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1. INTRODUCTION 
 
 
Soon after the first “0” was concatenated to a “1” there has been a “software crisis.”  Software 
pervades life and all software, with rare exception, is broken.  Errors range from simple crashes, 
to medical devices harming rather than helping, to security holes that allow attackers to view 
sensitive data and spend large amounts of money that someone else owns.  Finding, fixing, and 
preventing software errors are arguably one of the most important problems in computer science. 
 
The work in this contract aimed to attack this problem in three ways.  First, to commercially 
deploy static program checking techniques we developed in prior work that had proven their 
worth, hopefully achieving wide impact.  Second, to run these commercial tools on widely used 
open source code both to improve such software’s quality and to demonstrate the tools’ 
effectiveness in a transparent way.  Finally, to do new research that would develop more 
powerful methods able to find errors out of the reach of static techniques.  
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2. METHODS, ASSUMPTIONS, AND PROCEDURES 
 
This effort has developed and commercialized static bug-finding and software model checking 
tools we have built at Stanford and Coverity, to identify and remediate vulnerabilities as 
specified in Technical Topic Area 2, Composable and Scalable Secure Systems. 
 
Commercialization focused on static (i.e., compile time) checkers that had shown their ability to 
find large numbers of errors in large source bases quickly, and with few false reports.  
Commercialization was done through Coverity, a company previously founded on research done 
at Stanford.  Coverity also applied these tools to widely used open source projects (as discussed 
below).  The effort at Stanford focused on developing techniques based on symbolic execution 
and model checking that are deeper than static analysis (at least in its usual sense).  A constant 
challenge was making the techniques work on real code: they are significantly more heavy 
weight than static analysis and in the past had not been particularly effective at dealing with non-
toy programs.  As the results in this report show, the tools we built can regularly handle large, 
complex code.  We deployed these tools via open source releases. 
 
We validated all tools built and commercialized by using them to find bugs in important open-
source projects (e.g., Linux, BSD, and many other widely-used projects).  As a crucial part of 
doing so, Coverity built and ran an ongoing “open source hardening” project that automatically 
applied our tools to these projects as a nightly regression and published the bugs in a developer-
available database of errors.  The benefits of automated, regular regressions are fourfold.  First, it 
gave an objective, highly-visible validation that our tools work well on real code.  Second, it 
provided corrective guidance to development, forcing tools to focus on what matters.  Third, it 
strengthened on our relationships with developers on these projects, leading to (among other 
things) valuable user feedback, checking ideas, and (from experience) customer leads.  Finally, 
and in some ways most important, it led to immediate improvements in the vast open-source 
infrastructure that serves as a foundation to much of the nation's computing environments. 
 
Somewhat unusually, much of the contract went according to plan.  There were two main 
deviations from the initial proposal.  First, while the technical aspect of  the race detection and 
security checkers were largely within the realm of what we understood how to do, the users were 
not: commercial users have a somewhat erratic grasp of static analysis which can have a 
surprising impact on what the tool can do.  It’s not enough to find an error --- the tool must 
describe, clearly and in a way that is difficult to misinterpret, why the error is a true error.  At a 
high level, what this means is that the analysis used by the tool is no longer invisible (as it is with 
optimizing compilers).  In particular, each time your tool calls a complicated subroutine in order 
to detect an error, you will essentially have to explain to the user what that routine did.  For 
example, why two pointers are aliased or why a variable can be equal to a given constant.  
Depending on the details of this calculation, this exposition can be surprisingly difficult.  The 
main consequence is that commercialization of checkers did not proceed en masse but started 
with simple ones, refined them, added more complex checkers gradually and in some cases 
scaled back the types of errors reported --- not because the checkers did not find them, but 
because it was too challenging to find ways to describe them so that users would not mark them 
as false positives. 
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The second deviation was the result of a breakthrough in understanding.  We had planned to take 
our FiSC model checker and make it more general and powerful.  We succeeded in producing a 
more general and powerful model checker, but it was fundamentally different than FiSC.  At a 
high level, FiSC worked by importing the code to check into the tool and running it in a fake 
environment.  This fake environment allowed FiSC to easily control all the inputs and 
environmental actions the code saw (for example: when a machine crash happened, when 
memory allocation would fail).  At the time, this approach seemed like the easiest way to go 
since we checked operating system code, which was otherwise hard to manipulate.  The 
breakthrough came when we realized that we could instead interlace the tool into the checked, 
thereby completely eliminating the need to construct a fake environment or simulate anything.  
As a result we were then able to even check commercial software for which we lacked source.  
The interested reader is referred to the eXplode section in this document and the paper included 
in Appendix A. 
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3. RESEARCH RESULTS AND DISCUSSION 
 
Coverity was tasked with commercializing three static analysis methods and developing a 
framework for doing nightly checks of open source projects. Stanford was tasked with 
developing open source tools for model checking and developing effective tools that exploited 
symbolic constraint analysis to find bugs out of the reach of static methods. 
 
We first discuss the results at Coverity and then at Stanford. 
 

3.1 Coverity:  Commercializing Static Checking Tools 
 
The specific static checking tools Coverity developed and productized were: 

• RACE:  a static tool that uses path-sensitive, inter-procedural analysis to detect both race 
conditions and deadlocks.  It is based on our prior work1 and explicitly designed to find 
errors in large, complex, un-annotated multi-threaded systems. 

 
• SECURE:  a suite of security checkers that flag improper stack/heap accessing, integer 

overflow, buffer overflow and user-controllable string management errors.  These are a 
more powerful version of analysis we had done previously.2  In addition it flagged 
potentially time-to-check-to-time-of-use bugs. 

 
• EXTEND:  a programming interface for writing custom static checkers.  It allows 

companies to write their own custom checks that look for domain- or even program-
specific errors. 

 
As one might expect, despite being able to leverage earlier research efforts, commercialization 
had to overcome numerous obstacles that only show up when you go from a few people checking 
a few code bases to thousands of people checking hundreds. 
 
We now give some examples of the specific checkers in SECURE and RACE.  For SECURE:   
 

• Unsafe Use of Returned Values –  NEGATIVE_RETURNS and NULL_RETURNS 
 
In C/C++, when a program calls a function the results are normally passed back to the 
calling code in a return value.  In many cases a function reports errors in its operation, or 
complains about the arguments it was called with, by returning a negative or a NULL 
value. 
 
When the analysis sees that a function can return a negative or NULL value, and a code 
path exists where that value is subsequently used unsafely, then a defect will be flagged. 

                                                 
1  “Racer:  Effective, Static Detection of Race Conditions and Deadlock,” Dawson Engler and Ken Ashcraft, 
Proceedings of the 19th Symposium on Operating Systems Principles, 2003. 
 
2 “Using Programmer Written Compiler Extensions to Catch Security Holes,” Ken Ashcraft and Dawson Engler, 
Proceedings of the Oakland Security Conference, May, 2002. 
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• The TAINTED_SCALAR checker finds many instances where scalars (for example: 

integers) are not properly bounds-checked (sanitized) before being used as array or 
pointer indexes, loop boundaries, or function arguments.  Scalars that are not sanitized 
are considered tainted.  
 
Missing or inadequate scalar validation can cause buffer overflows, integer overflows, 
denials of service, memory corruption, and security vulnerabilities. 
 
Signed scalars must be upper- and lower-bounds checked.  Unsigned integers need only 
an upper-bounds check.  You can also sanitize scalars with an equality check since this 
effectively bounds the value to a single number. 

 
• The TAINTED_STRING checker finds many instances of improper string validation. 

Incorrectly checked strings are the root cause of many security holes.  A simple example 
is reading a string from an environment and writing it to an internal buffer without 
checking that it does not exceed a maximum length.  A trickier example:  forgetting to 
check if an externally supplied string used to do a database lookup has wildcards.  In this 
case an attacker could provide “*” which would match everything, returning the entire 
database.  Other possible attacks include access control violations, environment 
corruption, cross-site scripting, file corruption, format string vulnerabilities, command 
injection, and SQL injection. 
 
Because an array of characters must be validated as opposed to bounds checking a single 
value, string sanitation is inherently more difficult than scalar cleansing.  Doing so, 
therefore, usually means passing the string to a sanitizing function before using it in a 
trusted sink. 
 
To fix tainted string defects, implementers can use a programmer-defined format-string, 
such as syslog(LOG_WARNING, "%s", error_msg).  Or, they can check for format 
specifics before passing to syslog()code. In general, they should run tainted strings 
through a sanitizing routine before using in a potentially unsafe way. 
 

• SECURE_CODING:  is one of the simplest checkers in that it does not use any flow 
information at all but just looks for any use of unsafe functions. 
 
Certain unsafe functions should never be used (such as “gets”), while others have been 
identified a security threat  (such as “strcpy”). Also, some functions that were designed to 
alleviate the problems associated with their predecessors (for example, “strncpy” instead 
of “strcpy”), can still cause issues when used incorrectly. 
 
This set of checkers serve as more of an auditing tool since they flag any call to a 
potentially dangerous function, without analyzing the behavior of the code or the context 
with which the function was called.  As such, it serves to warn of uses of historically 
unsafe functions and possible alternatives. 
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A representative subset of the checkers in RACE: 
 

• The ATOMICITY checker reports defects when it finds a variable definition inside a 
critical section, but the use of that variable outside of that critical section.  A critical 
section is a block of code that accesses a shared resource and that must not be accessed 
concurrently by another thread, and so is protected by a lock.  Both the definition and use 
of the variable must be protected by the same lock. 

 
• The LOCK checker finds many instances of double locks (locks acquired twice) and 

missing locks (missing lock releases). 
 
Two types of locks are supported: 

• Exclusive.  An exclusive lock cannot be acquired recursively and attempt 
to do so will deadlock. 

•  Recursive.  The same thread can recursively acquire a recursive lock. 
 

A lock can be either a global variable or local to a function. LOCK reports a defect when 
the following sequence occurs:  (Note that the values in parenthesis, such as (+lock), are 
a documentation convention used to aid in illustrating the following examples.) 

a. A variable L is locked (+lock). 
b. L is not unlocked (-unlock). 

 
One of the following can now occur: 

a. The path's end is reached (-lock_returned) and L does not appear anywhere in the 
function's return value or its expression. 

b. L is locked again (+double_lock).  (Only for exclusive locks.) 
No errors are reported for functions that intentionally lock a function argument. 

 
Defects are also reported when the following sequence occurs: 

 
a. L is unlocked (+unlock). 
b. L is passed to a function which asserts that lock L is held (+lockassert) 
 

Forgetting to release an acquired lock can result in the program hanging; subsequent 
attempts to acquire the lock fail as the program waits for a release that will never occur. 
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• The MISSING_LOCK checker finds many instances where global variables or fields of 
structs are updated without locks, causing potential race conditions.  Race conditions can 
lead to unpredictable or incorrect program behavior. 
 
The MISSING_LOCK checker tracks when variables are updated with locks.  If a 
variable update is found that does not have a lock, but usually does have a lock, a defect 
is reported. 
 
In the Coverity Defect Manager, events from this checker are displayed in the multi-event 
code browser, which shows the missing lock event, followed by example_lock and 
example_access events.  You can click on the file names to see the events in-line with the 
code. 
 

• The ORDER_REVERSAL checker finds many instances of acquiring locks in the wrong 
order which can potentially cause deadlocks. 
 
Acquiring pairs of locks in the incorrect order can result in the program hanging.  
Because of thread interleaving, it is possible for two threads to each be waiting on a lock 
that the other thread has acquired (deadlock). Other threads attempting to acquire either 
of the two locks will also deadlock. 
 

• The SLEEP checker finds many instances where blocking functions can cause a lock to 
be held too long, preventing other threads trying to acquire the same lock from 
continuing until the lock is released. 
 
Corrective action for this defect includes acquiring the lock after, or releasing the lock 
before, the blocking function call. 
 
Incorrect derivations of blocking functions, such as a function which blocks occasionally 
but not in all cases, are the most common causes of false positives.  You can correct this 
with a model correctly indicating the function's behavior or with an annotation to 
suppress the block model.  The annotation should suppress the blocks property. 
 
 

Both of these suites of checkers have seen wide deployment at Coverity customer sites. 
 

3.2 Coverity:  Open Source Scanning 
 
In addition, Coverity made its suite of checking tools available to qualified open source software 
projects through the SCAN project.  Through the SCAN website site, open source developers can 
retrieve the defects identified by Prevent analyses through a portal accessible only by qualified 
project developers.  The SCAN site is located at: http://scan.coverity.com. 
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The site divides open source projects into rungs based on the progress each project makes in 
resolving defects.  Projects at higher rungs receive access to additional analysis capabilities and 
configuration options.  Projects are promoted as they resolve the majority of defects identified at 
their current rung.  More information on the criteria for the SCAN ladder is available at:  
http://scan.coverity.com/ladder. 
 
The hardware behind the project consists of 6 servers: 5 build machines, and one database/web 
server machine.  The systems run Linux and NetBSD, have 4 processing cores, 4G of RAM, and 
1 or more terabytes of mirrored (Raid 1) disk. 
 
3.3 Stanford 
 
Stanford had two main tasks: 

• Do an open source release of the FiSC file system checker we had built in previous work, 
and extend it to a broader class of code than just file systems. 

 
• Prototype static analysis and model checking tools with integrated logical constraint 

analysis.  The goal here was to find bugs out of the reach of static analysis. 
 
For the first, we obsoleted FiSC by developing a dramatically lighter weight yet more powerful 
approach that worked with a much broader set of applications.  We built an open source version 
of a tool, eXplode, based on this approach instead.  For the second, we developed a very fast 
constraint solver, STP, and two tools that used it to deeply check C code.  The first, EXE, used it 
to find security holes and to automatically generate attacks.  The second, KLEE, used constraints 
to automatically generate inputs that would execute most statements in real code.  We discuss 
each below. 
 
3.4 eXplode:  Systematically Checking Storage Systems 
 
Our main research paper on eXplode is: 
 

• Junfeng Yang, Can Sar, and Dawson Engler, “eXplode: a 
 Lightweight, General System for Finding Serious Errors in 
 Storage Systems,” 7th Symposium on Operating Systems Design 
 And Implementation (OSDI), 2006. 
 
Storage systems such as file systems, databases, and RAID systems have a simple, basic 
contract:  you give them data, they do not lose or corrupt it.  Often they store the only copy, 
making its irrevocable loss almost arbitrarily bad.  Unfortunately, their code is exceptionally 
hard to get right, since it must correctly recover from any crash at any program point, no matter 
how their state was smeared across volatile and persistent memory. 
 
In the paper above, we describe eXplode: a system that makes it easy to systematically check 
real storage systems for errors.  It takes user-written, potentially system-specific checkers and 
uses them to drive a storage system into tricky corner cases, including crash recovery errors. 
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It uses a novel adaptation of ideas from model checking, a comprehensive, heavy-weight formal 
verification technique, that makes its checking more systematic (and hopefully more effective) 
than a pure testing approach while being just as lightweight. 
 
eXplode is effective.  It found serious bugs in a broad range of real storage systems (without 
requiring source code):  three version control systems, BerkeleyDB, an NFS implementation, ten 
file systems, a RAID system, and the popular VMware GSX virtual machine.  We found bugs in 
every system we checked, 36 bugs in total, typically with little effort.  
 
Table 1 gives a rundown of which bugs were where and how much code we required to find 
them.  More complex checkers can find more bugs, but even simple ones find serious errors in 
production code, where an inopportune crash will cause the unrecoverable loss of data. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Table 1:  summary of storage systems checked by eXplode 
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3.5 EXE:  Using Constraint Solving to Automatically Generate Inputs of Death. 
 
Systems code defines an error-prone execution state space built from deeply nested conditionals 
and function call chains, massive amounts of code, and enthusiastic use of casting and pointer 
operations.  Such code is hard to test and difficult to inspect, yet a single error can crash a 
machine or form the basis of a security breach. 
 
We developed EXE, a system designed to automatically find bugs in such code using symbolic 
execution.  The central insight behind EXE is that code can be used to automatically generate its 
own (potentially highly complex) test cases.  At a high level, we mark data from untrusted 
sources as unconstrained symbolic input, which we then run to produce constraints and test 
cases.  Instead of running code on manually generated test cases, EXE runs it on symbolic input 
that is initially free to be any value.  As the code executes, the data is “interrogated”; the results 
of conditional expressions and other operations incrementally inform EXE what constraints to 
place on the values of the input in order for execution to proceed on a given path.  Each time the 
code performs a conditional check involving a symbolic value, EXE forks execution, adding on 
the true path a constraint that the branch condition held while on the false path a constraint that it 
did not.  EXE generates test cases for the program by using a constraint solver to find concrete 
values that satisfy the constraints.  These automatically generated inputs are then fed back into 
the code. 
 
EXE has several novel features.  First, it precisely models all operations on *symbolic* pointers 
-- pointers whose address values are not concrete but instead symbolically constrained.  EXE 
correctly handles: (1) the constraints generated from pointer arithmetic expressions involving 
(concrete or symbolic) pointers and (concrete or symbolic) offsets, (2) reads and writes to 
memory by dereferencing a symbolic pointer, and (3) arrays of symbolic size.  Implementing 
these features involves more subtleties than one may expect.  For example, given a concrete 
pointer "a" and a symbolic variable "i" constrained to be between 0 and n, then the conditional 
expression "if(a[i] ==  10)" is essentially equivalent to a big disjunction: “if(a[0] == 10 || ...  || 
a[n] == 10)”.   
 
Similarly, the assignment “a[i] = 42” can potentially assign to any element in the array that the 
index could name.  By design, because EXE has a precise view of the concrete heap -- which it 
treats as a sequence of untyped bytes whose constraints are induced by observation -- it does not 
matter how data is manipulated or how pointers are manufactured or cast. 
 
Second, EXE symbolically executes all of the C language with bit-level precision.  EXE works 
in the presence of unions, bit-fields, casts, and aggressive bit-operations (such as shifting, 
masking, byte swapping, or check summing).  Every bit of a program executing under test is 
either not symbolic and thus represented exactly in the program's memory, or has a 
corresponding symbolic constraint that is exactly accurate.  Thus, if at any program point in a 
deterministic program we generate a concrete solution for the constraints at that point, and then 
re-execute the program on this solution, the execution is guaranteed to arrive exactly back at this 
point, with concrete values compatible with the current symbolic constraints. 
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Third, EXE amplifies the effect of running a single code path since the use of a constraint solver 
lets it reason about all possible values that the path could be run with, rather than a single set of 
concrete values from an individual test case.  To illustrate, a dynamic memory checker such as 
the Purify tool will only catch an out-of-bounds array access if the index (or pointer) has a 
specific concrete value that is out-of-bounds.  In contrast, EXE will identify this bug if there is 
any possible input value on the given path that can cause an out-of-bounds access to the array.  
In addition, for an arithmetic expression that uses symbolic data, EXE can solve the associated 
constraints for values that cause an overflow or a division by zero.  Moreover, for an "assert" 
statement, EXE searches over all possible input values on the given path for values that cause the 
assert to fail.  If the assert does not fail then either (1) no input on this path can cause it to fail or 
(2) there is a bug in EXE. 
 
