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ABSTRACT: 

Trichodesmium spp. are considered the dominant nitrogen (N) fixing cyanobacteria in 
tropical and subtropical oceans, regimes frequently characterized by low iron (Fe).  
Limited information exists about what levels of Fe limit Trichodesmium N fixation. I 
developed a diagnostic for Fe limitation using quantitative reverse transcription PCR 
(qRT-PCR) of the Fe stress response gene isiB, which encodes for flavodoxin a non-Fe 
containing substitute for ferredoxin.  I determined that high isiB gene expression 
corresponded to cell-specific reductions in N fixation rates in both phylogenetic clades of 
Trichodesmium grown on varying levels of Fe. Using these laboratory-determined 
thresholds, I assessed Fe limitation of Trichodesmium from the Sargasso Sea, equatorial 
Atlantic Ocean and Western Pacific Warm Pool in conjunction with other analytical 
measurements (N, phosphorus (P) and dissolved Fe (<0.4µm filtered)). I found 
widespread Fe limitation in Trichodesmium from the Pacific Ocean and minimal 
expression in the North Atlantic Ocean.  I also found an inverse correlation between isiB 
expression and dissolved Fe:P ratios in seawater and data suggesting that most dissolved 
Fe in seawater, including organic ligand-bound Fe, is available to Trichodesmium.  These 
data support and refine previous model predictions and demonstrate, in situ, the 
importance of Fe to the marine N cycle. 
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CHAPTER 1. INTRODUCTION 
1.1 INTRODUCTION 

Primary producers are important to the oceanic food chain and the overall 

biogeochemistry of the ocean (Falkowski et al., 1998).  Diazotrophic cyanobacteria 

impact the carbon (C) cycle directly through primary production and indirectly through 

their contribution of “new” nitrogen (N) to the euphotic zone via N2 fixation (Capone et 

al., 2005).  So far no eukaryotic phytoplankton have been found that are capable of fixing 

N2 without a symbiont.  Thus, the new N that diazotrophs provide to the surface ocean is 

vital to the N and C cycles both regionally (Capone et al., 1997; Zehr et al., 2001) and 

globally (Gruber and Sarmiento, 1997).  Of the diazotrophs, Trichodesmium is of 

particular importance to the global N cycle where some estimates associate its biological 

N2 fixation with up to 50 % of global N sequestration (Karl et al., 1997).  Although we 

now know that there is a much greater diversity of diazotrophs actively fixing N in the 

oceans than previously believed (Zehr et al., 2001; Montoya et al., 2004; Grabowski et 

al., 2008), Trichodesmium is still considered to be one of the most important diazotrophs 

globally (LaRoche and Breitbarth, 2005).   

An important step in determining the impact of Trichodesmium on the N and C 

cycles and how this might change in the future is elucidating the physical and chemical 

factors that control its distribution and activity in situ.  Trichodesmium is typically found 

in oligotrophic tropical and subtropical environments in clear stable water columns with 

deep light penetration and a mixed layer depth of around 100 m (Capone et al., 1997).  

Recent work with Trichodesmium erythraeum cultures has determined that the 

temperature range for growth and N2 fixation in the species is 22 – 34 ºC, with an optimal 

temperature of about 28 ºC (Breitbarth et al., 2007).  Above this optimal temperature, 

there is a precipitous drop in N2 fixation rates and a more gradual decline in growth rates 

(Breitbarth et al., 2007).  In addition to these physical constraints, both iron (Fe) 

(Berman-Frank et al., 2001; Webb et al., 2001; Fu and Bell, 2003b; Kustka et al., 2003a; 

Kustka et al., 2003b; Berman-Frank et al., 2007; Shi et al., 2007; Kupper et al., 2008), 

phosphorus (P) (Hynes, In Press; Sanudo-Wilhelmy et al., 2001; Dyhrman et al., 2002; 
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Fu and Bell, 2003a; Fu et al., 2005; Moutin et al., 2005; Sohm and Capone, 2006; Webb 

et al., 2007; Sohm et al., 2008) or a combination of the two (Mills et al., 2004) have been 

implicated in controlling Trichodesmium abundance and productivity throughout the 

world’s oceans.   

There are currently six described species of Trichodesmium: T. erythraeum, 

Trichodesmium thiebautii, Trichodesmium tenue, Trichodesmium hildebrandtii, 

Trichodesmium contortum and Trichodesmium spiralis (formerly known as Katagnymene 

spiralis) (Orcutt et al., 2002; Lundgren et al., 2005).  Early distinctions between the 

species were made using morphological differences, but the potential for overlapping 

morphological characteristics between species has led to the development of genetic tools 

that can be used to complement morphological distinctions (Orcutt et al., 2002; Lundgren 

et al., 2005).  These genetic techniques have shown that there are two distinct clades of 

Trichodesmium (Orcutt et al., 2002), which split into the T. erythraeum strains in one 

group and T. tenue, T. thiebautii, T. spiralis and T. hildebrandtii in the other group.  

Recent work has shown that T. contortum is part of the T. erythraeum group (Annette 

Hynes personal communication).  Though these two distinct clades of Trichodesmium are 

known to exist, not much is known about the potential for niche differentiation between 

the species and what impact this might have on estimates of N2 fixation in the ocean.  For 

example, all of the studies looking at Fe stress in Trichodesmium culture experiments 

have focused on one species, T. erythraeum (Berman-Frank et al., 2001; Webb et al., 

2001; Fu and Bell, 2003b; Kustka et al., 2003b; Berman-Frank et al., 2007; Shi et al., 

2007).  Prior to the work presented in this thesis, there were no physiological data from 

laboratory cultures of the other clade at all, including the impact of Fe limitation on N2 

fixation. 

It appears that the two main morphologies of Trichodesmium, puffs and tufts, may 

exist at different depths in the ocean (Post et al., 2002; Davis and McGillicuddy, 2006).  

A study in the Red Sea determined not only that puff forming colonies were more 

abundant deeper in the water column than tuft colonies, but that these deep water puff 

colonies contained more chlorophyll a and had higher carbon fixation rates per colony at 
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ambient light than the tuft colonies from higher in the water column (Post et al., 2002).  

Another study found consistent differences in nitrogen fixation rates, photosynthetic 

compounds and distribution of two morphologies of Trichodesmium in the ocean 

(Carpenter et al., 1993).  It is important to note that these distinctions were made based 

on morphology, not genetic differences, which makes attributing them to one particular 

subset of Trichodesmium complicated.  They do, however, support the theory that there 

are differences between the members of the genus, which should be explored if we are 

going to adequately model how N2 fixation rates might be affected by changing dust 

deposition, temperature and carbon dioxide levels.  

N2-fixing cyanobacteria are believed to have evolved in an anoxic ocean where Fe 

was readily available, and they have Fe requirements 5 to 8 times higher than other 

phytoplankton when they are growing without a fixed nitrogen source (Berman-Frank et 

al., 2001; Kustka et al., 2003b).  In the modern oxygenated ocean, dissolved Fe is not as 

prevalent because of the low solubility of its thermodynamically stable form, Fe 3+ (Liu 

and Millero, 2002).  There are many forms of Fe found in the oceans (i.e., colloidal, 

ligand bound, dissolved, free ion, etc), and it is uncertain which forms are bioavailable to 

Trichodesmium.  In most regions of the ocean, including the oligotrophic ocean gyres, 

dissolved (< 0.4 µm filtered) Fe has been found to be almost completely (>99%) 

complexed by organic molecules (Gledhill and van den Berg, 1994; Rue and Bruland, 

1995; van den Berg, 1995; Wu and Luther, 1995).   The role that these organic ligands 

play in controlling the distribution of the dissolved pool of Fe complicates our 

understanding of what is biologically available to organisms.  It remains difficult to 

identify which organic molecules are acting as ligands in ocean water, and there is 

evidence that many marine phytoplankton, including Trichodesmium, are able to obtain 

Fe from some but not all of these organic complexes (Hutchins et al., 1999; Achilles et 

al., 2003).   

While there have been many studies of organic complexation of Fe in the Atlantic 

Ocean (Witter and Luther, 1998; Boye et al., 2003; Powell and Wilson-Finelli, 2003; 

Cullen et al., 2006; Rijkenberg et al., 2008) and the Southern Ocean (Boye et al., 2001; 
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Croot et al., 2004; Boye et al., 2005; Gerringa et al., 2008), other areas of the ocean that 

are important habitats for Trichodesmium have been sparsely investigated.  In the Pacific 

Ocean, for example, most Fe speciation studies have focused on the North Pacific (Rue 

and Bruland, 1995; van den Berg, 1995; van den Berg, 2006; Buck and Bruland, 2007; 

Kondo et al., 2007; Kondo et al., 2008) and Eastern Equatorial Pacific (Rue and Bruland, 

1997), leaving vast portions of the ocean unstudied. 

Prior to the work in this thesis, no studies had looked at Fe speciation in the South 

Western Pacific or the Western Pacific Warm Pool, a region of the Pacific Ocean that is 

defined by temperatures higher than 29°C, salinity below 35 and very low macro nutrient 

concentrations (Blanchot et al., 1997).  In fact, few studies with any Fe measurements 

have been done in this part of the Pacific Ocean (Campbell et al., 2005; Obata et al., 

2008).  This region is of particular interest to studies of Fe chemistry because it has very 

low predicted dust deposition (Duce and Tindale, 1991; Jickells, 1999; Wagener et al., 

2008).  It is also of interest biologically because based on flow-cytometric and pigment 

analyses, cyanobacteria appear to be the dominant phytoplankton in this highly 

oligotrophic region (Blanchot et al., 1997; Neveux et al., 2006; Matsumoto and Ando, 

2009) and blooms of Trichodesmium can be quite prevalent in the region close to New 

Caledonia (Dupouy et al., 1988).  

In addition to there being regions of the oceans where there is a paucity of Fe 

measurements and incomplete information regarding Fe bioavailability, a further 

complication associated with connecting Fe levels in the ocean with Fe status of 

Trichodesmium is that they are capable of luxury uptake and storage of Fe during periods 

of high Fe abundance (Kustka et al., 2003b).  This ability to store Fe is an important 

adaptation in areas of episodic Fe deposition, which can lead to confusing results when 

trying to assess Fe limitation in the field, as cells can be Fe replete when the Fe levels in 

the waters around them would suggest limitation.  Attempts to assess the relationship 

between Fe and the global N cycle using analytical geochemical measurements, Fe 

quotas of different organisms and dust deposition models have made great strides in 

understanding the interconnectedness of these global cycles (Moore et al., 2004; Moore 
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and Doney, 2007).  These studies have underscored the need for biological markers to 

assess in situ Fe stress.  An in situ biological marker for Fe could be used to directly 

explore the linkages between Fe geochemistry, Fe status and N2-fixation in natural 

populations of Trichodesmium, avoiding the difficulties associated with determining the 

best measurement of bioavailable Fe and complications relating to Fe storage capabilities. 

The goals of this thesis were to address questions raised in the preceding 

paragraphs regarding distribution and speciation of Fe in the southwestern Pacific Ocean 

as well as to assess Fe limitation of Trichodesmium in different ocean regimes using a 

quantitative molecular method.  Chapter 2 deals with measurements of dissolved Fe and 

Fe speciation in a region of the ocean where there have been few measurements made, 

the southwestern Pacific Ocean.  Chapter 3 explores clade differentiation in 

Trichodesmium spp., specifically focusing on temperature optima and the response to Fe 

limitation.  Chapter 3 also includes the development of clade-specific molecular markers 

for Fe limitation, which are calibrated to reductions in N2 fixation rates in response to Fe 

limitation.  Chapter 4 looks at Fe stress in field populations of Trichodesmium from both 

the Pacific and Atlantic Oceans using the molecular marker for Fe limitation developed 

in Chapter 3.  The results from Chapter 4 validate model predictions of where Fe 

limitation of Trichodesmium is occurring with calibrated measurements of Fe limitation 

of N2 fixation.  The region where Fe limitation of Trichodesmium is most apparent is the 

Pacific Ocean.  The dissolved Fe values from the field associated with Fe limitation are 

similar to those associated with Fe limitation in the lab, suggesting that much of the 

organically bound Fe in the open ocean is available to Trichodesmium.  In addition, the 

correlation of expression of the Fe stress response gene, isiB, and the measured dissolved 

Fe/PO4 ratio of seawater samples enables calculation of the critical Fe/PO4 value 

associated with Fe limitation of Trichodesmium.  The similarity between this calculated 

critical Fe/PO4 value with the one used in some models to predict Fe limitation of 

Trichodesmium, serves as further validation of those models with empirical data.   

Overall, this thesis provides insight into how Fe controls N2 fixation in Trichodesmium, 
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where in the ocean this control is important and what parameters are important to 

measure to determine the likelihood that Trichodesmium is experiencing Fe limitation. 
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2.1 ABSTRACT 

 Dissolved iron (Fe) and the concentration of organic Fe-binding ligands were 

measured in the Western Pacific Ocean on a transect from Hawaii to Australia.  Fe 

complexation was measured using competitive ligand exchange adsorptive cathodic 

stripping voltammetry (CLE-ACSV) with the competitive ligand 2,3-

dihydroxynaphthalene (DHN).  Dissolved Fe in surface samples ranged from 0.09 – 1.4 

nM.  Ligand concentrations ranged from 0.44 – 2.2 nM with binding constants ranging 

from 1011.6 – 1012.9.  There appeared to be a linear relationship between Fe and ligand 

concentrations when [Fe] > 0.2 nM and a wide range of ligand concentrations when [Fe] 

< 0.2 nM.  Our data supports the hypothesis that organic ligands are a ubiquitous part of 

Fe speciation in the oceans, even in regions of low dust deposition where Fe inputs are 

small.   

 

2.2 INTRODUCTION 

Iron (Fe) is an essential micronutrient for almost all organisms.  Because of 

solubility constraints in its oxidized state (Liu and Millero, 2002), Fe can be low enough 

in surface waters to limit phytoplankton growth in the ocean (Martin et al., 1991; Morel 

et al., 1991; Falkowski et al., 1998; Boyd et al., 2007) even though it is the fourth most 

abundant element in the Earth’s crust.  The discovery of the role that Fe plays in 

controlling productivity in High Nutrient Low Chlorophyll (HNLC) regimes (Martin and 

Fitzwater, 1988; Martin et al., 1990) prompted significant research to determine what 

controls the bioavailability of Fe in the Ocean.   

A major development in understanding Fe chemistry in the ocean was the 

discovery, using competitive ligand exchange adsorptive cathodic stripping voltammetry 

(CLE-ACSV), that organic ligands are ubiquitous and bind >99% of the dissolved Fe in 

the oceans (Gledhill and van den Berg, 1994; Rue and Bruland, 1995; Wu and Luther, 

1995).   Since those first studies determined that organic complexation is an important 

component of Fe speciation in the ocean, evidence of Fe-binding ligands has been found 

in every area of the ocean that has been studied (Hunter and Boyd, 2007), including the 

recent discovery that they are associated with hydrothermal vent plumes (Bennett et al., 

2008).   
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While it remains unclear what the structures of these ligands are, there is evidence 

that the stability constants that have been measured are in line with the stability constants 

of known siderophores when analyzed in a seawater medium (Witter et al., 2000) as well 

as with unknown compounds with siderophore-like functional groups that were extracted 

from seawater (Macrellis et al., 2001).  A recent study found evidence of two 

characterized sideophores in samples throughout the Atlantic Ocean (Mawji et al., 2008).  

It is known that marine bacteria and cyanobacteria are capable of making siderophore-

like complexes (Wilhelm and Trick, 1994; Lewis et al., 1995; Soria-Dengg et al., 2001; 

Ito and Butler, 2005).  It also appears that Fe bound to siderophores is available to at least 

some subset of phytoplankton (Hutchins et al., 1999; Maldonado and Price, 2001; Soria-

Dengg et al., 2001; Achilles et al., 2003), although the type of chelator appears to be 

important in determining the bioavailability to different phytoplankton (Hutchins et al., 

1999).  Considering that this organically bound fraction may be bioavailable to some 

phytoplankton groups in the surface ocean, it is important to determine if there are areas 

where the amount of ligand is different in the ocean and potentially determine what 

controls this distribution. 

There have been many studies looking at dissolved Fe and Fe speciation in the 

Atlantic Ocean (Witter and Luther, 1998; Powell and Donat, 2001; Boye et al., 2003; 

Cullen et al., 2006; Rijkenberg et al., 2008) and Southern Ocean (Boye et al., 2001; Croot 

et al., 2004; Boye et al., 2005; Gerringa et al., 2008).  There have been fewer studies 

looking at Fe speciation in the Pacific Ocean and those have focused on the Northern 

Pacific Ocean (Rue and Bruland, 1995; van den Berg, 1995; van den Berg, 2006; Buck 

and Bruland, 2007; Kondo et al., 2007; Kondo et al., 2008) and the Eastern Equatorial 

Pacific Ocean (Rue and Bruland, 1997).  Only two studies so far have looked at Fe in the 

open ocean of the South Western Pacific (Campbell et al., 2005; Obata et al., 2008).  One 

was focused on the most western part of the basin and only looked at the total dissolvable 

fraction of Fe, which is measured on unfiltered seawater that has been acidified to pH 3.2 

immediately following collection (Obata et al., 2008).  The other study focused on total 

dissolved Fe (<0.22 µm filtered Fe) and looked at the region around New Caledonia and 

between New Caledonia and New Zealand (Campbell et al., 2005).   
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The data set presented in this work, which includes dissolved Fe and ligand 

concentrations, provides data on Fe geochemistry in the understudied region of the South 

Western Pacific Ocean, a region of very low dust inputs (Duce and Tindale, 1991; 

Jickells, 1999; Wagener et al., 2008).  The transect includes the first measurements of Fe 

and Fe speciation through the hydrologic feature known as the Western Pacific Warm 

Pool (WPWP).  The WPWP is a region defined by very warm surface temperatures (> 

29°C), low surface salinity (<35) and low macronutrients (Blanchot et al., 1997).  It is an 

oligotrophic region where the predominant phytoplankton are cyanobacteria (Blanchot et 

al., 1997; Neveux et al., 2006; Matsumoto and Ando, 2009).  The cruise track also 

included a region of the ocean where there are reports of periodic blooms of the 

cyanobacterium Trichodesmium (Dupouy et al., 1988; Campbell et al., 2005; Rodier and 

Le Borgne, 2008).  As cyanobacteria appear to be able to access Fe bound to some 

organic ligands (Hutchins et al., 1999; Achilles et al., 2003), it is important to determine 

the role of organic ligands in the Fe chemistry of the surface oceans in the region to 

understand Fe bioavailability to the predominant phytoplankton.  In comparing the 

amount of organic ligand ([L]) present in each sample with various auxiliary chemical 

and biological parameters, the most striking relationship appeared to be between the 

amounts of dissolved Fe ([Fe]) verses [L] in a given sample, which is consistent with data 

from other regions of the ocean.  The data we present is an addition to global datasets of 

dissolved Fe and Fe speciation in surface waters, covering an area where few values have 

been reported. 

 

2.3 METHODS 

2.3.1 Sample Collection.  Samples were collected aboard the R/V Kilo Moana as 

part of the Western Pacific Warm Pool (WPWP) cruise between January 12, 2007 and 

February 9, 2007 (Figure 1).  Samples were collected using acid cleaned 5L Teflon-

coated exterior spring niskin bottles (Ocean Test Equipment) mounted on a powder-

coated rosette deployed on a Kevlar line.  After recovery, the bottles were transferred into 

a trace metal clean “bubble” in the laboratory of the ship with positive pressure 

maintained by HEPA filtered air units.  The headspace of each bottle was pressurized 

with 0.2 µm filtered ultra high purity (UHP) nitrogen pushing the water through a 142 



 27 

mm 0.4 µm acid-cleaned polycarbonate filter held in a polycarbonate filter sandwich 

(Geotech Environmental Equipment, Inc.).  Water for dissolved Fe analysis was collected 

in acid-cleaned 250 ml low density polyethylene (LDPE) bottles and acidified to pH 1.7 

with concentrated HCl (Seastar).   Water for speciation analysis was collected in 1 L 

acid-cleaned Teflon bottles and stored at 4°C until analysis.   

