
The Dissertation Committee for Stuart Andrew Stanton
certifies that this is the approved version of the following dissertation:

Finite Set Control Transcription for Optimal Control Applications

Committee:

Belinda G. Marchand, Supervisor

David G. Hull

Maruthi R. Akella

Cesar A. Ocampo

Christopher N. D’Souza

Finite Set Control Transcription for Optimal Control Applications

by

Stuart Andrew Stanton, B.S., S.M.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2009

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2009

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Finite Set Control Transcription for Optimal Control Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of Texas at Austin

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
The Department of the Air Force AFIT/ENEL WPAFB, OH 45433

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
CI09-0050

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

259

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

For my wife.

The views expressed in this article are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense,

or the U.S. Government.

Acknowledgments

It is a unique blessing to have had the opportunity to study at the University of

Texas at Austin for the last three years. I can’t think of a better Air Force assignment. I

thank God for all of the people that He has placed in my path to get me here and to allow

me to succeed while I’ve been here. This accomplishment is the result of His strength and

guidance.

I am extremely grateful to have been able to study under the world-class faculty at

UT. I have learned so much from the department’s professors, both inside and outside of

the classroom. A special thank you must go to my advisor, Belinda Marchand, for guiding

my research. It has been a truly rewarding experience to learn and discover under her

leadership. I am also thankful to the members of my committee: David Hull, Maruthi

Akella, Cesar Ocampo, and Chris D’Souza. Thank you for teaching me so much in the

classroom, for your time outside of the classroom, and for your support as this research

progressed.

Of course, I wouldn’t have been able to even come to UT without the help of so

many of my mentors within the Air Force community. My first mentor, Brig Gen Mike

DeLorenzo, not only opened the door for me to pursue this PhD, but also (and perhaps

more importantly) planted the Astronautics seed when I was 17 years old to pursue an Air

Force career in Space. Col Jack Anthony, Lt Col Jerry Sellers, and Lt Col Tim Sejba have

also been instrumental in shaping my career. It has been an honor to have been taken under

their wings over the last 13 years. I can’t express enough my appreciation for their efforts

and the opportunities they have given me.

iv

Most importantly, I must thank my family, as they are the ones that have to put up

with me on a daily basis. My wife deserves all of the credit for my successes. Her support

is unfailing, and her patience is unending. She continues to teach me the lessons that you

can’t learn in school, such as, how to be nice to people (I’m still learning!). I thank God

for bringing her into my life and for convincing her to marry me. Also, I must thank my

parents for their support from a distance as I continue my journey through life.

v

Finite Set Control Transcription for Optimal Control Applications

Stuart Andrew Stanton, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Belinda G. Marchand

An enhanced method in optimization rooted in direct collocation is formulated to

treat the finite set optimal control problem. This is motivated by applications in which

a hybrid dynamical system is subject to ordinary differential continuity constraints, but

control variables are contained within finite spaces. Resulting solutions display control dis-

continuities as variables switch between one feasible value to another. Solutions derived are

characterized as optimal switching schedules between feasible control values. The method-

ology allows control switches to be determined over a continuous spectrum, overcoming

many of the limitations associated with discretized solutions. Implementation details are

presented and several applications demonstrate the method’s utility and capability. Sim-

ple applications highlight the effectiveness of the methodology, while complicated dynamic

systems showcase its relevance. A key example considers the challenges associated with

libration point formations. Extensions are proposed for broader classes of hybrid systems.

vi

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Previous Work . 2

1.2 General Problem Statement . 4

1.3 Applications . 5

1.4 FSCT Method Overview . 7

1.5 Organization . 12

Chapter 2. Numerical Optimization Methods for Continuous Systems 15

2.1 Review of Optimal Control Theory Fundamentals 16

2.1.1 First-Order Optimality Conditions 17

2.2 Some Numerical Optimization Techniques 20

2.2.1 Derivative Techniques . 23

2.2.1.1 Gradient Technique for Unconstrained Problems 24

2.2.1.2 Newton-Raphson Technique and Beyond 25

2.2.2 Constrained Optimization . 28

2.3 Numerical Methods of Solving the Optimal Control Problem 29

2.3.1 Optimal Control Solutions via the Indirect Method 30

2.3.2 Optimal Control Solutions via Direct Methods 34

2.3.2.1 Point and Path Constraints 36

2.3.2.2 Continuity Constraints . 37

2.3.2.3 Characteristics of Collocation Methods 47

vii

2.3.2.4 Verifying the Optimality of Collocation Solutions 48

2.3.2.5 Using Direct Solutions to Supplement an Indirect Method . . 49

2.4 Example: The Zermelo Navigation Problem 50

2.4.1 Problem Statement and Description 50

2.4.2 Direct Approach . 51

2.4.3 Indirect Approach . 55

2.5 Summary . 58

Chapter 3. Transcription Formulations for the Finite Set Control Problem 61

3.1 Unique Formulation Characteristics . 62

3.1.1 Multiple Segments and Knots . 62

3.1.2 Switching Segments and Time for Multiple Independent Controls . . 72

3.2 Implementation of the Finite Set Control Transcription 79

3.2.1 The Optimization Parameters . 80

3.2.2 Dynamical Constraints Using Simpson Integration Equations 83

3.2.2.1 Partial Derivatives for the Simpson Integration Equations . . 85

3.2.2.2 Time Invariance . 88

3.2.2.3 Derivative Discontinuities for the Dynamical Constraints . . 88

3.2.3 Implementation of Numerical Derivatives 93

3.2.4 Other Constraints . 94

3.2.4.1 Initial States and Time . 94

3.2.4.2 Segment Continuity Between Knots 95

3.2.4.3 Time . 96

3.3 Summary . 97

Chapter 4. General Applications 98

4.1 Producing Effective Initial Guesses . 99

4.2 Two Stable Linear Systems . 101

4.2.1 Stability via Multiple Lyapunov Functions 102

4.2.2 Optimal Switching via FSCT Method 104

4.3 Lunar Lander . 109

4.3.1 Optimal Minimum-Time and Minimum-Acceleration Solutions 110

4.3.2 A Model Predictive Controller for Real-Time Implementation 115

viii

4.3.2.1 MPC Control Law . 116

4.3.2.2 A Comparison of MPC Performance 117

4.4 Small Spacecraft Attitude Control . 119

4.4.1 Low-Cost Cold Gas Thrusters: Fixed Thrust Attitude Control 123

4.4.2 Low-Cost Cold Gas Thrusters: Variable Thrust Attitude Control . . 129

4.5 Summary . 137

Chapter 5. Libration Point Formations 139

5.1 Motivation . 139

5.2 Problem Description . 142

5.2.1 CR3BP Equations of Motion and the Reference Orbit 142

5.2.1.1 Equations of Motion . 142

5.2.1.2 Reference Halo Orbit . 145

5.2.2 General Requirements for Interferometry Missions 147

5.2.2.1 Formation Constraints . 147

5.2.2.2 Spacecraft Orientation . 149

5.2.2.3 Spacecraft Design . 149

5.2.2.4 Control Constraints . 150

5.2.3 Objectives for the Libration Point Formation Problem 150

5.3 Unique Implementation Details . 152

5.3.1 Transcriptions with Multiple Dynamic Bodies 152

5.3.2 Splines for Data Available A Priori 154

5.3.2.1 Chief Spacecraft Position and Velocity 154

5.3.2.2 Deputy Spacecraft Pointing Direction 155

5.3.3 Scaling . 155

5.3.4 Objective Implementation . 156

5.3.4.1 Thrust . 157

5.3.4.2 Formation Size and Shape Deviation 157

5.3.4.3 Formation Plane Deviation 158

5.3.5 Constraint Implementation . 158

5.3.5.1 Final Formation Size and Shape 159

5.3.5.2 Final Formation Plane . 160

ix

5.3.5.3 Partial Derivatives for the Dynamics Function 161

5.4 Sample Solutions . 163

5.4.1 The Initial Guess . 164

5.4.2 Baseline Solution . 168

5.4.3 Varying Parameters to Obtain Different Solutions 170

5.5 Spacecraft Formation Pointing Survey . 172

5.5.1 Data Samples . 172

5.5.2 Pointing Survey: Formation Emphasis 174

5.5.3 Pointing Survey: Plane Emphasis . 176

5.5.4 Formation vs. Plane Emphasis Comparison 177

5.6 Summary . 179

Chapter 6. Extended Applications 181

6.1 Systems with Continuous Control Variables 182

6.1.1 Relaxing Constraints for Continuous Control Variables 184

6.1.2 Example: Zermelo Navigation . 185

6.2 Systems with Discrete State Variables . 187

6.3 Systems Bound by Partial Differential Equations 188

6.4 Summary . 193

Chapter 7. Conclusions 195

Appendices 199

Appendix A. A Model Predictive Controller for Real-Time Implementa-
tion 200

A.1 Linear Discrete-Time Model . 200

A.2 Control Law Derivation . 202

A.3 Extension to the Hybrid Control System . 205

Appendix B. Background for Libration Point Formation Missions 207

B.1 Previous Work Towards Libration Point Formations 207

B.1.1 Earth Orbiting Formations . 210

B.1.2 Libration Point Trajectories and Formations 212

x

B.2 Dynamical Description . 214

B.2.1 Circular Restricted 3-Body Problem 215

B.2.1.1 Dimensionalized vs. Nondimensionalized Equations 216

B.2.1.2 Libration Points and Some Natural Trajectories 217

B.2.1.3 Accuracy of the CR3BP Equations of Motion 218

B.2.2 Ephemeris Model . 220

B.2.3 Pros and Cons of the Two Models . 221

B.3 Challenges and Sensitivities for Libration Point Formations 221

B.3.1 Tracking a Nominal Trajectory with an Unconstrained Control Scheme 222

B.3.1.1 Lyapunov-Based Controller 223

B.3.2 Current Capability of Propulsive Technology 226

B.3.3 Addressing the Discrepancy Between Desired (Unconstrained) and Fea-
sible (Constrained) Controls . 229

B.3.3.1 Variable Thrust Through Gimballing 231

B.3.3.2 Finite Burn Control Solutions 233

Bibliography 235

Vita 245

xi

List of Tables

2.1 Direct Solutions with 20 Nodes and 40 Nodes 54

3.1 Nomenclature Summary: Multiple Segment Formulation 65

3.2 Nomenclature Summary: Multiple Independent Control Formulation 76

3.3 Segment Dependencies for Analytic and Numerical (Forward Differencing)
Derivatives . 91

4.1 Physical Characteristics for a Micro-Satellite 122

5.1 Comparison of Solutions with Various Parameters 171

5.2 Weight Distribution for Two Pointing Surveys 173

B.1 Thruster Technologies Against Spacecraft Size Estimates 228

xii

List of Figures

1.1 The Parameters of x . 10

2.1 Categories of Optimization Algorithms . 20

2.2 Iterative Path from Initial Guess, x0, to Final Solution, xf 26

2.3 The Zermelo Navigation Problem . 51

2.4 Optimal Path (a) and Control (b) for the Zermelo Problem 53

2.5 Geometric Interpretations of Equation 2.31 57

2.6 Uniformly Spaced and LGL Spaced Interpolating Functions for r(t) with 10
nodes (a) and 20 nodes (b) . 59

3.1 An Example of Segments and Knots at Two Consecutive Iterations 64

3.2 Optimal Path (a) and Control (b) for the Minimum Acceleration Zermelo
Problem . 70

3.3 Conceptual Control Profile with Segment Divisions at Two Consecutive It-
erations . 77

3.4 Effects of Alternative Derivative Definitions on Optimization Path 90

3.5 Sample Four-Knot Sequence . 91

4.1 Individually Stable Systems . 102

4.2 Two Switching Laws . 103

4.3 Minimum Lyapunov Function Switching Law 105

4.4 FSCT Locally Optimal Switching Trajectories 108

4.5 Optimal Solutions for the Minimum-Time and Minimum-Acceleration Lunar
Lander Problem . 112

4.6 Scenario Resulting in Multiple Optimal Solutions 115

4.7 Model Predictive Controller Simulations for the Lunar Lander 118

4.8 Micro-Satellite Illustration . 120

4.9 Fixed Thrust Propulsion . 123

4.10 Fixed Thrust Attitude Control . 128

4.11 A Variable Amplitude Thruster Nozzle . 130

xiii

4.12 Variable Thrust Attitude Control . 135

4.13 FSCT Variable Thrust Attitude Control Torque vs. Unconstrained Attitude
Control Torque . 136

5.1 Implementing a Continuous Control Solution with Finite Burns 141

5.2 CR3BP Frame . 143

5.3 Reference Halo Orbit for Chief Spacecraft with Origin at L1 146

5.4 Formation Pointing . 148

5.5 Baseline Initial Guess . 166

5.6 Feasible Initial Guess . 167

5.7 Baseline Solution . 169

5.8 Formation Emphasis: Comparison of 26, 98, 290 Points 175

5.9 Plane Emphasis: Comparison of 26, 98, 290 Points 175

5.10 Formation vs. Plane Emphasis: Scaling for Formation Emphasis 178

5.11 Formation vs. Plane Emphasis: Scaling for Plane Emphasis 179

6.1 Traffic Flow Problem: Four Lanes, Two Intersections 191

B.1 TPF Interferometer Candidate Formations: Linear DCB and X-Array . . . 209

B.2 Planetary Accelerations for the Collinear Libration Points for 2008 219

B.3 Lyapunov-Based Controller for an Arbitrary Libration Point Trajectory . . 225

B.4 Niches for Current Thruster Technology . 227

B.5 Two Thruster Configurations . 231

B.6 Thruster Gimballing . 232

xiv

Chapter 1

Introduction

Prevalent in many engineering fields are systems composed of interdependent con-

tinuous and discrete components. A physical system that describes an object’s position or

temperature, for example, necessarily involves continuous variables, using differential equa-

tions to express their time-varying characteristics. However, what if a digital computer or

human decision-making were involved in the process? At some level, some variables are

reduced to a finite set of feasible values (such as ‘0’ and ‘1’ for the digital computer). In

some cases, their values may be controlled; otherwise, relational equations may express their

values as a function of the other continuous or discrete variables.

Systems that incorporate both continuous and discrete dynamical elements are

termed hybrid control systems.1 These systems have gained the interest of researchers due

to the challenging aspects of their dual structure. Although strictly continuous and strictly

discrete control methods exist, many of these techniques are not designed to address prob-

lems involving hybrid systems, particularly regarding stability and optimality. The hybrid

control problem is the focus of this investigation; specifically, a new method is developed

for the determination of the continuous and discrete control variables that affect a hybrid

system. In the present formulation, the objective is to determine the optimal values for

discrete control variables constrained to a finite set. Dependent continuous variables are

included, and extensions for independent continuous variables are also considered.

The current study presents a method that effectively treats the finite set control

problem. Solutions derived using this method are characterized as optimal switching sched-

1

ules, representing control histories contained in finite sets of feasible control values. The

optimal control problem is transcribed into a parameter optimization problem, and the solu-

tion is subsequently determined using an existing Nonlinear Programming (NLP) algorithm,

such as SNOPT2 (hereafter, called the optimizer).

The Finite Set Control Transcription (FSCT) method is essentially a formulation of

the finite set optimal control problem as a parameterized nonlinear programming problem.

The structure is unique among other collocation methods, but it is flexible enough to treat

a large set of problems. This study is devoted to developing the methodology for gener-

ating an appropriate formulation for any applicable hybrid control problem. In addition,

the capability and utility of the method are further explored by demonstrating a range of

applications. In so doing, the scope of the method is characterized, ideally inspiring ad-

ditional applications outside those presented here. However, most applications presented

in this investigation focus on aerospace systems, as these represent the initial motivation

behind the development of the FSCT method.

1.1 Previous Work

Research in the subject of hybrid systems is still fairly new to the control and com-

puter science communities. Although direct references are available as early as 1966,3 the

field has gained far more interest in the last twenty years. Researchers have explored system

modeling, structure, stability analysis, optimality, and the associated control methods for

hybrid systems.

It is difficult to categorize all of these efforts, as they seem to approach the subject

from a number of different perspectives. Applications are apparent in medical diagnos-

tics, psychology, education, economy, management, and sociology, as well as many of the

various engineering disciplines.4 Each field brings its own background, motivations, and

2

terminology, and efforts to unify the subject are important additions to the available liter-

ature.1

Hybrid systems theory is sometimes employed to accurately model complex dynam-

ical systems. These are sometimes termed fuzzy systems because of the ‘fuzzy’ boundaries

in ‘if-then’ type relations included in the dynamics. Subsequently, studies in hybrid control

have led to rule-based control methods. Other designs use artificial neural networks, ge-

netic algorithms, or combinations thereof for analysis.4,5 Indeed, an actual biological neural

network is an example of such a hybrid system, where neurons fire electric pulses only when

its inputs’ sum exceeds a threshold.

System stability is another area of emphasis for hybrid systems. Stability anal-

ysis assists the designer in identifying stable control laws for hybrid systems, just as for

continuous and discrete systems. In the case of a hybrid system, the focus is often on

switched systems, where a switching variable is used to indicate the system mode or dy-

namics vector field governing the system at a given time. It is observed that in most cases,

researchers consider a single switching variable when performing analysis. Using different

Lyapunov-like functions for each system mode, for example, conditions for stability can be

obtained, leading to switching strategies based on the Lyapunov-like functions and/or their

time derivatives.6–8 Lagrange stability is analyzed via iterated function systems theory.9

Cases with more than one discrete component are less common in the literature and

usually appear for more specialized cases, such as those involving linear systems and/or a

limited number of variables.10,11 Some methods capitalize on similar theory as the single

discrete variable case, while others extend to other methodologies. For example, power

and water systems design and control may rely on a combination of genetic algorithms

and linear programming.5 Other nonlinear systems employ optimal control strategies

involving a generalized Bellman equation, impulse control, and linear programming.1,12

3

Classical optimal control theory is also used to address, at least, the continuous aspects of

a problem.13,14

The solution process presented in this study relies on numerical optimization tech-

niques rooted in sequential quadratic programming. The associated background is presented

later, in Chapter 2. However, the key element of the FSCT method is ultimately the gen-

eralized formulation developed during the course of this study.

1.2 General Problem Statement

The hybrid system under consideration for this investigation is governed by the

dynamics

ẏ = f(t,y,u), (1.1)

where the vector, y ∈ Rny , represents continuous state variables,

y =
[
y1 · · · yny

]T
,

yi ∈ C1,
(1.2)

and u consists of nu control elements limited to finite values as

u = [u1 · · · unu]
T ,

ui ∈ Ui = {ũi,1, . . . , ũi,mi} .
(1.3)

The function, f , describes the continuous variation of the states in terms of time, t, and

the present values for each state and control.1 Each control variable, ui, can take on mi

possible values which define the set Ui. The total number of control combinations is

m̄ =
nu∏

i=1

mi.

1Provided a time-explicit control, u = u(t), and an initial state definition, y0, at some initial time, t0,
it is possible to express the states explicitly with time as y = y(t). Likewise, the state derivatives may be
expressed as ẏ = ẏ(t). For simplicity in Equation 1.1 and throughout this work, the explicit time-dependence
in y, u, and ẏ is assumed.

4

Thus, the control effort, at any given time, is determined by identifying one of the m̄ control

variable combinations that define u.

At first glance, this formulation appears to limit the method to a specific class of

hybrid systems: all states are presented as continuous and all controls are discrete. Thus,

systems with discrete states or continuous controls are apparently excluded. However, the

FSCT method can be tailored to include continuous state and control variables within y and,

likewise, discrete states and controls in u to allow for a more general treatment of hybrid

systems. The necessary adjustments, however, may be specific to the given system. These

considerations are addressed in Chapter 6. It is also observed that many control variables

traditionally modeled as continuous may be more accurately described by a combination

of continuous dynamic states and discrete controls. This characteristic is demonstrated

by example in Chapter 4. Thus, the formulation of Equations 1.1-1.3 is not necessarily

restrictive. For continuity and clarity, in this study the term state implies a continuous

variable, while control, a discrete one.

1.3 Applications

Although processes exist in nature that are accurately modeled with only

continuously-varying dynamics, it is often the case that some level of decision-making occurs

in the process. The decision is made by any number of sources, from natural to man-made

technologies, but it is clear that the selection is among a discrete number of options. Thus,

a hybrid system results, exhibiting continuously-varying and discretely-chosen components.

It is observed in the literature that this often takes on a hierachical structure, where contin-

uous or time-driven dynamics exist at the lower levels and discrete or event-driven dynamics

exist at the higher levels.1,13

To motivate the following development, it is worthwhile to consider some general

application areas where the FSCT method is useful. Certainly, systems involving hysteresis,

5

collisions, or transmissions are hybrid in nature and can benefit from FSCT analysis.1 Some

additional applications are presented here.

Fixed Thrust Aerospace Systems

The genesis of this investigation is attributed to libration point interferometery

missions such as TPF15,16 and MAXIM,17 which require precision tracking of spacecraft

formations while maintaining fixed vehicle orientations. If translational control is limited

to fixed thrust actuation in specified thrust directions, a discrete control problem results.

In this case, decision variables exist for each translational thruster, and control is limited

to two values per variable, indicating ‘on’ or ‘off.’ Spacecraft positions and velocities are

continuously varying states whose dynamics are directly affected by the finite set controls.

A similarly structured problem considers spacecraft attitude control with fixed mag-

nitude reaction jets. Again, control variables indicate the on-off status for thrusters, and

spacecraft orientation and angular velocities are modeled as states with differential dynam-

ics.

Operations Analysis

Operations analysis applications exist for optimizing task scheduling and resource

allocation. As an example, consider a resource (such as a person’s time) that can be applied

to a number of different operations, either in series or parallel. A control variable is assigned

to each operation, and its value indicates whether the resource is applied to it or not. The

dynamics of each operation may be affected by each control value. In this example, the

control variables can only take on a finite set of values, but the system is still continuous

in time and in state dynamics.

6

Constrained Optimal Control Systems as Hybrid Systems

The subject of constrained optimal control is relevant to many engineering fields,

from aerospace to industrial applications. Constraints may exist on both state and control

variables, as point or path constraints. Often, control constraints represent actuator satu-

ration, and these are treated by bounding control variables with a minimum and maximum

value. Generally, control solutions are acceptable as long as the variables remain within

the continuous spectrum between the bounds. Depending on the cost to be minimized, an

optimal control history may likely exhibit ‘bang-bang’ control behavior, switching between

minimum and maximum values. If this control behavior is assumed a priori, a continuous

(but constrained) optimal control problem may be treated as a finite set control problem,

where the finite set consists of each control’s extremal values.

1.4 FSCT Method Overview

The Finite Set Control Transcription is a formulation of the hybrid optimal control

problem as a parameter optimization problem that can be solved using a standard optimizer.

The following overview is intended to provide a basic description of the methodology. The

optimization techniques employed and a complete development of the methodology are

presented in Chapters 2 and 3 to follow. Note that, although the method demonstrated

here is rooted in direct collocation, alternative formulations exist that capitalize on the

structure of indirect or direct shooting methods.

In the most basic sense, a transcription formulation seeks to convert the optimal

control problem defined by an objective,

Minimize J = φ(t0,y0, tf ,yf) +
∫ tf

t0

L(t,y,u) dt (1.4)

7

subject to Equation 1.1 and
0 = ψ0(t0,y0),
0 = ψf (tf ,yf),
0 = β(t,y,u).

(1.5)

into an NLP problem of the form,

Minimize F (x) (1.6)

subject to

c(x) =
[
cTẏ (x) cTψ0

(x) cTψf (x) cTβ (x)
]T

= 0. (1.7)

Ultimately, x must contain the information necessary to express y(t) and u(t) for t ∈ [t0 tf].

In the resulting NLP problem, an initial guess for x is iterated until arriving at a feasible

and locally optimal set of values. Note that each problem has a cost function to minimize as

well as constraints for the dynamics, initial and final conditions, and any path constraints

imposed on the system. In the above problem definitions, all constraints are presented

as equalities, however, extensions certainly exist for inequality constraints, as well. The

nature of the transcription formulation dictates both the definition of the parameter vector,

x, and the number and forms of the constraint functions in c(x) in the resulting parameter

optimization problem.

Consider the following definition of the parameter vector used for an optimization

with the FSCT method.

x = [· · · yi,j,k · · · · · · ∆ti,k · · · t0 tf]
T (1.8)

The vector, x, contains parameters that represent states, yi,j,k, and times ∆ti,k, t0, and tf .

One of the key features of this parameterization is that control variables are not among

the parameters to be optimized. This is unusual: most collocation and direct shooting

methods optimize parameters that directly represent control variables. However, in this

case, a unique parameterization is necessary since the controls are discrete variables, while

8

the elements of x, by the nature of nonlinear programming, are necessarily treated as

continuous variables (although perhaps bounded and subject to constraints). However, in

this case, a control history is completely defined by the time elements in the parameter

vector.

Let the trajectory defined from initial time, t0, to final time, tf , be broken up into

ns segments. The interior separation times between segments are termed knots. These

represent instances of time when the discrete control variables switch from one feasible

value to another. Suppose each control variable is allowed nk switches between t0 and tf .

The result is that ns = nunk + 1, and each control is held constant over each segment.

Define nn as the number of nodes per segment. A node is a point in time at which

the values of the state variables are contained within the parameter vector. Specifically,

element yi,j,k in Equation 1.8 represents the ith state at the jth node of the kth segment.

Then, x contains nynnns elements pertaining to all of the states at each node. These state

values are used directly in the cost and constraint Equations 1.6 and 1.7.

The elements ∆ti,k in x indicate the elapsed time between two control switches for a

given control variable. Specifically, ∆ti,k indicates the amount of time that passes between

the control switches at the (k − 1)th and kth knots for the ith control variable.

The values for each ui are pre-specified between each switching point. Thus, u∗i,k

indicates the pre-specified value of the ith control variable before the kth knot. With a

discrete number of feasible values, it is possible to set nk large enough such that each

possible control value is designated as the actual control value for some duration. During

the optimization, the values of ∆ti,k are determined, indicating the amount of time (possibly,

zero) that each control value is maintained.

The transcription definition is best interpreted with a visualization, such as Figure

1.1. In this conceptualization, consider the hybrid control problem with ny = 2 states and

9

1

2

3

1

2

-1

1

-1

1

-1

y1

y2

Seg.

u1

u2

t
t0 tf

ny = 2

nu = 2

nn = 4

nk = 5

ns = 11

∆t1,1 ∆t1,2 ∆t1,3 ∆t1,4 ∆t1,5 ∆t1,6

∆t2,1 ∆t2,2 ∆t2,3∆t2,4 ∆t2,5 ∆t2,6

1 2 3 4 5 6 7 8 9 10 11

Figure 1.1: The Parameters of x

nu = 2 controls, where

U1 = {1, 2, 3},

U2 = {−1, 1}.

Next, assume the transcription is selected such that nn = 4 nodes per segment and nk = 5

switching points per control variable. Thus, the number of segments is ns = (2)(5)+1 = 11

segments.

It is apparent from Figure 1.1 that each control variable may take up to nk + 1 = 6

different values over the trajectory duration. Arbitrarily, the control values are pre-specified

so that each control variable systematically switches between the feasible values for that

variable. Note that some feasible control values may not be members of the optimal solution.

10

However, through iteration, the time durations between switching points are optimized. If

one of the pre-specified control values is unnecessary or non-optimal, then the value of the

respective time duration is reduced to zero.

Figure 1.1 further illustrates that the node distribution is not necessarily uniform

over the interval [t0 tf]. The duration of each segment is dictated by the current values of

∆ti,k. The nn = 4 nodes per segment are evenly distributed over a segment, but for shorter

segments, this means a closer spacing between nodes. Thus, the state values contained in

x may pertain to dense or sparse regions, depending on the time parameters in x.

It is also important to note that two nodes are associated with a given knot: the

terminal node from the preceding segment and the initial node from the following segment.

Therefore, in this parameterization, two sets of state values are contained in x for the

times at each knot. For a feasible solution, continuous state variables exhibit identical

values at simultaneous nodes. Constraints in c(x) are included to enforce continuity across

segments. Of course, these constraints are not always satisfied on intermediate iterations

of the solution process. For example, in Figure 1.1, the continuity constraints for y2 are

not all met. Subsequently, this x does not represent a feasible solution. During the FSCT

optimization process, elements of x are updated to ensure that, upon completion, the

continuity constraints are satisfied.

Additional constraints are included in c(x) to ensure that

0 = tf − t0 −
nk+1∑

k=1

∆ti,k, i = 1, . . . , nu.

Also, at all times, ∆ti,k ≥ 0 so that there are no negative time intervals.

By pre-specifying the control values, a collocation transcription results in which

control switching times are optimized to indicate an optimal control history over all of the

feasible control values. Multiple control variables are easily managed and treated indepen-

dently. The control variables for a given segment subsequently affect the hybrid system

11

dynamics, and they are included in appropriate constraint equations for that segment. As

the optimizer searches for a feasible and locally optimal set of parameters, the state values

are modified at each node so that, upon completion, the state and control histories represent

a matching, feasible trajectory.

The total number of feasible values for a control variable, mi, significantly affects

the choice of nk, the number of switching points allowed over the trajectory. Clearly, when

nk À max(mi), it is possible to pre-specify each control value over several time durations,

allowing more flexibility in the resulting NLP problem and a greater likelihood to converge

on a small local minimum. However, as nk gets larger, the sizes of x and c(x) also increase,

a feature that may complicate or slow down the optimization process. This characteristic

indicates the primary limitation of the FSCT method. In order to perform an optimization,

a user must specify nk, thus limiting the number of control switches to some maximum

value.

1.5 Organization

This effort is organized as follows.

• Chapter 2: Numerical Optimization Methods for Continuous Systems The

theory of optimal control and numerical optimization for continuous systems is re-

viewed to establish a relevant background. Some common numerical methods for

solving optimal control problems are surveyed to justify the approach selected for this

investigation.

• Chapter 3: Transcription Formulations for the Finite Set Control Problem

The FSCT method is presented in detail including arguments that explain its success.

The development starts from the context of continuous systems, introducing a tradi-

tional collocation transcription method first. Next, modifications and enhancements

12

are incrementally applied to the method to treat the discrete characteristics of finite

set control. Subsequently, many of the unique implementation issues are addressed,

focused primarily on the considerations associated with switching dependencies.

• Chapter 4: General Applications A series of applications is presented that is

designed to demonstrate the capability of the FSCT method. Results are compared

with those produced using alternative hybrid control methods to articulate particular

advantages or ways in which multiple methods can be used in tandem.

– The stability of a switched linear system is considered. In each control mode, the

system is stable, but certain switching structures result in instability. The FSCT

method is contrasted with a technique involving Multiple Lypunov Functions.

– Minimum-time and minimum-acceleration optimizations for a simple system in

two dimensions is presented. An FSCT optimal solution is implemented by a

real-time Model Predictive Control law.

– Attitude control for a small spacecraft using inexpensive cold-gas thruster tech-

nology is explored. The FSCT method is used for trajectory tracking with fixed

thrust and variable thrust dynamic schemes.

• Chapter 5: The Libration Point Formation Due to the extreme sensitivity of the

dynamical regime near the Sun-Earth/Moon libration points, unconstrained control

laws in this regime can require thrust levels below the limits of the technology presently

available, according to several studies focused on reducing lower performance bounds

on thrusters.18–22 The combination of these conditions constrain actuators to either

thrust at their lower limits or not at all. This results in control solutions characterized

by a switching schedule that can be optimized. A survey is conducted to determine

the feasibility of precision formation keeping during interferometry mission phases for

a sample three-spacecraft formation.

13

• Chapter 6: Extended Applications The limitations imposed by the general prob-

lem statement of Section 1.2 are addressed. Processes are described for transforming

different classes of hybrid control problems to conform to the FSCT formulation. Con-

tinuous controls, discrete states, and partial differential state equations are considered.

• Chapter 7: Conclusions The results of the investigation are summarized. Sugges-

tions are provided for areas in which future work may expand the results obtained in

the current effort.

Additional references are included in the form of an appendix.

• Appendix A: Model Predictive Control for the Hybrid System A more com-

plete development of a traditional model predictive controller is presented to demon-

strate how the concepts can be applied to the finite set control problem.

• Appendix B: Previous Work Towards Libration Point Formations A sum-

mary of other investigations into the feasibility of libration point formations provides

context for Chapter 5.

14

Chapter 2

Numerical Optimization Methods for Continuous Systems

Although the focus of this investigation is on hybrid control problems, the methodol-

ogy presented here results from extending the existing methodologies for solving continuous

optimal control problems. This comes from the observation that many hybrid systems can

be formulated as constrained continuous systems. Thus, the fundamental background for

this research is the theory and numerical methods of continuous optimal control. This chap-

ter, then, focuses strictly on continuous systems. Extensions to hybrid control are presented

in the next chapter.

The methodology employed in this study is rooted in direct collocation, one of the

many numerical optimization methods of transcribing an optimal control problem into a

parameter optimization problem. This chapter develops the general methods employed to

arrive at the solutions to optimization problems. This provides context for the collocation

fundamentals, with the intent of justifying its employment over some of its more popular

competitors. To that end, this chapter is broken into four parts. A brief review of the

analytical theory of optimal control is first presented, as it is necessary for the rest of the

discussion. However, numerical optimization techniques are ultimately necessary due to

the generalized complexity of most problems of interest, complexities that often render the

analytical approach infeasible. The theory of numerical optimimization is addressed in the

second part of this chapter. The third part examines the various methods of transform-

ing the optimal control problem into a form suitable for implementation in a numerical

approach. In this section, the major advantages and disadvantages of various optimiza-

tion methods are compared. Finally, a classical example illustrates the methods available

15

and their salient characteristics. This demonstration leads to the conclusion that direct

collocation serves as the best framework for the remainder of this investigation.

2.1 Review of Optimal Control Theory Fundamentals

The history and theory of optimal control is treated in many places, such as

Hull,23 Bryson and Ho,24 and Kirk.25 The scope of this work does not include an in-depth

development of the theory, so it is assumed that the reader is at least familiar with the

subject. However, since the fundamentals of the theory are the foundation of the present

analysis, the basic concepts are reviewed briefly here.

Consider a general optimal control problem presented in the form of Bolza.23 The

objective is to determine the control history, u(t), which minimizes the cost function,

J = φ(t0,y0, tf ,yf) +
∫ tf

t0

L(t,y,u) dt, (1.4)

where t0 is the initial time, tf is the final time, y ∈ Rny denotes the state vector, u ∈ Rnu

represents the control vector, y0 = y(t0), and yf = y(tf). The optimal solution must

satisfy the vector dynamical constraint,

ẏ = f(t,y,u), (1.1)

as well as the constraints,
0 = ψ0(t0,y0),
0 = ψf (tf ,yf),
0 = β(t,y,u).

(1.5)

Here, ψ0 ∈ Rnψ0 is a vector of initial conditions, ψf ∈ Rnψf denotes the terminal constraints,

and β ∈ Rnβ represents the path constraints imposed over all t ∈ [t0 tf]. Note, though all the

constraints presented here are formulated as equality constraints, that is not a necessary

restriction. Extensions are available to accommodate inequality constraints as well. For

example, any inequality constraint, c̃ ≤ 0, can be converted into an equality constraint,

16

c = 0, with the use of a slack variable:23

c = c̃ + α2 = 0.

In this case, the slack variable, α, is treated as a control parameter. If c̃ is satisfied along

the boundary, α = 0.

Many variations of the Bolza problem exist. For example, by augmenting the state

vector, the problem may be manipulated into Mayer form, where the cost is only a function

of φ (L = 0). In addition, it is possible to include constant parameters that must also

be determined in the solution. However, the form presented in Equation 1.4 sufficiently

envelopes the problems addressed in this work, and thus it is employed from here on.

2.1.1 First-Order Optimality Conditions

The conditions of optimality for the problem described above are derived via the

Method of Lagrange. Simply stated, the constraints are adjoined to the cost function

with Lagrange multipliers. An extremum is found by setting to zero the differential of the

resulting augmented cost function. This describes a point or arc where the gradient of the

cost function is normal to the constraints imposed. The augmented cost function, described

by J̃, is defined as

J̃ = G(t0,y0, tf ,yf ,ν0,νf) +
∫ tf

t0

(
H(t,y,u,λ,µ)− λT ẏ)

dt, (2.1)

where

G(t0,y0, tf ,yf ,ν0,νf) = φ(t0,y0, tf ,yf) + νT0ψ0(t0,y0) + νTf ψf (tf ,yf), (2.2)

H(t,y,u,λ,µ) = L(t,y,u) + λTf(t,y,u) + µTβ(t,y,u), (2.3)

and ν0, νf , λ, and µ are Lagrange multipliers associated with the initial and final endpoint

constraints, differential constraints, and path constraints, respectively. The set λ, associated

17

with the differential state equations, are also termed the costates, as each time varying

costate corresponds to a state. Note that the Lagrange multipliers associated with point

constraints are constant, but those associated with the time-varying differential and path

constraints are time-varying. Along any feasible trajectory (that is, a trajectory where the

constraints are satisfied), the cost function and the augmented cost function are identical.

The first differential of the augmented performance index is

dJ̃ = Gt0dt0 + Gy0
dy0 + Gtfdtf + Gyfdyf + Gν0dν0 + Gνfdνf +

[(
H − λT ẏ)

dt
]tf
t0

+
∫ tf

t0

(
Hyδy + Huδu+ Hλδλ+ Hµδµ− δλT ẏ − λT δẏ

)
dt. (2.4)

In Equation 2.4, the subscripts of the form (·)x are shorthand for the partial derivatives,
∂(·)
∂x . The differential is simplified by observing that

Gν0 = ψT0 = 0T ,

Gνf = ψTf = 0T ,

Hλ = fT ,

Hµ = βT = 0T ,

resulting in several cancelations. In addition, integration by parts is performed on the term
∫
−λT δẏ dt =

[−λT δy
]
+

∫
λ̇
T
δy dt

to substitute δẏ with δy throughout. The resulting form of the differential is,

dJ̃ = Gt0dt0 + Gy0
dy0 + Gtfdtf + Gyfdyf +

[(
H − λT ẏ)

dt
]tf
t0
− [
λT δy

]tf
t0

+
∫ tf

t0

((
Hy + λ̇

T
)

δy + Huδu
)

dt (2.5)

= (Gt0 −H0) dt0 +
(
Gy0

+ λT0
)
dy0 +

(
Gtf + Hf

)
dtf +

(
Gyf − λTf

)
dyf

+
∫ tf

t0

((
Hy + λ̇

T
)

δy + Huδu
)

dt. (2.6)

18

The steps taken between Equations 2.5 and 2.6 involve the relationship between the variation

and the partial

dy = δy + ẏdt.

At an extremum, the differential in Equation 2.6 must equal zero. Thus, the coefficients

in front of each independent differential or variation must be zero. Because of the path

constraint, β, though, the variations δu are not all independent. However, it is possible to

choose the values of µ such that the coefficients in front of the dependent variations of u

equal zero. Then, all of the coefficients in Equation 2.6 must be zero, and this leads to the

set of first-order differential equations for an extremum, the Euler-Lagrange equations,

ẏ = f(t,y,u),
λ̇ = −HT

y (t,y,u,λ,µ),
0 = HT

u (t,y,u,λ,µ),
(2.7)

and the boundary conditions,

ψ0 = 0, ψf = 0, β = 0,

H0 = Gt0 , Hf = −Gtf ,

λ0 = −GT
y0

, λf = GT
yf

.
(2.8)

The conditions presented in Equations 2.7 and 2.8 completely describe the optimal

solution to the Bolza problem. Unfortunately, these equations are mostly useful in deter-

mining analytical solutions to only the simplest of optimization problems. For moderate to

complex problems, numerical optimization methods are often the most common approach

in the identification of an optimal solution.

For the discussion that follows, assume a distinction between ‘techniques’ and ‘meth-

ods’. The term technique is used in this context to indicate a process for solving a function

minimization problem. Note, however, that the optimal control problem is one of func-

tional minimization, as the cost function in Equation 1.4 depends on other functions. The

term method, then, implies the process of converting the functional minimization problem

into a function minimization problem. Numerical methods are the focus of Section 2.3 and

beyond. First, however, consider the techniques available for optimizing a function.

19

Optimization

continuousdiscrete

unconstrained

constrained

global

local

static

dynamic

trial &
error

function

single

multiple

parameter
random

minimum
seeking

Figure 2.1: Categories of Optimization Algorithms 26

2.2 Some Numerical Optimization Techniques

The process of identifying a solution to an optimization problem may benefit from

a variety of existing techniques. It is outside the scope of this study to examine all

of them closely. Even classifying them is a challenge, as there are so many character-

istics to consider that identify any technique. Figure 2.2 illustrates one possible clas-

sification, where various optimization algorithms are broken into non-mutually exclusive

branches.26 Each of the branches indicates a significant characteristic, and the techniques

available to solve each category vary accordingly.

Consider, for example, the limb that branches to either discrete or continuous pa-

rameter optimization. In the context of optimal control of hybrid systems, this is perhaps

the most important distinction to make among the various techniques. Without techniques

that can treat both discrete and continuous parameters in a simple, concise manner, nu-

merical optimization of hybrid systems must begin from either a discrete or continuous

20

technique. The greatest subsequent effort is in determining how to treat the other type of

element once a specific branch of techniques is selected (i.e. how to treat discrete variables

using a continuous technique, or vice versa).

This investigation, again, begins from the continuous control problem presented

in Section 2.1. Consequently, a continuous technique is selected. However, it is impor-

tant to note that discrete techniques, such as integer programming, combinatorial

algorithms,27,28 or dynamic programming,29 have all been employed by others to treat the

discrete components of hybrid problems.

In addition, it is reasonable to limit consideration to those techniques that minimize

tractable functions with multiple static parameters. Assume that the function minimization

problem can always be expressed as a cost in the form

J = F (x). (2.9)

The parameters, x ∈ Rn, are constants to be determined, and the solution is a static

point in n-dimensional space. These limitations reduce the pool of numerical techniques

significantly, leaving two more branches in Figure 2.2 to consider.

One branch distinguishes global techniques from local techniques. For example, an

exhaustive search is a global technique that requires a sampling of the cost function over

the entire domain. To evaluate a sufficient sampling of the solution space in most cases

is extremely time consuming and certainly inefficient. Genetic algorithms,26 modeling the

natural selection process, have the ability to jump out of local minima in favor of a global

minimum. Formulations for continuous or discrete parameters are possible, and genetic

algorithms have been used previously on hybrid systems.4,5

Alternatively, this analysis favors local techniques, which generally outperform ge-

netic algorithms when the analytic cost function is well-behaved. Local techniques examine

21

the vicinity of a current iterative point to determine how to select the next point. Some

common local techniques for unconstrained minimization are listed below.

• Quadratic programming algorithms are effective in determining the minimum for con-

vex quadradic cost functions.

• Non-derivative techniques, like the simplex technique, seek to determine a ‘downhill’

direction without the evaluation of derivatives. For example, by examining the values

of the cost function at the nearby vertices of an (n + 1)-gon, an update is made by

replacing the highest value vertex with a new point.

• First order derivative techniques require smooth functions (in order to evaluate deriva-

tives) and move a nonoptimal point downhill until it reaches a local minimum. The

gradient or steepest descent technique simply evaluates the slope of the cost function

at the current point and moves to the next point along the path where the slope is

steepest.

• Local techniques using second order derivatives are quite popular. For example, the

Newton-Raphson 30 technique applies the properties of a quadratic function to deter-

mine an update direction to move to the next point. It is applicable for all smooth

nonlinear functions and is guaranteed to reach the minimum of a quadratic function

in n iterations.

The efficiency, robustness, and maturity of the derivative techniques motivate their

use in solving optimal control problems from here on. They can easily be implemented

in the case of unconstrained optimization, and well-developed algorithms are available for

their implementation with constraints formulated as the functions,

c(x) = 0,

c̃(x) ≤ 0.

22

The discussion continues with a review of both first and second derivative techniques,

with formulations for addressing constraints in function minimization.

2.2.1 Derivative Techniques

Consider a general unconstrained parameter optimization problem, where Equation

2.9 is the nonlinear cost function to be minimized. The optimal values of x are those

than minimize F (x). The basic optimization process is to perform an iteration on x until

a locally optimal point is determined. Thus, from any arbitrary set of values for x, the

objective is to determine the update, ∆x, such that

F (x+ ∆x) < F (x).

Therefore, on each iteration, x is updated and the cost is reduced. On the pth iteration,

xp+1 = xp+∆xp. The process continues to iterate on x until either |F (xp+1)− F (xp)| < ε

or ‖xp+1 − xp‖ = ‖∆xp‖ < ε for some sufficiently small ε > 0.

Assuming that n > 1, the update, ∆x = αd, consists of two parts: a direction and

a magnitude. From the current value of x, a candidate search direction, d, is determined,

and a positive value for α is computed. Thus, the point x is updated, during each iteration,

by computing the change in x as a positve step α along the search direction d. Techniques

are primarily identified by how d is determined. Once d is known, the optimal value of

α is determined. The search for the optimal α may benefit from any number of simple

one-dimensional search algorithms. Although the various line searches available for this

operation are not discussed here, in a general sense F (x + αd) is evaluated for different

values of α until the minimizing value (to tolerance) is determined.