Finally, EXE works well on real code.  It automatically found buffer overruns in the very mature 
and audited Berkeley Packet Filter (BPF) code, the Linux networking code, and a server for the 
DHCPD protocol.  EXE can scale up to large, real (and sometimes overly complex) systems 
code. 
 
We had two main papers on EXE, which we discuss below: 
 

• Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar and Dawson 
 Engler, “Automatically Generating Malicious Disks using Symbolic 
 Execution,” IEEE Proceedings on Security and Privacy, 2006. 
 
Many current systems allow data produced by potentially malicious sources to be mounted as a 
file system.  File system code must check this data for dangerous values or invariant violations 
before using it.  Because file system code typically runs inside the operating system kernel, even 
a single unchecked value can crash the machine or lead to an exploit.  Unfortunately, validating 
an allegedly safe file system image is complex: they form directed acyclic graphs (DAGs) with 
complex dependency relationships across massive amounts of data bound together with intricate, 
undocumented assumptions.  We have used EXE to automatically find bugs in such code using 
symbolic execution.  The approach works well in practice:  we checked the disk mounting code 
of three widely-used Linux file systems: ext2, ext3, and JFS and generated concrete disks that 
when mounted would either cause a kernel panic or form the basis of a buffer overflow attack. 
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Figure 1:  symbolic execution overview. 
 
Figure 1 gives an overview of how the system works.  We run Linux at user-level using the user-
mode Linux kernel.  We have a simple test driver that calls the “mount()” system call to mount a 
symbolic disk using one of the three Linux file systems we test (ext2, ext3, or JFS).  EXE runs 
the given file system and whenever it hits an error will emit a raw disk image that triggers it.  
These disk images can be mounted on a live running file system to demonstrate the security hole. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: hex dump of a disk generated by EXE that will cause JFS to crash. 
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Figure 2 gives a hex dump of a 64KB disk generated by EXE that will cause JFS on the Linux 
2.4.27 kernel to dereference a null pointer.  If you save this to a file and mount it with JFS it will 
cause a kernel crash.  To reproduce the null dereference simply create an empty 64K file and set 
the 64th sector to the values in the figure (… indicates repeat of the previous row).   
 

• "EXE: a System for Automatically Generating Inputs of death" Cristian Cadar, Vijay 
Ganesh, Peter M. Pawlowski, David L. Dill, Dawson R. Engler.  Association for 
Computing Machinery (ACM) Conference on Computer and Communication Security, 
2006. 

 
This paper gives an operational view of EXE and applies it to networking code where it found 
numerous security holes including invalid memory reads and writes in a Dynamic Host 
Configuration Protocol (DHCPD server implementation to finding buffer overflow attacks in the 
BSD and Linux packet filter implementations. 
 
In addition, it describes the optimizations done in EXE's custom constraint solver, STP, which 
gains significant speed and simplicity by directly translating constraints to a Boolean 
satisfiability solver. 
 
3.6 KLEE:  Automatically Running Most Statements in Real Code 
 
Our main paper on KLEE:  
 

• “Klee: Unassisted and Automatic Generation of High-Coverage Tests for Complex 
Systems Programs,” Cristian Cadar, Daniel Dunbar and Dawson Engler, Operating 
System Design and Implementation, 2008(Won Best paper) 

 
Many classes of errors, such as functional correctness bugs, are difficult to find without 
executing a piece of code.  The importance of such testing, combined with the difficulty and poor 
performance of random and manual approaches has led us to develop a set of tools based on 
symbolic execution designed to deeply check real code. 
 
At a high-level, these tools use variations on the following idea:  Instead of running code on 
manually- or randomly-constructed input, they run it on symbolic input initially allowed to be 
“anything.”  They substitute program inputs with symbolic values and replace corresponding 
concrete program operations with ones that manipulate symbolic values.  When program 
execution branches based on a symbolic value, the system (conceptually) follows both branches, 
on each path maintaining a set of constraints called the path condition which must hold on 
execution of that path.  When a path terminates or hits a bug, a test case can be generated by 
solving the current path condition for concrete values.  Assuming deterministic code, feeding this 
concrete input to an uninstrumented version of the checked code makes it follow the same path 
and hit the same bug. 
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Our most recent tool, KLEE, is capable of automatically generating tests that achieve high 
coverage on a diverse set of complex and environmentally-intensive programs.  We used it to 
thoroughly check (1) all 89 stand-alone programs in the CoreUtils utility suite, which form the 
core user-level environment installed on almost all Unix systems, and, as such, represent some of 
the most heavily used and tested open-source programs in existence, (2) 72 application in the 
BusyBox utilities suite for embedded systems, and (3) the HiStar operating system kernel. 
KLEE- generated tests achieved high statement coverage --- on average over 90% per tool in 
CoreUtils and BusyBox (median: over 94%) --- and in aggregate significantly beat the coverage 
of the developers' own hand-written test suites. 
 
We also used KLEE as a bug finding tool, applying it to 448 applications (over 433K total lines 
of code), where it found 56 serious bugs, including three in CoreUtils  that had been missed for 
over 15 years.  In addition, we also used KLEE to cross-check purportedly identical BusyBox 
and CoreUtils utilities, finding functional correctness errors and a myriad of inconsistencies. 
 
To support this analysis we developed a new constraint solver, STP, which can efficiently solve 
the types of constraints generated by real code (arrays, bit operations, etc).  Using STP we can 
support all of C with no imprecision, with the exception of floating point, which we have elided. 
 
We now give a more detailed breakdown of these experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure 3 Histogram showing number of programs with the given number 
of executable lines of code 
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Figure 3 gives a breakdown of the CoreUtils program by size.  While they are not millions of 
lines of code, they are not toys, ranging from 2K to 10K executable lines of code:  this count is 
roughly a factor of three smaller than a simple line count, and excludes blank lines, variable 
declarations, structure definitions, etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Coverage with and without failing system calls 

 
Our experiments consisted of running these 89 applications unaltered for an hour apiece with 
KLEE and then taking the tests it generated and rerunning these on uninstrumented versions of 
the programs to get line coverage.  Figure 4 shows the distribution of the line coverage achieved 
on a per application basis.  It sorts applications by their line coverage from least to greatest.  16 
utilities have 100% line coverage, and the average is 91% (median 94.7%!). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: KLEE vs. the developers' manual test suite for CoreUtils.   A bar above 0 means KLEE beat the 
developers and by how much. 
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Figure 5 compares the KLEE generated coverage to that of the developers’ own manual written 
test suite, constructed over a period of 15 years.  It subtracts the developers’ coverage from 
KLEE’s coverage and plots the result.  A bar at 100% means KLEE got 100% coverage and the 
developers got nothing.  A bar below the 0% line means the developers beat KLEE.  As can be 
seen from the graph, this rarely happened (in 9 cases out of 89 utilities). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: KLEE generated inputs (modified for readability) that will cause crashes on version 6.10. 
     
Figure 6 gives KLEE generated command lines of death.  When KLEE finds an error, it solves 
the constraints for the given path to get a concrete input that will trigger that error.  It then 
provides these constraints to developers so that they can replicate the error.  All of these produce 
crashes in CoreUtils version 6.10. 
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4 TRANSITION EFFORTS 
 

4.1 Coverity 
 
Commercialization has gone exceptionally well.  Coverity has met all goals, and shipped the 
results to many customers.  Department of Homeland Security sponsorship has been extremely 
helpful in terms of getting publicity and (as a result) into more companies. 
 
Coverity has grown over the course of the contract from around 50 customers to over 500+ 
customers, with a combined source code base of over a billion lines of code.  It has achieved 
good penetration into The Fortune 500: 57% of software companies, 54% of networking 
companies, 50% of computer companies, and 44% of aerospace companies.  Many of these sales 
have included the checkers developed for this effort to find concurrency errors (RACE) and 
security holes (SECURE). 
 
 
 
 
 
 
 
 

 
 
                         
 
 

Figure 7: Coverity growth in terms of customers and employees up to 2007 
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Figure 7 is a somewhat outdated graphic showing the early history of growth: the initial research 
was started at Stanford in 1999, commercialized in 2003, and after an initial point when 
employees outnumbered customers, switched the other way.  As mentioned above, the trend lines 
have seen even sharper growth on the right, hitting over 500 customers and 120+ employees.  
Despite the current recession, the last quarter set a record in terms of most revenue brought in. 
 
Since 2006, the SCAN site has analyzed over 55 million lines of code on a recurring basis from 
more than 250 open popular source projects such as Firefox, Linux, and PHP.  This represents 
14,238 individual project analysis runs for a total of nearly 10 billion lines of code analyzed. 
Of these 250 projects, over 120 have developers actively working to reduce the number of 
reported defects in their code.  The efforts of these developers have resulted in the elimination of 
more than 8,500 defects in open source programs over a period of 24 months. 
 
The effort has generated significant press, good will, and as can be seen from the bug counts, 
helped remove significant amounts of defects from key open source code.  Additionally, 
numerous sales have come about because of developers have had a good initial impression of 
Coverity, because they either have read about it helping open source or have seen its effects first 
hand on open source they are involved with.  Coverity has significant interest in finding a way to 
continue this effort after the current contract has expired. 
 
With that said, the use of the EXTEND framework to add new, company-specific checkers has 
lagged significantly in comparison to RACE and SECURE.  The main reason is that most 
companies have never used any automatic checker at all.  Thus, usually the bugs found by the 
default Coverity checker suite are all they can handle.  After the initial wave of sales we hope to 
see the more advanced customers pick it up more widely. 
 
There have been literally hundreds of press articles on Coverity and the SCAN effort.   
 
  



19 
 

4.2 Stanford 
 
Both the eXplode storage system checker and KLEE tool for automatically executing most 
statements in code automatically have been made available as open source.  KLEE is the 
cornerstone of the Stanford research group and remains under active development (likely for the 
next several years). 
 
The STP constraint solver developed at Stanford partially funded by DHS has seen wide-spread 
use in a variety of areas, detailed below.  Tools that use STP: 

• MINESWEEPER, Jim Newsome, David Brimley, Prof. Dawn Song and others at 
Berkeley. 

 
• CATCHCONV, David Molnar and Prof. David Wagner at University of California, 

Berkeley 
 

• A backward path-sensitive analysis of C programs to find bugs by Tim Leek from MIT 
Lincoln Labs 

 
• JPF-SE, a symbolic execution extension to the Java Pathfinder model checker by SiSwati 

An and, Corona Pasadena and Willem Visor from NASA Ames Research Center 
 

• REPLAYER, a tool that replays an application dialog between two hosts in order to 
analyze security exploits by Jim Newsome, David Brimley, Prof. Dawn Song and others 
at Carnegie Mellon University (CMU) 
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5 CONCLUSIONS 
 
The effort funded by DHS has met all deliverable goals.   
 
Coverity has commercialized the static checking tools it was tasked with, and has seen great 
commercial success, helped by DHS sponsorship.  During the course of the effort it has grown 
from 50 customers to more than 500, with over a billion lines of code between them. 
 
Stanford has developed several new, powerful tools for checking real code.  The most recent, 
KLEE, can automatically execute most statements in a diverse set of widely used programs. 
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6 RECOMMENDATIONS 
 
The field of effective bug finding has seen a revolution in the past decade.  Real tools have 
emerged that work well on real code.  We expect the next decade to see just as many advances.  
We urge the agency to aggressively fund such efforts. 
 
In addition, we strongly urge the agency to provide a way to have the many tools being 
developed be continuously applied to the open source code crucial to the Nation's infrastructure.  
Doing so both provides effective hardening of key attacker exposed surfaces and serves as a 
rigorous test as to which tools work and which are a waste of effort. 
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8 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

ACM:  ASSOCIATION FOR COMPUTING MACHINERY.  

BPF:  BERKELEY PACKET FILTER. 

BSD:  BERKELEY UNIX 

DHCPD:  COMMONLY USED SERVER THAT IMPLEMENTS THE DYNAMIC HOST 
CONFIGURATION PROTOCOL. 

EXE:  A TOOL DEVELOPED AT STANFORD THAT USES CONSTRAINT-BASED 
EXECUTION TO AUTOMATICALLY GENERATE INPUTS OF DEATH THAT 
CRASH REAL PROGRAMS 

EXPLODE:  A TOOL DEVELOPED AT STANFORD THAT USED A VARIATION ON 
MODEL CHECKING TO DO LIGHTWEIGHT CHECKING OF STORAGE SYSTEMS 
TO FIND WHEN THEY WILL LOSE OR CORRUPT DATA. 

FISC:  THE INITIAL STORAGE CHECKING TOOL THAT EXPLODE (ABOVE) WAS 
BASED ON. 

KLEE:  A TOOL DEVELOPED AT STANFORD THAT USES CONSTRAINT-BASED 
EXECUTION TO AUTOMATICALLY GENERATE INPUTS THAT EXECUTE MOST 
STATEMENTS IN REAL PROGRAMS 

JFS:  FILE SYSTEM FOR LINUX, DEVELOPED BY IBM. 

PREVENT:  GENERIC NAME FOR THE COMMERCIAL TOOL DEVELOPED BY 
COVERITY. 

SQL:  WIDELY USED DATABASE QUERY LANGUAGE 

STP:  AN EFFICIENT CONSTRAINT SOLVER DEVELOPED AT STANFORD USED BY 
BOTH EXE AND KLEE. 



EXPLODE: a Lightweight, General System for Finding Serious Storage
System Errors

Junfeng Yang, Can Sar, and Dawson Engler
Computer Systems Laboratory

Stanford University

Abstract
Storage systems such as file systems, databases, and RAID sys-
tems have a simple, basic contract: you give them data, they do
not lose or corrupt it. Often they store the only copy, making
its irrevocable loss almost arbitrarily bad. Unfortunately, their
code is exceptionally hard to get right, since it must correctly
recover from any crash at any program point, no matter how
their state was smeared across volatile and persistent memory.

This paper describesEXPLODE, a system that makes it
easy to systematically check real storage systems for errors.
It takes user-written, potentially system-specific checkers and
uses them to drive a storage system into tricky corner cases,
including crash recovery errors.EXPLODE uses a novel adap-
tation of ideas from model checking, a comprehensive, heavy-
weight formal verification technique, that makes its checking
more systematic (and hopefully more effective) than a pure test-
ing approach while being just as lightweight.

EXPLODEis effective. It found serious bugs in a broad range
of real storage systems (without requiring source code): three
version control systems, Berkeley DB, an NFS implementation,
ten file systems, a RAID system, and the popular VMware GSX
virtual machine. We found bugs in every system we checked,
36 bugs in total, typically with little effort.

1 Introduction
Storage system errors are some of the most destructive
errors possible. They can destroy persistent data, with
almost arbitrarily bad consequences if the system had
the only copy. Unfortunately, storage code is simultane-
ously both difficult to reason about and difficult to test. It
must always correctly recover to a valid state if the sys-
tem crashes atany program point, no matter what data
is being mutated, flushed (or not flushed) to disk, and
what invariants have been violated. Further, despite the
severity of storage system bugs, deployed testing meth-
ods remain primitive, typically a combination of manual
inspection (with the usual downsides), fixes in reaction
to bug reports (from angry users) and, at advanced sites,
the alleged use of manual extraction of power cords from
sockets (a harsh test indeed, but not comprehensive).

This paper presentsEXPLODE, a system that makes
it easy to thoroughly check real systems for such crash
recovery bugs. It gives clients a clean framework to build
and plug together powerful, potentially system-specific

dynamic storage checkers.EXPLODE makes it easy for
checkers to find bugs in crash recovery code: as they run
on a live system they tellEXPLODEwhen to generate the
disk images that could occur if the system crashed at the
current execution point, which they then check for errors.

We explicitly designedEXPLODE so that clients can
check complex storage stacks built from many different
subsystems. For example, Figure 1 shows a version con-
trol system on top of NFS on top of the JFS file sys-
tem on top of RAID.EXPLODEmakes it quick to assem-
ble checkers for such deep stacks by providing interfaces
that let users write small checker components and then
plug them together to build many different checkers.

Checking entire storage stacks has several benefits.
First, clients can often quickly check a new layer (some-
times in minutes) by reusing consistency checks for one
layer to check all the layers below it. For example, given
an existing file system checker, if we can slip a RAID
layer below the file system we can immediately use the
file system checker to detect if the RAID causes errors.
(Section 9 uses this approach to check NFS, RAID, and
a virtual machine.) Second, it enables strong end-to-end
checks, impossible if we could only check isolated sub-
systems: correctness in isolation cannot guarantee cor-
rectness in composition [22]. Finally, users can localize
errors by cross-checking different implementations of a
layer. If NFS works incorrectly on seven out of eight file
systems, it probably has a bug, but if it only breaks on
one, that single file system probably does (§9.2).

We believeEXPLODE as described so far is a worth-
while engineering contribution. A second conceptual
contribution is its adaptation of ideas from model check-
ing [6, 15, 17], a typically heavyweight formal verifica-
tion technique, to make its checking more systematic
(and thus hopefully more effective) than a pure testing
approach while remaining as lightweight as testing.

Traditional model checking takes a specification of a
system (a “model”) which it checks by starting from an
initial state and repeatedly performing all possible ac-
tions to this state and its successors. A variety of tech-
niques exist to make this exponential search less inef-
ficient. Model checking has shown promise in finding
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Figure 1: A snapshot ofEXPLODE with a stack of storage systems
being checked on the left and the recovery tools being run on the right
after EXPLODE “crashes” the system to generate possible crash disks.
This example checks Subversion running on top of NFS exporting a
JFS file system running on RAID.

corner-case errors. However, requiring implementors to
rewrite their system in an artificial modeling language
makes it extremely expensive for typical storage systems
(read: almost always impractical).

Recent work onimplementation-level model check-
ing [3, 13, 18] eliminates the need to write a model by
using code itself as its own (high-fidelity) model. We
used this approach in prior work to find serious errors
in Linux file systems [30]. However, while more prac-
tical than a traditional approach, it required running the
checked Linux system inside the model checker itself as
a user-space process, which demanded enormously inva-
sive modifications. The nature of the changes made it
hard to check anything besides file systems and, even in
the best case, checking a new file system took a week’s
work. Porting to a new Linux kernel, much less a differ-
ent operating system, could take months.

This paper shows how to get essentially all the model
checking benefits of our prior work with little effort by
turning the checking process inside out. Instead of shoe-
horning the checked system inside the model checker
(or worse, cutting parts of the checked system out, or
worse still, creating models of the checked code) it in-
terlaces the control needed for systematic state explo-
ration in situ, throughout the checked system, reducing
the modifications needed down to a single device driver,
which can run inside of a lightly-instrumented, stock ker-
nel running on real hardware. As a result,EXPLODE can
thoroughly check large amounts of storage system code
with little effort.

Running checks on a live, rather than emulated, sys-
tem has several nice fallouts. Because storage systems
already provide many management and configuration
utilities, EXPLODEcheckers can simply use this pre-built

machinery rather than re-implementing or emulating it.
It also becomes trivial to check new storage systems: just
mount and run them. Finally, any check that can be run
on the base system can also be run withEXPLODE.