2.3.2 Dissolved Fe Analysis.  Fe in the seawater samples was determined using 

isotope dilution and magnesium hydroxide preconcentration followed by analysis using 

inductively coupled mass spectrometry (Wu and Boyle, 1998; Saito and Schneider, 

2006).  Roughly 13.5 ml of sample (exact volume determined gravimetrically) was 

poured into a 15 ml polypropylene centrifuge tube (Globe Scientific Inc.) and 

equilibrated with a 57Fe spike (~0.4 nM) overnight.  The following day, the Mg(OH)2 and 

metals were precipitated out of the sample by the addition of a small amount (~100 µl) of 

high-purity ammonium hydroxide (Seastar Chemicals Inc.).  Following ammonium 

hydroxide addition, the tubes were left undisturbed for 90 s and then they were inverted 

multiple times to fully mix them.  After an additional 90 s, the tubes were centrifuged at 

3000 x g for 3 minutes and the sample was decanted off.  The tubes were then spun at 

3000 x g for an additional 3 minutes forming a compact pellet, following which the 

remaining liquid was shaken off.  The sample pellets were kept dry until the day of 

analysis (from a day to a week).  On the morning of analysis, pellets were resuspended  

and dissolved in 1-2 ml 0.8 N Nitric Acid (Seastar).  Samples were analyzed on a 

Thermo-Finnigan Element 2 (E2) inductively coupled mass spectrometer (ICP-MS) in 

medium resolution mode.  A procedural blank was determined by processing 1 ml of low 

Fe seawater (which provides a negligible amount of Fe) and calculating its Fe value as 

though it were a 13.5 ml sample.   

2.3.3 Organic Ligand Analysis.  The titration of organic Fe complexing ligands 

was carried out in a manner closely following that described by van den Berg (van den 

Berg, 2006).  Briefly, 20 ml of sample was added to a series of 30 ml preconditioned 

Teflon vials (Savillex Corporation).  10 µl of 1mM 2,3-dihydroxynaphthalene (DHN) 

(final concentration 0.5 µM) and Fe in a series of concentrations of 0, 0.25, 0.5, 0.75, 1, 

1.5, 2, 3, 5 and 8 nM was added to each vial from an acidified Fe stock solution of 0.5 

µM Fe.  Samples were allowed to equilibrate overnight (17-24 hrs).  After equilibration, 
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10 ml of each sample in order of increasing Fe was transferred to a 

polytetrafluoroethylene (PTFE) voltametric cell, 0.5 ml EPPS (3-(4-(2-hydroxyethyl)-1-

piperazinyl)propanesulfonic acid)/bromate solution (final concentration 5 mM EPPS/20 

mM bromate) was added, purging was initiated and reactive Fe was determined by 

cathodic stripping voltammetry (CSV).  This was repeated with the second 10 ml of 

sample, and calculations were based on the results from the second scan. The scan 

conditions included a 5 minute purge of the sample with 0.2 µm filtered ultra high purity 

nitrogen gas, 90 s adsorption at -0.1 V, 10 s equilibration and a scan using sampled direct 

current (DC), step size 4 mV, frequency 10 s-1. 

Cathodic stripping voltammetry (CSV) was carried out using a Metrohm VA 663 

Stand with a Hanging Mercury Drop Electrode (HMDE), glassy carbon working 

electrode, a double junction Ag/AgCl and a 3 M KCl reference electrode (Metrohm AG, 

Switzerland), which was connected to a µAutolab II potentiostat (Eco Chemie BV, The 

Netherlands).  The µAutolab was connected to a laptop PC and was controlled using 

GPES software (Eco Chemie BV, The Netherlands).    

Peak currents were plotted against [Fe]total for each sample (natural Fe in sample 

and added Fe) to get a titration curve.  Linear regression of the final 3-5 points of a 

titration was used to obtain the sensitivity of the titration (the slope of that line, S).  This 

calculated sensitivity and the α coeffecient for DHN complexation with Fe’ of 0.5 µM 

DHN (166) previously determined (van den Berg, 2006) were then used to calculate [Fe’] 

and [FeL] for each sample in the titration.   

Briefly, [FeDHN] is related to the current measured at individual point in the 

titration (ip) and the sensitivity of the titration (S) and can be calculated using the 

equation: ip = S × [FeDHN].  [Fe’] is related to [FeDHN] by the α coeffecient for DHN 

complexation with Fe’ and can be calculated using the equation: [Fe’] = [FeDHN]/α.  

[FeL] is related to [Fe]total, [Fe’] and [FeDHN] and can be calculated using the equation: 

[Fe]total = [Fe’] + [FeL] + [FeDHN]. 

[Fe’], [FeL] and [L] are in equilibrium in natural waters: Fe’ + L ↔ FeL.  The 

conditional stability constant for this equilibrium reaction, K’FeL,Fe’, is defined by the 

equation: K’FeL,Fe’ = ([FeL]/[Fe’]) × [L].  To obtain values for [L] and K’FeL,Fe’, we used 

our calculated values for [Fe’] and [FeL] and analyzed them using a non-linear fitting 
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program to fit the equation: [FeL] = ([L] × [Fe’] × Fe’FeL,Fe’)/(1 + K’FeL,Fe’ × [Fe’]).  This 

method has been described by Wilkinson (1961) (Wilkinson, 1961) and Gerringa et. al 

(Gerringa et al., 1995).  [FeL] was also plotted against [FeL]/[Fe’] to evaluate whether or 

not there was a two-ligand system at any station, which is indicated by two lines with 

different slopes when [FeL] is plotted against [FeL]/[Fe’].  Station 16a was the only 

station where a two-ligand analysis seemed necessary based on plotting [FeL] verses 

[FeL]/[Fe’].  Calculations at this station were done using the Scatchard linearization 

(Ruzic, 1982; van den Berg, 1982), where the linear regression of each of the lines from 

the [FeL] vs [FeL]/[Fe’] plot has a x-intercept equal to [L] and a y-intercept equal to [L] 

× K’FeL,Fe’.   

Once [L] and K’FeL,Fe’ are determined either using the Scatchard linearization or 

the non-linear Wilkinson-Gerringa method, ambient [Fe’] and [FeL] from the initial 

sample can be calculated using the following two equations: [Fe]natural = [Fe’] + [FeL] and 

K’FeL,Fe’ = ([FeL]/[Fe’]) × [L].  

 

2.4 RESULTS 

 A map of the stations from the Western Pacific Warm Pool (WPWP) cruise is 

show in Figure 1.  In order to be able to compare data from different groups that publish 

data from this cruise, we have left the station numbers the same even though we do not 

have ligand data from all stations along the cruise.   

 The values for dissolved [Fe] (0.4 µm filtered Fe concentration), [L] (calculated 

ligand concentration), Log10 KFeL,Fe’ (binding constant of the ligand with respect to the 

inorganically bound fraction of Fe) and [Fe’] (calculated inorganically bound Fe 

concentration) for the surface samples (15 m unless otherwise noted) are listed in Table 

1.  [Fe] values ranged from 0.09 – 1.4 nM at the surface.  Despite scrupulous cleaning of 

Niskin bottles prior to the beginning of the cruise, there is a possibility that the total Fe 

samples from the first four stations are erroneously high as a result of residual Fe 

leaching from the insides of the bottles.  We believe this high Fe was washed out after the 

first few stations of the cruise.  Because we suspect contamination of these samples, they 

have been left out of later analysis of the relationship between [Fe] and [L].  Station 17, 

which also had a high [Fe] of 0.95 nM at 15 m, was very close to one of the Vanuatu 
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islands and we believe that the high [Fe] value recorded there was a result of Fe input 

from the islands and not contamination.  [L] values ranged from 0.4 – 2.02 nM.  Log10 

KFeL,Fe’ values ranged from 11.6 – 12.9.  At station 16a, there was evidence of two ligand 

classes with [L1] = 0.86 nM with a Log10 KFeL,Fe’ = 12.6 and [L2] = 2.02 nM with a Log10 

KFeL,Fe’ = 11.6.   

 Depth profiles of [Fe] down to 500 m shown in Figure 2 for Station 14 (2A), 

Station 15 (2B) and Station 20 (2C) correspond to the values listed in Table 2. At all three 

stations, [Fe] is lowest in the surface waters above 100 m and then begins to rise around 

the 300 m sample. Figure 3 shows [Fe], [L] and [Fe’] (inorganically bound Fe) for station 

14 to a depth of 100m.  While [L] varies with depth more than [Fe], it is clear that it 

always exceeds [Fe].  

 Figure 4 shows the relationship between [L] and [Fe] for samples where [Fe] > 

0.2 nM and [Fe] < 0.2 nM.  The dashed line shows [Fe] = [L].  The solid line is the linear 

regression of [L] vs. [Fe] for the samples where [Fe] > 0.2 nM.  The equation for the line 

including error associated with each parameter is [Fe] = (0.54 +/- 0.09) × [L] + (0.01 +/- 

0.08).  The R2 value for the relationship is 0.75. 

 

2.5 DISCUSSION 

Given the importance of Fe to phytoplankton productivity, knowing the 

distribution of Fe in the surface oceans is imperative to understanding global primary 

production.  While their source and composition remains unclear, organic ligands appear 

to play a key role in stabilizing Fe in the ocean as it is apparent that organic ligands 

complex >99% of dissolved Fe in most of the ocean (Gledhill and van den Berg, 1994; 

Rue and Bruland, 1995; Wu and Luther, 1995).  Because of the uncertainty regarding 

bioavailability of the Fe bound to these organic ligands (Hutchins et al., 1999; 

Maldonado and Price, 2001; Soria-Dengg et al., 2001; Achilles et al., 2003), it is 

important that we increase our understanding of ligand concentrations in the ocean.  With 

this work, we have added to the growing dataset of oceanic ligand concentrations and 

dissolved Fe values, providing values for a region of the ocean that has been understudied 

with respect to trace metal geochemistry, the Western Pacific Warm Pool (WPWP).  
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Excluding potentially contaminated Fe samples, our measured WPWP surface 

[Fe] (dissolved < 0.4 µm Fe concentration) values ranging from 0.09 – 0.95 nM (Table 1) 

are within range of what has been seen in other regions of the ocean (Johnson et al., 

1997).  With a few notable exceptions, our surface values were low, between 0.1 – 0.4 

nM (Table 1), and comparable with other recent measurements of dissolved Fe in surface 

samples from the South Pacific Ocean (R.F. Zhang and E. Boyle, personal 

communication).  The exceptions to these low surface values are the first few stations of 

the transect after we left Hawaii (Stations 3-6), a station where we were in the midst of a 

surface slick of the N2-fixing cyanobacterium Trichodesmium (Station 16a) and two 

stations in the islands close to New Caledonia (Stations 17 and 19).  The higher surface 

values at the start of the transect, 0.6 – 1.4 nM for stations 3 – 6, could be the result of 

deep winter mixing and a recent rain event in this region close to Hawaii.  Alternatively, 

and potentially more likely given that these are higher than values we would expect as a 

result of deep mixing and recent time-series data suggesting that January is a time of 

particularly low Fe deposition to this area (Boyle et al., 2005), these values might be high 

as a result of residual Fe contamination leaching from the inside of the Niskin bottles at 

the beginning of the cruise despite rigorous acid-cleaning of the bottles on land in 

between cruises.  The high values in the midst of the surface slick of Trichodesmium 

could indicate that the slick was the result of a bloom caused by an input of Fe to an Fe-

starved region.  Alternatively, the surface slick could have been the result of a 

convergence of water masses bringing areas of moderate Trichodesmium biomass 

together, resulting in some accumulation of biomass near the surface where high light 

intensity bleached and killed the Trichodesmium.  If the latter were the case, high Fe 

values could result from releases of cellular Fe as Trichodesmium cells burst.  Another 

potential source of Fe could be the result of Trichodesmium biomass from a bloom, 

which may or may not have been caused by high Fe, being broken down by grazers and 

releasing cellular Fe.  Both hypotheses involving cellular Fe release would also explain 

the ligand results from that station, which will be discussed later.  The high Fe values 

close to the islands are in line with what others have found for the region (Campbell et 

al., 2005) and are potentially the result of river run-off and other coastal sources of Fe.  

Station 17, which had the higher Fe value, 0.95 nM, was also closer to an island than 
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Station 19.  Station 17 was less than 4 km away from land and had a bottom depth of only 

350 m.  It is not as simple to attribute the slightly elevated value of 0.5 nM at Station 19 

to coastal influences as the bottom depth was ~1400 m and the closest island was roughly 

50 km away, though this is not of great concern as others have seen high values of Fe in 

oceanic surface samples from this region (Campbell et al., 2005).  It appears surprising 

that Fe values in the surface waters of the southwestern Pacific Ocean are not that much 

lower than those observed in regions of the Atlantic Ocean given that the dust deposition 

to the Pacific Ocean is predicted to be so low (Duce and Tindale, 1991; Jickells, 1999; 

Wagener et al., 2008).  Recent work looking at the annual cycle of Fe in surface waters 

near Hawaii indicates that Fe values in the surface of the Pacific might be high as result 

of a higher solubility of the dust deposited in the Pacific Ocean (Boyle et al., 2005), 

though at least during the period of peak dust deposition, this did not appear to be the 

case (Wu et al., 2007).  Further study looking at the solubility of Fe in the South Pacific 

Ocean and the role that organic ligands play in controlling that solubility may help clarify 

questions about why Fe remains detectable in the surface waters despite low dust 

deposition.  

Our profiles of [Fe] (Figure 2, Table 2) are typical of what is expected in the open 

ocean (Johnson et al., 1997).  We found surface values around 0.2 nM with a small near-

surface maximum in Fe that is potentially the result of atmospheric deposition of Fe that 

has not been completely been drawn down by scavenging and biological uptake (Bruland 

et al., 1994; Wu et al., 2001; Boyle et al., 2005).  Below this near-surface Fe maximum, 

we find otherwise low Fe values in the upper 100 m.  When we look at the region of our 

profiles below 100 m, we see that [Fe] rises in a typical “nutrient-type” distribution that 

has been observed in profiles from other areas of the Ocean (Bruland et al., 1994; 

Johnson et al., 1997).  While it is apparent that Fe rises below the euphotic zone, it is no 

longer believed that there is one particular deep ocean value for Fe as was once 

hypothesized (Johnson et al., 1997).  Our limited deep ocean data set has values that vary 

between 0.4 nM and 0.7 nM (Table 2), while other data from the North Pacific shows 

deep ocean dissolved Fe values around 0.4 nM (Bruland et al., 1994; Wu et al., 2001; 

Boyle et al., 2005).  Profiles from a number of different ocean regions have shown that 

there is not just one deep ocean value for Fe, but rather the value can vary from 0.4 nM to 



 33 

1 nM (Bruland et al., 1994; Wu et al., 2001; Boyle et al., 2005; Johnson et al., 2007) and 

is more likely influenced by the source of Fe to a given water mass.  

Our results for ligand concentrations ([L]) ranging from 0.44 nM – 2.2 nM and 

binding constants of ligands with respect to the inorganically complexed Fe (KFeL,Fe’) 

ranging from 1011.6 – 1012.9 are in line with the oceanic values that have been presented 

elsewhere in the literature, with [L] reported from 0.33 – 2.5 nM and KFe’,L from 1010.6 - 

1013.9 (Rue and Bruland, 1995; van den Berg, 1995; Rue and Bruland, 1997; Boye et al., 

2001; Powell and Donat, 2001; Boye et al., 2003; Croot et al., 2004; Boye et al., 2005; 

Cullen et al., 2006; van den Berg, 2006; Buck and Bruland, 2007; Kondo et al., 2007; 

Kondo et al., 2008; Rijkenberg et al., 2008).  There was only one station where it 

appeared that we observed at a two-ligand system, 16a, which was in the middle of a 

surface slick of the N2-fixing cyanobacterium Trichodesmium.  There is considerable 

debate over the causes and status of Trichodesmium when they appear as these surface 

slicks, some of which were described above.  Regardless of the cause, an accumulation of 

a large amount of biomass is likely to lead to a significant amount of grazing by copepods 

and viral or bacterial degradation of organic matter.  It could be that a large amount of 

cell lysis in the patch resulted in the release of lower KFe’,L “L2-type” ligands, which have 

been surmised to be porphyrins based on their lower conditional stability constants 

(Witter et al., 2000) and their predominance in deeper waters where the majority of 

organic matter degradation takes place (Hunter and Boyd, 2007).  Further studies of 

ligand composition during and after phytoplankton blooms or in senescent cultures of 

phytoplankton in the laboratory could help determine if cell lysis is a significant potential 

source of L2 ligands.   

Some studies have found a linear relationship between [Fe] and [L1] (Boye et al., 

2003; Buck and Bruland, 2007; Buck et al., 2007).  These relationships seem to work best 

on samples with higher Fe values and appear to break down completely at [Fe] values 

below 0.2 nM (Buck and Bruland, 2007).  When we exclude data from samples where Fe 

was below 0.2 nM and the L2 ligand contribution to [L] from station 16a, we also get a 

linear relationship between [L] and [Fe] in our samples (Figure 4).  The slope of the 

relationship for our data, 0.54, is lower than that determined by Buck and Bruland (2007), 

0.69, but the difference may have something to do with both our small data set and that 
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the range of [Fe] for our samples is not as large.  Another dataset from three marginal 

seas on the western boundary of the Pacific Ocean, exhibits a relationship closer to and 

sometimes above the [Fe]:[L] = 1:1 relationship (Kondo et al., 2007).  Kondo et al (2007) 

hypothesize that one of the main reasons that different studies end up with varying 

relationships for [Fe]:[L] could be the result of many diverse methods for determining 

[L], including the use of a variety of competitive ligands and quantitative analyses.  

Certainly, a comparison of different methodology would help determine if the varying 

linear relationships between [L] and [Fe] are the result of experimental differences or if 

they might be site specific.  If these differences are site specific it could be indicative of 

varying ligand sources and should be studied further.   

Recent reports demonstrate that there seems to be a significant amount of L1-type 

ligands (i.e., ligands with high binding constants) associated with the colloidal fraction of 

Fe (Wu et al., 2001; Boye et al., 2003; Cullen et al., 2006), but siderophores are generally 

low molecular weight molecules and as such would be expected to be associated with the 

0.02 µm fraction of Fe.  Hunter and Boyd (2007) in their review of oceanic speciation 

data conclude that if L1 consists mainly of siderophores, those siderophores must become 

closely associated with colloidal Fe to explain their distribution.  This conclusion could 

be supported by the close relationship between [L1] and [Fe] when [Fe] > 0.2 nM (Buck 

and Bruland, 2007) (Figure 4) when viewed in light of recent work showing that most of 

the variation in dissolved Fe concentrations in the upper ocean is associated with the 

colloidal fraction of Fe and that while the < 0.02 µm fraction of Fe shows some 

variability, it is almost never above 0.4 nM (Bergquist et al., 2007).  If the dissolved [Fe] 

> 0.2 nM is predominantly colloidal, as that work suggests, then the linear relationship 

between [L] and [Fe] at higher Fe values indicates that L1 is associated with colloids.  It 

could be that the association with colloidal Fe is what keeps L1 ligands, whether they are 

siderophores or not, at such high values throughout the oceans, despite the fact that they 

might not be produced everywhere. 

