
                                       AD__
                                           

_______________ 

 
 
Award Number:  W81XWH-06-1-0417 

 
TITLE: Immunology, Systems Biology, and Immunotherapy of Breast Cancer  

 
PRINCIPAL INVESTIGATOR: Peter P. Lee, M.D. 

                                                 
                           
CONTRACTING ORGANIZATION:  Stanford University 

Stanford, CA 94305 

  
 
 
 
REPORT DATE: March 2009 

 
 
 
TYPE OF REPORT:  Annual  

 
 
 
PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
               Fort Detrick, Maryland  21702-5012 
                 
 
DISTRIBUTION STATEMENT:  
 
  Approved for public release; distribution unlimited 
      
    
 
 
 
The views, opinions and/or findings contained in this report are 
those of the author(s) and should not be construed as an official 
Department of the Army position, policy or decision unless so 
designated by other documentation. 



 

2 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)
01-03-2009 

2. REPORT TYPE
 Annual Progress Report 

3. DATES COVERED (From - To)
 01 Mar 08 – 28 Feb 09 

4. TITLE AND SUBTITLE 
Immunology, Systems Biology, and Immunotherapy of Breast Cancer 

5a. CONTRACT NUMBER 
   

 
 

5b. GRANT NUMBER 
W81XWH-06-1-0417 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Peter P. Lee, M.D. 

5d. PROJECT NUMBER 
 

 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER

 
Stanford University 
Stanford, CA 94305 
 
 

 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
   
   
  11. SPONSOR/MONITOR’S REPORT 
        NUMBER(S)
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 
 
 
 

13. SUPPLEMENTARY NOTES
 

14. ABSTRACT 
 
In year 3, we built upon the foundation from the first two years of this award, and are making progress in multiple areas of this project. We 
now have an efficient system in place to recruit patients into this study and procure their samples. Limited numbers of subjects available 
and limited amounts of clinical materials available from each subject remain major challenges to the success of this project – we 
continually attempt to address and solve this issue by reducing the cell numbers that we need for each assay. We have developed a powerful 
set of immunological assays and molecular tools to study these samples in greater detail than previously possible. We continue to uncover 
dramatic changes in the immune cell populations within tumors, TDLNs, and peripheral blood from breast cancer patients. These findings 
are reported above, and have led to 3 manuscripts under review. We look forward in the coming year to build upon this momentum and 
specifically to elucidate insights into the immunobiology of breast cancer. In the coming year and beyond, we will begin to focus on 
translating our early findings into novel therapeutic strategies for the immunotherapy of breast cancer. 
 
 
15. SUBJECT TERMS
Breast cancer, immunology, immunotherapy, systems biology 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT

18. NUMBER 
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
USAMRMC 

a. REPORT 
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

UU 49 19b. TELEPHONE NUMBER (include area 
code)
 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18



 

3 

 
 
 

Table of Contents 
 

 
                                                                                                                               Page 
 
 

Introduction …………………………………………………………….………..…….  4 

 

BODY …………………………………………………………………………………..  4 - 47 
 

Key Research Accomplishments ………………………………………….………...  48  

 

Reportable Outcomes ………………………………………………………………...  48     

 

Conclusion ……………………………………………………………………………..  49 

 

References …………………………………………………………………………….  49 

 

Appendices ……………………………………………………………………………. 49 

      
    
 
 



  Lee EHSA report 2009 

 4 

Annual Progress Report 3/1/08-2/28/09 
DoD Era of Hope Scholar Award 
Immunology, Systems Biology, and Immunotherapy of Breast Cancer 
Peter P. Lee, M.D. 
Stanford University 
 
 
INTRODUCTION 
Breast cancer patients with similar tumor characteristics may have vastly different clinical 
courses, response to therapy, and outcome. Several lines of evidence now suggest that the host 
immune response may play a significant role in modulating disease progression in cancer. A 
complex interplay exists between the host immune response and tumor cells as a critical 
determinant in clinical outcome. These factors remain poorly understood. By comprehensively 
studying the dynamics between breast cancer and the immune response using an integrative 
systems approach, we hope to uncover opportunities for vastly different immunotherapy 
approaches than what are available today. We seek to move beyond the current paradigm of 
eliciting immune responses against defined antigens via vaccination, as this strategy alone does 
not appear to be effective in a number of clinical trials for melanoma and other cancers. Rather, 
we seek strategies that specifically modulate tumor-immune cell interactions and block cancer-
induced immune dysfunction on a systemic and local level (at tumor sites and draining lymph 
nodes). In this project, we use a number of novel immunological approaches to look for evidence 
of immune cell dysfunction within the tumor or tumor-draining lymph nodes (TDLNs) from 
breast cancer patients. This includes archived samples from patients with at least five year 
survival data, and fresh samples from newly diagnosed patients. We use DNA microarrays to 
analyze the gene expression patterns of purified tumor and immune cells, focusing on gene 
networks and cross-talk between tumor and immune cells. We generate high-resolution images 
of tumor and TDLN sections and develop image analysis algorithms to assess the spatial 
arrangement and grouping of tumor and immune cells with respect to each other that may have 
biological significance. Using statistics and mathematical tools, we will integrate the complex 
data generated from all of these studies and correlate them with clinical parameters. Lastly, our 
observations will be combined into a mathematical model that will enable us to perform in silico 
experiments to quickly test novel therapeutic strategies for breast cancer. This work may lead to 
novel diagnostic tools to help predict clinical outcome and guide therapy in breast cancer 
patients. We also hope to find new insights into the mechanisms of immune evasion by breast 
cancer cells and ultimately new treatment strategies for breast cancer directed specifically at 
altering the biology of TDLNs. 
 
BODY 
Our team currently consists of two excellent postdoctoral fellows, one research assistant, and 
several faculty collaborators (only one of which draws a modest amount of salary support from 
this award). We work closely with our surgery, medical oncology, and pathology colleagues to 
identify, recruit, and consent subjects, and to obtain samples from the operating room to 
pathology and eventually to my laboratory. In addition, we continue to refine our protocols to 
maximize recovery of immune cells from tumor and lymph node specimens, and to optimize 
methods for analysis of fresh and archive samples by flow cytometry, immunohistology, 
immunoflourescence, function assays, and DNA microarray analysis using the smallest numbers 
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of cells possible. Below is a summary of our progress in year 3 of our EHSA in relation to my 
proposed SOW. 
 
Experiment Strategy 
 
To fully understand tumor-immune cell interactions in breast cancer, our strategy is to compare 
the immune cells and tumor cells within three distinct compartments: the tumor, TDLNs, and 
blood. We approach this at both the molecular and cellular levels. At the molecular level, gene 
expression profiling of immune cells and tumor cells within the tumor site and TDLNs are being 
carried out. At the cellular level, immunologic functions of immune cells are being studied and 
compared across these three compartments.  

 
A. Immunological Analyses 
 

Originally proposed in the SOW: 
1. Analysis of archived samples of tumor and TDLN from breast cancer patients with at 
least 5 years of clinical follow-up data. Tumor and immune cell markers will be 
identified via immunohistochemical (IHC) staining and in-situ hybridization (ISH). 
Images will be acquired in high resolution using an automated imaging system (BLISS), 
and data will be acquired using automated software. Over 50 immune and tumor markers 
will be assessed. To facilitate these complex studies, we will also explore the use of 
tissue microarrays (TMA). This would enable us to analyze sections from 100-400 
samples on each slide. We will first perform a pilot study to ensure that the TMA method 
is compatible for our studies and would not be negatively impacted by the architectural 
heterogeneity within TDLN. (months 0-60) 
2. Analysis of live cells from fresh tumor, TDLN, blood, and possibly bone marrow from 
newly diagnosed or relapsed breast cancer patients undergoing surgery or treatment. 
Assays include flow cytometry (up to 12 colors), peptide-MHC tetramer analysis, sorting, 
functional responses (e.g. cytotoxicity, cytokine release, anergy, apoptosis, proliferation), 
and others. (months 6-60) 
3. Generation of T cell lines and tumor cell lines from fresh tumor and TDLN samples for 
further detailed analyses. (months 6-60) 
4. If the above studies demonstrate immune cell dysfunction within tumor or TDLN, but 
by themselves do not reveal any definitive mechanisms, then we will undertake in vivo 
studies with mouse models of de novo breast cancer to address the early events in 
immune dysfunction. (months 24-60) 
 

Sample Acquisition 
At the end of year 3, over a 170 breast cancer patients have been enrolled into this study. All 
participants were newly diagnosed, had recurrent or metastatic disease and had their surgical 
and/or oncological treatments at Stanford University Medical Center. Written informed consents 
were obtained from all participants according to Stanford IRB, DoD HSRRB, and HIPAA 
regulations. Patients’ heparinized peripheral blood samples, breast tumor tissue, TDLNs (non-
sentinel lymph node and/or sentinel lymph node), and tumor/TDLN aspirates have been 
collected for this study. The samples acquired thus far are shown in Table 1. Clinical data (stage, 
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grade, ER/PR/Her-2/neu status, treatment, and clinical outcome) for each participant has been 
recorded. 
  