It is relevant, however, to develop some techniques for determining the update di-

rection, d. The Gradient and the Newton-Raphson techniques represent first and second

order derivative techniques, respectively, and are both discussed below.

23

2.2.1.1 Gradient Technique for Unconstrained Problems

The Gradient technique, as its name implies, defines ∆x according to the gradient

of the function to be minimized. It is a first order method, as it is derived from the first

order approximation of the Taylor series.

F (x+ dx) = F (x) + Fx(x)dx+ ... (2.10)

Consider a minor optimization problem, solved on each iteration to determine ∆x

to maximize improvement. For this technique, the minor problem originates from the linear

function defined by truncating Equation 2.10 after the second term.

J = F (x+ ∆x)− F (x) = Fx(x)∆x

Note that the greatest improvement on x results when J is minimized with respect to ∆x.

For the linear function in ∆x, as long as the update direction is along a negative slope, then

the larger the magnitude, the smaller value of J . Since the purpose of the linearization is

to determine the search direction for the nonlinear function, let α = 1 temporarily, and fix

the magnitude of the search direction such that ‖d‖ = a > 0. This becomes

J = F (x+ d)− F (x) = Fx(x)d,

subject to

dTd = a2.

Minimizing J with respect to d can be interpreted as the best improvement on the lin-

earized approximation for a given step size, a. If the step size is added as a constraint, then

the augmented minor cost function is

J̃ = Fx(x)d+ λ
(
dTd− a2

)
.

24

By setting J̃d = 0T and J̃λ = 0, the update is derived:

d = −a
F T

x (x)
‖F T

x (x)‖ .

Since a is arbitrary, let it be equal to ‖F T
x (x)‖ so that

d = −F T
x (x),

∆x = αd = −αF T
x (x).

Thus, the gradient F T
x (x) indicates the step direction and α the step size. The step direction

is defined by the gradient of the function at the current point, and it represents a move in

the direction of steepest descent. Note for the linear approximation, the step is guaranteed

to be downhill. That is,

J = −αFx(x)F T
x (x) ≤ 0

for α > 0. Therefore, if α is small enough such that the linearization of Equation 2.10 is

accurate, then the update is guaranteed to improve the current cost.

A demonstration of the Gradient technique is illustrated in Figure 2.2, which depicts

a contour of F (x) along with the path of x after several updates. At a given point, the

update moves the point along the direction of steepest descent as far as possible. Where

the line of the update direction is tangent to the contour of F (x), α is optimized. For

the next iteration, the update direction is necessarily perpendicular to the previous update

direction. Therefore, the Gradient technique guides the point to the minimum through a

series of 90 degree turns along the contours until tolerance is achieved.

2.2.1.2 Newton-Raphson Technique and Beyond

The Newton-Raphson technique uses the Taylor Series approximation to the cost

function with three terms.

F (x+ dx) = F (x) + Fx(x)dx+
1
2
dxTFxx(x)dx+ ...

25

F (x) = x2
1 + 1

2x
2
2 x0

xf

Figure 2.2: Iterative Path from Initial Guess, x0, to Final Solution, xf

As with the Gradient technique, the search direction, d, is determined through the minor

optimization problem, seeking to maximize the improvement on the cost function on the

current iteration. Again, assume temporarily that α = 1 so that the minor optimization

variable is the search direction,

J = F (x+ ∆x)− F (x) = F (x+ d)− F (x) = Fx(x)d+
1
2
dTFxx(x)d.

The objective remains to minimize J with respect to d. While the Gradient technique

requires a constraint on the magnitude of d, this minimization can remain unconstrained

because of the quadratic form of the cost function. Under the assumption that the second

derivative Hessian, Fxx(x) > 0 (positive definite), a minimum on J can be determined.

Thus, taking the derivative with respect to d and setting it equal to zero,

Jd = Fx(x) + dTFxx(x) = 0,

d = −F−1
xx (x)F T

x (x). (2.11)

26

Equation 2.11 represents the optimal update (magnitude and direction) for a quadratic

cost function (that is, ∆x = d). With a higher-order or nonlinear cost function, then,

this update direction is employed, but the best magnitude for α is determined with the

one-dimensional line search. Thus, in general, the Newton-Raphson update is

∆x = αd = −αF−1
xx (x)F T

x (x). (2.12)

Although it is generally much faster than the Gradient technique, two significant

drawbacks to the Newton-Raphson technique exist. First, as seen in Equation 2.12, the

Hessian inverse must be calculated. For higher-dimensional optimization problems, a formal

calculation of the inverse may be costly. Consequently, it is recommended to use less time

consuming methods for solving the linear equation,

Fxx(x)d = −F T
x (x).

In addition, it is possible for a higher-order or nonlinear cost function to have a non-positive

definite Hessian at the current point of x, even when the cost function contains a minimum.

In this case, a common practice is to use a Gradient technique until the Hessian becomes

positive definite. (Near the minimum, the Hessian is necessarily positive definite.)

Significant theoretical work has gone into improving upon the Newton-Raphson it-

eration. More efficient ways of updating the Hessian matrix have been discovered so that it

does not have to be directly calculated on each iteration. Variable metric or quasi-Newton

techniques comprise those that follow the basic update of Equation 2.12 with creative Hes-

sian updates, ∆Fxx. Notable among these are the Davidon-Fletcher-Powell and Broyden-

Fletcher-Shanno-Goldfarb update algorithms.31,32 Most current nonlinear programming al-

gorithms employ one of these Hessian update procedures to increase the efficiency of the

algorithm.

27

2.2.2 Constrained Optimization

Consider the constrained problem, where Equation 2.9 is subject to equality and

inequality constraints, respectively,

ci(x) = 0, i = 1, . . . , nc,

c̃j(x) ≤ 0, j = 1, . . . , nc̃.

One way of determining the solution to this optimization problem is to convert it into

an unconstrained problem and use one of the treatments described above. A generalized

approach to accomplish this, one that accommodates all forms of constraints, involves the

use of penalty functions. For example, define positive weights, w and w̃, and modify the

cost function to:

J̃ = F (x) +
nc∑

i=1

wi |ci|+
nc̃∑

j=1

w̃j max{0, c̃j}.

In this formulation, penalties are applied to any of the unsatisfied constraint equations,

according to the weights. Although the minimum of this function is also the minimum of

the unpenalized function when the constraints are met, careful consideration must go into

the initial guess and the values of the weights to ensure that the optimization algorithm

does not settle on a local minimum that does not satisfy the constraints.

A more commonly used approach to constrained optimization is sequential

quadratic programming (SQP). Define the augmented cost function, also known as the

Lagrangian, as

J̃ = L(x,η) = F (x) + ηT
[
c
c̃

]
.

At each iteration, a quasi-Newton algorithm is used to approximate the Hessian matrix of

the Lagrangian function, Lxx. Then, a minor optimization problem is derived from the

quadratic approximation of the Lagrangian,

J = L(x+ d)− L(x) = Lx(x)d+
1
2
dTLxx(x)d,

28

with linearized constraints

(ci)x d+ ci = 0, i = 1, . . . , nc,

(c̃j)x d+ c̃ ≤ 0, j = 1, . . . , nc̃.

The minor optimization problem is a quadratic programming problem in d. Note that it

is similar in form to the second order unconstrained minor problem. The only differences

are that the quadratic, J , is an approximation of the augmented cost function, instead

of an unconstrained cost function, and that there are now linear equality and inequality

constraints. With the new constraints, an analytic solution for d is no longer available, but a

solution can generally be found easily using an iterative quadratic programming algorithm.

The method receives its title in that, on every major iteration (which determines α

and d), a minor optimization is solved with quadratic programming. As it turns out, this is

an efficient way of solving the constrained problem. Often, SQP algorithms can converge on

a constrained problem even quicker than on an unconstrained problem, as the constraints

serve to limit the solution search space.

2.3 Numerical Methods of Solving the Optimal Control Problem

The techniques described above treat constrained and unconstrained function min-

imization problems to determine an optimal point, x. The optimal control problem of

Equations 1.4, 1.1, and 1.5, however, seeks a minimum function, u(t). Thus, to use the

techniques described above, it is necessary to determine a method for transforming the

optimal control problem into a function minimization problem. A problem in x must be

devised, such that the n parameters represent, in some way, the information necessary to

identify the constants and time-varying states, controls, and Lagrange multipliers of the

optimal control problem. The method determines the form of the equality and inequality

constraints c(x) and c̃(x), as well as the optimizing function, F (x).

29

Many methods exist for reformulating the optimal control problem so that it may

be implemented using a standard NLP technique. The number of parameters required can

vary greatly across methods. Each method, of course, has its advantages and disadvantages.

For a given problem, the most suitable method is sought. In this section, several methods

are outlined and contrasted, through an example, to identify a method suitable for the

applications explored in this investigation.

The methods for transforming an optimal control problem, in preparation for the

subsequent numerical solution process, fall into one of two categories: indirect and direct.

One distinction between the two categories is that indirect methods rely heavily on the the-

ory presented in Section 2.1, while direct methods take a more ‘brute force’ approach. The

direct methods are classified further based on how the differential constraints are imposed.

Explicit integration, implicit integration, and spectral (differencing) methods are discussed

here.

The performance of each method can be characterized by the accuracy of the nu-

merical solution as compared to an analytic solution, the ease of convergence, the speed

of convergence, robustness to initial guesses, and so on. In some cases, the problem may

dictate the appropriate method to use, depending on which of these characteristics is more

important.

2.3.1 Optimal Control Solutions via the Indirect Method

An indirect method of solving the optimal control problem employs the analytical

results derived in Section 2.1.1. All optimal control problems can be reformulated into a

two-point boundary value problem (BVP) in y and λ, and an indirect method attempts to

solve the BVP numerically.

30

Consider again the Euler-Lagrange conditions,

ẏ = f(t,y,u),
λ̇ = −HT

y (t,y,u,λ,µ),
0 = HT

u (t,y,u,λ,µ),
(2.7)

and the boundary conditions,

ψ0 = 0, ψf = 0, β = 0,

H0 = Gt0 , Hf = −Gtf ,

λ0 = −GT
y0

, λf = GT
yf

.
(2.8)

Recall that the path constraint Lagrange multipliers, µ, are chosen to make Hui = 0 for

all controls, i = 1, . . . , nu. Then, as a minimum, µ is known as a function of t, y, and λ.

Thus, with the equations β = 0 and Hu = 0T , it is possible to determine the control law,

u = u(t,y,λ),

and the control input can be completely eliminated from the equations. Subsequently,

an augmented state vector may be defined as z =
[
yT λT

]T
. Note that the differential

equations describing the augmented states are of the form ż = ż(t,z):

ż =
[
ẏ

λ̇

]
=

[
f (t,y,u(t,y,λ))

−HT
y (t,y,u(t,y,λ),λ,µ(t,y,λ))

]
=

[
ẏ(t, z)
λ̇(t,z)

]
.

Along with the remaining boundary conditions, the result is a two-point BVP on [t0 tf].

The BVP can be implemented into a numerical algorithm. As an illustrative exam-

ple, consider the case where the initial and final values of the states and time are specified.

That is,

ψ0 =
[
y0 − y∗0
t0 − t∗0

]
= 0,

ψf =
[
yf − y∗f
tf − t∗f

]
= 0.

The corresponding Lagrange multipliers for the endpoints are ν0 =
[
νTy0

νt0

]T
and νf =

[
νTyf νtf

]T
. In this case, the remaining boundary conditions for the costates are λ0 = −νy0

31

and λf = νyf , which are both unknown. Thus, half of the initial conditions, z0, and half

of the final conditions, zf , are known. All that is left is to define an initial guess for λ0,

integrate ż forward in time from t0 to tf , and continue to iterate on λ0 until the integrated

values of yf match the specified values, y∗f .

This can be expressed using a shooting function, g, where

yf = g(λ0),

and the values of y∗0, t∗0, and t∗f are embedded into g in order to perform the integration

of the augmented states. Previously, the numerical techniques formulate the problem as a

cost index, J = F (x), subject to constraints, c(x) = 0. Let the constraint equations be

defined as

c(x) = g(x)− y∗f .

Then the parameters to be optimized in x are simply the initial values of the costates, λ0,

and the size of the problem is simply n = ny.

The problem set up is complete even though F (x) is not defined. Note that the

optimization has already been accomplished, since the first order conditions of optimality are

intrinsically satisfied through the integration of ż. The numerical technique is only necessary

for determining the values of x that satisfy the constraints. When that is accomplished,

both y and λ are known as a function of time, and the control, u(t,y,λ), can be extracted.

The process just described is sometimes called shooting. Essentially, the guessed

initial values are shot to the final time, and then modifications are made to the initial values

through iteration until the constraints are satisfied. In this work, this method is specified

as indirect shooting to distinguish it from a method to be described below. Obviously,

this indirect shooting example is only for a fixed time problem with initial and final states

specified. However, the concept is the same for different sets of initial and final conditions,

32

and the parameters that go into x vary from problem to problem, along with the constraints

that must be satisfied.

Characteristics of Indirect Optimization

Because this process employs the Euler-Lagrange equations derived from variational

calculus, one expects the solution obtained from an indirect method to be the exact optimal

solution, if one is available. Thus, solutions obtained through indirect methods are more

accurate than those acquired through the use of direct methods.

One drawback to indirect shooting originates from the need to supply an initial

guess for the Lagrange multipliers. Thus, the convergence of the numerical algorithm is

dependent upon a priori insight into the behavior of the costates, an aspect of the problem

that is generally non-intuitive. Although some costates for certain problems might have

physical significance, it is very difficult to guess their initial values within a reasonable level

of accuracy. In addition, the costates are generally quite unstable. Small changes to their

initial values often produce large changes over their integration. This sensitivity makes

it difficult for a numerical algorithm to converge on the correct values. Thus, the user is

generally responsible for identifying a reasonably accurate initial guess for the parameters,

although this may not be possible for every problem.

Additionally, the above demonstration implies that the formulation of the BVP is

significantly altered whenever the boundary conditions are changed. Certainly, a different

dynamic model or cost function requires the formulation to be modified. However, even

the simplest change to the boundary conditions implies a change of potentially both input

and output arguments of g. This characteristic, by itself, is a potential deterrent when a

generalized methodology is desired.

33

2.3.2 Optimal Control Solutions via Direct Methods

As an alternative, direct methods do not require insight into the Lagrange mul-

tipliers, as the Euler-Lagrange equations are not applied explicitly. There is an intuitive

appeal here; actually, limited understanding of optimal control theory is required to solve

a problem. At the most basic level, all direct methods attempt to discretize the problem of

Equations 1.4, 1.1, and 1.5 in order to produce parameters that the numerical techniques

can optimize.

The most simple implementation of this is direct shooting. Here, a continuous op-

timal control problem is transcribed into a parameter optimization problem where the pa-

rameters are simply the control values at specified (or derived) points in time. Definitions

of F and c are derived in order to represent the cost function and constraints of the optimal

control problem in terms of the control values (which will necessarily dictate the states) .

Similar to indirect shooting, a function is generated that shoots the initial conditions to the

final conditions,

yf = g(u),

and is used in F and c. The concept is intuitive: if the objective is to determine an optimal

control, let the optimization parameters be the control values.

Discretize the problem in time at nn different places, called nodes, associated with

times, tj , j = 1, . . . , nn. Then the parameters to optimize represent the values of the

controls at those times.

x = [u1(t0) · · · ui(tj) · · · unu(tf)]
T .

If the discretized times are assumed to be uniformly spaced over the interval [t0 tf], then

tj = t0 +
j − 1
nn − 1

(tf − t0) . (2.13)

34

If the initial and final times are free in the optimal control problem, then t0 and tf are

included as optimization parameters in x. In this case, the number of required parameters

becomes

n = nunn + 2

where nu is the dimension of the control, nn is the number of nodes, and two parameters

are designated for the unspecified initial and final times. Upon each iteration, the current

control values are explicitly integrated from the specified initial states and time to the

current final time. Then, the cost index and constraint conditions are evaluated in order to

choose a search direction to improve their values according to the numerical technique.

With direct shooting, insight into the costates is not required. Instead, only a

guess for the terminal times and the control values at the nodes is required to initiate an

optimization algorithm. The associated values of the states are derived through explicit

integration.

One may take advantage of available insight regarding the ‘shape’ of the trajectory

by modifying a direct shooting scheme to multiple direct shooting. The shape of a trajectory

refers to the physical states. By including as parameters the values of the states at some of

the node points, the states need only be integrated between parameterized state values. At

each iteration, the integrated states are compared to current values of the parameterized

states; the difference is called the residual. For each state that is included as a parameter,

a constraint equation is generated to allow the optimizer to drive residual errors to zero,

resulting in a smooth trajectory when all constraints are satisfied to tolerance. As a limiting

case, states can be parameterized at each of the nodes where the controls are parameterized.

Consider a parameter vector containing each of the states and controls at the nodes,

along with the initial and final time.

x =
[
y1(t0) · · · yi(tj) · · · yny(tf) u1(t0) · · · ui(tj) · · · unu(tf) t0 tf

]T (2.14)

35

State variables, control variables, and time are all represented in this parameterization so

that cost and constraint functions in terms of x can easily be derived to represent the optimal

control problem. Depending on how the constraints are defined, this parameterization goes

by several names. It is used in the limiting case of multiple direct shooting, but it is also used

for collocation (or implicit integration methods) and for spectral methods (or differencing

methods).

Under this parameterization, the number of parameters is potentially much greater

than for both indirect and direct shooting. The parameter vector in Equation 2.14 is of

dimension

n = (ny + nu)nn + 2,

indicating the number of parameters that are optimized by the NLP algorithm.

The parameters thus defined as in Equation 2.14, the cost and constraint functions

can be defined in terms of x. The vector constraint equation, c(x) = 0, accounts for the

initial, final, path, and dynamical constraints. Specifically, let c(x) be decomposed as

c(x) =
[
cTψ0

(x) cTψf (x) cTβ (x) cTẏ (x)
]T

. (2.15)

Each of the elements of Equation 2.15 is defined next. The first three sets of constraints

are straightforward, and the rules outlined here apply for all of the methods using this

parameterization. Enforcing the dynamical (i.e. continuity) constraints, on the other hand,

requires further consideration.

2.3.2.1 Point and Path Constraints

Recall the initial, final, and path conditions as

0 = ψ0(t0,y0),
0 = ψf (tf ,yf),
0 = β(t,y,u).

(1.5)

36

The objective is to generate equations in x that represent these conditions. For the initial

and final conditions, however, the arguments of ψ0 and ψf are contained within the pa-

rameter vector since the first node is the initial point and the last node is the final point.

Therefore, the initial and final constraints translate directly, as

cψ0(x) = ψ0(t0,y(t0)),

cψf (x) = ψf (tf ,y(tf)),

where cψ0 contributes nψ0 constraints and cψf contributes nψf constraints.

The path constraint, β, is enforced continuously for all t ∈ [t0 tf]. With a parame-

terized set of states, controls, and times, a logical way of implementing a path constraint is

at each node individually. The nβ path constraints are imposed at each of the nodes, such

that

cβj = β(tj ,y(tj),u(tj)),

cβ =
[
cTβ1

· · · cTβnn
]T

.

This leads to nβnn path constraints. Note that, in this formulation, the path constraints

are not necessarily enforced between the nodes. This is easily resolved, for example, by

selecting a representative number of nodes in the transcription. Making nn large limits the

spacing between nodes and increases the number of path constraints. As nn → ∞, the

constraints of cβ approach the continuous path constraints β.

2.3.2.2 Continuity Constraints

In this section, the dynamical constraints of Equation 1.1 are transcribed into equa-

tions of the form

cẏ(x) = 0.

The presence of dynamical constraints is the most important distinction between an optimal

control problem and a parameter optimization problem. Thus, in the conversion process,

37

identifying the dynamical constraints is the central characteristic of the transcription. The

literature cites many different forms; some of them are compared here. In this study, the

methods are divided into integration methods and differencing methods. The integration

methods are further divided between explicit and implicit integration methods; the differ-

encing methods are sometimes known as spectral methods.

Consider momentarily the one-dimensional equation, ẏ = f(t, y). If h = tj+1 − tj

defines the spacing between two nodes, then the first order explicit (Euler) integration

formula is defined as

yj+1 = yj + hf(tj , yj), (2.16)

where yj = y(tj). This can also be written as

0 = yj+1 − yj − hf(tj , yj), (2.17)

a more convenient form when the formula is employed as a dynamical constraint. Rear-

ranging Equation 2.16, one arrives at the first order forward differencing equation:

yj+1 − yj
h

= f(tj , yj),

which can also be rewritten as

0 =
yj+1 − yj

h
− f(tj , yj). (2.18)

Equations 2.17 and 2.18 are essentially the same equation, scaled by h. Thus, to first order,

integration and differencing are quite similar. The methods diverge as the order of accuracy

increases, but on a basic level the concept is the same. In order to establish constraints to

represent Equation 1.1, sets of equations like those in Equations 2.17 and 2.18 are imposed

at each of the nodes.

38

Note also that a similar relation exists between the first order implicit integration

formula and the first order backward differencing equation:

yj+1 = yj + hf(tj+1, yj+1), (2.19)
yj+1 − yj

h
= f(tj+1, yj+1).

In Equation 2.19, yj+1 appears on both sides of the equation, and iteration is required to

arrive at its proper value. This is the primary distinction between implicit and explicit

integration. It can be shown that the implicit methods are more accurate for a given order

(that is, a given number of function evaluations), but at the cost of increased iteration.

However, the numerical techniques used in optimization are already iterative in nature, so

no significant added expense is incurred if implicit integration is selected as the method of

choice.

Continuity Constraints using Explicit Euler Integration

The explicit Euler formula of Equation 2.16 is derived from the Explicit Runge-

Kutta Formulation33

yj+1 = yj + h

p∑

i=1

cifi,

f1 = f(tj , yj),

fi = f

(
tj + hαi, yj + h

i−1∑

k=1

βjkfk

)
,

with p = 1 and the variables αi and βjk chosen optimally. Therefore, only one evaluation

of the function f is required to shoot a state from one node to the next.

Now consider the optimal control problem with states y, whose values are known

at the nodes. More precisely, the states at the nodes are simply parameters that must be

optimized while meeting constraints. Therefore, the values of yj associated with the current

39

iteration are known. The explicit Euler formula can be used to shoot the states, yj , to the

next node at tj+1. This provides an approximation for the states, denoted ŷj+1.

ŷj+1 = yj + hf(tj ,yj ,uj)

Since the states, ŷj+1, do not necessarily match the known states, yj+1, an equality con-

straint can be imposed in the parameter optimization problem to ensure that they do match

at the final iteration. Thus, define the constraint,

cẏj = yj+1 − ŷj+1 (2.20)

= yj+1 − yj − hf(tj ,yj ,uj).

This constraint is imposed between each node for j = 1, ...nn − 1. Assembling all of these

constraints into a single vector leads to ny(nn − 1) continuity constraints,

cẏ =
[
cTẏ1 · · · cTẏnn−1

]T
. (2.21)

When cẏ = 0, to within some specified tolerance, the dynamical constraint, ẏ = f is

satisfied.

Continuity Constraints using Explicit Trapezoidal Integration

The Runge-Kutta formulation for p = 2 yields a second order explicit integration

scheme.

ŷj+1 = yj +
h

2
[
f(tj ,yj ,uj) + f

(
tj+1,yj + hf(tj ,yj ,uj),uj+1

)]

Note that the Euler formula is embedded in the second function evaluation. If this relation

is combined with Equations 2.20 and 2.21, then ny(nn − 1) continuity constraints result

with errors now on the order O(h3).

40

Continuity Constraints using Implicit Trapezoidal Integration

The Runge-Kutta Formulation for implicit integration is

yj+1 = yj + h

p∑

i=1

cifi,

f1 = f(tj , yj),

fi = f

(
tj + hαi, yj + h

p∑

k=1

βjkfk

)
. (2.22)

Note the subtle difference from the explicit formulation: the summation in Equation 2.22

is upper bounded by p. Thus, all of the fi equations are in the definitions of each other.

The implicit trapezoidal integration scheme is not much different than the explicit,

except that yj+1 now appears on both sides of the equation,

ŷj+1 = yj +
h

2
[
f(tj ,yj ,uj) + f

(
tj+1,yj+1,uj+1

)]
.

Again, the iterative nature of the integration equation is well-suited for an iterative opti-

mization method. Equations 2.20 and 2.21 are used to generate the ny(nn − 1) continuity

constraints with the improved integration scheme.

Continuity Constraints using Hermite-Simpson Integration

The Hermite-Simpson integration is the Runge-Kutta implicit integration scheme

with function evaluations p = 3, delivering an accuracy on the order of O(h5). Define

tm =
1
2

(tj + tj+1) ,

ym =
1
2

(
yj + yj+1

)
+

h

8
(
f j − f j+1

)
,

um =
1
2

(uj + uj+1) ,

fm = f(tm,ym,um).

Then, the estimate of the state at tj+1 is given by33

ŷj+1 = yj +
h

6
(
f j + 4fm + f j+1

)
.

41

The residual defects between nodes j and j + 1 are calculated as

cẏj = yj+1 − yj −
h

6
(
f j + 4fm + f j+1

)
. (2.23)

As before, the residual equation is a vector of size ny, calculated for all j = 1, . . . , nn − 1,

and applied to the constraint vector in Equation 2.21. When the defects are driven to zero

through the optimization process, and enough nodes have been applied to the discretization,

Equation 1.1 is satisfied to a tolerance within the accuracy of the integration scheme.

Continuity Constraints using Fourth-Order Differencing

An alternative approach for defining continuity constraints uses finite differences

instead of numerical integration equations. With integration schemes, the accuracy is im-

proved by using more function evaluations in the comparison between the jth and the

(j + 1)th node. With finite differences, improvements in accuracy are achieved by using

more points in the evaluation of the derivative approximation. Since the values of the

states are already known at the nodes, the objective is to use these values to approximate

the derivatives at the nodes.

Consider a single state, whose values, yj , are known at each node. Define the vector

ȳ = [y1 · · · yj · · · ynn]
T

to be values of the single state at each node. Spectral methods seek to determine an approx-

imation of the derivatives, ˙̄y, by using a linear combination of the values, ȳ. Specifically,

let the derivative at the nodes be approximated as

˙̄y = Dȳ, (2.24)

where D is the nn × nn differentiation matrix, and Di,j denotes the element located in the

ith row of the jth column. Now for the ny state vector, define the matrix ȳ ∈ Rnn×ny to be

42

all of the states at each of the nodes, and f̄ ∈ Rnn×ny to be the values of the function at

each state and each node. Thus, ȳj,i = yi(tj) and f̄j,i = fi(tj ,yj ,uj). Define C as a matrix

of constraints, where

C = ˙̄y − f̄ ,

= Dȳ − f̄ .

If C is driven to zero to within some specified tolerance, then Equation 1.1 is satisfied. In

this case, the continuity constraints, cẏ(x), are the elements of C,

cẏ =
[
C1,1 · · · Cnn,ny

]T
.

Note that there are a total of nynn continuity constraints. The exact form of the differen-

tiation matrix, D, is yet to be determined at this point.

One candidate representation for D employs the Taylor series expansion of five

points near tj of the single state, y, truncated after the first five terms.

yj−2 = yj − 2hẏj + 4h2

2! ÿj − 8h3

3!

...
y j + 16h4

4! y
(4)
j

yj−1 = yj − hẏj + h2

2! ÿj − h3

3!

...
y j + h4

4! y
(4)
j

yj = yj

yj+1 = yj + hẏj + h2

2! ÿj + h3

3!

...
y j + h4

4! y
(4)
j

yj+2 = yj + 2hẏj + 4h2

2! ÿj + 8h3

3!

...
y j + 16h4

4! y
(4)
j

(2.25)

Using the relations in Equation 2.25, it is possible to approximate ẏj with a linear combi-

nation of these five points. The approximation is determined as the derivative at tj of a 4th

order interpolating polynomial that passes through each of the five points. Express ẏj as

hẏj = aj−2yj−2 + aj−1yj−1 + ajyj + aj+1yj+1 + aj+2yj+2, (2.26)

where aj−2 through aj+2 represent a set of coefficients to be determined. Inserting the

truncations of Equation 2.25 into Equation 2.26, and matching coefficients for each term of

43

the form hky
(k)
j , leads to five linear equations in five unknowns.

h0yj : 0 = aj−2 + aj−1 + aj + aj+1 + aj+2

h1ẏj : 1 = −2aj−2 − aj−1 + aj+1 + 2aj+2

h2ÿj : 0 = 2aj−2 + 1
2aj−1 + 1

2aj+1 + 2aj+2

h3...y j : 0 = −4
3aj−2 − 1

6aj−1 + 1
6aj+1 + 4

3aj+2

h4y
(4)
j : 0 = 2

3aj−2 + 1
24aj−1 + 1

24aj+1 + 2
3aj+2

When the system of equations is solved, the fourth order differencing equation is

ẏj =
yj−2 − 8yj−1 + 8yj+1 − yj+2

12h
.

This derivative approximation uses two node points before and two node points after the

node for which the derivative is being evaluated. For the nodes near the beginning and end

of the trajectory, it may not be possible to use as many points on each side of the node.

However, the concept shown above can be applied for any number of points before and after

the node. For example, the differentiation matrix associated with the use of two forward

and two backward points is

D =
1
h

−3
2 2 −1

2
−1

3 −1
2 1 −1

6
1
12 −2

3 0 2
3 − 1

12
.

1
12 −2

3 0 2
3 − 1

12
1
6 −1 1

2
1
3

1
2 −2 3

2

.

Along the interior nodes, the differencing produces fourth-order accuracy. At the nodes t0

and tf , second order accuracy is achieved.

Continuity Constraints for Two Pseudospectral Methods

The limiting cases of the spectral methods are those that use every node point avail-

able to evaluate the derivative at every node. This is equivalent to fitting an interpolating

polynomial through all of the nodes, and evaluating the derivative of the polynomial at each

44

of the nodes. In the Lagrange form, the fitted polynomial can be written as

Y(t) =
nn∑

j=1

φj(t)yj ,

where

φj(t) =
nn∏

k=1
k 6=j

t− tk
tj − tk

.

The node points, yj , may be treated as constants, so the derivative of the fitted polynomial

is simply

Ẏ(t) =
nn∑

j=1

φ̇j(t)yj . (2.27)

The objective is to determine, based on this structure, the value of this derivative at each

of the nodes, that is, Ẏ(ti) which will serve as the approximation for ˙̄y. Once again, the

derivative approximation is expressed in terms of the differentiation matrix, as in Equation

2.24. Based on the form of Equation 2.27, it is evident that the elements of the differentiation

matrix are simply

Dij = φ̇j(ti).

It is possible to deduce, through careful differentiation, that

φ̇j(ti) =
nn∏

k=1
k 6=j

1
tj − tk

nn∑

k=1
k 6=j

nn∏

l=1
l 6=k,j

(ti − tl)

 . (2.28)

Further simplifications of Equation 2.28 are possible when assumptions are made

as to the spacing of the nodes. Two common spacings are traditionally considered for

collocation methods. Uniform spacing is assumed in all of the methods discussed thus

far, but the pseudospectral method is generally implemented with nodes distributed at the

Legendre-Gauss-Lobatto (LGL) points. The matrix definitions for both are presented next.

45

With uniform spacing, relations can be drawn on the differences tj − tk and ti − tl

in Equation 2.28 in terms of the node space, h = tj+1 − tj . This leads to the uniform

pseudospectral differentiation matrix, whose elements are defined as

Dij =

(−1)j−i(nn − i)!(i− 1)!
h(i− j)(nn − j)!(j − 1)!

, i 6= j,

1
h

nn∑

k=1
k 6=i

1
i− k

, i = j.

Alternatively, the spacing of the nodes may be at the LGL points, and the jus-

tification for this becomes apparent in the example presented in Section 2.4. A complete

derivation of the Legendre pseudospectral differentiation matrix is not included in this work,

although interested readers may look in several different sources.34–37 Within the present

scope, a familiar knowledge of Legendre polynomials, PN (t), is sufficient. These polynomi-

als represent an orthogonal set on the interval t∗ ∈ [−1 1]. The polynomial PN (t) is an Nth

order polynomial with N roots within the interval. The LGL points that define the node

spacing here are the roots of the derivative polynomial, Ṗnn−1(t), along with the endpoints

−1 and 1. As usual, this contributes a total of nn nodes. Let the LGL points be identified

as t∗j ∈ [−1 1]. With this, the pseudospectral differentiation matrix can be defined.

Dij =

(
2

tf − t0

)
Pnn−1(t∗i)

(t∗i − t∗j)Pnn−1(t∗j)
, i 6= j

−
(

2
tf − t0

)
nn(nn − 1)

4
, i = j = 1

(
2

tf − t0

)
nn(nn − 1)

4
, i = j = nn

0, otherwise

(2.29)

Observe that, in Equation 2.29, each term is scaled by 2/(tf−t0). While the spacing

of the LGL points goes from −1 to 1, the optimal control problem remains on the interval

[t0 tf]. The differentiation must account for the actual interval of the trajectory. If this is

inconvenient, then all of the times could be scaled to the Legendre interval. In the case

46

here, where the differentiation matrix is scaled to the true interval, the constraint equation,

C = Dȳ − f̄ ,

considers the actual times, tj ∈ [t0 tf], when evaluating the function. The relation between

the actual and the LGL times is simply

tj = t0 + (tf − t0)
t∗j + 1

2
.

2.3.2.3 Characteristics of Collocation Methods

The major disadvantage of a collocation method is the relatively large number of

parameters necessary in defining the transcription. This naturally has an effect on the

speed of convergence, as more functions and function derivatives must be evaluated or

approximated on each iteration. However, this effect can be minimized by using a non-

linear programming algorithm that identifies the sparsity patterns and efficiently evaluates

functions and function derivatives.

As always, convergence is dependent upon the initial guess. In this case, a larger

number of parameters allows the user to generate a guess from insight into either the states,

the controls, or both. An important characteristic of this parameterization is that the states

and controls do not need to be consistent for an initial guess. That is, the values of the

guessed states and controls need not immediately satisfy the governing differential equations.

For example, if a user has some idea of the shape of the trajectory, it can be reflected in the

state-parameters, and the guess for the control-parameters can be completely independent.

The resulting initial guess, in this case, does not represent a feasible solution, but the

optimizer is free to roam the solution space to find a feasible and locally optimal solution.

The flexibility gained in using a large number of parameters improves the likelihood for

convergence.

47

Additionally, a large number of parameters can potentially guide an optimizer to

a solution. However, if a set of parameters represents a feasible or near-feasible solution,

it may be difficult for the optimizer to move away from the current point towards a more

optimal solution.

2.3.2.4 Verifying the Optimality of Collocation Solutions

Thus far, the methods presented are based on the assumption that the numerical

solution to the optimal control problem adequately represents the optimal analytic solution.

However, it is still important to provide adequate proof that the resulting arcs are truly

optimal, at least locally. To that end, the methodology presented here offers a means of

verifying the optimality of the numerically determined solutions.

In the transcription of the optimal control problem, a constrained parameter opti-

mization problem results with n parameters, x, and nc constraint equations, c(x). Recall

that the transcribed problem, with nn nodes, can be expressed in terms of a cost function

and constraints defined by

J = F (x), (2.9)

0 = c(x),

where the numbers of parameters, n, and constraints, nc, are determined as,

n = (ny + nu)nn + 2,

nc = nψ0 + nψf + ns(nn − 1).

The traditional solution to the transcribed problem involves an augmented cost index that

is subject to a different set of Lagrange multipliers, η, of dimension nc,

J̃ = F (x) + ηTc(x)

48

The vector of constraints, c, consists of nψ0 equations that correspond to ψ0, nψf equations

that correspond to ψf , nβnn equations that correspond to β, and

nẏ = ny(nn − 1) or nẏ = nynn equations that parameterize the differential conditions,

ẏ = f . Likewise, the vector of Lagrange multipliers, η, has nψ0 values that correspond to

ν0, nψf values that correspond to νf , nβnn values that correspond to µ, and nẏ values that

correspond to λ at or in-between the nodes.

Thus, the Lagrange multipliers of the parameter optimization problem correspond

directly to the Lagrange multipliers of the optimal control problem.35 For ν0 and νf , cor-

responding values of η will match identically. Since the path and dynamical constraints

are satisfied at the nodes (for path constraints and spectral continuity constraints) or be-

tween the nodes (for integration continuity constraints), then values of η will match with

corresponding values of µ and λ either at or in-between the nodes.

Many numerical optimization packages allow the user to extract the Lagrange mul-

tipliers along with final values of the parameters. Thus, the Lagrange multipliers, η, are

available to the user along with the solution. After a numerical algorithm has converged,

all the states, controls, times, and Lagrange multipliers are known at each node. With

direct methods, the conditions of Equations 2.7 and 2.8 are not directly applied. However,

they can be used after a solution is determined to validate it. A user may verify that the

conditions are satisfied with the known parameters and multipliers. Simply, the states and

costates can be integrated from their initial values and time (which are known, at a mini-

mum, through the values of the Lagrange multipliers), to their final time to ensure that the

optimality conditions are satisfied.

2.3.2.5 Using Direct Solutions to Supplement an Indirect Method

While the accuracy of a solution from a direct optimization scheme may be inferior

to an indirect solution, the above observation lays a path for finding a solution with an

49

indirect shooting method. For example, if a particular optimal control problem is using

collocation, then Lagrange multipliers are available that offer a very good guess to the

actual (continuous problem) Lagrange multipliers. This is a major benefit of collocation

methods, as the literature commonly refers to the difficulty in guessing the initial values of

the differential Lagrange multipliers for an indirect method.

Also, it is observed that a direct shooting scheme does not offer the same advantage

of providing insight into the values of the costates. The scheme does not require the states

to be carried as parameters to be optimized, and consequently, the constraint equations to

be satisfied in the parameterized problem do not correlate the same way to the initial, final,

and differential conditions of the optimal control problem. Although the implementation of

direct shooting is less cumbersome, the ability to verify optimality and/or provide insight for

indirect optimization generally offsets the added complexity of the collocation formulation.

2.4 Example: The Zermelo Navigation Problem

A straightforward approach to comparing some of the methods discussed above is

through example. In this section, a classical navigation problem is investigated using several

direct and indirect methods.

2.4.1 Problem Statement and Description

Consider a boat moving across a stream of water from one dock to another, as in

Figure 2.3. The stream is 10 meters wide, and the landing dock is 10 meters upstream from

the departing dock. The stream has a current described by,

W (y) = 1 + sin(y1),

and the boat moves at a constant velocity of V = 2 m/s. The objective is to move the

boat from one dock to the other in the minimum possible amount of time by controlling

50

u

V

W

(0,0)

(10,10)

y1

y2

Figure 2.3: The Zermelo Navigation Problem

the boat’s pointing angle, u(t). Mathematically, the objective is to minimize

J = tf ,

subject to

ẏ =
[

ẏ1

ẏ2

]
=

[
V cosu

V sinu−W (y)

]
,

0 = ψ0(t0,y0) =

t0 − t∗0
y1(t0)− y∗1(t0)
y2(t0)− y∗2(t0)

 ,

0 = ψf (tf ,yf) =
[

y1(tf)− y∗1(tf)
y2(tf)− y∗2(tf)

]
.

2.4.2 Direct Approach

To obtain a direct solution to the optimal control problem, consider the collocation

parameterization of Equation 2.14. Let the number of nodes be selected as nn = 20. With

51

ny = 2 states and nu = 1 control, the size of the problem is

n = (ny + nu)nn + 2 = 62,

with parameters

x =
=

[x1 x2 · · · x39 x40 x41 · · · x60 x61 x62]T

[y1(t1) y2(t1) · · · y1(tnn) y2(tnn) u(t1) · · · u(tnn) t0 tf]T .

The times, tj , vary based on the node spacing of the method, but with both uniform and

Legendre node spacing, it is certain that t1 = t0 and tnn = tf .

The initial and final constraints, according to this parameterization, become

cψ0(x) = ψ0(t0,y0) =

t0 − t∗0
y1(t0)− y∗1(t0)
y2(t0)− y∗2(t0)

 =

x61 − 0
x1 − 0
x2 − 0

cψf (x) = ψf (tf ,yf) =
[

y1(tf)− y∗1(tf)
y2(tf)− y∗1(tf)

]
=

[
x39 − 10
x40 − 10

]
.

Without path constraints, cβ = [].

The simplest scheme for generating the continuity constraints is explicit Euler inte-

gration. In this case,

cẏ(x) =

y1(t2)− y1(t1)− h {V cosu(t1)}
y2(t2)− y2(t1)− h {V sinu(t1)− 1− sin y1(t1)}

...
y1(tnn)− y1(tnn−1)− h {V cosu(tnn−1)}

y2(tnn)− y2(tnn−1)− h {V sinu(tnn−1)− 1− sin y1(tnn−1)})

=

x3 − x1 − h {V cosx41}
x4 − x2 − h {V sinx41 − 1− sinx1}

...
x39 − x37 − h {V cosx59)}

x40 − x38 − h {V sinx59 − 1− sinx37}

.

Assuming uniform spacing, the distance between two nodes, h, is defined as

h =
tf − t0
nn − 1

=
x62 − x61

nn − 1
.

52

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

14

y1

y
2

Optimal Boat Path from (0,0) to (10,10)

↓
↓ ↓ ↓ ↓

↓
↓ ↓

↓
↓ ↓ ↓ ↓

↓
↓

Current
Boat Path

(a)

0 2 4 6 8 10 12
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

u
(r

a
d

)

Optimal Control (Pointing) with Time

(b)

Figure 2.4: Optimal Path (a) and Control (b) for the Zermelo Problem

Finally, the cost function is simply,

F (x) = tf = x62.

The parameter optimization problem is completely defined. Of course, modifica-

tions are required to the constraints cẏ(x) to accommodate the other continuity schemes

discussed. These are not expanded here for the sake of brevity, but the associated framework

was presented in earlier sections.

Comparison of Direct Solutions

The optimal trajectory for the Zermelo boat is illustrated in Figure 2.4. Displayed is

the path of the boat from the initial point, (0,0), to the final point, (10,10), and the control

history over the course of the trajectory. One may investigate how well the continuity

schemes for each of the direct methods presented here perform in duplicating this solution.

Each scheme is applied with nn = 20, as developed previously, and also with nn = 40.

Intuitively, it is expected that with more nodes, the solution improves, perhaps at the cost

of speed in convergence time. It is also expected that higher order methods of the same class

53

perform better (Explicit Trapezoidal integration should outperform Explicit Euler; Implicit

Hermite-Simpson integration should outperform Implicit Trapezoidal). A comparison in

performance of each scheme is displayed in Table 2.1. For both sets of nodes, the table

describes whether the method was successful (i.e. the solution resembles that of Figure

2.4), the cost (i.e. the final time tf), and the number of iterations incurred.

For each trial, the initial guess places the Zermelo boat along a direct path (straight

line) from the initial point to the final point over a duration of 10 seconds. The guessed

control is simply u(tj) = 1 for all nodes j = 1, ..., nn. Identical guesses are used for each

trial for fair comparison.

With the exception of the uniform pseudospectral method, all of the methods per-

form reasonably well, with different levels of accuracy. That is, all but the uniform pseu-

dospectral method converge on a reasonable solution. With 20 nodes, the uniform pseu-

dospectral algorithm is able to converge, however, it does not lead to a solution that is near

a feasible trajectory (even though it may have satisfied the given constraint equations).

With 40 nodes, it is unable to perform any improvements at all, quitting before the first

iteration.

The number of iterations per method seem to be relatively consistent with all of the

Table 2.1: Direct Solutions with 20 Nodes and 40 Nodes

20 nodes 40 nodes
Method Success? tf Iterations Success? tf Iterations

Explicit Euler Yes 10.9245 29 Yes 10.9301 31
Explicit Trapezoidal Yes 10.8065 27 Yes 10.8796 28
Implicit Trapezoidal Yes 10.8994 27 Yes 10.9043 27
Implicit Simpson Yes 10.9046 26 Yes 10.9045 26
4th Order Spectral Yes 11.4427 868 Yes 11.1849 25
Uniform Pseudospectral No 106.2257 43 No 0 —
Legendre Pseudospectral Yes 10.9045 35 Yes 10.9126 35

Actual Solution — 10.9045

54

methods, regardless of the number of nodes. The fourth order spectral method is the only

outlier, requiring many more iterations to converge in the case of 20 nodes. For the majority

of those iterations, the set of parameters hovered near the optimal point, making extremely

small steps towards the minimum. It is assumed that along the path to the minimum, the

parameter set landed on a flat gradient, requiring more iterations to achieve convergence.

Note that this was not the case with more nodes.

It is generally expected that a superior method, with an increased number of nodes

(i.e. 40 vs. 20), results in a more accurate solution. This is verified in the cases involving

implicit integration schemes, the explicit trapezoidal scheme, and the fourth order spectral

scheme. However, the explicit Euler integration and the Legendre pseudospectral methods

actually exhibit performance degradation with the finer grid.