While our results are within the range of [L] values that have been observed in the 

open ocean, with most of our values below 1 nM they appear low when compared with 

the [L] values in the Atlantic Ocean (Witter and Luther, 1998; Powell and Donat, 2001; 

Boye et al., 2003; Cullen et al., 2006; Rijkenberg et al., 2008) or Northeastern Pacific 
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(van den Berg, 1995; van den Berg, 2006; Buck and Bruland, 2007).  The lower values 

for [L] that we observed in the Pacific gyre could be a result of the low dust deposition, 

which is predicted for this area (Duce and Tindale, 1991; Jickells, 1999; Wagener et al., 

2008).  In fact, they are comparable to the values in other low dust deposition regions like 

the Southern Ocean (Boye et al., 2001; Boye et al., 2005; Gerringa et al., 2008) and other 

regions of the Pacific Ocean (Rue and Bruland, 1995; Rue and Bruland, 1997; Kondo et 

al., 2007; Kondo et al., 2008).  The hypothesis that ligands are produced in response to Fe 

inputs is based on the number of studies that have shown an increase in ligands following 

mesoscale addition of Fe to surface waters (Rue and Bruland, 1997; Boye et al., 2005; 

Kondo et al., 2008).  If ligands are produced in response to Fe inputs, then one of the 

lower dust input regions of the ocean would be expected to have low ligand production 

values.  In addition to potentially low production values, another facet to consider is the 

destruction of ligands by UV light.  While the photodestruction of many siderophores is 

generally accepted (Barbeau et al., 2003), there is some debate about the photoreactivity 

of all oceanic ligands (Barbeau, 2006).  Two studies on ligands from natural waters show 

conflicting results, with one group seeing a reduction in ligands in response to UV light 

(Powell and Wilson-Finelli, 2003) and another seeing no reduction (Rijkenberg et al., 

2006).  A study looking at the speciation of Fe in samples of surface waters (< 2 m) saw a 

reduction in ligands in those waters that receive the most UV irradiation (Powell and 

Donat, 2001).  A recent review of ligand photochemistry suggests that the reduction in 

siderophore-like ligands in the Rijkenberg study could have been masked by a large 

amount of colloidal Fe (Barbeau, 2006).  Considering the dominance of colloidal Fe in 

the ocean and its association with L, it could be this protection from UV degradation that 

keeps L that is associated with colloidal Fe at high levels in the surface ocean.  This also 

might explain why the fraction of L that is associated with lower Fe waters (<0.2 nM) is 

not related to Fe levels, because ligands that are not associated with colloidal Fe may be 

more susceptible to UV degradation.  Future studies, looking at the effects of UV on the 

ligand composition of ultrafiltered (< 0.02 µm) seawater samples could help answer these 

questions.  Alternatively, it could be that the siderophores that persist in areas of high UV 

penetration are those that are not susceptible to UV degredation, such as the ferrioxamine 
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siderophores (Barbeau et al., 2003), which appear to be dominant in the Atlantic Ocean 

(Mawji et al., 2008).  

 While questions remain regarding the source and composition of ligands in the 

open ocean, it is clear that organic ligands are ubiquitous and play a key role in 

stabilizing dissolved Fe in the ocean.  In this study, we have shown that ligands are 

prevalent even in the low Fe waters of the Western Pacific ocean and have found that the 

relationship between [L] and [Fe] is similar to that of other regions of the open ocean.  

The data presented here is an addition to the growing datasets of dissolved Fe and Fe 

speciation in the ocean, covering a region where few measurements have been made.  
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Station Depth 
(m) Latitude Longitude [Fe] (nM) Ligand 

Class [L] (nM) log10 K
[Fe'] 
(pM)

3 15 19.53 -159.90 0.70 +/- 0.05 *
4 15 17.38 -162.44 0.95 +/- 0.04 * L1 1.06 +/- 0.02 12.5 2.64
5 15 14.96 -165.05 1.40 +/- 0.05 * L1 1.40 +/- 0.06 12.9 12.09
6 15 12.43 -167.73 0.63 +/- 0.03*
7 15 7.88 -172.34 0.16 +/- 0.02
8 15 5.65 -174.53 0.41 +/- 0.03
9 15 3.24 -176.88 0.21 +/- 0.02 L1 0.53 +/- 0.03 12.3 0.33

10 15 0.37 -179.64 0.11 +/- 0.04 L1 0.38 +/- 0.09 12.0 0.26
11 15 -2.30 177.44 0.11 +/- 0.04 L1 0.79 +/- 0.06 11.8 0.26
12 15 -4.72 174.73 0.28 +/- 0.11 L1 0.52 +/- 0.06 12.0 1.00
13 15 -7.07 172.31 0.31 +/- 0.11 L1 0.44 +/- 0.08 11.9 2.80
14 15 -9.25 170.00 0.20 +/- 0.04 L1 1.57 +/- 0.10 11.8 0.22
14 25 0.24 +/- 0.02 L1 0.59 +/- 0.06 12.1 0.56
14 50 0.18 +/- 0.01 L1 0.88 +/- 0.14 11.9 0.24
14 100 0.16 +/- 0.01 L1 0.57 +/- 0.10 11.6 1.04
15 15 -12.58 169.86 0.11 +/- 0.03 L1 1.07 +/- 0.10 11.7 0.20
16 15 -15.89 169.72 0.29 +/- 0.03
16a 7 -15.98 169.77 0.63 +/- 0.02 L1 0.85 +/- 0.00 12.6 0.41

L2 2.02 +/- 0.59 11.6
17 15 -19.22 169.57 0.95 +/- 0.02 L1 1.52 +/- 0.06 12.5 0.55
19 15 -21.62 168.66 0.50 +/- 0.08 L1 1.06 +/- 0.09 12.5 0.28
20 15 -25.67 165.42 0.09 +/- 0.02 L1 0.38 +/- 0.04 11.7 0.69
21 15 -29.04 164.34 0.24 +/- 0.02 L1 0.62 +/- 0.03 12.8 0.10
22 15 -31.92 163.36 0.21 +/- 0.08
23 15 -34.16 162.55 0.29 +/- 0.02
24 15 -36.17 161.79 0.19 +/- 0.02
25 15 -34.23 160.35 0.21 +/- 0.03 L1 0.93 +/- 0.04 12.3 0.31
26 15 -32.42 159.09 0.20 +/- 0.02 L1 0.86 +/- 0.03 12.6 0.07
28 15 -30.26 157.30 0.51 +/- 0.12 L1 0.81 +/- 0.04 12.2 0.96
29 15 -29.76 156.62 0.41 +/- 0.00
30 15 -28.76 155.37 0.32 +/- 0.11 L1 0.49 +/- 0.03 12.8 0.33

*possible Fe contamination

Table 1. Dissolved Fe, organic Fe-binding ligand concentrations, conditional stability 
constants and calculated free inorganic Fe for <0.4 µm filtered samples 



 

 

Station Depth (m) [Fe] (nM)
Standard 
Deviation

14 15 0.20 0.04
14 25 0.24 0.02
14 50 0.18 0.01
14 100 0.16 0.01
14 150 0.07 0.00
14 300 0.11 0.03
14 500 0.71 0.00
15 15 0.09 0.00
15 25 0.26 0.05
15 50 0.09 0.00
15 75 0.11 0.00
15 100 0.06 0.01
15 150 0.07 0.01
15 300 0.35 0.04
15 500 0.52 0.01
20 15 0.09 0.02
20 25 0.37 0.00
20 50 0.04 0.00
20 75 0.07 0.01
20 100 0.05 0.00
20 150 0.08 0.01
20 300 0.19 0.01
20 500 0.40 0.03

Table 2. Dissolved (<0.4 µm 
filtered) Fe with depth 
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Figure 1. Map of sampling stations from the Western Pacific Warm Pool cruise 
(KM0701) on the R/V Kilo Moana.
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Figure 2. Dissolved Fe (< 0.4 μm filtered) depth profiles from three stations along the 
cruise track.  (A) Station 14. (B) Station 15. (C) Station 20.  Error bars are standard 
deviations of triplicate analyses.
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Figure 3.  Dissolved Fe ([Fe]), inorganically bound Fe ([Fe’])and 
organic ligand ([L]) concentrations at Station 14 up to 100 m 
depth. Dissolved Fe and the organic ligand concentrations are 
plotted on a nM scale while inorganically bound Fe is plotted on a 
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3.1 ABSTRACT 

 Trichodesmium spp. play key roles in global carbon and nitrogen budgets and thus 

understanding what controls their activity is important for understanding climate change.  

While iron (Fe) availability has been shown to be an important chemical factor for 

controlling both growth and nitrogen fixation rates in Trichodesmium, all culture 

experiments to date have focused solely on representatives from one clade of 

Trichodesmium.  Genomic sequence analysis determined that the T. erythraeum 

(IMS101) genome contains many of the archetypical genes involved in the prokaryotic 

iron stress response.  Focusing on three of these genes, isiB, idiA, and feoB, we found that 

all three showed an Fe stress response in axenic T. erythraeum (IMS101), and their 

sequences were well-conserved across four species in our Trichodesmium culture 

collection (consisting of two T. erythraeum strains (IMS101 and GBRTRLI101), two 

Trichodesmium tenue strains (Z-1 and H9-4), Trichodesmium thiebautii and 

Trichodesmium spiralis).  With clade-specific quantitative PCR (QPCR) primers for one 

of these genes, isiB, we found that high isiB expression at low Fe levels corresponded to 

specific reductions in N2 fixation rates in both major phylogenetic clades of 

Trichodesmium (the T. erythraeum clade and T. tenue clade).  With regard to the two 

clades, the most significant difference determined was temperature optima, while more 

subtle differences in growth, N2 fixation rate and gene expression responses to Fe stress 

were also observed.  However the apparent conservation of the Fe stress response in the 

Trichodesmium genus suggests that it is an important adaptation for success in the 

oligotrophic ocean.  

 

 

3.2 INTRODUCTION 

Primary producers play important roles in controlling both the oceanic food chain 

and the overall biogeochemistry of the ocean.  Open-ocean diazotrophic cyanobacteria, 

such as Trichodesmium spp. and Crocosphaera watsonii, are of particular interest to 

researchers studying global biogeochemical cycles, due to their contribution to both the 
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carbon (C) cycle via primary production and to the nitrogen (N) cycle because of their 

ability to fix N2 (Capone, 2001; Montoya et al., 2004).  The "new" N, N that has not been 

regenerated from degradation of organic matter in the mixed layer, produced by these 

cyanobacteria is vital to the N and C cycles on regional (Zehr et al., 2001), and global 

scales (Capone et al., 1997; Gruber and Sarmiento, 1997), as well as potentially 

influencing CO2 sequestration over geologic time-scales (Capone et al., 1997; Falkowski, 

1997; Gruber and Sarmiento, 1997).  N2-fixing cyanobacteria are thought to have evolved 

in an anoxic ocean where iron (Fe) was readily available as Fe2+, and despite changes in 

the availability of Fe in the modern ocean, these organisms still maintain high cellular Fe 

requirements, potentially because of the ancient evolution of N2 fixation biochemistry 

(Berman-Frank et al., 2001; Kustka et al., 2003).  This increased Fe requirement has been 

argued to be an important constraint on N2 fixation in the modern ocean (Moore et al., 

2004; Moore and Doney, 2007).  Therefore, increased understanding of how diazotrophic 

cyanobacteria acquire Fe, what forms of Fe are bioavailable and how they respond to Fe 

deprivation is important for predicting potential feedbacks on climate change. 

Genetic analyses of laboratory cultures have shown there are two distinct clades 

within the genus Trichodesmium, one consisting of strains of Trichodesmium erythraeum 

and Trichodesmium contortum, which we will refer to as the Tery clade, and the other 

consisting of Trichodesmium tenue, Trichodesmium thiebautii, Trichodesmium spiralis 

and Trichodesmium hildebrandtii, which we will refer to as the Ten clade (Hynes and 

Waterbury unpublished results; Orcutt et al., 2002).  Multiple experiments have shown 

that Fe is an important micronutrient for the Tery clade (Berman-Frank et al., 2001; Fu 

and Bell, 2003; Kustka et al., 2003), providing valuable information about the role that Fe 

plays in controlling growth and N2 fixation in Trichodesmium.  Comparable data is not 

available for the Ten clade.  Morphological data from the field suggests that 

representatives from the Ten clade might be more prevalent deeper in the water column 

(Carpenter et al., 1993; Post et al., 2002; Davis and McGillicuddy, 2006) and may even 

have different N2 fixation rates than the Tery clade (Carpenter et al., 1993), though this 

has not been proven using genetic techniques that distinguish between the clades.  Thus 
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understanding the impact that Fe has on N2 fixation in the Ten clade of Trichodesmium is 

important to improve our understanding of the genus’ role in global carbon and nitrogen 

cycling.  

To constrain the relationship between Fe and N2 fixation in Trichodesmium, we 

evaluated multiple indicators of Fe limitation including growth and N2 fixation rates with 

cultures from both clades of Trichodesmium grown on varying levels of Fe.  In addition, 

we designed a molecular gene expression-based assay to look at the cellular Fe stress 

response of genes believed to be part of the Fe-uptake machinery or shown to be Fe 

stress-induced in other organisms (Bibby et al., 2001; Katoh et al., 2001; Webb et al., 

2001; Michel et al., 2003; Shi et al., 2007).   We found that the Ten clade had a lower 

optimum temperature for growth and slightly reduced N2 fixation rates at higher Fe 

values.  The Ten clade also showed a lower basal expression of our molecular marker 

gene, isiB, but a more pronounced increase in gene expression as Fe became limiting.  

While there were slight differences in the individual Fe stress responses in the two clades, 

overall we observed similar trends in the Fe level associated with a significant increase in 

gene expression and concomitant reductions in N2 fixation.  

 

3.3 RESULTS 

3.3.1 Genomic Database Analysis. We screened the genome of T. erythraeum 

(IMS101) to evaluate the potential Fe stress response in the genus.  A list of IMS101 

genes predicted to be involved in Fe transport and homeostasis, their closest orthologs 

and their closest experimentally–characterized orthologs (genes that have been 

characterized using genetic and proteomic techniques) as determined by BLAST analysis 

are presented in Table 1.  A schematic of both the predicted Fe uptake system and the fate 

of Fe within the cell with labels corresponding to the genes described in Table 1 is shown 

in Figure 1.  

Sensing and responding to Fe availability has been shown to have a 

transcriptional component (Escolar et al., 1999).  Fitting with these data, Trichodesmium 

is predicted to have three homologs encoding the ferric uptake regulator (Fur) protein.  In 
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many microbes this protein has been shown to modulate the organism’s response to Fe 

starvation (Andrews et al., 2003).  Two of these Trichodesmium genes, YP_721684 and 

YP_722978, are highly similar to the furA gene of Anabaena PCC 7120, while the third 

gene, YP_721679, is most similar to the furB gene of Anabaena PCC 7120 and appears 

to be specific to cyanobacteria (Hernandez et al., 2004).  

The IMS101 genome also contains genes with the potential to modulate Fe use 

and storage in response to changing environmental conditions.  One such adaptation 

includes replacing the Fe-rich electron carrier ferredoxin with the flavin-containing 

electron carrier flavodoxin (IsiB) (Leonhardt and Straus, 1992; LaRoche et al., 1996).  

The IMS101 genome has two predicted IsiB homologs, encoded by genes YP_721410 

and YP_722232.  In addition to the ferredoxin/flavodoxin substitution, some gram-

negative bacteria synthesize the IsiA protein in times of Fe deprivation, which forms a 

protective ring around photosystem I (Leonhardt and Straus, 1992; Bibby et al., 2001; 

Michel and Pistorius, 2004).  The IMS101 genome has one predicted homolog for the 

IsiA protein encoded by gene YP_721411.  Finally, the genome also shows evidence of 

Fe storage capabilities including a cytochrome b1 type bacterioferritin protein (Andrews 

et al., 1993; Keren et al., 2004) and a ferritin-like DPS protein (Michel et al., 2003; 

Castruita et al., 2006), predicted to be encoded by YP_722441 and YP_723752, 

respectively. 

Although there are no clear siderophore biosynthetic genes in the IMS101 

genome, it is predicted to encode for the uptake of a variety of Fe forms.  These include 

genes that may facilitate the uptake of siderophore-bound Fe, such as a cluster of two 

genes predicted to encode the intermembrane proteins ExbB and ExbD, genes 

YP_723908 and YP_723909, respectively, and a possible quite divergent TonB protein, 

encoded by gene YP_721313. TonB-ExbB-ExbD complexes have been shown to 

translocate the energy stored in the proton gradient across the inner bacterial membrane 

to the outer membrane to allow the transport of large molecules like siderophores into the 

periplasm of gram-negative bacteria (Braun, 1995).  Genes YP_722814, YP_722813, 

YP_722952 and YP_723445 are all predicted to encode proteins involved in an ABC-
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type Fe3+ transporter (Koster, 2001).  YP_722814 is homologous to an inner membrane 

component of a binding protein dependent transport system and is clustered with a gene, 

YP_722813, which is homologous to an ATPase component of an ABC-type Fe3+ 

transporter (Katoh et al., 2001).  The close proximity of the two genes and their related 

function, suggests that they may be part of the same operon. The IMS101 genome 

contains two potential periplasmic Fe3+ binding protein components of an ABC transport 

system (Koster, 2001), idiA, YP_722952, and a predicted hydroxamate-Fe-binding 

protein, YP_723445.  The confirmed presence of a signal peptide region in the transcript 

of the idiA gene, which was not found for YP_723445, suggests that the IdiA protein is 

being processed through a membrane to outside of the cytoplasm and possibly moved 

into the periplasm, a step that is necessary in the maturation of a periplasmic protein 

(Fulda et al., 2000).  However, it is important to note that our inability to discern a signal 

peptide region in the transcript of YP_723445 using SignalP 3.0 is not a definitive 

indication that the protein will not be found in the periplasm, as slight modification of the 

translational start codon has been shown to mask potential signal peptide regions (Fulda 

et al., 2000).  Additionally Trichodesmium has the predicted ability to transport Fe2+ 

using the proteins FeoA and FeoB, encoded by genes YP_722525 and YP_722524, 

respectively (Kammler et al., 1993). 

3.3.2 Sequence Analysis.  Others have shown that there can be differences in 

nutrient scavenging strategies employed by closely related cyanobacteria (Martiny et al., 

2006; Palenik et al., 2006; Rivers et al., 2009), therefore in order to determine how well 

conserved the Fe stress regulon was within the genus Trichodesmium, we sequenced 

genes predicted to be involved in Fe(III) uptake, Fe(II) uptake, and Fe quota reduction 

(idiA (YP_722952), feoB (YP_722524) and isiB (YP_721410), respectively) from 

isolates covering the range of Trichodesmium species in our culture collection.  These 

results showed that all three genes are well conserved across the four species of 

Trichodesmium at the DNA level (Table 2), with the largest dissimilarity detected 

between the Tery clade (IMS101 and GBRTRLI101) and the three species of the Ten 

clade (93%-96% similarity between T. erythraeum and the other species, compared with 



 55 

98%-100% similarity within the Ten clade).  No obvious shared promoter regions could 

be defined for the three genes using alignments of the intergenic spacer regions preceding 

each gene in the T. erythraeum IMS101 genome.  

3.3.3 Axenic IMS101 Nutrient Stress Experiment.  To verify the annotation and 

test the hypothesis that the idiA, feoB and isiB genes were induced under Fe limitation, 

we monitored their expression using RT-PCR in Fe growth limitation experiments with 

axenic cultures of IMS101.  At the onset of growth limitation (T1, Figure 2 A+B), RT-

PCR showed that all three genes were expressed only in the Fe-omitted culture.  At the 

point when the Fe-omitted culture was beginning to senesce and the replete treatment was 

late in the exponential growth phase (T2, Figure 2 A), all three genes were expressed in 

both the replete and Fe-omitted treatments, but not in the P-omitted culture (T2, Figure 2 

B).   

3.3.4 Physiological Growth Response of the Ten and Tery Clades.  Optimal 

growth temperatures were determined for representatives from both phylogenetic clades. 

In replicated experiments performed at the same light level (140 µEin/m2/s), the Ten 

clade consistently had a lower optimal temperature (26°C) than the two Tery 

representatives tested (28°C) (Figure 3).  The maximum growth rates were lower for the 

Ten clade representative (0.33 +/- 0.01 µ d-1) than GBRTRLI101 (0.60 +/- 0.01 µ d-1) and 

IMS101 (0.78 +/- 0.01 µ d-1).  The error reported for growth rates is standard error 

calculated from triplicate biological replicates. 

As Fe had been shown to be important for the growth of Trichodesmium, but its 

effect had only been studied in the Tery clade, we did growth limitation experiments 

using a range of Fe’ (inorganically bound Fe) values ranging from 0.15 nM to 4.5 nM 

with representatives from both phylogenetic clades of Trichodesmium at their optimal 

growth temperature (the values of Fe’ were calculated using VisualMintEQ as described 

in the Experimental Procedures).  In both clades, growth rates increased as the 

concentration of inorganically bound Fe ([Fe’]) in the medium increased (Figs. 4A+B).  