Tissue Storage Quantity
Trizol 52
Cryopreserved 117
Trizol 98
Cryopreserved 126
Trizol 82
Cryopreserved 101
Trizol 39
Cryopreserved 74

Blood

SLN

Non-SLN

Breast Tumor

Table 1. Samples Acquired Since 
Beginning of Study

  
 
Optimized Sample Processing Procedures 
Peripheral blood immune cell isolation 

Peripheral blood mononuclear cells (PBMCs) from peripheral blood are separated by Ficoll-
Hypaque density gradient centrifugation.  For RNA isolation and microarray analysis, RBC lysis 
buffer treatment is used to remove residual red blood cells and to ensure an accurate counting 
using hemocytometer. A total of 1 million isolated immune cells are preserved in Trizol for RNA 
isolation and microarray analysis while the remaining cells are cryopreserved in liquid nitrogen 
until further use.  Blood samples not intended for microarray analysis are spun down in a 
centrifuge first to collect plasma for Luminex multi-plex bead assays prior to PBMC collection.   

Breast tissue dissociation and immune cell/tumor cell isolation 

After surgery, breast tumor tissues are minced and dissociated enzymatically with type III 
Collagenase and DNase I for 1-2 hour to generate single cell suspensions. For microarray 
analysis, the cells are stained with pan leukocyte marker CD45, epithelial surface antigen ESA, 
fibroblast marker CD140-β, and a dead cell exclusion marker ViViD and purified via FACS 
sorting. The two populations of interest in breasts tumor tissue are immune cells (CD45+ESA-

CD140β-) and epithelial/tumor cells (ESA+CD45-CD140β-). Up to 1 million sorted immune cells 
or tumor cells are preserved in Trizol for RNA isolation and microarray analysis and the 
remaining cells are cryopreserved in liquid nitrogen until further use. Samples not intended for 
microarray analysis are digested as described above and the heterogeneous single cell 
suspensions are cryopreserved.  To ensure the breast tissue specimen does indeed contain tumor 
cells, the tumor tissue we receive is bisected and portion is submitted for histological processing 
using hematoxylin and eosin staining, and examined by a pathologist specializing in cytology.  

TDLNs 

After lymph node dissection, fine-needle aspirates of sentinel lymph nodes (SLN) are collected 
and are stained as above for RNA isolation and microarray analysis or are cryopreserved for 
future use. For non-sentinel lymph nodes (NSLN), a very small portion of identified lymph 
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nodes are excised for research purposes, differentially inked and then submitted to pathology for 
diagnostic purposes. Once processed by pathology, we then utilize the paraffin-embedded lymph 
nodes, both sentinel and non-sentinel, for further Immunohistochemical (IHC) analysis.  Fresh 
tissues received are minced to generate single cell suspensions. For grossly tumor involved 
lymph nodes, the minced specimen is subjected to enzymatic dissociation as described above. 
For RNA and microarray analysis, immune cells and/or tumor cells are purified through FACS 
sorting where up to 1 million isolated immune cells or tumor cells are preserved in Trizol for 
RNA isolation.  The remaining cells are cryopreserved in liquid nitrogen until further use. 
Samples not intended for microarray analysis are minced and/or enzymatically digested (if 
grossly tumor positive) and the single cell suspensions are cryopreserved for later use.  

 
Interferon Signaling Defect in Lymphocytes from Breast Cancer, Melanoma, and 
Gastrointestinal Patients 
Recently, we demonstrated Interferon (IFN) signaling defects in melanoma patient lymphocytes 
as measured by microarray, Q-PCR, and Phosflow analysis (Critchley-Thorne, R., et al, 2007).  
To determine whether this may be a common occurrence in cancer, we assessed the functional 
responses of lymphocytes from breast cancer, gastrointestinal (GI), and melanoma patients, 
compared to age-matched healthy controls, by measuring IFN-stimulated genes (ISGs), Phosflow 
analysis (detection of STAT1-pY701) upon stimulation with IFN-α and IFN-γ, downstream 
functional responses in breast cancer T cells to IFN-α, and additional protein phosphorylation in 
melanoma lymphocytes via JAK/STAT and MAPK pathways. 
   
IFN-stimulated genes 
Basal expression levels of ISGs were assessed in breast cancer lymphocytes.  Lymphocytes from 
5-healthy and 7-breast cancer PBMC samples were enriched (~90% purity) using granulocyte 
and monocyte depletion cocktails.  RNA was isolated, quantified, and cDNA was synthesized.  
Quantitative RT-PCR analysis was performed for five ISGs: STAT1,IFI44, IFIT1, IFIT2, and 
MX1. All gene expression data presented were normalized to GAPDH levels for each sample.  
We showed the expression of basal levels of these five ISGs were downregulated in peripheral 
blood lymphocytes from breast cancer patients versus healthy controls indicating a defect in IFN 
signaling in lymphocytes in vivo from breast cancer patients (Figure A1) 
 
Phosflow analysis (detection of STAT1-pY701) upon stimulation with IFN-α and IFN-γ 
PBMCs from 12 new melanoma, 27 breast cancer, 11 GI patients and 27 age-matched healthy 
controls were stimulated with either 1000U/ml IFN-α or 1000U/ml IFN-γ or left unstimulated 
for 15 minutes.  The samples were then fixed and permeabilized and acquired on the FACSAria. 
Data was analyzed using two-sided Wilcoxon-Mann-Whitney test (95% CI) by statistical 
application, R, to calculate exact p-values for each of the comparisons. P-values of < 0.05 were 
considered significant.  
     
Healthy controls composed of both males and females, so we first determined whether samples 
from different genders were statistically different from each other before we compared the 
complete healthy population to breast cancer patients (all female). We found that fold induction 
of STAT1-pY701 (pSTAT1) was not statistically different between male and female healthy 
controls, or male and females from either the melanoma and GI groups for both IFN-α and IFN-γ 
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stimulation (data not shown), and therefore, we included all healthy patients in this analysis.  The 
mean age for breast cancer, melanoma, GI patients and healthy controls were 52.4, 51.6, 66.0, 
and 54.0, respectively.  Since the mean age for the GI group was higher than the healthy, breast 
cancer, and melanoma groups, we compared the GI group to an older subset of the healthy 
population (healthy: n=17, mean age 61.8; GI: n=11, mean age 66.0).     
 
Fold induction of pSTAT1 was significantly reduced in breast cancer, melanoma, and GI  
patients compared to healthy controls in response to IFN-α stimulation in CD3+ T cells, CD19+ 
B+ cells, CD16+ NK cells,  (Figure A2a-c) and CD4+CD45RO+CD25 HI regulatory T cells 
(Treg) (Figure A2g), regardless of neo-adjuvant/adjuvant therapy (data not shown). In contrast, 
the fold induction of pSTAT1 in response to IFN-γ stimulation in T cells, NK cells, and Treg 
cells was not significant. However, IFN-γ stimulation of B cells showed a profound reduction of 
pSTAT1 (Figure A2e).  Likewise, the reduced fold change in pSTAT1 in response to IFN-α  
stimulation was observed in breast cancer stages II, III and IV for  T cells, B cells, NK cells 
(Figure A3a-c) and B cells upon IFN- γ  stimulation (Figure A3e) illustrating this immune defect 
occurs in early stage breast cancer.  
 
Downstream Functional Responses in Breast Cancer T cells to IFN-α 
Downstream functional responses to IFN-α were assessed in breast cancer patients’ lymphocytes.  
Lymphocytes were enriched using a monocyte and granulocyte depletion cocktail to a purity 
>95%.  Lymphocytes were stimulated with beads coated with anti-CD3/anti-CD28 antibodies 
alone or in the presence of 1000U/ml IFN- α or IFN–γ, or left unstimulated for 48 hours.   
Expression of CD25 as a general activation marker, HLA-DR, CD95 and CD54 as activation 
markers that are further induced by IFNs, and activation-induced cell death (AICD) were 
measured by flow cytometry.  T cells from breast cancer patients showed reduced expression of 
CD25, HLA-DR, CD54 and CD95 in response to anti-CD3/CD28 stimulation alone and in 
combination with IFN-α or IFN-γ (Figure A4a-d).  AICD due to anti-CD3/CD28 stimulation was 
higher in T cells from breast cancer patients versus healthy controls, while stimulation with anti-
CD3/CD28 plus IFN-α or IFN–γ resulted in less apoptosis in breast cancer patient T cells (Figure 
A4e).   
 