The implicit Hermite-Simpson method delivers the best results of this trial set.

The 20-node solution is extremely close to the actual solution, and the 40-node solution

is the closest to the analytical solution. For a relatively similar number of iterations, the

Hermite-Simpson method produces superior results.

2.4.3 Indirect Approach

Once again, consider the Zermelo problem and the associated parameters outlined in

the previous section. Using Equation 2.2 and 2.3, the Bolza Function and the Hamiltonian

are

G = tf + ν01t0 + ν02y1(t0) + ν03y2(t0) + νf1 {y1(tf)− 10}+ νf2 {y2(tf)− 10} ,

H = λ1 {V cosu}+ λ2 {V sinu− (1 + sin y1)} . (2.30)

55

With the Euler-Lagrange conditions of Equations 2.7, the conditions of optimality are given

by
{

ẏ1

ẏ2

=
=

V cosu
V sinu− 1− sin y1{

λ̇1

λ̇2

=
=

λ2 cos y1

0
0 = −λ1 {V sinu}+ λ2 {V cosu}

with boundary conditions according to Equations 2.8:

H(t0) = ν01 ,

H(tf) = −1,{
λ1(t0)
λ2(t0)

=
=

−ν02 ,
−ν03 ,{

λ1(tf)
λ2(tf)

=
=

νf1 ,
νf2 .

Observe that, since the Hamiltonian does not explicitly depend on time, Ḣ = 0.

Also, since λ̇2 = 0, it is evident that ν01 = −1 and λ2 = −ν03 = νf2 . In addition, the

optimal control law is determined as

tanu =
λ2

λ1
. (2.31)

Equation 2.31, by itself, does not uniquely describe the control, since tanu = tan(π +

u). However, consider the two triangles in Figure 2.5. In both configurations illustrated,

Equation 2.31 is satisfied, and the hypotenuse of the triangle is

λ3 =
√

λ2
1 + λ2

2.

In order to determine which is correct, observe that

[cosu, sinu] =

[
λ1
λ3

, λ2
λ3

]

[
−λ1
λ3

,−λ2
λ3

] .

56

−λ1

−λ2
λ3

λ1

λ2
λ3

u

−λ1

−λ2
λ3

u

λ1

λ2
λ3

u

−λ1

−λ2
λ3

u

λ1

λ2
λ3

u

−λ1

−λ2
λ3

u

λ1

λ2
λ3

u

Figure 2.5: Geometric Interpretations of Equation 2.31

In Equation 2.30, the Hamiltonian is minimized when [cosu, sinu] = [−λ1/λ3,−λ2/λ3]. Us-

ing this relation, the control input can be completely removed from the dynamical equations

for the states and costates. The result is a two-point boundary value problem that can be

solved numerically.

Define the augmented states, z =
[
yT λT

]T
. The dynamics of the augmented states

becomes

ż =

ẏ1

ẏ2

λ̇1

λ̇2

 =

−V λ1
λ3

−V λ2
λ3
− 1− sin y1

λ2 cos y1

0

 ,

where u has been replaced by its relations with the costates. The known initial conditions

for z are y1(0) = 0 and y2(0) = 0, and the initial conditions for λ1(0) and λ2(0) must be

guessed. In addition, the final desired states are y∗1(tf) = 10 and y∗2(tf) = 10, but the actual

final time, tf , is unknown. Define the shooting function such that,
[
y(tf)
λ(tf)

]
= g(λ1(0), λ2(0), tf),

57

which integrates the augmented states (with known initial states and guessed initial costates)

to the guessed final time. Finally, define the parameter vector as

x = [λ1(0) λ2(0) tf]
T .

Then, the indirect problem is completely solved when the following system of constraints is

satisfied.

c(x) =

y1(tf)− y∗1(tf)
y2(tf)− y∗2(tf)

1 + H(tf)

 =

g1(x)− y∗1(tf)
g2(x)− y∗2(tf)

1− V
√

g3(x)2 + g4(x)2 − g4(x)(1 + sin g2(x))

 = 0

A converged solution has x3 = tf = 10.9045. While it may be intuitive to guess

a final time in this vicinity, guessing the values of the initial costates is difficult. In this

example, arbitrary guesses for the initial states do not generally result in convergence along

the correct path (although one solution was found with a negative final time!). However,

having already solved the problem using the direct method, approximate values of the

Lagrange multipliers are already known. Submitting as an initial guess the approximations

yields a successful result.

2.5 Summary

In this chapter, numerical methods for solving optimal control problems, and some

of their associated characteristics, are discussed. Among them are the accuracy of the

solution, the speed of convergence, and the robustness of the solution to the initial guess.

The most accurate solutions are obtained through indirect methods. These are

accurate to the order of the numerical integrator used to integrate initial values of the

states and costates. Among the direct methods featured in this development, the most

accurate and consistent results are obtained through use of the Hermite-Simpson integration

equations. With fewer nodes, the solution is still accurate, but the solution naturally

58

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Uniformly Spaced Nodes
LGL Points
Uniform Interpolating Polynomial
LGL Interpolating Polynomial

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−4

−2

0

2

4

6

Uniformly Spaced Nodes
LGL Points
Uniform Interpolating Polynomial
LGL Interpolating Polynomial

(b)

Figure 2.6: Uniformly Spaced and LGL Spaced Interpolating Functions for r(t) with 10
nodes (a) and 20 nodes (b)

improves when the fidelity of the discretized model is enhanced (by increasing the number

of nodes).

It is interesting to observe why the uniform pseudospectral method failed. In both

pseudospectral methods, an interpolating polynomial is fit to the node points, wherever they

are distributed. A simple way of demonstrating the reason for the failure is with an example.

Consider the function, r(t), which simply rounds the argument to the nearest integer value.

Although a simple function, it is clearly one difficult to fit with a polynomial. In Figure

2.6, the interpolating polynomials are shown with both 10 and 20 nodes using both uniform

spacing and LGL-point spacing. With uniform spacing, it is evident that the interpolating

polynomial experiences difficulties near the end points, while the polynomial derived from

LGL-point spacing is better behaved. Recalling that the pseudospectral methods attempt

to match the derivatives of the interpolating polynomial to the dynamic function, it is

evident that the uniform pseudospectral method performs poorly because it attempts to

match derivatives to a poor approximation of the actual states.

59

The speed of convergence could be measured in terms of either the number of iter-

ations or in actual computer time. If measuring in terms of iterations, one must consider

the computer time necessary per iteration. This depends on the number of functions to be

evaluated, (a potential factor associated with the number of nodes) and the complexity of

those functions. In the example presented in Section 2.4, the number of parameters and the

complexity of the functions evaluated are relatively low for each of the direct and indirect

methods, so it is difficult to get a sense of comparison for the speed of each of the algorithms

based on this example alone. In general, it is safe to assume that direct methods take longer

per iteration, although they may not take as many iterations as the indirect method.

The most important factor in this investigation is the robustness to the initial guess.

With all locally minimizing algorithms, one can generally only expect to find a minimum in

the vicinity of the initial guess. However, how close to that local minimum does the initial

guess have to be? The indirect methods are far less robust in this respect. Small variations

in a guess of the unknown initial values of the Lagrange multipliers may have dramatic

effects on the final values of the states and costates. Without a good initial guess, it may

be impossible to find a solution with an indirect method.

Additionally, it is desirable to develop a methodology that may be applied easily

to optimal control problems characterized by many different forms of boundary conditions

and dynamical constraints. Since the form of the constraints for indirect optimization may

vary quite significantly, an indirect method is an unlikely candidate for this task.

The desire in this investigation is to determine a stable way of examining many

optimal solutions for many different problems. To do this, it is concluded that a direct

collocation method offers the highest probability of success. Among the direct methods,

the most accurate and stable method in this chapter evaluates continuity constraints via

the Hermite-Simpson equations. Consequently, it is this method that is used throughout

the remainder of this work.

60

Chapter 3

Transcription Formulations for the Finite Set Control
Problem

In Chapter 2, the basic transcription formulations for direct methods are developed.

The optimal control problem is parameterized into values of the states and controls at

nodes, which are contained in the parameter vector, x, along with the initial time and the

final time. Methods are demonstrated for generating the optimization function and the

constraint functions in terms of x. The Hermite-Simpson integration scheme is selected as

a stable and accurate form for continuity constraints. In this chapter, modifications to the

traditional collocation formulation of the optimal control problem are developed to treat the

hybrid control problem as a nonlinear programming problem. Parameterization variations,

derivative evaluations, and unique implementation issues are discussed.

In the development, a primary consideration for discrete variables is that discontinu-

ities necessarily exist when switching from one value to another. Consequently, the general

method is first altered to divide a problem into multiple segments, allowing for ideal treat-

ment of variable discontinuities. Next, the formulation is expanded further to account for

independent switching between multiple control variables. In the process of accounting for

finite set control conditions, control variables are ultimately eliminated from the parame-

terization. Instead, state parameters and switching time parameters are optimized over a

continuous spectrum to yield the desired control history.

The implementation of the Finite Set Control Transcription is subsequently explored

in detail. A chief consideration is the evaluation of up to (nc+1)n partial derivatives describ-

61

ing the gradients of the objective function and each constraint with respect to each variable

in x. The numerical techniques clearly rely on these derivatives, stored in the Jacobian

matrix, for choosing a search direction. The FSCT method exhibits unique characteris-

tics in the behavior of some derivative elements, and their effect on the solution process is

addressed.

3.1 Unique Formulation Characteristics

In one sense, the hybrid control problem can be approached as a constrained con-

tinuous control problem. For example, the discrete control, ui ∈ Ui = {ũi,1, . . . , ũi,mi} as in

Equation 1.3, can equivalently be treated as the continuous control, u ∈ R, subject to the

path constraint,

βi = (ui − ũi,1))(· · ·)(ui − ũi,mi) = 0.

With this in mind, the FSCT method is developed by determining effective ways to treat

continuous control problems with these unique constraints.

The foundation of this approach is the general collocation method presented in

Chapter 2. The method is altered to divide a problem into multiple segments, where

the control discontinuities associated with finite set control are allowed at the segment

boundaries. The formulation is subsequently expanded to account for multiple independent

control variables. This ultimately requires dynamic changes in the time dependencies of

each segment, but it is this modification that leads to feasible control solutions.

3.1.1 Multiple Segments and Knots

Consider the parameterization defined in Chapter 2.

x =
[
y1(t0) · · · yi(tj) · · · yny(tf) u1(t0) · · · ui(tj) · · · unu(tf) t0 tf

]T (2.14)

62

Recall that i is designated to count members of a state or control vector, while j counts the

nodes. A by-product of the Hermite-Simpson integration scheme is that the nodes along

the solution are spaced evenly between [t0 tf], and the time associated with a given node is

assigned based on

tj = t0 +
j − 1
nn − 1

(tf − t0) . (2.13)

Thus, an optimal solution contains state and control values at the nodes, and the contin-

uous state and control histories must be interpolated in between the nodes. Of course, a

constraint can be imposed anywhere along the path, not necessarily at a point that coin-

cides with a node. Consider, for example, a constraint associated with t = 4.2. If nn = 10,

t0 = 1 and tf = 10, then tj = j, and the time at each node is an integer value. Clearly, the

parameterization considered thus far is not equipped to handle this constraint. The ability

to incorporate constraints at any point along a trajectory is necessary in many applications.

Specifically, state or control discontinuities cannot be effectively represented in the

above parameterization, since they require intermediate constraints. For example, an orbital

transfer that employs impulsive maneuvers requires some condition v+−v− = ∆v. A staged

rocket experiences mass discontinuities between stages. In each of these cases, the dynamics

are impacted by these discontinuities.

Moreover, when the control space is limited to a finite set of values, there are

necessarily control discontinuities when switching between values. It is not sufficient to

represent a discontinuity by exhibiting u(tj) at one feasible control value and u(tj+1) at

another. The parameterized solution does not effectively communicate the time between

tj and tj+1 at which the discontinuity occurs, nor do the state equations account for the

control discontinuity in the evaluation of state continuity constraints.

Thus motivated, the parameterization above is modified to account for discontinu-

ities (in either states or controls). To facilitate the enhancement, knots are introduced into

the parameterization. A knot represents the point at which a discontinuity might occur,

63

Time

S
ta

te
o
r

C
o
n
tr

o
l

Iteration p

↓
t0

↓
Knot 1
↑

↓
Knot 2

tf
↑

ns = 3 segments

nk = 2 interior knots

nn = 5 nodes/segment

Segment 1
Segment 2
Segment 3

(a)

Time

S
ta

te
o
r

C
o
n
tr

o
l

Iteration p+ 1

↓
t0

↓
Knot 1
↑

↓
Knot 2

tf
↑

Segment 1
Segment 2
Segment 3

(b)
Figure 3.1: An Example of Segments and Knots at Two Consecutive Iterations

and it divides the trajectory into separate subarcs, or segments. The knots may be either

fixed or free in time. When knots are free, the times at which they occur are optimized.

Demonstrated presently, knots represent an effective means of incorporating control discon-

tinuities. In addition, knots may divide a trajectory into different segments to accommodate

changes in the dynamic model along the path.

Figure 3.1 illustrates the conceptual relation between knots, nodes, and segments

at two consecutive iterations. Consider a formulation with ns segments. The start of each

segment constitutes a knot, with the exception of the first segment along the trajectory,

where t0 defines the start of the segment. Similarly, every segment ends at a knot with the

exception of the last segment along the solution where tf defines the end of the segment.

Thus, the formulation consists of nk = ns − 1 knots.

Let every segment consist of nn nodes. Although, conceptually, each segment may

consist of a different number of nodes, the transcription is simplified by assuming an equal

number of nodes per segment. Furthermore, while the nodes are uniformly spaced within a

segment, they are not necessarily uniformly spaced along the course of the trajectory. That

is, each segment may span a different length of time. In most cases, it is desirable for the

64

segment duration (or the location of the knots) to be optimized as well. In Figure 3.1, the

knot times change between iteration p and iteration p+1 as they are optimized by the NLP

algorithm. Consequently, assigned times for nodes change respectively to maintain uniform

spacing per segment.

The easiest implementation of a multiple-segment formulation includes the terminal

times of each segment (that is, t0, the interior knots, and tf) in the parameter vector. The

interior knots contribute nk parameters, while t0 and tf are included in x as before. The

parameterization described has ns segments, each with nn nodes. Each node is associated

with ny states and nu controls. The parameter vector is defined as,

x =
[· · · yTj,k · · · · · · uTj,k · · · · · · tk · · · t0 tf

]T
. (3.1)

In Equation 3.1, yj,k = y (tj,k) and uj,k = u (tj,k) represent the state and control vectors

(respectively) at the jth node of the kth segment. As a collection, these elements make up

the arrays Y ny ,nn,ns and Unu,nn,ns , as summarized in Table 3.1. The node times of T nn,ns

are

tj,k = tk−1 +
j − 1
nn − 1

(tk − tk−1) j = 1, . . . , nn, k = 1, . . . , ns, (3.2)

where tns = tf and the elements of T nk (tk, k = 1, . . . , nk) are the times at which each

interior knot occurs. Thus, i identifies members of a vector, j denotes the respective nodes,

Table 3.1: Nomenclature Summary: Multiple Segment Formulation
Array Description Dimension Element

Y ny,nn,ns States by node ny × nn × ns yj,k or yi,j,k
Unu,nn,ns Controls by node nu × nn × ns uj,k or ui,j,k
T nn,ns Node times nn × ns tj,k
T nk Knot times nk tk
∆T ns Segment durations ns ∆tk
ns Number of segments nk + 1

65

and k represents the relevant knot or segment. The parameters can also be listed as

x = [· · · yi,j,k · · ·︸ ︷︷ ︸ · · · ui,j,k · · ·︸ ︷︷ ︸ · · · tk · · ·︸ ︷︷ ︸ t0 tf︸︷︷︸]
T

nynnns nunnns nk 2

and the dimension of the parameter vector is n = (ny + nu)nnns + nk + 2. The number

of variables for multiple segments is approximately ns times the number of variables for a

single segment. However, multiple segments also introduce additional constraints.

c(x) =
[
cTψ0

(x) cTψf (x) cTβ (x) cTẏ (x) cTs (x) c̃Tt (x)
]T

Among these constraints, the initial conditions and final conditions remain unchanged from

those presented in Chapter 2. The path constraints, cβ(x), still impose the nβ conditions of

β at each of the nodes. That is, within a segment, there are nβnn elements in cβ. Since there

may be path constraints along each segment, cβ becomes a vector of dimension nβnnns.

Continuity constraints within a segment are similarly addressed using the Hermite-Simpson

implicit integration scheme to impose the dynamical conditions. However, since there are

ns segments, ny(nn − 1)ns continuity constraints are included in cẏ.

The next set of constraints, cs, establishes conditions between segments (at the

knots). These may include intermediate point constraints or continuity conditions. Gen-

erally, the vector cs is used to address state continuity between segments. At the knots,

time continuity is assumed so that the last node of the kth segment occurs at the same time

as the first node of the (k + 1)th segment. Thus, in the absence of state discontinuities,

states are subject to equality constraints. The behavior illustrated at Knot 2 in Figure 3.1

is representative of a state continuity constraint at a knot. Thus,

csk = y1,k+1 − ynn,k, k = 1, . . . , ns − 1,

cs =
[
cTs1 · · · cTsns−1

]T
,

and cs is a vector of dimension ny(ns − 1).

66

The last set of constraints are time inequality constraints of the form c̃t(x) ≤ 0.

Although knots are allowed to float freely in time, their order must be chronological. If the

kth knot lags behind the (k−1)th knot, for example, the duration of the associated segment

is negative, a nonsensical result. To prevent this behavior, let

c̃tk = tk−1 − tk, k = 1, . . . , ns, (3.3)

c̃t =
[
c̃t1 · · · c̃tns

]T
,

where, again tns = tf . Note that the variable segment durations produce ns time conditions.

The total number of constraints, including initial conditions, final conditions, path

constraints, dynamical constraints, knot continuity constraints, and time inequality con-

straints becomes nc = nψ0 +nψf +nβnnns+ny(nn−1)ns+ny(ns−1)+ns. The vector c(x)

now includes both equality and inequality constraints. In setting up the NLP problem, the

user must exercise care to properly distinguish the two types of constraints.

A more convenient parameterization includes the duration of the segments, ∆T ns ,

in the parameter vector x, instead of the knot times. Consider the parameter vector,

x = [· · · yi,j,k · · ·︸ ︷︷ ︸ · · · ui,j,k · · ·︸ ︷︷ ︸ · · · ∆tk · · ·︸ ︷︷ ︸ t0 tf︸︷︷︸]
T .

nynnns nunnns ns 2

The dimension of x is now n = (ny + nu)nnns + ns + 2, adding one dimension to the

previously identified parameterization (ns segment durations are needed instead of nk knot

times). This offers the advantage of converting the inequality constraints of c̃t(x) into a

single equality constraint. Let the knot times be defined as

tk = t0 +
k∑

κ=1

|∆tκ| . (3.4)

67

Then the inequality, tk−1−tk ≤ 0, is guaranteed, and need not be included in the constraint

vector, c(x). Instead c̃t(x) is replaced by the single time equality constraint,

ct(x) = (tf − t0)−
ns∑

k=1

|∆tk| . (3.5)

Now, the total constraint vector is simply

c(x) =
[
cTψ0

(x) cTψf (x) cTβ (x) cTẏ (x) cTs (x) ct(x)
]T

, (3.6)

which includes nc = nψ0+nψf+nβnnns+ny(nn−1)ns+ny(ns−1)+1 equality constraints. An

appealing aspect of this alternate formulation is that it is not necessary to track, during the

solution process, which constraints are active. In this formulation, all constraints are active

at all times. This formulation also enhances the convergence properties of the algorithm.

For instance, constraints may not necessarily be satisfied at a given iteration leading

to convergence. The inequality constraints presented in Equation 3.3 are applied to avoid

the occurrence of segments of negative duration. However, in the intermediate step leading

to a solution, some segments may violate this constraint. Depending upon the specific

nature of the problem, this may prevent the optimizer from converging on a solution. The

formulation in Equation 3.5 ensures this situation does not arise.

Furthermore, |∆tk| can be replaced by ∆tk if a simple bound is placed on the variable

to limit it to nonnegative values. In other words, the optimizer can be instructed not to

search for a solution where ∆tk is negative. This has the same effect as the absolute values

formulation.

An Application Requiring Multiple Segments

A statement of the Zermelo Navigation problem can be used to demonstrate the ef-

fectiveness of using a multiple-segment formulation. Specifically, it is demonstrated presently

how this formulation may facilitate solutions when control discontinuities exist. The result

is a more precise solution than the single-arc case.

68

Consider a formulation where the velocity of the boat is no longer constant. Now, the

vector, u, includes a variable control acceleration along with the control pointing direction.

Consider two equivalent representations of the new dynamics:

(1) ẏ′ =

ẏ1

ẏ2

ẏ3

ẏ′4

 =

y3

y′4 − (1 + sin y1)
u1 cosu2

u1 sinu2

 ,

y′(t0) =
[

0 0 0 0
]T

,

(2) ẏ =

ẏ1

ẏ2

ẏ3

ẏ4

 =

y3

y4

u1 cosu2

u1 sinu2 − y3 cos y1

 , (3.7)

y(t0) =
[

0 0 0 −1
]T

.

The form for y′ most resembles the previous dynamics, while the form for y lets the third

and fourth states represent velocities. The simple change of variables y4 = y′4 − (1 + sin y1)

gives the canonical form desired. In each case, the initial conditions place the starting dock

at the origin, while the water current places the boat’s initial velocity in the −y2 direction.

The objective now is to move from one dock to the other in a specified amount of

time while minimizing the control acceleration. That is, minimize

J =
∫ tf

t0

|u1| dt,

subject to Equations 3.7 and boundary conditions

0 = ψ0(t0,y0) =

t0 − 0
y1(t0)− 0
y2(t0)− 0
y3(t0)− 0
y4(t0) + 1

and 0 = ψf (tf ,yf) =

tf − 10
y1(tf)− 10
y2(tf)− 10
y3(tf)− 0
y4(tf)− 0

.

The final conditions specify the final time, t∗f = 10, the final position at the second dock

located at (10, 10), and zero final velocity to ensure a smooth landing. In addition, assume

69

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

14

y1 (m)

y 2
(m

)

Optimal Boat Path from (0,0) to (10,10)

↓
↓ ↓ ↓ ↓

↓
↓ ↓

↓
↓ ↓ ↓ ↓

↓
↓

Current
Boat Path − 1 Segment
Boat Path − 3 Segments

(a)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

u
1

(m
/s

2
)

Optimal Control (Magnitude and Pointing)

1 Segment
3 Segments

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

t

u
2

(r
ad

)

(b)

Figure 3.2: Optimal Path (a) and Control (b) for the Minimum Acceleration Zermelo
Problem

that conditions are imposed on the control acceleration so that it is bounded by 0 ≤ u1 ≤ 2

throughout the trajectory.

The solution to this optimal control problem exhibits a ‘bang-off-bang’ structure.

Intuitively, to minimize the accumulated thrust acceleration, u1 must operate at either its

maximum or minimum value. The solution to the transcribed optimization problem should

exhibit this behavior, as well. For comparison, the problem is solved numerically using two

different formulations. Figure 3.2 illustrates both solutions. The boat path, along with

the control acceleration and pointing are shown for each solution. For the single segment

solution, the formulation is identical to that described in Chapter 2, with a modified cost

function. A solution with three segments is contrasted in the same figure, using the multiple-

segment formulation described here with two time-free knots.

Note that for the single segment, although u1 does see its extreme values, it is not

a tight transition between extremes. Alternatively, the segmented formulation allows the

optimizer to find solutions with perfect jump discontinuities. In this case, the formulation is

configured to hold the control magnitudes constant at pre-specified values for each segment.

70

Anticipating a ‘bang-off-bang’ solution, the control acceleration is set at its maximum value

for the first and third segments and at its minimum for the second segment. This forces the

solution to contain the perfect jumps in the control history. Consequently, the segmented

solution is a better approximation of the true analytical solution to the optimal control

problem. Rather than seeking values of the control magnitude that make the constraint

equations satisfied, the optimizer focuses primarily on determining the right time to switch

control values. Remember with one segment, this could only happen between nodes, the

placement of which is completely defined by t0 and tf . However, in a multiple segment

formulation, the switching time is free to float to the optimal value. Since, the switching

times are most likely useful information to a user, there is motivation to determine these

precisely.

Clearly, the paths of each solution are similar. The cost of each solution is also

similar (2.4852 with one segment, 2.4691 with three). Potentially, with more nodes, the

single segment control history may appear more like the segmented solution’s control his-

tory. However, for efficient use of parameters, a better solution generally comes from the

segmented approach, especially if there is some insight into what the solution should look

like.

Since the optimal solution has two jumps in the control, letting ns = 3 in the

segmented formulation is sufficient. However, what if it is not known in advance how many

jumps in the control should exist in the solution? Conveniently, a solution can be found by

formulating a problem with more segments than necessary. For example, a user could have

chosen five segments, designating them as ‘bang-off-bang-off-bang.’ Since the actual solution

has only two ‘bang’ segments, one at the beginning and one at the end, the optimizer would

determine that ∆t3, the duration of the third segment (the middle ‘bang’), is zero. The two

‘off’ segments would effectively occur sequentially, divided only by a zero duration segment,

thus creating a continuous coasting arc. For general problem solving, a practical approach

71

is to always include more segments than are needed. This gives the optimizer the freedom

to use all segments if necessary, and bring superfluous segments to zero duration. The term

used in this investigation to describe this practice is overparameterization.

Note also that by pre-designating the control acceleration magnitude in each seg-

ment, the values of u1(tj,k), the control acceleration at each node, are already known. They

do not need to be included in the parameter vector! In addition, the values of u2(tj,k) in

a coasting segment do not have any effect on the solution, as they describe the control

pointing when there is no control acceleration. These values could be removed from x as

well.

3.1.2 Switching Segments and Time for Multiple Independent Controls

Another application for the above formulation is a finite burn orbital transfer prob-

lem with control variables indicating thrust magnitude and direction. The multiple-segment

formulation presented facilitates the realization of control discontinuities in the optimal so-

lution. In this case, the optimal solution exhibits discontinuities in thrust magnitude. To

enforce this, the problem is formulated to hold the thrust magnitude constant along each

segment, and its value for each segment is pre-specified. For example, the kth segment is

given a specified thrust magnitude of T = T ∗, while the segments before and after are des-

ignated to have zero thrust (T = 0). Thus, the knots on both sides of the kth segment will

exhibit control discontinuities, as the thrust magnitude changes instantaneously between

0 and T ∗, as an optimal ‘bang-bang’ solution requires. The control variables of Unu,nn,ns

represent thrust magnitudes in each direction, and are constrained such that uTj,kuj,k = T 2

for each segment. The parameters, ∆T ns , indicate durations for thrust or coast segments.

Notice, however, that all elements of uj,k experience discontinuities simultaneously. In ad-

dition, along a segment, control variables may still vary over a continuous spectrum. It

is observed, though, that the thrust magnitude is automatically limited to a finite set of

72

values, at most equal to the number of segments (less, if some segments are designated the

same value). The multiple-segment formulation presented above is effective when only one

variable (in this case, thrust magnitude) exhibits jumps between values of a finite set.

When there are multiple independent controls that exhibit switching characteristics,

however, additional modifications are necessary. For example, if the spacecraft orientation

is restricted in the finite burn problem, multiple thrusters acting independently are required

for 3-axis maneuvering. Applying the concepts developed above, the formulation is modified

further to consider the situation when all control variables are limited to finite sets.

Assume that the ith control variable is constrained to the set of values contained in

Ui = {ũi,1, . . . , ũi,m}. Thus, each control variable is limited to m different values. Let each

control variable be similarly constrained. Although it is possible for the dimension of each

control space, Ui, to be different, assume for simplicity that each control variable can take

on exactly m values. This constraint can be expressed as

m∏

µ=1

(ui − ũi,µ) = 0, i = 1, . . . , nu. (3.8)

Then, at each instant in time, the optimal solution must indicate which of the m possible

values is best for each variable.

Ultimately, an optimizer must determine a control solution over the m̄ = mnu

possible control combinations at each instant in time. The optimization process is rooted

in a gradient method, but gradients cannot be defined between discrete values. Instead,

gradient methods treat parameters as continuous variables subject to constraints. Thus,

the optimizer must be allowed to move the control parameters over a continuous space,

as long as the constraint in Equation 3.8 is imposed in the final solution. Unfortunately,

gradient methods move a point towards a root of the constraint according to the gradient

at the current point of x, independent of whether it is the right root to choose. Once the

73

constraint is met, it is difficult, if not impossible, for the optimizer to seek another root.

Although the constraint is valid, it cannot be implemented with traditional transcription.

Approach 1

To circumvent this problem, consider the multiple-segment formulation of Section

3.1.1. Instead of optimizing the control values, assume the control values and optimize the

switching times. In one implementation, a formulation is devised that assigns each segment

one of the m̄ options, and then requires the optimizer to determine the duration of each

segment. With this formulation, the predetermined control values are removed from the

parameter vector. This is analogous to having one discrete control variable whose m̄ values

represent each of the possible control modes available to the system.

For example, a segment k is designated with control u(tj,k) = [ũ1,1, . . . , ũnu,1]T for

all nodes j = 1, . . . , nn along that segment. If this control combination is not desirable in the

optimal solution, the optimizer determines that the duration of that segment, ∆tk, is zero.

With ns = m̄ segments, it is conceivable that the durations of several, if not a significant

number of segments are reduced to zero. Recall that any segment includes parameters

for the nn nodes with ny states assigned to each node. Since no time elapses over a zero

duration segment, no changes are applied to any of the states over that segment. Thus a

zero duration segment implies that some to many of the variables in the NLP problem are

essentially wasted, taking up space and computational time, but contributing nothing to

the solution.

In addition, without having insight into the optimal solution, no information is

available regarding the order of the segments. Consider the optimal solution that requires

one particular control combination before another. If the segments are not prearranged

in that order, there is no way to achieve this solution under the formulation with only

m̄ segments. Instead, one might include multiple sets of m̄ segments. This also allows for

74

multiple firings in any direction. For example, with 3 sets, there are now ns = 3m̄ segments.

The resulting NLP problem is naturally large, with many wasted variables to slow down

the algorithm.

Approach 2

The formulation ultimately selected for this investigation minimizes the number of

variables while offering the greatest flexibility in the solution process. Knots and segments

are employed, but their definitions are slightly altered. This formulation is considerably

more complex but consistently determines feasible and optimal solutions.

The salient feature of this formulation is that each of the control axes is treated

independently. Let a knot be defined as any interior point where one member of the control

vector switches from one value to another. The fundamental distinction here is that each

knot is associated with a control axis. Before, the knot times could be described by T nk ,

an array with nk values. Likewise, the segment durations were ∆T ns , and there were

ns = nk + 1 segments. Now, the knot times are described as T nu,nk , a two-dimensional

array with nu × nk values. In other words, there are knots for each control axis. The

axis durations are also two-dimensional, as ∆T nu,nk+1, with nu × (nk + 1) values. These

are the time durations between two switches in a given axis. It is important to note that

this is not necessarily the duration of the segments. A segment is now defined as the time

elapsed between switches in any of the controls. For example, the first segment is bounded

both by t0 and the first switch in the control, regardless of the axis in which the switch

occurs. With nunk interior knots to separate the segments, the total number of segments

becomes ns = nunk+1. The nomenclature for the multiple independent control formulation

is summarized in Table 3.2.

Consider the concept demonstrated, as an example, with nk = 3 interior knots per

each of nu = 3 control axes. Let Ui = {−1, 0, 1} for each axis. Figure 3.3 demonstrates

75

Table 3.2: Nomenclature Summary: Multiple Independent Control Formulation
Array Description Dimension Element

Y ny ,nn,ns States by node ny × nn × ns yj,k or yi,j,k
U∗
nu,nk+1 Pre-specified controls nu × (nk + 1) u∗i,k

Unu,ns Controls by segment nu × ns ui,k
Unu,nn,ns Controls by node nu × nn × ns uj,k or ui,j,k
T nn,ns Node times nn × ns tj,k
T nu,nk Knot times nu × nk ti,k
∆T nu,nk+1 Axis durations nu × (nk + 1) ∆ti,k
T ′ns+1 Unordered knot times 0 . . . ns t′k
T ns+1 Ordered knot times 0 . . . ns tk
ns Number of segments nunk + 1

the concept at two consecutive iterations of the optimization process. The control values

are pre-designated in a pattern logical for an aerospace application, where nonzero control

values indicate thrusting arcs. In each control axis, the control value begins at 1 (a positive

thrusting arc), and a coasting arc follows the first knot. At the second knot, the control

value switches to −1 (a negative thrusting arc) until the third knot, where another coasting

arc begins. With additional knots, this pattern continues. The control values in each of the

nu control axes is designated similarly. In this example, observe that the total number of

segments is ns = (3)(3) + 1 = 10.

Let the time elements of the parameter vector, x, be identified as xt. The time

elements include all of the axis durations, ∆T nu,nk+1, along with the initial and final time.

Here, xt is defined as

xt = [∆t1,1 ∆t1,2 ∆t1,3 ∆t2,1 ∆t2,2 ∆t2,3 ∆t3,1 ∆t3,2 ∆t3,3 t0 tf]T .

The knot times, T nu,nk , are defined according to elements in xt.

ti,k = t0 +
k∑

κ=1

|∆ti,κ| . (3.9)

76

u
x

t1,1
t1,2 t1,3

Iteration p

u
y

t2,1
t2,2 t2,3

u
z

t3,1
t3,2 t3,3

S
eg

m
en

ts

Time

1 2 3 4 5 6 7 8 9 10

(a)

u
x

t1,1
t1,2 t1,3

Iteration p+ 1

u
y

t2,1
t2,2 t2,3

u
z

t3,1
t3,2 t3,3

S
eg

m
en

ts

Time

1 2 3 4 5 6 7 8 9 10

(b)

Figure 3.3: Conceptual Control Profile with Segment Divisions at Two Consecutive Itera-
tions

Thus, ∆ti,k, represents the time duration between the knots located at ti,k−1 and ti,k. The

definition in Equation 3.9 guarantees that the knot times remain in chronological order for

a given control axis. That is,

ti,k−1 − ti,k ≤ 0, k = 1, . . . , nk + 1

where ti,0 = t0 and ti,nk+1 = tf . For example, in Figure 3.3, t2,1 precedes t2,2, which is

followed by t2,3. However, there is no relation between knot times in different control axes.

Therefore, t2,1 need not be after t1,1. In general,

ι < i 6⇒ tι,κ ≤ ti,k ∀ i, ι = 1, . . . , nu, ∀ k, κ = 1, . . . , nk.

Compare the arrangement of knot times for iteration p and iteration p + 1 in the figure.

Both illustrations represent valid arrangements for the knots. However, it is clear that the

chronological ordering of all the knots may change during the optimization process.

This algorithm defines segment boundaries by the chronological ordering of knot

times, including t0 and tf at the end points. Let the unordered segment boundaries be

77

defined as
[
t′0 t′1 · · · t′κ · · · t′ns−1 t′ns

] ≡ [t0 t1,1 · · · ti,k · · · tnu,nk tf] . (3.10)

Because knots are completely free to move on [t0 tf] and are independent between control

axes, the segment boundaries, T ′ns+1, are not necessarily in ascending order. Thus, a sorting

algorithm converts T ′ns+1 into the sequential listing, T ns+1, of the segment boundaries.

Now, tk−1 and tk bound the kth segment.

Observe, for example, that Segment 5 is bounded at the pth iteration by knots

located at t2,2 and t3,2. Between iterations, though, the axis durations ∆T nu,nk+1 change

values, thereby changing the positions of the knots at the next iteration. At iteration p+1,

Segment 5 is bounded by t3,1 and t2,3. Completely different sets of variables now define the

segment boundaries. Expressing the segment boundaries for Segment 5 in terms of xt, on

the pth iteration,

t4(xt) ≡ t2,2(xt) = t0 + |∆t2,1|+ |∆t2,2| ,

t5(xt) ≡ t3,2(xt) = t0 + |∆t3,1|+ |∆t3,2| ,

while on the (p + 1)th iteration,

t4(xt) ≡ t3,1(xt) = t0 + |∆t3,1| ,

t5(xt) ≡ t2,3(xt) = t0 + |∆t2,1|+ |∆t2,2|+ |∆t2,3| .

Thus, the dependencies of segment boundaries continuously change throughout the op-

timization process. The term segment-time switching is used to refer to the switching

dependencies of a segment’s time elements demonstrated here. Segment-time switching is

the fundamental characteristic of the parameterization presented in this investigation. It is

addressed in more detail subsequently.

78

3.2 Implementation of the Finite Set Control Transcription

In Section 3.1, a formulation is developed for solving finite set control problems.

Starting from a traditional collocation method, the transcription is first augmented to man-

age multiple segments, and it is further modified for multiple switching controls. The re-

sulting method is termed in this investigation the Finite Set Control Transcription (FSCT)

method. It is characterized by containing only state and time elements in the parameter vec-

tor, pre-designated controls along each segment, and a segment-time switching phenomenon

throughout the optimization process. Although the nature of switching dependencies is in-

troduced above, a more complete understanding can be gained through a description of the

FSCT implementation.

Implementation considerations are presented in the context of how an optimizer

iterates to determine a solution to an NLP problem. At each major iteration, a step

direction is determined using the partial derivatives of each function (F and c) with respect

to each variable in x. Their role in a Quasi-Newton technique is discussed in Chapter 2. The

Jacobian matrix comprised of these partial derivatives has dimension (nc + 1)× n, and for

a collocation method, this can be quite large. For example, if the number of parameters, n,

is of O(103), it is reasonable to have O(106) Jacobian elements. The Jacobian will generally

be relatively sparse, as each function is only dependent upon a small number of variables.

However, there still may be O(104) nonzero elements (or more) that are evaluated at each

iteration. The performance of the optimization process is dependent upon these partials

being evaluated quickly and accurately.

The partial derivatives can be calculated either numerically or analytically. If a

derivative is determined numerically, a finite difference approximation is evaluated. To do

this, the functions F and c are evaluated at x and at nearby points where one element of x

is perturbed for each evaluation. When n is large, this process may become computationally

expensive. Consequently, analytic derivatives are considered superior, not only because they

79

may be faster to compute, but also since they are generally more accurate. However, the

burden is on the user to supply routines to evaluate not only F and c, but also ∂F
∂x and ∂c

∂x .

In this investigation, analytic derivatives are supplied to the optimizer to reduce

computational time. In developing analytic expressions for problem derivatives, some inter-

esting insights into the segment-time switching phenomenon may be observed. Specifically,

switching dependencies occur within the continuity constraints, and consequently, the pro-

cess of evaluating derivatives for these constraints is discussed below. This leads to further

analysis of the characteristics of the FSCT method involving the accuracy of derivative

evaluations and the convergence performance of the method.

First, however, it is necessary to demonstrate how the optimization parameters are

manipulated at the beginning of each iteration in order to properly evaluate any constraints

or derivatives.

3.2.1 The Optimization Parameters

In the FSCT method, the parameter vector is defined as

x = [· · · yi,j,k · · · · · · ∆ti,k · · · t0 tf]
T , (1.8)

where yi,j,k is the ith state at the jth node of the kth segment, and ∆ti,k is the time duration

for the ith control variable at its kth pre-specified value. The parameterization consists of

state values, time durations between control switches, and bounding times t0 and tf . In

the evaluation of cost and constraint functions, the elements of the current point, x, are

deparameterized and assigned to the respective state or time values that they represent.

The 3-dimensional array, Y ny,nn,ns , is assigned for the states, while the 2-dimensional array,

80

∆T nu,nk+1, carries the time durations. The deparameterization is simply

yi,j,k = xnynn(k−1)+ny(j−1)+i,

∆ti,k = xq1+nu(k−1)+i, (3.11)

t0 = xq2+1,

tf = xq2+2,

where q1 = nynnns and q2 = q1+nu(nk+1). Adopting a shorthand notation, the expressions

in Equation 3.11 are implied by

x→ Y ny ,nn,ns , ∆T nu,nk+1, t0, tf ,

where a → b indicates a mapping from input a to output b. Likewise, the application of

Equation 3.9 reveals the times of each knot.

t0, ∆T nu,nk+1 → T nu,nk .

Recall that the elements of T nu,nk are ti,k, where the control axis and knot number are

distinguished by i and k respectively. Thus, in this form, knot times are arranged in a two

dimensional array, and the chronological ordering of knot times is unknown.

Segment Boundaries and Control Values

In order to evaluate continuity constraint equations, the states, controls, and time

must be known at each node of each segment. The states are contained in the array

Y ny,nn,ns , extracted directly from x. The node times, T nn,ns , are easily determined through

Equation 3.2 if the segment boundaries, T ns+1, are known. Presently, then, Unu,nn,ns and

T ns+1 are extracted. Notice that the controls and segment boundaries are related, as

the latter are simply the knot times that define switches in the control. The arrays are

determined simultaneously, then, as the ordering of knots ultimately defines the control

sequence.

81

In the first step, the segment boundaries are placed in an unordered listing according

to Equation 3.10. The segment boundaries include the initial time, the final time, and each

knot contained in T nu,nk . In shorthand,

t0, T nu,nk , tf → T ′ns+1,

where the elements of the output are t′κ, κ = 0, . . . , ns. It is clear that t′0 = t0 and t′ns = tf ,

however, the interior segment boundaries are not arranged chronologically. Each interior

segment boundary, t′κ, κ = 1, . . . , ns − 1, is directly linked to an element, ti,k, and it is

necessary to maintain in storage the i, k pairing associated with each segment boundary.

Next a sorting algorithm places the total collection of knots in chronological order to define

the interior segment boundaries.

T ′ns+1 → T ns+1

The segment boundaries, T ns+1, represent the chronological ordering of knots. When the

segment boundaries are sorted, the respective i, k pairings must be passed along. Thus,

it is crucial to identify not only the time for each knot in T ns+1, but also the element in

T nu,nk from which it came. This provides the basis for determining the control sequence

along each segment.

Let the element u∗i,k be the pre-specified control value for the ith control axis between

ti,k−1 and ti,k. The array of pre-specified controls isU∗
nu,nk+1, and has dimension nu×nk+1.

In conjunction with the sorted knots, the segment control values are determined.

T nu,nk , T ns+1, U
∗
nu,nk+1 → Unu,ns

The control values are completely contained in Unu,ns , where ui,k indicates the control value

for the ith axis on the kth segment. In this process, the control values along the first segment

are simply the first pre-specified control values, that is

ui,1 = u∗i,1.

82

Then, at each segment boundary, all control values are held constant except in the control

axis associated with the given knot. Since this knot identifies a control switch in its cor-

responding axis, the value in that control axis is updated to its next pre-specified value.

Thus, if κi indicates the current control value of the ith axis, then

ui,k = u∗i,κi

ui,k+1 =
{

u∗i,κi+1, tk ≡ ti,κi ,

u∗i,κi , otherwise.
(3.12)

Upon each control switch, the update κi = κi + 1 is performed in the switching axis to

complete the recursive step. Equation 3.12 guarantees that along the final segment,

ui,ns = u∗i,nk+1.

In a final step, the controls are determined at each node.

Unu,ns → Unu,nn,ns

Since the controls are assumed constant over all segments, it is clear that ui,j,k = ui,k for all

nodes j = 1, . . . , nn. With this, all necessary elements are extracted, and the cost function

and constraints can be evaluated in terms of the extracted elements.

3.2.2 Dynamical Constraints Using Simpson Integration Equations

The dynamical constraints are the central feature of a collocation method. When

they are satisfied to tolerance, state continuity exists in the context of the given dynamical

model. The dynamical constraints are also the key functions affected by the segment-time

switching phenomenon.

The ny(nn − 1)ns dynamical constraints are of the form

cẏ(x) =
[
cTẏ1,1(x) · · · cTẏj,k(x) · · · cTẏnn−1,ns

(x)
]T

,

83

where

cẏj,k(x) = yj+1,k − yj,k (3.13)

− h

6
[
f

(
tj,k,yj,k,uj,k

)
+ 4f (tm,ym,um) + f

(
tj+1,k,yj+1,k,uj+1,k

)]
.

In Equation 3.13, the time variables are determined from previously extracted quantities

by

h =
tk − tk−1

nn − 1
,

tj,k = tk−1 + h(j − 1),

tm =
1
2

(tj,k + tj+1,k) .

Note that tk are elements of the 1-dimensional array T ns+1 representing segment boundaries,

while tj,k are members of the 2-dimensional array T nn,ns denoting the node times within

a segment. The already extracted state and control values at the nodes, yj,k and uj,k, are

used to determine the midpoint states and controls:

ym =
1
2

(
yj,k + yj+1,k

)
+

h

8
(
f j,k − f j+1,k

)
,

um =
1
2

(uj,k + uj+1,k)

= uj,k = uj+1,k. (3.14)

The result in Equation 3.14 is trivial, since the controls remain constant over any segment.