In the Ten clade, growth rates increased from 0.13 +/- 0.01 µ d-1 to 0.19 +/- 0.01 µ d-1 

with the maximal growth rate achieved at [Fe’] of 0.54 nM.  In the Tery clade, growth 
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rates increased from 0.12 +/- 0.00 µ d-1 to 0.21 +/- 0.00 µ d-1 with the maximal growth 

rate achieved at [Fe’] of 0.94 nM.  N2 fixation rates also increased concomitantly with 

[Fe’] in the medium, and continued to do so even after the growth rates had plateaued 

(Figs. 4A+B).  In the Ten clade, N2 fixation rates increased from 3.2 +/- 0.2 nmol 

N/hr/µg Chl to 10.1 +/- 0.3 nmol N/hr/µg Chl, with the maximal N2 fixation rates 

achieved at [Fe’] of 4.5 nM.  In the Tery clade, N2 fixation rates increased from 3.6 +/- 

0.3 nmol N/hr/µg Chl to 13 +/- 0.7 nmol N/hr/µg Chl with the maximal N2 fixation rates 

achieved at [Fe’] of 4.5 nM.  Despite these differences, when the N2 fixation rates were 

normalized to growth rates a similar relationship was revealed for both phylogenetic 

clades (Figure 4C).  To ensure that N2 fixation rate differences were not the result of 

changes in Chl/DNA ratios in the different treatments, we evaluated the Chl/DNA ratio 

for samples from low and high Fe treatments in both clades and found no significant Fe-

associated difference and a value of 1.6 x 10-8 +/- 3.0 x 10-9 µg chl/copy isiB (Figure 4D).  

Error reported for Tery clade growth and nitrogen fixation rates is standard error 

calculated from biological replicates (5-6 replicates at each Fe treatment).  Error reported 

for Ten clade growth and nitrogen fixation rates is standard error calculated from 

triplicate biological replicates at each Fe treatment.  Error reported for chl/copy DNA is 

standard error based on triplicate low and high Fe replicates from the Tery clade and 

duplicate low and high Fe replicates from the Ten clade (10 replicates total). 

3.3.5 Quantified Fe stress response.  Both clades of Trichodesmium show an 

inverse relationship between isiB expression and N2 fixation rates in response to changing 

[Fe’] in the medium, with isiB expression increasing and N2 fixation rates decreasing as 

the [Fe’] was reduced (Figure 5 A+B).  In the Tery clade, the threshold associated with a 

50% decrease in N2 fixation rates occurs at an isiB/rnpB ratio of 1.4 +/- 0.5 and an [Fe’] 

of 0.54 nM (Figure 5A), while in the Ten clade, the same threshold occurs at an isiB/rnpB 

ratio of 0.063 +/- 0.02 at the same [Fe’] (Figure 5B).  While the Ten clade shows a lower 

basal expression level than the Tery clade (Figure 5 A+B), it also shows a greater 

increase in expression at lower Fe conditions than the Tery clade (Figure 5C).  The 

thresholds listed above are based on the actual values from these experiments, without 
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curve fitting.  The error reported for each measurement is standard error of biological 

replicates (3 for the Ten clade and 6 for the Tery clade at each Fe treatment).  We fit the 

expression data with an exponential decay model and found that for the Tery clade 

isiB/rnpB= 2.2 × 10(1.9 × [Fe’])+0.44 with an R2 = 0.61 and for the Ten clade isiB/rnpB= 

0.14 × 10(1.5 × [Fe’])+0.011 with an R2 = 0.49.  We fit the % maximum N2 fixation data 

using a 2nd order polynomial model and found that for the Tery clade % Maximum N2 

Fixation= 24.9+ 50 × [Fe’] – 7.4 × [Fe’]2 with an R2 = 0.75 and for the Ten clade % 

Maximum N2 Fixation = 29.4 + 32.2 × [Fe’] – 7.41 × [Fe’]2 with an R2 = 0.93.  Using 

these equations, N2 fixation is at 50% maximum in the Tery clade at [Fe’] = 0.56 +/- 0.14 

nM and in the Ten clade at [Fe’] = 0.70 +/- 0.10 nM with corresponding isiB/rnpB 

expression values of 1.2 +/- 0.3 and 0.062 +/- 0.017, respectively.  The error reported was 

calculated using error propagation analysis and the standard error of each regression. 

In an experiment where we transferred Fe limited T. erythraeum (GBRTRLI101) 

into Fe replete medium, we found that the expression of isiB dropped to basal levels 

within 24 hours, while cultures that were transferred back into Fe-omitted medium 

retained expression above the threshold levels indicative of Fe limitation of N2 fixation 

(Figure 6).   

 

 

3.4 DISCUSSION 

Field studies indicate that Trichodesmium spp. are widely distributed and a 

significant source of new nitrogen in the tropical and subtropical Atlantic and Pacific 

Oceans (Capone, 2001).  The high Fe requirement of N2 fixing cyanobacteria like 

Trichodesmium spp. creates a biological linkage between the geochemistries of N and Fe 

(Kustka et al., 2003).  Despite the defined important relationship between Trichodesmium 

and Fe availability, prior physiological data has been limited to laboratory studies using 

strains representative of only the Tery clade of Trichodesmium (Berman-Frank et al., 

2001; Fu and Bell, 2003; Kustka et al., 2003; Berman-Frank et al., 2007).  As others have 

seen large difference in the genomic capability of marine cyanobacteria to compensate 
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for Fe deprivation (Palenik et al., 2006; Rivers et al., 2009), the work described herein is 

both important and timely and represents the first physiological data comparing the 

response of the Tery and Ten clades of Trichodesmium to Fe deprivation. 

3.4.1 Genomic Capabilities and Conservation Within the Genus.  

Trichodesmium spp. inhabit environments typified by episodic inputs of Fe through dust 

deposition or mesoscale eddies, followed by long periods of deprivation.  Thus it is not 

surprising that the IMS101 genome contains many genes predicted to encode for the 

uptake of different forms of Fe, Fe quota compensation, and Fe storage mechanisms 

(Table 1, Figure 1). To assess the importance of these adaptations throughout the genus 

as a whole, we evaluated the conservation of some of the genes involved in Fe uptake and 

quota compensation within the genus Trichodesmium. 

The Trichodesmium IMS101 genome is predicted to encode the genetic capacity 

to transport both ferric (FeIII) and ferrous (FeII) Fe into the cell.  However, since the 

oceans are oxidizing, Fe(III) is likely one of the main sources of Fe to open-ocean 

cyanobacteria.  This is supported by the presence of a complete periplasmic binding 

protein-dependent ABC transport system for Fe (encoded by idiA (YP_722952), inner 

membrane channel (YP_722814), and ATPase (YP_722813)) and the knowledge that 

these types of systems have been shown to be critical for moving Fe through the 

periplasm into cytoplasm in bacteria and cyanobacteria (Koster, 2001).   Although 

oceanic bulk water is oxidized, there are many redox microniches, including chemical 

environments that can become reducing (Shanks and Reeder, 1993; Azam, 1998; Moran 

et al., 2004).  Consistent with these microniches, the IMS101 genome is also predicted to 

encode for genes of Fe(II) transport (feoA and feoB: YP_722525 and YP_722524, 

respectively).  While feoB has been found in some freshwater cyanobacterial genomes 

(Katoh et al., 2001) and three strains of coastal marine Synechococcus (Palenik et al., 

2006; Rivers et al., 2009), in open-ocean cyanobacteria it has only been identified in the 

genomes of the diazotrophs T. erythraeum (IMS101) and C. watsonii (WH8501).  

Trichodesmium’s apparent genetic capacity for acquiring Fe2+ may indicate that there is 

an indirect or direct Fe (III) reduction scheme involved in Fe uptake, either 
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extracellularly or within the periplasm.  Others have shown that photolysis of Fe (III)-

siderophore complexes could be a source of Fe2+ for the oceans (Barbeau et al., 2003), 

and this could be a passive Fe (II) resource to Trichodesmium.  This reduction might also 

occur in the microcosms associated with colony formation.  Since bacteria are known to 

commonly dispense with genes not required for success in their natural habitat (Teuber 

M., 1992), the presence of the feoA and feoB genes in the IMS101 genome indicates that 

Trichodesmium may be actively pursuing Fe2+ as a cellular Fe source.   

In addition to genes associated with Fe uptake, the IMS101 genome also contains 

a gene involved in Fe quota reduction, isiB (YP_721410).  During times of Fe 

deprivation, organisms that have the isiB gene are able to synthesize the flavin-containing 

protein flavodoxin, and use it to replace the Fe-rich electron carrier ferredoxin in the Z-

scheme of photosynthesis (Leonhardt and Straus, 1992).  The isiB gene that we 

sequenced, YP_721410, shows a greater similarity to flavodoxin genes that have been 

fully characterized and shown to be Fe stress induced in other organisms (Fillat et al., 

1991) than the other putative flavodoxin-encoding gene, YP_722232.  

Sequencing of isiB, idiA, and feoB from various Trichodesmium species revealed 

high similarity across the genus (Table 2), with the largest differences consistently 

occurring between species from the two different clades.  This separation is consistent 

with previous work looking at the genetic characteristics of different species of 

Trichodesmium, where the groups that comprise the Ten and Tery clades were first 

defined with cultured isolates (Orcutt et al., 2002).  The conservation of the components 

of the Trichodesmium Fe stress regulon studied herein stand in contrast to the variation in 

gene content that has been seen in genomes of the unicellular cyanobacteria (Palenik et 

al., 2006; Rivers et al., 2009).  While our analyses do prove that all of these genes are 

used in Trichodesmium, the conservation of all three genes across the genus suggests that 

these Fe limitation compensation mechanisms are important for success in the 

oligotrophic ocean. 

3.4.2 Axenic IMS101 Expression Analyses.  Initial gene expression analysis 

with axenic batch cultures of T. erythraeum IMS101 grown under replete, Fe-omitted and 
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P-omitted conditions showed that all three genes (idiA, feoB and isiB) were expressed 

only under Fe limitation (Figure 2).  Importantly, if the expression of any of the genes 

had been part of a generalized stress response of the organism, we would have expected 

to see expression in the P-omitted treatment as well.  The expression that appears at the 

later time point, “T2,” in the replete experiment was expected, based on chemical 

modeling of the medium that suggests the cells will experience Fe limitation before P 

limitation.  In order for this to occur in an EDTA-buffered medium, the culture would 

have had to grow to a “blown buffer” cell density (Saito et al., 2008), where the demand 

for Fe from the accumulated biomass exceeds the amount supplied by the dissociation of 

Fe from the EDTA buffer, which results in the inorganically bound Fe ([Fe’]) being 

lower than calculated based on equilibrium dynamics.  As the expression occurs before 

growth limitation, it suggests that upregulation of the Fe stress regulon begins as soon as 

the organism begins to experience a decrease in cellular Fe availability.  This hypothesis 

is corroborated by results from our Fe titration experiments with representatives from the 

two Trichodesmium clades, which show that increases in expression of the isiB gene and 

decreases in N2 fixation rates occur throughout the range of Fe values we tested, while 

growth rates only decrease at the lowest Fe values.   

3.4.3 Clade Differentiation.  Our results show that the optimal temperature for 

growth for the Tery clade is 28°C, which is consistent with the results of Breitbarth and 

colleagues (Breitbarth et al., 2007), while the optimal temperature for growth for the Ten 

clade is 2°C lower (Figure 3).  Similar to what Breitbarth and colleagues found with T. 

erythraeum (Breitbarth et al., 2007), we also saw a significantly reduced N2 fixation rate 

when we grew T. tenue above its optimal temperature (data not shown).  These data 

imply that there is a niche differentiation in the genus based on temperature, which could 

result in a differential depth distribution of the species, data that are consistent with the 

morphological distributions of Trichodesmium that have been described from the field 

(Post et al., 2002; Davis and McGillicuddy, 2006).  Furthermore, our data suggest that 

temperature-based niche differentiation could lead to a species composition shift in the 
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oceans if anthropogenic climate change leads to a significant increase in sea surface 

temperature.  

Tery and Ten clade representatives grown in varying levels of Fe showed a direct 

correlation between Fe and growth rates (Figure 4A) and Fe and N2 fixation rates (Figure 

4B).  Both clades showed an eventual plateau in growth rates at high Fe values, which 

occurred at a slightly lower Fe value for the Ten clade than the Tery clade, [Fe’] of 0.54 

nM and 0.94 nM, respectively.  While this could suggest a lower Fe quota for the Ten 

clade, it could also be a by-product of imperfect culturing conditions, indicating that 

some other element or factor becomes limiting for the organism above this Fe value.  In 

both clades of Trichodesmium, N2 fixation rates continue to increase even after growth 

rates have reached their plateau.  These data suggest that Trichodesmium fixes more N2 

than is strictly needed when growing in the presence of excess Fe. Alternatively, the 

reduction of N2 fixation rates prior to a reduction in growth rates could be evidence of the 

organism’s sacrificing the high Fe-requiring N2 fixation in favor of carbon fixation at the 

onset of Fe stress (Kupper et al., 2008).  If the former hypothesis is true, it could 

potentially explain the dissolved organic nitrogen (DON) excretions observed in many 

replete Fe culture experiments done with Trichodesmium (Capone et al., 1994; 

Mulholland and Capone, 2001).  If Fe plays a role in excess N2 fixation and DON 

excretion, it could indicate an increased importance for Fe in modulating the N cycle in 

the oligotrophic gyres and should be explored further.   

At the highest values of Fe in the medium, the Ten clade had reduced chl-

normalized N2 fixation rates compared to the Tery clade.  To ensure that this difference in 

N2 fixation rates was not a byproduct of our normalization of the rates to chl, we tested 

the chl/DNA ratio of the cultures across the different Fe treatments and found that they 

were constant in the species and experimental Fe conditions (Figure 4D).  Thus, there 

was a real difference in the N2 fixation rates between the two clades.  This could indicate 

that while the Ten clade does fix excess N2 when abundant Fe is available, it does not do 

so to the extent that the Tery clade does.  However, when the lower maximal growth rates 

in the Ten clade are taken into account, the difference in N2 fixation rates appear to be a 
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factor of growth rate (Figure 4C).  While the absolute amount of N2 fixed by the two 

clades was different, the amount of [Fe’] associated with a 50% reduction in N2 fixation 

rates was very similar for both clades (0.54 nM Fe without curve fitting and with curve-

fitting: 0.56 +/- 0.14 nM for Tery and 0.70 +/- 0.10 nM for Ten), indicating a similar 

impact of Fe on N2 fixation rates throughout the genus.  These values are in line with 

what others have found for the critical [Fe’] value associated with a decrease in N2 

fixation with the T. erythraeum clade (Berman-Frank et al., 2001; Berman-Frank et al., 

2007).   

 To determine whether the cellular response to Fe limitation was the same in the 

two Trichodesmium clades, we designed a qRT-PCR method to look at the expression of 

one of the Fe stress response genes.  This approach allows for the comparison of data on 

the onset of Fe limitation of growth, N2 fixation rates, and the cellular level Fe stress 

response.  While all three genes showed the expected expression response with the axenic 

Trichodesmium cultures, we developed the qRT-PCR method with isiB because the role 

of isiB in the cell is well understood (Leonhardt and Straus, 1992) and it has been used as 

a marker for Fe stress in other phytoplankton (LaRoche et al., 1996; Bibby et al., 2001).  

Also, its role in photosynthesis suggests that it has the potential to be in high copy 

number when it is expressed, which will make it easier to detect using RT-PCR.  In order 

to assess relative expression rates in non-axenic cultures, we normalized the number of 

isiB copies in a given sample to the number of copies of a constitutively expressed gene, 

rnpB, which we have chosen based on experiments comparing its stability in cDNA from 

cultures grown under different physical and chemical treatments (see experimental 

procedures).  We designed primer sets for isiB and rnpB that able to distinguish between 

both clades of Trichodesmium (see experimental procedures) that can be used to generate 

isiB expression data that is normalized to Trichodesmium RNA (rnpB). 

Both Tery and Ten cultures show an inverse relationship between isiB expression 

and N2 fixation rates in response to changing [Fe’] with isiB expression highest at the 

lowest N2 fixation and [Fe’] values (Figure 5A+B).  The results from these experiments 

have provided us with valuable information on the threshold of expression that 
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corresponds to a meaningful decrease in N2 fixation rates, which is 0.063 isiB/rnpB for 

the Ten clade and 1.2 isiB/rnpB for the Tery clade.  Above these threshold isiB 

expression levels, N2 fixation rates had decreased by at least 50% from the maximal 

levels measured in both clades of Trichodesmium (Figure 5).  Interestingly, the [Fe’] 

value where this reduction in N2 fixation rates and increase in isiB expression occurs is 

approximately the same [Fe’] in both clades of Trichodesmium (0.56 +/- 0.14 nM for 

Tery and 0.70 +/- 0.10 nM for Ten), suggesting that there is not significant niche 

differentiation between the clades based on Fe availability.  These data differ from 

genomic and physiological work in other cyanobacterial groups, which has found that the 

Fe stress response is an area of significant deviation between clades represented in a 

genus (Brand, 1991; Palenik et al., 2006; Rivers et al., 2009).  Furthermore, these results 

suggest that other factors (possibly temperature, etc) are more important than Fe for niche 

differentiation in the Trichodesmium genus.  The conservation of the Fe stress response 

across the two clades further implies that Fe is a common and important stressor for the 

genus. 

Using the information on threshold isiB expression of the Tery clade, we were 

also able to evaluate how quickly Trichodesmium is able to respond to an alleviation of 

Fe stress.   We found that isiB expression dropped within 24-hours of cultures being 

returned to Fe replete medium (Figure 6).  These results are similar to what has been seen 

with idiA gene expression (Shi et al., 2007) and much faster than what has been detected 

using IdiA protein analysis in another cyanobacteria, Synechococcus WH7803, where the 

protein remained detectable even three days after cultures were transferred to Fe replete 

medium (Webb et al., 2001).  These results highlight one of the advantages and 

challenges of looking at RNA verses proteins; RNA is degraded much more rapidly than 

protein and thus reflects the immediate cellular status of the organism.  Meanwhile, 

proteins can persist for some time after they have actively been translated, thus their 

presence does not always reflect the current status of the organism. 

 This study is the first demonstration of Fe limitation using representatives of the 

two major clades of Trichodesmium.  In addition to traditional measurements quantifying 
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the impact that Fe has on productivity, namely growth rates and N2 fixation rates, we 

have added a molecular assessment of Fe limitation for both clades of Trichodesmium.  

This calibrated clade-specific assay allows us to quantify the impact that Fe is having on 

N2 fixation, which should be quite relevant for the development of a field assay for Fe 

limitation in Trichodesmium and thereby improve oceanographic models.   

 

3.5 EXPERIMENTAL PROCEDURES 

3.5.1 Genomic Database Searching.  Genes associated with the Fe scavenging 

and control of Fe homeostasis systems in T. erythraeum IMS101 were identified using 

the Oak Ridge National Laboratory (ORNL) annotation of the genome accessed through 

the Joint Genome Institute (JGI) Internet portal (http://genome.jgi-

psf.org/finished_microbes/trier/trier.home.html).  The closest experimentally-

characterized homolog was determined using Basic Local Alignment Search Tool 

(BLAST) analysis against the GenBank NR database using the Integrated Microbial 

Genomes system of JGI (http://img.jgi.doe.gov/v1.0/main.cgi) (Altschul et al., 1990).   

When appropriate, the presence of a signal peptide region was determined using SignalP 

3.0 (Bendtsen et al., 2004).   

3.5.2 Bacterial Strains.  The four Trichodesmium spp. used in this study were T. 

erythraeum (IMS101 and GBRTRLI101), T. thiebautii (II-3), T. tenue (Z-1 and H94) and 

T. spiralis (KAT) (all but GBRTRLI101 and H94 have been described in Orcutt, 2002).  

All species are currently maintained in both the University of Southern California and the 

Woods Hole Oceanographic Institution culture collections.  All but GBRTRLI101 and 

IMS101 were isolated by Dr. John Waterbury (Paerl et al., 1994; Fu and Bell, 2003).  

GBRTRLI101 was generously provided by Dr. F.X. Fu.  Cultures of IMS101 used in the 

initial nutrient stress experiment were verified to be axenic by direct microscopic 

observations and lack of heterotrophic growth in marine purity medium as described 

(Waterbury et al., 1986).  The five other species and the IMS101 culture used in the Fe 

titration experiment were maintained as bacterized enrichment cultures.  
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3.5.3 Culture Conditions.  With the exception of GBRTRLI101, stock 

Trichodesmium spp. used for sequencing were cultured in a 75% Sargasso seawater 

medium prepared in a similar manner to that described previously (Webb et al., 2001).  

