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Abstract 

The algorithm which generates the AT1 time scalc at  thc Natiorlal Institute of Stan- 
dards and Technology (NIST) ha# generated a scale with many desirable properties 
since 1968. Five of these arc as follows: 

1. The fractional frequency variation of the scale is sinaller than any clock in the 
scale for all integration times. 

2. The algorithm adaptivcly cstimatcu the weights of clocks ill real time. 

3. The scale is much more reliablc than any individual clock. 

4. One can add or remove clocks from the scale easily, with a minimnm irnpact on 
the scalc. 

5. One can correct the ensemhle for calibrations against a prirnary rcfcrencc. 

Thcre are three other properties we wolild like to obtain: 

1. Automatic frequency step detection. 

2. A scale optimized for post-processing, including n.irirliri:: l)ot,h forw;jrtls and back- 
wards in time. 

3. A scalc that can run with ~rlirlimal supervision for lisp. ill ~lon-t,cchnical cnviron- 
ments. 

It turns out that simply estimating a variance of the freqiiency state of the clocks 
facilitates all three of these new properties. We report hcrc a xlcw algorithm which uses 
techniques from Kalman filtering to estimate this variance. R.eslilts froin simulation 
and applications to real clocks arc prcscntcd also. 

INTRODUCTION 

Ideally, a time scale algorithm samples an eriscrr~blc of c1oc:ks l o  gc~r~c~r i i tc~ t l r r l c l  arici f r tquency  with 
more reliability, stability, and frequency accuracy than  any of the xrlclrvidilal clocks in the ensemble. 
In this paper we study an approach to this ideal. 

A time scale algorithm calculates Ihe time offset of each u l  Ihc cr~scrn1)lc clocks at a given rcfcrence 
time. Ensemble time, the time of the scale, is realized by applying tlic appropriate corrcction to any 
one clock. If there is no rneasurcrr~cnt noisc this valrlc is indepcntlr:r~t of w11ic:h clock is used. The input 
to the algorithm at a .given reference time is the tirne difference between each clock arid a particular 
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clock. The algorithm also requires estimates of the deterrriinistic ar~cl stochastic parameters which 
characterize each clock's frequency offsets. 

It  is important to  notice that  the time of a clock is not measured. One measures only time differences 
between clocks. Thus the ensemble time which the algorithm guncrates is not observable. For this 
reason i t  is inappropriate to  use an accuracy algorithm, such as a Kalman filter, to  generate time 
by minimizing time error. We can, and do in the algorithms discussed here, optimize time and time 
interval stability. 

It is also important to  realize that  a clock as a physical systcrri protiuccs a frequency. The time of a 
clock is artificially derived from the frequency, which is the true physical quantity. Because of this, all 
the parameters which characterize clock performance describe aspects of the frequency. One can use 
these parameters to  optimize time uniformity and frequency accuracy. An algorithm that  optimizes 
time accuracy should simply allow the clock with the best long term stability to  dominate the scale, 
thus sacrificing much of the performance of other clocks, especially in short term. We will look a t  
these things further as we go along. 

The AT1 time scale algorithm a t  the National I n ~ t ~ i t i ~ t e  of St,and;~t.cls ant1 Tcchr~ology (NTST) has 
generated a scale with many desirable properties since 1967. Fivt: o f  t,l~c:sc arc :is follows: 

1. The fractional frequency variation of the scale generally appears srrlaller than any clock in the 
scale for all integration times. 

2. The algorithm adaptively estimates the weights of clocks in real Lirnc. 

3. The scale is much more reliable than any individual clock. 

4. We can add or remove clocks from the scale easily, with a, r r i i r l i r r i r ~ r r l  irrlpact on the scale. 

5.  We can correct the cnsernble for calibrations against a prir~lary reference. 

There are three other properties we would like to obtain: 

1. Automatic frequency step detection. 

2. A scale optimized for post-proccssing, including running both forwards and backwards in time. 

3. A scale that  can run with minimal supervision for use in non-technical environrncnt~s. 

The new algorithm we report hcre cornbines aspects of the NIST A'L'L a1~;orithm with techniques from 
Kalman filtering to  estimate clock states representirlg the raridorll walk plus drift of the frequency 
offsets of cach clock, as well as the variance of these st,at,cs. For a givt.11 cloc:k, t,t~is state, which we call 
"Y", is not a physical state, but a mathematical estimate of the freq~lcncy offset, in the prcsencc of 
whitc noise modulating the frequency. 'l'hc variancc of this stat,c givvs 11s i i  corlficl~r~c:e o f  this estimate. 
Having this estimate facilitates attainrrient of all thrcc of our goals. 