84

3.2.2.1 Partial Derivatives for the Simpson Integration Equations

For any set of dynamics, the general partial derivatives of cẏj,k may be determined

as follows:

∂cẏj,k
∂yj,k

= −I − h

6

(
∂f j,k
∂yj,k

+ 4
∂fm
∂ym

∂ym
∂yj,k

)
(3.15)

∂cẏj,k
∂yj+1,k

= I − h

6

(
4
∂fm
∂ym

∂ym
∂yj+1,k

+
∂f j+1,k

∂yj+1,k

)
(3.16)

∂cẏj,k
∂uj,k

= −h

6

(
∂f j,k
∂uj,k

+ 4
∂fm
∂um

∂um
∂uj,k

)
(3.17)

∂cẏj,k
∂uj+1,k

= −h

6

(
4
∂fm
∂um

∂um
∂uj+1,k

+
∂f j+1,k

∂uj+1,k

)
(3.18)

∂cẏj,k
∂tk−1

= −1
6

(
f j,k + 4fm + f j+1,k

) ∂h

∂tk−1
− h

6

[
∂f j,k
∂tj,k

∂tj,k
∂tk−1

+ 4
(

∂fm
∂ym

∂ym
∂h

∂h

∂tk−1
+

∂fm
∂tm

∂tm
∂tk−1

)
+

∂f j+1,k

∂tj+1,k

∂tj+1,k

∂tk−1

]
(3.19)

∂cẏj,k
∂tk

= −1
6

(
f j,k + 4fm + f j+1,k

) ∂h

∂tk
− h

6

[
∂f j,k
∂tj,k

∂tj,k
∂tk

+ 4
(

∂fm
∂ym

∂ym
∂h

∂h

∂tk
+

∂fm
∂tm

∂tm
∂tk

)
+

∂f j+1,k

∂tj+1,k

∂tj+1,k

∂tk

]
. (3.20)

In Equations 3.15-3.20, ∂f
∂t ,

∂f
∂y , and ∂f

∂u are dependent on the chosen dynamics, while

∂ym
∂yj,k

=
1
2
I +

h

8
∂f j,k
∂yj,k

,

∂um
∂uj,k

=
1
2
I,

∂h

∂tk−1
= − 1

nn − 1
,

∂tj,k
∂tk−1

= 1− j − 1
nn − 1

,

∂tm
∂tk−1

= 1− j − 1
2

nn − 1
,

∂ym
∂yj+1,k

=
1
2
I − h

8
∂f j+1,k

∂yj+1,k

,

∂um
∂uj+1,k

=
1
2
I,

∂h

∂tk
=

1
nn − 1

,

∂tj,k
∂tk

=
j − 1
nn − 1

,

∂tm
∂tk

=
j − 1

2

nn − 1
.

Considering the formulation presented in this investigation, one may observe immediately

that the derivatives
∂cẏj,k
∂x are completely defined without needing to apply Equations 3.17

85

and 3.18. Since the control values are pre-specified in this formulation, they are not opti-

mization variables and their constraint partials can be ignored. They are included above

only for completeness.

In contrast, Equations 3.15 and 3.16 are directly implementable, as yj,k are variables

contained in the parameter vector, x. If the variables are divided into state elements and

time elements, x =
[
xTy x

T
t

]T , then the Jacobian elements are

∂cẏj,k
∂xyγ

=

∂cẏj,k
∂yj,k

, xyγ ≡ yj,k,
∂cẏj,k

∂yj+1,k

, xyγ ≡ yj+1,k,

0, otherwise.

Alternatively, Equations 3.19 and 3.20 are not immediately implementable because

the time variables tk−1 and tk do not appear directly as parameters in x. However, tk−1

and tk are dependent upon the time parameters, xt, such that

∂cẏj,k
∂xt

=
∂cẏj,k
∂tk−1

∂tk−1

∂xt
+

∂cẏj,k
∂tk

∂tk
∂xt

. (3.21)

To apply Equation 3.21, the partials ∂tk
∂xt

must be determined. Recall from Section 3.2.1 that

segment boundaries of T ns+1 are directly linked to knot times T nu,nk that are functions of

the parameters in xt. Therefore, it is possible to determine

∂tk
∂t0

,
∂tk
∂tf

, and
∂tk

∂∆ti,κ
,

for all segments boundaries k = 0, . . . , ns, control elements i = 1, . . . , nu, and knots κ =

1, . . . , nk. Beginning with exterior segment boundaries, it is clear that, since tns = tf ,

∂t0
∂t0

= 1,

∂t0
∂tf

= 0,

∂t0
∂∆ti,κ

= 0,

∂tns
∂t0

= 0,

∂tns
∂tf

= 1,

∂tns
∂∆ti,κ

= 0.

86

This is true regardless of the ordering for interior knots. However, interior segment bound-

aries in T ns+1 correspond to elements in the knot array T nu,nk . That is,

tk ≡ ti,κ, 1 ≤ k ≤ ns − 1

for some pair i, κ. Likewise, the derivatives of the element ti,κ are assigned to the element

tk,
∂tk
∂xt

≡ ∂ti,κ
∂xt

, 1 ≤ k ≤ ns − 1

Thus, all that remains is to identify the proper derivatives for the knot times. Under the

assumption that all ∆ti,κ ≥ 0,

∂ti,k
∂t0

= 1,

∂ti,k
∂∆tι,κ

=
{

1, ι = i, κ ≤ k,
0, otherwise,

∂ti,k
∂tf

= 0.

With these derivatives carefully matched, the components of Equation 3.21 are completely

defined.

To further understand the impact of segment-time switching on derivative evalua-

tion, consider again the illustration of Figure 3.3. The partial derivatives of the segment

boundary times with respect to xt at the pth and (p + 1)th iterations are given below.

xt

ţ
∂t4

∂xt

ű

pţ
∂t5

∂xt

ű

p

ţ
∂t4

∂xt

ű

p+1ţ
∂t5

∂xt

ű

p+1

=

=

=

=

=

[∆t1,1 ∆t1,2 ∆t1,3 ∆t2,1 ∆t2,2 ∆t2,3 ∆t3,1 ∆t3,2 ∆t3,3 t0 tf]T

[0 0 0 1 1 0 0 0 0 1 0]

[0 0 0 0 0 0 1 1 0 1 0]

[0 0 0 0 0 0 1 0 0 1 0]

[0 0 0 1 1 1 0 0 0 1 0]

87

Thus, the segment boundary derivatives with respect to elements in xt are always either

0 or 1, and it is the ordering of the knots that determine the proper structure at each

iteration. The constraint derivatives for the 5th segment, then, is defined by

∂cẏj,5
∂xt

=
∂cẏj,5
∂t4

∂t4
∂xt

+
∂cẏj,5
∂t5

∂t5
∂xt

,

and clearly demonstrates dramatically different behavior on each iteration.

3.2.2.2 Time Invariance

The parameter t0 appears in the definition of every knot time, with the exception

of tns = tf . For an interior Segment k, then, t0 defines both tk−1 and tk. If the dynamic

model is time invariant, the partial derivatives
∂cẏj,k
∂tk−1

and
∂cẏj,k
∂tk

have a canceling effect in

Equation 3.21 such that
∂cẏj,k
∂t0

= 0

on an interior segment. Thus, because the parameters are axis durations instead of absolute

times, t0 and tf only have nonzero effects on the last segment.

Likewise, in a time invariant formulation, if a Segment k is bounded by two knots

associated with the same axis (such as, ti,κ−1 and ti,κ), all of the partials will cancel out

with exception to that associated with ∆ti,κ. That is,

∂cẏj,k
∂∆ti,κ

=
∂cẏj,k
∂tk

,

∂cẏj,k
∂(xt)γ

= 0, otherwise.

3.2.2.3 Derivative Discontinuities for the Dynamical Constraints

The dynamical constraints exhibit discontinuities in function derivatives when the

chronological ordering of the knots switch. This is demonstrated in how the partials ∂tk
∂xt

88

may change between the values 0 and 1 between iterations. A simple analogy is useful in

conceptualizing this phenomenon. Consider a simple function of two variables defined by

f(x1, x2) = min{x1, x2}.

If this function appears in a parameter optimization problem as either the objective or a

constraint, its evaluation is straightforward:

f =

x1, x1 < x2,
x1 = x2, x1 = x2,

x2, x1 > x2.

Interestingly, when x1 < x2, variable x2 has seemingly no impact on the function. However,

there is a switch in dependency when x2 is smaller than x1. The characteristics of this

function are quite similar to those of the dynamical constraints in the FSCT method.

Consider the derivative with respect to the first variable.

∂f

∂x1
=

1, x1 < x2,
undefined, x1 = x2,

0, x1 > x2.

A derivative discontinuity exists when x1 and x2 are equal. However, an optimizer requires

derivatives to be tractable at any point within the range of optimization. Therefore, if

evaluating ∂f
∂x1

or ∂f
∂x2

analytically, it is up to the user to choose an appropriate definition

in the case that x1 = x2. Three reasonable candidates for ∂f
∂x1

∣∣∣
x1=x2

may be seen in how

numerical derivatives could be evaluated using forward, backward or central differences:

Forward:
∂f

∂x1

∣∣∣∣
x1=x2

=
f(x1 + δ, x2)− f(x1, x2)

δ
= 0,

Backward:
∂f

∂x1

∣∣∣∣
x1=x2

=
f(x1, x2)− f(x1 − δ, x2)

δ
= 1,

Central:
∂f

∂x1

∣∣∣∣
x1=x2

=
f(x1 + δ, x2)− f(x1 − δ, x2)

2δ
=

1
2
.

Thus, choosing an analytic expression for ∂f
∂x1

∣∣∣
x1=x2

is equivalent to selecting a finite differ-

encing scheme for numerically evaluated derivatives. In most cases, the selection is arbitrary,

89

F (x) = (min{x1, x2})2

x2
1 +

(
x2 − 1

4

)2
= 1

x0

At x1 = x2,

∂f
∂x1

= 1, ∂f∂x2
= 0

∂f
∂x1

= 0, ∂f∂x2
= 1

∂f
∂x1

= 1
2 ,

∂f
∂x2

= 1
2

Constrained
Unconstrained

x1

x2

Figure 3.4: Effects of Alternative Derivative Definitions on Optimization Path

as there is probably no basis for valuing one method over another. However, it is clear that

when x1 = x2, the path of the optimizer can be altered dramatically simply by selecting a

different derivative definition.

For example, consider the optimization of the function F (x) = (f(x1, x2))
2 illus-

trated in Figure 3.4. Note that the absolute minimum exists at any point where either

x1 = 0 or x2 = 0 and the other variable is positive. Six optimal paths are shown, demon-

strating unconstrained and constrained solutions. In the constrained cases, the equation

x2
1 +

(
x2 − 1

4

)2 = 1 is imposed. The paths differ in how the derivatives are defined along

the edge x1 = x2, using forward, backward, or central differencing schemes. Thus, from

a starting point along the edge, each derivative definition converges on a different locally

optimal point. However, in each of the six cases, the resulting solution equates to the global

minimum value of the cost function.

This conceptualization is easily extended to the continuity constraints of the FSCT

method. Consider as an example the 4-knot sequence described in Figure 3.5 where t0 ≤
t1 ≤ t2 ≤ t3. The first four knots are defined by t0 and the knot times t2,1, t3,1, and t1,1,

90

t0 t1 t2 t3
| | | |
t0 t2,1 t3,1 t1,1

Figure 3.5: Sample Four-Knot Sequence

respectively. This implies that, in this example,

∆t2,1 ≤ ∆t3,1 ≤ ∆t1,1.

According to the FSCT implementation of analytic derivatives, the associated dynamics

equations for the three segments shown have time dependencies as given in Table 3.3.

Thus, when time derivatives are calculated for the dynamical constraints on one of these

segments, nonzero Jacobian elements appear for their respective dependent members of xt.

The derivatives with respect to all other members of xt, including tf and other members of

∆T nu,nk+1, are identically zero.

As long as the knots are sufficiently far away, no difficulties confront the solution

process. However, consider further the scenario that

∆t2,1 = ∆t3,1 ≤ ∆t1,1

such that t1 = t2. In the context of the dynamical problem, this situation indicates that

the controls in two axes must switch simultaneously. Thus, knots come together to exist at

Table 3.3: Segment Dependencies for Analytic and Numerical (Forward Differencing)
Derivatives

Dependent Members of xt
Segment Boundaries Analytic Derivatives Forward Differences

1 t0, t1 t0, ∆t2,1 t0, ∆t3,1

2 t1, t2 t0, ∆t2,1, ∆t3,1 t0, ∆t3,1, ∆t2,1

3 t2, t3 t0, ∆t3,1, ∆t1,1 t0, ∆t2,1, ∆t1,1

91

the same point in time, but their ordering is still specified according to the implementation

(in this case, t1 ≡ t2,1 is ordered before t2 ≡ t3,1). In this situation, it is possible for

the xt dependencies determined by numerical derivatives to be completely different then

the analytic set. To illustrate, assume that finite differences are calculated using forward

differences such that
∂c

∂x
≈ c(x + δ)− c(x)

δ
.

Then when ∆t2,1 is perturbed forward by δ > 0, the knot ordering will necessary change

since

∆t3,1 ≤ ∆t2,1 + δ ≤ ∆t1,1.

The xt dependencies via forward differences are also presented in Table 3.3. To contrast the

two derivative methods, variations for forward differences are highlighted. Thus, according

to the forward difference, changes to ∆t2,1 have no effect on Segment 1, as its bounding

times remain the same even when the parameter is perturbed. Instead, when ∆t2,1 is per-

turbed forward, it affects Segment 3, despite the fact that knot ordering indicated otherwise.

Likewise, on Segment 2, analytic calculations consider ∆t2,1 as the left bounding time, while

a forward differencing scheme necessarily implies it is the right bounding time. On Segment

2, one method will result in ∂c
∂∆t2,1

> 0, while the other will compute a negative value.

Therefore, as with the sample function, f = min{x1, x2}, several derivative defini-

tions can be employed at the switching points where derivative discontinuities exist. It is

clear that the path of x chosen by the optimizer will vary based on the derivatives cal-

culated, but this does not inhibit the FSCT method. Considering the total number of

parameters in x and the relatively few gradients that can be affected by the switching phe-

nomenon, the optimizer can still make improvements in x on an iteration where a switch

occurs, regardless of how the derivative is defined. Although the specific search direction

of the switching iteration may vary, it is observed that an identical local minimum can be

92

found via different paths. Thus, these derivative discontinuities do not present obstacles in

determining an optimal solution.

It should be noted before proceeding that this situation only arises when two knots

originating from different control axes occur simultaneously. Based on the definitions of knot

times, knots in one control axis cannot switch in order. However, two knots in one axis can

exist simultaneously when a given element ∆ti,k = 0. In fact, this is a common occurrence,

as the user may pre-specify a value of u∗i,k that is simply not desired in the optimal solution.

The optimizer makes zero a time duration in order to remove the non-optimal control value.

Having simultaneous knots in a single axis is an anticipated condition, and it is important

that this situation does not cause any adverse effects in derivative calculations. This is

guaranteed in the definition of Equation 3.9, which is specifically formulated to produce

this result.

3.2.3 Implementation of Numerical Derivatives

When a user selects a finite differencing method for evaluating function derivatives,

some additional consideration may be required. Depending on the specific optimization

algorithm, the optimizer may calculate finite differences automatically in the absence of

analytic derivative expressions. If this is the case, the FSCT method’s derivatives may not

be effectively evaluated without user intervention.

Some sophisticated optimizers perform initialization routines to more efficiently cal-

culate numerical derivatives. To avoid excess computation, functions are evaluated from

an initial or random point of x to determine the structure of the Jacobian matrix. Linear

constraints (constant Jacobian elements) and nonlinear constraints (varying Jacobian ele-

ments) are identified. This allows the routine to characterize the sparsity of the Jacobian.

By performing this task in the initialization, the algorithm seeks to avoid recalculating non-

changing elements. However, in the context of the FSCT implementation, this procedure

93

will not be able to adequately identify the potential dependencies that would appear from

a different evaluation point. Some Jacobian elements will appear to be nonvarying at a

particular point based on the current arrangement of knots. If the initialization routine

falsely identifies elements as constant (zero or nonzero), then proper derivatives are not

evaluated for future iterations when the knot arrangement is different. Consequently, the

optimizer cannot determine the best search direction for the next iteration point, and it is

unlikely that the optimizer would converge on an optimal point.

This can be overcome with user defined procedures to flag all potential dependencies

(nonzero Jacobian elements) as varying gradients. With this information, the optimizer will

perform finite differences for each element, actively determining the dependencies on each

iteration. Efficiency degrades, and there is necessarily excess computation, but derivatives

can be calculated accurately.

3.2.4 Other Constraints

So far, the implementation of the FSCT method is presented in the context of the

continuity constraints and the segment-time switching phenomenon that exists in those

constraints. However, the continuity constraints along segments are only a subset of the

constraints necessary for successful implementation of the method. Of course, the specific set

of constraints may be dependent upon the actual problem transcribed. However, common

to most applications are three additional subsets of constraints described presently. These

implement various initial, knot, and time conditions.

3.2.4.1 Initial States and Time

The initial conditions most often employed with optimal control problems have all

of the initial states as well as the initial time fixed. The optimization question posed is

94

most often of the form: Given where I am now, how do I do what I want to do? Thus, the

constraints, ψ0(t0,y0) = 0, will capture fixed initial states and time.

Notice that the initial states are simply the states assigned to the first node of the

first segment, yi,1,1. Let the specified initial states be identified as (y∗0), and the specified

initial time as t∗0. Then nψ0 = ny + 1 constraints are imposed to represent ψ0 as

cψ0(x) =

y1,1,1 − (y∗0)1
...

yi,1,1 − (y∗0)i
...

yny ,1,1 − (y∗0)ny
t0 − t∗0

.

The optimizer drives this vector to zero during the optimization. However, simple con-

straints like this could and should be met on the first iteration by appropriately assigning

the initial conditions in the first guess for x.

The Jacobian elements for these constraints are simple to compute.

∂cψ0i

∂xγ
=

{
1, xγ ≡ yi,1,1 ⇔ γ = i,
0, otherwise,

∂cψ0ny+1

∂xγ
=

{
1, xγ ≡ t0 ⇔ γ = nynnns + nu(nk + 1) + 1,
0, otherwise,

for i = 1, . . . , ny.

Note that specified final states and time would be treated identically.

3.2.4.2 Segment Continuity Between Knots

Consider a set of dynamics where all states must be continuous across segments.

Since no time elapses between the end of the kth segment and the beginning of the (k +1)th

segment, the states must be equal at those points. The ny(ns − 1) segment constraints are

95

formulated as

cs(x) =

y1,1,2 − y1,nn,1
...

yi,1,k+1 − yi,nn,k
...

yny,1,ns − yny ,nn,ns−1

,

with Jacobian elements,

∂csny(k−1)+i

∂xγ
=

1, xγ ≡ yi,1,k+1,
−1, xγ ≡ yi,nn,k,
0, otherwise,

for i = 1, . . . , ny and k = 1, . . . , ns − 1.

3.2.4.3 Time

Time equality constraints ensure that the sums of the axes durations for each control

axis are equal to the trajectory time of flight, tf − t0. That is, the nu time constraints are

ct(x) =

tf − t0 −
∑nk+1

κ=1 |∆t1,κ|
...

tf − t0 −
∑nk+1

κ=1 |∆ti,κ|
...

tf − t0 −
∑nk+1

κ=1 |∆tnu,κ|

.

The Jacobian elements for these constraints are

∂cti
∂xγ

=

1, xγ ≡ tf ,
−1, xγ ≡ t0,

−1, xγ ≡ ∆ti,k,
0, otherwise.

for i = 1, . . . , nu and k = 1, . . . , nk + 1. For these derivatives, it is assumed that ∆ti,k ≥ 0.

This is a reasonable assumption if simple bounds keep the time durations nonnegative.

Alternatively, the derivatives associated with the durations are −sign(∆ti,k) instead of −1.

96

3.3 Summary

It is often the case that unique problems require unique methods for determining

solutions. This work explores one such problem, in which a continuous dynamical system

is subject to a finite control space. This development results in an enhanced collocation

method specifically designed to treat optimal control problems under this type of control

constraint.

The Finite Set Control Transcription method is presented in this chapter along with

implementation considerations. The class of hybrid problem targeted for this development

consists of continuous states and discrete controls. It should be noted that further extensions

of this method may be applied to different classes of hybrid control problems. One in

particular considers both discrete and continuous control variables. The FSCT method

may be augmented to treat extra continuous control variables as in a traditional collocation

approach (see Chapter 6). Extensions can also be considered for autonomous switching

with appropriate definitions of knot conditions.

The FSCT method is also applicable for completely continuous systems. For ex-

ample, the method proves useful in forcing ‘bang-bang’ control histories, which result even

when control variables are only constrained by saturation limits. The nature of the param-

eterization allows for switching times to be optimized over a continuous spectrum, unlike

most collocation schemes. This facilitates the transition from the FSCT (parameterized)

solution to the implementation in the actual continuous system.

The transcription and implementation development presented here is sufficient for

a user to formulate any number of appropriate applications. These follow in subsequent

chapters. General applications explore single and multiple discrete variables, ‘bang-bang’

control, and solution precision. Further applications demonstrate the FSCT method’s ca-

pability in handling large-scale, complex problems.

97

Chapter 4

General Applications

Having detailed the implementation for the Finite Set Control Transcription (FSCT)

method, it is beneficial to explore the capability and utility of the method by demonstrating

a range of applications. In so doing, the scope of the method is characterized, ideally

inspiring additional applications outside those presented here. The applications presented

are focused on aerospace systems, as these served to motivate the method’s development.

The basic applications consider the stability of a switched linear system, minimum-time and

minimum-acceleration solutions to a 2-dimensional lunar lander problem, and spacecraft

attitude control based on inexpensive cold-gas thruster technology.

As the method is explored, several other hybrid control methods are introduced. A

stability method involving multiple Lypunov functions is contrasted with the FSCT method,

while a hybrid model predictive control scheme is used in conjunction with this investiga-

tion’s focus. In the final application, the attitude dynamics of a spacecraft are expressed

by two different models to demonstrate how control inputs traditionally considered in a

continuous form may be expressed as a combination of an augmented set of continuous

states and discrete controls.

To begin, a process for supplying initial guesses for the optimization is outlined.

The initial guess is as crucial as the method itself for arriving at useful solutions. Although

there may be several effective philosophies on how to generate an initial guess, the following

process produces successful results for the applications in this and subsequent chapters.

98

4.1 Producing Effective Initial Guesses

Of course, one natural characteristic of the numerical optimization process is that

it is iterative: a user must supply the optimizer with an initial guess for x, and allow the

algorithm to improve upon that value until the constraint functions are satisfied and the

cost function is minimized. Therefore, the identification of adequate solutions requires a

good initial guess, x0. In some sense, x0 should be ‘close’ to the desired solution. The final

point (that is, the converged, optimal parameters), xf , will most likely be in the same region

as x0. However, it is possible to expand the region containing the initial guess and final

solution by ensuring that the initial guess is not ‘too close’ to an existing local minimum.

It is certainly a balancing act, and determining the initial guess is often the most difficult

aspect of numerical optimization. Thus, it is crucial to provide a philosophy by which

effective initial guesses for x can be realized.

In this investigation, x0 is generated by selecting states along or close to a desired (or

maybe anticipated) solution, while controls (that is, time durations) are arbitrarily selected.

This approach is convenient because the analyst often possesses some intuitive knowledge

regarding the behavior of the states. Initial conditions, final conditions, and path data, for

example, are often available and can be easily converted into the state values of x0. Once

the times for the nodes are known, a guess for yi,j,k can be interpolated. Likewise, starting

values of t0 and tf can generally be deduced intuitively. Of course, identifying candidate

initial values for the control history is not intuitive. In that case, it is convenient to assign

initial values for control switches arbitrarily.

This approach can be quite effective. An arbitrarily designated control sequence,

combined with an intuitive set of state parameters, generally results in a non-feasible initial

guess. Of course, since the starting point is not feasible, it is also not likely in the vicinity

of an existing local minimum. The optimizer will necessarily adjust the initial values of all

the parameters to make x feasible, moving x away from what may be a poor initial guess.

99

However, by observing that most often nynnns + 2 > nu(nk + 1) (the number of states is

greater than the number of control time parameters), the state elements within x0 provide

inertia to keep x in the same vicinity. Thus, this approach helps in producing initial guesses

that are not too close or too far away from a good solution.

In this study, the control values are generally pre-specified in a manner similar to

the profile of Figure 1.1. The control values are selected as an ordered set, where each

of the feasible values is present for multiple time durations. One way of expressing the

pre-specified control values in this example is

u∗i,k = ũi,mod(k−1,mi)+1,

for i = 1, . . . , nu and k = 1, . . . , nk + 1. This employs the modulus function, where

mod(a, b) = a− ηb, and η is the largest integer multiplier such that ηb ≤ a. This choice can

be altered should problem intuition dictate a less arbitrary arrangement.

An effective strategy for guessing the time durations, ∆ti,k, allows for uniform seg-

ment durations for all segments in the initial guess. One way of accomplishing this is

through the definitions,

∆̄ =
tf − t0

ns

∆ti,k =

i∆̄, k = 1
nu∆̄, k = 2, . . . , nk

(nu + 1− i)∆̄, k = nk + 1
,

for i = 1, . . . , nu. This guarantees that, upon the first iteration of the optimization, each

segment has duration ∆̄, and the knots are placed as far apart as possible. Notice also that

there is a structured rotation between the control variables with regard to switching times:

u1 switches, followed by u2, and so on. The order of control switches is free to change

throughout the optimization process (ui does not always switch before ui+1), but the initial

ordering and initial separation between knot times allows for free movement of the knots

100

in order to arrive at a feasible and locally optimal switching structure. This philosophy for

generating x0 is practiced in each of the applications that follow.

4.2 Two Stable Linear Systems

Although the FSCT method is especially effective for multiple control variables,

consider first a system controlled by only one decision. The system is

ẏ = f(y, u) = Auy, (4.1)

u ∈ {1, 2} , (4.2)

where

A1 =
[−1 10
−100 −1

]
, A2 =

[−1 100
−10 −1

]
.

Thus, the system is characterized by two separate dynamical modes, and the decision vari-

able determines which of the two is in play at any given time. Notice that individually, each

mode is a linear, time-invariant system guaranteeing exponential stability at the origin,

y = 0. Observe in Figure 4.1 how both systems send trajectories to the origin from the

initial point y0 = [10 10]T .

This example is presented by Branicky6,8 as a classical demonstration of how multi-

ple Lyapunov functions can be used to develop switching laws for the system. It is intrigu-

ing in that, although individually stable, one cannot arbitrarily switch between dynamical

modes and guarantee system stability. Branicky shows, for example, a switching law devised

such that u = 1 when y is in Quadrants 2 and 4, and u = 2 when y is in Quadrants 1 and

3. From any point, the trajectory goes to infinity as illustrated in Figure 4.2(a). However,

this is not the case for all switching functions. For example the law that switches modes

when y crosses the line y2 = y1 results in a stable system converging on the origin (Figure

4.2(b)).

101

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

y1

y 2

ẏ =

[
−1 10
−100 −1

]
y

(a)

−20 −10 0 10 20 30

−20

−15

−10

−5

0

5

10

15

20

y1

y 2

ẏ =

[
−1 100
−10 −1

]
y

(b)

Figure 4.1: Individually Stable Systems

The characteristics of the system can be explained via Lyapunov analysis, which fol-

lows. The technique of multiple Lyapunov functions is intuitively applied since the switched

system consists of multiple dynamical modes. Subsequently, the FSCT method is applied to

demonstrate an alternative analysis technique for determining stable (and optimal) switch-

ing laws. This system presented in Equations 4.1-4.2 serves as an excellent example, since

each method can be exercised in a graceful manner due to the inherent simplicity of the

linear system. In addition, this example capitalizes on the familiarity of linear systems and

Lyapunov stability theory to the general reader.

4.2.1 Stability via Multiple Lyapunov Functions

The key feature of the switching law of Figure 4.2(b) that guarantees stability is

that the system remains in both modes for exactly one half of a revolution between each

switch. Recall that the two state linear system with complex eigenvalues λ1,2 = α± jω and

corresponding eigenvectors v1,2 = a± jw has solution of the form

y(t) = eAty0 = eαt
[
a w

] [
cosωt sinωt
− sinωt cosωt

] [
a w

]−1

y0.

102

−8000 −6000 −4000 −2000 0 2000
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

y1

y 2

ẏ = Auy

u =

{
1, y1y2 < 0
2, otherwise

(a)

−35 −30 −25 −20 −15 −10 −5 0 5 10 15

−30

−25

−20

−15

−10

−5

0

5

10

y1

y 2

ẏ = Auy

u =

{
1, y1 > y2

2, otherwise

(b)

Figure 4.2: Two Switching Laws

Then, one half revolution later from any point,

y
(
t +

π

ω

)
= eα(t+

π
ω)

[
a w

] [
cosω

(
t + π

ω

)
sinω

(
t + π

ω

)
− sinω

(
t + π

ω

)
cosω

(
t + π

ω

)
] [
a w

]−1

y0

= −eα
π
ωy(t),

provided that the system remains in the same mode over that time. Thus, for α < 0 (a

stable system), the Lyapunov function,

V = yTy,

which represents in a sense the energy of the system, is guaranteed to be smaller after one

half of a revolution. Consistent switching at intervals of π
ω ensures an incremental decrease

in system energy, resulting in convergence to the origin.

Other stable switching structures may also be obtained with a more classical Lya-

punov argument. Considering each stable dynamical mode, Au, separately, there exist

symmetric positive definite matrix pairs, P u and Qu, such that

P uAu +AT
uP u = −Qu. (4.3)

103

Stability for the mode is demonstrated through the Lyapunov function,

Vu = yTP uy > 0,

with negative time derivative,

V̇u = yTP uẏ + ẏTP uy

= yT
(
P uAu +AT

uP u

)
y

= −yTQuy < 0.

This standard analysis method offers a way of defining a stable switching law according to

the behavior of the Lyapunov functions for each mode. For example, define Q1 = Q2 = I

for simplicity. Then the Lyapunov Equation 4.3 can be solved uniquely to yield P 1 and

P 2, corresponding to their respective modes. In this case, it is observed that regardless

of the current mode, the energy of the system decreases according to −yTQuy = −yTy.

However, V1 6= V2, and a reasonable switching law can be selected such that the Lyapunov

function is minimized.7 Thus,

u =
{

1, V1 ≤ V2

2, V1 > V2
.

A trajectory implementing this switching law is illustrated in Figure 4.3.

4.2.2 Optimal Switching via FSCT Method

The method of multiple Lyapunov functions demonstrated above can be effective in

determining switching strategies between a finite number of system modes identified through

a single decision variable. Variations on the theme arise by choosing the minimum V̇u instead

of Vu for some candidate Lyapunov functions, or by minimizing some combination of the

two.7 With an infinite set of stable switching laws, a question remains regarding efficiency

and robustness. Although many criteria may be chosen to rank the effectiveness of a

switching structure, a simple criterion is presently selected to demonstrate how the FSCT

104

−40 −30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

y1

y 2

ẏ = Auy

u =

{
1, yTP1y < y

TP2y
2, otherwise

Figure 4.3: Minimum Lyapunov Function Switching Law

method can aid in the realization of an appropriate switching law. For this example, consider

the objective of minimizing the time needed to move a point from its initial position to the

vicinity of the origin. Naturally, the trajectory will never go through the origin, as eαt > 0

always. However, by choosing a region near the origin, a terminal condition for the optimal

control problem is established. Let the final point be subject to

yTf yf = 1,

such that the objective is to cross the boundary of the unit circle in minimum time, starting

from the initial point, y0 = [10 10]T . The optimal control law indicates when to switch

between the dynamical modes of A1 and A2 to most efficiently guide the trajectory to the

terminal manifold.

The FSCT method is well equipped to solve this optimal control problem. Actu-

ally, many of the unique characteristics of the solution method are not exercised by this

example due to the fact that the problem consists of only one decision variable. Notions of

switching dependencies within the underlying nonlinear programming problem are necessar-

ily excluded when only one control is involved. The total number of segments is exactly the

105

number of pre-specified control values, and consequently, the control characteristics of each

segment are known a priori. Thus, the optimization process simply determines appropriate

switching times between segments.

To begin the process, a user selects the number of knots, indicating the total al-

lowable control switches over the course of the trajectory. Let nk = 20 knots for an initial

optimization, and pre-specify control values such that

u∗k =
3
2

+
1
2
(−1)k,

indicating that u begins at the value 1 and alternates between 1 and 2 over each of nk+1 = 21

segments. Additionally, a user selects a node count that sufficiently captures the state

dynamics between control switches when state continuity conditions are satisfied. For this

example, nn = 100. Appropriate knot conditions are identified to ensure state continuity

across segments, and the final condition is formulated as

cψf = (y1,nn,ns)
2 + (y2,nn,ns)

2 − 1 = 0,

which involves the states corresponding to the last node of the last segment. Finally, by

identifying the optimization function, J = F (x) = tf−t0, the FSCT formulation is complete.

A preliminary guess is necessary to conduct the nonlinear optimization. The initial

point, x0, is generated using an interpolation of the trajectory determined by the minimum

Lyapunov function switching law of Figure 4.3 over the time interval t ∈ [0 3]. Thus, the

preliminary cost of the optimization is 3, a reasonable estimate considering this trajectory

first crosses the unit circle at time t = 3.17. The knots (switching times) between dynamical

modes are uniformly spaced in time from 0 to 3. Thus, the preliminary guess does not satisfy

the continuity constraints: the guessed control switches do not correspond to the control

switches of the interpolated states. This is acceptable, as the optimization process ensures

that the final solution is feasible as well as locally optimal.

106

An FSCT optimization applied for the selected initial guess leads to the trajectory

illustrated in Figure 4.4(a). The final time is tf = 0.3782, significantly smaller than the

initial guess. The solution is feasible, and three control switches are clearly observable by

the corners in the trajectory. With 20 knots, then, it is apparent that 17 possible control

switches are not utilized. Indeed, the solution consists of many knots occurring simultane-

ously, resulting in zero-duration segments. Thus, the transcription is overparameterized for

this solution. Observe that the control switches occur at the following states:
[

y1

y2

]

k=1

=
[−9.3125

3.3180

]
,

[
y1

y2

]

k=2

=
[

1.5297
4.2932

]
,

[
y1

y2

]

k=3

=
[−1.7921

0.6385

]
.

Notice that the switching points are related, as

−
(

y1

y2

)

k=1

=
(

y2

y1

)

k=2

= −
(

y1

y2

)

k=3

≡ m.

This ratio implies the switching law

u =
{

1, − 1
m ≤ y2

y1
≤ m

2, otherwise
(4.4)

where m = 2.8067. It is important to observe that the trajectory that resulted from the

FSCT optimization shows control switches in only Quadrants 1 and 2, while the control law

in Equation 4.4 observes switches in each of the four quadrants. The difference is explained

through the realization that the solution method is capable of determining locally optimal

solutions, most likely in the vicinity of the initial guess. Obviously, the solution is only a

local minimum, as the trajectory actually crossed the terminal radius at one point before the

final time. In this case, the initial guess and the parameterization leads to a solution with

only three observable control switches. However, the symmetry of the trajectories generated

in either dynamical mode imply that there should also exist symmetry in the switching law.

This intuition leads to Equation 4.4. To validate this control law, a second optimization

problem is solved, this time with a new initial guess. For the second optimization, the states

and control switch times of the initial guess are generated using Equation 4.4. Optimizing

107

−20 −15 −10 −5 0 5 10 15 20

−30

−25

−20

−15

−10

−5

0

5

10

y1

y 2

(a)

−20 −15 −10 −5 0 5 10 15 20

−30

−25

−20

−15

−10

−5

0

5

10

y1

y 2

(b)

Figure 4.4: FSCT Locally Optimal Switching Trajectories

this initial guess, the trajectory of Figure 4.4(b) is determined. Validating the control

law, this second solution corresponds to the initial guess, except that in the final solution,

m = 3.0979, a slightly larger slope for the switching line. However, the cost is even further

improved, with tf = 0.0870.

The fact that the slope value, m, changed between the two optimizations is not

overly surprising. One reason for this is simply the fact that, in each case, the solution is

a local, not global, minimum. Through further analysis, it is apparent that m is a factor

of the initial point and the size of the terminal radius, as well. Indeed, a change to the

terminal radius such that yTf yf = 0.5 yields m = 3.7786 in the optimal solution.

The intent of this example is to demonstrate how a classical problem, which can be

solved using traditional control techniques, can also be analyzed using the FSCT method.

One advantage of the latter is the ability to optimize a control solution or control law

according to a specified objective. In this case, the final time is minimized, however it

might be equally useful to minimize the integral of the system energy over a fixed time, for

example. Both costs capture, in a sense, the sentiment to drive a trajectory to the origin

in an efficient manner, although both undoubtedly yield different solutions. It is observed,

108

after all, that the trajectories of Figure 4.4 reach the unit circle quickly, but their control

law does not guarantee that the trajectory will remain within that circle for all future

time (it may escape the region and re-enter). Thus, the FSCT method can only guarantee

optimality over the range of time considered, not beyond.

4.3 Lunar Lander

In a second example, it is useful to visit the classical Lunar Launch/Lunar Lander

problem, commonly treated in the literature on optimal control theory.23–25 The objective

for the launch problem is to transfer a rocket from the lunar surface into a lunar orbit in

minimum time. The problem is constructed in two dimensions, range and altitude, yielding

4 states (position and velocity in each dimension) and 1 control variable (thrust-direction

angle). The thrust acceleration magnitude and the gravitational field are assumed constant.

The rocket is initially at rest and must achieve a specified final altitude and range velocity.

It is observed that the lunar lander problem (assuming a soft landing) is the identical

problem, integrating backwards. The simplicity and familiarity of this problem make it an

interesting test case for the FSCT method.

Consider the lunar lander problem with one added complexity: the vehicle cannot

alter its thrust vector. Instead, the vehicle can thrust with constant acceleration magnitude

in each principal direction. The system now has 4 states and 2 control variables, in a sense

doubling the complexity of the Section 4.2 example. Specifically, by implementing multiple

control values, the unique segment-switching characteristics of the FSCT method can be

observed. The objective of this problem is to transfer a rocket from a lunar orbit to the lunar

surface in minimum time or by using minimum acceleration. The dynamics are described

by

ẏ =

ṙ1

ṙ2

v̇1

v̇2

 =

v1

v2

u1

−g + u2

 ,

109

where r, v, and u represent position, velocity, and control acceleration, respectively, and the

subscripts indicate the horizontal and vertical dimensions. The gravitational constant of

g = 1.6231 m/s2 is obtained using the mass and equatorial radius of the Moon.38 With initial

conditions, r0 = [200 15]T km and v0 = [−1.7 0]T km/s and final conditions rf = vf = 0,

the lander must achieve a soft landing on a specified target from a completely specified initial

state. Both minimum-time and minimum-acceleration optimizations are realized with the

finite set control constraints

u1 ∈ {−ũ1, 0, ũ1},

u2 ∈ {−ũ2, 0, ũ2},

where ũ1 = 50 m/s2 and ũ2 = 20 m/s2. The control constraints ensure constant thrust

acceleration during thrusting arcs.

4.3.1 Optimal Minimum-Time and Minimum-Acceleration Solutions

Optimal solutions are now demonstrated via the FSCT method. For this example,

let nn = 5 nodes per segment and nk = 14 knots per control axis. In addition, let the

pre-specified controls be identified as

u∗i,k = ũi cos
(π

2
(k − 1)

)
.

Thus, it is assumed in the control sequence that the vehicle thrusts initially in the positive

directions (uprange and up), then coasts, then thrusts in the negative directions (downrange

and down). The resulting optimizations determine the appropriate times for all control

switches, indicating the durations for each thrusting and coasting arc.

An initial guess is devised with t0 = 0, tf = 300 seconds, and all knot times are

evenly distributed over the interval such that each segment duration is identical. The

state parameters in x are constructed to create a linear progression in each state from its

110

initial value to its final value. Initial, final, and knot condition constraints are satisfied

by the x supplied to the optimizer before the first iteration, but continuity constraints

are not immediately satisfied. During the optimization process, x is improved such that

all constraints are satisfied. In addition, the final x minimizes the objective function,

representing J = tf − t0 for minimum time or J =
∫ tf
t0
uTu dt for minimum acceleration.

Figure 4.5 displays the solutions of both the minimum-time and minimum-

acceleration problem. Vehicle positions and controls are plotted for both minimizations.

Notice the control history u1 for the minimum-time solution. In essence, this solution rep-

resents bang-bang control in the first axis, with u1(t) = −ũ1 on t ∈ [0 33.66] seconds, and

u1(t) = ũ1 for the remaining time until tf , at 101.32 seconds. Of course, this control behav-

ior is expected for a minimum-time optimization. Recall, however, that the pre-specified

initial value for u1 is ũ1. As the illustration demonstrates, there is an instantaneous switch

in the control at t0 = 0 from ũ1 to 0 and then from 0 to −ũ1. The solution exhibits

that ∆t1,1 = ∆t1,2 = 0 in order to accomplish this. In addition, there are instantaneous

switches at t = 34.06, 68.65, and 101.32 seconds. At each of these times there exist time

durations ∆t1,k for coasting and negative-direction thrusting, and each has been optimized

to be identically zero. This behavior is a common artifact of the FSCT formulation. It

does not indicate that control switches should occur at these times; rather it indicates

that the problem has been overparameterized with more knots than necessary. However,

since control values are pre-specified in the optimization, it is useful to overparameterize

the problem, allowing for more control switches than needed. Overparameterizing allows

the optimizer to demonstrate the optimal number of switches (less than the parameterized

number) by driving to zero superfluous control axis durations. The overparameterization

also allows the user additional flexibility to arbitrarily pre-specify control values, knowing

that non-optimal control values are eliminated in the final solution. In this case, specifying

nk = 14 knots represented an overparameterization in u1, but not necessarily in u2. In

111

the vertical control axis, only three time durations are driven to zero by the optimization.

These are the positive thrusting arc occurring at t = 33.93 seconds and the coasting and

negative thrusting arcs occurring simultaneously at the final time.

−20 0 20 40 60 80 100 120

0

100

200

Minimum Time
r

k
m

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

−20 0 20 40 60 80 100 120
−4

−2

0

2
v

k
m

/
s vvvvvvvvvvvvvvvvvvvvvvvvvvvv

−20 0 20 40 60 80 100 120
−50

0

50 u1

m
/s

2

u1

−20 0 20 40 60 80 100 120
−20

0

20 u2

Time (s)

m
/
s2

u2

(a)

−20 0 20 40 60 80 100 120 140 160

0

100

200

Minimum Acceleration
r

k
m

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

−20 0 20 40 60 80 100 120 140 160
−2

−1

0

1 v

k
m

/
s vvvvvvvvvvvvvvvvvvvvvvvvvvvv

−20 0 20 40 60 80 100 120 140 160
−50

0

50 u1

m
/s

2

u1

−20 0 20 40 60 80 100 120 140 160
−20

0

20 u2

Time (s)

m
/
s2

u2

(b)

0 50 100 150 200

0

2

4

6

8

10

12

14

16

r1 (km)

r 2
(k

m
)

Minimum Time

Minimum

Acceleration

(c)

Figure 4.5: Optimal Solutions for the Minimum-Time and Minimum-Acceleration Lunar
Lander Problem

112

This same behavior is observed for the minimum-acceleration optimization displayed

in Figure 4.5(b). One may easily observe that most thrusting arcs are reduced exactly to

zero by the optimizer for both control axes. This indicates that far fewer switches were

necessary to identify this local minimum, and it provides confidence that the formulation has

not underparameterized the problem by providing too few control switching opportunities.

Figure 4.5(c) plots the minimum-time and minimum-acceleration trajectories con-

currently. For each trajectory, the dots indicate the actual values of the state-parameters

optimized in x. Thus, these are the states at the nodes along each segment. It is clear

that the nodes are not evenly distributed spatially, nor are they distributed evenly in time.

Again, this is due to the varying durations of each segment. Regardless, there are nn = 5

nodes on each segment, and by segment they are evenly distributed in time. The lines

between the nodes are not simply a connection of the dots. Rather, the lines indicate

a propagation of the initial conditions along with their respective control solutions using

a variable-step integrator. While the notions of overparameterization imply that enough

knots are included in the parameterization, this illustration indicates the sufficiency of the

node count, as the integrated trajectory matches nearly identically to the distributed nodes.

The consistency between node locations and propagated states demonstrates the accuracy

of the Hermite-Simpson integration equations. At the final time, state errors for both opti-

mization solutions are O(10−6) m in positions and O(10−10) m/s in velocities, only slightly

larger than the integration tolerances for the propagation.