Sargasso seawater, stored in the dark in acid-washed polycarbonate carboys, was filtered 

successively through 1.0 and 0.2 µm Millipore membrane filters and “Tyndalized” by 

heating to boiling in a microwave oven in Teflon containers.  The “Tyndalized” Sargasso 

seawater was then diluted to 75% with steam-sterilized MilliQ-water (Millipore, Bedford, 

MA).  The medium (PMP) was then prepared by addition of filter- or steam-sterilized 

nutrients and trace metals made from tissue-grade chemicals purchased from Sigma 

Chemical to the following concentrations: 5 x 10-7 M EDTA, 8 x 10-6 M phosphoric acid, 

1 x 10-7 M Fe (ferric citrate), 1 x 10-5 M Citric Acid, 1 x 10-7 M MnSO4, 1 x 10-8 M 

ZnCl2, 1 x 10-8 M NaMoO4, 1 x 10-10 M CoCl2, 1 x 10-10 M NiCl2, 1 x 10-10 M NaSeO3, 

and 1.5 µg of vitamin B12/liter.  GBRTRLI101 stocks were grown in an artificial 

seawater medium YBCII (Chen et al., 1996) with Fe added as ferric citrate. All 

Trichodesmium stock cultures were grown in Nalgene® polycarbonate flasks or culture 

bottles (Nalge Nunc International Corporation, Rochester, NY) that had previously been 

cleaned with a 2% solution of Citranox® (Alconox, Inc. White Plains, NY), followed by 

rinses in hot tap water, MilliQ water and at least a 24-hour soak in 0.5 N trace metal 

grade HCl before finally being rinsed in MilliQ water and microwave sterilized with pH 2 

trace metal grade HCl.  Growth conditions typically consisted of a 14 hr:10 hr light:dark 

cycle using cool white fluorescent lamps at ~50 µEin/m2/s and a temperature of 25°C 

unless stated otherwise.  The cultures were kept gently shaking by placement on a model 

3520 LabLine® Orbital Benchtop shaker (Barnstead International, Dubuque, IA) within a 

model I-36 Percival incubator (Percival Scientific Inc., Perry, IA). 

3.5.4 Gene Sequencing.  DNA for sequencing was extracted using a modified 

version of the xanthogenate DNA extraction protocol of Tillet and Neilan (Tillett and 

Neilan, 2000).  Cultures were filtered onto 5-µm polycarbonate filters and then 

resuspended in 100 µl of TE buffer with 50µg/ml RNaseA (Qiagen, Valencia, CA).  The 

only other departures from the Tillet and Neilan protocol were mixing the supernatant 
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following the ice incubation with 700 µl phenol:CHCl3:isoamyl alcohol (25:24:1), 

retaining the top layer of that mixture following centrifugation, and two additional 70% 

ethanol wash steps at the end of the procedure before resuspending the final pellet in 100 

µl sterile MilliQ water.  The genes isiB (234 bp out of a 516 bp gene), feoB (995 bp out 

of a 1821 bp gene), idiA (520 bp out of a 1050 bp gene) and rnpB were amplified from 

the extracted DNA via PCR using iProofTM High-Fidelity DNA polymerase (Bio-Rad 

Laboratories, Hercules, CA) at a final concentration of 1.25 units/PCR reaction.  The 

external primers used to amplify each of the genes from the different species of 

Trichodesmium were designed from the sequenced genome of T. erythraeum IMS101 and 

are listed in Table 3.  The primers used to amplify the rnpB gene were the degenerate 

primers defined in Vioque (Vioque, 1997).  Temperature gradient PCR was used to 

determine optimal annealing temperatures for amplifying feoB, isiB, idiA and rnpB from 

the Trichodesmium species: 55.7°C, 56.1°C, 56.1°C and 55°C, respectively. PCR 

reactions were carried out on a Mastercycler© thermal cycler (Eppendorf AG, Hamburg, 

Germany) with the following holds and cycles: 98°C for 1 min; followed by 35 cycles of 

98°C for 15 seconds, annealing temperature (as listed above) for 30 seconds, 72°C for 45 

seconds; and one dwell at 72°C for 10 min.  Amplified products were purified using the 

QIAquick gel extraction kit (Qiagen, Valencia, CA) and sequenced directly using the 

facilities and protocols of the Josephine Bay Paul Center of the Marine Biological 

Laboratory (Woods Hole, MA).  Sequences were analyzed and assembled using 

Sequencher 4.1 (Gene Codes Corporation, Ann Arbor, MI).  Alignments were generated 

with ClustalX (Thompson et al., 1997).  Gene sequences determined in this study were 

submitted to GenBank with the following accession numbers   (EF110575-EF110583).  

3.5.5 Nutrient Stress Experiments with Axenic IMS101.  Fe-limited, P-limited, 

and replete cultures were prepared using PMP medium as described above and omitting 

ferric citrate and phosphoric acid where appropriate.  To generate the inocula, cells from 

a PMP-grown culture of IMS101 were filtered gently onto a 5-µm polycarbonate filter.  

The filter was then washed with 50 to 100 ml “Tyndalized” Sargasso seawater before the 

cells were resuspended in a small amount of Sargasso seawater and distributed evenly 
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among the various treatment media.  For nutrient limitation experiments, cultures were 

grown in 250 ml of medium in 500 ml Nalgene® baffled polycarbonate flasks that were 

cleaned using the procedure described above.  At least two replicate treatments were 

performed per limitation experiment, and the limitation experiments were repeated three 

times.   The growth of the cultures was monitored throughout the experiment by 

removing aliquots and measuring in vivo fluorescence using an AquaFluorTM hand-held 

fluorometer (Turner Designs, Sunnyvale, CA).  Cells from the culture experiments were 

collected via filtration onto 5-µm polycarbonate filters and frozen in liquid nitrogen for 

later RNA extraction. 

3.5.6 Temperature Optimization. Non-axenic cultures of two T. erythraeum 

strains (IMS101 and GBRTRLI101) and one T. tenue strain (H9-4) were grown in 

triplicate on the modified YBCII medium (Chen et al., 1996) with Fe added as ferric 

citrate.  Cultures were grown in 50 ml polycarbonate tubes with light levels ~140 

µEin/m2/s at 24°C, 26°C, 28°C and 31°C. Growth was monitored daily using a TD-700 

fluorometer with an in vivo Chla filter set (Turner Designs, Sunnyvale, CA). 

3.5.7 Culture experiment with different Fe levels.  Cultures of two T. 

erythraeum strains (IMS101 and GBRTRLI101) and one T. tenue strain (H9-4) were 

grown on modified YBCII medium (Chen et al., 1996) with EDTA held constant and 

varying amounts of ferric citrate added (Berman-Frank et al., 2001).  Media preparation 

and culture handling was carried out using trace-metal clean techniques under HEPA 

filtration and class 100 conditions.  The ferric citrate additions were 0 nM, 10nM, 25nM, 

50nM, 100nM and 250nM, which correspond to concentrations of inorganically 

complexed Fe ([Fe’]) values of 0.15 nM, 0.31 nM, 0.54 nM, 0.94 nM, 1.8 nM and 4.5 

nM.  The Visual MintEQ program (available for free download at 

http://www.lwr.kth.se/English/OurSoftware/vminteq/) was used to complete calculations 

of Fe speciation in the media based on known chemical additions and careful adjustment 

of pH to 8.15 +/- 0.02.  The experiments were done in triplicate for each treatment at the 

optimal temperature for each clade (26°C for Ten and 28ºC for Tery).  Culture growth 

was monitored daily between 2 and 3 hours after the lights turned on in the incubator by 
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pouring an aliquot of each well mixed culture into an acid cleaned 50 ml polycarbonate 

tube and monitoring fluorescence on a TD-700 fluorometer with an in vivo Chla filter set 

(Turner Designs, Sunnyvale, CA).  Before the growth experiment started, cultures were 

acclimated in Fe adjusted media through at least one doubling of cells and then 

transferred into fresh media when growth was balanced.  In some cases, multiple 

transfers were required before growth rates separated between the different treatments.  

Samples were filtered down and frozen in liquid nitrogen for later RNA analysis on the 

morning when all treatments were growing exponentially and growth rates had separated 

between the low and high Fe treatments. This filtering was done using 25 mm 5-µm 

polycarbonate filters ~3-4 hours after the lights turned on in the incubator.  On that same 

day, 30 ml aliquots of the cultures were placed in 60 ml Nalgene® polycarbonate bottles 

(Nalge Nunc International Corporation, Rochester, NY) and N2 fixation rates were 

measured using the acetylene reduction assay (Capone, 1993).  N2 fixation rate 

measurements were based on a linear regression of ethylene concentrations measured 

over three hours after acetylene addition.  Results were normalized to Chl a (Herbland et 

al., 1985).   

3.5.8 Chl a/DNA Normalization.  To ensure that Fe limitation did not affect the 

Chl a/DNA ratio of the cultures, we filtered 15 mls in triplicate from three low Fe and 

three high Fe cultures of GBRTRLI101 (18 filters total) and two low Fe and two high Fe 

cultures of H9-4 (12 filters total).  Two of the 15 ml filters were used to determine the 

average Chl a/ml of each samples/condition.  DNA was extracted from the remaining 

duplicate filters from each biological replicate using the DNeasy Plant Kit (QIAGEN 

Inc., Valencia, CA) and the number of copies of isiB/extraction was determined using the 

standard curve qPCR protocol described below with the DNA extractions added at a 1:10 

dilution.  The number of copies of isiB/ml culture was determined after taking into 

account all dilution steps involved in the extraction procedure.  This value was then 

compared with the Chl a/ml value to determine Chl a/copy of DNA. 

3.5.9 RNA Extraction and cDNA Synthesis.  RNA was extracted using the 

Ribo-PureTM-Bacteria kit (Ambion Inc., Austin, TX) including the optional DNase-I 
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treatment.  Total RNA extracts were quantified using a NanoDrop® ND-1000 Full 

Spectrum UV/Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE).  

Normalized quantities of total RNA extracts were then converted into cDNA using the 

iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA).  As a negative control 

for later RT-PCR reactions, normalized total RNA was also put through the iScript cDNA 

synthesis without the addition of the reverse transcriptase enzyme (later referred to as 

noRT). 

3.5.10 RT Analysis of Gene Expression Axenic IMS101 Nutrient Experiment. 

PCR reactions were performed on cDNA extracts using internal primers for each gene 

designed from the sequenced genome of T. erythraeum (IMS101) (Table 3).  The 15 µl 

reactions were run on a Mastercycler© thermal cycler (Eppendorf AG, Hamburg, 

Germany) with MasterTaq© Taq DNA polymerase (Eppendorf AG, Hamburg, Germany) 

at a final concentration of 1.25 units/PCR reaction per manufacturer’s instructions 

without additional Mg+2 (1x).  Template cDNA was added to a final concentration of 0.32 

ng/µl and primers were added at a final concentration of 1µmol/L.  The PCR reactions 

had the following conditions for each gene:  idiA (95°C for 5 min; 30 cycles of 95°C for 

1 min, 56.1°C for 1 min, 72°C for 30 sec; and 72°C for 10 min), isiB (95°C for 5 min; 35 

cycles of 95°C for 1 min, 57.8°C for 1 min, 72°C for 30 sec; and 72°C for 10 min), and 

feoB (95°C for 5 min; 40 cycles of 95°C for 1 min, 56.1°C for 1 min, 72°C for 30 sec; 

and 72°C for 10 min). 

3.5.11 Quantitative PCR Analysis of Gene Expression from Fe Titration 

Experiment.  Separate qPCR primer sets for the T. erythraeum clade and the T. tenue 

clade were designed using AlleleID® (PREMIER Biosoft International, Palo Alto, CA) 

based on alignments made from our sequencing efforts (Table 3). The primers were 

tested and found to be specific for only the targeted clade, equally efficient across 

multiple representatives from each targeted clade and mixtures of DNA from target and 

non-target clades did not result in inhibition (data not shown).  rnpB was determined to 

be the most stable housekeeping gene with T. erythraeum grown under different Fe, light 

and temperature conditions using geometric averaging of multiple candidate control 
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genes using the GeNorm method (Vandesompele et al., 2002).  The GeNorm method 

calculates the most stable gene pair for a given set of data, and comparisons of our 

various conditions determined that the ranking of the normalization genes from best to 

worst was: rnpB, 16s, glyA and recF.  Relative expression of isiB verses rnpB was 

determined using absolute quantification of each gene and dividing the number of copies 

of the isiB gene determined per sample by the number of copies of the rnpB gene 

determined per sample (Applied Biosystems User Bulletin #2: http://dna-9.int-

med.uiowa.edu/RealtimePCRdocs/Compar_Anal_Bulletin2.pdf) (Larionov et al., 2005).  

The standards used for absolute quantification were cloned PCR products prepared as 

described (Zinser et al., 2006) using the TOPO TA Cloning® Kit for Sequencing 

(Invitrogen Corporation, Carlsbad, CA).  Once cloned, the plasmids were extracted with 

QIAGEN Mini Prep kit (QIAGEN Inc., Valencia, CA), linearized using PstI (New 

England Biolabs® Inc., Ipswich, MA) and quantifed with Quant-iT™ PicoGreen® 

(Invitrogen Corporation, Carlsbad, CA).  qPCR reactions were done on a 7500 Fast Real-

Time PCR System (Applied Biosystems Inc., Foster City, CA) using PowerSYBR® 

Green PCR Master Mix (Applied Biosystems Inc., Foster City, CA) at 1x concentration 

in a 20 µl reaction with a final cDNA concentration of 1-2 nM and a final primer 

concentration of 200nM.  Cycler conditions were 50°C for 2 min, 95°C for 10 min; 40 

cycles of 95°C for 15 sec, 55°C for 1 min with fluorescence being read at 55°C followed 

by dissociation curve analysis from 60°C to 95°C. 

3.5.12 Alleviation of Fe Limitation Experiment.  Following sampling for N2 

fixation and isiB expression, the remaining ~100 ml of two Fe limited cultures of 

GBRTRLI101 were each split into three aliquots and used to inoculate two culture flasks 

containing replete ([Fe’] = 4.5 nM) YBCII medium and one culture flask containing Fe 

omitted ([Fe’] = 0.15 nM) YBCII medium.  This generated four +Fe treatments and two –

Fe treatments.  Samples for isiB expression analysis were taken immediately following 

inoculation and 24 hours later and processed as described in sections 3.5.9 and 3.5.11. 
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Table 2 % Identity for Sequences 
idiA (520 bp out of a 1050 bp gene) 

Taxa  T. erythraeum* T.thiebautii T. spiralis T. tenue** 
T. erythraeum 100 
T. thiebautii 93  100 
T. spiralis 94  98  100 
T. tenue 94  99  99  100 

feoB (995 bp out of a 1821 bp gene) 
Taxa  T. erythraeum T.thiebautii T. spiralis T. tenue 
T. erythraeum 100 
T. thiebautii 95  100 
T. spiralis 95  98  100 
T. tenue 96  98  98  100 

isiB (234 bp out of a 516 bp gene) 
Taxa  T. erythraeum T.thiebautii T. spiralis T. tenue 
T. erythraeum 100 
T. thiebautii 93  100 
T. spiralis 94  99  100 
T. tenue 94  99  100  100 
* T. erythraeum includes IMS101 and GBRTRLI101 strains 
** T. tenue includes Z-1 and H9-4 strains 
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Primer 
Name 5’ Primer 3’ Primer

Target 
Size 
(BP)

idiA 
External AATCTCTATTCTTCCCGTCAC GCTTCTGGACTAACTAAATGTTC 770

idiA 
Internal TCCAGCTAACCTCCGC AATGCCAGCCGCAAC 312

isiB CAAGTCCCGAAGATTTTGATGG CATAACCCTCTGTAGACCAAGACCC 264

isiB QPCR 
(Ten) AAGTGACTGGGCTGGTTTC CAATAGTAGTACCTCCTTTCTCAG 167

isiB  QPCR 
(Tery) AAAGTGACTGGAGTGGTTTC GTAGTACCTCCAAGCCCA 163

feoB 
External ATTTCTCTGAAGGTTCTTAAATG TTATCAACTTAAAGCCAAAGCTC 1983

feoB 
Alternate TGGAATTATTAGATGAGCTTTTCA GCTCCTTGGTAAAAAATGAAAC 1917

feoB 
Internal TCCCAACCTACTAATGCCACA CTTCGGAAAAACCATTGAAA 217

rnpB 
QPCR 
(Ten)

GAATCTATGAACGCAACGGAAC ACCAGCAGTGTCGTGAGG 102

rnpB 
QPCR 
(Tery)

ACCAACCATTGTTCCTTCG CAAGCCTGCTGGATAACG 199

rnpB 
degenerate 
(Vioque, 

1997)

GRTYGAGGAAAGTCCGGRCT RTAAGCCGGRTTCTGT ~324

Table 3.  Primers used in Sequencing (External) and Gene Expression Experiments 
(Internal and QPCR)



 

 

 

Figure 1: Schematic of iron (Fe) acquisition and cellular fate of Fe for T. erythraeum 
IMS101 as predicted from genome analysis.  The numbers correspond to the proteins 
described in Table 1.  Parentheses indicate that the corresponding protein in T. 
erythraeum IMS101 is divergent from experimentally described proteins.  L represents 
Fe-binding ligands. 
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Fig. 2.  Representative growth curve of nutrient limitation culture experiment with 
T. erythraeum IMS101 (A). RFU stands for relative fluorescence units and mea-
sures the orange fluorescence of the cultures.  Arrows T1 and T2 indicate where 
on the growth curve samples were removed for gene expression analysis. (B) 
Agarose gel images showing expression of idiA, feoB and isiB as determined by 
RT-PCR at T1 and T2 in replete culture (Re), Fe limited culture (-Fe), P limited 
culture (-P).  Genomic IMS101 DNA was used as a positive control (DNA).  
Absence of genomic DNA contamination in RNA preparation was confirmed by 
completing the reverse transcription reaction without reverse transcriptase (noRT) 
followed by RT-PCR.
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Fig. 4. Physiological responses to Fe limitation in two clades of Trichodesmium. (A) 
Growth rates of representatives of both clades of Trichodesmium grown on varying 
amounts of [Fe’]. The [Fe’] values were 0.15 nM, 0.31 nM, 0.54 nM, 0.94 nM, 1.8 nM 
and 4.5 nM. (B) Nitrogen fixation rates determined by acetylene reduction normalized 
to μg chl of culture from representatives of both clades of Trichodesmium grown in the 
same media. (C) The relationship of nitrogen fixation rates defined above with culture 
growth rates.  (D) The ratio of chl/DNA in samples from low and high Fe treatments in 
both clades of Trichodesmium.  In all graphs error bars represent standard error of 
biological replicates. 
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Figure. 5. Changes in isiB gene 
expression and N2 fixation in 
response to growth on different Fe 
levels in representatives of both 
phylogenetic clades of Trichodes-
mium.  In both panels A and B, gene 
expression is shown as a ratio of isiB 
gene transcripts divided by the 
number of rnpB gene transcripts in 
the closed symbols and % maximal 
N2 fixation rates are shown in the 
open symbols.  (A) The relationship 
between isiB expression and N2 
fixation rates in six T. erythraeum 
cultures (three IMS101 and three 
GBRTRLI101) grown at each [Fe’] 
treatment.  (B) isiB expression and N2 
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CHAPTER 4: A MOLECULAR DEMONSTRATION OF TRICHODESMIUM-

SPECIFIC FE LIMITATION OF N2 FIXATION IN THE PACIFIC AND ATLANTIC 

OCEANS 
 

4.1 ABSTRACT 

 Diazotrophic cyanobacteria (i.e., Trichodesmium) are important contributors to 

global carbon and nitrogen cycles.  Understanding the environmental factors that control 

their growth and ability to fix N2 is key to developing accurate global ecosystem models 

to predict the effects of climate change.  Iron (Fe) has been shown to be an important 

element for limiting the growth and N2 fixation of Trichodesmium in the laboratory, but 

there has been limited work assessing where this factor limits Trichodesmium in situ.  We 

surveyed Trichodesmium populations in both the Atlantic and Pacific Oceans for Fe 

limitation using a recently developed molecular method involving quantitative reverse 

transcriptase polymerase chain reaction (qRT-PCR) of the isiB gene, encoding 

flavodoxin, in conjunction with measurements of dissolved Fe and PO4.  Fe limitation of 

Trichodesmium was widespread in the Pacific Ocean and minimal to nonexistent in the 

Atlantic Ocean.  We found an inverse correlation between expression of the isiB gene and 

Fe/PO4 that allowed for the calculation of a critical Fe/PO4 value associated with Fe 

limitation of N2 fixation by Trichodesmium, which closely resembled values used in 

predictive global ecosystem models (where Fe speciation was ignored).  In addition to 

validating previous models with quantitative evidence of Fe limitation of N2 fixation in 

the field, the data presented suggests that the majority of dissolved Fe in the open ocean 

is available to Trichodesmium regardless of speciation.  