The final contribution of the paper is an experimental
evaluation ofEXPLODE that shows the following:
1. EXPLODEcheckers are effective (§7—§9). We found

bugs in every system we checked, 36 bugs in total,
typically with little effort, and often without source
code (§8.1, §9.3). Checking without source code is
valuable, since many robust systems rely on third-
party software that must be vetted in the context of
the integrated system.

2. EXPLODE checkers have enough power to do thor-
ough checks, demonstrated by using it to comprehen-
sively check ten Linux file systems (§7).

3. Even simple checkers find bugs (§8). Tiny check-
ers found bugs in three version control systems (§8.1)
and a widely-used database (§8.2).

4. EXPLODE makes it easy to check subsystems de-
signed to transparently slip into storage stacks (§9).
We reused file system checkers to quickly find er-
rors in RAID (§9.1), NFS (§9.2), and VMware (§9.3),
which should not (but do) break the behavior of stor-
age systems layered above or below them.

The paper is organized as follows. We first state our
principles (§2) and then show how to useEXPLODE to
check an example storage system stack (§3). We then
give an overview ofEXPLODE (§4) and focus on how it:
(1) explores alternative actions in checked code (§5) and
(2) checks crashes (§6). After the experimental evalua-
tion (§7—§9), we discuss our experiences portingEX-
PLODE to FreeBSD (§ 10), contrast with related work
(§11), and then conclude (§12).

2 Principles
In a sense, this entire paper boils down to the repeated
application of a single principle:

Explore all choices: When a program point can
legally do one ofN different actions, fork executionN
times and do each. For example, the kernel memory al-
locator can returnNULL, but rarely does so in practice.
For each call to this allocator we want to fork and do both
actions. The next principle feeds off of this one:

Exhaust states: Do every possible action to a state
before exploring another state. In our context, a state is
defined as a snapshot of the system we check.

We distilled these two principles after several years of
using model checking to find bugs. Model checking has
a variety of tricks, some exceptionally complex. In retro-
spect, these capture the one feature of a model checking
approach that we would take over all others: systemat-
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ically do every legal action to a state, missing nothing,
then pick another state, and repeat. This approach reli-
ably finds interesting errors, even in well-tested code. We
are surprised when it does not work. The key feature of
this principle over traditional testing is that it makes low-
probability events (such as crashes) as probable as high-
probability events, thereby quickly driving the checked
system into tricky corner-cases. The final two principles
come in reaction to much of the pain we had with naive
application of model checking to large, real systems.

Touch nothing. Almost invariably, changing the be-
havior of a large checked system has been a direct path
to experiences that we never want to repeat. The inter-
nal interfaces of such systems are often poorly defined.
Attempting to emulate or modify them produces corner-
case mistakes that model checking is highly optimized to
detect. Instead we try to do everything possible to run
the checked system as-is and parasitically gather the in-
formation we need for checking as it runs.

Report only true errors, deterministically. The er-
rors our system flags should be real errors, reduced to
deterministic, replayable traces. All checking systems
share this motherhood proclamation, but, in our context
it has more teeth than usual: diagnosing even determinis-
tic, replayable storage errors can take us over a day. The
cost of a false one is enormous, as is the time needed to
fight with any non-determinism.

3 How to Check a Storage System
This section shows how clients useEXPLODE interfaces
to check a storage system, using a running example of
a simple file system checker. Clients useEXPLODE to
do two main things to a storage system. First, system-
atically exhaust all possibilities when the checked sys-
tem can do one of several actions. Second, check that it
correctly recovers from a crash. Clients can also check
non-crash properties by simply inserting code to do so
in either their checker or checked code itself without re-
quiring EXPLODE support (for an example see§7.2).

Below, we explain how clients expose decision points
in the checked code (§ 3.1). We then explain the three
system-specific components that clients provide (written
in C++). One, acheckerthat performs storage system
operations and checks that they worked correctly (§3.2).
Two, astorage componentthat sets up the checked sys-
tem (§3.3). Finally, achecking stackthat combines the
first two into a checking harness (§3.4).

3.1 How checked code exposes choice:choose

Like prior model checkers [13, 30],EXPLODE provides
a function,choose, that clients use to select among
possible choices in checked code. Given a program

point that hasN possible actions clients insert a call
“choose(N),” which will appear to fork executionN
times, returning the values0, 1, ..., N − 1 in each child
execution respectively. They then write code that uses
this return value to pick one unique action out of theN
possibilities.EXPLODE can exhaust all possible actions
at thischoose call by running all forked children. We
define a code location that can pick one of several differ-
ent legal actions to be achoice pointand the act of doing
so achoice.

An example: in low memory situations the Linux
kmalloc function can returnNULL when called with-
out the GFP NOFAIL flag. But it rarely does so in
practice, making it difficult to comprehensively check
that callers correctly handle this case. We can use
choose to systematically explore both success and fail-
ure cases of eachkmalloc call as follows:

void * kmalloc(size t size, int flags) {
if ((flags & GFP NOFAIL) == 0)

if(choose(2) == 0)
return NULL ;

. . .

Typically clients add a small number of such calls.
On Linux, we usedchoose to fail six kernel func-
tions: kmalloc (as above),page alloc (page al-
locator), access ok (verify user-provided pointers),
bread (read a block),read cache page (read a
page), andend request (indicate that a disk request
completed). The inserted code mirrors that inkmalloc:
a callchoose(2) and an if-statement to pick whether
to either (0) return an error or (1) run normally.

3.2 Driving checked code: The checker

The client provides a checker thatEXPLODE uses to
drive and check a given storage system. The checker im-
plements five methods:
1. mutate: performs system-specific operations and

calls into EXPLODE to explore choices and to do
crash checking.

2. check: called after eachEXPLODE-simulated crash
to check for storage system errors.

3. get sig: an optional method which returns a byte-
array signature representing the current state of the
checked system. It uses domain-specific knowledge
to discard irrelevant details so thatEXPLODE knows
when two superficially different states are equivalent
and avoids repeatedly checking them. The default
get sig simply records all choices made to pro-
duce the current state.

4. init andfinish: optional methods to set up and
clear the checker’s internal state, called whenEX-
PLODE mounts and unmounts the checked system.
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1 : const char *dir = "/mnt/sbd0/test-dir";
2 : const char *file = "/mnt/sbd0/test-file";
3 : static void do fsync(const char *fn) {
4 : int fd = open(fn, O RDONLY);
5 : fsync(fd);
6 : close(fd);
7 : }
8 : void FsChecker::mutate(void) {
9 : switch(choose(4)) {
10: case 0: systemf("mkdir %s%d", dir, choose(5)); break;
11: case 1: systemf("rmdir %s%d", dir, choose(5)); break;
12: case 2: systemf("rm %s", file); break;
13: case 3: systemf("echo \"test\" > %s", file);
14: if (choose(2) == 0)
15: sync();
16: else {
17: do fsync(file);
18: // fsync parent to commit the new directory entry
19: do fsync("/mnt/sbd0");
20: }
21: check crash now(); // invokes check() for each crash
22: break;
23: }
24: }
25: void FsChecker::check(void) {
26: ifstream in(file);
27: if (!in)
28: error("fs", "file gone!");
29: char buf[1024];
30: in.read(buf, sizeof buf);
31: in.close();
32: if (strncmp(buf, "test", 4) != 0)
33: error("fs", "wrong file contents!");
34: }

Figure 2: Example file system checker. We omit the class initialization
code and some sanity checks.

Checkers range from aggressively system-specific (or
even code-version specific) to the fairly generic. Their
size scales with the complexity of the invariants checked,
from a few tens to many thousands of lines.

Figure 2 shows a file system checker that checks a
simple correctness property: a file that has been syn-
chronously written to disk (using either thefsync or
sync system calls) should persist after a crash. Mail
servers, databases and other application storage systems
depend on this behavior to prevent crash-caused data
obliteration. While simple, the checker illustrates com-
mon features of many checkers, including the fact that it
catches some interesting bugs.

The mutate method callschoose(4) (line 9) to
fork and do each of four possible actions: (1) create a
directory, (2) delete it, (3) create a test file, or (4) delete
it. The first two actions then callchoose(5) and cre-
ate or delete one of five directories (the directory name is
based onchoose’s return value). The file creation ac-
tion callschoose(2) (line 14) and forces the test file to
disk usingsync in one child andfsync in the other. As
Figure 3 shows, onemutate call creates thirteen chil-
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Figure 3: Choices made by one invocation of themutate method in
Figure 2’s checker. It creates thirteen children.

dren.
The checker callsEXPLODE to check crashes. While

other code in the system can also initiate such check-
ing, typically it is themutate method’s responsibil-
ity: it issues operations that change the storage sys-
tem, so it knows the correct system state and when
this state changes. In our example, aftermutate
forces the file to disk it calls theEXPLODE routine
check crash now(). EXPLODE then generates all
crash disks at the exact moment of the call and invokes
thecheck method on each after repairing and mounting
it using the underlying storage component (see§ 3.3).
Thecheck method checks if the test file exists (line 27)
and has the right contents (line 32). While simple, this
exact checker catches an interesting bug in JFS where
upon crash, anfsync’d file loses all its contents trig-
gered by the corner-case reuse of a directory inode as a
file inode (§7.3 discusses a more sophisticated version of
this checker).

So far we have described how a singlemutate call
works. The next section shows how it fits in the check-
ing process. In addition, checking crashes at only a sin-
gle code point is crude; Section 6 describes the routines
EXPLODE provides for more comprehensive checking.

3.3 Setting up checked code: Storage components

SinceEXPLODE checks live storage systems, these sys-
tems must be up and running. For each storage subsys-
tem involved in checking, clients provide a storage com-
ponent that implements five methods:
1. init: one-time initialization, such as formatting a

file system partition or creating a fresh database.
2. mount: set up the storage system so that operations

can be performed on it.
3. unmount: tear down the storage system; used by

EXPLODE to clear the storage system’s state so it can
explore a different one (§5.2).

4. recover: repair the storage system after anEX-
PLODE-simulated crash.

5. threads: return the thread IDs for the storage
system’s kernel threads.EXPLODE reduces non-
determinism by only running these threads when it
wants to (§5.2).
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void Ext3::init(void) {
// create an empty ext3 FS with user-specified block size
systemf("mkfs.ext3 -F -j -b %d %s",

get option(blk size), children[0]−>path());
}
void Ext3::recover() {

systemf("fsck.ext3 -y %s", children[0]−>path());
}
void Ext3::mount(void) {

int ret = systemf("sudo mount -t ext3 %s %s",
children[0]−>path(), path());

if (ret < 0) error("Corrupt FS: Can’t mount!");
}
void Ext3::umount(void) {

systemf("sudo umount %s", path());
}
void Ext3::threads(threadst &thids) {

int thid;
if ((thid=get pid("kjournald")) != −1)

thids.push back(thid);
else

explode panic("can’t get kjournald pid!");
}
Figure 4: Example storage component for theext3 file system. The
C++ class memberchildren chains all storage components that a
component is based on;ext3 has only one child.

Clients write a component once for a given storage sys-
tem and then reuse it in different checkers. Storage sys-
tems tend to be easy to set up, otherwise they will not
get used. Thus, components tend to be simple and small
since they can merely wrap up already-present system
commands (e.g., shell script invocations).

Figure 4 shows a storage component for theext3 file
system that illustrates these points. Its first four methods
call standardext3 commands. The one possibly non-
obvious method isthreads, which returns the thread
ID of ext3’s kernel thread (kjournald) using the ex-
pedient hack of calling the built-inEXPLODE routine
get pid which automatically extracts this ID from the
output of theps command.

3.4 Putting it all together: The checking stack

The checking stack builds a checker by glueing storage
system components together and then attaching a single
checker on top of them. The lowest component of a
checking stack typically is a custom RAM disk (down-
loaded from [24] and slightly modified). WhileEX-
PLODE runs on real disks, using a RAM disk avoids non-
deterministic interrupts and givesEXPLODEprecise, fast
control over the contents of a checked system’s “per-
sistent” storage. The simplest storage stack attaches a
checker to oneEXPLODE RAM disk. Such a stack does
no useful crash checking, so clients typically glue one or
more storage subsystems between these two. Currently a
stack can only have one checker. However, there can be
a fan-out of storage components, such as setting up mul-

// Assemble FS + RAID storage stack step by step.
void assemble(Component*&top, TestDriver *&driver) {

// 1. load two RAM disks with size specified by user
ekm load rdd(2, get option(rdd, sectors));
Disk *d1 = new Disk("/dev/rdd0");
Disk *d2 = new Disk("/dev/rdd1");

// 2. plug a mirrored RAID array onto the two RAM disks.
Raid *raid = new Raid("/dev/md0", "raid1");
raid−>plug child(d1);
raid−>plug child(d2);

// 3. plug an ext3 system onto RAID
Ext3 *ext3 = new Ext3("/mnt/sbd0");
ext3−>plug child(raid);
top = ext3; // let eXplode know the top of storage stack

// 4. attach a file system test driver onto ext3 layer
driver = new FsChecker(ext3);

}

Figure 5: Checking stack: file system checker (Figure 2) on an ext3 file
system (Figure 4) on a mirrored RAID array on twoEXPLODE RAM
disks. We elide the trivial class definitionsRaid andDisk.

tiple RAM disks to make a RAID array. Given a stack,
EXPLODE initializes the checked storage stack by call-
ing eachinit bottom up, and thenmount bottom up.
After a crash, it calls therecover methods bottom up
as well. To unmount,EXPLODE appliesunmount top
down. Figure 5 shows a three-layer storage stack.

4 Implementation Overview

This section gives an overview ofEXPLODE. The next
two sections discuss the implementation of its most im-
portant features: choice and crash checking.

The reader should keep in mind that conceptually what
EXPLODE does is very simple. If we assume infinite re-
sources and ignore some details, the following would ap-
proximate its implementation:
1. Create a clean initial state (§3.3) and invoke the

client’smutate on it.
2. At everychoose(N) call, forkN children.
3. On client request, generate all crash disks and run the

clientcheck method on them.
4. Whenmutate returns, re-invoke it.
This is it. The bulk ofEXPLODE is code for approx-
imating this loop with finite resources, mainly the ma-
chinery to save and restore the checked system so it
can run one child at a time rather than an exponen-
tially increasing number all-at-once. As a result,EX-
PLODE unsurprisingly looks like a primitive operating
system: it has a queue of saved processes, a scheduler
that picks which of these jobs to run, and time slices (that
start whenmutate is invoked and end when it returns).
EXPLODE’s scheduling algorithm: exhaust all possible
combinations of choices within a singlemutate call be-

28



� � � � � � � � � 	 �� 
 �� 
 � � � � � � � 	 � 
 �� �� � � � � � �� � � � � � � � � �� � � � � � � 
 � �
���� � � � � � 
 � ���������� !" #$%&'#(� � � � � � 
 � �� � ) � � 
 * �� � � � � 
 * � +, � � � � � � � � -� .� � � � � � � �/ � � � � � � � � � 	 � � � � � � - -� � � � � ) �� � �

� 	 � 0 � -� � � )� � � �� � � �	 � 12 � �� � � � � 	 � � �� � � / � �� 
 � 1
� � � � � � � � � � � � � � 
 �� � �� � � � � 
 �3 � - �) 12 � �� �

4 5 5 6 5 7 � �) �� � � �)� � � � � 	 � � � � � � 2 � �
� 8 � � � � � � � 	 � 
 �9 ) ) � 8 � �� � � � � � � � � �� � � � � � � � � �

: � � � � � � � � � � � � � � 	 � ; 9 < ) �� �

= > ?
=@ ?

= A ? =B ? = C ?
=D ?= E ?� 8� � 


Figure 6: Simplified view ofEXPLODE’s state exploration loop for the
file system checker in Figure 2; somechoose transitions and method
calls elided for space.

fore doing another (§ 2). (Note that turningEXPLODE

into a random testing framework is easy: never save and
restore states and make eachchoose(N) call return
a random integer[0, N) rather than forking, recording
each choice for error replay.) The above sketch glosses
over some important details; we give a more accurate de-
scription below, but the reader should keep this helpful,
simplistic one in mind.

From a formal method’s perspective, the core ofEX-
PLODE is a simple, standard model checking loop based
on exhausting state choices. Figure 6 shows this view
of EXPLODE as applied to the file system checker of the
previous section; the numbered labels in the figure cor-
respond to the numbers in the list below:
1. EXPLODE initializes the checked system using

client-providedinit methods. It seeds the check-
ing process by saving this state and putting it on the
state queue, which holds all states (jobs) to explore.
It separately saves the created disk image for use as a
pristine initial disk.

2. TheEXPLODE “scheduler” selects a stateS from its
state queue, restores it to produce a running stor-
age system, and invokeschoose to run either the
mutatemethod or one of the checked systems’ ker-
nel threads. In the figure,mutate is selected.

3. mutate invokeschoose to pick an action. In our
example it pickscreat and calls it, transferring
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Figure 7: Snapshot:EXPLODE with Figure 5’s checking stack

control to the running Linux kernel. Thecreat sys-
tem call writes two dirty blocks to the buffer cache
and returns back tomutate.

4. mutate callsEXPLODE to check that the file system
correctly recovers from any crash at this point.

5. EXPLODEgenerates combinations of disks that could
be seen after a crash. It then runs the client code to:
mount the crash disk,recover it, andcheck it. If
these methods flag an error or they crash,EXPLODE

records enough information to recreate this error, and
stops exploring this state.

6. Otherwise EXPLODE returns back intomutate
which in turn returns.EXPLODE checks if it has al-
ready seen the current state using the abstracted rep-
resentation returned byget sig. If it has, it dis-
cards the state to avoid redundant work, otherwise it
checkpoints it and puts it on the state queue.

7. EXPLODE then continues exploring any remaining
choices in the original stateS. If it has exhausted all
choice combinations onS it picks a previously saved
state off the state queue and repeats this process on it.
This loop terminates when the state queue is empty
or the user loses patience. (The number of possible
states means the former never happens.)

After crash checking, the checked system may have a
butchered internal state. Thus, before continuing,EX-
PLODE restores a clean copy of the current state without
doing crash checking (not pictured). In addition, since
checking all possible crash disks can take too long, users
can set a deterministic threshold: if the number of crash
disks is bigger than this threshold,EXPLODE checks a
configurable number of random combinations.