Additional Protein Phosphorylation via JAK/STAT and MAPK Pathways 
Cytokine receptors signal through two main types of pathways: JAK-STAT and MAPK (Murray, 
PJ, et al, 2007). To determine whether similar players in JAK/STAT signaling cascades of other 
pathways are also perturbed, we utilized Phosflow and stimulated PBMCs from melanoma 
patients and healthy controls with IL-6 and IL-2 to measure the levels of pSTAT3 and pSTAT5, 
respectively. The target cells for IL-6 stimulation are T cells and B cells, whereas, the target cells 
for IL-2 stimulation include T cells, B cells, and NK cells. To investigate the MAPK pathway, 
which does not signal via JAK/STAT proteins, we stimulated PBMCs with phorbol 12-myristate 
13-acetate (PMA) and measured the levels of pERK1/2.  
 
Our results showed that IL-2 responsiveness decreased in CD4+ T cells of melanoma patients, 
but not in CD8+ T cells and NK cells (Figure A5). B cells were irresponsive to IL-2 stimulation, 
as demonstrated by no increase in STAT5 phosphorylation. In contrast, IL-6 responsiveness is 
higher in CD4+ and CD8+ T cells of melanoma patients than in healthy controls, while B and 
NK cells were irresponsive to IL-6 stimulation (Figure A6). All PBMC lymphocyte subsets 
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showed an increase in ERK1/2 phosphorylation upon PMA stimulation (Figure A7). We 
observed an increase trend in the fold change of pERK1/2 in lymphocyte subsets from melanoma 
patients compared to healthy controls, particularly in B and NK cells; however, the p-values 
were not significant based on the current sample size.  
 
Analysis of STAT1-pY701 by Firefly 3000 
We are currently optimizing protocols to use with a new system, Firefly 3000 (Cell Biosciences). 
Firefly 3000 is a capillary-based nanofluidic platform with which samples are separated by 
isoelectric focusing, immobilized, and probed with antibodies. Thus, charge-based changes such 
as phosphorylation states can be resolved and percentages of protein in different states can be 
determined.  Furthermore, because of the small scale sensitivity of this assay, we will be able to 
analyze samples with limited sizes such as immune and tumor cells isolated from breast cancer 
tumors, tumor-draining lymph nodes (TDLNs), and/or peripheral blood leukocytes.  At this 
point, we have successfully tested the ability of the system to detect total STAT1 and STAT1-
pY701.  The isoelectric points of STAT1-alpha and STAT1-beta were estimated at 5.7 and 6.0, 
respectively, by the UCSC Proteome Browser (http://genome.ucsc.edu).  Figure A8 shows the 
ability of this assay to detect total STAT1 and p-Y701-STAT1 in IFNa-stimulated peripheral 
blood lymphocytes.  Two peaks were identified for each of the possible unphosphorylated and p-
Y701-STAT1 states, and may represent the STAT1-alpha and STAT1-beta isoforms. 
 
Summary of major findings and plans: 
 

• We have demonstrated a defect of IFN signaling in breast cancer patients’ peripheral 
blood leukocytes, regardless of therapy.   To determine the extent of the IFN defect, we 
will continue to optimize the use of Firefly 3000 and Phosflow to examine pSTAT1 
induction in leukocytes isolated from breast cancer patients’ non-sentinel lymph nodes 
(NSLN) and tumor infiltrating leukocytes (TILs). 

• We will determine the molecular basis of IFN signaling perturbations in immune cells 
from breast cancer patients versus healthy controls.  

o To determine if IFN signaling is perturbed due to altered expression of signaling 
molecules in the IFN pathway, we will measure basal and IFN-induced levels of 
proteins in the IFNAR pathway, upstream activators of IFN expression, and 
negative regulators in peripheral blood B cells, T cells, and NK cells. Since IFN 
signaling has different effects on immune cell types of different lineages and the 
IFN response has not yet been analyzed in myeloid lineage cells, we will also 
assay peripheral blood macrophages, dendritic cells, neutrophils, and other 
myeloid populations to determine the extent of the IFN signaling defect.  RNA 
collected from unstimulated or IFN-alpha-stimulated peripheral blood populations 
(FACS or magnetically separated lymphoid and myeloid cells) will be analyzed 
for gene expression using Q-PCR.  Protein expression will be examined by flow-
cytometry or Firefly 3000 on FACS sorted populations.   

o To determine if IFN signaling is perturbed due to altered signaling, we will 
examine IFN-induced phosphorylation of JAK/Tyk kinases and STAT1/2 
substrates.   To do this, we will continue to optimize the use of Firefly 3000 and 
Phosflow to examine basal and IFN-alpha induced phosphorylation of JAK/Tyk 
kinases and STAT1/2 substrates.   
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• We will determine whether suppression of the IFN pathway in breast cancer patients is a 
consequence of extracellular signals such as reduced IFN levels or altered cytokines that 
may positively or negatively cross-talk with the IFN pathway.  Cytokine multiplex assays 
(Luminex) will be used to measure the concentrations of 37 cytokines and chemokines 
(including IFN-alpha), in serum from healthy vs. breast cancer patients.  Cytokines 
showing altered expression levels that correlate with IFN pathway alterations will be 
selected for further examination for their potential effects on the IFN pathway. 

 

 

 

 

Figure A1.   Real Time Quantitative PCR Analysis of ISG Expression in Lymphocytes from
Breast Cancer Patients and Healthy Controls.  
The expression levels of ISGs: STAT1, IFI44, IFIT1, IFIT2 and MX1 were measured in 
unstimulated lymphocytes from breast cancer patients (BC) and age-matched healthy controls 
(H) by real time quantitative PCR.  Expression of each gene was normalized to GAPDH.  
Medians are indicated by the bar in each data set.    

 

 

 

Figure A1 
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Figure A2.   IFN-α- and IFN-γ-Stimulated Fold Change in pSTAT1 (Y701) in PBMC 
Subsets from Breast Cancer Patients, Melanoma Patients and Gastrointestinal Cancer 
Patients Versus Healthy Controls.   
PBMCs were stimulated with IFN-α, IFN-γ, or unstimulated and pSTAT1-Y701 was measured 
by Phosflow. The fold change in pSTAT1 in T cells (CD3+), B cells (CD19+) and NK cells 
(CD16+) was calculated by dividing the mean fluorescence intensity (MFI) of pSTAT1 staining 
in IFN-stimulated cells by the MFI of pSTAT1 staining in the corresponding unstimulated cell 
subset from healthy controls (H●), patients with breast cancer (BC ■)patients with melanoma 
(Mel ) and patients with gastrointestinal cancer (GI ▼). The median is indicated by the bar in 
each data set.   

Figure A2 
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Figure A3.   Effect of breast cancer stage on IFN-α- and IFN-γ-stimulated fold changes in 
pSTAT1 in cancer patients and healthy controls.  
PBMCs were stimulated with IFN- α-, IFN-γ-, or unstimulated and pSTAT1 was measured by 
Phosflow in T, B and NK cells from healthy controls (H ♦), patients with stage II breast cancer 
(BC II □), patients with stage III breast cancer (BC III  ∆), patients with stage IV breast cancer 
(BC IV     ). The median is indicated by the bar in each data set.   

 

 

 

Figure A3 
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Figure A4.   Expression of Activation Markers and Apoptosis of T cells Stimulated with 
anti-CD3/CD28 antibodies and IFN-α or IFN-γ in breast cancer patients and healthy 
controls.  
Lymphocytes from breast cancer patients (♦) and healthy controls (□) were stimulated with beads
coated with anti-CD3 and anti-CD28 antibodies alone or in combination with IFN-α or IFN-γ or 
left unstimulated. The percentages of cells that stained positive for CD25, HLA-DR, CD54, 
CD95, Annexin V (Anx) and ViViD (Viv) were measured by flow cytometry at 48 hours 
following stimulation. The median is indicated by the bar in each data set.   
 
 

Figure A4 
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Figure A5. Comparison of IL2-stimulated fold changes of pSTAT5 in PBMC
lymphocyte subsets from melanoma patients and healthy subjects.  
PBMCs were stimulated with IL2 or left unstimulated. pSTAT5 levels were measured by 
phosflow analysis. The fold change in pSTAT5 was calculated by dividing the mean 
fluorescence intensity (MFI) of pSTAT5 in IL2-stimulated cells with the MFI of pSTAT5 
in unstimulated cells.  
 
 

Figure A5 
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Figure A6. IL6-stimulated fold change of pSTAT3 in PBMC lymphocyte subsets
from melanoma patients and healthy subjects.  
PBMCs were stimulated with IL6 or left unstimulated. pSTAT3 levels were measured by
phosflow analysis. The fold change in pSTAT3 was calculated by dividing the MFI of
pSTAT3 in IL6-stimulated cells with the MFI of pSTAT3 in unstimulated cells.  
 
 
 

Figure A6 
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Figure A7. PMA-stimulated fold change of pERK1/2 in PBMC lymphocyte subsets
from melanoma patients and healthy subjects.  
PBMCs were stimulated with PMA or left unstimulated. pERK1/2 levels were measured
by phosflow analysis. The fold change in pERK1/2 was calculated by dividing the MFI
of pERK1/2 in PMA-stimulated cells with the MFI of pERK1/2 in unstimulated cells.  
 