Frequency step detection always rcquircs examining the data  over some time period. In nearly real 
tirne operation i t  is possible to  compare the estimate of average frequency offset over an interval with 
the filtered estimate from the beginning of that  ir~t~crval. IJsirlg thc cstirr~rttc of frequency deviation as 
a test for outliers, we can determine if a frequency step occurred in the recent past. 



We can also smooth our estimates of "Y" in post-processirlg by corn hining the forward and backward 
filters. The proper way to  combine these is well-defined in Kalmar~ filter thcnry. Essentially, we use 
the reciprocal of the forward and backward filter variances as wc~ght,s to  combine thcir respective 
state estimates at a given reference time. We must be careful not to ir~corporate the data  a t  that  
time in both filters before combining them, else they will not be i r~ t l (~~)c r~den t  estimates. Thus, a t  a 
given reference time, we use the extrapolated estimates of state anti variance from one direct,ion, the 
backward filter for example, and combines this state estimate with t h c  nrle frorrl the hrward direction 
which has been updated with the data. 

The AT1 time scale is adaptive once we know the clock parameters charactcrizirig the short and long 
term behavior of the clocks. Since our new scale uscs the Kalman forrr~;ilisrn, wc can enter a new clock 
and the algorithm will optimally adapt its estimate of frequency nfTsc.1, variance. This allows us to 
enter ncw clocks without perturbing the scale. 

Both results from simulation and applications to rcal clocks are presei~rcd. 

THEORY: AT1 

We first present the AT1 algorithrri and then show how wc havr rnoc-ilt;ed i t .  In thc: AT1 r;igoriti~rn each 
clock has two states which are estirnatcd: the time and frequency ofrsrts of  the clock frorri ensemble 
time. Frequency drift can be entered and used, but it is not r:si,irnatcri adaptivrly h y  tjiic algorithm. 
The AT1 algorithm is a three-tiered proccss: the time update, t hc 11p t1n i  e of the variar!c:i: of the time 
offset, and the frequency update. The weight of a clock is propnrtinnnl to the reciprocal of tile variancr:. 
Each of these updates can be broken down into two steps: an irlit,ial c.si,imate and the r~pclatc. 

1. Time Prediction: 

x i  ( t  + T )  = X i  ( t )  + (Y, (1)  +- D j r / 2 )  (I) 

We predict the time oflset from ensemble tirnc, k,, of clock i for thc c:,lrl.cmt measurement, t,irr~c ( b  -t 7 )  

based on thc previous estimates a t  time t of time offset, xi, and lilkrcci frequency, x, and the entered 
frequency drift, D,. 

2. Time Update: 

We update the time offset of each clock j against the st;ilc a t  timt t 1 T givt.11 the measurerncnts 
Xi j ( t  -1- T ) .  Clock j's oEsct is estimated using the rncasurernent arlri prccliction of earl( othcr clock, i, 
then these estimates are combined in a weight,cd average. The wt~igr:~.; I ! , ,  are c1eterrr1ir1r.d adaptively 
in equations 6 - 10. This is the maximum likelihood estimate of S, if t 1 1 ~  111,'s are proportional 
to  the reciprocal of the variances of the time residuals, and the rrs~ci~l;ils have a gaussiari normal 
distribution.['] 



3. Frequency Estimate: 

P,(t + T )  = 
Xi ( t  + r )  - Xi ( t )  - 

T 

?, is the estimate a t  time t + T of the average frequency of clock i ovcr the interval r based on the 
latest two time updates, X i .  

4. Frequency Update: 

We incorporate the previous frequency update into an exponentially filtered estimate of the current 
average frequency offset of clock i. The exponential frequency-weighting time constant (mi) is deter- 
mined from the relative levels of white noise FM and random walk (or flicker) FM for clock i (eqnation 

5 ) .  