An important discovery from the Lunar Lander example is the extent by which

the FSCT method results in implementable control solutions. First, it is clear that the

solution requires some ‘interpretation.’ Superfluous control switches must be discounted

before implementing the control history. Actuators with minimum on-times do not support

thrust durations approaching zero; however, within the tolerance of the optimization, zero

or near-zero burn durations actually indicate that the respective actuation is not desirable.

113

Clearly, an optimization must be scaled properly in time to differentiate short actuation

times from non-optimal control sequences.

Secondly, once a control solution is adequately interpreted, the performance of the

solution in a continuous time setting can be nearly identical. Although this collocation tech-

nique does rely on a time discretization along each segment, the switching times between

control values are optimized over a continuous spectrum. Therefore, the control solution

represents exact switching times within the tolerance of the optimization. In this exam-

ple, the continuous-time system is simulated with state and control propagation, showing

negligible deviations from the FSCT solution.

Multiple Optimal Solutions

One final observation regarding overparameterization is now explored. Consider the

case where the optimal solution requires that ∆ti,k = 0 for some i and k. Thus, ti,k−1 = ti,k

and the pre-specified control value u∗i,k is not part of the optimal solution. In addition, let

u∗i,k−1 = u∗i,k+1.

This is a common situation, as many applications may pre-specify control values to alternate

between two values (or ‘on’ and ‘off’). In this case, the control effectively remains at the

value of u∗i,k−1 from ti,k−2 to ti,k+1 (see Figure 4.6). Define ∆̄ as the total duration spent

at this control value, such that

∆̄ = ti,k+1 − ti,k−2 = ∆ti,k−1 +©©©*0
∆ti,k + ∆ti,k+1.

Notice that ∆ti,k−1 and ∆ti,k+1 can take any values such that their sum remains ∆̄ while

still ultimately communicating the same control profile.

Thus, there are an infinite number of combinations of parameters that represent

an identical optimal solution. However, it is observed that changes to the two nonzero

114

ti,k−2 ti,k−1 ti,k ti,k+1

∆ti,k−1 ∆ti,k ∆ti,k+1

∆̄

u∗i,k−1

u∗i,k

u∗i,k+1

→ ←

Figure 4.6: Scenario Resulting in Multiple Optimal Solutions

time durations have significant impact on the dynamic constraints, as the knot locations

determined through ∆ti,k−1 and ∆ti,k+1 further determine the node locations at which

states are defined in xy. This inertia deters arbitrary variations in time parameters, thus

facilitating convergence. In other words, minor changes in the values of ∆ti,k−1 and ∆ti,k+1

require major changes in the elements of Y ny ,nn,ns on the three corresponding segments in

order to realize an equivalent optimal solution.

4.3.2 A Model Predictive Controller for Real-Time Implementation

One potential drawback of the FSCT method is that, while capable of producing

optimal control histories for the finite set control problem, optimal control laws for real-time

implementation are not immediately available. In Section 4.2, a control law is deduced for

115

the optimal switching between dynamical modes, but for the general dynamical problem,

there is no guarantee that an optimal control solution will imply a real-time law, u = u(t,y).

To compensate for this limitation, a process is now considered by which FSCT solutions

may be implemented in conjunction with a model predictive control (MPC) design for real-

time implementation of finite control. See Appendix A for relevant background on MPC

theory and an extension to hybrid systems.

4.3.2.1 MPC Control Law

A model predictive controller can be derived by approximating the hybrid control

system as a linear discrete-time model to develop easily calculated estimates for measureable

state-like quantities at future instances of time. Let the estimate on the output at future

time t + j∆t, given the states at time t, be denoted as ẑ(t + j∆t|t). In the appendix, it is

shown that this estimate may be expressed as a function of y(t) and u(t) . Over a prediction

interval defined by p, a series of estimates can be expressed as

Z =

ẑ(t + ∆t|t)
...

ẑ(t + j∆t|t)
...

ẑ(t + p∆t|t)

= Gy(t) +Ku(t),

with appropriate definitions for the matrices G and K. Let the nominal output (corre-

sponding to the FSCT trajectory) be expressed at the same discrete time intervals in the

vector, Zn. A cost function of the form

J =
1
2
(Zn −Z)TQ(Zn −Z) +

1
2
uTRu

may be employed to penalize both deviations in trajectory states away from the nominal

and excessive control usage. Thus, J can then be minimized according to user defined weight

matrices Q and R to produce a tracking trajectory that also minimizes control over the

prediction interval.

116

The model predictive control law for the hybrid system is defined according to

u = arg min
u∈Unu

J.

Simply stated, the implemented control at the current time is the feasible control combi-

nation that minimizes the cost function. Thus, the control must consider each of the m̄

possible control combinations, implementing the minimizing choice at each interval.

4.3.2.2 A Comparison of MPC Performance

The hybrid system model predictive controller is easily demonstrated in conjunction

with the FSCT method using the minimum-acceleration solution of the lunar lander prob-

lem. With m̄ = (3)(3) = 9 possible control combinations, it is reasonable to assume that

there exists a time interval, ∆t, such that m̄ evaluations of J can be compared to determine

the minimizing control per interval. For this simulation, ∆t is chosen such that there are 500

intervals between t0 and tf (less that four intervals per second for the minimum-acceleration

trajectory). In addition, a prediction horizon is selected where p = 10, indicating that the

controller calculates the estimates for the next 10 intervals of the output at each time step.

In addition, a slightly modified cost function is evaluated, as

J =
1
2
(Zn −Z)TQ(Zn −Z) +

1
2
(un − u)T R̃(un − u).

Here, the cost function penalizes deviations in the control from the FSCT solution, as

opposed to penalizing control effort alone. Thus, the objective is to mimic the FSCT

solution as close as possible via a real-time implementation. Since the a priori discovered

optimal solution includes state and control values, it is logical to use all of this information

in the controller. The weight matrices, Q and R̃, are proportioned, however, to emphasize

position state tracking over velocity or control tracking.

The results of a simulation implementing the real-time controller are depicted in

Figure 4.7(a), displaying positions, velocities, and control values of the lunar lander. For

117

−20 0 20 40 60 80 100 120 140 160
−50

0

50 u1

m
/s

2

u1

−20 0 20 40 60 80 100 120 140 160
−20

0

20 u2

Time (s)

m
/s

2

u2

−20 0 20 40 60 80 100 120 140 160

0

100

200 r

k
m

−20 0 20 40 60 80 100 120 140 160
−2

−1

0

1 v

k
m

/s

(a)

0 50 100 150 200 250 300
−50

0

50u1

m
/s

2

u1

0 50 100 150 200 250 300
−20

0

20u2

Time (s)

m
/s

2

u2

0 50 100 150 200 250 300

0

100

200 r

k
m

0 50 100 150 200 250 300
−2

−1

0

1 v

k
m

/
s

(b)

Figure 4.7: Model Predictive Controller Simulations for the Lunar Lander

positions and velocities, both FSCT solution and MPC simulation states are plotted to

demonstrate minimal deviations between the two. It is especially interesting to compare

the control histories of Figure 4.5(b) and Figure 4.7(a): they are nearly identical. The pri-

mary observable difference between the MPC simulation and the FSCT solution is that the

simulation has removed the instantaneous control switches that resulted from overparame-

terization in the FSCT formulation. Thus, with the FSCT solution in hand, it is possible

to derive a real-time control law that very closely recreates the optimal trajectory.

As a point of comparison, a second simulation is conducted in which the MPC con-

troller is implemented with a different nominal trajectory, shown in Figure 4.7(b). In this

case, the nominal is identical to the initial guess imposed for both optimizations in Section

4.3.1. Here, the trajectory is truly arbitrary, and the associated control history correspond-

ing to this trajectory is unknown. Furthermore, the velocity states do not satisfy a matching

condition with the position states. Consequently, the cost function minimized in the control

law is modified such that R̃ = 0 and elements of Q pertaining to velocity tracking are zero

so that the control determination is solely based on position state deviations from the nom-

inal. Note that for the arbitrary trajectory, reasonable position tracking is accomplished

with this control law, while obeying the control constraints (finite set limitations) of the

118

hybrid system. However, when comparing the control histories of both simulations, it is

clear why it is beneficial to use the FSCT method for determining the nominal trajectory,

since an arbitrary trajectory will necessarily require excessive control switches to minimize

the MPC cost function. With a smaller value for ∆t, control switches may be even more

regular, requiring consideration of limitations such as minimum on-times for actuators.

The consistency between the FSCT minimum-acceleration solution and the hybrid

system MPC simulation suggest the effectiveness of using the two methodologies in tandem.

It is observed that the FSCT method offers control histories instead of implementable

control laws. On the other hand, an MPC-derived controller may only be as good as

the nominal trajectory selected for tracking. As a pair, however, it is possible to derive

optimal trajectories and control histories, and implement them in a real-time context, where

perturbations, modeling errors, and other unknowns are likely to arise. This example is

intended to further illustrate the utility of the FSCT method when a control law, rather

than a control history, is desired.

4.4 Small Spacecraft Attitude Control

In a final example, the FSCT method is applied to determine finite set control sched-

ules for tracking an arbitary spacecraft orientation. The FSCT method is well-suited for

the problem when only on-off actuation is available. This example is specifically motivated

by spacecraft limited to commercial off-the-shelf actuator technologies that are inexpen-

sive and readily available. The available literature18–20,22 indicates a range of new thruster

technologies for small spacecraft that are currently under development. Although these

may offer wide ranges of thrust magnitudes and performance efficiencies, it is interesting to

explore how the capability of traditional technologies can be stretched to maximize perfor-

mance. The attitude control problem offers an exciting dynamic environment along with

conceivable control limitations which make the FSCT method quite relevant.

119

l3

↗
Thruster Pair

l1

r

l2

↙
Thruster Pair

Figure 4.8: Micro-Satellite Illustration

Consider a low-cost micro-satellite employing a basic nitrogen cold gas propulsion

system39,40 for attitude control. Two scenarios are now investigated for this small space-

craft attitude control problem. In both of the scenarios, the spacecraft is equipped with six

thruster-pairs situated on a cuboid spacecraft body to provide purely rotational control in

each of the body’s principal directions, positive and negative (see Figure 4.8). The propul-

sion system is supplied by a single N2 propellant tank, centrally located in the spacecraft

for simplicity. Temperature and pressure are regulated at each thruster nozzle to allow for

constant thrust of 2 N. Pertinent specifications for the spacecraft and propulsion system

are listed in Table 4.1.

The first scenario demonstrates the simplest control system to conceive. Each

thruster pair is controlled by an on/off valve, and thrust magnitudes are limited to two

120

values (2 N when on, 0 N when off). The second scenario explores a variable-thrust cold

gas propulsion system in which the effective throat size of each thruster nozzle varies to

alter propellant mass flow. However, the new problem can still be modeled in a finite set

control formulation so that the FSCT method can be used. In transitioning between the

two scenario formulations, it is suggested that many variable control problems are actually,

at some level, finite control problems with an extended dynamic description.

For the dynamical relations that follow, it is necessary to identify the principal

moments of inertia for the spacecraft. The spacecraft has dimension l1 × l2 × l3 and a

propellant tank with radius r. The cuboid volume, Vc, and propellant volume, Vp, are

easily derived using these quantities. Assume a constant mass density within the propellant

tank, and further assume a constant mass density in the remaining dry space of volume

Vd = Vc − Vp. With dry mass, md, and propellant mass, mp, it is possible to derive the

principal moments. Let the cuboid mass, mc, represent the total spacecraft mass if the

mass density inside the tank were the same as the mass density outside. Then identify the

unaccounted mass within the sphere as ms, so that the principal moments for the spacecraft

can be defined as:

J1 =
1
12

mc

(
l22 + l23

)
+

2
5
msr

2,

J2 =
1
12

mc

(
l21 + l23

)
+

2
5
msr

2,

J3 =
1
12

mc

(
l21 + l22

)
+

2
5
msr

2.

Specific definitions for derived quantities are also included in Table 4.1.

In each scenario, the dynamics are described using quaternion elements. Recall that

the quaternion, q =
[
q0 q

T
v

]T , is a 4-dimensional quantity, consisting of one scalar element

and one 3-dimensional vector, that describes the rotation between two coordinate frames.

The 3 × 3 coordinate transformation matrix used to rotate between two frames may be

121

Table 4.1: Physical Characteristics for a Micro-Satellite

Assumed Quantities

Dimensions l1 1.00 m
l2 1.25 m
l3 1.50 m
r 0.25 m

Masses Dry Mass md 15.00 kg
Propellant Mass (at t0) mp 5.00 kg

Cold Gas Propulsion Specific Gas Constant (N2) R 296.80 N ·m/(kg ·K)
Specific Heat (N2) γ 1.4
Storage Temperature T 298.15 K
Maximum Thrust Ft 2.00 N
Nozzle Throat Radius rt 2.50 mm

Derived Quantities

Volumes Cuboid Volume Vc l1l2l3
Propellant Volume Vp

4
3
πr3

Dry Volume Vd Vc − Vp
Masses Total Mass mt md + mp

Cuboid Mass mc md

ş
Vc
Vd

ť

Extra Sphere Mass ms mt −mc

Cold Gas Propulsion Characteristic Velocity c∗ 434.439 m/s
Exhaust Velocity c 787.042 m/s
Gas Density/Velocity Product at Throat ρtvt 129.42 kg/(m2s)

written as a function of the quaternion, as

C(q) = (q2
0 − qTv qv)I + 2qvq

T
v − 2q0[qv×]

where [qv×] is the cross product matrix,

[qv×] =

0 −q3 q2

q3 0 −q1

−q2 q1 0

which operates on a vector in the same way as a cross product. Thus, the quaternion

and the coordinate transformation matrix are directly linked to describe the relationship

between two reference frames. With no singularities, the quaternion is an effective means of

representing attitude dynamics. For clarity, superscripts are used to describe the reference

frames that a quaternion relates. For example, to transform a vector from reference frame

122

N2 Gas Storage Tank

R Pressure Regulator

On/Off Valve

Exhaust Nozzle

N2 Gas Storage Tank

R Pressure Regulator

On/Off Valve

Exhaust Nozzle

N2 Gas Storage Tank

R Pressure Regulator

On/Off Valve

Exhaust Nozzle

N2 Gas Storage Tank

R Pressure Regulator

On/Off Valve

Exhaust Nozzle

Figure 4.9: Fixed Thrust Propulsion

{â} to reference frame {b̂}, the quaternion, bqa, is used, where

{b̂} = C(bqa){â}.

4.4.1 Low-Cost Cold Gas Thrusters: Fixed Thrust Attitude Control

Consider a micro-satellite with on-off actuation for its six attitude control thruster

pairs. Each thruster delivers either 0 N or 2 N of thrust, depending on the state of each

on/off valve. The basic propulsion system design is illustrated in Figure 4.9. Using the

existing propulsion system, the objective in this scenario is to track an arbitrary reference

trajectory as well as possible, while minimizing fuel expenditure.

Let the reference trajectory be described by the reference quaternion, rqi, relating

the inertial {î} frame to the reference {r̂} frame, while rωi indicates the angular velocity

123

of the reference frame, written in the reference frame. With the initial quaternion, rqi0 =

[1 0 0 0]T , and angular velocity explicitly defined with respect to time as

rωi(t) =

0.3 cos t
(
1− e−0.01t2

)
+ (0.08π + 0.006 sin t) te−0.01t2

0.3 sin t
(
1− e−0.01t2

)
+ (0.08π + 0.006 cos t) te−0.01t2

1

 rad/s, (4.5)

the reference trajectory is completely specified, indicating the ideal attitude for the space-

craft at all times t. The reference angular velocity description is purely arbitrary, but it is

observed that this reference trajectory offers interesting movement in angular position and

velocity states over the fixed time t ∈ [0 20] seconds and is an excellent test case for an

FSCT optimization.

Define the state vector for this dynamical system according to

y =

bqi
bωi

mp
rqi

p

,

where bqi indicates the quaternion relating the inertial frame and the spacecraft body frame,
bωi is the corresponding angular velocity vector, and mp is the depleting propellant mass

when thrusters are activated. These first three components of y completely define the

relevant states of the spacecraft. The remaining elements included in the state vector are

strictly for computational convenience as these are useful for cost evaluation and control

determination. The formulation allows the reference quaternion, rqi, to be determined at

each relevant instant in time by the FSCT method. The scalar state, p, measures an integral

cost for deviations between reference and actual trajectories.

In the next step, the control vector is defined. Ultimately, u must indicate the

position of the on/off valve for each of the twelve thrusters. Since thrusters, at a minimum,

are assumed to act in pairs, it is logical to allow each control variable to indicate the valve

124

position for at least two thrusters. However, it is also observed that each thruster pair has

a corresponding thruster pair which acts in an opposing fashion such that their effects are

cancelled when both pairs are on. Thus, consider the contol vector, u ∈ U3 where

U = {−1, 0, 1}.

Thus, nu = 3, and each control variable is limited to three values, indicating for each

principal axis, whether the positive-thrusting pair, the negative-thrusting pair, or neither

is in the on position.

The state dynamics for the system are described by the following relations,

ẏ =

bq̇i

bω̇i

ṁp

rq̇i

ṗ

= f(t,y,u) =

1
2E(bqi)bωi

− J−1 bωi × J bωi + FtJ
−1Lu

− 2Ftc
∑3

i=1 |ui|
1
2E(rqi)rωi(t)

(
bqi

)T
HT

(
rqi

)
H

(
rqi

) (
bqi

)

,

where J = diag(J1, J2, J3) is the inertia tensor, L = diag(l1, l2, l3) contains the spacecraft

dimensions, and

E(q) =

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 , H(q) =

q1 −q0 −q3 q2

q2 q3 −q0 −q1

q3 −q2 q1 −q0

 = −ET (q).

First, note that the quaternion dynamics, q̇, are a function of both q and ω. When relating

{î} to {b̂}, both vectors are contained within y. When relating {î} to {r̂}, however, the

angular velocities are evaluated using Equation 4.5. Next, observe that the dynamics, bω̇i,

are dramatically simplified by expressing angular velocities in the principal body frame,

where the inertia tensor is an easily invertible diagonal matrix. In addition, one may see

that the mass flow dynamic, ṁp, is nonzero only when one or more thruster pairs is on.

125

The cost dynamics, ṗ, are used for evaluating an integral cost. Here, it is desired

to minimize deviations between the actual and reference coordinate frames. Consider the

following relations:

C(rqb) = C(rqi)CT (bqi),

rqv
b = H

(
rqi

) (
bqi

)
.

Then if {b̂} and {r̂} are identical, rqv
b = 0. A cost function that penalizes

(
rqv

b
)T (

rqv
b
)

> 0 ensures minimal deviations between body and reference coordinate

frames. This is equivalent to setting p0 = 0 and minimizing pf since

pf − p0 =
∫ tf

t0

ṗ dt,

=
∫ tf

t0

(
rqv

b
)T (

rqv
b
)

dt.

The complete cost function weighs penalties on trajectory tracking deviations with

the amount of propellant mass expelled in tracking the reference. Minimizing the total cost

function,

J = β1pf − β2mpf (4.6)

is equivalent to minimizing tracking deviations and maximizing the final propellant mass

when β1 > 0 and β2 > 0.

The problem is completely defined by identifying the remaining initial states for

the optimization. Let the spacecraft begin along the reference trajectory. In this case,
bqi0 = rqi0 = [1 0 0 0]T and bωi0 = rωi(t0). In addition, assume the initial propellant mass

is mp0 = 5 kg. These assumptions imply there is sufficient propellant available to achieve

reasonable trajectory tracking for the interval from t0 = 0 to tf = 20 seconds.

126

FSCT Solution

The fixed time optimal control problem detailed above is solved using the FSCT

method to yield a feasible and locally optimal trajectory and control switching schedule.

For this sample solution, the selected transcription parameters are nn = 5 nodes per segment

and nk = 20 knots, allowing 20 control switches in each ui over the time interval from t0 to

tf . The pre-specified control values are selected based on the following law:

u∗i,k = cos
(π

2
(k − 1)

)
.

This control law alternates between positive-, zero- and negative-torque for each control

variable. Clearly, the control sequence selection resembles that of the lunar lander problem

in Section 4.3, as this seems to allow substantial flexibility to solve the underlying NLP

problem.

The FSCT solution is depicted in Figure 4.10 when the cost function is set with equal

penalty weights, β1 = β2. In Figure 4.10(a), the trajectory position (quaternion) histories

for bqi and rqi are shown as the ‘actual’ and ‘desired’ trajectories, respectively. This

illustration gives a visual sense of how well the trajectory can be tracked given finite value

control limitations. In Figure 4.10(b), the resulting control history (switching schedule) is

depicted. For each control variable, note that the durations of arcs associated with both

ui = 1 and ui = −1 are reduced to zero. This indicates that the transcription formulation

is not underparameterized.

Finally, Figure 4.10(c) depicts the actual and desired angular velocities, bωi and rωi.

It is not unexpected that significantly more deviation is observable in this plot. Control

restrictions clearly reduce the way in which velocity variables can change with time. More

importantly, deviations in angular velocities are not penalized in the cost function, so the

FSCT method does not attempt directly to drive velocities to match.

127

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

Quaternions: Actual vs. Desired

Actual
Desired

(a)

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

Control History

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

−1

−0.5

0

0.5

1

Time (s)

(b)

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

ra
d

/s

Angular Velocity: Actual vs. Desired

Actual
Desired

(c)

Figure 4.10: Fixed Thrust Attitude Control

128

4.4.2 Low-Cost Cold Gas Thrusters: Variable Thrust Attitude Control

The performance of the system above is clearly limited by on-off control actuation.

Of course, fixed thrust control is an obvious choice when the intent is to apply the FSCT

method to a real example. Indeed, the simplest, and perhaps least expensive, propulsion

systems can benefit from the methodology for determining control strategies for reference

tracking. A hybrid system model predictive controller, used in conjunction with FSCT

solutions may be as successful in this case as it was for the lunar lander presented earlier.

Here, however, another scenario is presented to expand the class of applications available

to the FSCT methodology.

The most straightforward way of improving upon the solutions of the first attitude

control scenario is to expand the solution space to include variable magnitude control inputs.

This improves performance through better tracking, less fuel expenditure, or both. Thus,

this scenario explores the possibility of a variable amplitude controller with a modified cold

gas propulsion system. The purpose of the development that follows is to demonstrate that

the variable control problem can still be interpreted, on a higher level, as a finite set control

problem. Extrapolating further, many, if not most, dynamical systems with variable control

inputs can be extended to reveal discrete components. Consider, for example, a control

system whose varying inputs are determined by a digital computer. At the highest level,

everything is reduced to a binary description, ‘0’s and ‘1’s, not unlike the discrete control

inputs shown in the examples so far.

A previously developed variable amplitude cold gas propulsion system41 serves as the

inspiration for the following development. Here, the nitrogen propellant system is modified

to allow variation in the effective dimension of the nozzle throat and, subsequently, the

propellant mass flow. Consider the illustration of Figure 4.11. A valve core rod lies near

the throat of the thruster nozzle, and has controlled motion up and down. Let the variable,

di, indicate the position of the valve core rod for the ith thruster. In addition, define rt as

129

Nozzle Throat

30o

30o

29.5o

Valve Core Rod

Valve Core Motion

Figure 4.11: A Variable Amplitude Thruster Nozzle

the radius of the nozzle throat. The effective throat area is a function of the rod position,

expressed as

At(di) = πr2
t − π

(
rt − 1

2
di

)2

, (4.7)

where 0 ≤ di ≤ 2rt. Note that if the rod position is such that di > 2rt, no effect is expected

on thruster performance, and (At)max = πr2
t .

Because the throat area directly affects the mass flow through the nozzle (assuming

constant propellant density and velocity), it has a direct effect on the magnitude of thrust.

Assuming, as before, that the maximum thrust available is (Ft)max = 2 N, then

ρtvt =
(Ft)max

(At)max c
,

which can be evaluated using the constants in Table 4.1. Now, the amplitude of control

for each thruster is a function of one discrete variable, indicating the position of the on/off

130

valve, and one continuous variable, indicating the valve core rod position. To describe the

dynamical system, it is necessary to understand how the rod position, di, is controlled.

Surely, there are many ways of doing this, all affecting the nature of the dynamics. Assume

then, for the sake of this argument, that each rod is driven by a constant-acceleration motor.

Thus, the rod position and its velocity, vi, are continuous variables, while its acceleration,

ai, may take only a discrete number of values.

If the valve core rod positions and velocities are included as state variables, a hybrid

system ensues consistent with the formulation in Equation 1.1, with only continuous states

and discrete controls. While this is not the only formulation for the variable amplitude

control problem, this formulation demonstrates that it is possible to extend a variable am-

plitude control device into a combination of continuous states and discrete decision variables.

In this case, states are defined for the physical elements that allow for thrust amplitude

variations.

The state vector for this scenario, then, includes the same quantities as the previous

scenario, now adding core rod positions and velocities to the set. Recall that, at a minimum,

the twelve thrusters of the micro-satellite are combined into six thruster pairs. In the

first scenario, two pairs providing torque along the same axis of rotation were considered

together. In this scenario, the dynamic relations dictate that only thruster pairs can be

considered to act in harmony. Thus, let the vectors, d and v, which contain the individual

rod dynamics, have six components each. Thus, a thruster pair shares the same rod positions

and velocities to ensure that translational accelerations cancel at all times.

131

The state vector for the dynamical system takes the form,

y =

bqi
bωi

mp

d
v
rqi

p

.

The control vector is now

u =
[
w
a

]
,

where w and a are each vectors composed of 6 elements (corresponding to the number of

thruster pairs), where

wi ∈ {0, 1}

indicates whether the ith thruster pair is on or off, and

ai ∈ {−1, 0, 1}

indicates the acceleration of the valve core rods of the ith thruster pair, which can be

negative, zero, or positive. The dynamics of the system are described by

ẏ =

bq̇i

bω̇i

ṁp

ḋ

v̇

rq̇i

ṗ

= f(t,y,u) =

1
2E(bqi)bωi

− J−1 bωi × J bωi + ρtvtcJ
−1LA(d)w

− 2ρtvtÃ
T
(d)w

α2v

α3a

1
2E(rqi)rωi(t)

(
bqi

)T
HT

(
rqi

)
H

(
rqi

) (
bqi

)

,

132

where the previously defined quantities J , L, E, and H are unchanged, and

A(d) =

At(d1) −At(d2) 0 0 0 0
0 0 At(d3) −At(d4) 0 0
0 0 0 0 At(d5) −At(d6)

 ,

Ã(d) =
[

At(d1) At(d2) At(d3) At(d4) At(d5) At(d6)
]T

,

At(di) =
1
α2

1

[
πr2

t − π

(
rt − 1

2
di

)2
]

. (4.8)

Notice immediately that Equation 4.8 differs from Equation 4.7 by the scaling factor, α1.

Additional scaling factors, α2 and α3, are present in the valve core rod dynamics, as well,

so that all state variables remain O(100) to improve the convergence of the underlying NLP

problem. In this case, α1 = 103 so that rt and di are presented in mm. Likewise, α2 = 101

so v is in 10−4 m/s, and α3 = 100 so that ai = 1 indicates that the ith rod is accelerating

by 10−4 m/s2.

Clearly, A(d) and Ã(d) represent the effective throat cross-sectional area for each

thruster pair, listed in matrix form and vector form, respectively. These facilitate the new

definitions for bω̇i and ṁp. Thus, the effective control torque, evaluated by ρtvtcJ
−1LA(d)w

and measured in rad/s2, as well as the total mass flow defined by ṁp, are determined by

the current throat area and the state of the on/off valve.

The cost function for this scenario is identical to before.

J = β1pf − β2mpf (4.6)

Again, β1 = β2 to allow for a direct comparison between results.

FSCT Solution

In as many ways as possible, the optimization of the variable-thrust attitude control

scenario is set up identically to the fixed-thrust scenario. The majority of the details, then,

are not repeated. In this transcription formulation, nn = 5 and nk = 20 again, but with

133

additional control variables (nu = 12, instead of 3), the total number of segments, and

thereby nodes, is significantly increased.

The pre-specified controls for the formulation follow a standard structure.

w∗i,k =
1
2

+
1
2
(−1)k−1,

a∗i,k = cos
(π

2
(k − 1)

)

Notice that each wi alternates between the values 1 and 0, while ai alternates between 1,

0, and −1.

The results of the FSCT optimization are presented in full in Figures 4.12 and 4.13.

Immediately, Figure 4.12(a-b) can be compared to Figure 4.9 to show how quaternions

and angular velocities match the reference trajectories in each scenario. As expected, the

variable thrust formulation offers more flexibility, and consequently better tracking, for the

attitude control problem.

Figure 4.12(c-d) record the control histories that produce this trajectory. For each

thruster pair, the controls indicate whether the thruster switch is on or off, and whether

the motors driving the valve core rod are accelerating the rod. For completeness, Figure

4.12(e) shows the position history of the valve core rods for each thruster pair. Notice that

the positions remain within the bounds 0 ≤ di ≤ 5 mm, where the rod position has an effect

on the resulting mass flow through the nozzle.

Figure 4.13 examines the effective control torque history for the system. When the

effects of all of the finite value control variables are considered along with new dynamic

states (d and v), one can extract the actual control torque, measured in rad/s2, that

is applied to the spacecraft at any time. Figure 4.13(a) illustrates this. Note that the

zero-duration ‘dots’ contained in the figure are artifacts of zero-duration segments that

naturally result in an FSCT solution. For the sake of this discussion, they can effectively

be ignored. As a comparison to this solution, Figure 4.13(b) illustrates the control torque

134

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

Time (s)

Quaternions: Actual vs. Desired

Actual
Desired

(a)

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Thruster Pair On-Off Switch

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

Time (s)

(c)

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

ra
d

/s

Angular Velocity: Actual vs. Desired

Actual
Desired

(b)

0 2 4 6 8 10 12 14 16 18 20
−1

0

1
Valve Accelerator

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

Time (s)

(d)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

m
m

Valve Position

0 2 4 6 8 10 12 14 16 18 20
0

5

m
m

0 2 4 6 8 10 12 14 16 18 20
0

5

m
m

0 2 4 6 8 10 12 14 16 18 20
0

1

2

m
m

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

m
m

0 2 4 6 8 10 12 14 16 18 20
0

1

2

m
m

Time (s)

(e)

Figure 4.12: Variable Thrust Attitude Control

135

0 2 4 6 8 10 12 14 16 18 20

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

ra
d

/s
2

FSCT Control Torque

(a)

0 2 4 6 8 10 12 14 16 18 20

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

ra
d

/s
2

Unconstrained Control Torque

(b)

Figure 4.13: FSCT Variable Thrust Attitude Control Torque vs. Unconstrained Attitude
Control Torque

for an unconstrained control system which tracks the reference trajectory perfectly. The

unconstrained control torque is derived using a continuous Lyapunov-based control law

which guarantees perfect tracking of quaternions and angular velocities (since initial states

are along the reference). Some distinct similarities are easy to observe by looking at the

plots together. Certainly, control torque magnitudes are similar, but there are also points

at which the derived control torque from the finite set formulation very closely mimics the

behavior of the purely continuous control.

This is viewed as a significant result which demonstrates how a detailed hybrid

system formulation can approach a continuous formulation. While it is a step backwards to

use a finite control formulation if control inputs are truly continuous, perhaps it is reasonable

to argue that many systems, if not most, are truly hybrid systems, modeled as continuous.

Often, it is easier to model the continuous system, as numerous methodologies exist for

treating such systems. However, if a system has discrete components, it is ideal to treat

them as such. Thus, the FSCT method offers an avenue for modeling maybe inevitably

present discrete components, at whatever level they appear in the dynamics.

136

4.5 Summary

The Finite Set Control Transcription method is demonstrated for the determination

of optimal solutions to hybrid control problems. The intent is to explore the range of

applications of the FSCT method. Although many of the applications in this investigation

are particularly relevant to aerospace engineering, the applicability of the method extends

to all engineering disciplines.

Three example applications are used to provide context for the method. First, the

FSCT method is used on a simple two-state system with two individually-stable dynamical

modes. In a number of different sources, the method of multiple Lyapunov functions is

utilized to treat the hybrid system with one decision variable. Here, results from the FSCT

method are analyzed to demonstrate how optimal control laws may be extracted whose

performance exceeds those derived using a Lyapunov argument.

Next a simple lunar lander problem is addressed by the FSCT method. A primary

feature of the FSCT method is its ability to manage multiple independent decision inputs

simultaneously. In this two-dimensional example, two control variables are included in

the optimal control formulation to illustrate how the FSCT method can be applied when

multiple independent control variables are considered. Solutions derived via the FSCT

method are further utilized in conjunction with a hybrid system model predictive control

scheme. For the hybrid system with a reasonable number of possible decision inputs at any

given time, the MPC formulation offers real-time decision-making for the hybrid system.

When the two methods are used in tandem, optimized control schedules can be realized in

the context of potential perturbations or other unknowns.

Finally, the FSCT method tackles an attitude control problem presented in two

different formulations. In the first, a small spacecraft is assumed to be limited to finite thrust

magnitudes for a cold gas propulsion attitude control system. The second scenario explores

a variable-thrust propulsion system, still modeled as a hybrid system. This investigation

137

argues that even a system traditionally modeled with continuous control inputs may be

more accurately described as a system ultimately relying on discrete decision variables.

Continuous control variables may often be extended into a set of continuous state variables

and discrete inputs. The scenario considers how an actuator may actually vary the control

magnitude it applies. This process generates additional dynamics that can be modeled

within the system. It is conceivable that, at some level, many systems can be thought of as

hybrid systems with completely continuous states, and completely discrete control variables.

138

Chapter 5

Libration Point Formations

Relatively benign applications of the FSCT method are explored in the previous

chapter. Although many benefits of the methodology are demonstrated using these aca-

demic examples, it is also important to illustrate the capability of solving more realistic,

complex problems. This chapter is dedicated to such an application. Incidentally, the

application presented here represents the motivation for much of the FSCT method’s de-

velopment.

This chapter and Appendix B address the topic of controlled formation flight of

spacecraft near the libration points of the Sun-Earth/Moon system. The problem descrip-

tion and results (supported by background in the appendix) are detailed for readers in-

terested in this application and related proposed future space missions. In-depth use of

the FSCT method provides insight into the limitations of existing technologies that may

guide the development of feasible mission requirements. First, motivation is presented for

pursuing this application in the context of finite set control.

5.1 Motivation

Interest in space-based interferometry has motivated many investigations42–57 into

the feasibility of spacecraft formations near the libration points of the Sun-

Earth/Moon system. A survey of many of these efforts is provided for refererence in Ap-

pendix B. The sensitivity of the dynamical regime near the libration points is apparent in

the precise control requirements for non-natural formations derived in these investigations.

139

While some studies18–22 focus on reducing the lower performance bounds on thruster tech-

nology, unconstrained control laws in this regime often require thrust levels below the limits

of the technology presently available. The associated control accelerations, though small,

cannot be neglected if precision formation keeping is desired.

Missions like TPF15,16 and MAXIM17 require precision tracking during data collec-

tion phases, often with the expectation that this be done in the absence of simultaneous

actuation. Previous studies suggest this is an unrealistic expectation. At the same time,

high precision tracking is achievable only through precise unconstrained control. This chap-

ter employs the FSCT method to derive constrained control solutions for the purpose of

determining realistic expectations for libration point formations in the context of the sen-

sitive dynamic environment and the current state of propulsive technology.

Although unconstrained continuous control solutions offer perfect tracking to any

trajectory, there is generally a disconnect when considering their implementation with ac-

tual hardware. To illustrate this, Figure 5.1 demonstrates an arbitrary continuous control

solution in (a), with a proposed finite burn implementation in (b). The figure suggests that

an actuator may not be able to produce precise thrust levels, and the continuous control

solution is only approximated by some discrete thrust values. However, if an actuator lim-

itation is known a priori, then it should be considered in the process of deriving a control

solution.

Specific to the libration point formation control problem, it is probable that the

control magnitudes of an unconstrained continuous solution may actually be smaller than

the minimum thrust magnitude of the actuator (depicted in Figure 5.1(c)). In this case, the

unconstrained solution is not useful. However, it is clear that feasible control solutions are

necessarily restricted to a finite number of values, representing zero actuation and minimum-

magnitude thrusting only. Therefore, a finite set control solution method is quite applicable

for this scenario.

140

(a)

(b)

(c)

Continuous Control

Finite Burn Implementation

Thrust Limitations

Min Thrust Mag.

Figure 5.1: Implementing a Continuous Control Solution with Finite Burns

Thus, constrained finite burn solutions, achievable with currently available technol-

ogy, are the focus of this chapter. Specifically, solutions are constrained to account for

the minimum possible magnitudes available for thruster technology. See Appendix B for

an extended discussion on the current propulsive capability, leading to the assumed values

employed here.

Note that formation control problems are also constrained by mission requirements.

Interferometry applications are of particular interest in the development of actuator con-

straints consistent with potential capabilities of member satellites, leading to significant

spacecraft orientation restrictions. The restrictive—but realistic—assumptions applied here

seek to establish reasonable expectations for tracking accuracy for libration point forma-

tions.

141

Organization

This chapter is organized as follows.

• Section 5.2 delivers the appropriate background and context for the libration point for-

mation problem. The dynamics are developed for the Circular Restricted Three Body

Problem (CR3BP) and several assumptions are presented to identify the appropriate

constraints and objectives for an optimal control problem.

• Section 5.3 specifies how the Finite Set Control Transcription method is used and

enhanced to treat this complicated problem.

• Section 5.4 presents a sample solution to illustrate the method’s effectiveness.

• Section 5.5 presents the results from many optimizations intended to explore the solu-

tion space. Surveys are conducted for general formations to establish trends associated

with formation pointing, and thrusting capability.

5.2 Problem Description

5.2.1 CR3BP Equations of Motion and the Reference Orbit

Assume that the motion of a formation of spacecraft is described relative to an

artificial reference point, c, that evolves along a Halo orbit in the CR3BP. Conceptually,

this point may represent a central ‘chief’ spacecraft in the formation. Subsequently, all

other vehicles are referred to as ‘deputies,’ and their motion is determined relative to the

state of the chief in the synodic rotating frame of the CR3BP.

5.2.1.1 Equations of Motion

Define an inertial frame, I ≡ {x̂I, ŷI, ẑI}, with origin at the barycenter, B, of the

two primary masses (in this case, the Sun and the Earth/Moon) such that the orthogonal

142

Moon

⊕

Earth

x̂R

ŷI

ŷR

θ

x̂I

↗

ẑR, ẑI

B

Sun,¯

Figure 5.2: CR3BP Frame

unit vectors x̂I and ŷI define the plane of motion of the primary bodies. Subsequently, the

unit vector ẑI is normal to the primary plane, and the primaries rotate about the +ẑI axis.

In the CR3BP, it is convenient to describe the motion of a spacecraft in terms of a

rotating coordinate system, R, also centered at B, whose rotation coincides with the mean

motion of the primaries. Let the orthogonal unit vectors {x̂R, ŷR, ẑR} define the rotating

frame, R, where ẑR = ẑI, and x̂R is directed from the Sun to the Earth/Moon barycenter.

The remaining axis, ŷR, completes the right-handed system such that ŷR = ẑR × x̂R. The

R frame rotates about ẑR at a rate of ω, equal to the mean motion of the primaries. The

system is shown in Figure 5.2.

143

Let the position of the chief spacecraft, in terms of the R-frame unit vectors, be

defined as rR
c ≡ [xc yc zc]

T . In addition, assume that

m¯ = mass of the Sun,

m⊕ = mass of the combined Earth/Moon system,

r¯c = distance between the Sun and the chief, and

r⊕c = distance between the Earth/Moon barycenter and the chief.

Given the potential function,

U =
(x2
c + y2

c)ω
2

2
+

Gm¯
r¯c

+
Gm⊕
r⊕c

the chief dynamics are described as,

ẍc
ÿc
z̈c

 =

Uxc
Uyc
Uzc

 + 2ω

ẏc
−ẋc
0

 +

uxc
uyc
uzc

= −Gm¯
r3¯c

xc + r¯
yc
zc

− Gm⊕

r3⊕c

xc − r⊕
yc
zc

+ 2ω

ẏc
−ẋc
0

 + ω2

xc
yc
0

 +

uxc
uyc
uzc

 , (5.1)

where G is the gravitational constant, and uc = [uxc uyc uzc]
T is the external control accel-

eration. Let the state of the chief be described by the vector

yc ≡
[
rTc ṙ

T
c

]T
= [xc yc zc ẋc ẏc żc]

T .

Equation 5.1 is easily transformed into first order form,

ẏc = f̃(yc,uc) = f̃(yc,0),

where uc = 0 since the chief is assumed to evolve along a natural arc.

144

The general form of the motion in Equation 5.1 applies to the states of the lth

deputy, such that the state space representation is given by

ẏdl = f̃(ydl ,ul).

The motion of the lth deputy relative to the chief is determined first by identifying the

relative state vector,

yl ≡ ydl − yc. (5.2)

Subsequently, differentiating Equation 5.2 implies that

ẏl = f̃(ydl ,ul)− f̃(yc,0),

= f̃(yc + yl,ul)− f̃(yc,0), (5.3)

= f(t,yl,ul). (5.4)

Notice that the functions f̃ and f are not the same. It is apparent from Equation 5.3 that

the relative dynamics of the lth deputy depend on the absolute state of the chief, the relative

state of the deputy, and the control effort exerted by the deputy. Through manipulation of

the arguments in Equation 5.3, it is observed that the velocity terms related to the chief,

ṙc, cancel away. Since the chief satellite is assumed to follow a natural trajectory from some

epoch and the path is predetermined, f̃ reduces to f in Equation 5.4, which depends on

time, the relative state of the deputy, and the external control of the deputy. Equation 5.4

is the dynamical model used to describe the motion of a deputy spacecraft.

Note that traditional formulations of the CR3BP equations employ nondimensional

variables.58 The formulation presented here, however, uses dimensional variables to allow

increased flexibility in the scaling of the numerical algorithm.

5.2.1.2 Reference Halo Orbit

The chief spacecraft is assumed to evolve along an L1 Halo Orbit, as determined in

the Sun-Earth/Moon CR3BP. The initial state at the reference epoch is defined in R-frame

145

−1 −0.5 0 0.5 1

x 10
6

−1

−0.5

0

0.5

1
x 10

6

x
km

y k
m

−1 −0.5 0 0.5 1

x 10
6

−1

−0.5

0

0.5

1
x 10

6

x
km

z k
m

−1 −0.5 0 0.5 1

x 10
6

−1

−0.5

0

0.5

1
x 10

6

y
km

z k
m

−1
0

1

x 10
6

−1

0

1

x 10
6

−5

0

5

x 10
5

xy

z

Figure 5.3: Reference Halo Orbit for Chief Spacecraft with Origin at L1

coordinates as

rc(t0) = rL1 +

−166, 783.32

0
300, 000.00

 km (5.5)

ṙc(t0) =

0
281.28

0

 m/s. (5.6)

The position vector, rL1 , is the position of L1 from the Sun-Earth/Moon barycenter, ap-

proximately 148× 106 km in the x̂R-direction. Thus, the Halo orbit begins at its northern

most point, 300, 000 km north of the libration point. The Halo orbit is displayed in Figure

5.3. The trajectory shown takes place over one orbital period, approximately 178 days.

146

5.2.2 General Requirements for Interferometry Missions

Considering deep-space imaging formations as the application, it is reasonable to

assume that constraints may be imposed on

• the size, shape, and orientation of the formation,

• the orientation of each member of the formation (deputy spacecraft),

• the thruster capability and thruster location on each spacecraft body.

Formationkeeping in the presense of all these constraints is naturally a difficult task. For

example, although a specified thrust magnitude can be limiting by itself, when the thrust

direction is also restricted by requirements on spacecraft orientation, precision control is

nearly impossible. Certainly, not all of these requirements can be met simultaneously.

Thus, the optimal control problem seeks to minimize deviations when constraints cannot

feasibly be enforced. First, the requirements are formally identified. In Section 5.2.3, some

are relaxed into objectives.

5.2.2.1 Formation Constraints

Define the scalar value r∗cdl to be the required radial distance between the chief

spacecraft (reference origin) and the lth deputy spacecraft. In addition, the scalar value

r∗dλdl is defined as the generalized required distance between deputy λ and deputy l. Using

the notation of relative states for the lth deputy as

yl =
[
rl
vl

]
=

[
rdl − rc
vdl − vc

]
,

the distance between two deputies is rλl = rdl − rdλ , and formation constraints may be

expressed as

rTl rl −
(
r∗cdl

)2 = 0, l = 1, ..., nd,

rTλlrλl −
(
r∗dλdl

)2 = 0, l = 1, ..., nd − 1, λ = l + 1, ..., nd,

147

Deputy

Chief

r∗dd

r∗cd

→
r∗cs

Deputy

Chief

r∗dd

r∗cd

→
r∗cs

Deputy

Chief

r∗dd

r∗cd

→
r∗cs

Figure 5.4: Formation Pointing

where nd indicates the number of deputy spacecraft in the formation.