Figure 7 gives a snapshot ofEXPLODE; Table 1 breaks
down the lines of code for each of the components.
It consists of two user-level pieces: a client-provided
checking stack and theEXPLODE runtime, which imple-
ments most of the model checking loop described above.
EXPLODE also has three kernel-level pieces: (1) one or
more RAM disks, (2) a custom kernel module,EKM,
and (3) a modified Linux kernel (either version 2.6.11 or
2.6.15).EXPLODEusesEKM to monitor and determinis-
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Name Line Count

Linux

EKM 1,261
RAM disk Driver 326

Kernel Patch 328
EKM -generated 2,194

BSD
EKM 729

RAM disk Driver 357
Kernel Patch 116

User-mode EXPLODE 5,802
RPC Library 521

Table 1: EXPLODE lines of code (ignoring comments and blank lines),
broken down by modules. TheEKM driver contains 2,194 lines of au-
tomatically generated code (EKM -generated). TheEXPLODEruntime
and the RPC library run at user-level, the rest is in the kernel. The
RPC library is used to check virtual machines (§ 9.3). BSD counts are
smaller because this port does not yet provide allEXPLODE features.

tically control checking-relevant actions done by kernel
code and record system events needed for crashes. The
modified kernel callsEKM to log system events and when
it reaches a choice point. These modifications add 328
lines of mostly read-only instrumentation code, typically
at function entry or exit. We expect them to generally be
done byEXPLODEusers. UnlikeEXPLODE’s user-space
code, its RAM disk driver andEKM are kernel-specific,
but are fairly small and easily ported to a new OS. We re-
cently portedEXPLODE’s core to FreeBSD, which Sec-
tion 10 describes in more detail.

Given all of these pieces, checking works as follows.
First, the user compiles and links their code against the
EXPLODE runtime, and runs the resultant executable.
Second, theEXPLODE runtime dynamically loads its
kernel-level components and then initializes the storage
system. Finally,EXPLODE explores the checked sys-
tem’s states using its model checking loop.

While checking a live kernel simplifies many things,
the downside is that many bugs we find withEXPLODE

cause kernel crashes. Thus, we run the checked system
inside a virtual machine monitor (VMware Workstation),
where it can blow itself up without hurting anyone. This
approach also makes checking a non-super-user opera-
tion, with the usual benefits.

5 Exploring Choices

EXPLODE exhausts a choice point by checkpointing the
current stateS, exploring one choice, restoringS, and
then exploring the other choices. Below we discuss how
EXPLODE implements checkpoint and restore by replay-
ing choices (§ 5.1) deterministically (§ 5.2).

5.1 Checkpointing and restoring states.

A standard checkpoint implementation would copy the
current system state to a temporary buffer, which restore
would then copy back. Our previous storage checking

system, FiSC, did just this [30]. Unfortunately, one can-
not simply save and restore a kernel running on raw hard-
ware, so we had to instead run a heavily-hacked Linux
kernel inside FiSC at user level, turning FiSC into a prim-
itive virtual machine. Doing so was the single largest
source of FiSC complexity, overhead to check new sys-
tems, and limitation on what we could check.

EXPLODE uses computation rather than copying to
recreate states. It checkpoints a stateS by recording
the set of choices the checked code took to reachS. It
restoresS by starting from a clean initial state and re-
playing these choices. Thus, assuming deterministic ac-
tions, this method regeneratesS. Mechanically, check-
point records the sequence ofn choices that producedS
in an array; during replay theith choose call simply
returns theith entry in this array.

This one change led to orders of magnitude reduction
in complexity and effort in usingEXPLODE as opposed
to FiSC, to the degree thatEXPLODE completely sub-
sumes our prior work in almost every aspect by a large
amount. It also has the secondary benefit that states have
a tiny representation: a sequence of integers, one for
each choice point, where the integer specifies which of
N choices were made. Note that some model checkers
(and systems in other contexts [10]) already use replay-
recreation of states, but for error reporting and state size
reduction, rather than for reducing invasiveness. One
problem with the approach is that the restored state’s
timestamps will not match the original, making it harder
to check some time properties.

Naively, it might seem that to reset the checked sys-
tems’ state we have to reboot the machine, re-initialize
the storage system, mount it, and only then replay
choices. This expensive approach works, but fortunately,
storage systems have the observed, nice property that
simply unmounting them clears their in-memory state,
removing their buffer cache entries, freeing up their ker-
nel data structures, etc. Thus,EXPLODE uses a faster
method: call the client-suppliedunmount to clear the
current state, then load a pristine initial state (saved after
initialization) using the client-suppliedmount.

It gets more costly to restore states as the length of
their choice sequence grows. Users can configureEX-
PLODE to periodically chop off the prefix of choice se-
quences. It does so by (1) callingunmount to force the
checked system state to disk and (2) using the resultant
disk image as a new initial state that duplicates the effect
of the choices before theunmount call. The downside
is that it can no longer reorder buffer cache entries from
before this point during crash checking.
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5.2 Re-executing code deterministically

EXPLODE’s restore method only works if it can deter-
ministically replay checked code. We discuss howEX-
PLODEdoes so below, including the restrictions imposed
on the checked system.

Doing the same choices.Kernel code containing a
choose call can be invoked by non-checking code, such
as interrupt handlers or system calls run by other pro-
cesses. Including such calls makes it impossible to re-
play traces. EXPLODE filters them by discarding any
calls from an interrupt context or calls from any process
whose ID is not associated with the checked system.

Controlling threads. EXPLODE uses priorities to
control when storage system threads run (§ 4, bullet 2).
It quiesces storage system threads by giving them the
lowest priority possible using anEKM ioctl. It runs
a thread by giving it a high priority (others still have the
lowest) and calling the kernel scheduler, letting it sched-
ule the right thread. It might seem more sensible forEX-
PLODE to orchestrate thread schedules via semaphores.
However, doing so requires intrusive changes and, in
our experience [30], backfires with unexpected deadlock
since semaphores prevent a given thread from running
even if it absolutely must. Unfortunately, using priorities
is not perfect either, and still allows non-deterministic
thread interleaving. We detect pathological cases where
a chosen thread does not run, or other “disabled” threads
do run using the “last-run” timestamps in the Linux pro-
cess data structure. These sanity checks let us catch when
we generate an error trace that would not be replayable or
when replaying it takes a different path. Neither happens
much in practice.

Requirements on the checked system.The checked
system must issue the samechoose calls across re-
play runs. However, many environmental features can
change across runs, providing many sources of poten-
tial non-deterministic input: thread stacks in different lo-
cations, memory allocations that return different blocks,
data structures that have different sizes, etc. None of
these perturbations should cause the checked code to be-
have differently. Fortunately, the systems we checked
satisfy this requirement “out of the box” — in part be-
cause they are isolated during checking, and nothing be-
sides the checker and their kernel threads call into them
to modify their RAM disk(s). Non-deterministic systems
require modification beforeEXPLODEcan reliably check
them. However, we expect such cases to rarely occur. If
nothing else, usability forces systems to ensure that re-
executing the same user commands produces the same
system state. As a side-effect, they largely run the same
code paths (and thus would hit the samechoose calls).

While checked code must do the samechoose calls
for deterministic error replay, it does not have to allocate
the same physical blocks.EXPLODEreplays choices, but
then regenerates all different crash combinations after the
last choice point until it (re)finds one that fails checking.
Thus, the checked code can put logical contents in differ-
ent physical blocks (e.g., an inode resides in disk block
10 on one run and in block 20 on another) as long as the
logical blocks needed to cause the error are still marked
as dirty in the buffer cache.

6 Checking Crashes
This section discusses crash checking issues:EX-
PLODE’s checking interface (§ 6.1), how it generates
crash disks (§ 6.2), how it checks crashes during recov-
ery (§ 6.3), how it checks for errors caused by application
crashes (§ 6.4), and some refinements (§ 6.5).

6.1 The full crash check interface

The check crashes now() routine is the simplest
way to check crashes.EXPLODE also provides a more
powerful (but complex) interface clients can use to di-
rectly inspect the logEXPLODE extracts fromEKM.
They can also add custom log records. Clients use the
log to determine what state the checked system should
recover to. They can initiate crash checking at any time
while examining the log. For space reasons we do not
discuss this interface further, though many of our check-
ers use it. Instead we focus on two simpler routines
check crashes start andcheck crashes end
that give most of the power of the logging approach.

Clients callcheck crashes start before invok-
ing the storage system operations they want to check and
check crashes end after. For example, assume we
want to check if we can atomically rename a fileA to B
by callingrename and thensync(). We could write
the following code inmutate:�� ������� �� � 	
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����������������������
�������� �������
��������
����������
������� ����� �������� ����� ������� �
� ��� 	� ��� �
� ���
EXPLODEgenerates all crash disks that can occur (inclu-
sively) between these calls, invoking the client’scheck
method on each. Note how the state the system should
recover to changes. At thecheck crashes start
call, the recovered file system should contain bothA
andB. During the process of renaming, the recovered
file system can contain either (1) the originalA andB
or (2) B with A’s original contents. Aftersync com-
pletes, onlyB with A’s original contents should exist.
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This pattern of having an initial state, a set of legal in-
termediate states, and a final state is a common one for
checking. Thus,EXPLODE makes it easy forcheck to
distinguish between these epochs by passing a flag that
tellscheck if the crash disk could occur at the first call
(EXP BEGIN), the last call (EXP END), or in between
(EXP INBETWEEN). We could write a check method to
use these flags as follows:

check(int epoch, . . .) {
if (epoch == EXP BEGIN)

// check (A and B)
else if(epoch == EXP INBETWEEN)

// check (A and B) or B
else // EXP END

// check B
}

EXPLODE uses C++ tricks so that clients can pass an
arbitrary number of arguments to these two routines (up
to a user-specified limit) that in turn get passed to their
check method.

6.2 Generating crash disks

EXPLODE generates crash disks by first constructing the
currentwrite set: the set of disk blocks that currently
could bewritten to disk. Linux has over ten functions
that affect whether a block can be written or not. The
following two representative examples causeEXPLODE

to add blocks to the write set:
1. mark buffer dirty(b) sets the dirty flag of a

block b in the buffer cache, making it eligible for
asynchronous write back.

2. generic make request(req) submits a list of
sectors to the disk queue.EXPLODE adds these sec-
tors to the write set, even if they are clean, which can
happen for storage systems maintaining their own
private buffer caches (as in the Linux port of XFS).

The following three representative examples causeEX-
PLODE to remove blocks from the write set:
1. clear buffer dirty(b) clearsb’s dirty flag.

The buffer cache does not write clean buffers to disk.
2. end request(), called when a disk request com-

pletes. EXPLODE removes all versions of the re-
quest’s sectors from the write set since they are guar-
anteed to be on disk.

3. lock buffer(b), locks b in memory, prevent-
ing it from being written to disk. A subsequent
clear buffer locked(b) will add b to the
write set ifb is dirty.

Writing any subset of the current write set onto the
current disk contents generates a disk that could be seen
if the system crashed at this moment. Figure 8 shows
how EXPLODE generates crash disks; its numbered la-
bels correspond to those below:
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Figure 8: Generating all potential crash disks.

1. As the storage system executes,EKM logs operations
that affect which blocks could be written to disk.

2. EXPLODEextracts this log using anEKM ioctl and
reduces the logged operations to micro-operations
that add or remove blocks from the write set.

3. It then applies these add and remove operations, in
order, to the initial write set.

4. Whenever the write set shrinks, it generates all pos-
sible crash disks by applying all subsets of the write
set to the current disk. (Doing so when the write set
shrinks rather than grows makes it trivial to avoid du-
plicate work.)

Note that the write set tracks a block’s contents in addi-
tion to the block itself. Naively it may appear that when
EXPLODEadds a blockb to the write set it should replace
any previous copy ofb with this more recent one. (Our
previous work [30] did exactly this.) However, doing so
misses errors. For example, in the figure, doing so misses
one crash disk(B11, B21) since the second insertion of
blockB1 replaces the previous versionB11 with B12.

6.3 Checking crashes during recovery

Clients can also useEXPLODE to check that storage sys-
tems correctly handle crashes during recovery. Since en-
vironmental failures are correlated, once one crash hap-
pens, another is not uncommon: power may flicker re-
peatedly in a storm or a machine may keep rebooting
because of a bad memory board.EXPLODE generates
the disks that could occur if recovery crashes, by track-
ing the write set produced while runningrecover, and
then applying all its subsets to the initial crash disk. It
checks these “crash-crash” disks as it would a crash disk.
Note this assumes recovery is idempotent in that if a cor-
rect recovery with no crash produces stateSvalid then so
should a prematurely crashed repair followed by a suc-
cessful one. We do not (but could) check for further
crashes during recovery since implementors seem unin-
terested in such errors [30].

6.4 Checking “soft” application crashes

In addition to “hard” machine crashes that wipe volatile
state, EXPLODE can also check that applications cor-
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rectly recover from “soft” crashes where they crashed,
but the operating system did not. Such soft crashes
are usually more frequent than hard crashes with causes
ranging from application bugs to impatient users press-
ing “ctrl-C.” Even applications that ignore hard crashes
should not corrupt user data because of a soft crash.

EXPLODE checks soft crashes in two steps. First, it
runs the checker’smutatemethod and logs all mutating
file system operations it performs. Second, for each log
prefix EXPLODE mounts the initial disk and replays the
operations in the prefix in the order they are issued. If
the log hasn operationsEXPLODE generatesn storage
states, and passes each to thecheck method.

6.5 Refinements

In some cases we remove blocks from the write set too
eagerly. For example, we always remove the sectors as-
sociated withend request, but doing so can miss per-
mutations since subsequent writes may not in fact have
waited for (depended on) the write to complete. Con-
sider the events: (1) a file system writes sector S1, (2)
the write completes, (3) it then writes sector S2. If the
file system wrote S2 without explicitly waiting for the S1
write to complete then these writes could have been re-
ordered (i.e., there is no happens-before dependency be-
tween them). However, we do not want to grovel around
inside storage systems rooting out these false dependen-
cies, and conservatively treat all writes that complete as
waited for. A real storage system implementor could ob-
viously do a better job.

To prevent the kernel from removing buffers from the
write set, we completely disable the dirty buffer flushing
threadspdflush, and only schedule the kernel thread
kblockd that periodically flushes the disk queue be-
tween calls to the clientmutate method.

If a checked system uses a private buffer cache,EX-
PLODE cannot see all dirty blocks. We partially counter
this problem by doing an unmount before generating
crash disks, which will flush all private dirty buffers to
disk (whenEXPLODEcan add them to its write set). Un-
fortunately, this approach is not a complete solution since
these unmount-driven flushes can introduce spurious de-
pendencies (as we discussed above).

7 In-Depth Checking: File Systems
This section demonstrates thatEXPLODE’s lightweight
approach does not compromise its power by replicat-
ing (and sometimes superseding) the results we obtained
with our previous, more strenuous approach [30]. It also
showsEXPLODE’s breadth by using it to check ten Linux
file systems with little incremental effort.

We appliedEXPLODE to all but one of the disk based

file systems on Linux 2.6.11: ext2, ext3, JFS, ReiserFS,
Reiser4, XFS, MSDOS, VFAT, HFS, and HFS+. We
skipped NTFS because repairing a crashed NTFS disk
requires mounting it in Windows. For most file sys-
tems, we used the most up-to-date utilities in the Debian
“etch” Linux distribution. For HFS and HFS+, we had
to download the source of their utilities from OpenDar-
win [14] and compile it ourselves. The storage compo-
nents for these file systems mirrorext3’s component
(§ 3.3). Four file systems use kernel threads: JFS, Reis-
erFS, Reiser4 and XFS. We extracted these thread IDs
using the same trick as withext3.

While these file systems vary widely in terms of im-
plementation, they are identical in one way: none give
clean, precise guarantees of the state they recover to af-
ter a crash. As a result, we wrote three checkers that
focused on different special cases where what they did
was somewhat well-defined. We built these checkers by
extending a common core, which we describe below. We
then describe the checkers and the bugs they found.

7.1 The generic checker core

The basic checker starts from an empty file system
and systematically generates file system topologies up
to a user-specified number of files and directories. Its
mutate exhaustively applies each of the following eight
system calls to each node (file, link, directory) in the cur-
rent topology before exploring the next:ftruncate,
pwrite (which writes to a given offset within a file),
creat,mkdir,unlink,rmdir,link andrename.
For example, if there are two leaf directories, the checker
will delete both, create files in both, etc. Thus, the num-
ber of possible choices for a given tree grows (determin-
istically) with its size. For file systems that support holes,
the checker writes at large offsets to exercise indirect
blocks. Other operations can easily be added.

For each operation it invokes,mutate duplicates its
effect on a fake “abstract” file system it maintains pri-
vately. For example, if it performs three operations
mkdir(/a), mkdir(/a/b), andsync() then the
abstract file system will be the tree/a/b, which the real
file system must match exactly. The checker’sget sig
method returns a canonical version of this abstract file
system. This canonicalization mirrors that in [30], and
uses relabeling to make topologies differing only in nam-
ing equivalent and discards less interesting properties
such as timestamps, actual disk blocks used, etc.

7.2 Check: Failed system calls have no effect

This check does not involve crash-recovery. It checks
that if a file system operation (exceptpwrite) returns
an error, the operation has no user-visible effect. It uses
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EXPLODE to systematically fail calls to the six kernel
functions discussed in Section 3.1. The actual check uses
the abstract file system described in the previous sub-
section. If a system call succeeds, the checker updates
the abstract file system, but otherwise does not. It then
checks that the real file system matches the abstract one.

Bugs found. We found 2 bugs in total. One of
them was an unfixed Linux VFS bug we already re-
ported in [30]. The other one was a minor bug in Reis-
erFSftruncate which can fail with its job half-done
if memory allocation fails. We also found that Reiser4
calls panic on memory allocation failures, and Reis-
erFS callspanic on disk read failures. (We did not in-
clude these two undesired behaviors in our bug counts.)

7.3 Check: “sync” operations work

Applications such as databases and mail servers use op-
erating system-provided methods to force their data to
disk in order to prevent crashes from destroying or cor-
rupting it. Unfortunately, they are completely at these
routines’ mercy — there is no way to check they do what
they claim, yet their bugs can be almost arbitrarily bad.

Fortunately,EXPLODE makes it easy to check these
operations. We built a checker (similar to the one in Fig-
ure 2) to check four methods that force data to disk:
1. sync forces all dirty buffers to disk.
2. fsync(fd) forcesfd’s dirty buffers to disk.
3. Synchronously mounted file system: a system call’s

modifications are on disk when the call returns.
4. Files opened withO SYNC: all modifications done by

a system call through the returned file descriptor are
on disk when the call returns.

After each operation completes and its modifications
have been forced to disk, the sync-checker tellsEX-
PLODE to do crash checking and verifies that the mod-
ifications persist.

Note, neitherfsync nor O SYNC guarantee that di-
rectory entries pointing to the sync’d file are on disk,
doing so requires callingfsync on any directory con-
taining the file (a legal operation in Linux). Thus, the
checker does anfsync on each directory along the path
to the sync’d file, ensuring there is a valid path to it in the
recovered file system.

Bugs found. Table 2 summarizes the 13 bugs found
with this checker. Three bugs show up in multiple ways
(but are only counted three times): a VFS limitation
caused all file systems to fail theO SYNC check, and both
HFS and HFS+ mangled file and directory permissions
after crashing, therefore failing all four sync checks. We
describe a few of the more interesting bugs below.

