1, 0>

•mt

0m m1

where t is the distance between 〈0m, 0m〉 and m normalized so that the distance from
〈0m, 0m〉 to 〈1, 0〉 is 1. Hence m1 = 0m + (1− 0m)t = 0m + t− t0m = (1− t)0m + t, as was computed above.

Let m be a RSM, and let

mn def=
n︷ ︸︸ ︷

m ◦ · · · ◦m .

9

In more generality, given any sequence of RSMs mj , j = 1, . . . , n we have the product
∏n

j=1mj Since mn

and
∏n

j=1mj are well-defined by standard matrix multiplication we may discuss the limit limn→∞mn and
for an infinite sequence the limit limn→∞

∏n
j=1mj .

Theorem 3.5.2 The fuse of a test with itself always increases the error

This is an example of how knowing the domain order can easily determine qualitative characteristics of
operations performed on tests.

Theorem 3.5.3 If |m| < 1 then limn→∞mn = 〈0m, 0m〉. If |m| = 1 then limn→∞mn = m.

The proof is a routine induction. Note that if |m| = −1, then m = 〈0, 1〉 and limn→∞mn does not exist
because the product mn oscillates between the identity matrix and 〈0, 1〉.

Corollary 3.5.4 Any test m fuses a distribution (x, x) to (0m, 1− 0m) in the limit, i.e.,

(p, p) ◦ (lim
i→∞

mi) = (0m, 1− 0m).

4 Conclusion

This paper is the result of viewing a test as a channel of channel theory and then applying some mathematics
to extract the quantitative elements of that view. The use of domain theory applies more structure to
Shannon’s insights by using the probability of error to derive the interval domain on [0, 1]. The algebraic
operations on the domain are reminiscent of constructs in linear logic, however, the binary relational model
of the Dialectica interpretation is inadequate for dealing with tests and the interpretation is unlikely to yield
a closed category.

The notion that simply replicating a test does not inherently lead to a better test is at first sight counter-
intutive. However, once one attempts to answer the question of the precise relationship between the two
instances of the test, the rest of the story becomes formalized in terms of the algebraic operations. These
algebraic operations are useful in construction models for testing software which operates in a probabilistic
environment such as some types of realtime control systems.

A language for tests would include input predicates and output predicates, and it would also include a
graphical language for connecting tests. The graphical language would include “connectives” for all of the
algebraic operations dealt with in this paper as well as the “best of” operations.

References

[1] J. Barwise and J. Seligman. Information Flow: The Logic of Distributed Systems. Cambridge University
Press, 1997. Cambridge Tracts in Theoretical Computer Science 44.

[2] V. C. V. de Paiva. A dialectica-like model of linear logic. In Proceedings of the Conference on Category
Theory and Computer Science, LNCS 389, pages 341–356. Springer-Verlag, 1989.

[3] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, and D. S. Scott. Continuous Lattices and
Domains. Cambridge University Press, 2003. Encyclopedia of Mathematics and its Applications 93.

[4] K. Martin, I. S. Moskowitz, and G. Allwein. Algebraic information theory for binary channels. Electronic
Notes in Theoretical Computer Science, 158:289–306, 2006.

[5] E. F. Moore and C. E. Shannon. Reliable circuits using less reliable relays: Part I. Journal of the Franklin
Institute, 262:191–208, 1956.

[6] I. S. Moskowitz and M. Kang. An insecurity flow model. In Proceedings of the New Security Paradigms
Workshop. ACM, 1997.

[7] M. Ward. Note on the iteration of functions of one variable. Bulletin of the American Mathematical
Society, 40(10):688–690, 1934.

[8] M. Ward and F. B. Fuller. The continuous iteration of real functions. Bulletin of the American Mathe-
matical Society, 42(6):393–396, 1936.

10