Furthermore, let r∗cs define a vector pointing from the chief to a specified target point

in space. If the target is sufficiently distant from the spacecraft, r∗cs essentially points along

an inertially fixed direction such that r∗Ics = constant. This is not a necessary restriction,

however. In general, r∗cs is written in the rotating frame as a function of time: r∗Rcs = r∗Rcs (t).

For imaging a distant point, the plane of the formation is assumed perpendicular to r∗cs,

that is,

rTλlr
∗
cs = 0, l = 1, ..., nd − 1, λ = l + 1, ..., nd.

In Figure 5.4, both the formation size and orientation requirements are illustrated. Here,

nd = 3, and specified formation distances the same for each deputy force the formation to

appear as an equilateral triangle. The formation may take on many configurations with

enough deputy spacecraft and through proper definition of the formation distances.

148

5.2.2.2 Spacecraft Orientation

Let the orientation of the lth deputy spacecraft be defined by the body-fixed coor-

dinate frame,

Bl ≡ {x̂Bl , ŷBl
, ẑBl}

where the unit vectors, x̂Bl , ŷBl
, and ẑBl can be written in terms of any coordinate system.

Most likely, they are expressed in the frame in which the states are integrated, i.e. the

CR3BP rotating frame, R.

For the subset of interferometry missions considered here, each deputy spacecraft

points along a specified direction for the duration of the mission or phase of interest. There-

fore, define the first axis of the body-fixed frame in the direction of the imaged point.

x̂Bl ≡
rcs
rcs

(5.7)

Note that the scalar rcs = |rcs| normalizes the unit vector. This axis is normal to the face

of the spacecraft containing an imaging payload. Now define the other coordinate axes as

ŷBl
≡ rl × x̂Bl

|rl × x̂Bl |
, (5.8)

ẑBl ≡ x̂Bl × ŷBl
. (5.9)

The vector ŷBl
is roughly parallel to the direction of motion, and ẑBl is approximately

aligned with the radial distance from the chief. This statement is based on the assumption

of equal spacing among deputies. Note, however, that this coordinate system definition is

valid even if the requirements specified by r∗cd and r∗dd are not met.

5.2.2.3 Spacecraft Design

For simplicity, assume that each deputy has a cube-shaped structure and is equipped

with a translational thruster on each side, where the body frame, Bl, is aligned with the

149

principal axes of the spacecraft. The attitude of each spacecraft is independently controlled

to maintain the proper alignment with the target.

It is not the intent of this work to suggest requirements on the structural design of

a spacecraft. The assumptions made here are generalized for the problem under considera-

tion. As a result, it is assumed the vehicles are capable of thrusting in all three body-fixed

directions (although not necessarily at the same magnitudes). This configuration represents

a simple way of implementing the thrusting requirements for the selected example. It is

also one of the most limiting implementations. The dynamical model can be configured to

consider any structural characteristics, but this implementation is a logical way of demon-

strating the methods and the effects that highly constrained spacecraft orientations may

have on performance.

5.2.2.4 Control Constraints

Consider the vector ul that defines the control acceleration for the lth spacecraft.

In the body-frame,

uB
l ≡

ux̂Bl

uŷBl

uẑBl

 ,

and the components of the vector are constrained to the values in the set

U ≡ {−T ∗, 0, T ∗}. Note that T ∗ indicates the minimum available thrust from the actu-

ator, and this can be applied in each principal direction, positive or negative. This con-

straint must be imposed at all times, as this represents the true thrusting capability of the

spacecraft.

5.2.3 Objectives for the Libration Point Formation Problem

If all of the requirements of Section 5.2.2 were implemented to determine a control

solution, the resulting control problem would be overconstrained. It is impossible to limit

150

the control to a finite number of values and still expect that relative distance and orientation

requirements can be met. Instead, the libration point formation is treated as an optimal

control problem. While control requirements are treated as constraints, some requirements

are relaxed. Instead of enforcing them as constraints, deviations are minimized in the cost

function.

Specifically, the spacecraft orientation relative to the formation and finite burn con-

trol limitations are treated as constraints. Thus, the resulting control options (directions

and magnitudes) are completely specified, as if perfect attitude control is available to each

spacecraft, and translational thrusters are only throttled to their minimum value (T ∗). Con-

sequently, formation size, shape, and orientation requirements are reduced to elements in

the cost function. In addition, a cost is assigned to the duration of all burn segments to

minimize the effort (thrusting) over the course of the trajectory. In general the cost function

weighs three separate sets of costs.

J = w1J1 + w2J2 + w3J3

The weights, wi, are selected to balance the costs of fuel and formation deviations. The

cost indices are formulated as integrals of the following form:

J1 =
nd∑

l=1

∫ tf

t0

uTl ul dt (5.10)

J2 =
nd∑

l=1

∫ tf

t0

(
rTl rl −

(
r∗cdl

)2
)2

dt

+
nd−1∑

l=1

nd∑

λ=l+1

∫ tf

t0

(
rTλlrλl −

(
r∗dλdl

)2
)2

dt (5.11)

J3 =
nd−1∑

l=1

nd∑

λ=l+1

∫ tf

t0

(
rTλlrcs

)2
dt (5.12)

The cost, J1, is a quadratic cost on the thrust; J2 minimizes deviations in formation size

and shape; and J3 minimizes deviations in the formation plane.

151

5.3 Unique Implementation Details

In Section 5.2 the libration point formation problem is described. The dynam-

ics, constraints, and objective are identified. The problem can now be formulated to be

solved using the FSCT method of Chapter 3. Certainly, the implementation concepts for

constraints such as initial conditions, time constraints, and continuity constraints are un-

changed. However, some characteristics of this problem require some enhancements to the

method for successful implementation.

A primary consideration is that the formation problem has multiple dynamic bodies.

Although the states of each body could be collected in a single state vector, y, the key

features of the FSCT method motivate an alternative where each dynamic body is treated

separately. By doing this, the switching characteristics of multiple independent controls are

still localized to the relevant dynamic body. Thus, the optimization parameters representing

the controls ul and uλ do not interact, creating superfluous dependencies. This formulation

decision has a resulting effect on the formulation of constraints and the objective function.

Some consideration is also necessary regarding the underlying NLP problem. Specif-

ically, the size and the scaling of the parameters in x are addressed. When the problem

is large (in this case, n = O(103)), efficiency in calculations is crucial. Ensuring that all

parameters are scaled on the same order of magnitude also improves efficiency.

Finally, due to the complicated nature of the dynamic model, it is worthwhile to di-

rectly express the derivative elements for the dynamics function, f . Chapter 3 demonstrates

how ∂f
∂t and ∂f

∂y are implemented in the derivative calculations for continuity constraints.

Now, specifics are developed for the calculation of these partials for this problem.

5.3.1 Transcriptions with Multiple Dynamic Bodies

The results of Chapter 3 are now extended for applications with multiple dynamic

bodies. Let nd designate the number of bodies, or in this case, deputy spacecraft in the

152

formation. Thus, ny indicates the number of states per body, and nu the controls per

body. The quantities nn (nodes per segment), nk (control switches), and ns = nunk + 1

(segments) are defined as before. However, control switches are defined independently, and

consequently, segment boundary definitions differ per body.

With multiple bodies, the number of optimization parameters becomes

n = nynnnsnd + nu(nk + 1)nd + 2.

In this formulation, there are nynnnsnd state variables and nu(nk + 1)nd time durations.

The initial and final times contribute the remaining parameters. The parameter vector is

subsequently defined as,

x = [· · · yi,j,k,l · · · · · · ∆ti,k,l · · · t0 tf]
T , (5.13)

where the state indices are i = 1, . . . , ny, j = 1, . . . , nn, k = 1, . . . , ns, and l = 1, . . . , nd,

and the time indices are i = 1, . . . , nu, k = 1, . . . , nk + 1, and l = 1, . . . , nd.

The constraint vector for this formulation is the same as that listed in Equation 3.6,

except there are now multiple time constraints, ct. The time restriction must hold for each

axis and for each spacecraft, so nt = nund. The total number of constraints in c(x) = 0 is

nc = nψ0 + nψf + nβnnnsnd + ny(nn − 1)nsnd + ny(ns − 1)nd + nund.

The sizes for the initial and final conditions, cψ0 and cψf , are nψ0 and nψf , respectively.

These dimensions are likely increased relative to the previous formulation since there are

now nd dynamic bodies. The path constraints, cβ, are imposed at every node, along each

segment, and for each body. The vector is sized accordingly. The dynamic constraints, cẏ,

are now of size ny(nn − 1)nsnd to enforce continuity between the nodes for every state of

every body along each segment. Continuity is enforced at the knots in cs by ny(ns − 1)nd

constraints for every state of every body. Notice that the number of transitions between

segments equals the number of total knots, ns − 1 = nunk. Finally, there are nund time

constraints contained in ct to ensure that all axis durations sum to tf − t0.

153

5.3.2 Splines for Data Available A Priori

Because of the size (numbers of parameters and constraints) of the transcribed

optimization problem that results through collocation, it is important to limit overhead

computing as much as possible. There are two places where this is done by providing existing

data as an input into the optimization routines. Specifically, in this problem formulation,

the trajectory of the chief spacecraft, which lies along a natural orbit, does not change. In

addition, the designated pointing direction for the formation is also known, and does not

need to be manipulated during the optimization process.

To reduce overhead computing, this data can simply be splined with sufficient in-

terpolating points to provide the information necessary for solving the problem. Because

the data from which splines are evaluated is not changing (they are input through a data

file), the coefficients need only be evaluated once. It could be extremely costly (in comput-

ing time) to perform this operation on each iteration (or worse, each function evaluation).

Careful implementation uses separate subroutines for determining the coefficients and for

calling the coefficients to find an interpolated point. The former is accomplished before

beginning the iterative optimization process.

5.3.2.1 Chief Spacecraft Position and Velocity

Recall that the dynamics of a spacecraft are presented relative to the chief spacecraft,

and consequently, the position of the chief enters into the dynamics of Equation 5.4 through

the imbedded function rc(t). In addition, when time derivatives are calculated (to determine

gradients), the function ṙc(t) also enters into the equations through

∂f

∂t
=

∂f

∂rc(t)
∂rc(t)

∂t
=

∂f

∂rc(t)
ṙc(t).

The trajectory described by
[
rc(t)T ṙc(t)T

]T most likely does not have an analytic solution.

If, for example, the trajectory describes a periodic Halo orbit, it is best to provide data from

154

which spline coefficients can be evaluated, so that both chief position and velocity can be

extrapolated at any time since knot and node locations change throughout the optimization.

For this problem, enough data points are splined to cover more than a period of

the periodic trajectory. This is more than enough, as the time duration of the optimization

problems examined here is generally considerably less.

5.3.2.2 Deputy Spacecraft Pointing Direction

The pointing direction from the chief spacecraft to a specified point in space is r∗cs.

In inertial space, this may be a constant vector, but not necessarily. Because this pointing

direction is needed in the frame in which the dynamics are integrated, a general statement

can be made that the pointing direction is a function of time, that is, rcs(t). Likewise, it

has a vector rate, ṙcs(t).

In many cases, these functions could have an analytic form. For example, if r∗Ics is

constant, then r∗Rcs (t) may be expressed in terms of sines and cosines. However, for the more

general problem, where the pointing direction is arbitrarily specified, it is useful to treat the

pointing in the same manner as the chief spacecraft position and velocity. For generality,

then, the pointing direction and rate, used to calculate the coordinate transformation, RCBl ,

and its rate, are stored as interpolating points to generate spline coefficients.

5.3.3 Scaling

NLP algorithms are more efficient when all of the parameters of x are on the same

order of magnitude. Most of the problems addressed in this investigation are already suf-

ficiently scaled. That is, all parameters are on O(100). However, the sensitive dynamic

environment near libration points requires some unique scaling considerations. Specifically,

as opposed to evaluating dynamic equations in conventional units, such as km and sec, a

155

good practice is to define a new distance unit, DU, and time unit, TU, such that, in the

new units, the states and times are along the same order of magnitude.

For example, consider a formation with a required relative distance between chief

and deputies approximately 1 km. A relative position may be [0.707, 0, 0.707]. If the

distance unit is defined as

1 DU ≡ 100 m,

then the position states will generally range in magnitude from 1 to 10 DU. With relative

velocities less than 1 µm/s, it is logical to define

1 TU ≡ 106 sec

to ensure that velocity states range in magnitude from 1 to 10 DU/TU. The time unit is now

approximately 10+ days, and it is reasonable to run optimal control problems with duration

of approximately 1/3 of a year to keep the time durations within a general magnitude range

less than, or close to, 10 TU.

5.3.4 Objective Implementation

In Section 5.2.3, the objective function is described as a summed cost penalizing ac-

cumulated thrust, formation size and shape requirement deviations, and formation pointing

requirement deviations. When input as a function of the parameters x, the cost function

takes the form,

F (x) = w1F1(x) + w2F2(x) + w3F3(x).

Although a parameterized thrust cost is easily derived, the formation deviation costs are

more difficult to evaluate. Primarily, these are a function of the position-states associated

with each of the nd dynamic bodies. Unfortunately, these positions are only known at the

nodes, and the locations of the nodes are different for each body. That is, the times for the

156

jth node of the kth segment are not necessarily the same for each body, or

tj,k,l 6= tj,k,λ.

This is overcome through interpolation. The implementation of the parameterized subcosts

follow.

5.3.4.1 Thrust

The control in each axis of each spacecraft is broken into nk+1 axis segments, whose

durations are ∆ti,k,l. In addition, the control values are pre-specified for each segment. For

the solutions derived in this chapter, the controls are pre-specified a priori as

u∗i,k,l = T ∗ cos
(π

2
(k − 1)

)
,

where i = 1, . . . , nu, k = 1, . . . , nk + 1, and l = 1, . . . , nd. Thus, the control cost is simply,

F1(x) =
nd∑

l=1

nk+1∑

k=1

nu∑

i=1

∆ti,k,l
(
u∗i,k,l

)2
.

5.3.4.2 Formation Size and Shape Deviation

For the formation costs, added complexities stem from the node distribution from t0

to tf . Specifically, the node distribution varies for each spacecraft, yet the deviation in the

shape of the formation depends on the position of each spacecraft at a given time. A simple

solution is to perform an interpolation of the nodes for each spacecraft. Using interpolated

values, a representative number of points over the trajectory is selected to approximate the

integrals of Equation 5.11. Define the interpolated set of states as yj,l where j = 1, ..., ng,

and ng is sufficiently large to generate a uniformly spaced grid of points that describe

the trajectories of the l = 1, ..., nd spacecraft. The interpolated states are distinguished

from those in Equation 5.13 by not having a k subscript, as they are uniformly distributed

157

between t0 and tf independent of knot locations. Then

F2(x) =
nd∑

l=1

ng−1∑

j=1

tj+1 − tj
2

([
3∑

i=1

y2
i,j,l

]
− (

r∗cdl
)2

)2

+

([
3∑

i=1

y2
i,j+1,l

]
− (

r∗cdl
)2

)2

+
nd−1∑

l=1

nd∑

λ=l+1

ng−1∑

j=1

tj+1 − tj
2

([
3∑

i=1

(yi,j,l − yi,j,λ)
2

]
− (

r∗dλdl
)2

)2

+

([
3∑

i=1

(yi,j+1,l − yi,j+1,λ)
2

]
− (

r∗dλdl
)2

)2

computes deviations from specified distances between chief-deputy and deputy-deputy pairs.

5.3.4.3 Formation Plane Deviation

The cost associated with deviations in the formation plane exhibits the same com-

plexities as the formation shape cost. Once again, this difficulty is overcome through the

use of interpolated points, yj,l. The resulting cost index is

F3(x) =
nd−1∑

l=1

nd∑

λ=l+1

ng−1∑

j=1

tj+1 − tj
2

([
3∑

i=1

(yi,j,l − yi,j,λ) r∗(cs)i(tj)

])2

+

([
3∑

i=1

(yi,j+1,l − yi,j+1,λ) r∗(cs)i(tj+1)

])2

 .

This cost function uses a trapezoidal approximation of the integral of Equation 5.12 to

accumulate penalties in plane deviation.

5.3.5 Constraint Implementation

Finally, some considerations of the libration point formation constraints are ad-

dressed. Recall that formation requirements (size, shape, and orientation) cannot be

achieved throughout the entire time interval [t0 tf]. However, it is possible to ensure that at

t0 and tf , the formation requirements are satisfied. The solutions obtained in this chapter

158

employ initial condition constraints that specify the initial states of each deputy such that

the formation requirements are met. For the states at tf , however, it is overly restrictive

to completely specify their exact values. Instead, formation constraints are implemented at

the final time only. The form of these constraints is below.

Additionally, this section outlines the partial derivatives of the dynamics function,

a necessary input for calculating derivatives of the continuity constraints analytically.

5.3.5.1 Final Formation Size and Shape

Let the specified distance between the chief and the lth deputy be r∗cdl and the

specified distance between spacecraft l and spacecraft λ be r∗dλdl . Then the number of final

formation constraints is

nψf = nd +
(

nd
2

)

and the constraints have the form

cψf (x) =

[∑3
i=1 y2

i,nn,ns,1

]
− (

r∗cd1
)2

...[∑3
i=1 y2

i,nn,ns,l

]
−

(
r∗cdl

)2

...[∑3
i=1 y2

i,nn,ns,nd

]
−

(
r∗cdnd

)2

[∑3
i=1 (yi,nn,ns,1 − yi,nn,ns,2)

2
]
− (

r∗d2d1
)2

...[∑3
i=1 (yi,nn,ns,l − yi,nn,ns,λ)

2
]
−

(
r∗dλdl

)2

...[∑3
i=1 (yi,nn,ns,nd−1 − yi,nn,ns,nd)

2
]
−

(
r∗dnddnd−1

)2

.

The Jacobian elements for the formation constraints can be written as

∂cψfl
∂xγ

=
{

2yi,nn,ns,l, xγ ≡ yi,nn,ns,l
0, otherwise

159

for l = 1, . . . , nd and

∂cψfnd+q

∂xγ
=

2 (yi,nn,ns,l − yi,nn,ns,λ) , xγ ≡ yi,nn,ns,l
−2 (yi,nn,ns,l − yi,nn,ns,λ) , xγ ≡ yi,nn,ns,λ

0, otherwise

for l = 1, . . . , nd − 1 and λ = l + 1, . . . , nd, where

q =

(
l−1∑

L=1

nd − L

)
+ (λ− l) . (5.14)

5.3.5.2 Final Formation Plane

The final formation constraints ensure that the plane of the formation of spacecraft

is perpendicular to the pointing direction at the final time. Recall that the specified pointing

direction is r∗cs(t), which, in this case is assumed to be expressed in the rotating R frame.

The final formation constraints use the dot product between this pointing direction and the

relative distances between each spacecraft. That is, there are

nψf =
(

nd
2

)

plane constraints of the form

cψf (x) =

∑3
i=1 (yi,nn,ns,1 − yi,nn,ns,2) r∗(cs)i(tf)

...∑3
i=1 (yi,nn,ns,l − yi,nn,ns,λ) r∗(cs)i(tf)

...∑3
i=1 (yi,nn,ns,nd−1 − yi,nn,ns,nd) r∗(cs)i(tf)

.

Jacobian elements take the form

∂cψfq
∂xγ

=

r∗(cs)i(tf), xγ ≡ yi,nn,ns,l
−r∗(cs)i(tf), xγ ≡ yi,nn,ns,λ∑3

i=1 (yi,nn,ns,l − yi,nn,ns,λ) ṙ∗(cs)i(tf), xγ ≡ tf
0, otherwise

for i = 1, . . . , 3, l = 1, . . . , nd−1, and λ = l+1, . . . , nd, where q is again defined by Equation

5.14.

160

5.3.5.3 Partial Derivatives for the Dynamics Function

One may observe from Equation 5.1 that the partials for the absolute equations, f̃ ,

taken for the chief states, can be expressed as,

A(rc) ≡ ∂f̃(yc,uc)
∂yc

=
[

0 I
Uxx 2Ω

]

B ≡ ∂f̃(yc,uc)
∂uc

=
[

0
I

]
,

where Uxx = Uxx(rc) is the second partial of the potential function taken with respect to

the positions, rc, and

Ω =

0 ω 0
−ω 0 0
0 0 0

is a constant matrix. Notice that because the velocity states only appear linearly in Equation

5.1, the state Jacobian is only dependent upon the chief position states. In addition, the

control argument in f̃ is written in the R frame, as the states are. This is an important

distinction, as the formulation for this problem has the states, yl, in the R frame, while

the controls, ul ≡ uBl
l are necessarily written in the Bl frame so that they remain constant

over each segment. For clarity, the equivalence of Equation 5.4 may be expressed as

ẏl = f(t,yl,u
Bl
l) = f̄(t,yl,u

R
l) = f̄(t,y, RCBluBl).

Note that the relationship,

uR
l = RCBluBl

l , (5.15)

is implied, where the coordinate transformation matrix is defined by

RCBl =
[
x̂R

Bl
ŷR

Bl
ẑR

Bl

]
.

161

Interestingly, the relative equations described by f̄ yield the same Jacobians as f̃ , with a

slight modification in the position argument.

∂f̄(t,yl,uR
l)

∂yl
= A(rc + rl) (5.16)

∂f̄(t,yl,uR
l)

∂uR
l

= B. (5.17)

Note that the control Jacobian matrix remains constant. The state Jacobian matrix, how-

ever, is a function of the time and the relative position between chief and deputy. In

addition,

∂f̄(t,yl,uR
l)

∂t
=

∂ẏl
∂rc

ṙc

= (A(rc + rl)−A(rc))
[
ṙc
0

]
. (5.18)

Equations 5.16-5.18 can ultimately be used to calculate the relevant partials, ∂f
∂t and ∂f

∂yl
,

as

∂f

∂t
=

∂f̄

∂t
+

∂f̄

∂uR
l

∂uR
l

∂t
,

∂f

∂yl
=

∂f̄

∂yl
+

∂f̄

∂uR
l

∂uR
l

∂yl
.

It remains to derive ∂uR
l

∂t and ∂uR
l

∂yl
. Using Equation 5.15, it is clear that the time derivative

must consider how the transformation matrix changes with time.

∂uR
l

∂t
= u̇R

l = RĊBluB
l

The time derivative of the transformation matrix can be derived element by element. Recall

that the matrix is composed of the body frame unit vectors written in the rotating frame.

Their derivatives are based on the definitions for the body frame axes given in Equations

162

5.7-5.9:

RĊBl =
[

˙̂xR
Bl

˙̂yR
Bl

˙̂zR
Bl

]
,

˙̂xR
Bl

=
1
x̃

˙̃x−
˙̃x

x̃2
x̃,

˙̂yR
Bl

=
1
ỹ

˙̃y −
˙̃y

ỹ2
ỹ,

˙̂zR
Bl

= ˙̂xR
B × ŷR

B + x̂R
B × ˙̂yR

B,

where x̃ = rcs, x̃ = |x̃|, ỹ = rl × x̂R
Bl

and ỹ = |ỹ|.

Likewise, the changes in the control with respect to the states are a factor of how

the body frame (and, therefore, the coordinate transformation matrix) change based on the

states. That is,

∂uR
l

∂yl
= (uBl

l)x
∂x̂R

Bl

∂yl
+ (uBl

l)y
∂ŷR

B

∂yl
+ (uB

l)z
∂ẑR

B

∂yl
,

∂x̂R
Bl

∂yl
= 03×6,

∂ŷR
Bl

∂yl
=

[
−

[
x̂R

Bl
×

]
03×3

]
,

∂ẑR
Bl

∂yl
=

[
x̂R

Bl
×

] ∂ŷR
Bl

∂yl
,

where
[
x̂R

Bl
×

]
is the 3 × 3 skew symmetric matrix that performs the same operation on a

3× 1 vector as the cross product.

With this, the implementation of the spacecraft formation problem is completely

defined. Next, results obtained through this formulation are demonstrated and explored.

5.4 Sample Solutions

A candidate formation consists of nd = 3 deputy spacecraft, equally spaced as in

Figure 5.4 with distance r∗cd = 1 km between the chief and each deputy and r∗dd = 1.73

163

km between two deputies. The formation seeks to collect data on a distant star located

along the inertial pointing direction, r∗Ics = [1 0 0]T . Solutions are found with several sets

of parameters. A baseline solution is found with nn = 4 nodes per segment and nk = 10

interior switch times per control axis, allotting for six thrusting segments per control axis per

satellite (three positive, three negative). A trajectory is devised with fixed initial states,

and final conditions dictate the formation size and plane constraints be met at the final

time. Since the CR3BP is time invariant, the initial time is set as t0 = 0. The formation

nominally rotates about the reference with the same period as the Halo orbit. By fixing

the final time, tf , at a third of the reference Halo orbit period (approximately 5.1183× 106

seconds), the three deputies each complete a third of a rotation about the chief.

5.4.1 The Initial Guess

In numerical optimization problems, the initial guess, x0, is often a determining

factor in whether an optimal solution is successfully identified. A gradient-based numerical

algorithm can only be trusted to find locally optimal solutions, most likely in the vicinity

of the starting point. Thus, identical problems can easily converge on different solutions if

starting from distant points. One way to manage this characteristic is to use several different

values of x0 to find solutions, choosing the minimum of the locally optimal solutions as a

candidate for the globally optimal solution. For this effort, the successful identification

of any feasible and locally optimal solution to the highly constrained formation problem

demonstrates the capability of the FSCT method.

Collocation methods, where discretized states are included as parameters in the op-

timization, allow the user to select an initial set of parameters that guides the optimization

process towards a particular trajectory. Although x0 does not satisfy the dynamical con-

straints, its states may represent the vicinity of the desired solution. Through iteration, the

optimizer modifies the current point until feasibility and optimality tolerances are achieved.

164

In this mindset, a baseline initial guess for this candidate formation appears in Figure 5.5,

depicting the trajectories of three spacecraft in the inertial and rotating frames, along with

a nominal control profile of the three spacecraft in their respective body frames. As seen

in the inertial frame, the trajectories satisfy the formation requirements (size and plane

orientation) as presented above, maintaining a plane perpendicular to the inertial pointing

direction, r∗Ics. This set of states represent a perfectly circular planar formation. Ideally,

an unconstrained control profile is capable of delivering the associated accelerations. The

constrained controls shown here, however, do not produce these states. Instead, the burn

durations chosen for the initial guess simply distribute the time of each of the nunk+1 = 31

segments equally. This choice, while somewhat arbitrary, frees the optimizer to search the

solution space for the proper durations of burning and coasting segments, while keeping the

states fairly close to their ideal placement.

165

−10 −5 0 5 10
−10

−5

0

5

10

x
100 m

y 1
0
0

m

Spacecraft Positions -

−10 −5 0 5 10
−10

−5

0

5

10

x
100 m

z 10
0

m

−10 −5 0 5 10
−10

−5

0

5

10

y
100 m

z 10
0

m

−10
0

10

−10

0

10
−10

0

10

x

Inertial Frame

y

z

−10 −5 0 5 10
−10

−5

0

5

10

x
100 m

y 1
0
0

m

Spacecraft Positions -

−10 −5 0 5 10
−10

−5

0

5

10

x
100 m

z 10
0

m

−10 −5 0 5 10
−10

−5

0

5

10

y
100 m

z 10
0

m

−10
0

10

−10

0

10
−10

0

10

x

Rotating Frame

y

z

Trajectory Legend

Deputy 1 Trajectory

Deputy 2 Trajectory

Deputy 3 Trajectory
t0 tf

Control Legend

Axis 1 Control (ux)

Axis 2 Control (uy)

Axis 3 Control (uz)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x 10
−9

Deputy 1

m
/
s2

Control Accelerations - Body Frame
Deputy 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x 10
−9

Deputy 2

m
/
s2

Deputy 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x 10
−9

Deputy 3

m
/
s2

Time (106 sec)

Deputy 3

Figure 5.5: Baseline Initial Guess

166

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

x
100 m

y 1
0
0

m

Spacecraft Positions -

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

x
100 m

z 1
0
0

m

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

y
100 m

z 1
0
0

m

−20
0

20

−20
0

20

−20

0

20

x

Inertial Frame

y
z

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

x
100 m

y 1
0
0

m

Spacecraft Positions -

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

x
100 m

z 1
0
0

m

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

y
100 m

z 1
0
0

m

−20
0

20

−20
0

20

−20

0

20

x

Rotating Frame

y

z

Trajectory Legend

Deputy 1 Trajectory

Deputy 2 Trajectory

Deputy 3 Trajectory
t0 tf

Control Legend

Axis 1 Control (ux)

Axis 2 Control (uy)

Axis 3 Control (uz)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x 10
−9

Deputy 1

m
/
s2

Control Accelerations - Body Frame
Deputy 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x 10
−9

Deputy 2

m
/
s2

Deputy 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x 10
−9

Deputy 3

m
/
s2

Time (106 sec)

Deputy 3

Figure 5.6: Feasible Initial Guess

As an alternative, an initial guess can be generated that is feasible by propagating

a guessed control profile, say, that of the baseline guess. In this case, the initial guess

satisfies the dynamical constraints immediately, but the formation constraints are clearly

not satisfied. In addition, deviations from the desired formation characteristics are large.

Thus, the cost is also large at the first iteration of the optimization procedure. In Figure

5.6, a set of states is shown that is the true propagation of the arbitrary control profile used

in the baseline guess. It is apparent that the trajectories of three spacecraft driven by this

control profile are far from meeting any formation requirements.

167

Although this is a dramatic example, the difference between the baseline and feasible

initial guess communicates an advantage to using a collocation method over an indirect or

direct shooting method. Shooting methods essentially ‘shoot’ a guess for the control to the

terminal time, making corrections on each iteration to meet constraints. However, because

of the extreme sensitivities of this dynamic regime, the quality of a shooting guess is critical

to the success of the process. A collocation method is far more flexible in the initial guess.

5.4.2 Baseline Solution

The baseline initial guess is optimized via the fomulation presented in this work to

yield the solution depicted in Figure 5.7. The trajectories of the three spacecraft are shown

in the inertial and rotating reference frames, along with the control profile for each of the

spacecraft.

First, it is observed that the optimization has modified the guessed segment du-

rations to specify proper burn times and burn durations. Burn segments are shortened

and coast segments are lengthened according to feasibility constraints (driving dynamic

constraint residuals to zero) and optimality considerations (minimizing fuel expenditure).

Notice also that several burn segments have zero duration, depicted as a single line separat-

ing two coasting arcs. Recall that the formulation pre-specifies thrusting arcs. However, if a

solution does not require that thrusting arc, its duration is reduced to zero in the optimiza-

tion. The structure of the solution does not change, and a segment still exists in that place

(occurring over zero time). Additionally, nn nodes exist at a single point in time. Since the

solution implies the given burn segment is superfluous, many of the optimization variables

have no effect (these are the states along the zero segment). However, since no feasible

control profile was known a priori, it is helpful to include more segments than ultimately

necessary until some insight into a feasible trajectory is extracted.

168

−10 −5 0 5 10
−10

−5

0

5

10

x
100 m

y 1
0
0

m

Spacecraft Positions -

−10 −5 0 5 10
−10

−5

0

5

10

x
100 m

z 1
0
0

m

−10 −5 0 5 10
−10

−5

0

5

10

y
100 m

z 1
0
0

m
−10

0
10

−10

0

10
−10

0

10

x

Inertial Frame

y
z

−10 −5 0 5 10
−10

−5

0

5

10

x
100 m

y 1
0
0

m

Spacecraft Positions -

−10 −5 0 5 10
−10

−5

0

5

10

x
100 m

z 1
0
0

m

−10 −5 0 5 10
−10

−5

0

5

10

y
100 m

z 1
0
0

m

−10
0

10

−10

0

10
−10

0

10

x

Rotating Frame

y

z

Trajectory Legend

Deputy 1 Trajectory

Deputy 2 Trajectory

Deputy 3 Trajectory
t0 tf

Control Legend

Axis 1 Control (ux)

Axis 2 Control (uy)

Axis 3 Control (uz)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x 10
−9

Deputy 1

m
/
s2

Control Accelerations - Body Frame
Deputy 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x 10
−9

Deputy 2

m
/
s2

Deputy 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

−1

0

1

2

x 10
−9

Deputy 3

m
/
s2

Time (106 sec)

Deputy 3

Figure 5.7: Baseline Solution

Next, it is apparent that the paths of each of the deputy spacecraft resemble the

initial guess to a significant extent. Certainly, deviations away from the ‘perfect’ trajectory

are visible, but the solution implies that those deviations are necessary in order to identify a

feasible trajectory given the specified control restrictions. More importantly, the trajectory

now coincides with the control history. For example, the control discontinuities between

segments result in corners in the velocity states for each spacecraft (not shown).

One can also extract from the baseline solution an optimal rotation rate for the

formation. By comparing the inertial trajectories of the baseline guess and solution, it is

169

apparent in the optimal solution that the spacecraft traverse less distance over the time

interval. This suggests that for a 1 km (radius) formation, the optimal rotation rate is

slightly less than the baseline guess of 2π/period.

The baseline solution demonstates the effectiveness of the solution technique on a

highly constrained optimal control problem. The sample mission requires fixed spacecraft

orientation, fixed thruster locations, and a specified thrust acceleration magnitude. Under

these constraints, trajectories are sought to maintain formation size, shape, and orientation

restrictions. An unconstrained control solution that maintains the formation configuration

requires acceleration levels below those deliverable by existing technology. In the actuator

constrained case, the proposed methodology determines reasonable performance expecta-

tions in the presense of these system constraints.

5.4.3 Varying Parameters to Obtain Different Solutions

The methodology presented in this formulation serves to establish reasonable ex-

pectations for libration point missions under the constraints imposed by the current state

of technology. The generalized method can be applied to any number of potential scenarios

during the mission planning process. To demonstrate the flexibility of the method, some

formulation parameters are changed here to observe their effect on the solution. The final

time, the number of nodes and knots, the initial guess, and the thrust magnitude are varied

to determine four other solutions to be compared with the baseline in Table 5.1. The results

vary in size, solution convergence, and cost performance.

By doubling the fixed final time (now two thirds of an orbital period, or 10.2366×106

seconds) without any other changes, it is evident that the cost is significantly increased from

the baseline. Of course, it would be reasonable to expect the integral costs to be proportional

to the final time. However, the solution is over an order of magnitude greater in cost. That

170

Table 5.1: Comparison of Solutions with Various Parameters
Baseline tf nk, tf Feasible Guess Thrust

nn 4 4 6 4 4
nk 10 10 20 10 10
tf (106 sec) 5.1183 10.2366 10.2366 5.1183 5.1183
Guess Baseline Baseline Baseline Feasible Baseline
w1 (Thrust) 1

400
1

400
1

400
1

400
1

1600

w2 (Distance) 0.1 0.1 0.1 0.1 0.1
w3 (Plane) 1 1 1 1 1
T ∗ (km/s2) 2.0e-12 2.0e-12 2.0e-12 2.0e-12 4.0e-12

n 2333 2333 6779 2333 2333
Iterations 45 157 194 95 272
Computational Time (sec) 253.91 956.41 3000.35 575.88 1570.04
Weighted Thrust Cost 1.6233 5.8133 6.6838 10.9247 1.1324
Weighted Formation Cost 16.1818 634.3255 67.7092 35.5675 6.9286
Weighted Plane Cost 0.8591 84.6949 4.6852 4.9035 1.0632
Total Cost 18.6643 724.8338 79.0782 51.3956 9.1242

is because for a longer trajectory, a good solution necessarily requires more maneuvers, and,

subseqently, more knots (switching opportunities) in the problem formulation.

The next example maintains the longer final time, now including twice as many

knots as the baseline. In addition the number of nodes is increased to improve the fidelity

of the solution. As a result, the dimension of the parameter optimization problem increases

significantly (from 2333 to 6779 variables). This requires additional computational time for

each iteration and an overall longer convergence time. However, including more knots does

lead to an improved solution relative to the previous example.

The feasible initial guess is also compared in performance to the baseline initial guess

(using the original final time and numbers of nodes and knots). In contrast to the baseline,

the feasible guess does not lead to an improved solution. Clearly, the baseline guess is in the

vicinity of a smaller locally optimal point than the feasible guess. This is expected since the

feasible initial guess does not produce trajectories that meet the formation requirements.

Finally, a solution is identified using a larger thrust magnitude than the baseline.

Although the total cost is less than the baseline, this takes into account a different weight

171

on the thrust portion of the cost index. The weight is selected to normalize the cost,

dividing away the square of the thrust magnitude (in scaled distance and time units). Each

of the thrust acceleration magnitudes and cost function weights in this investigation are

selected arbitrarily. However, it is clear that these parameters can be tailored to values

that effectively represent a realistic mission scenario.

5.5 Spacecraft Formation Pointing Survey

In this section, the sample solutions of Section 5.4 are extended. Specifically, many

similar solutions are obtained, varying the pointing direction of the nd = 3 spacecraft

formation to gather intuition regarding the relative difficulty of maintaining formation re-

quirements in different orientations. The results that follow are derived from up to 290

optimizations on each of two sample weight distributions for the cost function. The op-

timizations vary the inertial pointing defined by r∗Ics to determine the minimum cost for

maintaining a formation in each direction.

The objective weights are selected to emphasize formation size and shape require-

ments in the first survey and formation orientation or plane in the second. This is simply

accomplished by altering weights w2 and w3, respectively. Of course, a limited fuel resource

is always a concern for space missions, thus a penalty on excessive fuel expenditure is also

enforced. The weight distributions for these surveys are included in Table 5.2 for ‘forma-

tion emphasis’ and ‘plane emphasis’ surveys. Observe that, compared to each other, the

first survey emphasizes J2 = F2(x) in the total cost function, while the second emphasizes

J3 = F3(x).

5.5.1 Data Samples

An interferometry mission may require a spacecraft formation to perform imaging on

distant stars or planets located literally anywhere in the universe. Thus, the formation must

172

Table 5.2: Weight Distribution for Two Pointing Surveys
Formation Plane

w1
1

(T ∗)2
1

(T ∗)2

w2 0.1 0.01
w3 1.0 10.0

T∗ = 20 DU/TU2

be able to maintain formation requirements while pointing in any direction. By sampling a

sufficient number of different pointing directions, some trends may be established regarding

the various orientations. It is clear that some orientations result in trajectories for the

member spacecraft that are easier to maintain in the underlying dynamic scheme than

others.

In this section, the varying parameter is a 3-dimensional vector representing the

pointing direction perpendicular to the formation plane. The pertinent output for compar-

ison for each data sample is the resulting minimized cost, J = F (x). Illustrating results

in four dimensions (three independent variables and one output) is somewhat difficult. To

accomplish this, a thermal plot is selected. The pointing direction is represented as a point

on a unit sphere, and the resulting cost of the optimization conducted in that direction

is depicted as a color at that point. Thus, survey results are analogous to a global tem-

perature indicator showing the current temperature of every place around the world. The

‘temperature’ is presented as a color on the globe, highlighting hot spots and cold spots

wherever they may exist.

Since FSCT optimizations must be conducted for each pointing direction, only a

sampling of data points may be obtained. Pointing directions are selected by first defining

r∗Ics ≡
[

r1 r2 r3

]T
r2
1 + r2

2 + r2
3

.

173

If ri ∈ {−1, 0, 1}, then the total number of unique pointing directions is 26. Likewise, if

ri ∈ {−2,−1, 0, 1, 2}, there are 98 data points, and ri ∈ {−3,−2,−1, 0, 1, 2, 3} yields 290

points. Thermal plots are demonstrated below with each set of data points.

Note that for each optimization solution obtained in the survey results that follow,

a new initial guess is generated to initiate the FSCT method. The baseline initial guess in

Section 5.4.1 is modeled for the guesses here. An automated procedure produces starting

points for each optimization representing an ideal trajectory for each of the 290 sample

pointing directions.

5.5.2 Pointing Survey: Formation Emphasis

Using the weight distribution associated with the ‘formation emphasis’ in Table 5.2,

a survey of costs is revealed using 26, 98, and 290 data points distributed fairly evenly over

a unit sphere representing all possible pointing directions for the spacecraft formation. The

results are summarized in Figure 5.8.

Note that for each data set, four thermal plots are displayed, indicating the costs

associated with thrust (J1), formation size/shape (J2), formation orientation (J3), and the

total weighted cost when all are combined (J). Each subplot is scaled to accentuate the

variation per cost, with red indicating higher costs and blue lower costs. Also, the colors

are interpolated between data points to smooth out the image.

174

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

2000

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.5

1

1.5

2

2.5

3

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

10

20

30

40

50

60

70

(a) 26 Points

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

2000

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.5

1

1.5

2

2.5

3

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

10

20

30

40

50

60

70

(b) 98 Points

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

2000

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.5

1

1.5

2

2.5

3

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

10

20

30

40

50

60

70

(c) 290 Points

Figure 5.8: Formation Emphasis: Compari-
son of 26, 98, 290 Points

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.02

0.04

0.06

0.08

0.1

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

0

2

4

6

8

10

(a) 26 Points

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.02

0.04

0.06

0.08

0.1

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

0

2

4

6

8

10

(b) 98 Points

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.02

0.04

0.06

0.08

0.1

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

0

2

4

6

8

10

(c) 290 Points

Figure 5.9: Plane Emphasis: Comparison of
26, 98, 290 Points

175

A broad comparison between Figures 5.8(a), (b), and (c) indicates the value of using

more data points when determining cost trends. This is most easily seen by comparing the

thrust cost for each set of data points. Although a trend is apparent with only 26 points

in (a) that r∗Ics = [±1 0 0]T , or a formation restricted to the ŷ − ẑ plane, results in a lower

thrust cost than any others, this trend is undeniable, and well articulated with 290 data

points in (c).

On the other hand, what appears as a trend in the formation size/shape cost in (a)

is not as obvious in (c). One potential cause of this is the presence of outliers in either data

set. An outlier, in the case of FSCT optimization, is a solution that converged on a larger

local minimum. Thus, in the figures, a red spot surrounded by a field of blue suggests that,

for numerical reasons, the FSCT iterative procedure terminated earlier than it may have if

either a different initial guess were used, or tighter optimality tolerances were enforced.

As the title of this section implies, the total weighted cost subplot is nearly identical

to the formation size/shape cost subplot. With a higher value for w2, the cost associated

with size and plane deviations in the formation dominates the total cost.

5.5.3 Pointing Survey: Plane Emphasis

Next, the ‘plane emphasis’ weight distribution of Table 5.2 is employed for a to-

tal of 290 separate optimization jobs of the FSCT method. Again, thrust cost, formation

size/shape deviations, formation orientation deviations, and total weighted cost are illus-

trated for 26, 98, and 290 data points in Figure 5.9. The trajectories that yield these

results assume, in general, that it is more important that the spacecraft formation remain

in the plane perpendicular to the pointing direction than it is for the spacecraft to maintain

constant spacing relative to each other.

Note, first, that the scaling in Figure 5.9 is different than Figure 5.8, and conse-

quently, each color is assigned a new range for each subplot. The range of values corre-

176

sponding to the color spectrum is selected to accentuate the deviations the best over the

data set.

Observing the formation plane cost for each data set, a subtle trend emerges that

implies that a formation confined to the x̂ − ŷ plane (perpendicular to r∗Ics = [0 0 ± 1]T)

is easier to maintain. However, even with changes in w2 and w3 totaling two orders of

magnitude, deviations are more noticeable in the distance between spacecraft.

In each survey, it is apparent that the thermal plots possess, at least to some extent,

some symmetry. This makes sense, as two opposing pointing directions for r∗Ics still result

in a spacecraft formation confined to the same perpendicular plane. It should be noted,

though, based on the momentum provided by the initial guesses (recalling that a final

solution remains in the same vicinity), the spacecraft are always moving around r∗Ics with a

negative (clockwise) rotation. Thus the solutions for two opposing pointing directions are

different, but it is validating to see similar costs on opposite sides of the globe (observable

throughout).

5.5.4 Formation vs. Plane Emphasis Comparison

In Figures 5.8 and 5.9, the cost ranges for the color spectrum are altered, making it

difficult to compare the results of both surveys (formation emphasis and plane emphasis).

Thus, it is useful to repeat the results of each survey, now with consistent scaling. In Figures

5.10 and 5.11, the 290 point data sets for each of the two weight distributions are again

illustrated. In the first figure, the color spectrum is assigned to show an informative range

of cost values for the first survey, and the second figure corresponds to the cost range of

the second survey. Some interesting observations can be made by studying each of these

figures.

Although it was not as obvious in Section 5.5.3, Figure 5.10(b) clearly demonstrates

how the total cost of this survey is dominated by the formation plane deviation cost, as

177

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

2000

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.5

1

1.5

2

2.5

3

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

10

20

30

40

50

60

70

(a) Formation Emphasis

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

2000

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.5

1

1.5

2

2.5

3

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

10

20

30

40

50

60

70

(b) Plane Emphasis

Figure 5.10: Formation vs. Plane Emphasis: Scaling for Formation Emphasis

these two subplots more obviously show a similar color manifold.

Notice, also, that the individual costs of formation size deviations and formation

plane deviations are smaller when they are emphasized in the total cost function. This is

intuitive: as the optimizer seeks to improve the total cost through iteration, it will naturally

affect the higher-weighted elements of the cost. This is most obvious with the plane cost.