Besides HFS/HFS+, both MSDOS and VFAT mishan-
dledsync. Simple crashes aftersync can introduce di-

FS sync mount sync fsync O SYNC
ext2 ✘ ✘ ✘
ext3 ✘
ReiserFS ✘ ✘
Reiser4 ✘
JFS ✘ ✘ ✘
XFS ✘ ✘
MSDOS ✘ ✘ ✘
VFAT ✘ ✘ ✘
HFS ✘ ✘ ✘ ✘
HFS+ ✘ ✘ ✘ ✘

Table 2: Sync checking results:✘ indicates the file system failed the
check. There were 13 bugs, three of which show up more than once,
causing more✘ marks than errors.

rectory loops. The maintainers confirmed they knew of
these bugs, though they had not been publicly disclosed.
These bugs have subsequently been fixed. Eight file sys-
tems had synchronous mount bugs. For example,ext2
gives no consistency guarantees by default, but mounting
it synchronously still allows data loss.

There were two interestingfsync errors, one in JFS
(§3.2) and one inext2. Theext2 bug is a case where
an implementation error points out a deeper design prob-
lem. The bug occurs when we: (1) shrink a file “A”
with truncate and (2) subsequentlycreat, write,
andfsync a second file “B.” If file B reuses the indi-
rect blocks of A freed viatruncate, then following a
crashe2fsck notices that A’s indirect blocks are cor-
rupt and clears them, destroying the contents of B. (For
good measure it then notices that A and B share blocks
and “repairs” B by duplicating blocks from A.) Because
ext2 makes no guarantees about what is written to disk,
fundamentally one cannot usefsync to safelyforce a
file to disk, since the file can still have implicit depen-
dencies on other file system state (in our case if it reuses
an indirect blocks for a file whose inode has been cleared
in memory but not on disk).

7.4 Check: a recovered FS is “reasonable”

Our final check is the most stringent: after a crash a file
system recovers to a “reasonable” state. No files, di-
rectories, or links flushed to disk are corrupted or dis-
appear (unless explicitly deleted). Nor do they sponta-
neously appear without being created. For example, if
we crash after performing two operationsmkdir(/A)
andmkdir(/A/B) on an empty file system, then there
are exactly three correct recovered file systems: (1)/ (no
data), (2)/A, or (3)/A/B. We should not see directories
or files we never created. Similarly, if/A was forced to
disk before the crash, it should still exist.

For space reasons we only give a cursory implemen-
tation overview. Asmutate issues operations, it builds
two sets: (1) the stable set, which contains the opera-
tions it knows are on the disk, (2) the volatile set, which
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contains the operations that may or may not be on disk.
The check method verifies that the recovered file sys-
tem can be constructed using some sequence of volatile
operations legally combined with all the stable ones. The
implementation makes heavy use of caching to prune the
search and “desugars” operations such asmkdir into
smaller atomic operations (in this case it creates an in-
ode and then forms a link to it) to ensure it can describe
their intermediate effects.

Bugs found. We applied this check to ext2, ext3,
JFS, ReiserFS and Reiser4. Unsurprisingly, sinceext2
gives no crash guarantees, files can point to uninitial-
ized blocks, and sync’d files and directories can be re-
moved by itsfsck. Since JFS journals metadata but
not data, its files can also point to garbage. These be-
haviors are design decisions so we did not include them
in our bug counts. We found two bugs (one in JFS,
one in Reiser4) where crashed disks cannot be recov-
ered byfsck. We could not check many topologies for
ReiserFS and Reiser4 because they appear to leak large
amounts of memory on everymount and unmount
(Our bug counts do not include these leaks.)

In addition, we used the crash-during-recovery check
(§6.3) on Reiser4. It found a bug where Reiser4 be-
comes so corrupted that mounting it causes a kernel
panic. (Since our prior work explored this check in detail
we did not apply it to more systems.)

Finally, we did a crude benchmark run by running
the checker (without crash-during-recovery checking) to
ext3 inside a virtual machine with 1G memory on a In-
tel P4 3.2GHZ with 2G memory. After about 20 hours,
EXPLODE checked 230,744 crashes for 327 different
FS topologies and 1582 different FS operations. The
run died because Linux leaks memory on eachmount
andunmount and runs out of memory. Although we
fixed two leaks, more remain (we did not count these
obliquely-detected errors in our bug counts but were
tempted to). We intend to haveEXPLODE periodically
checkpoint itself so we can reboot the machine and let
EXPLODE resume from the checkpoints.

8 Even Simple Checkers Find Bugs
This section shows that even simple checkers find inter-
esting bugs by applying it to three version control sys-
tems and the Berkeley DB database.

The next two sections demonstrate thatEXPLODE

works on many different storage systems by applying it
to many different ones. The algorithm for this process:
write a quick checker, use it to find a few errors, declare
success, and then go after another storage system. In
all cases we could check many more invariants. Table 3
summarizes all results.

System Storage Checker Bugs
FS 744 5,477 18

CVS 27 68 1
Subversion - - 1
EXPENSIV 30 124 3
Berkeley DB 82 202 6

RAID 144 FS + 137 2
NFS 34 FS 4

VM ware GSX/Linux 54 FS 1
Total 1,115 6,008 36

Table 3: Summary of all storage systems checked. All line counts
ignore comments and whitespace.Storagegives the line count for each
system’s storage component, which forFS includes the components for
all ten file systems.Checker gives the checker line counts, which for
EXPENSIV includes two checkers. We reused the FS checker to check
RAID, NFS and VMware. We wrote an additional checker for RAID.
We checked Subversion using an early version ofEXPLODE; we have
not yet ported its component and checker.

8.1 Version control software

This section checks three version control systems: CVS,
Subversion [27], and an expensive commercial system
we did not have source code for, denoted as EXPENSIV

(its license precludes naming it directly). We check that
these systems meet their fundamental goal: do not lose
or corrupt a committed file. We found errors in all three.

The storage component for each wraps up the com-
mands needed to set up a new repository on top of one
of the file systems we check. The checker’smutate
method checks out a copy of the repository, modifies it,
and commits the changes back to the main repository.
After this commit completes, these changes should per-
sist after any crash. To test this,mutate immediately
callscheck crashes now() after the commit com-
pletes. Thecheck method flags an error if: (1) the ver-
sion control systems’ crash recovery tool (if any) gives
an error or (2) committed files are missing.

Bugs found. All three systems made the same mis-
take. To update a repository fileA without corrupting
it, they first update a temporary fileB, which they then
atomically rename toA. However, they forget to force
B’s contents to disk before the rename, which means a
crash can destroy it.

In addition EXPENSIV purports to atomically merge
two repositories into one, where any interruption (such
as crash) will either leave the two original repositories
or one entirely (correctly) merged one.EXPLODE found
a bug where a crash during merge corrupts the repos-
itory, which EXPENSIV ’s recovery tool (EXPENSIV
-r check -f) cannot fix. This error seems to be
caused by the same renaming mistake as above.

Finally, we found that even a soft crash during a merge
corrupts EXPENSIV ’s repository. It appears EXPENSIV

renames multiple files at the end of the merge. Although
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each individual rename is atomic against a soft crash,
their aggregation is not. The repository is corrupted if
not all files are renamed.

8.2 Berkeley DB

The database checker in this section checks that after a
crash no committed transaction records are corrupted or
disappear, and no uncommitted ones appear. It found six
bugs in Berkeley DB 4.3 [2].

Berkeley DB’s storage component only defines the
init method, which calls Berkeley DB utilities to cre-
ate a database. It does not requiremount or unmount,
and has no threads. It performs recovery when the
database is opened with theDB RECOVER flag (in the
check method). We stack this component on top of a
file system one.

The checker’smutate method is a simple loop that
starts a transaction, adds several records to it, and then
commits this transaction. It records committed trans-
actions. It callscheck crashes start before each
commit andcheck crashes end (§ 6.1) after to ver-
ify that there is a one-to-one mapping between the trans-
actions it committed and those in the database.

Bugs found. We checked Berkeley DB on top of
ext2, ext3, and JFS. On ext2 creating a database inside a
transaction, while supposedly atomic, can lead to a cor-
rupted database if the system crashes before the database
is closed orsync is manually called. Furthermore, even
with an existing database, committed records can disap-
pear during a crash. On ext3 an unfortunate crash while
adding a record to an existing database can again leave
the database in an unrecoverable state. Finally, on all
three file systems, a record that was added but never com-
mitted can appear after a crash. We initially suspected
these errors came from Berkeley DB incorrectly assum-
ing that file system blocks were written atomically. How-
ever, setting Berkeley DB to use sector-aligned writes
did not fix the problem. While the errors we find differ
depending on the file system and configuration settings,
some are probably due to the same underlying problem.

9 Checking “Transparent” Subsystems
Many subsystems transparently slip into a storage stack.
Given a checker for the original system, we can easily
check the new stack: run the same checker on top of it
and make sure it gives the same results.

9.1 Software RAID

We ran two checkers on RAID. The first checks that a
RAID transparently extends a storage stack by running
the file system sync-checker (§ 7.3) on top of it. A file
system’s crash and non-crash behavior on top of RAID

should be the same as without it: any (new) errors the
checker flags are RAID bugs. The second checks that
losing any single sector in a RAID1 or RAID5 stripe does
not cause data loss [20]. I.e., the disk’s contents were
always correctly reconstructed from the non-failed disks.

We applied these checks to Linux’s software
RAID [26] levels 1 and 5. Linux RAID groups a set
of disks and presents them as a single block device to
the rest of the system. When a block write request is
received by the software RAID block device driver, it re-
computes the parity block and passes the requests to the
underlying disks in the RAID array. Linux RAID repairs
a disk using a very simple approach: overwrite all of the
disk’s contents, rather than just those sectors that need to
be fixed. This approach is extremely slow, but also hard
to mess up. Still, we found two bugs.

The RAID storage component methods map directly
to different options for its administration utilitymdadm.
The init method usesmdadm --create to as-
semble either two or four RAM disks into a RAID1
or RAID5 array respectively. Themount method
calls mdadm --assemble on these disks and the
unmount method tears down the RAID array by invok-
ing mdadm --stop. Therecover method reassem-
bles and recovers the RAID array. We used themdadm
--add command to replace failed disks after a disk fail-
ure. The checking stack is similar to that in Figure 5.

Bugs found. The checker found that Linux RAID
does not reconstruct the contents of an unreadable sec-
tor (as it easily could) but instead marks theentire disk
that contains the bad sector as faulty and removes it from
the RAID array. Such a fault-handling policy is not so
good: (1) it makes a trivial error enough to prevent the
RAID from recovering fromany additional failure, and
(2) as disk capacity increases, the probability that another
sector goes bad goes to one.

Given this fault-handling policy, it is unsurprising our
checker found that after two sector read errors happen
on different disks, requiring manual maintenance, almost
all maintenance operations (such asmdadm --stop or
mdadm --add) fail with a “Device or resource busy”
error. Disk write requests also fail in this case, rendering
the RAID array unusable until the machine is rebooted.
One of the main developers confirmed that these behav-
iors were bad and should be fixed with high priority [4].

9.2 NFS

NFS synchronously forces modifications to disk before
requests return [23]. Thus, with only a single client mod-
ifying an NFS file system, after a crash NFS must recover
to the same file system tree as a local file system mounted
synchronously. We check this property by running the
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sync-checker (§7.3) on NFS and having it treat NFS as
a synchronously mounted file system. This check found
four bugs when run on the Linux kernel’s NFS (NFSv3)
implementation [19].

The NFS storage component is a trivial 15-lines of
code (plus a hand-edit of “/etc/exports” to define
an NFS mount point). It provides two methods: (1)
mount, which sets up an NFS partition by exporting
a local FS over the NFS loop-back interface and (2)
unmount, which tears down an NFS partition by un-
mounting it. It does not provide arecover method
since therecover of the underlying local file system
must be sufficient to repair crashed NFS partitions. We
did not model network failures, neither did we control
the scheduling of NFS threads, which could make error
replay non-deterministic (but did not for ours).

Bugs found. The checker found a bug where a client
that writes to a file and then reads the same file through
a hard link in a different directory will not see the values
of the first write. We elide the detailed cause of this error
for space, other than noting that diagnosing this bug as
NFS’s fault was easy, because it shows up regardless of
the underlying file system (we tried ext2, ext3, and JFS).

We found additional bugs specific to individual file
systems exported by NFS. When JFS is exported over
NFS, thelink andunlink operations are not commit-
ted synchronously. When an ext2 file system is exported
over NFS, our checker found that many operations were
not committed synchronously. If the NFS server crashes
these bugs can lose data and cause data values to go back-
wards for remote clients.

9.3 VMware GSX server

In theory, a virtual machine slipped beneath a guest OS
should not change the crash behavior of a correctly-
written guest storage system. Roughly speaking, cor-
rectness devolves to not lying about when a disk block
actually hits a physical disk. In practice, speed concerns
make lying tempting. We check that a file system on top
of a virtual machine provided “disk” has the same syn-
chronous behavior as running without it (again) using the
sync-checker (§7.3). We applied this check to VMware
GSX 3.2.0 [29] running on Linux. GSX is an interesting
case forEXPLODE: a large, complex commercial system
(for which we lack source code) that, from the point of
view of a storage system checker, implements a block
device interface in a strange way.

The VMware GSX scripting API makes the storage
component easy to build. Theinit method copies a
precreated empty virtual disk image onto the file sys-
tem on top of EXPLODE RAM disk. The mount
method starts the virtual machine using the command
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Figure 9: The VMware checking stack.

vmware-cmd start and unmount stops it using
vmware-cmd stop hard. The recover method
calls vmware-cmd start, which repairs a crashed
virtual machine, and then removes a dangling lock (cre-
ated by the “crashed” virtual machine to prevent races on
the virtual disk file).

As shown in Figure 9 the checking stack was the most
intricate of this paper. It has five layers, starting from bot-
tom to top: (1) a RAM disk, (2) the ext3 file system in the
host, storing the GSX virtual disk file, (3) GSX, (4) the
ext3 file system in the guest, (5) the sync-checker. The
main complication in building this stack was the need to
split EXPLODE into two pieces, one running in the host,
the other in the guest. Since the virtual machine will
frequently “crash” we decided to keep the part running
inside it simple and make it a stateless RPC server. The
entire storage stack and the sync-checker reside in the
host. When the sync-checker wants to run an operation
in the guest, or a storage method wants to run a utility,
they do RPC calls to the server in the guest, which then
performs the operation.

Bugs found. Calling sync in the guest OS does not
correctly flush dirty buffers to disk, but only to the host’s
buffer cache. According to VMware documents, setting
the “disable write caching” configuration flag forces all
writes to disk. However, we hit the same bug even with
this flag on. This bug makes it impossible to reliably run
a storage system on top of this VMM on Linux. We con-
firmed this problem with one of the main developers who
stated that it should not show up in the latest version [28].

10 Checking on a new system: FreeBSD
We portedEXPLODE to FreeBSD 6.0 to ensure porting
was easy and to shake out Linux-specific design assump-
tions. We spent most of our time writing a new RAM
disk andEKM module; we only needed to change a few
lines in the user-level runtime to run on FreeBSD.

The FreeBSD version ofEXPLODE supports crash
checking, but currently does not provide a kernel-level
choose nor logging of system calls. Neither should
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present a challenge here or in general. Even without
these features, we reproduced the errors in CVS and EX-
PENSIV we saw on Linux as well as finding new errors
in FreeBSD UFS2. Below, we discuss issues in writing
EKM and the RAM disk.

EKM . Crash checking requires adding calls toEKM in
functions that mark buffers as clean, dirty, or write them
to disk. While a FreeBSD developer could presumably
enumerate all such functions easily, our complete lack
of experience with FreeBSD meant it took us about a
week to find all corner-cases. For example, FreeBSD’s
UFS2 file system sometimes bypasses the buffer cache
and writes directly to the underlying disk.

There were also minor system-differences we had to
correct for. As an example, while Linux and FreeBSD
have similar structures for buffers, they differ in how
they store bookkeeping information (e.g., representing
offsets in sectors on Linux, and in bytes on FreeBSD).
We adjusted for such differences insideEKM so thatEX-
PLODE’s user-level runtime sees a consistent interface.
We believe porting should generally be easy sinceEKM

only logs the offset, size, and data of buffer modifica-
tions, as well as the ID of the modifying thread. All of
these should be readily available in any OS.

RAM disk. We built our FreeBSD RAM disk by mod-
ifying the/dev/md memory-based disk device. We ex-
pect developers can generally use this approach: take
an existing storage device driver and add trivialioctl
commands to read and write its disk state by copying be-
tween user- and kernel-space.

Bug-Finding Results. In addition to our quick tests
to replicate the EXPENSIV and CVS bugs, we also ran
our sync-checker (§7.3) on FreeBSD’s UFS2 with soft
updates disabled. It found errors wherefsck with the
-p option could not recover from crashes. Whilefsck
without-p could repair the disk, the documentation for
fsck claims-p can recover from all errors unless un-
expected inconsistencies are introduced by hardware or
software failures. Developers confirmed that this is a
problem and should be further investigated.

11 Related Work

Below we compareEXPLODE to file system testing, soft-
ware model checking, and static bug finding.

File system testing tools. There are many file sys-
tem testing frameworks that use application interfaces to
stress a “live” file system with an adversarial environ-
ment. These testing frameworks are less comprehensive
than our approach, but they work “out of the box.” Thus,
there is no reason not to both test a file system and then
test withEXPLODE (or vice versa).

Recently, Prabhakaranet al [21] studied how file sys-
tems handle disk failures and corruption. They devel-
oped a testing framework that uses techniques from [25]
to infer disk block types and then inject “type-aware”
block failure and corruption into file systems. Their re-
sults provide motivation for using existing checksum-
based file systems (such as Sun’s ZFS [32]). While their
technique is more precise than random testing, it does
not find the crash errors thatEXPLODE does, nor is it
as systematic. ExtendingEXPLODE to similarly return
garbage on disk reads is trivial.

Software Model Checking. Model checkers have
been previously used to find errors in both the design
and the implementation of software systems [1, 3, 7, 13,
15, 16, 18, 30]. Two notable examples are Verisoft [13],
which systematically explores the interleavings of a con-
current C program, and Java PathFinder [3] which used
a specialized virtual machine to check concurrent Java
programs by checkpointing states.

The model checking ideasEXPLODEuses — exhaust-
ing states, systematic exploration, and choice — are not
novel. This paper’s conceptual contribution is dramati-
cally reducing the large work factor that plagues tradi-
tional model checking. It does so by turning the check-
ing process inside out. It interlaces the control it needs
for systematic state explorationin situ, throughout the
checked system. As far as we know,EXPLODE is the
first example ofin situ model checking. The paper’s en-
gineering contribution is building a system that exploits
this technique to effectively check large amounts of stor-
age system code with relatively little effort.

Static bug finding. There has been much recent work
on static bug finding (e.g., [1, 5, 8, 9, 11, 12]). Roughly
speaking, because dynamic checking runs code, it is lim-
ited to just executed paths, but can more effectively check
deeper properties implied by the code (e.g.,sync() ac-
tually commits data to stable storage or crash recovery
works). The errors we found would be difficult to get
statically. However, we view static analysis as comple-
mentary: easy enough to apply that there is no reason not
to use it and then useEXPLODE.