5. Frequency Update, Exponential Time Constant: 

We determine mi used in equation 4 to  form the filtcred cstirnate of thc frcqucncy of clock i. Here, 
is the integration time which gives the minimum valuc o n  a av(.r) plot given that  t he  clock's 

stochastic deviations are characterized by white and random walk FM, TO is t,he rninirnum r value 
used for computing U ~ ( T ) .  This value of mi can be shown to opt,irnixc thc  stability in predicting tirne 
(equation 1) given these two kinds of noise in the clock (white and rar~clarn walk F M ) [ ~ ] .  If white 
FM and flicker FM are more suitable models, then mi can bc approximated as r,/ro, where rZ is the 
intercept value of r on a u Y ( r )  plot for the white and flicker YM. 

6. Variance Estimate: 

ii is the lack of predictability of clock i over the interval r ,  being the difl'crcncc bctwcen the prediction 
and the update. Thus i t  is an estimate of the deviation (square root nf variance) of the clock based on 
the current measurement cycle. The additive term Ki accounts for the fact that  the term in brackets 
on the right-hand side of equation 6 is biased because clock i is part o f  t,he ensemble. See equation 
10 to  calculate Ki .  



7. Variance Update: 

estimates the mean squared time error of clock 2" by filtering r:xr)onentially the cstirr~ate of clock 
i's deviation from the current measurement cycle. Since the nolse r-i~aracteristics of a c-lock xnay not 
be stationary, past measurements are de-weight,ed In the filtering 1::-uccss. The time constant for the 
filter is typically chosen ta be N,  = 20 days for cesium clocks, reprcs~nt~ing the time vnc expects the 
white FM level t o  be constant. The initial value of E ; ( T )  car, bc estimated as r2rr t (r ) .  

8. Ensemble Variance: 

c : (T )  forms an estimate of ensemble time rrror Any clock c,in only ~rnprove th:s ~li~rni>cr < i  zooriy 
performing clock cannot harm the stahllity of thc ensernbie 

9. Adaptive Clock Weights: 

w; is the weight t o  be used in equatian 2 far clock i. When caiculatcltl 1 ills c?;zy> the result lng ensemble 
time stability can be shown to be optrrnizcd  XI a rnzixrmxrn likciihood sense: a~suxning a ~cjrrrrrtl 
distribution of the noise of clock i with variance ~ : ( r  ) ,  

10. Bias of the Error Estimate: 

K; estimates the bias in the error estimate from the first term on tilt right of equation 6. This error 
estimate is biased small, on the averagc, bccause each d o c k  i.5 a r-r*ernLer oi t,hc cnse;i~b!e aric'l sccs itself 
through its weighting factor. The larger a clock's weight! r,hc larger is thu bias, IJnder the assi~rnption 
of a normal distribution of clock noise t h c  size of t h e  bins can he estirl~at,ctl as given Ly t:c~uatior~ 40: 

1 1  which is added to  equation 5 in order ro rerrlovri the hias, on :t:c: a\.r:ragel . .  

THEORY: ATl-PLUS-VARIANCE 

What is missing here is an estimate of thc variance of thc  rcsiduais of thc frequency oiTscl from the 
ensemble, Y .  In our approach, we interpret /Y, as a measurement o i  the time of clock z against thr: 



scale. Thus the first difference, fi of X i ,  as in equation 3, is a measurement of the frequency offsot of 
clock i from the scale. We use a simple Kalman formalism to filter this measurement to estimate Y,  
where we use ci(r)  as noise of the measurement. We model Y as having a random-walk noise and a 
fixed drift. Thus, Y is not the physical frequency as produced by the clock, but since we are filtering 
down the white frequency modulation (FM), it is only the random-walk component of the frequency 
of the clock, plus any drift. 

The X terms do reflect the physical time offset of the clock from thc scale, thus incorporating the 
white FM. The Y term is used to  better predict the X values. We substitute equations 4 and 5 with 
the Kalman equations: 

11. System Model: 

Y,(t + r )  = Y,(t) + D,r + rl(r) .  (11) 

is the random walk component of the frequency offset of clock i from the scale plus the drift offset. 
The random walk is driven by the white noise process r)(r) .  

12. Measurement Model: 

= + E , ( T )  

The measurement is a direct measurement of Y,,  plus white noise. 