 

4.2 INTRODUCTION 

Diazotrophic cyanobacteria (e.g. Trichodesmium) are not only important 

contributors to primary production in the upper ocean, but they are also important in the 

nitrogen (N) cycle by providing “new” N to the system through N2 fixation (Capone et 

al., 1997; Montoya et al., 2004).  In certain regions of the ocean, it is believed that 
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diazotrophy accounts for up to 50% of the new N that enters the system (Karl et al., 

2002).  The N from N2 fixation is understood to be critical to the carbon (C) and N cycles 

both regionally (Zehr et al., 2001) and globally (Capone et al., 1997; Gruber and 

Sarmiento, 1997).  It is also thought that changes in N2 fixation rates can potentially 

influence CO2 sequestration over geologic time-scales (Capone et al., 1997; Falkowski, 

1997; Gruber and Sarmiento, 1997).   

For many decades, Trichodesmium was believed to be the only free-living 

cyanobacterial N2 fixer in the open ocean (Mulholland, 2007).  While recent work has 

revealed that unicellular cyanobacteria capable of fixing N can be quite prevalent in the 

ocean (Zehr et al., 2001; Montoya et al., 2004; Grabowski et al., 2008), Trichodesmium is 

still believed to be a major contributor to marine N2 fixation (LaRoche and Breitbarth, 

2005). Despite the importance of Trichodesmium, we still have very limited information 

about the factors that control its N2 fixation rate and distribution, and how N fixed by 

Trichodesmium transfers through the food web (Mulholland, 2007).  Culture work has 

shown that physical factors such as light (Breitbarth et al., 2008) and temperature 

(Breitbarth et al., 2007) are important for Trichodesmium growth and N2 fixation rates.  

In addition to these physical factors, culture work, field correlations and qualitative 

molecular assays have shown that Trichodesmium N2 fixation can be Fe-limited 

(Berman-Frank et al., 2001; Webb et al., 2001; Fu and Bell, 2003; Kustka et al., 2003b; 

Berman-Frank et al., 2007; Shi et al., 2007; Kupper et al., 2008), phosphorus (P) limited 

(Hynes, In Press; Sanudo-Wilhelmy et al., 2001; Dyhrman et al., 2002; Fu et al., 2005; 

Sohm et al., 2008) or Fe-P co-limited (Mills et al., 2004).  What we lack is a quantitative 

assessment of how these factors might be limiting Trichodesmium N2 fixation and a 

better understanding of where in the ocean these chemical factors are important. 

In the modern ocean, Fe is not as biologically accessible as it was when 

cyanobacteria evolved because the thermodynamically stable redox state, Fe(III), has 

both a low solubility (Liu and Millero, 2002) and is strongly complexed by organic 

ligands that may render it unavailable to phytoplankton (Rue and Bruland, 1995; Rue and 

Bruland, 1997).  Consequently, Fe is thought to limit primary production in large areas of 
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the oceans, leading to the development of high nutrient low chlorophyll (HNLC) regions 

(Martin and Fitzwater, 1988; Martin et al., 1991; Coale et al., 1996).  Diazotrophic 

cyanobacteria have a high cellular Fe-requirement associated with the biochemistry of N2 

fixation that is hypothesized to be the result of their originating in an Fe-rich anoxic 

ocean (Kustka et al., 2003a; Kustka et al., 2003b).  Biogeochemical models that 

incorporate measurements of global ocean circulation, dust transport and empirically 

determined physiological data for Fe limitation of phytoplankton have predicted that Fe 

limits diazotrophs, like Trichodesmium, in large areas of the ocean (Moore et al., 2004; 

Moore and Doney, 2007).  Using the information that Fe and PO4 can both limit N2 

fixation, a new plan to mitigate rising CO2 proposes using inputs of Fe and PO4 from the 

deep ocean to stimulate N2 fixation (Karl and Letelier, 2008).  Even as these CO2 

mitigation strategies are proposed, we still lack an understanding of how Trichodesmium 

acquires Fe, what forms of Fe are bioavailable, how they respond to Fe deprivation and 

validation of where they are experiencing Fe limitation, findings that are important steps 

to predicting potential feedbacks on climate change. 

Bottle enrichments, fluorescent staining, and chemical quota correlations have 

been used to make predictions of the factors limiting diazotrophic activity in the oceans 

(Sanudo-Wilhelmy et al., 2001; Dyhrman et al., 2002; Kustka et al., 2003b; Mills et al., 

2004).  These studies suggest that the two primary elements limiting Trichodesmium N2 

fixation in the oceans are Fe and P.  For example, in the Sargasso Sea Trichodesmium is 

thought to be predominantly PO4 stressed (Sanudo-Wilhelmy et al., 2001; Dyhrman et al., 

2002; Sohm and Capone, 2006), findings that agree well with models of the region 

(Moore et al., 2004; Coles and Hood, 2007).  In the equatorial North Atlantic Ocean, 

models disagree whether PO4 alone (Moore et al., 2004) or Fe-PO4 co-limitation (Coles 

and Hood, 2007) are controlling Trichodesmium N2 fixation.  Field assessments of 

Trichodesmium through this region also report a mixture of PO4 limitation (Sanudo-

Wilhelmy et al., 2001; Sohm and Capone, 2006; Sohm et al., 2008) or Fe-PO4 co-

limitation of N2 fixation (Mills et al., 2004). Similar uncertainty exists in the Western 

Pacific Ocean (including the Western Pacific Warm Pool) as this region of the ocean has 
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been understudied with respect to diazotroph assemblages and productivity (Campbell et 

al., 2005; LaRoche and Breitbarth, 2005).  Pigment and flow-cytometric data suggests 

that cyanobacteria are important phytoplankton throughout the region (Blanchot et al., 

1997; Neveux et al., 2006; Matsumoto and Ando, 2009) and there are reports of periodic 

blooms of Trichodesmium that can be seen via satellite (Dupouy et al., 1988).  Model 

data suggests that Fe is likely to be the most important limiting nutrient for diazotrophs in 

the region (Moore et al., 2004), though local to New Caledonia it appears that PO4 

limitation may be an important factor to consider as well (Van Den Broeck et al., 2004; 

Moutin et al., 2005; Rodier and Le Borgne, 2008).  Clearly we need more empirical 

quantitative data to determine which of these factors is controlling N2 fixation by 

Trichodesmium in the field. 

To get a better understanding of in situ Fe limitation of Trichodesmium N2 

fixation, we used a recently developed calibrated molecular method looking at expression 

of the gene encoding flavodoxin, isiB, (Chappell and Webb, submitted) to assess Fe 

limitation in field samples from around the globe in conjunction with measurements of 

PO4 and Fe.  In addition to looking at locations where we expected to find Fe limitation, 

we also explored areas presumed to be PO4 limited and Fe-PO4 co-limited.  In general, 

we found a much higher prevalence of Fe limitation of Trichodesmium in the Pacific 

Ocean verses the Atlantic Ocean, with only one sample from the equatorial Atlantic 

showing evidence of isiB expression above the threshold expression level determined in 

the laboratory.  When we compared the expression data from all the samples with the 

dissolved [Fe] and [PO4] values from those stations, we found a threshold value of [Fe] 

above which there is no evidence of Trichodesmium Fe limitation similar to the value of 

[Fe’] associated with Fe limitation in laboratory cultures, indicating that most of the 

dissolved Fe in the open ocean is available to Trichodesmium regardless of ligand 

speciation.  The relationship we determined between isiB expression and the [Fe]/[PO4] 

ratio, enabled us to calculate an in situ critical [Fe]/[PO4] ratio for Fe limitation, 

providing vetted values that will be useful for improved models.  
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4.3 METHODS 

4.3.1 Dissolved Fe Sampling Procedure.  Sampling took place on three cruises, 

one aboard the R/V Oceanus (cruise OC399-4) between March 22, 2004 and March 30, 

2004 (Figure 1A, Stations 4-12), one aboard the R/V Seward Johnson (cruise SJ0609) 

between July 12, 2006 and July 24, 2006 (Figure 1A, Stations 13-21) and one aboard the 

R/V Kilo Moana (cruise KM0701) as part of the Western Pacific Warm Pool cruise 

between January 12, 2007 and February 9, 2007 (Figure 1B).  Samples for dissolved Fe 

and nutrients were collected either using acid cleaned 10-L Teflon-coated Go-Flo bottles 

(General Oceanics) deployed directly on a Kevlar line (OC399-4) or acid cleaned 5L 

Teflon-coated exterior spring Niskin bottles (Ocean Test Equipment) deployed either 

directly on a Kevlar line (SJ0609) or mounted on a powder-coated rosette that was 

deployed on a Kevlar line (KM0701).  After recovery, the bottles were transferred to a 

trace metal clean “bubble” kept at positive pressure using HEPA filtered air flow in the 

laboratory of the ship (KM0701) or to a trace metal clean van also supplied with HEPA 

filtered air on the deck of the ship (OC399-4 and SJ0609).  The headspace of each bottle 

was pressurized with 0.2 µm filtered ultra high purity (UHP) nitrogen pushing the water 

through a 142 mm 0.4 µm acid-cleaned polycarbonate filter held in a polycarbonate filter 

sandwich (Geotech Environmental Equipment, Inc.).  Water for dissolved Fe analysis 

was collected in acid-cleaned 250 ml low-density polyethylene (LDPE) bottles and 

acidified to pH 1.7 with concentrated high purity HCl (Seastar).  Water for nutrient 

analysis was collected in 10% HCl cleaned high-density polyethylene (HDPE) bottles 

(OC399-4) or 10% HCl cleaned polypropylene 50 ml tubes (SJ0609 and KM0701) and 

immediately frozen at -20°C for later analysis.  Analysis of the PO4 concentrations from 

the Sargasso Sea cruise was reported in (Jakuba et al., 2008).  Samples from SJ0609 and 

KM0701 were sent to the College of Oceanic and Atmospheric Sciences, Oregon State 

University and dissolved inorganic phosphorus (DIP) was analyzed using a Technicon 

AutoAnalyzer II by J. Jennings with a detection level of 6 nmol L-1. 

4.3.2 Dissolved Fe Analysis.  Fe in the seawater samples was determined using 

isotope dilution and magnesium hydroxide preconcentration followed by analysis using 
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inductively coupled mass spectrometry (Wu and Boyle, 1998; Saito and Schneider, 

2006).  Roughly 13.5 ml of sample (exact volume determined gravimetrically) was 

poured into a 15 ml polypropylene centrifuge tube (Globe Scientific Inc.) and 

equilibrated with a 57Fe spike (~0.4 nM) overnight.  The following day, the Mg(OH)2 and 

metals were precipitated out of the sample by the addition of a small amount (~100 µl) of 

high-purity ammonium hydroxide (Seastar Chemicals Inc.).  Following ammonium 

hydroxide addition, the tubes were left undisturbed for 90 s and inverted multiple times to 

fully mix them.  After an additional 90 s, the tubes were centrifuged at 3000 x g for 3 

minutes and the sample was decanted off.  The tubes were then spun at 3000 x g for an 

additional 3 minutes forming a compact pellet, following which the remaining liquid was 

shaken off.  The sample pellets were kept dry until the day of analysis (from a day to a 

week).  On the morning of analysis, pellets were resuspended in 1-2 ml 0.8 N Nitric Acid 

(Seastar).  Samples were analyzed on a Thermo-Finnigan Element 2 (E2) inductively 

coupled mass spectrometer (ICP-MS) in medium resolution mode.  A procedural blank 

was determined by processing 1 ml of low Fe seawater (which provides a negligible 

amount of Fe) and calculating its Fe value as though it were a 13.5 ml sample.   

4.3.3 Collection of Trichodesmium Samples.  A 130 µm-phytoplankton net (Sea-

Gear Corporation, Florida) was towed using a 30 m line at the surface for 10-20 minutes.  

Immediately following the return to the surface, the contents of the tow were taken into 

the air-conditioned laboratory aboard the ship so that the Trichodesmium colonies could 

be separated from the other plankton using polypropylene bulb transfer pipettes.  

Colonies were transferred from the bulk solution into clean 0.4 µm filtered microwave-

sterilized seawater, then they were filtered onto 5 µm polycarbonate filters and stored in 

liquid N2 until RNA processing and analysis.  On OC399-4, 200 ml of the bulk net tow 

was filtered onto 5 µm polycarbonate filters and preserved in liquid N2 without separation 

and rinsing.   

4.3.4 Nitrogen Fixation Measurements.  We measured N2 fixation rates on 

samples from two stations on cruise OC399-4 and five stations on KM0701.  Net tows to 

collect samples were performed immediately before time zero of each N2 fixation 
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incubation experiment, which were targeted for 1100, 1200 and 1300 hrs local time.  10-

20 colonies were placed in 30 ml of filtered seawater in 75 ml Nalgene® polycarbonate 

bottles (Nalge Nunc International Corporation, Rochester, NY).  N2 fixation rates were 

measured using the acetylene reduction assay (Capone, 1993) using a Shimadzu GC-8A 

gas chromatograph with ethylene peaks integrated by a Shimadzu CR8A Chromatopac.  

N2 fixation rate measurements were based on a linear regression of ethylene 

concentrations immediately following acetylene addition and measurements made at one 

and two hours after addition.  Two to three replicate bottles were used for each incubation 

experiment and two replicate samplings of the headspace of each bottle was used for each 

time point.  Results were normalized to Chl a measured using standard techniques 

(Herbland et al., 1985).   

4.3.5 RNA Extraction and cDNA Synthesis.  RNA was extracted using the 

Ribo-PureTM-Bacteria kit (Ambion Inc., Austin, TX) including the optional DNase-I 

treatment.  Total RNA extracts were quantified using a NanoDrop® ND-1000 Full 

Spectrum UV/Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE).  

Normalized quantities of total RNA extracts were then converted into cDNA using the 

iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA).  As a negative control 

for later RT-PCR reactions, normalized total RNA was also put through the iScript cDNA 

synthesis without the addition of the reverse transcriptase enzyme (later referred to as 

noRT). 

 4.3.6 Quantitative PCR Analysis of Gene Expression. Separate qPCR primer 

sets for the Trichodesmium erythraeum clade (Tery) and the Trichodesmium tenue clade 

(Ten) designed and tested previously (Chappell and Webb, submitted) are relisted here 

(Table 1).  qPCR primers were designed for our target Fe stress response gene, isiB, and a 

RNA normalization control gene, rnpB.  Because the majority of samples did not have a 

significant amount of T. erythraeum clade RNA according to rnpB analysis of the cDNA 

(Table 2), we only report expression results for the T. tenue clade.  % Tery = [(# copies of 

Tery clade rnpB)/(# copies of Tery + Ten clade rnpB)] × 100.  Relative expression of isiB 

verses rnpB was determined using absolute quantification of each gene and dividing the 
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isiB gene copy number by the rnpB gene copy number determined for each cDNA sample 

(Applied Biosystems User Bulletin #2: http://dna-9.int-

med.uiowa.edu/RealtimePCRdocs/Compar_Anal_Bulletin2.pdf) (Larionov et al., 2005).  

The standards used for absolute quantification were cloned PCR products prepared as 

described in chapter two of this thesis and (Zinser et al., 2006) using the TOPO TA 

Cloning® Kit for Sequencing (Invitrogen Corporation, Carlsbad, CA).  qPCR reactions 

were done on a 7500 Fast Real-Time PCR System (Applied Biosystems Inc., Foster City, 

CA) using PowerSYBR® Green PCR Master Mix (Applied Biosystems Inc., Foster City, 

CA) at 1x concentration in a 20 µl reaction with a final cDNA concentration of 1-2 nM 

and a final primer concentration of 200nM.  Cycler conditions were 50°C for 2 min, 95°C 

for 10 min; 40 cycles of 95°C for 15 sec, 55°C for 1 min with fluorescence being read at 

55°C followed by dissociation curve analysis from 60°C to 95°C. 

4.3.7 DNA qPCR Test for Specificity of Primers.  Where the biomass on the 

sample was high enough that the entire filter was not used for RNA extraction, DNA was 

extracted from a portion of the filter used for RNA extraction (OC399-4).  Otherwise, 

DNA was extracted from an alternate bulk filter collected at the same station (SJ0609 and 

KM0701).  DNA was extracted using the Mo Bio PowerPlantTM DNA extraction kit (Mo 

Bio Laboratories, Inc. Carlsbad, CA) following manufacturers guidelines including the 

optional DNA Clean-Up protocol.  Following dilution of the DNA samples to ~0.5 ng/µl, 

2 µl of DNA was run in triplicate 20 µl qPCR reactions with both sets of primers (six 

reactions total) to ensure that the ratio of isiB to rnpB in the DNA was the same as that 

found for cultured representatives (i.e., 1:1).  This control was used to ensure that our 

primers were equally efficient with field populations of Trichodesmium as they had been 

with laboratory cultures.   

 

4.4 RESULTS 

4.4.1 Sampling Locations.  Figure 1A shows the cruise track and station 

locations where Trichodesmium colonies were present for the two Atlantic Ocean cruises, 

OC399-4 (stations 4-12) and SJ0609 (stations 13-21).  The station numbers for OC399-4 
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are a subset of the stations referred to in Jakuba et al (2008) and retain the same 

numbering scheme.  SJ0609 was the second half of a two-leg transit across the equatorial 

Atlantic Ocean and retains the numbering scheme of the entire cruise.  The cruise track 

for the Western Pacific Warm Pool cruise is shown in Figure 1B.  The station numbering 

is the same as that of Hynes et al (in press) and Chapter 2 of this thesis.  In all cases, the 

only numbered stations are the ones where expression data is reported.  With the 

exception of OC399-4, where there was a large portion of the cruise that was out of the 

temperature range for Trichodesmium that has been completely left off the map, all 

stations from each cruise are marked along the cruise-track by a point even if they are not 

numbered. 

4.4.2 Fe, PO4 and Expression Data.  The station location, total dissolved [Fe], 

[PO4], [Fe]/[PO4], the expression ratio isiB/rnpB and percent T. erythraeum for all 

stations where detectable levels of Trichodesmium were found are listed in Table 2.  [Fe] 

and [PO4] values are reported for the surface sample from each station, which was taken 

at a depth of 10 m for OC399-4 and 15 m for the other two cruises.  The [PO4] values 

from OC399-4 are reprinted from Jakuba et al (Jakuba et al., 2008).  A subset of these 

PO4 values were also reported in Dyhrman et al (Dyhrman et al., 2006).  The [PO4] 

values from KM0701 are the same as those graphed in Hynes et al (in press).  OC399-4 

stations are abbreviated with S for Sargasso Sea, SJ0609 stations are abbreviated with E 

for the Equatorial Atlantic Ocean and KM0701 stations are abbreviated with WP for the 

Western Pacific Ocean.  The [Fe] and [PO4] values are also shown in two bar graphs, one 

for the two Atlantic cruises, OC399-4 (S) and SJ0609 (E), (Figure 2A), and one for the 

Pacific cruise, KM0701, (Figure 2B).  The cruise where [Fe] was most variable was in 

the Equatorial Atlantic Ocean.  SJ0609 had the station with the highest [Fe] value of 1.89 

nM on the western side of the basin at Station E21 where surface salinity measurements 

indicate that we were sampling in the Amazon River plume.  At E21, the surface salinity 

measured by the CTD was 32.5, which rose to 36 by a depth of 50 m.  With the exception 

of Station E20, which also had a small lens of low salinity water rising from 33.0 to 35.8 

by a depth of 17 m, surface salinities for the remainder of the transect were between 35.5 



 96 

and 36.1.  SJ0609 also had one of the two stations with the lowest [Fe] of 0.09 nM, which 

was by the equator.  The Western Pacific Ocean also had a range of [Fe], with a high 

value of 0.95 nM close to the islands approaching New Caledonia, but otherwise low [Fe] 

~ 0.2 nM.  The Sargasso Sea had consistently high [Fe] values ranging from 0.82 nM to 

1.17 nM.  The [PO4] values from the three cruises spanned a very large range, from 

below 1.4 nM in the Sargasso Sea to 324 nM in the Western Pacific, which resulted in a 

range of log10 [Fe]/[PO4] from -3.5 in the Western Pacific to -0.13 in the Sargasso Sea.   