12 Conclusion and Future Work
EXPLODE comprehensively checks storage systems by
adapting key ideas from model checking in a way that
retains their power but discards their intrusiveness. Its
interface lets implementors quickly write storage check-
ers, or simply compose them from existing components.
These checkers run on live systems, which means they
do not have to emulate either the environment or pieces
of the system. As a result, we often have been able to
check a new system in minutes. We usedEXPLODE to

38



find serious bugs in a broad range of real, widely-used
storage systems, even when we did not have their source
code. Every system we checked had bugs. Our gut belief
has become that an unchecked systemmusthave bugs —
if we do not find any we immediately look to see what is
wrong with our checker (a similar dynamic arose in our
prior static checking work).

The work in this paper can be extended in numerous
ways. First, we only checked systems we did not build.
While this showsEXPLODE gets good results without a
deep understanding of checked code, it also means we
barely scratched the surface of what could be checked.
In the future we hope to collaborate with system builders
to see just how deepEXPLODEcan push a valued system.

Second, we only usedEXPLODE for bug-finding, but
it is equally useful as an end-to-end validation tool (with
no bug fixing intended). A storage subsystem implemen-
tor can use it to double-check that the environment the
subsystem runs in meets its interface contracts and that
the implementor did not misunderstand these contracts.
Similarly, a user can use it to check that slipping a sub-
system into a system breaks nothing. Or use it to pick
a working mechanism from a set of alternatives (e.g., if
fsync does not work usesync instead).

Finally, we can do many things to improveEXPLODE.
Our biggest missed opportunity is that we do nothing
clever with states. A big benefit of model checking is
perspective: it makes state a first-class concept. Thus it
becomes natural to think about checking as a state space
search; to focus on hitting states that are most “differ-
ent” from those already seen; to infer what actions cause
“interesting” states to be hit; and to extract the essence
of states so that two superficially different ones can be
treated as equivalent. We have a long list of such things
to add toEXPLODE in the future.
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Abstract

We present a new symbolic execution tool,KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We usedKLEE to
thoroughly check all 89 stand-alone programs in the
GNU COREUTILS utility suite, which form the core
user-level environment installed on millions of Unix sys-
tems, and arguably are the single most heavily tested set
of open-source programs in existence.KLEE-generated
tests achieve high line coverage — on average over 90%
per tool (median: over 94%) — and significantly beat
the coverage of the developers’ own hand-written test
suite. When we did the same for 75 equivalent tools in
the BUSYBOX embedded system suite, results were even
better, including 100% coverage on 31 of them.

We also usedKLEE as a bug finding tool, applying it to
452 applications (over 430K total lines of code), where
it found 56 serious bugs, including three in COREUTILS

that had been missed for over 15 years. Finally, we used
KLEE to crosscheck purportedly identical BUSYBOX and
COREUTILS utilities, finding functional correctness er-
rors and a myriad of inconsistencies.

1 Introduction

Many classes of errors, such as functional correctness
bugs, are difficult to find without executing a piece of
code. The importance of such testing — combined with
the difficulty and poor performance of random and man-
ual approaches — has led to much recent work in us-
ing symbolic executionto automatically generate test in-
puts [11, 14–16,20–22,24, 26, 27, 36]. At a high-level,
these tools use variations on the following idea: Instead
of running code on manually- or randomly-constructed
input, they run it on symbolic input initially allowed to
be “anything.” They substitute program inputs with sym-

∗Authornames are in alphabetical order. Daniel Dunbar is the main
author of theKLEE system.

bolic values and replace corresponding concrete program
operations with ones that manipulate symbolic values.
When program execution branches based on a symbolic
value, the system (conceptually) follows both branches,
on each path maintaining a set of constraints called the
path conditionwhich must hold on execution of that
path. When a path terminates or hits a bug, a test case
can be generated by solving the current path condition
for concrete values. Assuming deterministic code, feed-
ing this concrete input to a raw, unmodified version of
the checked code will make it follow the same path and
hit the same bug.

Results are promising. However, while researchers
have shown such tools can sometimes get good cover-
age and find bugs on a small number of programs, it
has been an open question whether the approach has any
hope of consistently achieving high coverage on real ap-
plications. Two common concerns are (1) the exponen-
tial number of paths through code and (2) the challenges
in handling code that interacts with its surrounding envi-
ronment, such as the operating system, the network, or
the user (colloquially: “the environment problem”). Nei-
ther concern has been much helped by the fact that most
past work, including ours, has usually reported results on
a limited set of hand-picked benchmarks and typically
has not included any coverage numbers.

This paper makes two contributions. First, we present
a new symbolic execution tool,KLEE, which we de-
signed for robust, deep checking of a broad range of ap-
plications, leveraging several years of lessons from our
previous tool, EXE [16].KLEE employs a variety of con-
straint solving optimizations, represents program states
compactly, and uses search heuristics to get high code
coverage. Additionally, it uses a simple and straight-
forward approach to dealing with the external environ-
ment. These features improveKLEE’s performance by
over an order of magnitude and let it check a broad range
of system-intensive programs “out of the box.”
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Second, we show thatKLEE’s automatically-generated
tests get high coverage on a diverse set of real, com-
plicated, and environmentally-intensive programs. Our
most in-depth evaluation appliesKLEE to all 89 pro-
grams1 in the latest stable version of GNU COREUTILS

(version 6.10), which contains roughly 80,000 lines of
library code and 61,000 lines in the actual utilities [2].
These programs interact extensively with their environ-
ment to provide a variety of functions, including man-
aging the file system (e.g.,ls, dd, chmod), display-
ing and configuring system properties (e.g.,logname,
printenv, hostname), controlling command invo-
cation (e.g.,nohup, nice, env), processing text files
(e.g.,sort, od, patch), and so on. They form the
core user-level environment installed on many Unix sys-
tems. They are used daily by millions of people, bug
fixes are handled promptly, and new releases are pushed
regularly. Moreover, their extensive interaction with the
environment stress-tests symbolic execution where it has
historically been weakest.

Further, finding bugs in COREUTILS is hard. They are
arguably the single most well-tested suite of open-source
applications available (e.g., is there a program the reader
has used more under Unix than “ls”?). In 1995, ran-
dom testing of a subset of COREUTILS utilities found
markedly fewer failures as compared to seven commer-
cial Unix systems [35]. The last COREUTILS vulnerabil-
ity reported on the SecurityFocus or US National Vulner-
ability databases was three years ago [5, 7].

In addition, we checked two other UNIX utility suites:
BUSYBOX, a widely-used distribution for embedded sys-
tems [1], and the latest release for MINIX [4]. Finally, we
checked the HISTAR operating system kernel as a con-
trast to application code [39].

Our experiments fall into three categories: (1) those
where we do intensive runs to both find bugs and get high
coverage (COREUTILS, HISTAR, and 75 BUSYBOX util-
ities), (2) those where we quickly run over many appli-
cations to find bugs (an additional 204 BUSYBOX util-
ities and 77 MINIX utilities), and (3) those where we
crosscheck equivalent programs to find deeper correct-
ness bugs (67 BUSYBOX utilities vs. the equivalent 67 in
COREUTILS).

In total, we ranKLEE on more than 452 programs, con-
taining over 430K total lines of code. To the best of our
knowledge, this represents an order of magnitude more
code and distinct programs than checked by prior sym-
bolic test generation work. Our experiments show:
1 KLEE gets high coverage on a broad set of complex

programs. Its automatically generated tests covered
84.5% of the total lines in COREUTILS and 90.5% in
BUSYBOX (ignoring library code). On average these

1We ignored utilities that are simply wrapper calls to others, such
asarch (“uname -m”) andvdir (“ls -l -b”).

tests hit over 90% of the lines in each tool (median:
over 94%), achieving perfect 100% coverage in 16
COREUTILS tools and 31 BUSYBOX tools.

2 KLEE can get significantly more code coverage than
a concentrated, sustained manual effort. The roughly
89-hour run used to generate COREUTILS line cover-
age beat the developers’ own test suite — built incre-
mentally over fifteen years — by 16.8%!

3 With one exception,KLEE achieved these high-
coverage results on unaltered applications. The sole
exception,sort in COREUTILS, required a single
edit to shrink a large buffer that caused problems for
the constraint solver.

4 KLEE finds important errors in heavily-tested code. It
found ten fatal errors in COREUTILS (including three
that had escaped detection for 15 years), which ac-
count for more crashing bugs than were reported in
2006, 2007 and 2008 combined. It further found 24
bugs in BUSYBOX, 21 bugs in MINIX , and a security
vulnerability in HISTAR– a total of 56 serious bugs.

5 The fact thatKLEE test cases can be run on the raw
version of the code (e.g., compiled withgcc) greatly
simplifies debugging and error reporting. For exam-
ple, all COREUTILS bugs were confirmed and fixed
within two days and versions of the testsKLEE gen-
erated were included in the standard regression suite.

6 KLEE is not limited to low-level programming er-
rors: when used to crosscheck purportedly identical
BUSYBOX and GNU COREUTILS tools, it automat-
ically found functional correctness errors and a myr-
iad of inconsistencies.

7 KLEE can also be applied to non-application code.
When applied to the core of the HISTAR kernel, it
achieved an average line coverage of 76.4% (with
disk) and 67.1% (without disk) and found a serious
security bug.

The next section gives an overview of our approach.
Section 3 describesKLEE, focusing on its key optimiza-
tions. Section 4 discusses how to model the environment.
The heart of the paper is Section 5, which presents our
experimental results. Finally, Section 6 describes related
work and Section 7 concludes.

2 Overview

This section explains howKLEE works by walking the
reader through the testing of MINIX ’s tr tool. Despite
its small size — 169 lines, 83 of which are executable —
it illustrates two problems common to the programs we
check:
1 Complexity. The code aims to translate and delete

characters from its input. It hides this intent well be-
neath non-obvious input parsing code, tricky bound-
ary conditions, and hard-to-follow control flow. Fig-
ure 1 gives a representative snippet.
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2 Environmental Dependencies.Most of the code is
controlled by values derived from environmental in-
put. Command line arguments determine what pro-
cedures execute, input values determine which way
if-statements trigger, and the program depends on the
ability to read from the file system. Since inputs can
be invalid (or even malicious), the code must handle
these cases gracefully. It is not trivial to test all im-
portant values and boundary cases.

The code illustrates two additional common features.
First, it has bugs, whichKLEE finds and generates test
cases for. Second,KLEE quickly achieves good code
coverage: in two minutes it generates 37 tests that cover
all executable statements.2

KLEE has two goals: (1) hit every line of executable
code in the program and (2) detect at each dangerous op-
eration (e.g., dereference, assertion) ifany input value
exists that could cause an error.KLEE does so by running
programssymbolically: unlike normal execution, where
operations produce concrete values from their operands,
here they generate constraints that exactly describe the
set of values possible on a given path. WhenKLEE de-
tects an error or when a path reaches anexit call, KLEE

solves the current path’s constraints (called itspath con-
dition) to produce a test case that will follow the same
path when rerun on an unmodified version of the checked
program (e.g, compiled withgcc).

KLEE is designed so that the paths followed by the
unmodified program will always follow the same path
KLEE took (i.e., there are no false positives). However,
non-determinism in checked code and bugs inKLEE or
its models have produced false positives in practice. The
ability to rerun tests outside ofKLEE, in conjunction with
standard tools such asgdb andgcov is invaluable for
diagnosing such errors and for validating our results.

We next show how to useKLEE, then give an overview
of how it works.

2.1 Usage

A user can start checking many real programs withKLEE

in seconds:KLEE typically requires no source modifi-
cations or manual work. Users first compile their code
to bytecode using the publicly-available LLVM com-
piler [33] for GNU C. We compiledtr using:

llvm-gcc --emit-llvm -c tr.c -o tr.bc

Users then runKLEE on the generated bytecode, option-
ally stating the number, size, and type of symbolic inputs
to test the code on. Fortr we used the command:

klee --max-time 2 --sym-args 1 10 10
--sym-files 2 2000 --max-fail 1 tr.bc

2The program has one line of dead code, an unreachable return
statement, which, reassuringly,KLEE cannot run.

1 : void expand(char *arg, unsigned char *buffer) { 8
2 : int i, ac; 9
3 : while (*arg) { 10*
4 : if (*arg == ’\\’) { 11*
5 : arg++;
6 : i = ac = 0;
7 : if (*arg >= ’0’ && *arg <= ’7’) {
8 : do {
9 : ac = (ac << 3) + *arg++ − ’0’;
10: i++;
11: } while (i<4 && *arg>=’0’ && *arg<=’7’);
12: *buffer++ = ac;
13: } else if (*arg != ’\0’)
14: *buffer++ = *arg++;
15: } else if (*arg == ’[’) { 12*
16: arg++; 13
17: i = *arg++; 14
18: if (*arg++ != ’-’) { 15!
19: *buffer++ = ’[’;
20: arg −= 2;
21: continue;
22: }
23: ac = *arg++;
24: while (i <= ac) *buffer++ = i++;
25: arg++; /* Skip ’]’ */
26: } else
27: *buffer++ = *arg++;
28: }
29: }
30: . . .
31: int main(int argc, char* argv[ ]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == ’-’) { 3*
34: . . . 4
35: } 5
36: . . . 6
37: expand(argv[index++], index); 7
38: . . .
39: }

Figure 1: Code snippet from MINIX ’s tr, representative
of the programs checked in this paper: tricky, non-obvious,
difficult to verify by inspection or testing. The order of the
statements on the path to the error at line 18 are numbered on
the right hand side.

The first option,--max-time, tells KLEE to check
tr.bc for at most two minutes. The rest describe the
symbolic inputs. The option--sym-args 1 10 10
says to use zero to three command line arguments, the
first 1 character long, the others 10 characters long.3 The
option --sym-files 2 2000 says to use standard
input and one file, each holding 2000 bytes of symbolic
data. The option--max-fail 1 says to fail at most
one system call along each program path (see§ 4.2).

2.2 Symbolic execution withKLEE

WhenKLEE runs ontr, it finds a buffer overflow error
at line 18 in Figure 1 and then produces a concrete test

3Sincestrings in C are zero terminated, this essentially generates
arguments ofup to that size.
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case (tr [ "" "") thathits it. Assuming the options
of the previous subsection,KLEE runstr as follows:
1 KLEE constructs symbolic command line string argu-

ments whose contents have no constraints other than
zero-termination. It then constrains the number of ar-
guments to be between 0 and 3, and their sizes to be
1, 10 and 10 respectively. It then callsmain with
these initial path constraints.

2 WhenKLEE hits the branchargc > 1 at line 33,
it uses its constraint solver STP [23] to see which di-
rections can execute given the current path condition.
For this branch, both directions are possible;KLEE

forks execution and follows both paths, adding the
constraintargc > 1 on the false path andargc ≤ 1
on the true path.

3 Given more than one active path,KLEE must pick
which one to execute first. We describe its algorithm
in Section 3.4. For now assume it follows the path
that reaches the bug. As it does so,KLEE adds further
constraints to the contents ofarg, and forks for a
total of five times (lines denoted with a “*”): twice
on line 33, and then on lines 3, 4, and 15 inexpand.

4 At each dangerous operation (e.g., pointer derefer-
ence),KLEE checks if any possible value allowed by
the current path condition would cause an error. On
the annotated path,KLEE detects no errors before line
18. At that point, however, it determines that input
values exist that allow the read ofarg to go out of
bounds: after taking the true branch at line 15, the
code incrementsarg twice without checking if the
string has ended. If it has, this increment skips the
terminating’\0’ and points to invalid memory.

5 KLEE generates concrete values forargc andargv
(i.e., tr [ "" "") that when rerun on a raw ver-
sion oftr will hit this bug. It then continues follow-
ing the current path, adding the constraint that the
error does not occur (in order to find other errors).

3 The KLEE Architecture

KLEE is a complete redesign of our previous system
EXE [16]. At a high level,KLEE functions as a hybrid
between an operating system for symbolic processes and
an interpreter. Each symbolic process has a register file,
stack, heap, program counter, and path condition. To
avoid confusion with a Unix process, we refer toKLEE’s
representation of a symbolic process as astate. Programs
are compiled to the LLVM [33] assembly language, a
RISC-like virtual instruction set.KLEE directly inter-
prets this instruction set, and maps instructions to con-
straints without approximation (i.e. bit-level accuracy).4

4KLEE does not currently support: symbolic floating point,
longjmp, threads, and assembly code. Additionally, memory objects
are required to have concrete sizes.

3.1 Basic architecture

At any one time,KLEE may be executing a large number
of states. The core ofKLEE is an interpreter loop which
selects a state to run and then symbolically executes a
single instruction in the context of that state. This loop
continues until there are no states remaining, or a user-
defined timeout is reached.

Unlike a normal process, storage locations for a state
— registers, stack and heap objects — refer to expres-
sions (trees) instead of raw data values. The leaves of
an expression are symbolic variables or constants, and
the interior nodes come from LLVM assembly language
operations (e.g., arithmetic operations, bitwise manipu-
lation, comparisons, and memory accesses). Storage lo-
cations which hold a constant expression are said to be
concrete.

Symbolic execution of the majority of instructions is
straightforward. For example, to symbolically execute
an LLVM add instruction:

%dst = add i32 %src0, %src1

KLEE retrieves the addends from the%src0 and%src1
registers and writes a new expressionAdd(%src0,
%src1) to the%dst register. For efficiency, the code
that builds expressions checks if all given operands are
concrete (i.e., constants) and, if so, performs the opera-
tion natively, returning a constant expression.

Conditional branches take a boolean expression
(branch condition) and alter the instruction pointer of
the state based on whether the condition is true or false.
KLEE queries the constraint solver to determine if the
branch condition is either provably true or provably false
along the current path; if so, the instruction pointer is
updated to the appropriate location. Otherwise, both
branches are possible:KLEE clones the state so that it
can explore both paths, updating the instruction pointer
and path condition on each path appropriately.

Potentially dangerous operations implicitly generate
branches that check if any input value exists that could
cause an error. For example, a division instruction gen-
erates a branch that checks for a zero divisor. Such
branches work identically to normal branches. Thus,
even when the check succeeds (i.e., an error is detected),
execution continues on the false path, which adds the
negation of the check as a constraint (e.g., making the
divisor not zero). If an error is detected,KLEE generates
a test case to trigger the error and terminates the state.

As with other dangerous operations, load and store in-
structions generate checks: in this case to check that the
address is in-bounds of a valid memory object. However,
load and store operations present an additional compli-
cation. The most straightforward representation of the
memory used by checked code would be a flat byte ar-
ray. In this case, loads and stores would simply map to
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array read and write expressions respectively. Unfortu-
nately, our constraint solver STP would almost never be
able to solve the resultant constraints (and neither would
the other constraint solvers we know of). Thus, as in
EXE, KLEE maps every memory object in the checked
code to a distinct STP array (in a sense, mapping a flat
address space to a segmented one). This representation
dramatically improves performance since it lets STP ig-
nore all arrays not referenced by a given expression.