The actual equations used for update are: 

13. Variance Prediction: 

is the prediction of variance of the residuals of Y which grows with r a.ccortling to (T:, the variance 
of the white noise process, q ,  driving the random-walk FM. 

14. Frequency Update: 

We see that the Kalman formalism also gives us an exponential filter on Y .  Thus  in  steady state this 
algorithm reduces to AT1 if the weights are chosen properly. This implies that  this algorithm inherits 
the ability that AT1 has to model flicker frequency. 



15. Variance Update: 

6: ( T )  * 
P =  

6: ( T )  f 
(15) 

In the Kalman formalism the system parameters are known in advanrr . This system is a modification, 
an adaptive Kalrnan filter, where we estimate thc "measurement noise," cf ( r ) .  This allows the variance 
of the residuals of Yto evolve both from an initial value, as is norrnal for the Kalman filter, and if 
c f ( r )  changes. This allows the exponential filter parameters on Y,  as  exprrsscd in 14, to change with 
time, both after entering a new clock, and if the white FM level of the clock changes. 

It is possible to solve for the steady state form of these equations and make identifications between 
the AT1 algorithm and our new algorithm. We find that the steady state valuc of P is: 

16. ( - - G  p = 
77 \ i 1 4 - 4 . 7 -  l) 

Making the appropriate idcntifications between equations 4 and 14 are find: 

17. 

Using 16 in addition yields: 

18. 
E~ (4 m(m + I) = - 

rl 
(18) 

Thcse equations allow us to compare the performance of the two algoritllms wit,h t,hc parameters m 
and rl set consistently. 

We close this theoretical section mentioning resl~lts from elsewhere. .Jonc,s iirld ~ r ~ o r l [ ~ ]  have designed 
a time scale algorithm which is purely a Kalrriari filter. This scale, callrd TA(NIST), has been run 
at NIST in parallel with AT1 since about 1983. That filter is mathrmntically identical with the 
AT1 algorithm for the time and frequency predictions and updates[3!. The diffcrcr~ce among these 
algorithms is the weighting of clocks in the time r~ptlate and the exponential filter parameters in the 
frequency update. These differences effect the ensernblc time they generate, which is realized as the 
time offsets, X i ,  of the clocks against ensemble time. 

We will show in simulation and with real clocks that the pure Kxlxnan filtxr time scale sacrifices 
short term performance, arid simply follows the clock with the best lnr~g terrn pc:rforr~~arice. This is 
consistent with the design of Kalman filters in which minirrlize error. Thr: Jorlcs Tryon filter 
attempts to estimate and rr~iriimize both time and frcqucricy error. An additional l)roblcrn with this is 



that since time is unobservable, elements of the covariance matrix grow without bound. In practice, 
with a good ensemble of clocks, this growth is not large enough to cause corriputer overflow errors in 
any reasonable amount of time, though it is suggestive of an undesirable situation. 

SIMULATION 

In simulation we show the following: 

1. Both algorithms AT1 and AT1 plus frequency variance produce a timc scale apparently better 
than the best clack in the scale at all integration times. 

2. The TA(N1ST) algorithm is dominated by the clock with the best long tcrm performance at all 
integration times. 

3. The ATl-plus-frequency- variance estimate of the confidence on the frequency offset estimate 
appears to be a reasonable estimate. 

4. The use of this confidence estimate to determine frequency steps improves long tcrm perforrrlance 
of the time scale. 

Figure 1 illustrates item (1). Here we have generated data simulating clocks wit,h various 1evl:ls of 
white FM and random- walk FM. We have treated the problem as we would with real clocks where we 
only measure clock differences. We have computed the stability of each clock using an N-cornered hat 
technique[4]. The stability of the scale we have determined by taking the output value of clock rninus 
scale and subtracting the generated value of clock mirius truth. If we look directly a t  the variances of 
the generated data, we see significant differences between the variances computed directly, and those 
estimated from N-cornered hat (Figure 2).  These differences rrlust be duc to  apparent correla.tions 
in the data. This should come either from the finite data length, or from real correlations ill the 
pseudo-random number generator. If the generated clocks are truly corrclated, then the algorithm 
can only produce a variance better than the uncorrelated part. Wc notice that the scale seerns to 
follow the shape of the variances from the N-corner hat. This suggests correlation in thc generated 
data. 