 Analysis of the copy numbers of rnpB from the two clades in each cDNA sample 

(clade specific rnpB/total Trichodesmium rnpB), showed that the Ten clade dominated 

the cDNA in our samples (Table 2).  As Tery cDNA was rarely detectable, we only report 

isiB expression data for the Ten clade.  The Ten clade isiB expression, which is listed as 

log10 (isiB/rnpB), also showed a large range from -3.4 in the Sargasso Sea to 0.33 in the 

Western Pacific.  Many of the stations from the Western Pacific and one station from the 

Equatorial Atlantic had expression values above the value associated with a 50% 

reduction in N2 fixation in cultured T. tenue of isiB/rnpB = 0.062 +/- 0.017 or log10 

(isiB/rnpB) = -1.24 +/- 0.1 (Chappell and Webb, submitted). 

 We plotted total dissolved [Fe] verses log10 (isiB/rnpB) (Figure 3A) and log10 

([Fe]/[PO4]) verses log10 (isiB/rnpB) (Figure 3B).  In each plot, the dashed line at log10 

(isiB/rnpB) = -1.2 shows the critical value for log10 (isiB/rnpB) associated with a 50 % 

reduction in N2 fixation rates for the Ten clade (Chappell and Webb, submitted).  As 

shown in Figure 3A, the highest [Fe] value associated with expression above this 

threshold is 0.63 nM +/- 0.02 nM.  A linear relationship was defined by plotting log10 

([Fe]/[PO4]) verses log10 (isiB/rnpB) (Figure 3B).  The equation for this line is log10 

(isiB/rnpB) = (-0.67 +/- 0.13) × log10 ([Fe]/[PO4]) + (-2.7 +/- 0.27), which has an R2 value 

of 0.57.  According to this equation, the critical [Fe]/[PO4] value associated with a 50 % 

reduction in N2 fixation by Trichodesmium in the field is 0.005 +/- 0.007 mol/mol or ≤ 

0.012 mol/mol.   

 We observed a linear relationship between log10 (isiB/rnpB) and N2 fixation rates 

from the subset of stations on KM0701 and OC399-4 where both parameters were 
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measured (Figure 4).  There was only one station from the cruise in the Sargasso Sea 

where we had measurable isiB expression and measured N2 fixation rates.  There was a 

second station with isiB expression that was below detection, which we gave the value 

for log10 (isiB/rnpB) = -3.42, which appears to be the basal expression of isiB in the field.  

Excluding the data from the Sargasso Sea (SS) does not considerably alter the slope of 

the line associated with this relationship and only the line inclusive of the SS data is 

plotted (Figure 4).  The linear relationship with the SS stations included is: nmol N 

fixed/hr/µg chl = (-1.73 +/- 0.41) × ( log10 (isiB/rnpB)) + (1.41 +/- 0.77), which has an R2 

value of 0.77.  The linear relationship with just the samples from KM0701 is: nmol N 

fixed/hr/µg chl = (-2.00 +/- 0.79) × ( log10 (isiB/rnpB)) + (1.35 +/- 0.95), which has an R2 

value of 0.68. 

 

4.5 DISCUSSION 

A number of studies have established the importance of Fe limitation to 

Trichodesmium N2 fixation in the laboratory (Chappell and Webb, submitted; Berman-

Frank et al., 2001; Webb et al., 2001; Fu and Bell, 2003; Kustka et al., 2003a; Kustka et 

al., 2003b; Berman-Frank et al., 2007; Shi et al., 2007; Kupper et al., 2008).  Recently 

these efforts have focused on developing molecular methods that can be used to evaluate 

Fe limitation at the cellular level (Chappell and Webb, submitted; Webb et al., 2001; Shi 

et al., 2007).  The information available on the factors (i.e., Fe) controlling 

Trichodesmium N2 fixation and growth has proved invaluable for modeling regions of the 

ocean (Moore et al., 2004; Coles and Hood, 2007; Moore and Doney, 2007).  Though 

models can be useful tools, empirical verification is required to prove where Fe is 

important in controlling Trichodesmium N2 fixation and determine what parameter of Fe 

(i.e., total, free, inorganically-bound Fe) is important to measure for predicting where Fe 

limitation might be occurring.  The development of a calibrated molecular method to 

evaluate Fe limitation of N2 fixation in Trichodesmium spp. (Chappell and Webb, 

submitted) provided a technique capable of achieving this goal.  This study represents the 
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first quantitative assessment of Fe limitation in field populations of Trichodesmium 

through areas predicted to be Fe limited, PO4 limited and Fe-PO4 co-limited.  

4.5.1 Ten clade predominance in open ocean populations of Trichodesmium.  

Representatives from the Ten clade were the principal component of Trichodesmium 

cDNA at most stations (Table 2).  These results are consistent with reports based on 

morphology from previous field studies that Trichodesmium thiebautii, which is a 

representative from the Ten clade, is the dominant Trichodesmium in the open ocean 

(Carpenter and Price, 1977; Sohm et al., 2008).  While our results indicate that cDNA 

was mostly from the Ten clade, this does not necessarily mean that representatives from 

the Tery clade were not present at some or even many of the stations.  We looked at 

cDNA, so there is the possibility that there was Tery clade DNA present.  If the Tery 

cells were dormant or growing slower for some reason, it would result in a much smaller 

amount of Tery clade cDNA, which might have been below the detection limit of our 

assay.  Also, we were focusing on picked colonies not free trichomes.  There is the 

possibility that we might have missed some Tery clade cDNA if the organisms were 

living as free trichomes and not colonies.  While we may have missed some of the 

diversity of the Trichodesmium in the field, the net tow allowed us to get a concentrated 

sample of Trichodesmium to ensure that we had enough biomass for our downstream 

analyses.  Given the dominance of the Ten clade and that Tery clade cDNA was not 

detected in most of our samples, the remainder of the paper deals only with Ten clade.   

4.5.2 Basin-wide differences in Fe limitation of Trichodesmium.  Most of the 

stations exhibiting Fe limitation were in the Pacific Ocean (Table 2, Figure 3).  Low isiB 

expression in samples from the Sargasso Sea cruise is understandable, given the very low 

values of [PO4] combined with the very high values of [Fe] measured (Table 2, Figure 

2A).  These results agree with previous work suggesting that Trichodesmium in this 

region are PO4 stressed (Sanudo-Wilhelmy et al., 2001; Dyhrman et al., 2002; Sohm and 

Capone, 2006).  The only station in the North Atlantic where we found Trichodesmium 

isiB expression levels indicative of Fe limitation of N2 fixation was EA18, which was a 

station close to the equator where [Fe] was low compared to other parts of the cruise 
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(Table 2, Figure 2A).  The high [PO4] and low [Fe] at this station could have been the 

result of equatorial upwelling having brought nutrient rich water to the surface ocean, 

which resulted in a draw down of surface [Fe] by biological activity.  If upwelling is what 

caused high [PO4] and low [Fe] at stations 16, 17 and 18 (Figure 2A), it may not have 

been recent, as the surface temperatures were not low (all three stations had near surface 

temperatures between 27 ° C and 28.5 ° C), which is consistent with the rest of the cruise 

and does not suggest active upwelling of colder deep water.  The data from this cruise is 

in good agreement with previous work suggesting that the equatorial North Atlantic is 

predominantly PO4 stressed (Sanudo-Wilhelmy et al., 2001; Sanudo-Wilhelmy et al., 

2001; Dyhrman et al., 2002; Dyhrman et al., 2002; Sohm and Capone, 2006; Sohm and 

Capone, 2006; Webb et al., 2007; Sohm et al., 2008; Sohm et al., 2008).  The evidence 

we have showing Fe limitation near the equator supports the hypothesis that parts of the 

North Atlantic have the potential to shift between PO4 and Fe limitation (Mills et al., 

2004; Coles and Hood, 2007).  Further study in this region using a combination of the 

technique used in this study and a complimentary one for PO4 stress of Trichodesmium 

could prove to be a useful way to help determine what drives this shift.  Even without 

such a metric, the data we have at hand shows that Fe limitation of N2 fixation by 

Trichodesmium can occur in the North Atlantic Ocean. 

 The level of isiB expression we measured in the Pacific Ocean was generally 

higher than that of the Atlantic and above the Fe limitation threshold value for the Ten 

clade (Figure 3), indicating that the Ten clade of Trichodesmium was experiencing Fe 

limitation over much of that cruise.  This is in agreement with model data looking at what 

controls diazotroph growth in the oceans (Moore et al., 2004).  There is some data 

suggesting that parts of the southwestern Pacific Ocean are PO4 stressed (Moutin et al., 

2005).  This hypothesis is based on PO4 turnover rates, low seasonal PO4 concentrations 

and a study of bloom dynamics in the coastal region of New Caledonia (Van Den Broeck 

et al., 2004; Moutin et al., 2005; Rodier and Le Borgne, 2008).  Our data do not 

completely rule out the possibility that PO4 may be playing a role in this region, but 

suggest that this effect might be more local to the region immediately surrounding New 
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Caledonia and that in the region between New Caledonia and Australia Fe limitation or 

Fe-PO4 co-limitation is occurring.  The especially high Fe/P ratio of the terrigenous 

inputs to the coastal area immediately off of New Caledonia as a result of the lateritic 

soils would be a very good explanation of this phenomenon (Tenorio et al., 2005).  

During the WP cruise, there was some evidence of P stress using enzyme-labelled 

fluorescence (ELF), which targets alkaline phosphatase activity of Trichodesmium 

colonies though the labeling was minimal in comparison to other regions (Hynes, In 

Press). There is the possibility of Fe-PO4 co-limitation of Trichodesmium at two of these 

stations, WP21 and WP26, where there was some evidence of ELF labeling and isiB 

expression was above the threshold indicative of Fe limitation of N2 fixation.  While at 

station WP17, close to the islands of Vanuatu, there was no evidence of Fe limitation, but 

there was ELF labeling of Trichodesmium.  Taken together these data suggest that Fe and 

P both have the potential to be stressors of Trichodesmium in the Pacific Ocean.   

However, one problem in comparing results from the ELF assay with our isiB expression 

data is that the ELF assay is not quantitative.  Thus, while it indicates that some portion 

of the Trichodesmium population in a given sample is P stressed, it cannot be used as a 

metric for P limitation in the same way as our isiB expression assay can be used as a 

metric for Fe limitation of N2 fixation.  While the non-quantitative nature of the ELF 

assay limits our ability to say anything conclusive about Fe-PO4 co-limitation in the area, 

our isiB expression data for Trichodesmium clearly points to the importance of Fe in the 

region.  

4.5.3 Relationship between isiB expression and dissolved Fe.  Looking at the 

relationship between isiB expression and total dissolved Fe (Figure 3A), we see that there 

is no evidence of isiB expression above the Fe limitation threshold when [Fe] (total 

dissolved < 0.4 µm filtered Fe) is greater than 0.63 nM +/- 0.02 nM.  This value is within 

error of the value of [Fe’] (total inorganically bound Fe) that was associated with Fe 

limitation in cultured populations of Trichodesmium, 0.7 nM +/- 0.1 nM (Chappell and 

Webb, submitted), without adjusting for ligand-specific Fe speciation effects.  When Fe 

speciation effects are taken into account, estimates of [Fe’] are ~ 3 orders of magnitude 
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below [Fe] in the western Pacific transect (Chapter 2, this thesis).  This implies that most 

if not all of the dissolved Fe in the surface oceans is available to Trichodesmium, even 

that bound to organic ligands. We do acknowledge certain concerns associated with 

extrapolating data from laboratory culture studies to the behavior of an organism in the 

field.  For example, laboratory cultures are grown at nutrient and biomass levels much 

higher than those found in the open ocean.  However, we took care to avoid a “blown 

buffer” scenario, which happens when culture biomass is high enough that the Fe needed 

is higher than that released by dissociation with EDTA and results in [Fe’] being lower 

than what would be calculated based on equilibrium dynamics (Saito et al., 2008).  Thus, 

we believe that the EDTA buffer system we used kept the [Fe’] in the steady state at 

biologically relevant levels and as such it is reasonable to extrapolate to the field.  

Furthermore, these data are not completely unexpected as there is genomic evidence to 

support that Trichodesmium has the ability to take up siderophore-bound Fe using a 

TonB-ExbBD protein complex (Chappell and Webb, submitted) as well as field data 

showing that certain types of Fe:ligand complexes (i.e., siderophores) are available to 

Trichodesmium colonies (Achilles et al., 2003).  Our results cannot ascertain the 

mechanism by which this Fe is available to Trichodesmium.  For example, we cannot rule 

out the possibility that the availability of this ligand-bound Fe is controlled by 

photochemical release of Fe from ligands (Barbeau et al., 2003; Barbeau, 2006) instead 

of cellular uptake of the ligand bound Fe.  Additionally it is also possible that cell-surface 

reduction of ligand-bound Fe is involved (Maldonado and Price, 2001), though this 

mechanism has yet to be confirmed in Trichodesmium.  Finally, it is also possible that 

interactions between Trichodesmium and the microbial consortium associated with its 

colonies could be facilitating the uptake of organically bound Fe.  Regardless of the 

uncertainty associated with the cellular mechanism, our data show that total dissolved Fe 

measurements provide useful information on where Trichodesmium is Fe limited in the 

field. 

4.5.4 Relationship between isiB expression and Fe/P.  Even more striking than 

the relationship between isiB expression and [Fe], which is not as robust at both high Fe 
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and low Fe values, is the relationship between isiB expression and the [Fe]/[PO4] ratio.  

The relationship between these two parameters is linear on a log-log plot throughout the 

entire range of samples (Figure 3B).  Given the importance of both Fe and PO4 as 

potential limiting nutrients for Trichodesmium (Berman-Frank et al., 2001; Fu and Bell, 

2003; Kustka et al., 2003b; Fu et al., 2005), it is not surprising that the ratio of [Fe]/[PO4] 

would play a role in determining whether or not Trichodesmium was Fe limited, PO4 

limited, or potentially co-limited.  While we acknowledge that an R2 value of 0.57 is not 

the strongest correlation, there are a variety of reasons to explain why cellular level Fe 

limitation of N2 fixation could be offset from measured [Fe]/[PO4] values.  These 

discrepancies are part of the reason that a molecular diagnostic for Fe limitation in 

Trichodesmium is so important.  We know that Trichodesmium has the capacity to store 

Fe (Castruita et al., 2006), thus a low Fe value or low Fe/PO4 value may not be associated 

with a high expression value if the Trichodesmium has stored Fe and the extracellular Fe 

levels just dropped.  A higher expression level than would be predicted based on Fe/PO4 

could be a result of a recent Fe deposition event that the organism has not had the ability 

to respond to by turning off the expression of the Fe stress genes.  With those caveats 

aside, when we use the linear regression to determine the [Fe]/[PO4] that is associated 

with Fe limitation in field populations of Trichodesmium, we determine that Fe limitation 

is likely to occur below a dissolved [Fe]/[PO4] ratio of 0.005 +/- 0.007 mol/mol.  We 

acknowledge that there is a large amount of error associated with this value, which 

propagates from our extrapolation of three different regressions: [Fe’] verses % maximal 

N2 fixation rates (culture data), [Fe’] verses isiB expression (culture data) and isiB 

expression verses [Fe]/[PO4] (field data).  However, we feel that we can at least place an 

upper limit for the critical dissolved [Fe]/[PO4] value of 0.012 mol/mol, a value that is 

only slightly lower than the critical Fe/PO4 value associated with a transition between Fe 

and PO4 limitation in diazotrophs in the Moore et al model of 2004.  In the model, the 

limiting nutrient is determined by comparing the predicted concentration of various 

nutrients with the half-saturation constants for uptake of each nutrient.  Whichever 

nutrient is in lowest concentration with respect to the half saturation constant is 
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determined to be the limiting nutrient at that point.  The critical value for Fe/PO4 is, in 

essence, the ratio of the half-saturation constants for Fe and PO4, 0.0133 mol/mol (Moore 

et al., 2004), which is close enough to our calculated upper bound of the critical Fe/PO4 

ratio of 0.012 mol/mol that our data can be interpreted as an empirical validation of the 

model parameters.   

 4.5.5 Relationship between isiB expression and N2 fixation rates.  We found an 

inverse relationship between isiB expression and N2 fixation rates in the field (Figure 4).  

This shows that isiB expression is a good marker for Fe limitation of in situ 

Trichodesmium N2 fixation.  We are unable to comment on the validity of using isiB as 

an in situ marker for growth limitation of Trichodesmium as we did not measure C 

fixation on the cruise and our culture data shows that increases in isiB expression and 

decreases in N2 fixation occur before Trichodesmium growth rates are significantly 

impacted (Chappell and Webb, submitted).  However, the correlation between isiB 

expression and N2 fixation rates in the field enables us to translate isiB expression values 

into N2 fixation rates and is supported by previous data linking isiB expression and N2 

fixation rates in laboratory culture experiments (Chappell and Webb, submitted).   

 

4.6 CONCLUSION 

 The data presented in this chapter validates model predictions and demonstrates 

that Fe is an important limiting nutrient for N2 fixation of Trichodesmium in the Pacific 

Ocean while Fe limitation is minimal in the North Atlantic Ocean.  The relationship 

between isiB expression and [Fe]/[PO4] we observed allows us to determine a critical 

[Fe]/[PO4] value that is associated with a shift to Fe limitation, which additionally 

validates the parameters used in model predictions.  The close relationship between both 

the [Fe] value in the field and the [Fe’] value from the laboratory experiments associated 

with the onset of Fe limitation suggests that most if not all of the dissolved Fe in the open 

ocean is available to Trichodesmium regardless of whether or not it is bound to organic 

ligands.  These results mark an improvement of our understanding of what form of Fe is 
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controlling Trichodesmium N2 fixation in the open ocean as well as provide the first 

empirical data for where Fe limitation of Trichodesmium N2 fixation is occurring.   
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Primer Name 5’ Primer 3’ Primer

Target 
Size 
(BP)

isiB QPCR 
(Ten) AAGTGACTGGGCTGGTTTC CAATAGTAGTACCTCCTTTCTCAG 167

isiB  QPCR 
(Tery) AAAGTGACTGGAGTGGTTTC GTAGTACCTCCAAGCCCA 163

rnpB QPCR 
(Ten) GAATCTATGAACGCAACGGAAC ACCAGCAGTGTCGTGAGG 102

rnpB QPCR 
(Tery) ACCAACCATTGTTCCTTCG CAAGCCTGCTGGATAACG 199

Table 1.  Primers used in Gene Expression Experiments
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Station Lat Long Fe (nM) PO4 (µM) Log (Fe/P) Log (isiB/rnpB) % Tery

S4 25.40 -61.15 1.17 +/- 0.04 0.0037 +/- 0.0049ii -0.50 +/- 0.57 -1.96 +/- 0.02 0.05
S6 22.80 -58.93 1.04 +/- 0.08 <0.014i -0.13 +/- 0.43 -2.30 +/- 0.02 0.03
S7 20.00 -57.00 1.15 +/-0.09 0.0136 +/- 0.0049ii -1.07 +/- 0.16 -2.34 +/- 0.04 0.01
S8 20.00 -52.97 1.00 +/- 0.12 0.0017 +/- 0.0001i -0.23 +/- 0.06 BDL 0.00
S9 20.00 -49.73 1.11 +/- 0.04 0.002 +/- 0.0004i -0.26 +/- 0.09 -3.42 +/- 0.09 0.00
S10 20.00 -45.90 1.01 +/- 0.04 0.0058 +/- 0.0049ii -0.76 +/- 0.37 BDL 0.00
S11 20.97 -46.90 0.94 +/- 0.06 0.0016 +/- 0.0004i -0.23 +/- 0.11 -2.21 +/- 0.02 0.24
S12 23.52 -49.68 0.82 +/- 0.05 0.0033 +/- 0.0004i -0.61 +/- 0.06 -2.58 +/- 0.09 0.00
E13 12.40 -27.20 0.74 +/- 0.12 0.045 +/- 0.000 -1.79 +/- 0.07 -1.62 +/- 0.02 0.00
E15 6.60 -30.80 0.61 +/- 0.02 0.016 +/- 0.002 -1.41 +/- 0.06 -1.99 +/- 0.02 0.00
E16 3.30 -32.90 0.09 +/- 0.00 0.037 +/- 0.002 -2.63 +/- 0.03 -1.40 +/- 0.04 0.00
E17 0.01 -34.90 0.14 +/- 0.01 0.076 +/- 0.004 -2.74 +/- 0.02 -1.31 +/- 0.02 0.00
E18 1.80 -38.50 0.10 +/- 0.00 0.031 +/- 0.009 -2.49 +/- 0.13 -1.01 +/- 0.02 0.00
E20 5.60 -45.60 0.67 +/- 0.03 0.035 +/- 0.010 -1.71 +/- 0.13 -1.80 +/- 0.04 0.52
E21 7.50 -49.20 1.89 +/- 0.03 0.068  +/- 0.009 -1.56 +/- 0.06 -1.54 +/- 0.04 0.14