 
 

Figure A7 
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Figure A8.  Detection of total STAT1 and STAT1-pY701 by Firefly 3000.   
Peripheral blood lymphocytes were isolated from healthy controls and stimulated with IFN-alpha 
for 15 minutes.  Cells were lysed and run on the Firefly 3000 capillary-based platform with 
which samples were separated by isoelectric focusing, immobilized, and probed with antibodies 
against total STAT1 (blue, Ab 3987) or p-Y701-STAT1 (green, Ab 07-307).  Images were taken 
of capillaries and peaks were determined by Compass software (Cell Biosciences).  The 
isoelectric points of STAT1-alpha and STAT1-beta were estimated at 5.7 and 6.0 respectively by 
the UCSC Proteome Browser and peaks in that region were identified as likely to be STAT1 (red 
box).  Two peaks were identified for each of the possible unphosphorylated and p-Y701-STAT1 
(arrows) states.  
 
 
 
 
Personnel: Lee, Johnson, Dirbas, Schwartz, Yu, Simons. 

Figure A8 
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B. Microarray analysis of immune and tumor cells independently 

 
Originally proposed in SOW: 
1. Microarray analysis of gene expression of purified tumor and immune cells, isolated 
from fresh tumor or TDLN samples, and peripheral blood mononuclear cells (PBMC) 
from breast cancer patients. (months 6-60) 
2. Detailed analyses of gene expression data focusing on gene networks and cross-talk 
between tumor and immune cells. (months 12-60) 

 
This project utilizes a systematic approach to study the dynamics between breast cancer and the 
immune responses by directly comparing the gene expression patterns from TDLNs with the 
tumor site and peripheral blood. An increasing number of studies have used microarray to profile 
breast tumor specimens, which in fact represent heterogeneous cell populations consisting of 
tumor cells and tumor infiltrating immune cells. Our strategy is to profile purified tumor and 
immune cells independently, isolated from tumors and/or TDLNs.  
 
Microarray analysis of immune and tumor cells independently 

 
We took an integrative systems approach to study the dynamics between breast cancer and the 
immune responses by directly comparing the gene expression patterns between tumor, TDLNs, 
and PBMCs. Our strategy was to profile purified tumor and immune cells, isolated from tumors 
and/or TDLNs independently. Key accomplishments for year 3 include the completion of the 
first batch microarray experiment and microarray data pre-processing. Currently, we are in the 
process of identifying immune profile changes across three anatomical compartments and 
validating these findings through histology. Our data set allows independent analysis of 
expression profiles in tumor and immune cells as well as correlation of genes expressed in tumor 
cells with the transcriptional alterations in the paired immune cells. We are using this gene 
network cross talk analysis to generate hypotheses regarding how and where tumor cells are 
modulating the host immune system.  
 
1. Summary of sample composition for microarray analysis 
We have completed gene expression profiling of the initial set of patient specimens which 
comprises 156 samples collected from 24 newly diagnosed breast cancer patients. These samples 
include immune cells and/or tumor cells from peripheral blood, primary breast tumor tissues, and 
TDLNs (tumor free or tumor involved). Of these, a total of 10 patient complete sets including 
tumor cells and their paired immune cells from tumor tissues, TDLNs, and blood are undergoing 
analysis to directly compare the gene expression patterns across three anatomical compartments. 
 
2. Experimental approach  
Samples were acquired and processed as shown in Figure B1.  Live immune cells and tumor 
cells from each compartment were sorted from heterogeneous cell populations to high purity by 
flow cytometry. Total RNA was isolated through Trizol method and amplified in two 
consecutive rounds using TrueLabeling-PicoAMPTM kit (SuperArray), followed by the Cy3/Cy5 
labeling (Amersham Biosciences Corp.). High sensitivity quality control of amplified/labeled 
RNA samples was carried out using the RNA 6000 Nano LabChip kit and 2100 Bioanalyzer 
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(Agilent). In the current study we used a two-color platform with dye swap design to correct dye 
bias and, in addition, serves as replicates for each sample. Stratagene’s Universal Human 
Reference (UHR) RNA was amplified and labeled using the same protocol and used for all the 
arrays as a common reference. 
 
3. Microarray Data pre-processing 
 
We used Agilent's Whole Human Genome Microarray 4x44K G4112F to generate our 
microarray data. This array has Platform ID GPL6480 in NCBI's GEO database. Our data 
processing procedure involved the following steps: 

• Image files were generated from microarray slides using Agilent Microarray Scanner 
G2505B and raw data was extracted from the image files using Agilent's Feature 
Extraction Software (version 9.5). The raw data was transformed to log2 scale where we 
used our LIS algorithm to identify a group of approximately 1500 probes with highly 
consistent ranking patterns across all arrays, and with intensity levels spanning the entire 
data range. We s subsequently used these probes as “surrogate house-keeping probes" for 
the purpose of normalization.   

o This is a data-driven approach which takes advantage of the internal pattern 
within each microarray dataset to identify a likely group of non-changing probes 
specifically for that data. Our data-driven approach works better than the standard 
use of a “house-keeping gene list" compiled from prior biological knowledge, 
because very few genes can be considered truly stable under all experimental 
conditions.  

• We blended two standard normalization methods: quantile normalization and LOESS 
normalization to transform the raw data for each array into normalized data.   

o Our approach based on a relatively small group of “surrogate house-keeping 
probes" requires that the distribution of expression levels for the genes 
corresponding to these probes remain the same across samples, which is a modest 
requirement, and therefore, our approach can adapt better to many different 
experimental conditions and sample types.  

• All arrays were calibrated to the same scale and we applied a “variance stabilizing 
transformation” to the data.  

o In general not subtracting the background or subtracting too little effectively 
compresses the fold change values at low intensity range, while an over-
estimation of background would inflate the fold change. The influence of intensity 
level on fold change may also be observed when comparing middle to higher 
intensity ranges, typically a compression occurs at the highest intensity range, 
probably due to the influence of saturation. In statistical terms, in microarray data, 
the spread (fold change) is not independent of location (intensity level). Such lack 
of independence between spread and location will cause problems when we rank 
probes by fold change: a probe is more likely to be ranked high if its intensity 
level happens to be in an inflation range and more likely to be ranked low if it 
falls in an compression range. Moreover, many standard statistical methods 
implicitly assume equal variance (independence of spread and location). 
Therefore, it is helpful to apply a “variance stabilizing transformation" to the data 
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prior to analysis. Intuitively such a transformation would stretch and compress the 
data at different ranges as needed to equalize the spread for all locations. 

• The normalized data values from replicated probes were aggregated by taking the median 
across replicates of each unique probe sequence. Because these arrays come in dye swap 
pairs, we took the average of each dye swap pair to obtain one data column for each 
sample. In addition, we went through a parallel procedure following all the steps above 
but this time including the Universal Human Reference (UHR) columns and produced log 
ratio values (sample vs. UHR) by subtracting the UHR columns from the corresponding 
sample columns. 
 

The LIS algorithm 
We developed the LIS (Long Increasing Sequence) algorithm as a general data-driven approach 
to identify a special kind of rank-based substructure within a larger numerical dataset. The 
simplest example of such a substructure is the well-studied case of a longest increasing 
subsequence within a finite sequence of real numbers. In the context of microarray data analysis, 
the substructure is an optimal subset of probes showing consistent ranking patterns across all the 
arrays from an experimental study.  Given the typical large size of microarray data, carefully 
designed non-parametric approaches based on reasonably mild assumptions can be expected to 
work well for the purpose of data normalization. Our approach is based on the rather modest and 
intuitive non-parametric assumption that the array effect is an order-preserving (i.e. 
monotonically increasing) transformation.  
 
Data Quality 
The first level of quality control is to view the QC reports produced by the feature extraction 
Software and then examine the dye swap pair plots utilizing the raw data.  Figure B2 shows 
representative plots from 8 dye swap pairs. Most of these plots show a characteristic curve due to 
dye effect, which will be corrected in our calibration step before an average profile is calculated 
for each pair. Sporadic data points away from the curve often occurs due to minor local artifacts 
during either hybridization or scanning; occasionally we see clouds of data points away from the 
curve which may be due to a slightly larger scale artifact. Again these effects can often be 
corrected by careful comparison of the dye swap pair. IF29269 ANANI illustrates a much higher 
degree of inconsistency between the two arrays in that pair. In such cases, we flag the data for 
this sample as problematic and we may do another dye swap pair for that sample if more material 
is available. 
 