Figure 3 shows a comparison of the output of a version of the Kalman filter which defines TA(N1ST) 
with the simulated input data. We see that the Kalman algoritlirri has t,t~c: stability of the clock with 
the best long term variations. 

Figures 4 and 5 show the residuals from the ATl-plus-variance algorithm corripared with the estimated 
confidence, from the estimated variance of frequency residuals. l'he algorithm estirnatcs the random- 
walk component of a clock's frequency offset from the ensemble tirric. Sir~cr: t,hese are generated clocks 
we know the true value of the random-walk component of frequency of that clock versus the true value 
of the time scale. l'he differences of these two, the estimate minus t ru th ,  are the residuals plotted. 
The sigma value used in the plot is the root-mean-square of thc cslirnated deviation of the clock plus 
the estimated deviation of the scale. The line plotted is the three-sigma va111c. This should be a 99.8 
percentile. Over the 700 points plotted we should get I or 2 residuals crossirig the lines of the sigmas. 
This seems to be the case. 

Last, we inserted frequency steps in the simulated clocks. Figurc 6 shows the frequency offset from 
the scale of the simulated clock 9, with a frequency step of 1 x 1 0 - l 2  on MJD 46500. This clock 



was given a white FM level of 30 ns, and a random walk FM levcl or (1.5 ns, both a t  1 d. Figure 7 
shows the estimate from the AT1-plus-variance scale of the random-walk component of frequency. 
The reduction in the white FM is apparent. The scale was able to tlctcct the frequency step, with the 
step detector set at 4 sigma, with sigma defined as above. When s~ich a step is dctccted, we re-run 
the scale, removing the clock with the step until the scale can learn the ncw frequency value. Figure 8 
shows the frequency offset from the scale of the simulated clock 1, with a frequency step of 2 x 10-l2 
on MJD 46100. The noise of this clock is almost all random walk FM as comparcd to  its level of white 
FM. The estimate from the scale shows very little smoothing. Yet, evcxi in this case, the frequency 
step detector automatically found the step and removed the clock from the scale. Tn Figure 9 we 
see the benefit from having detected the frequency steps. There is a sigrliIicant improvcrnent a t  an 
integration time of 128 d and longer. 

REAL DATA 

Last, we took data  from real clocks a t  NIST over the period from Dccernber 31, 1988, to  October 
30, 1989. We ran our ATl-plus-variance algorithm on this data,  including autorr~atic frequency step 
detection and recalculation. We also took data using GPS common view rncasurernent~[~I with other 
laboratories: PTB,  USNO, TUG, and NRC. Using an N-cornered hat, technique, we were able to 
determine the variance of each of these. We comparcd these result,s with a similar analysis using the 
official NIST AT1 time scale. The results for the two scaIes ruri on NISrl' clocks as well as USNO 
and P T B  are plotted in Figure 10. We find that  the official AT1 and the new AT1--plus-variance 
scale are similar, though in long term the official scale is somewhat bcttcr. The  oficial AT1 scale is 
watched carefully and administratively checked for time and frequency steps, as well as changes in 
clock performance in general. We find that human care adds much t,o a tirrle scale. 
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Figure 1: We have computed the stability of each simulated clock using an N- 
cornered hat technique. The stability of the scale we have determined by 
taking the output value of clock minus scale and subtracting the generated 
value of clock minus truth. The AT1 scale outperforms all clocks at all 
integration times. 

Truth vs N-Comer Hat 
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ld -1CO.dl 

18 1 0' 

Figure 2: If we look directly at the variances of the generated data, we see 
significant differences between the variances computed directly, and those 
estimated from N-cornered hat. These differences must be due to apparent 
correlations in the data. 

Knlrhan on Simulated Clocks 

Figure 3: A comparison of the output of a version of the Kalman filter whi-ch 
defines TA(N1ST) with the simulated input data. We see that the Ralman 
algorithm has the stability of the clock with the best long term variation:;. 



Simulation Clk 1: Residuals vs. Estimated Confidence 
White FM = 1 ns, Random Walk FM = 15 us. both @ 1 day 

46000 46100 46200 46300 46400 46500 46600 46700 

Time. MID 

Figure 4 :  The residuals from the ATl-plus-variance algorithln compared with 
the estimated confidence, from the estimated variance of frequency residuals. 
The line plotted is the three-sigma value. 