Many operations (such as bound checks or object-level
copy-on-write) require object-specific information. If a
pointer can refer to many objects, these operations be-
come difficult to perform. For simplicity,KLEE sidesteps
this problem as follows. When a dereferenced pointerp
can refer toN objects,KLEE clones the current stateN
times. In each state it constrainsp to be within bounds
of its respective object and then performs the appropri-
ate read or write operation. Although this method can
be expensive for pointers with large points-to sets, most
programs we have tested only use symbolic pointers that
refer to a single object, andKLEE is well-optimized for
this case.

3.2 Compact state representation

The number of states grows quite quickly in practice:
often even small programs generate tens or even hun-
dreds of thousands of concurrent states during the first
few minutes of interpretation. When we ran COREUTILS

with a 1GB memory cap, the maximum number of con-
current states recorded was 95,982 (forhostid), and
the average of this maximum for each tool was 51,385.
This explosion makes state size critical.

SinceKLEE tracks all memory objects, it can imple-
ment copy-on-write at the object level (rather than page
granularity), dramatically reducing per-state memory re-
quirements. By implementing the heap as an immutable
map, portions of the heap structure itself can also be
shared amongst multiple states (similar to sharing por-
tions of page tables acrossfork()). Additionally, this
heap structure can be cloned in constant time, which is
important given the frequency of this operation.

This approach is in marked contrast to EXE, which
used one native OS process per state. Internalizing the
state representation dramatically increased the number
of states which can be concurrently explored, both by
decreasing the per-state cost and allowing states to share
memory at the object (rather than page) level. Addition-
ally, this greatly simplified the implementation of caches
and search heuristics which operate across all states.

3.3 Query optimization

Almost always, the cost of constraint solving dominates
everything else — unsurprising, given thatKLEE gen-
erates complicated queries for an NP-complete logic.

Thus, we spent a lot of effort on tricks to simplify ex-
pressions and ideally eliminate queries (no query is the
fastest query) before they reach STP. Simplified queries
make solving faster, reduce memory consumption, and
increase the query cache’s hit rate (see below). The main
query optimizations are:

Expression Rewriting. The most basic optimizations
mirror those in a compiler: e.g., simple arithmetic sim-
plifications (x + 0 = x), strength reduction (x * 2n

= x << n), linear simplification (2*x - x = x).
Constraint Set Simplification. Symbolic execution

typically involves the addition of a large number of con-
straints to the path condition. The natural structure of
programs means that constraints on same variables tend
to become more specific. For example, commonly an in-
exact constraint such asx < 10 gets added, followed
some time later by the constraintx = 5. KLEE actively
simplifies the constraint set by rewriting previous con-
straints when new equality constraints are added to the
constraint set. In this example, substituting the value for
x into the first constraint simplifies it totrue, which
KLEE eliminates.

Implied Value Concretization. When a constraint such
asx + 1 = 10 is added to the path condition, then the
value ofx has effectively become concrete along that
path.KLEE determines this fact (in this case thatx = 9)
and writes the concrete value back to memory. This en-
sures that subsequent accesses of that memory location
can return a cheap constant expression.

Constraint Independence. Many constraints do not
overlap in terms of the memory they reference. Con-
straint independence (taken from EXE) divides con-
straint sets into disjoint independent subsets based on the
symbolic variables they reference. By explicitly track-
ing these subsets,KLEE can frequently eliminate irrel-
evant constraints prior to sending a query to the con-
straint solver. For example, given the constraint set
{i < j, j < 20, k > 0}, a query of whetheri = 20
just requires the first two constraints.

Counter-example Cache.Redundant queries are fre-
quent, and a simple cache is effective at eliminating a
large number of them. However, it is possible to build
a more sophisticated cache due to the particular struc-
ture of constraint sets. The counter-example cache maps
sets of constraints to counter-examples (i.e., variable as-
signments), along with a special sentinel used when a set
of constraints has no solution. This mapping is stored
in a custom data structure — derived from the UBTree
structure of Hoffmann and Hoehler [28] — which al-
lows efficient searching for cache entries for both sub-
sets and supersets of a constraint set. By storing the
cache in this fashion, the counter-example cache gains
three additional ways to eliminate queries. In the ex-
ample below, we assume that the counter-example cache
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Optimizations Queries Time (s) STP Time (s)

None 13717 300 281
Independence 13717 166 148
Cex. Cache 8174 177 156
All 699 20 10

Table 1: Performance comparison ofKLEE’s solver optimiza-
tions on COREUTILS. Each tool is run for 5 minutes without
optimization, and rerun on the same workload with the given
optimizations. The results are averaged across all applications.

currently has entries for{i < 10, i = 10} (no solution)
and{i < 10, j = 8} (satisfiable, with variable assign-
mentsi → 5, j → 8).

1 When a subset of a constraint set has no solution,
then neither does the original constraint set. Adding
constraints to an unsatisfiable constraint set cannot
make it satisfiable. For example, given the cache
above,{i < 10, i = 10, j = 12} is quickly deter-
mined to be unsatisfiable.

2 When a superset of a constraint set has a solution,
that solution also satisfies the original constraint set.
Dropping constraints from a constraint set does not
invalidate a solution to that set. The assignment
i → 5, j → 8, for example, satisfies eitheri < 10
or j = 8 individually.

3 When a subset of a constraint set has a solution, it is
likely that this is also a solution for the original set.
This is because the extra constraints often do not in-
validate the solution to the subset. Because checking
a potential solution is cheap,KLEE tries substituting
in all solutions for subsets of the constraint set and
returns a satisfying solution, if found. For example,
the constraint set{i < 10, j = 8, i 6= 3} can still be
satisfied byi → 5, j → 8.

To demonstrate the effectiveness of these optimiza-
tions, we performed an experiment where COREUTILS

applications were run for 5 minutes with both of these
optimizations turned off. We then deterministically reran
the exact same workload with constraint independence
and the counter-example cache enabled separately and
together for the same number of instructions. This exper-
iment was done on a large sample of COREUTILS utili-
ties. The results in Table 1 show the averaged results.

As expected, the independence optimization by itself
does not eliminate any queries, but the simplifications it
performs reduce the overall running time by almost half
(45%). The counter-example cache reduces both the run-
ning time and the number of STP queries by 40%. How-
ever, the real win comes when both optimizations are en-
abled; in this case the hit rate for the counter-example
cache greatly increases due to the queries first being sim-
plified via independence. For the sample runs, the aver-
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Figure 2: The effect ofKLEE’s solver optimizations over
time, showing they become more effective over time, as the
caches fill and queries become more complicated. The num-
ber of executed instructions is normalized so that data can be
aggregated across all applications.

age number of STP queries are reduced to 5% of the orig-
inal number and the average runtime decreases by more
than an order of magnitude.

It is also worth noting the degree to which STP time
(time spent solving queries) dominates runtime. For the
original runs, STP accounts for 92% of overall execution
time on average (the combined optimizations reduce this
by almost 300%). With both optimizations enabled this
percentage drops to 41%. Finally, Figure 2 shows the
efficacy ofKLEE’s optimizations increases with time —
as the counter-example cache is filled and query sizes
increase, the speed-up from the optimizations also in-
creases.

3.4 State scheduling

KLEE selects the state to run at each instruction by inter-
leaving the following two search heuristics.

Random Path Selectionmaintains a binary tree record-
ing the program path followed for all active states, i.e. the
leaves of the tree are the current states and the internal
nodes are places where execution forked. States are se-
lected by traversing this tree from the root and randomly
selecting the path to follow at branch points. Therefore,
when a branch point is reached, the set of states in each
subtree has equal probability of being selected, regard-
less of the size of their subtrees. This strategy has two
important properties. First, it favors states high in the
branch tree. These states have less constraints on their
symbolic inputs and so have greater freedom to reach un-
covered code. Second, and most importantly, this strat-
egy avoids starvation when some part of the program is
rapidly creating new states (“fork bombing”) as it hap-
pens when a tight loop contains a symbolic condition.
Note that the simply selecting a state at random has nei-
ther property.
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Coverage-Optimized Searchtries to select states likely
to cover new code in the immediate future. It uses heuris-
tics to compute a weight for each state and then ran-
domly selects a state according to these weights. Cur-
rently these heuristics take into account the minimum
distance to an uncovered instruction, the call stack of the
state, and whether the state recently covered new code.

KLEE uses each strategy in a round robin fashion.
While this can increase the time for a particularly effec-
tive strategy to achieve high coverage, it protects against
cases where an individual strategy gets stuck. Further-
more, since strategies pick from the same state pool, in-
terleaving them can improve overall effectiveness.

The time to execute an individual instruction can vary
widely between simple instructions (e.g., addition) and
instructions which may use the constraint solver or fork
execution (branches, memory accesses).KLEE ensures
that a state which frequently executes expensive instruc-
tions will not dominate execution time by running each
state for a “time slice” defined by both a maximum num-
ber of instructions and a maximum amount of time.

4 Environment Modeling

When code reads values from its environment —
command-line arguments, environment variables, file
data and metadata, network packets, etc — we conceptu-
ally want to return all values that the read could legally
produce, rather than just a single concrete value. When it
writes to its environment, the effects of these alterations
should be reflected in subsequent reads. The combina-
tion of these features allows the checked program to ex-
plore all potential actions and still have no false positives.

Mechanically, we handle the environment by redirect-
ing calls that access it tomodelsthat understand the se-
mantics of the desired action well enough to generate the
required constraints. Crucially, these models are written
in normal C code which the user can readily customize,
extend, or even replace without having to understand the
internals ofKLEE. We have about 2,500 lines of code to
define simple models for roughly 40 system calls (e.g.,
open, read, write, stat, lseek, ftruncate,
ioctl).

4.1 Example: modeling the file system

For each file system operation we check if the action is
for an actual concrete file on disk or a symbolic file. For
concrete files, we simply invoke the corresponding sys-
tem call in the running operating system. For symbolic
files we emulate the operation’s effect on a simple sym-
bolic file system, private to each state.

Figure 3 gives a rough sketch of the model for
read(), eliding details for dealing with linking, reads
on standard input, and failures. The code maintains a set
of file descriptors, created at fileopen(), and records

1 : ssize t read(int fd, void *buf, size t count) {
2 : if (is invalid(fd)) {
3 : errno = EBADF;
4 : return −1;
5 : }
6 : struct klee fd *f = &fds[fd];
7 : if (is concretefile(f)) {
8 : int r = pread(f−>real fd, buf, count, f−>off);
9 : if (r != −1)
10: f−>off += r;
11: return r;
12: } else {
13: /* sym files are fixed size: don’t read beyond the end. */
14: if (f−>off >= f−>size)
15: return 0;
16: count = min(count, f−>size − f−>off);
17: memcpy(buf, f−>file data + f−>off, count);
18: f−>off += count;
19: return count;
20: }
21: }

Figure 3: Sketch ofKLEE’s model forread().

for each whether the associated file is symbolic or con-
crete. Iffd refers to a concrete file, we use the operating
system to read its contents by callingpread() (lines
7-11). We usepread to multiplex access fromKLEE’s
many states onto the one actual underlying file descrip-
tor.5 If fd refers to a symbolic file,read() copies from
the underlying symbolic buffer holding the file contents
into the user supplied buffer (lines 13-19). This ensures
that multipleread() calls that access the same file use
consistent symbolic values.

Our symbolic file system is crude, containing only a
single directory withN symbolic files in it. KLEE users
specify both the numberN and the size of these files.
This symbolic file system coexists with the real file sys-
tem, so applications can use both symbolic and concrete
files. When the program callsopen with a concrete
name, we (attempt to) open the actual file. Thus, the call:

int fd = open("/etc/fstab", O_RDNLY);

sets fd to point to the actual configuration file
/etc/fstab.

On the other hand, callingopen() with an uncon-
strained symbolic name matches each of theN symbolic
files in turn, and will also fail once. For example, given
N = 1, callingopen() with a symbolic command-line
argumentargv[1]:

int fd = open(argv[1], O_RDNLY);

will result in two paths: one in whichfd points to the
single symbolic file in the environment, and one in which
fd is set to-1 indicating an error.

5SinceKLEE’s states execute within a single Unix process (the one
used to runKLEE), then unless we duplicated file descriptors for each
(which seemed expensive), aread by one would affect all the others.
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Unsurprisingly, the choice of what interface to model
has a big impact on model complexity. Rather than hav-
ing our models at the system call level, we could have in-
stead built them at the C standard library level (fopen,
fread, etc.). Doing so has the potential performance
advantage that, for concrete code, we could run these op-
erations natively. The major downside, however, is that
the standard library contains a huge number of functions
— writing models for each would be tedious and error-
prone. By only modeling the much simpler, low-level
system call API, we can get the richer functionality by
just compiling one of the many implementations of the
C standard library (we use uClibc [6]) and let it worry
about correctness. As a side-effect, we simultaneously
check the library for errors as well.

4.2 Failing system calls

The real environment can fail in unexpected ways (e.g.,
write() fails because of a full disk). Such failures
can often lead to unexpected and hard to diagnose bugs.
Even when applications do try to handle them, this code
is rarely fully exercised by the regression suite. To help
catch such errors,KLEE will optionally simulate envi-
ronmental failures by failing system calls in a controlled
manner (similar to [38]). We made this mode optional
since not all applications care about failures — a simple
application may ignore disk crashes, while a mail server
expends a lot of code to handle them.

4.3 Rerunning test cases

KLEE-generated test cases are rerun on the unmodified
native binaries by supplying them to a replay driver we
provide. The individual test cases describe an instance
of the symbolic environment. The driver uses this de-
scription to create actual operating system objects (files,
pipes, ttys, directories, links, etc.) containing the con-
crete values used in the test case. It then executes the un-
modified program using the concrete command-line ar-
guments from the test case. Our biggest challenge was
making system calls fail outside ofKLEE — we built a
simple utility that uses theptrace debugging interface
to skip the system calls that were supposed to fail and
instead return an error.

5 Evaluation
This section describes our in-depth coverage experi-
ments for COREUTILS (§ 5.2) and BUSYBOX (§ 5.3)
as well as errors found during quick bug-finding runs
(§ 5.4). We useKLEE to find deep correctness errors by
crosschecking purportedly equivalent tool implementa-
tions (§ 5.5) and close with results for HISTAR (§5.6).

5.1 Coverage methodology

We use line coverage as a conservative measure ofKLEE-
produced test case effectiveness. We chose executable
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Figure 4: Histogram showing the number of COREUTILS

tools that have a given number of executable lines of code
(ELOC).

line coverage as reported bygcov, because it is widely-
understood and uncontroversial. Of course, it grossly
underestimatesKLEE’s thoroughness, since it ignores the
fact thatKLEE explores many different unique paths with
all possible values. We expect a path-based metric would
show even more dramatic wins.

We measure coverage by runningKLEE-generated test
cases on a stand-alone version of each utility and using
gcov to measure coverage. Running tests independently
of KLEE eliminates the effect of bugs inKLEE and veri-
fies that the produced test case runs the code it claims.

Note, our coverage results only consider code in the
tool itself. They do not count library code since doing so
makes the results harder to interpret:
1 It double-counts many lines, since often the same li-

brary function is called by many applications.
2 It unfairly under-counts coverage. Often, the bulk of

a library function called by an application is effec-
tively dead code since the library code is general but
call sites are not. For example,printf is excep-
tionally complex, but the callprintf("hello")
can only hit a small a fraction (missing the code to
print integers, floating point, formatting, etc.).

However, we do include library code when measuring
the raw size of the application:KLEE must successfully
handle this library code (and gets no credit for doing so)
in order to exercise the code in the tool itself. We mea-
sure size in terms of executable lines of code (ELOC)
by counting the total number of executable lines in the
final executable after global optimization, which elimi-
nates uncalled functions and other dead code. This mea-
sure is usually a factor of three smaller than a simple line
count (usingwc -l).

In our experimentsKLEE minimizes the test cases it
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COREUTILS BUSYBOX

Coverage KLEE Devel. KLEE Devel.
(w/o lib) tests tests tests tests

100% 16 1 31 4
90-100% 40 6 24 3
80-90% 21 20 10 15
70-80% 7 23 5 6
60-70% 5 15 2 7
50-60% - 10 - 4
40-50% - 6 - -
30-40% - 3 - 2
20-30% - 1 - 1
10-20% - 3 - -
0-10% - 1 - 30

Overall cov. 84.5% 67.7% 90.5% 44.8%
Med cov/App 94.7% 72.5% 97.5% 58.9%
Ave cov/App 90.9% 68.4% 93.5% 43.7%

Table 2: Number of COREUTILS tools which achieve line
coverage in the given ranges forKLEE and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average and
median coverage per application.

generates by only emitting tests cases for paths that hit a
new statement or branch in the main utility code. A user
that wants high library coverage can change this setting.

5.2 GNU COREUTILS

We now giveKLEE coverage results for all 89 GNU
COREUTILS utilities.

Figure 4 breaks down the tools by executable lines
of code (ELOC), including library code the tool calls.
While relatively small, the tools are not toys — the small-
est five have between 2K and 3K ELOC, over half (52)
have between 3K and 4K, and ten have over 6K.

Previous work, ours included, has evaluated
constraint-based execution on a small number of
hand-selected benchmarks. Reporting results for the
entire COREUTILS suite, the worst along with the best,
prevents us from hand-picking results or unintentionally
cheating through the use of fragile optimizations.

Almost all tools were tested using the same command
(command arguments explained in§ 2.1):

./run <tool-name> --max-time 60
--sym-args 10 2 2
--sym-files 2 8
[--max-fail 1]

As specified by the--max-time option, we ran each
tool for about 60 minutes (some finished before this limit,
a few up to three minutes after). For eight tools where the
coverage results of these values were unsatisfactory, we
consulted theman page and increased the number and
size of arguments and files. We found this easy to do,
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Figure 5: Line coverage for each application with and without
failing system calls.

so presumably a tool implementer or user would as well.
After these runs completed, we improved them by failing
system calls (see§ 4.2).

5.2.1 Line coverage results

The first two columns in Table 2 give aggregate line
coverage results. On average our tests cover 90.9% of
the lines in each tool (median: 94.7%), with an overall
(aggregate) coverage across all tools of 84.5%. We get
100% line coverage on 16 tools, over 90% on 56 tools,
and over 80% on 77 tools (86.5% of all tools). The min-
imum coverage achieved on any tool is 62.6%.

We believe such high coverage on a broad swath of ap-
plications “out of the box” convincingly shows the power
of the approach, especially since it is across the entire
tool suite rather than focusing on a few particular appli-
cations.

Importantly,KLEE generates high coverage with few
test cases: for our non-failing runs, it needs a total of
3,321 tests, with a per-tool average of 37 (median: 33).
The maximum number needed was 129 (for the “[” tool)
and six needed 5. As a crude measure of path complexity,
we counted the number of static branches run by each test
case usinggcov6 (i.e., an executed branch counts once
no matter how many times the branch ran dynamically).
The average path length was 76 (median: 53), the maxi-
mum was 512 and (to pick a random number) 160 were
at least 250 branches long.