In Figure 5.10, when the plane cost is emphasized (b), it is smaller across all data points,

as compared to when it is not emphasized in the total cost function (a).

It is already observed that it is more difficult to maintain formation size than forma-

tion plane. Another indication of this fact can be seen by comparing the thrust cost between

the two surveys. It is clear that more actuation is required when the formation size and

shape are emphasized in the cost function, since the thrust cost subplots show more red

in (a) than (b) for each of the figures comparing the two surveys. Thus, when it becomes

more important to ensure consistent distances between spacecraft, more (or longer) thruster

firings are required, increasing fuel expenditure.

178

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.02

0.04

0.06

0.08

0.1

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

0

2

4

6

8

10

(a) Formation Emphasis

−1
0

1

−1

0

1
−1

0

1

x

Thrust Cost

y

z

500

1000

1500

−1
0

1

−1

0

1
−1

0

1

x

Formation Size Cost

y

z

0

100

200

300

400

500

600

−1
0

1

−1

0

1
−1

0

1

x

Formation Plane Cost

y

z

0

0.02

0.04

0.06

0.08

0.1

−1
0

1

−1

0

1
−1

0

1

x

Total Weighted Cost

y

z

0

2

4

6

8

10

(b) Plane Emphasis

Figure 5.11: Formation vs. Plane Emphasis: Scaling for Plane Emphasis

5.6 Summary

In this chapter, the FSCT method is employed to determine locally optimal control

solutions for libration point formations restricted to highly constrained actuation require-

ments. Some minor modifications and enhancements are implemented to address the specific

problem, mostly rooted in the necessity for handling multiple dynamic bodies.

The solutions presented demonstrate the method’s capability to minimize selected

costs when determining a feasible trajectory. A number of mission parameters are used to

demonstrate a variety of solutions. Some formation characteristics considered include

• formation configuration, size, orientation, and rotation rate,

• thruster capability and placement,

• dynamic model and reference trajectory, and

• initial and terminal conditions.

Surveys are conducted using many obtained solutions to gather intuition regard-

ing the challenges for spacecraft formations conducting deep-space imaging from restricted

179

planes of motion. Weight distributions for the elements of the objective function are varied

to help the mission planner gain intuition when prioritizing requirements that cannot be

perfectly met via constraints.

The purpose of this exploration is to demonstrate how this methodology can serve

as an effective mission planning tool. The FSCT solution process can be employed for

analysis directed towards establishing requirements and capabilities for highly constrained

formations.

180

Chapter 6

Extended Applications

Recall that the FSCT method is designed to treat problems defined by the general

problem statement of Section 1.2. That is, the FSCT method optimizes performance for

systems with state variables, y, subject to the ordinary differential relation,

ẏ = f(t,y,u), (1.1)

where
y =

[
y1 · · · yny

]T
,

yi ∈ C1,
(1.2)

and control variables, u, limited to discrete sets as

u = [u1 · · · unu]
T ,

ui ∈ Ui = {ũi,1, . . . , ũi,mi} .
(1.3)

Up to this point, all of the applications have fallen directly within the confines of this

system description. Indeed, there are a number of problems for which the FSCT method is

immediately useful. Further, in Section 4.4, it is demonstrated that some systems ordinarily

described with continuously-varying control elements may be reformulated with additional

states to have discrete control variables only, thereby conforming to the system description

above. Thus, the general problem statement is not overly restrictive.

However, it is interesting and useful to explore ways in which the FSCT method may

be extended to broaden its scope of applications. With slight alterations to the methodology,

it is possible to consider new classes of the hybrid control problem. The bounds set by

Equations 1.1, 1.2, and 1.3 are now addressed systematically. Specifically, this chapter

181

considers how the FSCT method can be applied with continuous control variables, discrete

state variables, and partial differential state constraints. With continuous control variables,

constraints in the underlying parameter optimization problem are relaxed; with discrete

states, more constraints are added. For partial differential constraints, a discretization in the

non-time differentiation variable allows a partial differential equation to be approximated

by multiple ordinary differential equations.

Notational Considerations

The objective in each of the following sections is to transform a new class of hybrid

problems into a formulation that is consistent with the FSCT methodology. For clarity,

the variables y and u remain restricted by Equations 1.1, 1.2, and 1.3. The definitions of

the state and control vectors alter, however, according to the type of transformation under

consideration. The original system, formulated outside of the FSCT method bounds, is

distinguished by the notation (·)′.

6.1 Systems with Continuous Control Variables

Consider the system with both discrete and continuous control variables of the

following form:

ẏ′ = f ′(t,y′,u′,υ′), (6.1)
{
y′ =

[
y′1 · · · y′ny

]T
,

y′i ∈ C1,
{
u′ =

[
u′1 · · · u′nu′

]T
,

u′i ∈ Ui = {ũi,1, . . . , ũi,mi} ,
{
υ′ =

[
υ′1 · · · υ′nυ′

]T
,

υ′i ∈ C0,

182

where nu′ + nυ′ is the total number of control variables, including both discrete and con-

tinuous. In this form, this system cannot be immediately implemented with the FSCT

formulation. The nυ′ continuous control variables, indicated by υ′i, must be free to vary

with time over a continuous spectrum, but the FSCT method does not include the frame-

work to optimize these variables. As presently formulated, the FSCT approach considers all

control variables to be piecewise constant and optimizes the time elapsed between switches

by incorporating these intervals as control parameters in x.

When both continuous and discrete control variables are simultaneously considered,

the continuous control variables are more appropriately treated as pseudo-states in the

FSCT formulation. The states, of course, are continuously-varying elements whose values

are optimized at each node. Certainly, υ′i may be described similarly. The primary differ-

ence between a traditional state, y′i, and a continuous control, υ′i, then, is that the former

is subject to dynamical constraints in Equation 6.1. Thus, continuous control variables can

simply be treated as states without dynamical constraints. In other words, υ′i is a continu-

ous independent variable that can be represented as a continuous dependent variable with

relaxed dependencies.

Define the FSCT state vector as

y ≡ [
(y′)T (υ′)T

]T
, (6.2)

and the FSCT control vector as

u ≡ u′. (6.3)

Note that the continuous control variables are included in the state vector as pseudo-states.

Now, y is continuous and u is discrete, consistent with all other formulations in this inves-

183

tigation. The state continuity constraints are

ẏ = f(t,y,u) ≡

f ′(t,y′,u′)
—
...

—

 , (6.4)

where nυ′ elements in the dynamics function are undefined, as there are no dynamical con-

straints on the continuous control variables. The definitions in Equations 6.2-6.4 represent

the complete tranformation.

6.1.1 Relaxing Constraints for Continuous Control Variables

The new hybrid problem is nearly identical to the general problem statement of Sec-

tion 1.2. Now, though, there are no formal dynamical relations for continuous independent

(control) variables. One approach to handling this in the context of the FSCT formulation

is to modify the state constraint equations so that only the traditional states, and not the

augmented pseudo-states, are bound by continuity relations. Another approach is to formu-

late constraint equations for each element in y, and simply relax the constraints associated

with the pseudo-states.

Recall that traditional states may be bound by any number of different constraints.

The common types of constraints include initial/final conditions, knot continuity con-

straints, and dynamical constraints imposed in this work using the Hermite-Simpson in-

tegration equations. The nature of the problem may dictate how these constraints are

treated for the nυ′ pseudo-states. For example, it is possible that one may still want to

specify an initial value for a control variable, in which case the pseudo-state may be treated

identically to a traditional state. In most cases, though, all of the constraints associated

with the pseudo-states must be relaxed.

Each constraint identified in Chapter 3 is presented as an equality constraint. That

is, any constraint is ci(x) = 0. In the implementation with the optimizer, this may actually

184

be formulated as

0 ≤ ci(x) ≤ 0.

Thus, to relax a constraint, the lower and upper bounds are changed to ±∞, as

−∞ ≤ ci(x) ≤ ∞.

The constraint is effectively eliminated from the parameter optimization problem. With

this change to all ci(x) constraining pseudo-states, the continuous control variables are

effectively unconstrained.

Consider the dynamic constraints derived from Equation 6.4. Since the constraint

is relaxed with infinity bounds, it is possible to define the dynamics function as simply

f(t,y,u) =
[
f ′(t,y′,u′)

0

]
,

where the value of zero is placed in every undefined element of the dynamics function.

Although these elements can be set to anything without affecting the resulting solution,

it is wise to define them with a dummy value to avoid confusion within the underlying

parameter optimization problem.

6.1.2 Example: Zermelo Navigation

An example application with both continuous and discrete controls is presented in

Section 3.1.1. In that variation of the Zermelo navigation problem, two control variables

exist. The thrust magnitude is limited to a finite set of values, while the thrust direction is

free to vary over a continuous spectrum. In the presentation of Section 3.1.1, a simplified

formulation is implied for the sake of developing the methodology in steps. With the

complete FSCT formulation, the Zermelo problem can be transformed as described above

to yield an equivalent solution.

185

Formulate the FSCT problem with states

y ≡ [y1 y2 y3 y4 θ]T ,

where

ẏ = f(t,y, u) =

y3

y4

u cos θ
u sin θ − y3 cos y1

0

, (6.5)

and the single discrete control is u ∈ {0, 2}. Note that in Equation 6.5, the differential

continuity condition ẏ5 = θ̇ = 0 is not enforced, and zero is only used as a dummy value.

When all constraints on y5 are relaxed, the FSCT problem may be solved.

The solution with 3 segments (2 knots) is shown in Figure 3.2. When the problem

is solved using the present formulation, the solution is equivalent to that 3-segment solu-

tion. Choosing more knots in the present formulation (nk = 14, for example), results in

many zero-duration segments, with the equivalent of three non-zero segments representing

a thrust-coast-thrust sequence. For brevity, figures are not repeated here.

186

6.2 Systems with Discrete State Variables

Now consider the system with both discrete and continuous state variables of the

following form:

ẏ′ = f ′(t,y′,η′,u′),

η′ = g′(t,y′,η′,u′), (6.6)
{
y′ =

[
y′1 · · · y′ny

]T
,

y′i ∈ C1,
{
η′ =

[
η′1 · · · η′nη′

]T
,

η′i ∈ Yi = {η̃i,1, . . . , η̃i,µi} ,
{
u′ =

[
u′1 · · · u′nu′

]T
,

u′i ∈ Ui = {ũi,1, . . . , ũi,mi} .

In this hybrid system, η represents the set of discrete state variables. That is, each ηi is

limited to a finite set, but it is also subject to a dynamical relation indicating its value as

a function of all of the states and controls. As an example, a system in which collisions

may occur may fall into this class of hybrid system. A collision status, represented by ηi,

is a discrete value, but it is dependent upon the other variables of a system (i.e. a collision

between two objects can only occur if they are collocated).

In this case, discrete state variables become pseudo-controls in the FSCT formula-

tion. Specifically,

y ≡ y′, (6.7)

u ≡ [
(u′)T (η′)T

]T
, (6.8)

f ≡ f ′. (6.9)

Thus, the discrete states are treated similarly to control variables during the optimization.

Just like u′, the values of η′ are pre-specified by the user according to the finite value sets

187

available for each variable, and the optimizer uses time duration parameters to determine

the optimal switching times for both independent and dependent discrete components.

However, the constraints describing the dependencies of the discrete states in Equa-

tion 6.6 must be included in the list of constraints imposed on the underlying parameter

optimization problem. That is, additional constraints must be devised to represent how the

component, η′i, is related to the values of t, y′, η′, and u′. These, of course, depend on the

specifics of the system in question.

It is observed that adding constraints is much more difficult than relaxing them.

First, it is important to ensure that in adding constraints to appropriately represent the

problem, the underlying parameter optimization problem does not become overconstrained.

Second, care must be taken to account for how switching dependencies affect the overall

description of dependent state constraints.

Further development of hybrid system optimization with discrete state variables is

beyond the scope of the present investigation. Although an initial framework is established

in Equations 6.7-6.9 for using the FSCT method for this class of system, it is left to fu-

ture investigations to determine how appropriate constraints can be defined to effectively

implement the dependencies of Equation 6.6.

6.3 Systems Bound by Partial Differential Equations

Finally, consideration is given to the problem whose dynamics are described by par-

tial differential equations (PDEs), instead of the ordinary differential relations of Equation

1.1. Note that, in the development that follows, there is an intentional lack of rigor regard-

ing the types and classifications of PDEs that exist. Instead, the following is intended as

a sample exercise on how PDE systems with finite controls may be handled in the FSCT

setting.

188

Introduce a new time-like quantity, τ , as a second differentiable variable. In the

classical heat equation, for example, τ indicates the distance along a one-dimensional rod.

Consider a first-order PDE of the form

∂y′

∂t
+

∂f ′(t, y′,u′)
∂τ

= 0. (6.10)

An appropriate solution describes the scalar state as a function of the two differentiable

variables, that is, y′ = y′(t, τ). The state is a continuous variable, and its dynamics are

related to the values of a discrete control vector, u′.

y′ ∈ C1×1

u′ =
[
u′1 · · · u′nu′

]T

u′i ∈ Ui = {ũi,1, . . . , ũi,mi}

The transformation of this system into an FSCT-suitable formulation involves a

discretization of y′ over the non-time differentiation variable. Consider the FSCT state

vector defined by

y =

y1
...
yi
...

yny

=

y′(t, τ1)
...

y′(t, τi)
...

y′(t, τny)

. (6.11)

Thus, the elements of y represent the values of y′ at discrete points along τ ∈ [
τ1 τny

]
. For

simplification, assume that τ1 = τmin, τny = τmax, and τi are uniformly distributed between

the boundaries. In addition, define the FSCT control vector as simply

u = u′. (6.12)

Using first-order forward differencing, one approximation for Equation 6.10 at τi becomes,

∂y′

∂t

∣∣∣∣
τ=τi

= −∂f ′

∂y′
∂y′

∂τ

∣∣∣∣
τ=τi

≈ − ∂f ′

∂y′

∣∣∣∣
τ=τi

1
∆τ

(
y′

∣∣
τ=τi+1

− y′
∣∣
τ=τi

)
,

189

where ∆τ = τmax−τmin
ny−1 . Relating this approximation with the FSCT state definition in

Equation 6.11,

ẏ = f(t,y,u), (6.13)

fi = −∂f ′(t, yi,u)
∂yi

yi+1 − yi
∆τ

, i = 1, . . . , ny − 1. (6.14)

If a backward differencing approximation is used at τny , it is observed that fny = fny−1.

Thus, the partial differential relation is approximated as a vector of ordinary differential

equations whose size is determined by the chosen discretization grid in τ .

The FSCT formulation is completely defined for the transformed PDE. Note that,

in general, higher-order finite differencing schemes can improve the accuracy of the approx-

imation. Many of these schemes are addressed in Chapter 2, utilizing the differentiation

matrix, D.

Example: Traffic Flow Management

A basic and relevant application of the FSCT method to a PDE system involves traf-

fic flow through intersections.59 Consider a system describing the density of traffic through

two intersections, as shown in Figure 6.1. Four lanes of traffic are controlled by two traf-

fic lights, whose conditions are indicated by the discrete controls, u = [u1 u2]T , where

ui ∈ {0, 1}. If ui = 0, then East- and West-bound traffic see red lights. Likewise, ui = 1

indicates a red light for South-bound (i = 1) or North-bound (i = 2) traffic.

In the absence of traffic lights, the density of traffic, ρ, measured in vehicles/distance

unit, exhibited in a single lane is described by

∂ρ

∂t
+

∂(ρv)
∂τ

= 0,

190

u1 u2

| | ||

0.0 0.3 1.00.7

−

−

−

0.0

0.25

0.5

N

u1 u2

| | ||

0.0 0.3 1.00.7

−

−

−

0.0

0.25

0.5

N

Figure 6.1: Traffic Flow Problem: Four Lanes, Two Intersections

where τ measures the position along the lane and v is the velocity of the traffic, indirectly

related to the density through the relation

v = vmax

(
1− ρ

ρmax

)
.

To simulate the effects of a traffic light, the flux,

f ′(ρ) = ρv = ρvmax

(
1− ρ

ρmax

)

is set to zero immediately after a red light. For simplicity, let vmin = ρmin = 0.0 and

vmax = ρmax = 1.0 for this example. Thus, in this example, f ′ = f ′(t, ρ,u) is only directly

dependent on ρ, and its dependence on u is limited to the points located closest to the

intersections.

191

Discretize the East- and West-bound traffic density at 30 evenly distributed nodes

between τ = 0.0 and τ = 1.0 distance unit. Likewise, the South- and North-bound are

discretized with 20 evenly distributed nodes between τ = 0.0 and τ = 0.5. Let the densities

at each node be placed in vectors corresponding to each lane: ρE, ρW, ρS, and ρN. Finally,

define a scalar cost state, q, which accumulates over time the amount of traffic flowing

through all lanes. Then the FSCT state vector is

y ≡ [
ρTE ρTW ρTS ρTN q

]T
,

and ny = 101. The ordinary differential dynamics resulting from a first-order numerical

approximation of the τ -differentiation becomes

ẏ = f(y,u) =
[
fTρE fTρW fTρS fTρN fq

]T
,

where in each lane,

fρi =
1

∆τ

(
Fi+ 1

2
(ρ)− Fi− 1

2
(ρ)

)
,

and

Fi+ 1
2
(ρ) =

f ′(ρmax+ρmin
2) , ρi > ρmax+ρmin

2 and ρi+1 < ρmax+ρmin
2

min
ρ∈[ρi ρi+1]

f ′(ρ) , ρi ≤ ρi+1

max
ρ∈[ρi ρi+1]

f ′(ρ) , ρi > ρi+1

, i = 1, . . . , nρ − 1.

In the above sequence of equations, nρ = 30 for the East- and West-bound lanes, nρ = 20

for North- and South-bound lanes and ∆τ = τmax−τmin
nρ−1 . Additionally, F 1

2
(ρ) = f ′(ρ1)

and Fnρ+ 1
2
(ρ) = f ′(ρnρ). This set of definitions represents the flow of traffic without the

influence of traffic lights. The control influences the dynamics by updating flux values

Fi+ 1
2
(ρ) = 0 for the grid points immediately after a red light. Finally, the dynamics

definition is complete by specifying

fq = f ′(ρE15) + f ′(ρW15) + f ′(ρS15) + f ′(ρN15),

192

indicating that the cost state accumulates the traffic flux for each lane at its 15th grid point.

Setting the initial value of the cost state, q0 = 0, the cost function J = −qf maximizes the

accumulated traffic flow in each lane over a specified time interval t ∈ [t0 tf].

Sample solutions have been obtained using the formulation outlined here. By trans-

forming the PDE into, in this case, 100 ordinary differential equations to express the time

evolution of traffic density across four lanes of traffic, it is possible to determine optimal

switching times for the two traffic lights. Initial conditions, indicating the distribution of

traffic in each lane at t0, have a significant effect on the switching schedule. There is also

a distinct coupling between the two lights. Clearly, East-West traffic can only flow when

both u1 = u2 = 1, and solutions show a synchronization between the two lights (with delay,

according to which direction has larger flow). Illustrations of solutions are excluded due to

the complexity inherent in a PDE system (i.e. the number of resulting state variables, for

example).

Futher analysis of resulting solutions is not necessarily beneficial in the context

of this investigation. For example, the sample problem illustrated in Figure 6.1 is perhaps

overly simplified by using only two traffic lights. More interesting conclusions may be drawn

with additional traffic lights affecting the existing North- and South-bound lanes. However,

this example satisfies the current objective, establishing a framework for future analysis.

This simplified example opens up a realm of PDE systems that may be explored in future

investigations.

6.4 Summary

This chapter explores some extensions to the the general problem statement of

Section 1.2 to expand the class of hybrid control systems whose performance can effectively

be optimized using the FSCT method. The focus of this chapter is on the processes by

which hybrid control problems can be transformed to fit within the confines of the FSCT

193

formulation. It is demonstrated that this methodology easily extends to problems with

continuous controls or partial differential dynamics. Discrete states are also addressed, but

the success of the FSCT method on problems with dependent discrete variables may be

specific to the problem at hand.

Examples are presented for dual continuous-discrete control and partial differential

systems to illustrate the process of transforming the problem so that the FSCT method

can be effectively applied. Results from these examples are limited to emphasize more the

process. As illustrative examples, they demonstrate the direction one might take to solve

more complicated or relevant hybrid control problems that do not immediately fall within

the general problem statement.

194

Chapter 7

Conclusions

This investigation is dedicated to the development of a new methodology for treating

hybrid control problems. The specific focus is on systems whose states are continuously

varying and subject to differential constraints, and whose controls are discrete and limited

to a finite set of values. The methodology is termed here the Finite Set Control Transcription

(FSCT) method, and it is effectively demonstrated in a number of applications throughout

this investigation.

The FSCT method is rooted in direct collocation and is a modified transcription

of the optimal control problem into a parameter optimization problem that can be solved

using any standard nonlinear programming (NLP) algorithm. In this work, SNOPT is

the selected NLP solver due to the facility of solving large optimization problems with a

relatively sparse Jacobian structure.

A primary distinction of this methodology is how discrete control elements of the hy-

brid system are optimized in the continuous context of nonlinear programming. Because all

of the parameters of the underlying NLP problem are optimized over a continuous spectrum

(while potentially bounded and subject to constraints), the FSCT method optimizes switch-

ing times of control variables instead of directly optimizing their values. By pre-specifying

a sequence of feasible control values over a trajectory, the time durations that each control

variable spends at each value is determined. The time durations for non-optimal control

values are driven to zero to eliminate them from the control history. As with other col-

location methods, state values at specified nodes are also included in the parameterized

195

problem. Thus, the FSCT method optimizes states and times over a continuous spectrum

to arrive at solutions to hybrid control problems.

A unique advantage of the FSCT method is that it is capable of treating problems

with multiple independent control variables with ease. Complications necessarily arise when

multiple control variables are optimized over their feasible sets. In this methodology, the

result is a phenomenon of switching dependencies for constraint functions at each iteration

of the optimization. That is, a constraint equation involving some optimization parameters

at one iteration may involve a different set of parameters at the next iteration. It is shown

in this investigation that steps can be taken to ensure that this does not adversely affect

the convergence process of the underlying problem.

A number of different applications are explored to showcase the capability of the

methodology. Some simple examples are employed to demonstrate the basic utility of the

FSCT method. One- and two-dimensional problems demonstrate the method’s effective-

ness. Examples with complex dynamic sets are also presented to reveal the robustness and

relevance of the FSCT method. Although most applications in this investigation are rooted

in aerospace engineering, the methodology has applications in many other engineering and

non-engineering fields.

The scope of hybrid control problems that benefit from the FSCT method is also

investigated. The relevant class of hybrid systems is stretched by considering both discrete

and continuous controls, both continuous and discrete states, and dynamics described by

partial differential equations instead of ordinary differential equations. Successful solutions

are found with continuous controls and partial differential dynamics.

Future Work

This research effort opens the door to several areas in which future efforts may

further the results of this investigation. The following list summarizes some of them.

196

• Further Development of the Methodology

– The Finite Set Control Transcription is presented in this investigation as an

extension of a traditional collocation (direct) method. However, the same ex-

tensions may also be applied to a direct or indirect shooting method. That is,

similar modifications can be made to shooting methods to treat controls that are

limited to finite sets. Some interesting insight might be gained by investigating

the advantages and disadvantages of FSCT-extended indirect methods.

– An investigation in mesh refinement may reveal the effects of node distribution

on FSCT solutions. In this work, an equal number of nodes is assumed for each

segment. A modified formulation may allow for a specified node count for each

segment. This may improve the accuracy of the ensuing solution, especially over

segments that are relatively long in duration.

– The FSCT methodology can be explored in more detail to understand its ca-

pabilities with extended classes of hybrid systems. In this investigation, some

considerations are presented with regard to how a combination of continuous and

discrete states in the hybrid system may be treated (Section 6.2). Further anal-

ysis may reveal new and more effective ways of optimizing systems with discrete

dependent variables.

• Further Application of the Methodology

– Many of the applications in this investigation merely demonstrate how the FSCT

method can be used for effective optimization. Further applications may investi-

gate these systems with more specific objectives. The spacecraft attitude control

system presented in Chapter 4 and the traffic flow problem in Chapter 6, for

example, are two applications that can be developed into more detailed analyses.

197

– An additional relevant application exists in the field of petroleum engineering.

Smart technologies are in development for optimizing oil extraction from wells.

Finite set limited variables are used to control oil output. The extension of the

FSCT method to PDE systems is specifically directed as a stepping stone to this

more complicated problem.

198

Appendices

199

Appendix A

A Model Predictive Controller for Real-Time
Implementation

In Chapter 4, a Model Predictive Control (MPC) scheme is proposed to supplement

the FSCT method. Specifically, since the latter produces trajectory and control histories,

MPC techniques offer a methodology for real-time implementation of an optimal trajectory.

In this appendix, a basic background in MPC is presented. More complex, and perhaps

more robust, control designs are beyond the scope of this work, although developed in the

theory on Model Predictive Control.60

First, a linear discete-time model is derived from the generalized continuous-time

hybrid control system. A model predictive controller exploits the linear discrete-time model

to express a real-time continuous controller, which is derived subsequently. Finally, an

extension is suggested for hybrid systems subject to finite set control.

A.1 Linear Discrete-Time Model

MPC offers a method for tracking an arbitrary reference trajectory while optimizing

a performance index over a finite time horizon. A basic model predictive controller is derived

using a discrete-time, linear dynamic model of the form,

y(t + ∆t) = A(t)y(t) +B(t)u(t), (A.1)

z(t) = Cy(t). (A.2)

200

Here, z(t) is the measured output from the linear system. In general, then, the nonlinear

continuous dynamics,

ẏ = f(t,y,u), (1.1)

must be transformed into the form of Equations A.1-A.2 through appropriate definitions of

A(t), B(t), and C.

Note that a standard linearization of Equation 1.1 about the origin yields

ẏ(t) =
∂f

∂y
(t)y(t) +

∂f

∂u
(t)u(t). (A.3)

Then, applying the state transition matrix to the linearized dynamics of Equation A.3,

y(t + ∆t) = Φ(t + ∆t, t)y(t) +
∫ t+∆t

t
Φ(t + ∆t, τ)

∂f

∂u
(τ)u(τ) dτ (A.4)

= Φ(t + ∆t, t)y(t) +
[∫ t+∆t

t
Φ(t + ∆t, τ)

∂f

∂u
(τ) dτ

]
u(t), (A.5)

where

Φ̇(t + ∆t, t) =
∂f

∂y
(t + ∆t)Φ(t + ∆t, t),

Φ(t, t) = I,

and u(t) is assumed constant over ∆t to transition from Equation A.4 to Equation A.5.

Comparing Equation A.5 to Equation A.1,

A(t) = Φ(t + ∆t, t),

B(t) =
∫ t+∆t

t
Φ(t + ∆t, τ)

∂f

∂u
(τ) dτ

≈ Φ(t + ∆t, t)
∂f

∂u
(t)∆t (for small ∆t).

Finally, C is defined according to the observable characteristics of the system. For

example, consider a set of states representing positions and velocities of an object, as y =
[
rT vT

]T . If only the object’s positions are measurable outputs available to the controller,

201

then C = [I 0]. If all states are available to determine the control law, then C = I, such

that the output of the discrete-time model is a linearized approximation of all of the system

states. That is, C is simply the Jacobian of z(t) with respect to y(t).

A.2 Control Law Derivation

The MPC law exploits the linear, discrete-time model to develop estimates for the

observation variables, z(t), at future time intervals, given the current state values. The

output predictions are determined for a finite horizon of future times, and current control

values are chosen so that these output estimates are as close as possible to desired values

of a nominal trajectory. In the traditional sense, the linear, discrete formulation allows

controls to be determined by solving a linear equation, holding constant the control values

over the increment ∆t.

Let the estimate on the output at time t+∆t, given the states at time t, be denoted

as ẑ(t + ∆t|t) such that

ẑ(t + ∆t|t) = Cŷ(t + ∆t|t)

= C
[
Â(t|t)ŷ(t|t) + B̂(t|t)u(t|t)

]

= C [A(t)y(t) +B(t)u(t)] .

In this notation, the symbol, ·̂, indicates that the variable is estimated for a future time

value. Notice, however, that since the states are known at time t, so are all other definitions

at time t. Thus, Â(t|t) = A(t), B̂(t|t) = B(t), ŷ(t|t) = y(t), and u(t|t) = u(t). This

notation becomes more important for estimates further in the future. Consider the estimates

202

at time t + j∆t:

ẑ(t + j∆t|t) = Cŷ(t + j∆t|t)

= C
[
Â(t + (j − 1)∆t|t)ŷ(t + (j − 1)∆t|t)

+ B̂(t + (j − 1)∆t|t)u(t + (j − 1)∆t|t)
]

= · · ·

= C

[
j−1∏

i=0

Â(t + i∆t|t)
]
y(t)

+C
j−2∑

k=0

[
j−2−k∏

i=0

Â (t + (j − 1− i)∆t|t)
]
B̂(t + k∆t|t)u(t + k∆t|t)

+CB̂(t + (j − 1)∆t|t)u(t + (j − 1)∆t|t) (A.6)

Equation A.6 implies that any future estimate may be expressed as a function of y(t),

the controls u(t) through u(t + (j − 1)∆t), and the estimated values of the A and B

matrices through time t + (j − 1)∆t. Clearly, Equation A.6 can be simplified dramatically

by assuming that over the interval from t to t + j∆t, the matrices A and B are constant.

If so, all estimates Â and B̂ can be replaced by A(t) and B(t), respectively, and a closed

form can be realized. Depending on the length of the prediction interval, this assumption

may improve computational efficiency dramatically. In any case, it is possible to define

predicted outputs at discrete time intervals as

Z =

ẑ(t + ∆t|t)
...

ẑ(t + j∆t|t)
...

ẑ(t + p∆t|t)

,

where p is the prediction interval over which observation variables are compared to nominal

203

values. Likewise, the controls at the discrete time intervals are collected as

U =

u(t)
...

u(t + j∆t)
...

u(t + (p− 1)∆t)

.

Then the output can be expressed as

Z = Gy(t) + FU . (A.7)

In Equation A.7, a linear relationship is defined between the current states, the current

and future control values, and estimates of the future output. The matrices G and F are

defined according to Equation A.6. Next, consider the nominal trajectory, yn(t), to which

the control law must track. Then, Cyn(t) may be evaluated at the discrete intervals t

through t + p∆t and placed in a vector denoted as Zn.

Define a cost function of the form

J =
1
2
(Zn −Z)TQ(Zn −Z) +

1
2
UTRU .

It is observed that, with appropriate definitions of Q, R, Q̃ and R̃, this cost function is a

linear approximation of

J̃ =
∫ t+p∆t

t
(yn − y)T Q̃(yn − y) + uT R̃u dτ,

which penalizes both deviations in trajectory states away from the nominal and excessive

control usage. Thus, J can then be minimized according to user defined weight matrices Q

andR to produce a tracking trajectory that also minimizes control over the prediction inter-

val. To implement the model predictive controller in the traditional sense, the minimizing

control,

U =
(
F TQF +R

)−1
FQ (Zn −Gy) ,

is evaluated at every interval, and the set of entries inU associated with u(t) is implemented.

Notice that this control law imposes no constraint on the values of u at any time.

204

A.3 Extension to the Hybrid Control System

The finite set control nature of the hybrid system in which ui ∈ Ui motivates a

minor modification to this MPC design to realize a hybrid controller. First, consider an

alternate formulation of Equation A.7 in which it is assumed that u(t + j∆t) = u(t) over

the entire prediction interval.

Z = Gy(t) + F̃ u(t) (A.8)

Indeed, this is a common alternative MPC formulation, and an altered cost function can be

minimized to directly determine u(t).

J =
1
2
(Zn −Z)TQ(Zn −Z) +

1
2
uT R̃u.

Observe that, since J is minimized at each interval, u may still take on different values at

each interval, even though the prediction equation assumes otherwise. Also note, that in the

hybrid control scenario, when controls are limited to a finite set of values which necessarily

change less regularly than continuous variables, the prediction formulation of Equation A.8

is not unrealistic. More importantly, this formulation removes the control variables of U

that are ultimately not implemented.

The model predictive control law for the hybrid system is defined according to

u = arg min
u∈Unu

J.

Simply stated, the implemented control at the current time is simply the feasible control

combination that minimizes the cost function.

Note that if each control variable, ui may assume mi possible values, then there are

m̄ possible control combinations, where

m̄ =
nu∏

i=1

mi.

205

The implemented control is determined by evaluating J for each control combination, se-

lecting the minimizing combination. This extension resembles the concept of dynamic

programming, and can become computationally intensive for many control variables and/or

feasible control values. The control law is most effective for nu and mi (and therefore m̄)

reasonably small to reduce the number of computations per interval.

206

Appendix B

Background for Libration Point Formation Missions

Libration point formation missions are the subject of Chapter 5 and the primary

motivating application for the development of the FSCT method explored in this work. For

the interested reader, this appendix serves to provide additional background and context on

the unique aspects of these types of missions. This background reveals the motivating force

for finding a new collocation method that can treat sensitivities and limitations associated

with the dynamic environment and interferometry mission requirements.

The appendix is separated into three major sections. In the first, the present state

of the literature addressing libration point formations is surveyed. The methods applied to

the problem to date are reviewed. The second section explores the dynamics of the regime

in further detail. Although the equations of motion for the Circular Restricted Three Body

Problem are presented in Chapter 5, additional context is warranted. Assumptions, advan-

tages and disadvantages, and accuracy are addressed. Finally, a discussion on the challenges

and limitations of libration point formation missions provides reasoning for exploring new

tool sets for acquiring useful control solutions. The classical method of Lyapunov is briefly

introduced to demonstrate how continuous techniques may fail in this dynamic regime.

Additionally, considerations into the present state or propulsive technology are addressed.

B.1 Previous Work Towards Libration Point Formations

In the early 1980s, the Space Shuttle first demonstrated the capability of forma-

tion flying in conjunction with the use of its remote manipulator arm.61 In its infancy,

207

formationkeeping was performed by the Shuttle pilot on-board, who implemented velocity

corrections manually with a control stick. Since that time, the aerospace community has

been motivated to improve satellite capability for autonomous formation flying, in support

of both Shuttle operations and unmanned spacecraft formation missions. As the literature

has developed to address more and more issues associated with satellite formations, both

NASA and the U.S. Air Force have realized the benefits of multiple spacecraft architectures,

where the functionality of a single spacecraft is distributed among a number of satellites

flying in close proximity.

In many cases, multiple spacecraft missions offer a means for reducing cost and risk

while increasing flexibility and responsiveness. If several smaller spacecraft can perform the

mission of a larger, monolithic platform, launch and design costs will be lower. In addition,

a formation of spacecraft can potentially be reoriented or augmented with other members

to modify or increase the architecture’s capability after launch. This is rarely possible with

a single spacecraft platform.

In some cases, a multiple spacecraft architecture can perform missions that sin-

gle spacecraft simply cannot. Deep-space imaging is a prime example. Several missions,

such as Terrestrial Planet Finder (TPF) and the Micro Arcsecond X-ray Imaging Mission

(MAXIM), seek to investigate distant planets, stars, black holes, etc. To focus on deep-space

objects so far away, studies15–17 have indicated that images must be able to resolve angular

offsets as small as 0.1 micro-arcsecond. Atmospheric effects significantly reduce the ability

of Earth-based telescopes (limiting resolution and blocking particular wavelengths), and a

single space platform housing a telescope large enough to accomplish this would be impos-

sible to launch. The clear solution is aperture synthesis, using a collection of telescopes to

produce the same angular resolution as a single telescope the size of the collection. With

telescopes on board several smaller, launchable spacecraft, a formation properly spaced and

oriented will be able to accomplish what nothing else can do.

208

Figure B.1: TPF Interferometer Candidate Formations: Linear DCB and X-Array

NASA’s Terrestrial Planet Finder15,16 missions have the primary objective of seeking

out Earth-like planets around nearby stars and characterizing their ability to sustain life.

There are two complimentary missions: a coronagraph will be used for imaging in the

visible spectrum, a formation flying interferometer for the infrared spectrum. Significant

challenges exist in deconvolving planet signatures near their parent stars, to include the

small angular offset of approximately 50 micro-arcseconds. Trade studies have determined

baseline requirements for precise spacecraft formations near L2 with between three and five

spacecraft, carrying 3-4 m aperture telescopes. Two promising architectures of the TPF

interferometer are the Linear Dual Chopped Bracewell (DCB) and the X-Array, both of

which consist of four spacecraft carrying 3.8 m telecopes and one serving to combine the

signals. Figure B.1 illustrates a rendering of these two likely configurations, ranging in size

from 60 m to 240 m.

The Micro Arcsecond X-ray Imaging Mission17 intends to place possibly 20 or more

spacecraft in a formation near the Sun-Earth/Moon L2 point. It is a concept proposed for

the Structure and Evolution of the Universe (SEU) Black Hole Imager mission. In order

to provide images that can resolve accretion disks around black holes, spacecraft would be

placed as far away as 1 km (the diameter of the formation), with a core spacecraft in the

209

center of the formation. A pathfinder mission with less aggressive formation requirements

may lead the way to the ambitious objectives of MAXIM.

These missions, among others, propose spacecraft formations operating near the

collinear L1 and L2 libration points of the Sun-Earth/Moon system. The nature of interfer-

ometry, along with the unique sensitivities of the dynamic regime near the libration points,

motivate significant study into the formationkeeping aspects of the missions. While a lot

has been accomplished in the realm of formation control to address the dynamical issues

of libration point formations, the field is still quite open for determining methods of gener-

ating trajectories and control strategies that safely and effectively maintain the formations

necessary to perform deep-space imaging. Previous efforts in formation control appear in

the literature as early as the mid-1980s, focusing first on Earth orbiting formations. More

recently, extensions have been made to libration point formations.

B.1.1 Earth Orbiting Formations

Vassar and Sherwood62 presented some of the earliest work in formation control,

motivated by attempts to automate formationkeeping operations with the Space Shuttle.

Assuming a circular orbit, linearized (Clohessy-Wiltshire) equations of motion simplified the

derivation of an optimal discrete-time closed-loop controller. These results were extended

by Redding, Adams, and Kubiak63 and later by Kapila, Sparks, Buffington, and Yan.64

The former added a discrete-time linear quadratic regulator for disturbance rejection and

a traveling elipse approach to stationkeeping. The latter modified the impulsive control

solutions of Vassar and Sherwood to pulse-based control laws to account for advances in

propulsion technology. Kapila et al. also guaranteed closed-loop stability for the linear

controller.

Additional work using a linearization about a circular orbit was accomplished by

Ulybyshev and Sabol, Burns, and McLaughlin. Ulybyshev65 investigated long-term station-

210

keeping of satellite constellations using unique state variable assignments appropriate for

prescribed intersatellite spacing. Sabol et al.66 propagated linearized equations of motion

with perturbations to determine the stability of various formation designs.

The Clohessy-Wiltshire equations effectively describe relative motion only in two-

body orbits very near to circular. The full non-linear two-body equations of motion were

applied by de Queiroz, Kapila, and Yan,67 who used Lyapunov-based control techniques to

guarantee exponential convergence in position tracking for spacecraft formations. They also

considered adaptive control for constant or slowly-varying unknowns in spacecraft masses,

disturbance forces, and gravity forces to achieve globally asymptotic convergence on track-

ing errors. Although the full nonlinear model is applied, an inherent assumption in standard

nonlinear control techniques is that continuous control solutions are feasible for implemen-

tation.

Schaub and Alfriend68 used Gauss’s variational equations of motion to derive impul-

sive feedback control solutions intended to correct tracking errors in terms of mean orbital

element differences between spacecraft in formation. Recently, Guibout and Scheeres69

modeled a spacecraft formation as a Hamiltonian dynamic system to generate an accurate

polynomial approximation of the system dynamics.

In addition, work has been accomplished to optimize the performance of spacecraft

formations. Kong and Miller70 used a second-order indirect multiple shooting method to

determine minimum energy solutions to cluster initialization and reorientation problems.

Costate estimates for initial guesses were obtained using the solution to the linearized

quadratic tracking problem. Similarly, Scott and Spencer71,72 investigated optimal low-

thrust reconfigurations with a combined linearized dynamics and calculus of variations ap-

proach to examine trends of a basic single transfer. Massari, Armellin, and Finzi73 used a

direct optimization algorithm (single shooting) with linear, time-varying differential equa-

tions to describe relative motion in a general elliptical reference orbit. Optimal trajectories

211

were generated for low-thrust reconfigurations, and “dynamic refresh” was proposed for

real-time control when ideal and real trajectories diverged.

B.1.2 Libration Point Trajectories and Formations

While research in Earth orbiting formations is useful, many additional challenges

arise in placing formations in a three-body (in general, n-body) dynamic environment.

Interest in libration point formations has motivated significant work42–57,74–77 to character-

ize and negotiate this unstable and highly sensitive regime. For interferometry missions,

the formation requirements are even more restrictive, and existing literature highlights the

difficulties in designing trajectories and control strategies to effectively operate in this en-

vironment.

Early investigations focused on designing trajectories for spacecraft near libration

points. Howell and Keeter43 used target point and Floquet approaches to determine im-

pulsive maneuvers at discrete time intervals to maintain trajectories. Although work was

based in the Circular Restricted 3-Body Problem (CR3BP), it was extended to more com-

plex models. Barden and Howell74 applied dynamical systems theory to discover trajectories

based on halo orbits and Lissajous trajectories. It was distinguished by a focus on the center

manifold, as opposed to simply the stable and unstable manifolds.

Continuous control techniques have also been developed for arbitrary reference tra-

jectories in the CR3BP. Scheeres and Vinh45 developed a non-traditional continuous con-

troller achieving bounded motion near a halo orbit by exploiting the local eigenstructure of

the linear system. Along with Hsiao,46 they developed a stabilizing control law intended for

a low-thrust ion engine. Gurfil, Idan, and Kasdin47,48 designed a relative position controller

using nonlinear adaptive control techniques with a neural network based element compensat-

ing for model inversion errors. Gurfil and Kasdin49 also derived a time-varying continuous

linear quadratic control law with linearized dynamics about an arbitrary reference. They

212

recommended plasma eletric propulsion, recognizing the necessity for micro-thrusting ca-

pability. Luquette and Sanner44 designed a Lyapunov-based nonlinear controller based on

the relative states between two spacecraft. This extended the work of de Queiroz et al. to

the three-body problem.

Continuous control techniques were extended to a more complete dynamic model,

as well. Marchand and Howell54 applied existing linear (LQR) and nonlinear (feedback

linearization) methods to spherical and aspherical formulations. Baseline propulsive re-

quirements were established, again highlighting the restrictively low thrusting requirements,

bringing into the forefront the limitations of existing propulsion technology. In subsequent

work,42,50–53 they investigated further input and output feedback linearization for non-

natural formations, along with insights into naturally existing formations, generalizing to

an n-body dynamic model which included solar radiation pressure.

Some efforts have been specifically applied to particular libration point missions.

Folta, Hartman, Howell, and Marchand76 applied continuous nonlinear control to the

MAXIM formation requirement specifications. Gomez, Lo, and Masdemont77 investigated

impulsive manuevers to maintain nominal paths for the TPF mission.

Efforts to optimize the trajectories for libration point formations are also observed.

Marchand, Howell and Betts56 used numerical optimization techniques to find optimal

discrete (impulsive) control laws. Infeld, Josselyn, Murray, and Ross57 use their Legendre

pseudospectral method on Sun-Earth and Earth-Moon L2 point trajectories in the CR3BP

to minimize fuel consumption.

In summary, the work to date can be characterized by

• the dynamic model used to describe the motion,

• the class of the control scheme, and

213

• the optimality of the controller’s performance.

The dynamic model for libration point orbits is at a minimum the CR3BP, but more com-

plete models incorporate other planetary and solar effects (using ephemeris data for other

bodies, solar radiation pressure, etc.) Control schemes can also be characterized by whether

a linearization of the dynamics is required to derive it. Control schemes can either be dis-

crete (impulsive) or continuous, where both are potentially impossible to implement. While

impulsive control assumes state discontinuities, continuous control solutions may requires

prohibitively small control accelerations. Finally, some work has used various optimality

schemes in their derivation (LQR, numerical approximations) while others have not.

B.2 Dynamical Description

Libration points are best understood in the context of a 3-body model. Conse-

quently, the Circular Restricted Three Body (CR3B) model is used in this investigation.

Therefore, the assumptions of the CR3BP are presented, along with arguments for their

relevance. For completeness, the assumptions are relaxed to form a more general n-body

model that would be equally effective for additional libration point analysis with the FSCT

method.

With each model, a relative set of the dynamics is necessary for effective description

of a spacecraft formation. This is primarily due to the scale of the problem. To quantify

this, consider a spacecraft formation whose primary gravitational effects are attributed to

the Sun and the Earth. An expected distance from the Sun to the formation is O(108) km,

while from the Earth to the formation is O(106) km. On the other hand, the relative distance

between spacecraft may be less than 1 km. Common reference frames, with heliocentric or

geocentric origins, may not capture the fidelity of the relative motion between spacecraft.