WP10 0.37 -179.64 0.11 +/- 0.04 0.324 +/- 0.000iii -3.48 +/- 0.16 0.33 +/- 0.05 58.81
WP14 -9.25 170.00 0.20 +/- 0.04 0.168 +/- 0.000iii -2.93 +/- 0.09 -1.98 +/- 0.02 0.00
WP15 -12.58 169.86 0.11 +/- 0.03 0.133 +/- 0.002iii -3.08 +/- 0.12 -1.72 +/- 0.01 0.05
WP16 -15.89 169.72 0.29 +/- 0.03 0.169 +/- 0.000iii -2.76 +/- 0.05 -0.14 +/- 0.04 0.39
WP16a -15.98 169.77 0.63 +/- 0.02 0.148 +/- 0.003iii -2.37 +/- 0.02 -0.70 +/- 0.05 16.94
WP17 -19.23 169.58 0.95 +/- 0.02 0.137 +/- 0.004iii -2.16 +/- 0.02 -1.66 +/- 0.03 0.14
WP19 -21.62 168.66 0.50 +/- 0.08 0.073 +/- 0.000iii -2.17 +/- 0.07 -1.29 +/- 0.02 1.13
WP20 -25.67 165.42 0.09 +/- 0.02 0.102 +/- 0.002iii -3.04 +/- 0.10 -0.56 +/- 0.05 0.41
WP21 -29.04 164.34 0.24 +/- 0.02 0.050 +/- 0.002iii -2.32 +/- 0.04 0.13 +/- 0.04 0.00
WP26 -32.42 159.09 0.20 +/- 0.02 0.084 +/- 0.002iii -2.623 +/- 0.05 -0.63 +/- 0.03 0.02

Table 2. Near surface (10-15m) data from stations on all three cruises where isiB 
expression of Trichodesmium was measured.  Standard deviation of triplicate technical 
replicates are given for [Fe] and and the isiB/rnpB ratio and [PO4] from OC399-4 (S) 
and duplicate technical replicates for [PO4] from SJ0609 (E) and KM0701 (WP).  BDL 
= isiB expression was below detection level in the sample.

iPO4 values from Jakuba et al 2008, PO4 values in Dyhrman et al 2006 and Jakuba et al 2008, iiiPO4 

values from Hynes et al, in press.
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Figure 1.  Map of cruise tracks. A. OC399-4 (stations 4-12) in the Sargasso Sea in 
March 2004.  SJ0609 (stations 13-21) east-to-west transect across the equatorial 
Atlantic Ocean in July 2006. B. KM0701 north-to-south transect through the 
Western Pacific Warm Pool during January and February 2007.
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Figure 2. Dissolved (< 0.4 μm filtered) Fe and PO4 measured in surface 
seawater samples from the Atlantic Ocean (A) and Pacific Ocean (B).  Station 
numbers correspond to stations locations listed in Table 2 and plotted in Figure 
1.  Error bars represent the standard deviation of duplicate (PO4) and triplicate 
(Fe) samples.
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Figure 3.  Relationships between log(isiB/rnpB) and both dissolved [Fe] (A) and 
log([Fe]/[PO4]) (B).  A dashed line is placed on each plot at the value 
log(isiB/rnpB)  = -1.2, which is the value associated with a 50% reduction in N2 
fixation in Trichodesmium from previous work (Chappell and Webb submitted).  
The solid line in (B) represents the linear regression of log([Fe]/[PO4]) verses 
log(isiB/rnpB) with the dashed curves on either side representing the 95% confi-
dence intervals.  In both plots, error bars represent the standard deviation of 
triplicate analyses.
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CHAPTER 5. SUMMARY 
5.1 SUMMARY 

 This thesis sheds light on the role that iron (Fe) plays in controlling nitrogen (N) 

fixation in Trichodesmium as well as providing data to increase our understanding of Fe 

chemistry in the understudied region of the southwestern Pacific Ocean.  It is the first 

demonstration using a calibrated molecular method to show Fe limitation of 

Trichodesmium in the field.  As is generally the case with a study of this kind, in addition 

to answering questions, the data points to new questions that need to be answered. 

The data presented in Chapter 2 is a contribution to the growing dataset of 

dissolved Fe and Fe speciation in the surface ocean.  It covers a region where there is 

limited data on trace metal concentrations, which receives very low dust deposition 

(Duce and Tindale, 1991; Jickells, 1999; Wagener et al., 2008).  The profiles of dissolved 

Fe ([Fe]) are well in line with previous work showing low Fe (~0.2 nM) in the surface 

ocean, a small subsurface maximum in Fe (~0.4 nM) (Bruland et al., 1994; Wu et al., 

2001; Boyle et al., 2005) and an increase in Fe below the euphotic zone to values that can 

range between 0.4 nM and 1 nM (Bruland et al., 1994; Johnson et al., 1997; Wu et al., 

2001; Boyle et al., 2005; Johnson et al., 2007).  Values for both the total amount of ligand 

present ([L] = 0.44 – 2.2) and the conditional binding constant (KFe’,L = 1011.7 – 1012.9) are 

within the range of reported values from other open ocean studies of [L] ranging from 

0.33 – 2.5 nM and KFe’,L ranging from 1010.6 - 1013.9 (Rue and Bruland, 1995; van den 

Berg, 1995; Rue and Bruland, 1997; Boye et al., 2001; Powell and Donat, 2001; Boye et 

al., 2003; Croot et al., 2004; Boye et al., 2005; Cullen et al., 2006; van den Berg, 2006; 

Buck and Bruland, 2007; Kondo et al., 2007; Kondo et al., 2008; Rijkenberg et al., 2008).  

While calculations of [L] appear to be associated with a small range of values, 

calculations of KFe’,L appear to be much more variable as is evident from the wide range 

of values reported in the literature.  It is unclear whether these differences are a result of 

true variability of the stability constants of ligands present in given samples or have to do 

with analytical or mathematical differences in how this value is determined.  Given the 

importance of this parameter to determining the value for Fe’, the inorganically bound 
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fraction of dissolved Fe that is though to be an important variable in determining Fe 

bioavailability, accurate measurements of KFe’,L are critical.  A complicating factor in 

comparing Fe speciation data from different studies is that there are many competitive 

ligands used to generate the data and forms of mathematical analysis that people use to 

interpret their data and there has not been significant effort made to standardize these 

measurements.  The intercalibration of Fe speciation methods, which is proposed as part 

of GEOTRACES, should help alleviate any concerns about the ability to compare results 

between groups.   

That caveat aside, by comparing the multitude of Fe speciation studies that have 

been done throughout the world’s oceans, it is becoming apparent that there are specific 

relationships governing ligand concentration in the surface ocean, which appear to be 

related to the amount of total dissolved Fe ([Fe]) present in a given sample and unrelated 

to biological parameters (Buck and Bruland, 2007; Chapter 2).  This relationship suggests 

that at higher values of [Fe], biological factors are less involved in controlling [L] than 

their role as siderophores might imply.  This does not mean that Fe binding ligands are 

not siderophores; it could have to do with different factors such as association with 

colloidal Fe and/or the type of organic ligand present resulting in a protection from UV 

degradation of ligands.  More data on the composition of ligands in the field such as the 

recent study in the North Atlantic looking at ferrioxiamines (Mawji et al., 2008) in 

addition to other ligand classes could help answer if ligand composition is the 

predominant factor governing this relationship.  In addition, studies looking at UV 

degradation of ligands in the field focusing on the colloidal verses soluble fraction of the 

Fe-ligand pool could also help answer the question of what is driving the relationship 

between [Fe] and [L] in samples with higher Fe.     

Another factor that is apparent from the data presented in Chapter 2, is that the 

inorganically bound fraction of Fe ([Fe’]) predicted based on these data is vanishingly 

small (<1 pM).  It is much lower than the value of [Fe’] associated with Fe limitation in 

many species of phytoplankton (Brand, 1991; Chapter 3).  In light of recent work 

suggesting that many organisms are capable of taking up Fe from organic ligands 
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(Hutchins et al., 1999; Maldonado and Price, 2001; Soria-Dengg et al., 2001; Achilles et 

al., 2003; Shaked et al., 2005), the usefulness of determining bulk Fe speciation in field 

samples to approximate bioavailable Fe is called into question.  It may be more useful to 

improve methods to identify and measure the concentration of specific ligands, similarly 

to what has recently been done with ferrioxiamines (Mawji et al., 2008) and test the 

bioavailability of Fe bound to them to various phytoplankton groups, although that is a 

very labor-intensive proposition.   

Limited information regarding the bioavailability of different forms of Fe was one 

of the driving reasons behind the goal of developing a molecular method to assess Fe 

limitation of Trichodesmium in the field.  Because of research suggesting that there were 

differences in N2 fixation rates between different species (Carpenter et al., 1993) and a 

growing body of work separating the cultured representatives of the Trichodesmium 

genus into two distinct clades (Orcutt et al., 2002; Annette Hynes, personal 

communication), merely looking at Fe limitation in Trichodesmium erythraeum seemed 

unlikely to ensure that the method would prove useful in the field.  The work presented in 

Chapter 3 of this thesis shows clade-specific responses to growth under different Fe and 

temperature conditions.  In light of results from Chapter 4 that indicate that 

representatives of the Trichodesmium tenue (Ten) clade are the most abundant or at least 

the most active in the open ocean, it is important that future work to evaluate how 

different physical and chemical factors affect Trichodesmium focus on representatives of 

the Ten clade in addition to the T. erythraeum (Tery) clade.   

In addition to evaluating the differential responses to Fe and temperature between 

the two phylogenetic clades of Trichodesmium, Chapter 3 included the development of a 

calibrated molecular method to assess clade-specific Fe limitation of N2 fixation.  This is 

the first calibrated molecular method for Fe limitation and the first method to evaluate Fe 

limitation that enables for the distinction between the two clades.  In addition to the gene 

predicted to encode for flavodoxin, isiB (Leonhardt and Straus, 1992), which is the gene 

used in the molecular assay, two other genes that could potentially be of interest in future 

molecular assays were identified.  One, idiA, is predicted to encode for a protein involved 
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in a high-affinity ATP-driven Fe (III) uptake system (Michel et al., 1996), and the other, 

feoB, is predicted to encode for a protein involved in Fe (II) uptake (Kammler et al., 

1993).  The data in Chapter 3 showed that these two genes were also expressed during Fe 

limitation of axenic T. erythraeum (IMS101) and well conserved across the 

Trichodesmium genus.  Developing a similar qPCR method for one or both of these genes 

could provide additional information about the timing and control of transcription of the 

Fe stress response.  For example, one gene might be turned on earlier than the others with 

the onset of Fe limitation or turned off with a different response time following the 

alleviation of Fe limitation.  An experiment looking at how the expression of one or all of 

the genes responds to long-term Fe deprivation, beyond what is necessary to draw down 

Fe that has been stored within the cell, could provide useful information about how 

Trichodesmium adapts to growth in low Fe environments.  While these additional 

experiments could provide useful information, they were unnecessary to accomplish the 

goal of this work, which was to design a clade-specific RNA normalized assay for Fe 

limitation of Trichodesmium N2 fixation and use it to assess Fe limitation of 

Trichodesmium in the field.  

The ability to distinguish between the two clades, enabled not only the 

quantification of the levels of Fe limitation associated with N2 fixation in the field, but 

also the determination of the relative contribution of the two clades to the active 

population of Trichodesmium.  The field data indicates that the Ten clade is the dominant 

active form of Trichodesmium in the field.  One important caveat to this conclusion is 

that the samples focused on Trichodesmium colonies, which were collected in a manner 

that selected against the collection of individual trichomes.  It may be that looking at the 

cDNA extracted from a specific volume of water and collected using a filter that would 

catch free trichomes in addition to colonies would indicate that the Tery clade is 

quantitatively important.  If nothing else, the data suggests that the colonial forms of 

Trichodesmium in the open ocean areas sampled in this study are from the Ten clade.  In 

the future, it might also prove useful to compare the relative messenger RNA (mRNA) 

data that the assay provides with a quantitative measurement of DNA from these stations.  
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This could be used to determine if Tery clade representatives are present in a dormant 

form or at very low levels compared to the Ten clade in most of the open ocean, which 

may enable the Tery clade to become a more significant component of the 

Trichodesmium population when conditions change.  Comparing that information with 

auxiliary data such as nutrient and Fe concentrations could help determine which factors 

are controlling niche differentiation between the clades.  

The data in Chapter 4 represents the first survey quantifying Fe limitation of N2 

fixation of Trichodesmium in open ocean gyres.  The data supports model predictions that 

there is widespread Fe limitation of Trichodesmium N2 fixation in the Pacific Ocean 

(Moore et al., 2004).  In comparing results of the [Fe] value associated with Fe limitation 

in the field with the [Fe’] value that found to be limiting in the lab, it appears that all the 

dissolved [Fe] may be available to Trichodesmium, including the Fe that is bound to 

organic ligands.  In addition, by evaluating isiB expression in regions of varying Fe and 

phosphorus (P) concentrations and not just focusing on areas believed to be Fe stressed, it 

appears that there is a relationship between isiB expression and Fe:P.  This relationship 

allowed for the determination of a critical Fe:P value that defines where Fe limitation of 

Trichodesmium commences.  This value is in good agreement with the value that was 

used to predict that Fe was the controlling factor in the Pacific Ocean (Moore et al., 

2004).  In light of this data suggesting that Fe/P is what drives the transition to Fe 

limitation, a corresponding method looking at P limitation would help determine if there 

are areas where co-limitation of Trichodesmium populations is occurring and what the 

boundaries of Fe/P are that are associated with Fe-P co-limitation.    

In conclusion, this thesis has provided data on Fe chemistry for a region where 

there are few measurements.  It has confirmed that Fe ligands are prevalent even in low 

dust regions, though the data in Chapter 4 suggests that these measurements may prove 

unnecessary to attempts to predict Fe limitation of Trichodesmium.  Determining that 

there are differences in the way that representatives from the two phylogenetic clades 

respond to chemical and physical factors and that representatives of the Ten clade are the 

predominant active Trichodesmium spp. in the open ocean are discoveries that will need 
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to be taken into account in future studies.  The development of a method that can be used 

to assess Fe limitation of Trichodesmium in the field in a quantitative manner has 

provided empirical data that support model predictions of Fe limitation of 

Trichodesmium.  Combining this method with a similar method designed to look at P 

limitation would be the best way to evaluate where these two chemical factors are 

controlling Trichodesmium N2 fixation and to answer questions regarding Fe-P co-

limitation.  Developing similar methods for other important groups of phytoplankton 

could help answer questions about where Fe limitation is truly important in the ocean 

without having to deal with complications associated with what form of Fe is 

bioavailable to a given species. 
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APPENDIX A: TABLE OF FE SPECIATION RAW DATA 

Fetotal (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL
0.11 0.7 0.0004 0.05 125.5 0.0080
0.61 2.0 0.0011 0.43 409.4 0.0024
0.86 5.1 0.0027 0.41 152.0 0.0066
1.61 11.0 0.0058 0.64 110.1 0.0091
3.11 27.0 0.0142 0.73 51.2 0.0195
5.11 49.0 0.0258 0.79 30.6 0.0326
8.11 84.0 0.0443 0.71 16.0 0.0625

Fetotal (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL
0.32 1.5 0.0013 0.09 66.8 0.0150
0.57 1.5 0.0013 0.34 252.3 0.0040
0.82 3.5 0.0031 0.29 92.2 0.0108
1.07 4.2 0.0038 0.43 115.3 0.0087
1.82 9.8 0.0088 0.34 39.2 0.0255
3.32 19.0 0.0171 0.46 27.2 0.0367
5.32 33.0 0.0296 0.36 12.3 0.0814

Fetotal (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL
0.20 0.4 0.0002 0.16 696.1 0.0014
0.45 1.1 0.0006 0.34 547.2 0.0018
0.70 1.6 0.0009 0.54 599.2 0.0017
0.95 2.4 0.0014 0.72 527.3 0.0019
1.20 3.4 0.0019 0.87 452.6 0.0022
2.20 8.3 0.0047 1.41 299.0 0.0033
3.20 19.0 0.0108 1.39 129.3 0.0077
8.20 72.0 0.0409 1.37 33.5 0.0298

Table A1. Selected raw data from Chapter 2 titrations

Station 11 15m

Station 13 15m

Station 14 15 m
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Fetotal (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL
0.61 0.6 0.0004 0.54 1364.5 0.0007
0.86 1.5 0.0010 0.69 696.2 0.0014
1.11 3.1 0.0021 0.77 372.0 0.0027
1.36 3.6 0.0024 0.96 401.6 0.0025
1.61 6.0 0.0040 0.94 236.8 0.0042
2.61 8.9 0.0059 1.62 274.2 0.0036
3.61 17.0 0.0113 1.72 152.4 0.0066
5.61 35.0 0.0233 1.72 74.1 0.0135
8.61 63.0 0.0419 1.62 38.6 0.0259

Fetotal (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL
0.50 0.8 0.0004 0.43 1122.0 0.0009
0.75 1.5 0.0007 0.63 864.9 0.0012
1.00 1.0 0.0005 0.92 1897.4 0.0005
1.25 4.4 0.0021 0.89 419.6 0.0024
2.00 12.0 0.0058 1.03 177.2 0.0056
5.50 54.0 0.0261 1.14 43.4 0.0230
8.50 93.0 0.0450 0.98 21.9 0.0458

Fetotal (nM) Current (nA) Fe' FeL FeL/Fe' Fe'/FeL
0.26 0.2 0.0001 0.24 2324.2 0.0004
0.51 0.5 0.0003 0.47 1784.0 0.0006
0.76 1.5 0.0008 0.63 801.5 0.0012
1.01 2.9 0.0015 0.76 498.5 0.0020
1.26 5.5 0.0029 0.78 270.7 0.0037
1.76 10.0 0.0052 0.89 169.2 0.0059
2.26 17.0 0.0089 0.77 86.9 0.0115

Station 19 15m

Station 26 15m

Table A1. Continued

Station 16a 7m



APPENDIX B: DEPTH PROFILES FROM SJ0609 (CHAPTER 4) 

 
 

Station Depth (m) Fe (nM) Stdev
16 15 0.09 0.00
16 30 0.16 0.00
16 60 0.17 0.00
16 90 0.22 0.01
16 120 0.72 0.00
16 150 0.86 0.00
16 220 0.70 0.00
16 250 0.77 0.02

17 12 0.14 0.00
17 30 0.08 0.01
17 60 0.18 0.09
17 90 0.49 0.02
17 150 0.56 0.01
17 290 0.99 0.01

18 15 0.10 0.00
18 30 0.24 0.00
18 60 0.23 0.01
18 90 0.32 0.02
18 120 0.67 0.00
18 150 0.55 0.02
18 220 0.54 0.01
18 290 0.49 0.00

Table 1. Dissolved (<0.4 µm filtered) Fe for Station 
16 (Latitude: 3.30 Longitude: -32.90), Station 17 
(Latitude:0.01 Longitude: -34.90) and Station 18 

(Latitude: 1.80 Longitude: -38.50).
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Figure 1. Dissolved Fe (< 0.4 μm filtered) depth profiles from three stations from 
cruise SJ0609.  (A) Station 16. (B) Station 17. (C) Station 18.  Error bars are 
standard deviations of triplicate analyses.
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