Normalized data from two representative NSLN immune cell samples, BC#5 ANBLI and BC#5 
ANGRI, respectively, is presented in Figure B3.  Each of these plots represents a leukocyte 
population isolated from separate NSLNs from the same patient.  Figure B3a compares 
normalized single-channel intensity values. The clean diagonal shape demonstrates high 
similarity between the gene transcription profiles of the two samples, and more importantly, the 
fact that we can clearly see this similarity highlights the reliability of our data generation 
protocol as well as the success of our data normalization procedure. This plot also demonstrates 
that the manufacturing quality of current generation arrays is good enough to allow confident use 
of single channel data (MAQC Consortium, 2006).  The more traditional two-channel log-ratio 
of sample vs. reference is shown in Figure B3b showing the expected spindle shape with a bulk 
in the middle formed by data points with log-ratio values close to zero in both samples. Figure 
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B3c and Figure B3d are rank-transformed version of Figure B3a and Figure B3b, respectively. 
These rank-transformed plots are very useful for highlighting noisy regions in the data. We see 
the single channel data is noisier at the lower end of the intensity range, where the signal is close 
to background level. By contrast, the log-ratio data is noisier in the middle range. These are well 
understood characteristic features of microarray data. 
 
The “Cell Number Effect” 
When the tissue samples were processed to isolate tumor or immune cell populations, the 
resulting number of cells varied widely from sample to sample. In some cases very small cell 
populations provided sub-optimal amounts of total RNA input for the amplification step, 
resulting in a skewed expression profile after hybridization onto the array. This produced a “cell 
number effect", which we demonstrate in Figure B4. We compared immune cells from NSLNs in 
patient BC#5 ANBLI, where 1.3 million immune cells were isolated, to another NSLN sample 
from the same individual, BC#5 ANOGI , which had a cell count of 0.2 million. The plots are 
similar to Figure B3 but they are much less centered around the red diagonal line, showing a 
large scale difference in the measurements of expression profile. It becomes clear that the 
difference is due to the “cell number effect” when we compare many more profiles and correlate 
the differences to cell counts. In particular, Figure B5 compares BC#5 ANBLI to BC#5 ANYLI, 
the latter of which has an even smaller immune cell count consisting of 0.05 million cells. As 
expected, the cell number effect produced even larger differences as shown by the scattered dots 
away from the red line. We have been very careful in using data from samples with small cell 
counts and our standard protocol calls for a cell count of 500,000 per NSLN sample for 
hybridization and analysis. 
 
4. Preliminary Results 
 
Gene set enrichment (GSEA) analysis: Upregulation of cell cycle checkpoint pathways and 
TGFβ pathway in lymph node compared to PBMCs. 
 
Gene set enrichment analysis (GSEA) was used to compare the gene expression pattern between 
PBMCs and TDLNs from breast cancer patients. GSEA is a computational method that 
determines whether an a priori defined set of genes shows statistically significant, concordant 
differences between two biological states. A total of fourteen gene sets are significantly 
upregulated in TDLNs compared to PBMCs at nominal p-value < 5%. Four out of fourteen gene 
sets are involved in cell cycle checkpoint pathways and the expression pattern of these genes is 
presented in the expression heatmap in Figure B6. Hierachical clustering separated PBMCs from 
TDLNs on the basis of the expression patterns of these genes. Several genes involved in these 
cell cycle checkpoints (ATM, CHEK1, WEE1, MYT1, PTC1) are required for checkpoint 
mediated cell cycle arrest in response to DNA damage or the presence of unreplicated DNA. 
These genes may also negatively regulate cell cycle progression during unperturbed cell cycles. 
It is plausible that these genes are part of the negative regulation loop which is upregulated upon 
clonal expansions of activated lymphocytes in breast cancer TDLNs. To resolve this issue, we 
are currently collecting non-cancer lymph nodes from gastrointestinal patients. Gene expression 
profiling for up to 50 non-cancer lymph nodes will be performed using the same approach as the 
breast cancer patients. This will enable us to compare the proliferation profile between breast 
cancer TDLNs and non-cancer reactive lymph nodes. 
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In addition, the TGFβ pathway is also upregulated in TDLNs compared to PBMCs (Figure B6). 
TGFβ has a well-established role in controlling T cell activation, proliferation, differentiation 
and survival. It inhibits T cell proliferation by blocking IL-2 and cyclins, hindering Th1 and Th2 
differentiation and downregulates cytotoxic T cell development. TGFβ is also required for the 
sustained expression of FoxP3, which controls the function of regulatory T cells (Tregs) and 
impedes non-regulatory T cell activation, proliferation and differentiation. Therefore, we 
hypothesize that the clonal expansion of lymphocytes in TDLNs is blunted and the cell cycle 
checkpoint regulators are upregulated by tumor cells or other suppressor cells, such as Tregs, to 
modulate anti-tumor immunity.   

 
CFSE-based proliferation assay: Blunted proliferative capacity of lymphocytes from TDLNs 
upon in vitro challenge 
 
We have developed a 9 color, 11 parameter flow cytometry panel to assess the proliferation 
capacity of immune cells. Thus far, we have assayed a total of 30 patient samples, which include 
immune cells from 20 tumor free lymph nodes, 7 tumor involving lymph nodes and 3 peripheral 
blood samples. We also assayed 7 peripheral blood samples from healthy donors as controls. 
Data show that lymphocytes from breast cancer lymph nodes (regardless of tumor involvement) 
have less capability to proliferate compared with lymphocytes from peripheral blood (Figure 
B7a), which is consistent with our microarray results. To determine whether the difference 
between proliferation capacities of lymphocytes from peripheral blood and lymph nodes is due to 
the different anatomical locations, we performed the CFSE-based proliferation assay on five 
C57BL/6J wild type mice and compared lymphocyte proliferation in mouse peripheral blood 
(PBL) and lymph nodes (LN). In C57BL/6J wild type mice, lymphocytes from PBL and LN 
showed similar proliferation capacity (Figure B7b). This suggests that lymphocytes from 
different anatomical compartment respond in similar magnitude upon in vitro stimulation. The 
proliferation data of breast cancer TDLN were stratified according to patients’ ER/PR/Her2 
status (Figure B7c), sentinel lymph node (SLN)/non-sentinel lymph node (NSLN) (Figure B7d) 
which showed no significant difference. Paired peripheral blood lymphocytes for these lymph 
node samples will be analyzed in a batch to increase the sample size and allow paired analysis of 
proliferation capability of lymphocytes in the same individuals.   
 
4-color IHC Staining: Decreased Ki67 expression in immune cells in breast cancer TDLNs 
compared to non-cancer patients 
 
The CFSE-based proliferation assay is to measure the proliferation capacity of cells upon in vitro 
challenge. In addition, we optimized a quadruple immunohistochemical (IHC) staining panel to 
assess the lymphocyte proliferation status in vivo. Ki67 is a proliferation marker expressed by 
proliferating cells in all phases of the active cell cycle (G1, S, G2 and M phase) and absent in 
resting (G0) cells. In addition to Ki67, we also selected a panel of antibodies directed against cell 
of interests: CD3 T cells, CD20 B cells, AE1/AE3 for tumor cells. Colors were developed using 
DAB for B cells, Ferangie blue for T cells, Vulcan red for Ki67, Bajoran purple for tumor cells 
and sections were counterstained with hematoxylin. Images are acquired using the automated 
imaging system (Olympus and Ludl) with NuanceTM. Acquired images are then analyzed with 
our custom image analysis software Gemident to identify and enumerate the following 
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phenotypes: T cells, B cells, tumor cells, Ki67+ T cells, Ki67+ B cells, Ki67+ tumor cells. The 
Ki67 positivity for each cell type is being compared in the following groups: 
 
1. breast cancer TDLNs and non-cancer reactive lymph nodes 
2. breast cancer TDLNs with different clinical outcome 
2. tumor free and tumor positive lymph nodes 
3. SLNs and NSLNs 
 
This will help to confirm the proliferation defect in breast cancer TDLNs and gain insight into 
the mechanisms involved.  
 
A total of 15 TDLN sections have been stained and data analysis is in progress. Preliminary data 
has shown a decreased Ki67 positivity in breast cancer TDLNs compared to reactive lymph 
nodes from non-cancer patients, indicating a perturbed proliferation immune response in breast 
cancer TDLNs. Remarkably, TDLNs from five patients showed less than ten Ki67 positive cells 
for the whole section regardless of tumor involvement. The clinical history of these patients 
showed recurrence, metastasis, and development of second primary tumor after their initial 
diagnosis. On the other hand, TDLNs from five disease free patients showed abundant Ki67 
positivity. Representative data is shown in Figure B8. Furthermore, we identified interesting 
Ki67 staining patterns of germinal center (GC) B cells in these Ki67 low patients. In reactive 
lymph nodes, most GC B cells are positive for Ki67, often clustering in the dark zone and 
surrounded by Ki67 negative B cells in the light zone. In four out of the five breast cancer 
TDLNs mentioned above, germinal center architecture is identifiable, however, Ki67 positivity is 
lost from these GC B cells indicating a quiescent or suppressed GC (Figure B9). Local Ki67 
positive cells are present in each of those sections to ensure this is not due to technical issues. 
None of the four disease free patients showed Ki67 negative germinal centers. 
 