A simple solution is to adopt a local point as the origin of the reference frame.

214

Let there be a spacecraft in the formation that is termed the chief. For an inter-

ferometer formation, for example, the chief may be the spacecraft designated to coordinate

the incoming signals from the surrounding telescope-bearing spacecraft. In this case, the

chief acts as the combiner. Regardless of its duties, let the chief serve as the reference point

for a set of equations of relative motion. That is, every other spacecraft in the formation is

termed a deputy, and its states are measured relative to the chief. To simplify the dynamics

significantly, let the following assumption hold for all situations:

Assumption B.2.a. The chief spacecraft shall lie along a natural trajectory.

Note that under this condition, the chief does not require any external control to remain

along its course. Note also that because of this assumption, the chief does not need to be

an actual satellite. A virtual point along a natural trajectory acting as the reference point

for relative motion may also serve the purpose of the chief spacecraft. Whether an actual

or virtual spacecraft, in most cases, the chief’s path is along a bounded trajectory, such as

a halo orbit. Since this is not a necessary restriction in developing the dynamics, however,

it is not included in the assumption. Thus, it can be inferred that this is not a restrictive

assumption. Any general problem can be stated relative to the moving point identified as

the chief.

B.2.1 Circular Restricted 3-Body Problem

Consider a dynamic regime governed by the following assumptions.

Assumption B.2.b. Two primary bodies constitute the gravitional forces act-

ing on a third body. The primaries are considered to be point masses, and the

mass of the third body is negligible in comparison to that of the other two.

Assumption B.2.c. The smaller primary moves in circular motion about the

larger. This ensures that the distance between the two primaries remains con-

215

stant, and the vector pointing between the primaries rotates at a constant an-

gular rate.

These are the fundamental assumptions of the CR3BP, useful for describing satellite motion

in an Earth-Moon or a Sun-Earth regime, for example. For the purpose of this work, let

the first primary be the Sun, and the second a combined Earth/Moon mass acting at the

Earth/Moon barycenter.

The equations of motion for the CR3BP, applying these assumptions, are presented

in Section 5.2. Absolute equations are presented and modified into a relative set of equations,

in which a deputy spacecraft’s position and velocity are measured relative to the chief.

B.2.1.1 Dimensionalized vs. Nondimensionalized Equations

In most literature, the CR3BP equations of motion are presented in nondimension-

alized units, modifying Equation 5.1 slightly, and introducing a parameter, µ, to describe

the ratio between masses (or distances) of the two primaries. It is noted that the equa-

tions presented in Section 5.2 are dimensionalized instead. However, for completeness, the

nondimensionalized equations are presented.

Let the following characteristic quantities be defined:

r∗ = r¯ + r⊕

m∗ = m¯ + m⊕

t∗ =
1
n

=
1
ω

,

where r¯ and r⊕ are the distances of the Sun and Earth/Moon, respectively, from the

barycenter. For simplicification, introduce the mass ratio µ as

µ =
m⊕
m∗ =

r¯
r∗

1− µ =
m¯
m∗ =

r⊕
r∗

.

216

Finally, nondimensionlized states and time can be identified through the characteristic quan-

tities.

ξ =
x

r∗
, η =

y

r∗
, ζ =

z

r∗
, ρ =

r

r∗
, and τ =

t

t∗

Using the derivative abbrevation (·)′ = d(·)/dτ , Equation 5.1 in a nondimensionalized form

appears as

ξ′′c
η′′c
ζ ′′c

 = −1− µ

ρ3¯c

ξc + µ
ηc
zc

− µ

ρ3⊕c

ξc − 1 + µ
ηc
ζc

 + 2

η′c
−ξ′c
0

 +

ξc
ηc
0

 . (B.1)

Notice that the angular rate, ω, disappears due to cancellations with the characteristic time,

t∗.

B.2.1.2 Libration Points and Some Natural Trajectories

Equations 5.1 and B.1 have five equilibrium points, known as libration points. Three

of the points, L1, L2, and L3, lie along the same line as the two primary bodies, and

are therefore termed collinear libration points. The other two, L4 and L5, or triangular

points, make up equilateral triangles in the orbital plane with the two primaries. Thus,

the triangular points are located at positions [ξ η ζ] =
[(

1
2 − µ

) (
±
√

3
2

)
0
]
. The collinear

points, with L1 between the two primaries, L2 beyond the second primary, and L3 in front

of the first primary, are more difficult to determine. Along with the triangular points, they

make up the roots of a quintic polynomial equation which cannot be solved analytically.

For a given value of µ, any nonlinear equation solver can be used to determine the collinear

points.

Although the collinear equilibria are inherently unstable, near these points exist

several families of trajectories that exhibit bounded motion, such as halo orbits or Lissajous

trajectories. It is not within the scope of this work to survey all of the types of natural

motion existing near libration points. Recall, however, that in Chapter 5, the chief trajectory

217

is a halo orbit. The techniques used to determine the initial conditions for this orbit follow

the work of Howell,58,78,79 and are not repeated here.

B.2.1.3 Accuracy of the CR3BP Equations of Motion

The CR3BP equations of motion of Equations 5.1 or B.1 are based on Assumptions

B.2.b and B.2.c. Thus, it is assumed that in the Sun-Earth/Moon system, the second pri-

mary orbits the first with circular motion. In actuality, the Earth’s orbit about the Sun has

an eccentricity of approximately 0.0167, according to Vallado.38 In addition, gravitational

effects exist from other bodies, most notably the other planets and dwarf planets in the

Solar System. The assumptions of the CR3BP clearly degrade the accuracy of the dynamic

model, and the question remains as to the extent.

Consider the collinear libration points, L1, L2, and L3, from the Sun-Earth/Moon

circular restricted problem. Naturally, with perturbations due to other gravitational ef-

fects or solar radiation pressure, a spacecraft located near these equilibrium points will

quickly diverge from there. To quantify the extent of these perturbations near the libration

points, refer to Figure B.2, which illustrates the magnitude of the major acceleration effects

near each of the collinear libration points over the year 2008. Ephemeris data from the

Jet Propulsion Laboratory is used to calculate the gravitational accelerations at the three

points, indicating the extent of the effects due to each planet in the Solar System, plotted

logarithmically. For this analysis, the libration points are calculated as relative distances

from the Sun and the Earth/Moon barycenter. This is to say that even though the dis-

tance between the Earth and the Sun changes according to the eccentricity of its orbit, the

libration points are calculated such that

rLi

r⊕
= constant.

Since from these points, the distance to each body, including the Sun and the Earth, changes

with time, the gravitational effects will vary over the course of a year.

218

0 50 100 150 200 250 300 350
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Day, 2008

m
/s

2

Planetary Accelerations Near L1

Sun

Earth

Moon

Jupiter
Venus

Mercury
SaturnMars

Uranus

Neptune

Pluto

(a) L1

0 50 100 150 200 250 300 350
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Day, 2008

m
/s

2

Planetary Accelerations Near L2

Sun

Earth

Moon

Jupiter
Venus

Mercury
SaturnMars

Uranus

Neptune

Pluto

(b) L2

0 50 100 150 200 250 300 350
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Day, 2008

m
/s

2

Planetary Accelerations Near L3

Sun

Earth

Moon

Jupiter
Venus

Mercury
Saturn Mars

Uranus
Neptune

Pluto

(c) L3

Figure B.2: Planetary Accelerations for the Collinear Libration Points for 2008

219

It is apparent that for spacecraft near L1 or L2, the primary acceleration effects

come from the Sun, the Earth, and the Moon. However, Jupiter, Venus, Mercury, Saturn,

and Mars still contribute gravitational effects greater than 10−10 m/s2. To put this in con-

text, previous and current work demonstrate control solutions with magnitudes less than

10−9 m/s2 (see Section B.3.1). This indicates that extra planetary effects are significant

players in defining the dynamic environment for libration point spacecraft formations. Nat-

urally, the effects of the Earth and Moon drop dramatically at L3. However, the argument

remains the same with regard to the significance of extra planetary effects.

B.2.2 Ephemeris Model

An alternative to the simplified 3-body model is a general n-body model using

Ephemeris data to compute the relative locations of the planets. The relative motion of an

n-body system can be described by

r̈jc = −G(mj + mc)
r3
jc

rjc + G
n∑

i=1
i 6=j,c

mi

(
rij
r3
ij

− ric
r3
ic

)
. (B.2)

This computes the acceleration of the cth body relative to the jth body, where rjc = rc−rj
and r = |r|. In the case of the Sun-Earth/Moon libration formation, let the cth body be the

chief satellite, whose mass, mc, is negligible. The jth body, from which the chief dynamics

are measured, can either be the Sun or the Earth. As seen from a non-accelerating point,

such as the Solar System barycenter, the acceleration of the chief can be modeled as

r̈c = −
n∑

i=1

Gmi

r3
ic

ric. (B.3)

Again, the dynamics desired describe a deputy spacecraft relative to the chief spacecraft.

Using either Equation B.2 or B.3, by assuming negligible mass for all satellites, the relative

dynamics between chief and the lth deputy is

r̈cdl = −
n∑

i=1

Gmi

(
ridl
r3
idl

− ric
r3
ic

)
.

220

Once this is placed in first-order form, including a term for external control accelerations,

the dynamics can be expressed as

ẏl = f(t,yl,ul),

just as with the CR3BP. In this case, however, the time element is not related to an epoch,

t0, but rather represents a Julian date indicating the locations of the planetary bodies.

B.2.3 Pros and Cons of the Two Models

It has already been demonstrated that the CR3BP has limitations in accurately

modeling the dynamics near libration points. Since potential control accelerations are on

the same order of magnitude as some of the perturbing bodies (beyond the two primaries

considered in the 3-body model), it is crucial to consider those bodies when constructing a

dynamic model.

The numerical methods presented in this work are equally effective in any dynamic

regime. That is, the underlying methods do not need to be altered to account for a different

set of dynamics. Therefore, in demonstrating the solution methods, it is most beneficial

to use a simpler dynamic model to validate the technique and to gain insight into the

solutions. The CR3BP model, then, offers an excellent platform off of which to develop

solution methods.

B.3 Challenges and Sensitivities for Libration Point Formations

Some of the sensitivity of the dynamic regime near libration points has already been

implied. It has been stated that extra planetary gravitational accelerations have an impact

on the dynamics on the same order of magnitude as potential control accelerations. This is

demonstrated presently, highlighting the importance of a high fidelity model in accurately

describing satellite motion. In addition, consideration is given to even more sources of

221

sensitivity that contribute to the challenge of the problem. They can be demonstrated in

either dynamic environment, so for simplicity the CR3BP model is used.

It is conceivable that operating requirements on an interferometer formation may

involve tight constraints. In that light, the following assumptions are introduced.

Assumption B.3.a (Formation Size Constraints). The relative distances

between spacecraft (deputy-chief and deputy-deputy) are constrained.

Assumption B.3.b (Formation Orientation Constraints). The orien-

tation of the formation plane is constrained in inertial space or relative to a

particular body.

Assumption B.3.c (Formation Rotation Constraints). The formation

must rotate within the formation plane at a constrained rotation rate.

Assumption B.3.d (Spacecraft Orientation Constraints). The attitude

of each spacecraft is constrained relative to a point in inertial space, a particular

body, and/or other spacecraft in the formation.

At this point, Assumptions B.3.a-d are left in a general form. That is, tolerances are not

assigned to quantify the constraints imposed. It should be understood, however, that the

nature of interferometry implies that these constraints are significantly restrictive. At a

minimum, it is safe to say that size, orientation, and rotation requirements should keep

spacecraft in formation as close as possible to a set of nominal values.

B.3.1 Tracking a Nominal Trajectory with an Unconstrained Control Scheme

One way of addressing Assumptions B.3.a-c is to identify trajectories for each space-

craft that satisfy the nominal values of the formation size, orientation, and rotation con-

straints. A spacecraft can be assigned to track a nominal trajectory, and any number of

continuous or discrete control laws may be used to ensure stable tracking.

222

As an example, consider a deputy spacecraft in formation around a chief in the L1

halo orbit used in Chapter 5. A nominal trajectory is assigned to the deputy to ensure

a constant distance between spacecraft and a constant rotation rate. In this case, let the

nominal be a circular trajectory about the chief in the ŷR-ẑR plane. For the sake of this

example, the nominal formation parameters are arbitrarily chosen. The nominal trajectory

can be expressed as a function of time as

yn(t) =
[
rn(t)
vn(t)

]

where

rn(t) =

0
cos

(
π
4 − 2π(t−t0)

tPer

)

sin
(
π
4 − 2π(t−t0)

tPer

)

 km

and vn = ṙn to satisfy a traditional matching constraint. The constant, tPer, represents the

period of the chief’s halo orbit. At t = t0, the deputy spacecraft’s actual states coincide

with the nominal trajectory, that is, y(t0) = yn(t0), so that control is only required to

maintain the formation. Observe the tracking control law that result using a traditional

continuous control scheme.

B.3.1.1 Lyapunov-Based Controller

A continuous control law can easily be derived through a standard nonlinear Lya-

punov analysis. From Equation 1.1, the form can easily be modified to separate the control

terms, which appear linearly.

ẏ = f(t,y,u)

=
[
ṙ
v̇

]
=

[
v

f(t, r,v) + u

]

223

Error dynamics can be defined to relate the actual trajectory to the nominal. Let the error

in the position states be er = r − rn, and for the velocities, ev = v − vn. Thus,
[
ėr
ėv

]
=

[
ṙ − ṙn
v̇ − v̇n

]
=

[
v − vn
f(t, r,v)− v̇n + u

]

=
[
ev
∆f + u

]
.

Defining the control law,

u = −∆f −Krer −Kvev,

where Kr = KT
r > 0 and Kv = KT

v > 0, the velocity error dynamics reduce to

ėv = −Krer −Kvev.

With the decrescent, positive definite Lyapunov function

V =
1
2
eTrKrer +

1
2
eTv ev,

analysis can show that

V̇ = −eTvKvev ≤ 0,

and

lim
t→∞ ev = lim

t→∞ er = 0.

This control law offers asymptotically stabilizing control to track to an arbitrary

trajectory from any epoch position and velocity. Of course, when the epoch values are along

the trajectory as in this example, the error dynamics will remain at zero while the control

cancels out the natural dynamics. This, of course, is in the presence of no perturbations.

Figure B.3 displays the resulting control history from a simulation of this scenario over a

time period of 60 days (approximately a third of the halo orbital period).

Notice that the unconstrained law derived using nonlinear control theory requires a

magnitude of the control acceleration never exceeding 2.5 × 10−10 m/s2 over the duration

224

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−10

Time (days)

m
/s

2

Lyapunov-Based Control Accelerations

Figure B.3: Lyapunov-Based Controller for an Arbitrary Libration Point Trajectory

of the simulation. It is an underestimate to say that these magnitudes are extremely small.

These control results are consistent with previous efforts in this realm by other authors,

bringing to the forefront several potential issues. First, these small control acceleration

requirements support the claim that the perturbations due to extra planetary accelerations

cannot be ignored. Because planets like Jupiter and Venus perturb the motion of a space-

craft near a libration point even more than the control accelerations would as compared in

the CR3BP, required control accelerations will be distinctly affected by extra bodies beyond

the Sun and Earth/Moon.

A more important concern regarding these control magnitudes constitutes the main

motivation for this research effort. Such small magnitudes brings into question the capabil-

ities of existing propulsive technology. Is it possible for a spacecraft to deliver the required

225

actuation to control (maintain and maneuver) spacecraft in formation near libration points?

The remaining discussion seeks to answer this question while framing the motivation for

this investigation.

B.3.2 Current Capability of Propulsive Technology

With recent trends in spacecraft design towards micro- and nanosatellite platforms,

there has been considerable effort to reduce the lower bounds on thrust on secondary propul-

sion systems for orbit maintenance and precision pointing/flying. This is timely, as libration

point formation control presents one of the more restrictive sets of propulsive requirements,

as exhibited by the commanded control accelerations required in Figure B.3.

In current operations, the smallest thrust magnitudes are produced by pulsed plasma

thrusters like those used on EO-1, which operate with thrust levels as low as 90 to 1000

µN.42 However, some exciting new technologies using on-board lasers can potentially pro-

duce even smaller thrust levels.19–22 For example, Gonzales and Baker have investigated

laser ablation of aluminum to see a thrust range between 0.5 nN and 5 µN. Similarly, a

laser plasma thruster (LPT) developed by Phipps and Luke is characterized by a 1 nN/s

impulse for as small as 100 µs pulses.

A high-level description of the niches for various thruster technologies is presented

by Gonzales and Baker,20 and is reproduced in Figure B.4. On-board Laser Ablation

Thrusters (OLAT) are compared with Field Emission Electric Propulsion (FEEP), pulsed

plasma thrusters (PPT), micro-PPT, and colloid thrusters in terms of thrust magnitudes

and specific impulse.

With the sample control requirements developed in Section B.3.1 along with some

basic (order of magnitude) estimates on potential spacecraft sizes, one can gain a sense of

how well these potential propulsive capabilities can meet the challenge. Control require-

ments obviously vary according to the specific conditions of a formation, and the values for

226

10
2

10
3

10
4

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Isp, s

T
h
ru

st
,

N

OLAT

Colloid
FEEP

µPPT

PPT

Figure B.4: Niches for Current Thruster Technology 20

propulsive capabilities presented are only approximations. Accordingly, no precise conclu-

sions can be drawn from the data. However, even a ‘back of the envelope’ calculation can

serve to highlight a potential discrepancy between requirement and capability.

In Table B.1, several propulsion technologies are compared in terms of their mini-

mum thrust and minimum specific impulse. These two characteristics give the best sense of

how precise and how efficient control actuation can be. A baseline technology is also listed

as a representative value used in analysis of Chapter 5, in the theoretical range of currently

flight-ready technologies. The associated minimum thrust acceleration is shown as if a sin-

gle thruster is placed on either a 500 kg or 1000 kg satellite. In addition, an estimate is

provided of the total mass consumption over a year of continuous thrusting using the ideal

227

Table B.1: Thruster Technologies Against Spacecraft Size Estimates

m0 = 500 kg m0 = 1000 kg
365 days 365 days

min. min. cont. thrusting cont. thrusting
Technology Thrust Isp Thrust Acc. ∆m ∆m/m0 Thrust Acc. ∆m ∆m/m0

(N) (s) (m/s2) (kg) (m/s2) (kg)
PPT 9.0E-5 800 1.8E-7 3.62E-1 0.07233% 9.0E-8 3.62E-1 0.03617%
µPPT 5.0E-5 400 1.0E-7 4.02E-1 0.08036% 5.0E-8 4.02E-1 0.04019%
Colloid 1.0E-6 100 2.0E-9 3.22E-2 0.00643% 1.0E-9 3.22E-2 0.00322%
FEEP 9.0E-7 4000 1.8E-9 7.24E-4 0.00014% 9.0E-10 7.24E-4 0.00007%
OLAT 1.0E-9 200 2.0E-12 1.61E-5 0.00000% 1.0E-12 1.61E-5 0.00000%
LPT 1.0E-13 200 2.0e-16 1.61e-9 0.00000% 1.0E-16 1.61E-9 0.00000%
Baseline 1.0E-6 1000 2.0E-9 3.22E-3 0.00064% 1.0E-9 3.22E-3 0.00032%

thrust equation,39

∆v = Ispg0 ln
(

mf

m0

)
,

where the accumulated ∆v is the constant thrust acceleration integrated over one year,

g0 = 9.807m/s2, and ∆m = m0 −mf .

The thrust accelerations of Table B.1 should be compared to the control profile in

Figure B.3. Clearly, on-board laser technology offers a window for potentially actuating

the precise control requirements derived from libration point formation analysis. However,

it should be apparent that with the potential exception of the OLAT or LPT technologies,

the minimum thrust accelerations from existing propulsive technology may not be able to

produce thrust magnitudes as small as an unconstrained control law would require.

Concluding that the thrust capability of a technology is on the same order of mag-

nitude as the desired control does not sufficiently reveal whether it can effectively actuate

the types of control histories of Figure B.3. The control histories require varying control

accelerations over time, and the required precision of the control acceleration is most likely

several orders of magnitude smaller than the total magnitudes displayed. Combined with

the fact that some of these technologies are relatively new and untested, there is some

uncertainty in how well a thruster can perform.

228

This uncertainty motivates the consideration of how existing propulsive technology

could be used to control libration point formations. Without relying on a capability that

may not be available on the same timeline as a libration point mission, a reasonable approach

is to assume a baseline propulsive capability, and then determine how it can be used to

meet theoretical or actual mission requirements. The baseline entry in Table B.1 serves this

purpose.

B.3.3 Addressing the Discrepancy Between Desired (Unconstrained) and Fea-
sible (Constrained) Controls

This investigation seeks an alternative control scheme that does not place the onus

on propulsive technology for delivering maintenance and maneuver control to a spacecraft

formation, specifically near libration points. The problem can be generalized as answering

the following question:

In what ways can a spacecraft be controlled when the available thrust accelera-

tion level is larger than the desired (unconstrained) control solution?

In other words, there is an active lower bound on the thrust magnitude. In this investigation,

considerations are limited to cases where the desired control is always smaller than the

available control. Thus, there is no need to address an upper bound on thrust.

Referring again to Table B.1 it is apparent that the fuel consumption is very small

for the types of thrusters considered. Recall that the percentages listed are for a thruster

activated continuously for an entire year, and that these percentages would be even smaller if

considering specific impulses greater than their minima. A simple conclusion from this result

is that maintenance-type maneuvers on a spacecraft formation will contribute negligible

mass change on the spacecraft. These conditions motivate another key assumption for this

effort.

229

Assumption B.3.e (Finite Control Acceleration). The control available

to a spacecraft is limited to constant acceleration in the direction of thrust.

Because the mass of the spacecraft remains constant, control can be represented as an

acceleration as opposed to a thrust. Because the desired acceleration magnitude is always

less than the deliverable acceleration magnitude, a thruster only operates at its minimum

value. Thus, thruster control is always at a constant value of the acceleration. Either the

thruster produces the acceleration associated with its minimum thrust (when turned on),

or it produces zero acceleration (when turned off).

The coupling of Assumptions B.3.d and B.3.e cannot be ignored. When a control

acceleration can only have two values (on and off), the direction of the thrust vector becomes

crucial. However, the spacecraft orientation is constrained in some way in order to perform

the mission. Thus without even considering the attitude dynamics problem, the spacecraft

orientation has a significant impact on the translational dynamics problem!

Further assumptions are required regarding the orientation constraints on a space-

craft, but for this discussion, it suffices to consider some possible configurations of the

spacecraft structure. For this hypothetical discussion, consider a two-dimensional space-

craft depicted with two different thruster configurations in Figure B.5. For both, the pri-

mary structure of the spacecraft is assumed to be a rigid box. In the first configuration, a

thruster is located on each of the four spacecraft faces to deliver translational acceleration

to the vehicle. If each thruster operates at an acceleration level of T ∗ when activated, then

the following control accelerations are possible:

ux, uy ∈ U = {−T ∗, 0, T ∗} . (B.4)

Note that a net acceleration of zero results when either corresponding direction thrusters

are both on or both off. In the second configuration, thrusters are located on the corners

of the spacecraft surface, as well. Depending upon the angle at which the thrusters are

230

Figure B.5: Two Thruster Configurations

placed, significantly more acceleration magnitudes—both smaller and larger than T ∗—can

result by turning on specific combinations of thrusters.

B.3.3.1 Variable Thrust Through Gimballing

An extention of the hypothetical structure configuration considers the gimballing

of thruster outlets to vary the thrust vector. It is observed that gimballed thrust offers

a solution to the constrained control problem. Consider, for example, the configuration

displayed in Figure B.6, representing thrust acceleration contributions in the x̂ axis only.

Notice for this example, that one thruster contributes acceleration purely in the x̂ direction

at magnitude T ∗, while the other two present acceleration along −x̂ according to T ∗ cos θ.

Let all three thrusters fire simultaneously, where θ is allowed to vary between 0 and 90

degrees. Since the gimballed thrusters move together, it is observed that translational

accelerations in ŷ and rotational acceleration terms cancel, leaving the thruster system to

only operate in the x̂-direction. The system produces control accelerations according to

ux = T ∗ (1− 2 cos θ) .

231

Figure B.6: Thruster Gimballing

The control acceleration, ux, varies continuously with θ from −T ∗ to T ∗ without relying on

any variation in the control acceleration delivered from each thruster.

Naturally, this control actuation system can be extended with six more thrusters to

provide the same performance in the ŷ- and ẑ-directions for a three-dimensional structure.

Using gimballing in each axis, the control acceleration histories of Figure B.3 can easily be

realized regardless of what the acceleration magnitude, T ∗, is. With a secondary propul-

sion suite like this, a spacecraft attitude can be in any orientation and still implement a

stabilizing control law.

Unfortunately, it may not be feasible to implement such a thruster configuration.

Continuous control laws require continuous activation of the entire control suite, and fuel

resources may deplete too rapidly. In addition, although this is a simple theoretical solu-

tion, the implementation of this may be extremely difficult. Slight misalignments would

cause coupling with attitude dynamics, potentially introducing unwanted complications in

the problem. Note that although T ∗ can be arbitrarily large, the larger T ∗ becomes, the

232

more fuel is consumed, and the more precise θ must be to generate a particular control

acceleration. Also, spacecraft design may have limitations on the number and placement of

thrusters. The surfaces of the spacecraft represent prime real estate for payloads equally as

necessary for mission operations.

It is potentially interesting to investigate this scheme further for implementation

issues in libration point formations. However, due to the potential feasibility considerations

listed above, the concept is abandoned in this investigation in pursuit of dynamic solutions

that do not require the precision in control accelerations of an unconstrained control law.

B.3.3.2 Finite Burn Control Solutions

In the absence of thrust vector gimballing, the solution space is limited to control

solutions that exhibit finite, constant burns in each thrust direction. When on, the thruster

produces acceleration of magnitude T ∗; when off, zero thrust. In addition, the vector of

thrust (pointing direction) is necessarily constant in a spacecraft body-fixed reference frame,

and the attitude of the spacecraft is a crucial element to any control solution.

An appealing advantage of finite burn control is that it is easily implemented on a

real spacecraft. Regardless of how the solution is derived, a control history simply commu-

nicates when to fire each thruster, and the thruster only operates at its minimum thrust

setting when firing.

A general trend in the literature leaves a separation between control theory and

actuation implementation. This is to say that many control solutions presented in the liter-

ature, although quite elegant, can only be approximated with actual hardware. Hardware

limitations always exist: thrust levels have minimum and maximum values, measurements

can only be taken at finite intervals, impulses are impossible. In many cases, the implemen-

tation approximations are sufficient. However, the application driving this research is not

considered to be one of them.

233

This effort presents a novel approach to optimal control, where implementation

issues are considered as part of the solution process. Thus, the solutions presented in this

work, although perhaps not as elegant, present the optimal implementable control solutions

given an existing set of hardware.

Another aspect of these finite burn solutions to consider is that the solutions natu-

rally do not exhibit the same quality of performance as theoretical solutions. For example,

the Lyapunov-based controller of Section B.3.1 guaranteed asymptotic tracking of a refer-

ence trajectory. That is, the limits in tracking errors in both positions and velocities are

zero. In contrast, a finite burn solution can make no such claim. Certainly, the control is

constrained to such a great extent that it would be impossible to guarantee perfect track-

ing. From a theoretical perspective, this is a great disadvantage. However, from a mission

perspective, finite burn solutions represent the best possible performance with actual hard-

ware. Mission designers can use the solutions and solution methods presented in this work

to determine performance capabilities and expectations for future missions.

234

Bibliography

[1] M.S. Branicky, V.S. Borkar, and S.K. Mitter, “A unified framework for hybrid control:

Model and optimal control theory”, IEEE Transactions on Automatic Control, vol. 43,

no. 1, pp. 31–45, Jan 1998.

[2] Philip E. Gill, Walter Murray, and Michael A. Saunders, User’s Guide for SNOPT

Version 7: Software for Large-Scale Nonlinear Programming, Feb 12, 2006.

[3] H. S. Witsenhausen, “A class of hybrid-state continuous-time dynamic systems”, IEEE

Transactions on Automatic Control, vol. 11, pp. 161–167, Feb 1966.

[4] Hideyuki Takagi, “Introduction to fuzzy systems, neural networks, and genetic al-

gorithms”, Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic

Algorithms, pp. 405–468, 1991.

[5] Kai Chen, Ian C. Parmee, and Chris R. Gane, “A genetic algorithm for mixed-integer

optimisation in power and water system design and control”, Intelligent Hybrid Sys-

tems: Fuzzy Logic, Neural Networks, and Genetic Algorithms, pp. 311–330, 1997.

[6] M.S. Branicky, “Stability of switched and hybrid systems”, in Proceedings of the 33rd

Conference on Decision and Control, Lake Buena Vista, FL, Dec 1994, pp. 3498–3503.

[7] Stefan Pettersson and Bengt Lennartson, “Controller design of hybrid systems”, Hybrid

and Real-Time Systems, vol. 1201, pp. 240–254, Mar 1997.

[8] M.S. Branicky, “Multiple lyapunov functions and other analysis tools for switched and

hybrid systems”, IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 475–482,

Apr 1998.

235

[9] E. R. Vrscay, “Iterated function systems: Theory, applications, and the inverse prob-

lem”, Fractal Geometry and Analysis, vol. 11, pp. 161–167, Feb 1966.

[10] F. Curti, L. Ascani, and M. Parisse, “Adaptive pulse width modulation”, Advances in

the Astronautical Sciences, vol. 119, no. 1, pp. 775–788, 2005.

[11] Paolo Bolzern, Patrizio Colaneri, and José Claudio Geromel, “Optimal switching of

1-dof oscillating systems”, Hybrid Systems: Computation and Control, vol. 4416, pp.

118–130, Apr 2007.

[12] J.A. Ball, J. Chudoung, and M.V. Day, “Robust optimal switching control for nonlinear

systems”, SIAM Journal on Control and Optimization, vol. 41, no. 3, pp. 900–931,

2003.

[13] Kagan Gokbayrak and Christos G. Cassandras, “Hybrid controllers for hierarchically

decomposed systems”, Hybrid Systems: Computation and Control, vol. 1790, pp. 117–

129, Mar 2000.

[14] Vadim Azhmyakov, Sid Ahmed Attia, Dmitry Gromov, and Jörg Raisch, “Necessary

optimality conditions for a class of hybrid optimal control problems”, Hybrid Systems:

Computation and Control, vol. 4416, pp. 637–640, Apr 2007.

[15] D. Coulter, “Nasa’s terrestrial planet finder missions”, in Proceedings of SPIE, Belling-

ham, WA, 2004, vol. 5487, pp. 1207–1215.

[16] O.P. et al. Lay, “Architecture trade study for the terrestrial planet finder interferom-

eter”, in Proceedings of SPIE, Bellingham, WA, 2005, vol. 5905.

[17] W. Cash and K. Gendreau, “Maxim science and technology”, in Proceedings of SPIE,

Bellingham, WA, 2004, vol. 5491, pp. 199–211.

236

[18] J. Mueller, “Thruster options for microspacecraft: a review and evaluation of exist-

ing hardware and emerging technologies”, in 33rd AIAA/ASME/SAE/ASEE Joint

Propulsion Conference and Exhibit, Seattle, WA, Jul 6-9, 1997, AIAA Paper 97-3058.

[19] D.A. Gonzales and R.P. Baker, “Microchip laser propulsion for small satellites”, in

37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Salt Lake

City, UT, Jul 8-11, 2001, AIAA Paper 2001-3789.

[20] D.A. Gonzales and R.P. Baker, “Micropropulsion using a nd:yag microchip laser”, in

Proceedings of SPIE - The International Society for Optical Engineering, 2002, vol.

4760, pp. 752–765.

[21] C. Phipps and J. Luke, “Diode laser-driven microthrusters–a new departure for micro-

propulsion”, AIAA Journal, vol. 40, no. 2, pp. 310–318, 2002.

[22] C. Phipps, J. Luke, and W. Helgeson, “Laser space propulsion overview”, in Proceedings

of SPIE - The International Society for Optical Engineering, 2002, vol. 6606, p. 660602.

[23] David G. Hull, Optimal Control Theory for Applications, Springer-Verlag, New York,

2003.

[24] Arthur E. Bryson and Yu-Chi Ho, Applied Optimal Control: Optimization, Estimation,

and Control, Taylor & Francis, New York, 1975.

[25] Donald E. Kirk, Optimal Control Theory: An Introduction, Prentice Hall, Englewood

Cliffs, NJ, 1970.

[26] R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms, John Wiley & Sons, Inc.,

New York, 1998.

[27] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver, Combinatorial

Optimization, John Wiley & Sons, Inc., New York, 1998.

237

[28] Jon Lee, A First Course in Combinatorial Optimization, Cambridge University Press,

Cambridge, UK, 2004.

[29] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

[30] L.C.W. Dixon, Nonlinear Optimization, The English Universities Press Ltd., London,

1972.

[31] A. Pourshaghaghy, F. Kowsary, and A. Behbahaninia, “Comparison of four different

versions of the variable metric method for solving inverse heat conduction problems”,

Heat and Mass Transfer, vol. 43, no. 3, pp. 285–294, Jan 2007.

[32] Ladislav Luks̆an and Emilio. Spedicato, “Variable metric methods for unconstrained

optimization and nonlinear least squares”, Journal of Computational and Applied

Mathematics, vol. 124, pp. 61–95, 2000.

[33] David G. Hull, “Conversion of optimal control problems into parameter optimization

problems”, Journal of Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 57–60,

Jan-Feb 1997.

[34] F. Fahroo and I.M. Ross, “A spectral patching method for direct trajectory optimiza-

tion”, The Journal of the Astronautical Sciences, vol. 48, no. 2-3, pp. 269–286, Apr-Sep

2000.

[35] F. Fahroo and I.M. Ross, “Costate estimation by a legendre pseudospectral method”,

Journal of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 270–277, Mar-Apr

2001.

[36] J.R. Rea, “A legendre pseudospectral method for rapid optimization of launch vehicle

trajectories”, Master’s thesis, Massachusetts Institute of Technology, 2001.

238

[37] S.A. Stanton, “Optimal orbital transfer using a legendre pseudospectral method”,

Master’s thesis, Massachusetts Institute of Technology, 2003.

[38] D. A. Vallado, Fundamentals of Astrodynamics and Applications, McGraw-Hill, New

York, 1997.

[39] R.W. Humble, G.N. Henry, and W.J. Larson, Eds., Space Propulsion Analysis and

Design, McGraw-Hill, New York, 1995.

[40] S. Adler, A. Warshavsky, and A. Peretz, “Low-cost cold-gas reaction control system

for sloshsat flevo small satellite”, Journal of Spacecraft and Rockets, vol. 42, no. 2, pp.

345–351, Mar-Apr 2005.

[41] W.C. Stone, “Fast variable-amplitude gold gas thruster”, Journal of Spacecraft and

Rockets, vol. 32, no. 2, pp. 335–343, Mar-Apr 1995.

[42] K.C. Howell and B.G. Marchand, “Natural and non-natural spacecraft formations near

the L1 and L2 libration points in the sun-earth/moon ephemeris system”, Dynamical

Systems: An International Journal, Special Issue: Dynamical Systems in Dynamical

Astronomy and Space Mission Design, vol. 20, no. 1, pp. 149–173, Mar 2005.

[43] K.C. Howell and T.M. Keeter, “Station-keeping strategies for libration point orbits:

Target point and floquet mode approaches”, Advances in the Astronautical Sciences,

vol. 89, no. 2, pp. 1377–1396, 1995.

[44] R.J. Luquette and R.M. Sanner, “A non-linear approach to spacecraft formation control

in the vicinity of a collinear libration point”, in AAS/AIAA Astrodynamics Conference,

Quebec, Canada, Jul 30 - Aug 2, 2001, AAS Paper 01-330.

[45] D.J. Scheeres and N.X. Vinh, “Dynamics and control of relative motion in an unstable

orbit”, Aug 2000, AIAA Paper 2000-4235.

239

[46] D.J. Scheeres, F.-Y. Hsiao, and N.X. Vinh, “Stabilizing motion relative to an unstable

orbit: Applications to spacecraft formation flight”, Journal of Guidance, Control, and

Dynamics, vol. 26, no. 1, pp. 62–73, Jan-Feb 2003.

[47] P. Gurfil, M. Idan, and N.J. Kasdin, “Adaptive neural control of deep-space formation

flying”, in American Control Conference, Anchorage, AK, May 8-10, 2002, pp. 2842–

2847.

[48] P. Gurfil, M. Idan, and N.J. Kasdin, “Adaptive neural control of deep-space formation

flying”, Journal of Guidance, Control, and Dynamics, vol. 26, no. 3, pp. 491–501,

May-Jun 2003.

[49] P. Gurfil and N.J. Kasdin, “Stability and control of spacecraft formation flying in

trajectories of the restricted three-body problem”, Acta Astronautica, vol. 54, pp.

433–453, 2004.

[50] B.G. Marchand and K.C. Howell, “Formation flight near L1 and L2 in the sun-

earth/moon ephemeris system including solar radiation pressure”, in Proceedings of

the AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, Aug 2003, AAS

Paper 03-596.

[51] K.C. Howell and B.G. Marchand, “Design and control of formations near the libration

points of the sun-earth/moon ephemeris system”, in Proceedings of the Space Flight

Mechanics Symposium - Goddard Space Flight Center, Greenbelt, MD, Oct 2003.

[52] B.G. Marchand and K.C. Howell, “Aspherical formations near the libration points

in the sun-earth/moon ephemeris system”, in AAS/AIAA Space Flight Mechanics

Meeting, Maui, HI, Feb 7-12, 2004, AAS Paper 04-157.

240

[53] K.C. Howell and B.G. Marchand, “Formations near the libration points: Design strate-

gies using natural and non-natural arcs”, in Proceedings of GSFC 2nd International

Symposium on Formation Flying Missions and Technologies, Greenbelt, MD, Sep 2004.

[54] B.G. Marchand and K.C. Howell, “Control strategies for formation flight in the vicinity

of the libration points”, Journal of Guidance, Control, and Dynamics, vol. 28, no. 6,

pp. 1210–1219, Nov-Dec 2005.

[55] B.G. Marchand, Spacecraft Formation Keeping Near the Libration Points of the Sun-

Earth/Moon System, PhD thesis, Purdue University, Aug 2004.

[56] B.G. Marchand, K.C. Howell, and J.T. Betts, “Discrete nonlinear optimal control of s/c

formations near the L1 and L2 points of the sun-earth/moon system”, in AAS/AIAA

Astrodynamics Specialists Conference, Lake Tahoe, CA, Aug, 2005.

[57] S.I. Infeld, S.B. Josselyn, W. Murray, and I.M. Ross, “Design and control of libration

point spacecraft formations”, Journal of Guidance, Control, and Dynamics, vol. 30,

no. 4, pp. 899–909, Jul-Aug 2007.

[58] K.C. Howell, “Three-dimensional, periodic, ‘halo’ orbits”, Celestial Mechanics, vol.

32, pp. 53–71, 1984.

[59] Jaime Peraire, Anthony T. Patera, Jacob White, and Boo Cheong Khoo, “Numerical

methods for partial differential equations”, Spring 2002, Massachusetts Institute of

Technology Course 16.920J/2.097J Notes.

[60] Huang Sunan, Tan Kok Kiong, and Lee Tong Heng, Applied Predictive Control,

Springer-Verlag, London, 2002.

[61] “Space shuttle mission archives”, http://www.nasa.gov/mission pages/shuttle/ shut-

tlemissions/list main.html.

241

[62] R.H. Vassar and R.B. Sherwood, “Formationkeeping for a pair of satellites in a circular

orbit”, Journal of Guidance, Control, and Dynamics, vol. 8, no. 2, pp. 235–242, Mar-

Apr 1985.

[63] D.C. Redding, N.J. Adams, and E.T. Kubiak, “Linear-quadratic stationkeeping for the

sts orbiter”, Journal of Guidance, Control, and Dynamics, vol. 12, no. 2, pp. 248–255,

Mar-Apr 1989.

[64] V. Kapila, A.G. Sparks, J.M. Buffington, and Q. Yan, “Spacecraft formation flying:

Dynamics and control”, in American Control Conference, San Diego, CA, Jun 1999,

pp. 4137–4141.

[65] Y. Ulybyshev, “Long-term formation keeping of satellite constellation using linear-

quadratic controller”, Journal of Guidance, Control, and Dynamics, vol. 21, no. 1, pp.

109–115, Jan-Feb 1998.

[66] C. Sabol, R. Burns, and C.A. McLaughlin, “Satellite formation flying design and

evolution”, Journal of Spacecraft and Rockets, vol. 38, no. 2, pp. 270–278, Mar-Apr

2001.

[67] M.S. de Queiroz, V. Kapila, and Q. Yan, “Adaptive nonlinear control of multiple

spacecraft formation flying”, Journal of Guidance, Control, and Dynamics, vol. 23,

no. 3, pp. 385–390, May-Jun 2000.

[68] H. Schaub and K.T. Alfriend, “Impulsive feedback control to establish specific mean

orbit elements of spacecraft formations”, Journal of Guidance, Control, and Dynamics,

vol. 24, no. 4, pp. 739–745, Jul-Aug 2001.

[69] V.M. Guibout and D.J. Scheeres, “Spacecraft formation dynamics and design”, Journal

of Guidance, Control, and Dynamics, vol. 29, no. 1, pp. 121–133, Jan-Feb 2006.

242

[70] E.M.C. Kong and D.W. Miller, “Optimal spacecraft reorientation for earth orbiting

clusters: applications to techsat 21”, Acta Astronautica, vol. 53, pp. 863–877, 2003.

[71] C.J. Scott and D.B. Spencer, “Optimal low-thrust reconfiguration for satellites in

formation”, Advances in the Astronautical Sciences, vol. 120, no. 1, pp. 3–21, 2005.

[72] C.J. Scott and D.B. Spencer, “Optimal reconfiguration of satellites in formation”,

Journal of Spacecraft and Rockets, vol. 44, no. 1, pp. 230–239, Jan-Feb 2007.

[73] M. Massari, R. Armellin, and A.E. Finzi, “Optimal trajectory generation and con-

trol for reconfiguration maneuvers of formation flying using low-thrust propulsion”,

Advances in the Astronautical Sciences, vol. 119, no. 3, pp. 2461–2474, 2004.

[74] B.T. Barden and K.C. Howell, “Formation flying in the vicinity of libration point

orbits”, Advances in the Astronautical Sciences, vol. 99, no. 2, pp. 969–988, 1998.

[75] R.S. Wilson and K.C. Howell, “Trajectory design in the sun-earth-moon system using

lunar gravity assists”, Journal of Spacecraft and Rockets, vol. 35, no. 2, pp. 191–198,

Mar-Apr 1998.

[76] D. Folta, K. Hartman, K. Howell, and B. Marchand, “Formation control of the maxim

L2 libration orbit mission”, in AIAA/AAS Astrodynamics Specialist Conference, Prov-

idence, RI, Aug, 2004.

[77] G. Gomez, M.W. Lo, and J.J. Masdemont, “Study on the station keeping maintenance

for the tpf mission”, Advances in the Astronautical Sciences, vol. 123, no. 3, pp. 2737–

2750, 2005, AAS 05-42.

[78] K.C. Howell and H.J. Pernicka, “Numerical determination of lissajous trajectories in

the restricted three-body problem”, Celestial Mechanics, vol. 41, no. 1-4, pp. 107–124,

1988.

243

[79] Richardson D.L., “Analytic construction of periodic orbits about the collinear points”,

Celestial Mechanics, vol. 22, no. 3, pp. 241–253, Oct 1980.

244

Vita

Stuart A. Stanton was born in 1979 in Alamagordo, NM. Having spent some of his

childhood in New Mexico, Massachusetts, and Indiana, he considers Colorado Springs, CO

‘home.’ Stuart attended the U. S. Air Force Academy, graduating in 2001 with a Bachelor

of Science degree in Astronautical Engineering. Immediately upon commissioning, he was

assigned to Cambridge, MA to pursue his Master of Science in Aeronautics and Astronautics

from the Massachusetts Institute of Technology. Conducting research at the Charles Stark

Draper Laboratory, he earned his degree in 2003. From 2003 to 2006, Stuart was assigned to

the Space Superiority Materiel Wing at the Space and Missile Systems Center, Los Angeles

Air Force Base, CA.

Stuart was selected by the Department of Astronautics at the Air Force Academy

to pursue a Doctoral degree at the University of Texas at Austin, beginning studies in

Guidance and Control in the Fall of 2006. As part of the Faculty Pipeline program, Stuart

looks forward to joining the Academy faculty later in his Air Force career.

Stuart and his wife begin the next chapter of their lives in the Summer of 2009 with

a new Air Force assignment located in the National Capital Region.

Permanent address: stuart.stanton@alum.mit.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of Donald
Knuth’s TEX Program.

245