Simulation Clk 9: Residuals vs. Estimated Confidence 
White FM 1 30 ns. Random Walk FM = 0.5 ns, both Q 1 day 

Figure 5: The residuals from the AT1-plus-variance algorithm compared with 
the estimated confidence, from the estimated variance of frequency residuals 
The line plotted is the three-sigma value. 



Frequency-Step Detection Improves Long-Term Stability 
simulated Clocks 

1 o4 1 o5 1 o8 I o7 I oa 
Time, seconds 

Figure 6 :  The frequency o f f s e t  from the scale of the simulated clock 9 ,  with 
a frequency s tep  of 1*10-l2 on M J D  46500. 

Comparison of Ensembles 

AT1 (admin) 

r AT1 + Variance 
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+ Ptb 
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Figure 7 :  The estimate from the AT1-plus-variance sca le  of the random-walk 
component of frequency fo r  clock 9 .  The sca le  was able t o  de tec t  the 
frequency s t ep ,  w i t h  the  step detector s e t  a t  4 sigma. 
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Figure 8 :  The frequency o f f s e t  from t h e  s c a l e  o f  t h e  s imula ted  clock 1,  wi th  a 
frequency s t e p  of 2*10-l2 on M J D  46100. The e s t ima te  from t-he s c a l e  shows 
very  l i t t l e  smoothing, y e t  t h e  frequency s t e p  d e t e c t o r  au toma t i ca l ly  found t h e  
s t e p  and removed t h e  c lock  from the  s c a l e .  

Figure 9 :  The b e n e f i t  from having de tec ted  the  frequency s t e p s  i s  seen  i n  
t h i s  diagram. There i s  a  s i g n i f i c a n t  improvement a t  an i n t e g r a t i o n  time of 
228 d and longe r .  

M O W  411W 41200 46300 46400 41500 4L1W 46700 
The. HID 

Figure 10:  The r e s u l t s  f o r  t h e  t w o  s c a l e s ,  the o f f i c i a l  AT1 and t h e  new AT1-  
p l u s - v a r i a n c e ,  run on N I S T  c locks  a s  we l l  a s  USNO and PTB. 



QUESTIONS AND ANSWERS 

GERNOT WINKLER, USNO: There are quite a few things that I didn't understand, but there 
is one thing that bothers me-at the beginning you said that, since you don't measure your time scale, 
but generate it, the use of a Kalman filter is inappropriate. Then you turn around and use it. Could you 
elaborate on that? 

MR. WEISS: The use of a pure Kalman filter is inappropriate. Using Kalrrlari techniques in part of 
the time scale is very useful. This is not a criticism of Sam Stein's algorithrrl which does a very sirnilar 
thing. Kalman techniques have very important places. But to use the Kalrrian to generate the time itself 
is inappropriate. The result of that is what I have shown. You lock onto the clock with the best long term 
stability and you lose the short tenn. 

MR. STEIN: I think that I would like to make a comment on that ~llyself. Tlle Kalman filter is merely 
a computational technique. It doesn't define a time scale, in the sense that we use the ward. Whether or 
not you can use a Kalman filter, I strongly disagree with your statement, is sirrlply whether or not you can 
formulate an appropriate definition of the time scale, definition of the ense~nble in a way that is compatible 
with requirements. In fact, troubles that you pointed out, which are real, in some of the past Kalman filters 
were a result of the incorrect identification of the system noise covariance. An identification that did not 
agree with what the people that did those time scales really wanted to get out of the system. Other noise 
models produce different results. 

JAMES BARNES, How often do you see frequency st,eps? 

MR. WEISS: Dave Allan can probably ariswers that. 

MR. ALLAN: It is a fairly difficult question because we don't really understand t,he mechanisrri. We 
do know that they occur. I have seen some clocks where they occur rnaybc once a year, several t i~nes a year 
and some clocks that seem not to have step problems. They can be fairly large and fairly significant. 

MR. WEISS: We have recently discovered a possible source of the steps which was humidity, and  we 
had never realized that before. Tracking and controlling humidity may rerriovc some skps  that we didn't 
understand the cause of before. A s  we do more research, we may understs~lcl the cxuses of ot,her fi.ecluency 
steps. 