We plan to further validate the current findings by performing quadruple Ki67 staining on a total 
of 20 disease free patients (5 years or 10 years) and 20 breast cancer patients with 
recurrence/metastasis/second primary tumor development. Ki67 positivity for these TDLN 
sections will be quantitated using GemIdent. The number of Ki67+ T cell, Ki67+ B cells, Ki67+ 
tumor cells will be normalized to the total number of each cell type to generate the percentage of 
proliferating T cells/B cells/tumor cells for each patient. Statistical comparison will be performed 
to correlate Ki67 positivity with clinical outcome. Quadruple Ki67 staining on 15 lymph nodes 
from non-cancer patients will also be performed to serve as control samples. 
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Figure B1. 

Figure B1. Sample Processing 
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Figure B2.  Dye swap pair plots for 8 representative samples from the same patient.  
Most of these plots show a characteristic curve due to dye effect, which will be corrected in our 
calibration step before an average profile is calculated for each pair.  
 
 
 
 
 

Figure B2. 
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Figure B3.  Normalization data from two representative samples.  
The horizontal and vertical axes each corresponds to one sample. (A) Comparison of normalized 
single-channel intensity values. (B) Comparison of normalized two-channel log-ratio values. (C) 
and (D) are rank transformed version of (A) and (B), respectively. Each plot is clearly centered 
around the red diagonal line. All plots are based on the same random sample of 3000 probes.  
 
 
 

Figure B3. 
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Figure B4. The cell number effect comparing 1.3 million immune cells to 0.2 million 
immune cells in NSLNs. 
The horizontal axis corresponds to a NSLN sample containing 1.3 million immune cells and the 
vertical axis corresponds to another NSLN sample from the same patient containing 0.2 million 
immune cells. (A) Comparison of normalized single-channel intensity values. (B) Comparison of
normalized two-channel log-ratio values. (C) and (D) are rank transformed version of (A) and 
(B), respectively. All plots are based on the same random sample of 3000 probes.  

Figure B4. 
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Figure B5. The cell number effect comparing fewer than 0.1 million immune cells to 1.3 
million immune cells in NSLNs. 
The horizontal axis corresponds to a NSLN sample containing 1.3 million immune cells and the 
vertical axis corresponds to another NSLN sample from the same patient containing 0.05 million 
immune cells. (A) Comparison of normalized single-channel intensity values. (B) Comparison of
normalized two-channel log-ratio values. (C) and (D) are rank transformed version of (A) and 
(B), respectively. All plots are based on the same random sample of 3000 probes.  
 
 
 

Figure B5. 
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Figure B6. Heatmap of pathways upregulated in TDLNs compared to PBMCs. 
Hierachical clustering separated PBMCs from TDLNs on the basis of the expression 
patterns of these genes. Red indicates higher gene expression and green indicates lower 
gene expression as illustrated in the legend. The biological significance of these pathways 
is listed below the heatmap.   
 

Figure B6. 
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Figure B7. CFSE-based proliferation assay.  
(a) Isolated immune cells were labeled with CFSE and stimulated with phorbol
esters/Ionomycin for 115hour. Cell divisions were analyzed by FACSAria and cell
proliferation analysis was performed by FlowJo. Proliferation capability of B cells, CD8
T cells, CD4 T cells for 7 healthy control blood samples (Ctrl PBMC), 3 patient blood
samples (BrCa PBMC), 20 tumor free lymph nodes (BrCa T- ALN), 7 tumor involving
lymph nodes (BrCa T+ ALN) are presented in separate scatter columns. Lymphocytes
from breast cancer lymph nodes (regardless of tumor involvement) have less capability to
proliferate compared with lymphocytes from peripheral blood. The p values were
generated by comparing PBMCs (control and patients) with ALNs (tumor free and tumor
involving) and are indicated in corresponding colors for B cells, CD8+ T cells and CD4+
T cells. Y axis indicates division index, the average number of divisions a cell has
undergone. Medians are indicated by the bar in each scatter column. (b) Lymphocyte
Proliferation in C57BL/6J wild type mouse. PBL: peripheral blood. LN: lymph node.
(c) Proliferation data stratified by sentinel lymph node (SLN) versus non-sentinel lymph
node (NSLN). (d) Proliferation data stratified by ER/PR/HER2 Status.  
 

Figure B7. 
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Figure B8. Immunohistochemial staining of Ki67 in lymph node sections.  
T cells: blue; B cells: brown; tumor cells: purple; Ki67 staining: red. The reactive lymph
node (A) showed high Ki67 positivity, especially in germinal center (Ki67+ T cells:
5.52%; Ki67+ B cells: 31.5%). A tumor-invaded lymph node section from the disease
free breast cancer patient (B) showing Ki67 positivity (Ki67+ T cells: 1.98%; Ki67+ B
cells: 0.05%).  Two TDLN sections from a recurrent patient are shown in C (tumor
invaded lymph node) and D (tumor free lymph node). For both sections, there are less
than five Ki67+ cells. Representative image for GemIdent to identify and enumerate cells
is presented in pseudocolor in E. T cells are indicated by blue membrane staining. B cells
are indicated by red membrane staining. Ki67 positivity is marked by green nuclear
staining.  

Figure B8. 
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Figure B9. Immunohistochemical patterns of Ki67 expression in B cells.  
The images were presented in pseudo-colors: Ki67-green nuclear, B cells-red membrane,
T cells-blue membrane.  In reactive lymph nodes (A and B), most germinal center (GC)
B cells are positive for Ki67, often clustered in the dark zone and surrounded by Ki67
negative B cells in the light zone. In breast cancer TDLNs, Ki67 positivity is lost from
GC B cells, indicating a quiescent or suppressed GC. Representative image is shown in
C. An example of Ki67 negative primary follicle (D) from breast cancer TDLNs was also
shown to illustrate the architecture difference between a primary follicle and secondary
follicle which contains a germinal center.   
 
 

Figure B9. 
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Personnel: Lee, Holmes, Johnson, Dirbas, Yu, Simons. A third PhD postdoctoral fellow with 
expertise in bioinformatics, data integration and analysis would greatly enhance the success 
of this project. 
 

C. Analyzing the geometric relationships and interactions between cancer and immune cells in tumors and 
TDLN 

 
Originally proposed in SOW: 
1. Generate high-resolution images of tumor and TDLN sections. (months 0-60) 
B. Develop algorithms to identify cells/cell types and assign coordinates. (months 0-60) 
2. Develop algorithms to assess the spatial arrangement and grouping of tumor and 
immune cells with respect to each other that may have biological significance. This will 
be done in collaboration with a Stanford mathematics professor, Dr. Doron Levy, using 
advanced image analysis and computational geometry techniques. (months 0-60) 
 
 

Archived samples of tumor and TDLN from breast cancer patients with 1-13 years of clinical 
follow-up data are being analyzed. Tumor and immune cell markers are identified via 
immunohistochemical (IHC), immunofluorescence (IF) staining, and in-situ hybridization (ISH). 
Images are being acquired using a high-resolution, automated imaging system (Olympus and 
Ludl) with a special spectral imaging system (NuanceTM). Acquired images are then analyzed 
with our custom image analysis software Gemident. This software uses spatial statistics and 
machine learning algorithms to identify cells, cell types, and assign coordinates. We are also 
developing algorithms to assess the spatial arrangement and grouping of tumor and immune 
cells. By performing in situ analysis of tissue, our goal is to understand the mechanisms of 
cancer development by characterizing the spatial interactions between cell types. This is done in 
collaboration with Stanford statistics professor, Dr. Susan Holmes, who has expertise in novel 
image analysis and computational geometry techniques. Over 50 immune and tumor markers 
will, eventually, be assessed within tumor and TDLN sections. 
 
Our key accomplishment in year 3 include optimization of 3- and 4-color IHC staining 
combinations to concurrently visualize breast cancer cells (via cytokeratin AE1/AE3) and 
various immune cells, such as CD4 and CD8 T cells, T-regulatory cells, mature and immature 
dendritic cells (DCs), and B cells within TDLN sections. Stained lymph node sections were 
scanned using a high-resolution, automated whole-section imaging system that is capable of un-
mixing different spectra resulting from various chromogens and reconstructing the image in 
pseudo colors chosen by the researcher (Figure C1).  
 
Another key accomplishment was the application of our new imaging system and custom image 
analysis software to quantify cell population size and analyze spatial relationships between 
various cell types in TDLN sections. All sub-images (200x magnification) that composed the 
whole lymph node section were analysed by our custom image analysis software, GemIdent, 
yielding a total number of cells for each stained phenotype and the Cartesian coordinates of each 
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cell identified. These data, collected via the multi-spectral approach and semi-automated features 
of the image acquisition and analysis tools, made various spatial statistical analyses possible.  
 
We first tested the usefulness of our new imaging technology and analysis approach to analyze 
the relationship between CD1a+ DCs, CD3+ T cells and tumor cells via AE1/AE3 cytokeratin in 
triple-stained TDLN sections from 40 breast cancer patients aged 29-76 years, treated at Stanford 
University Medical Center between September 1995 and June 2003. One to thirteen-year clinical 
follow-up data were available for 34 of these patients. Fifty-two TDLN samples were randomly 
chosen, in order to avoid a biased sample set. Twenty-five of these nodes were tumor-involved, 
and the remaining 27 were tumor-free. Control nodes were obtained from 17 non-cancer patients. 
By using our novel image acquisition and analysis strategy in combination with R statistical 
program (Bivand, R., et al, 2001), we could generate heatmaps of the density of different cell 
types on lymph node sections (Figure C2). Using spatial regression statistical analysis (Ullah, A., 
and Giles, D.E.A., 1998), we found that the number of DCs within a region can be predicted 
from the number of T cells or tumor cells in the same lymph node. Furthermore, Moran’s I 
spatial autocorrelation analysis (Moran, P.A., et al, 1948) showed that the degree of DC 
clustering in tumor-bordering regions correlated with disease-free survival (Figure C3). 
Representative images of low-versus-high DC clustering, imaged at 100x magnification from 
tumor-bordering regions of TDLNs from relapsed and disease-free patients are shown in Figure 
C4.  
 
At present, we have also analyzed 26 axillary non-sentinel lymph node (NSLN) sections (15 
tumor-positive and 11 tumor-negative) from 23 Stanford breast cancer patients, triple-stained 
using markers for T cells (CD3), B cells (CD20) and tumor cells (AE1/AE3 cytokeratin). One 
lymph node section per patient was analyzed from 23 of the patients, and two sections, a pair of 
tumor-positive and tumor-negative lymph nodes, were analyzed from each of the remaining 3 
patients. Control nodes from 15 non-cancer patients have also been analyzed. We aim to increase 
our population size to at least 50 breast cancer patients from Stanford for each IHC staining 
combination.  
 
Since all breast cancer patients included in our studies were adult females aged 29-76 year olds, 
and the non-cancer patients were males and females aged 1-70 year olds, we tested whether the 
age and gender differences affected the distribution of T and B cell proportions and ratios in the 
non-cancer samples. For these analyses, we divided the non-cancer patients into males and 
females, and into 2 age groups: 1-15 and 24-70 year olds, respectively.  The results showed no 
significant difference in T and B cell proportions, as well as T:B ratio between the two age and 
gender groups (Figure C5a and C5b, respectively). Therefore, we included lymph node samples 
from all of the non-cancer patients in our subsequent analyses. 
 
Our current result showed that B cell proportion was reduced in NSLNs from cancer patients, 
particularly in tumor-invaded lymph nodes (Figure C6a). The number of tumor cells was not 
included in the calculation of the total number of cells in tumor-positive NSLN sections to avoid 
distortion of numbers due to the large size of tumor cells. No significant difference was observed 
in the proportion of T cells from cancer patients compared to that from non-cancer patients 
(Figure C6b). We also observed a trend of increasing proportion of cell populations other than 
tumor, T or B cells in tumor-invaded NSLNs, although the difference is not significant (p>0.05) 
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between the three groups of lymph nodes based on the current sample size (Figure C7a). The 
trend observed is partially due to an increased formation of fibrous-like cells that formed scar 
tissues in-between clusters of tumor cells, known as a desmoplastic reaction in tumor-invaded 
LNs (Figure C7b). Furthermore, we observed a strong trend in the ratio of T:B cells which was 
higher in NSLNs from breast cancer patients compared to the ratio in non-cancer patients, 
particularly in tumor-positive NSLNs (Figure C8).  
 
To investigate whether the number of T cells and B cells could predict clinical outcomes, we 
divided our samples into those from disease-free (at least 3 years) and relapsed groups of 
patients. We found that the proportion of B cells in tumor-positive NSLNs was significantly 
lower than that in non-cancer LNs (Figure C9a). Although there is a general trend in the 
proportions of B cells were lower in all groups of NSLNs from breast cancer patients, the 
differences of values from groups other than the tumor-positive NSLNs were not significant 
compared to the non-cancers LNs. T cells’ proportion was found to be higher in tumor-negative 
NSLNs from relapsed patients compared to that from disease-free and non-cancer patients 
(Figure C9b). Although the trend in the T:B ratio was higher in NSLNs from relapsed patients 
than the ratio in LNs from disease-free and non-cancer patients, a significant difference was 
observed only between T:B ratio in tumor-negative NSLNs and in LNs from non-cancer patients 
(Figure C10).  
 
Our data showed that our novel technology is a powerful tool to study cell population sizes and 
spatial patterns between various cell types in tissue sections, and allows the investigation of the 
relationship between immunological profiles and clinical outcomes. In the near future, we plan to 
put together all the results obtained from our examination of tumor and immune cell populations 
in TDLNs to further investigate the mechanistic insights and propose novel mechanisms of 
immune dysfunction in cancer development. We also plan to explore any potential applications 
of specific immune cell profiles in TDLNs as novel prognostic tools for breast cancer.  
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Figure C1. Images of a TDLN cross section taken by NuanceTM at 200x
magnification.  
A, The RGB image. Chromogens used were Vulcan Fast Red (Ki67 (cell proliferation
marker), red), DAB (CD20(+)-B cells, brown), Ferangi Blue (CD3(+)-T cells, dark blue)
and Bajoran Purple (cytokeratin (tumor), purple). Cellular nuclei were counterstained
with hematoxylin (light blue). B, The reconstructed image with pseudo-colors that
allowed a greater distinction of the cell populations as compared to the original image.  

Figure C1. 
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Figure C2. Heatmap representation of the density of different cell types on lymph
nodes.  
High tumor density areas are represented by green contours, high T cell density areas are
represented by yellow and white contours, and the dendritic cells are represented by black
dots.  
 
 
 

Figure C2. 
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Figure C3. Moran’s I spatial autocorrelation analysis of dendritic cells. 
Dendritic cells in TDLNs from disease-free patients are more clustered compared to those
from relapsed patients. Standardized Moran’s I (y-axis) indicates the clustering index.
Disease-free (n=7) and relapse (n=4) groups are indicated by clinical outcome “0 =
disease free” and “1 = relapsed”, respectively. p = 0.02 between the two groups, as
determined by Student’s t-test.  
 
 

Figure C3. 
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Figure C4. Representative images of high versus low DCs clustering in TDLNs.
Images were taken at 100x magnification from mid-tumor density regions of TDLNs
from disease-free and relapsed patients, respectively. DCs: bright yellow; tumor cells:
red.   
 
 
 
 
 
 

Figure C4. 
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Figure C5. Comparison of the distribution and T:B ratio in different age and
genders  
Different age and gender did not affect the distribution of T and B cells proportions, and
T:B ratios in lymph node samples from non-cancer patients.  
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Figure 6. Comparisons of proportions of T and B cells. 
Comparisons of proportions of T and B cells in tumor-positive and tumor-negative
NSLNs from breast cancer patients, and in lymph nodes from non-cancer patients. A, B
cell proportions. *p=0.01, as determined by Mann-Whitney test. B, T cell proportions.   
 
 
 

Figure C6. 
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Figure C7. Proportion of “other cells” population increased in tumor-positive
NSLNs.  
A, Comparisons of proportions of other cells in tumor-positive and tumor-negative
NSLNs from breast cancer patients, and in lymph nodes from non-cancer patients. B,
Desmoplasia in tumor-invaded lymph nodes. Arrows indicate fibrous-like cells
commonly found between clusters of tumor cells (red membrane stains) in the lymph
nodes.   
 
 

Figure C7. 
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Figure C8. The ratio of T:B cells in breast cancer patients and healthy controls 
The ratio of T:B cells was higher in NSNs from breast cancer patients compared to the
ratio in non-cancer patients. *p=0.05; **p=0.09, as determined by Mann-Whitney test.  
 
 
 
 

 
 
Figure C9. Comparisons of proportions of T and B cells  
Comparisons of proportions of T and B cells in tumor-positive and tumor-negative
NSLNs from breast cancer patients with different clinical outcomes, and in lymph nodes
from non-cancer patients. Rel=relapsed; DF=disease free. A, B cell proportions.
*p=0.002. B, T cell proportions, *p<0.02 as determined by Mann-Whitney test.  
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Figure C10. The ratio of T:B  
The ratio of T:B cells was higher in NSLNs from relapsed cancer patients compared to
the ratio in disease-free and non-cancer patients. Rel=relapsed; DF=disease free.
*p=0.04, as determined by Mann-Whitney test.  
 
 
 
Personnel: Lee, Holmes, Schwartz, Setiadi, Holmes. 
 
 
 
D. Synthesizing a useful model of breast cancer through mathematical and computational 
modeling 
 

Originally proposed in SOW: 
To integrate our experimental data and observations into a mathematical model to address 
the dynamics of cancer cells and the immune response in the tumor and lymph node. This 
will ultimately enable us to perform in silico experiments to quickly test novel 
therapeutic strategies for breast cancer. 