UNIDENTIFIED QUESTIONER: How do you define 'truth'? 

MR. WEISS: I don't define truth. When I generate a clock, I know wliat I have put into it. I generate 
a clock as being an offset against zero, zero being truth. If I make it up, I know what t,ruth is. 

SAME PERSON: Is it related to the Planck time? 

MR. STEIN: No. You can relate it to  what Einstein said, 'Time is what a clock reads'. 

UNIDENTIFIED QUESTIONER: I have a question for you, Sam. You said that your model 
differed form the others in the process noise. As far as I can tell, the problem is orle of ~bservabilit~y. You 
can't change the observability of the model by changing process noise. If your H n~ntr ix is the sitrne as 
everyone else's, then you have the same observability problem they do and a11 you are doir~g is de-weighting 
somehow past data. I think that 1 know how you are doing that and I can tell you. 

MR. STEIN: The problem, as Mark pointed out, is not a problelil of obset~vnl~ilit,y, We can discl~ss it 
further off-line. 

DONALD PERCIVAL, U OF WASHINGTON: I just had a qnestiorl to clarify what yon are 
doing here. You are not using the (indecipherable)-Jones Kalman filtering moclel, is t11a.t correct? What 
you are doing then is taking one component of that model, the random walk cornpo~lcnt~, ; ~ n d  thcn using a 
Kalman filter by itself, a very simple one, to  estimate that. 

MR. WEISS: Exactly. I am using the output of AT1 time e~t~irrlate against, the scale a.s if it were a 



nleasurerrient of frequency against the scale. Then I filter t,biat t o  oljl:uil only the ~.~lriclnrn walk coll~ ponent 
plus the variance, or  confidence, on that  estimate. 

MR. PERCIVAL: Is there any problem, do you feel, with t,he otusel-vahilit,y. Bnr example, ir l  the time 
model, the random walk component is only one component of what the tl~irlg is act,lially doing. To separate 
tha t  out,  you are saying tha t  it can be filtered out irr, a certain fashiorl 

MR. WEISS: I think that  that  is a subtle question. because t h r  scale i= <L matllernatical cc~ristruct. 
I t  is something that ,  mathematically you arc making up. Tlie only obscrvotj~lity of t l t ~ t  is witllirl the scale, 
there is no physical measurement of the clock against the scaie. The clc~cqt t11ar wr ( ,LII get t o  it is what 
the  scale says is the estimate. There is no questiori of observability becauw 1 L L I ~ I  l ( , o k i ~ ~ g  a t  so~~le t l l ing  that  
is defined. 

GERNOT WINKLER, USNO: I would like to go back to the freqnerlcy step tletcctiori tliing. It 
seems t o  me tha t  i t  is intrinsically related to  the question of post-processirlg or not. You can readily make 
a decision as t o  whether or  not there was a frequency step, after the fact. Yc'r,r~ define :IS a freqtlergcy step 
as a systematic change in the average frequency. Whether it is systerrintic or rancloln c:in only lw decided 
with any kind of confidence only after the fact for srrlall freq~lency stepi. It is n cluestinn mf the size of tlic 
frequency steps tha t  you want to estimate us.  the question of post-processirig or intrl~ecliate detection. Here 
you have t o  solve the problem of whether you can tolerate post-processirtg or not,. Tllnt will dctcr~nine 
whether you can reliably detect frequency steps arid accmlnt for them 

MR. WEISS: That 's  true. Rut,  if you can detect tha t  a step Iiapprrlr(1, iri re(11 tinle, tlint, is, you 
detect now tha t  a step happened yesterday-and the step is large enuugh, yo11 c ; t r l  gel, sorrlc benefit from 
tha t  now, in real time. You get the rrlost benefit in post-processing, l ) e ~ , ~ u s e  tl1r11 you go t ~ ~ c k  over the last 
day as well. If the step is large enough that  i t  is pulling the scale now,  yo11 i ' l r l  rcatljl~st tliat. Yo11 can 
also re-compute the scale for the last day and,  even if you can't usc that> ill rcal t tltie, you can say that  the 
frequency of the  scale is now off, somewhat, from what I a m  actllally nntprl t tirig, onil steer hark to what the 
frequency should be. 