 

To better understand the impact of the immune response to breast cancer, we are first developing 
a mathematical model for the dynamics of the primary T cell response.  The main focus of the 
model is on the T cell-mediated response and particularly on the function of adaptive regulatory 
T cells (iTregs).  In our model, we consider two paradigms for the expansion and contraction of 
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the T cell response: 1) T cells expand and contract based on a proliferation program that is 
determined early on during initial T cell stimulation and 2) T cell expansion proceeds in an 
antigen-dependent manner, but contraction is induced by the appearance of iTregs, which 
suppress activated T cells. 

 

We formulated mathematical models of both paradigms as systems of delay differential 
equations (DDEs), in which the time delays correspond to the duration of T cell divisions.  Each 
equation corresponds to a population of cells that contribute to the development of the overall T 
cell response.  In the models, we consider antigen-presenting cells (APCs), two types of T cells 
(conventional and regulatory), and antigen stimulation.  In addition, we separate the dynamics 
into two separate compartments, the lymph node and the tissue.  The motivation of this paper is 
to understand the mechanisms of immune regulation, whether primarily by intrinsic T cell 
programs or by external regulation via iTregs. 

 

In the paper, we compared the two modeling paradigms and concluded that the mechanism of 
regulation by T cell programs alone is not sufficient to explain the robustness of the immune 
response to highly variable initial conditions, in particular the potential variability of the 
precursor frequencies of antigen-specific T cells from patient to patient or even from day to day.  
In addition, we concluded that T cell dynamics regulated by the appearance of iTregs later during 
the course of the immune response leads to more robust and realistic dynamics.  Hence, we 
hypothesize that regulatory T cells, specifically iTregs that differentiate from stimulated effector 
cells, serve to control the duration and magnitude of the T cell response. 

 

This hypothesis implies that T cell responses are greatly limited in size and duration by the 
appearance of iTregs.  For this reason, even the addition of high antigenic stimulus or stimulation 
over an extended period of time does not significantly increase the efficacy of the T cell 
response.  These results imply that attempts to induce or enhance an anti-cancer T cell response 
in a patient must consider the potential impact of regulatory T cells on the efficacy of the 
vaccination strategy. 

 

Hence, we propose that T cell vaccines, particularly against cancer, must either be given at 
optimal time points to minimize the negative impact of regulatory T cells or that the 
differentiation and proliferation of regulatory T cells must be inhibited temporarily during the 
vaccination treatment. 
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Continuing on a previous paper investigating the dynamics of naturally-occurring regulatory T 
cells, our current model involving iTregs also shows that T cell dynamics proceed in two phases.  
In the first phase, CD8+ cells remain sequestered in the lymph node during a period of rapid 
proliferation.  During the second phase, the CD8+ population emigrates to the tissue, where it 
quickly destroys the target population.  Furthermore, the transition between the two phases is 
mediated by iTregs as also concluded in the previous study.   

 

During the emigration phase, regulatory cells suppress activity in the lymph node by suppressing 
activated T cells.  This change in environment causes the majority of T cells to stop dividing and 
start emigrating to the tissue, where they begin to destroy target cells.  Since iTregs appear later 
in the immune response, there is an adequate delay between the initiation of the conventional T 
cell response and the regulatory T cell response that allows conventional T cells to proliferate 
sufficiently before emigrating to the tissue.  Much later in the immune response, regulatory T 
cells in the lymph node also emigrate to the tissue and suppress the remaining T cells that are 
lingering after target elimination.  The two-phase process results in an effective immune 
response if the transition between phases occurs within an appropriate time window when the 
conventional T cells have expanded enough to be effective but not too much to potentially 
induce a collateral impact on normal tissue cells. 

 

Although normally functioning regulatory cells appropriately control the duration and magnitude 
of an immune response, in tumor microenvironments, the chronic presence of regulatory cells 
serves to weaken existing immune responses against tumor cells.  As a net step, we plan to 
incorporate tumor cells and the tumor microenvironment into our models of T cell dynamics. 
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Figure D1.  Time evolution of effector and iTreg populations over time. The peak of the iTreg 
response roughly coincides with the peak of the T cell response, but the iTreg response decays 
slower. 

 

 

                                                                      (b) 

Figure D2.  Log-log plots of the dependence of T cell dynamics on T0(0), the initial 
concentration of naïve T cells.  (a) Maximum T cell expansion level versus T0(0). The linear 
regression shows that the maximum expansion level is roughly proportional to T0(0)1/3. The 
linear correlation rcorr = 0.9987. (b) The time of T cell peak versus T0(0).  The linear correlation 
rcorr = −0.9984. 

 

Personnel: Lee, Levy, *Kim. *Kim was a PhD graduate student in mathematics who was 
involved in this project. He has completed his PhD and has moved on to a postdoctoral position 
at University of Utah, where he still collaborates on this project at no cost to the award. A third 
PhD postdoctoral fellow with expertise in bioinformatics, data integration and analysis 
would greatly enhance the success of this project. 
 

 

Overall Personnel 
1. Peter P. Lee, MD – project PI (50% effort on EHSA). 
2. Erich Schwartz, MD, PhD – Stanford Pathology (no salary requested on EHSA). 
3. Denise Johnson, MD and Fred Dirbas, MD – Stanford Surgical Oncology (no salary requested 
on EHSA). 
4. Susan Holmes, PhD – Stanford Statistics (1 month per year, as 33% of 3-month summer 
period). 
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5.  HongXiang Yu, PhD - post-doc 1, 100% effort on EHSA – immunological and microarray 
studies. 
6. Ning Yan, PhD - post-doc 2, 100% effort on EHSA – data analysis. 
7. Diana Simons - research assistant 1, 100% effort on EHSA – to aid in immunological, 
histology, and microarray studies. 
 

KEY RESEARCH ACCOMPLISHMENTS: 
 Recruited over 170 breast cancer patients into this study – acquired tumor, TDLN, and 

blood samples for analyses. 
 Optimized methods for analysis of fresh and archive samples by flow cytometry, function 

assays, and DNA microarray analysis to study immune and tumor cells within tumor and 
TDLN specimens. 

 Demonstrated a defect in IFN signaling in peripheral blood lymphocytes from breast 
cancer patients, melanoma patients, and GI patients. 

 Identified spatial patterns of breast cancer and immune (dendritic cells) within TDLNs 
which predict clinical outcome and may provide mechanistic insights. 

 Identified gene expression patterns within TDLNs which show blunted proliferation of 
immune cells and may lead to mechanistic insights. 

 
 
Outline of the project plan for the next 12 months 

o Continue recruiting patients into study and acquiring samples. 
o Continue functional assays of lymphocytes from tumor, TDLNs, and peripheral blood. 
o Complete microarray analysis of patient sample sets. Each set includes tumor cells, tumor 

infiltrating immune cells, immune cells from TDLN, and immune cells from blood. 
o Analyze IFN signaling in lymphocytes from TDLNs and tumor, as compared to those in 

peripheral blood. Determine extent of signaling abnormalities and potential mechanism 
of IFN signaling defect in breast cancer. 

 
 
REPORTABLE OUTCOMES: Three manuscripts arising from this work have been recently 
submitted for publication. 

1. Critchley-Thorne RJ, Simons DL, Yan N, Dirbas FM, Johnson DL, Swetter SM, Carlson RW, 
Fisher GA, Koong A, Holmes SP, Lee PP. Impaired Interferon Signaling is a Common Immune 
Defect in Human Cancer. Submitted. 

2. Kim PS, Lee PP, Levy D. Regulatory T Cells Produce a More Robust Primary T Cell 
Response. Submitted. 

3. Setiadi AF, Kohrt HB, Levic E, Johnson D, Schwartz E, Holmes SP, and Lee PP.  
Quantitative, Architectural Analysis of Tumor-Draining Lymph Nodes in Breast Cancer. 
Submitted. 
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CONCLUSIONS: 

In year 3, we built upon the foundation from the first two years of this award, and are making 
progress in multiple areas of this project. We now have an efficient system in place to recruit 
patients into this study and procure their samples. Limited numbers of subjects available and 
limited amounts of clinical materials available from each subject remain major challenges to the 
success of this project – we continually attempt to address and solve this issue by reducing the 
cell numbers that we need for each assay. We have developed a powerful set of immunological 
assays and molecular tools to study these samples in greater detail than previously possible. We 
continue to uncover dramatic changes in the immune cell populations within tumors, TDLNs, 
and peripheral blood from breast cancer patients. These findings are reported above, and have led 
to 3 manuscripts under review. We look forward in the coming year to build upon this 
momentum and specifically to elucidate insights into the immunobiology of breast cancer. In the 
coming year and beyond, we will begin to focus on translating our early findings into novel 
therapeutic strategies for the immunotherapy of breast cancer. 
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APPENDICES:  None at this time. 
 
SUPPORTING DATA: Tables and figures are integrated into the text above 
 

 
 