Figure 5 shows the coverageKLEE achieved on each
tool, with and without failing system call invocations.
Hitting system call failure paths is useful for getting the
last few lines of high-coverage tools, rather than signif-
icantly improving the overall results (which it improves
from 79.9% to 84.5%). The one exception ispwd which
requires system call failures to go from a dismal 21.2%
to 72.6%. The second best improvement for a single tool
is a more modest 13.1% extra coverage on thedf tool.

6In gcov terminology, a branch is a possible branch direction, i.e.
a simple if statement has two branches.
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Figure 6: Relative coverage difference betweenKLEE and
the COREUTILSmanual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests(Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better forKLEE,
which beats manual testing on all but 9 applications, often
significantly.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added.7 As Table 2 shows,KLEE

beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level,KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools whileKLEE always achieves over 60%.
In total, an 89 hour run ofKLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!

Figure 6 gives a relative view ofKLEE versus devel-
oper tests by subtracting the lines hit by manual testing
from those hit byKLEE and dividing this by the total pos-
sible. A bar above zero indicates thatKLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.

To guard against hidden bias in line coverage, we
also compared the taken branch coverage (as reported by
gcov) of the manual andKLEE test suites. While the
absolute coverage for both test suites decreases,KLEE’s
relative improvement over the developers’ tests remains:

7We ran the test suite using the commands:env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check and make check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significant impact
on our results.

paste -d\\ abcdefghijklmnopqrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p
md5sum -c t1.txt
ptx -F\\ abcdefghijklmnopqrstuvwxyz
ptx x t4.txt
seq -f %0 1

t1.txt: "\t \tMD5("
t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"
t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS

version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.

Finally, it is important to note that althoughKLEE’s
runs significantly beat the developers’ tests in terms of
coverage,KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see§ 5.5).

5.2.3 Bugs found

KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (inseq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of theKLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.

As an illustrative example, we discuss the bug inpr
(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, bothchars per input tab andchars per c

equal tab width (let’s call itT ). Line 2665 computes
width = (T − input position mod T ) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that0 ≤ x mod y < y, which only
holds for positive integers. Wheninput position

is positive, width will be less thanT since 0 ≤

input position mod T < T . However, in the pres-
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602: #define TAB WIDTH(c , h ) ((c ) − ((h ) % (c )))
. . .
1322: clump buff = xmalloc(MAX (8,chars per input tab));
. . . // (set s to clumpbuff)
2665: width = TAB WIDTH(chars per c, input position);
2666:
2667: if (untabify input)
2668: {
2669: for (i = width; i; −−i)
2670: *s++ = ’ ’;
2671: chars = width;
2672: }

Figure 8: Code snippet frompr where a memory
overflow ofclump buff via pointers is possible if
chars per input tab == chars per c and
input position < 0.

ence ofbackspaces,input position can become neg-
ative, so(−T < input position mod T < T ). Con-
sequently,width can be as large as2T − 1.

The bug arises when the code allocates a buffer
clump buff of sizeT (line1322) and then writeswidth
characters into this buffer (lines 2669–2670) via the
pointers (initially set toclump buff). Becausewidth
can be as large as2T −1, a memory overflow is possible.

This is a prime example of the power of symbolic ex-
ecution in finding complex errors in code which is hard
to reason about manually — this bug has existed inpr
since at least 1992, when COREUTILS was first added to
a CVS repository.

5.2.4 Comparison with random tests

In our opinion, the COREUTILS manual tests are un-
usually comprehensive. However, we compare to ran-
dom testing both to guard against deficiencies, and to get
a feel for how constraint-based reasoning compares to
blind random guessing. We tried to make the comparison
apples-to-apples by building a tool that takes the same
command line asKLEE, and generates random values for
the specified type, number, and size range of inputs. It
then runs the checked program on these values using the
same replay infrastructure asKLEE. For time reasons,
we randomly chose 15 benchmarks (shown in Figure 9)
and ran them for 65 minutes (to always exceed the time
given toKLEE) with the same command lines used when
run with KLEE.

Figure 9 shows the coverage for these programs
achieved by random, manual, andKLEE tests. Unsurpris-
ingly, given the complexity of COREUTILSprograms and
the concerted effort of the COREUTILS maintainers, the
manual tests get significantly more coverage than ran-
dom.KLEE handily beats both.

Becausegcov introduces some overhead, we also
performed a second experiment in which we ran each
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Figure 9: Coverage of random vs. manual vs.KLEE testing
for 15 randomly-chosen COREUTILSutilities. Manual testing
beats random on average, whileKLEE beats both by a signifi-
cant margin.

tool natively withoutgcov for 65 minutes (using the
same random seed as the first run), recorded the number
of test cases generated, and then reran usinggcov for
that number. This run completely eliminates thegcov
overhead, and overall it generates 44% more tests than
during the initial run.

However, these 44% extra tests increase the average
coverage per tool by only 1%, with 11 out of 15 utili-
ties not seeing any improvement — showing that random
gets stuck for most applications. We have seen this pat-
tern repeatedly in previous work: random quickly gets
the cases it can, and then revisits them over and over. In-
tuitively, satisfying even a single 32-bit equality requires
correctly guessing one value out of four billion. Cor-
rectly getting a sequence of such conditionals is hope-
less. Utilities such ascsplit (the worst performer), il-
lustrate this dynamic well: their input has structure, and
the difficulty of blindly guessing values that satisfy its
rules causes most inputs to be rejected.

One unexpected result was that for 11 of these 15
programs,KLEE explores paths to termination (i.e., the
checked code callsexit()) only a few times slower
than random does!KLEE explored paths to termina-
tion in roughly the same time for three programs and,
in fact, was actually faster for three others (seq, tee,
andnohup). We were surprised by these numbers, be-
cause we had assumed a constraint-based tool would run
orders of magnitude more slowly than raw testing on a
per-path basis, but would have the advantage of explor-
ing more unique paths over time (with all values) because
it did not get stuck. While the overhead on four pro-
grams matched this expectation (where constraint solver
overhead made paths ran 7x to 220x more slowly than
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native execution), the performance tradeoff for the oth-
ers is more nuanced. Assume we have a branch deep in
the program. Covering both true and false directions us-
ing traditional testing requires running the program from
start to finish twice: once for the true path and again
for the false. In contrast, whileKLEE runs each instruc-
tion more slowly than native execution, it only needs to
run the instruction path before the branch once, since it
forks execution at the branch point (a fast operation given
its object-level copy-on-write implementation). As path
length grows, this ability to avoid redundantly rerunning
path prefixes gets increasingly important.

With that said, the reader should view the per-path
costs of random andKLEE as very crude estimates. First,
the KLEE infrastructure random uses to run tests adds
about 13ms of per-test overhead, as compared to around
1ms for simply invoking a program from a script. This
code runs each test case in a sandbox directory, makes
a clean environment, and creates various system objects
with random contents (e.g., files, pipes, tty’s). It then
runs the tested program with a watchdog to terminate
infinite loops. While a dedicated testing tool must do
roughly similar actions, presumably it could shave some
milliseconds. However, this fixed cost matters only for
short program runs, such as when the code exits with an
error. In cases where random can actually make progress
and explore deeper program paths, the inefficiency of re-
running path prefixes starts to dominate. Further, we con-
servatively compute the path completion rate forKLEE:
when its time expires, roughly 30% of the states it has
created are still alive, and we give it no credit for the
work it did on them.

5.3 BUSYBOX utilities

BUSYBOX is a widely-used implementation of standard
UNIX utilities for embedded systems that aims for small
executable sizes [1]. Where there is overlap, it aims to
replicate COREUTILS functionality, although often pro-
viding fewer features. We ran our experiments on a bug-
patched version of BUSYBOX 1.10.2. We ran the 75
utilities 8 in the BUSYBOX “coreutils” subdirectory
(14K lines of code, with another 16K of library code),
using the same command lines as when checking CORE-
UTILS, except we did not fail system calls.

As Table 2 shows,KLEE does even better than on
COREUTILS: over 90.5% total line coverage, on aver-
age covering 93.5% per tool with a median of 97.5%. It
got 100% coverage on 31 and over 90% on 55 utilities.

BUSYBOX has a less comprehensive manual test suite
than COREUTILS (in fact, many applications don’t seem
to have any tests). Thus,KLEE beats the developers tests
by roughly a factor of two: 90.5% total line coverage ver-

8We areactually measuring coverage on 72 files because several
utilities are implemented in the same file.

date -I
ls --co
chown a.a -
kill -l a
setuidgid a ""
printf "% *" B
od t1.txt
od t2.txt
printf %
printf %Lo
tr [
tr [=
tr [a-z

t1.txt: a
t2.txt: A
t3.txt: \t\n

cut -f t3.txt
install --m
nmeter -
envdir
setuidgid
envuidgid
envdir -
arp -Ainet
tar tf /
top d
setarch "" ""
<full-path>/linux32
<full-path>/linux64
hexdump -e ""
ping6 -

Figure 10: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in BUSYBOX.
When multiple applications crash because of the same shared
(buggy) piece of code, we group them by shading.

sus only 44.8% for the developers’ suite. The developers
do better on only one benchmark,cp.

5.4 Bug-finding: M INIX + all BUSYBOX tools

To demonstrateKLEE’s applicability to bug finding, we
used KLEE to check all 279 BUSYBOX tools and 84
M INIX tools [4] in a series of short runs. These 360+
applications cover a wide range of functionality, such
as networking tools, text editors, login utilities, archiv-
ing tools, etc. While the tests generated byKLEE dur-
ing these runs are not sufficient to achieve high coverage
(due to incomplete modeling), we did find many bugs
quickly: 21 bugs in BUSYBOX and another 21 in MINIX

have been reported (many additional reports await in-
spection). Figure 10 gives the command lines for the
BUSYBOX bugs. All bugs were memory errors and were
fixed promptly, with the exception ofdate which had
been fixed in an unreleased tree. We have not heard back
from the MINIX developers.

5.5 Checking tool equivalence

Thus far, we have focused on finding generic errors that
do not require knowledge of a program’s intended be-
havior. We now show how to do much deeper checking,
including verifying full functional correctness on a finite
set of explored paths.

KLEE makes no approximations: its constraints have
perfect accuracy down to the level of a single bit. If
KLEE reaches anassert and its constraint solver states
the false branch of theassert cannot execute given the
current path constraints, then it hasprovedthat no value
exists onthe current paththat could violate the assertion,
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1 : unsigned mod opt(unsigned x, unsigned y) {
2 : if ((y & −y) == y) // power of two?
3 : return x & (y−1);
4 : else
5 : return x % y;
6 : }
7 : unsigned mod(unsigned x, unsigned y) {
8 : return x % y;
9 : }
10: int main() {
11: unsigned x,y;
12: make symbolic(&x, sizeof(x));
13: make symbolic(&y, sizeof(y));
14: assert(mod(x,y) == mod opt(x,y));
15: return 0;
16: }

Figure 11: Trivial program illustrating equivalence checking.
KLEE proves total equivalence wheny 6= 0.

modulo bugs inKLEE or non-determinism in the code.9

Importantly,KLEE will do such proofs for any condition
the programmer expresses as C code, from a simple non-
null pointer check, to one verifying the correctness of a
program’s output.

This property can be leveraged to perform deeper
checking as follows. Assume we have two procedures
f andf’ that take a single argument and purport to im-
plement the same interface. We can verify functional
equivalence on a per-path basis by simply feeding them
the same symbolic argument and asserting they return
the same value:assert(f(x) == f’(x)). Each
time KLEE follows a path that reaches this assertion, it
checks if any value exists on that path that violates it. If
it finds none exists, then it has proven functional equiv-
alence on that path. By implication, if one function is
correct along the path, then equivalence proves the other
one is as well. Conversely, if the functions compute dif-
ferent values along the path and theassert fires, then
KLEE will produce a test case demonstrating this differ-
ence. These are both powerful results, completely be-
yond the reach of traditional testing. One way to look at
KLEE is that it automatically translates a path through a
C program into a form that a theorem prover can reason
about. As a result, proving path equivalence just takes a
few lines of C code (the assertion above), rather than an
enormous manual exercise in theorem proving.

Note that equivalence results only hold on the finite set
of paths thatKLEE explores. Like traditional testing, it
cannot make statements about paths it misses. However,
if KLEE is able to exhaust all paths then it has shown total
equivalence of the functions. Although not tractable in
general, many isolated algorithms can be tested this way,
at least up to some input size.

We help make these points concrete using the con-

9Code that depends on the values of memory addresses will not
satisfy determinism sinceKLEE will almost certainly allocate memory
objects at different addresses than native runs.

trived example in Figure 11, which crosschecks a triv-
ial modulo implementation (mod) against one that opti-
mizes for modulo by powers of two (mod opt). It first
makesthe inputsx andy symbolic and then uses the
assert (line 14) to check for differences. Two code
paths reach thisassert, depending on whether the
test for power-of-two (line 2) succeeds or fails. (Along
the way,KLEE generates a division-by-zero test case for
wheny = 0.) The true path uses the solver to check that
the constraint(y& − y) == y implies(x&(y − 1)) ==
x%y holds for all values. This query succeeds. The
false path checks the vacuous tautology that the con-
straint(y& − y) 6= y implies thatx%y == x%y also
holds. TheKLEE checking run then terminates, which
means thatKLEE has proved equivalence for all non-zero
values using only a few lines of code.

This methodology is useful in a broad range of con-
texts. Most standardized interfaces — such as libraries,
networking servers, or compilers — have multiple im-
plementations (a partial motivation for and consequence
of standardization). In addition, there are other common
cases where multiple implementations exist:

1 f is a simple reference implementation andf’ a real-
world optimized version.

2 f’ is a patched version off that purports only to
remove bugs (so should have strictly fewer crashes)
or refactor code without changing functionality.

3 f has an inverse, which means we can change our
equivalence check to verifyf−1(f(x)) ≡ x, such as:
assert(uncompress(compress(x))==x).

Experimental results. We show that this technique
can find deep correctness errors and scale to real pro-
grams by crosschecking 67 COREUTILS tools against
their allegedly equivalent BUSYBOX implementations.
For example, given the same input, the BUSYBOX and
COREUTILSversions ofwc should output the same num-
ber of lines, words and bytes. In fact, both the BUSYBOX

and COREUTILS tools intend to conform to IEEE Stan-
dard 1003.1 [3] which specifies their behavior.

We built a simple infrastructure to make crosschecking
automatic. Given two tools, it renames all their global
symbols and then links them together. It then runs both
with the same symbolic environment (same symbolic ar-
guments, files, etc.) and compares the data printed to
stdout. When it detects a mismatch, it generates a test
case that can be run to natively to confirm the difference.

Table 3 shows a subset of the mismatches found by
KLEE. The first three lines show hard correctness er-
rors (which were promptly fixed by developers), while
the others mostly reveal missing functionality. As an ex-
ample of a serious correctness bug, the first line gives the
inputs that when run on BUSYBOX’s comm causes it to
behave as if two non-identical files were identical.
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Input BUSYBOX COREUTILS

comm t1.txt t2.txt [does not show difference] [shows difference]
tee - [does not copy twice to stdout] [does]
tee "" <t1.txt [infinite loop] [terminates]
cksum / "4294967295 0 /" "/: Is a directory"
split / "/: Is a directory"
tr [duplicates input on stdout] "missing operand"
[ 0 ‘‘<’’ 1 ] "binary operator expected"
sum -s <t1.txt "97 1 -" "97 1"
tail -2l [rejects] [accepts]
unexpand -f [accepts] [rejects]
split - [rejects] [accepts]
ls --color-blah [accepts] [rejects]
t1.txt: a t2.txt: b

Table 3: Very small subset of the mismatchesKLEE found between the BUSYBOX and COREUTILSversions of equivalent utili-
ties. The first three are serious correctness errors; most of the others are revealing missing functionality.

Test Random KLEE ELOC

With Disk 50.1% 67.1% 4617
No Disk 48.0% 76.4% 2662

Table 4: Coverage on the HISTAR kernel for runs with up to
three system calls, configured with and without a disk. For
comparison we did the same runs using random inputs for one
million trials.

5.6 The HiStar OS kernel

We have also appliedKLEE to checking non-application
code by using it to check the HiStar [39] kernel. We used
a simple test driver based on a user-mode HISTAR ker-
nel. The driver creates the core kernel data structures and
initializes a single process with access to a single page of
user memory. It then calls the test function in Figure 12,
which makes the user memory symbolic and executes a
predefined number of system calls using entirely sym-
bolic arguments. As the system call number is encoded
in the first argument, this simple driver effectively tests
all (sequences of) system calls in the kernel.

Although the setup is restrictive, in practice we have
found that it can quickly generate test cases — sequences
of system call vectors and memory contents — which
cover a large portion of the kernel code and uncover
interesting behaviors. Table 4 shows the coverage ob-
tained for the core kernel for runs with and without a
disk. When configured with a disk, a majority of the un-
covered code can only be triggered when there are a large
number of kernel objects. This currently does not happen
in our testing environment; we are investigating ways to
exercise this code adequately during testing. As a quick
comparison, we ran one million random tests through
the same driver (similar to§ 5.2.4). As Table 4 shows,
KLEE’s tests achieve significantly more coverage than
random testing both for runs with (+17.0%) and without
(+28.4%) a disk.

1 : static void test(void *upage, unsigned num calls) {
2 : make symbolic(upage, PGSIZE);
3 : for (int i=0; i<num calls; i++) {
4 : uint64 t args[8];
5 : for (int j=0; j<8; j++)
6 : make symbolic(&args[j], sizeof(args[j]));
7 : kern syscall(args[0], args[1], args[2], args[3],
8 : args[4], args[5], args[6], args[7]);
9 : }
10: sys self halt();
11: }

Figure 12: Test driver for HISTAR: it makes a single page of
user memory symbolic and executes a user-specified number
of system calls with entirely symbolic arguments.

KLEE’s constraint-based reasoning allowed it to find a
tricky, critical security bug in the 32-bit version of HIS-
TAR. Figure 13 shows the code for the function contain-
ing the bug. The functionsafe addptr is supposed
to set*of to true if the addition overflows. However,
because the inputs are 64 bit long, the test used is insuf-
ficient (it should be(r < a) || (r < b)) and the
function can fail to indicate overflow for large values of
b.

The safe addptr function validates user memory
addresses prior to copying data to or from user space. A
kernel routine takes a user address and a size and com-
putes if the user is allowed to access the memory in that
range; this routine uses the overflow to prevent access
when a computation could overflow. This bug in com-
puting overflow therefore allows a malicious process to
gain access to memory regions outside its control.

6 Related Work

Many recent tools are based on symbolic execution [11,
14–16,20–22,24, 26, 27, 36]. We contrast howKLEE

deals with the environment and path explosion problems.
To the best of our knowledge, traditional symbolic ex-
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1 : uintptr t safe addptr(int *of, uint64 t a, uint64 t b) {
2 : uintptr t r = a + b;
3 : if (r < a)
4 : *of = 1;
5 : return r;
6 : }

Figure 13: HISTAR function containing an important security
vulnerability. The function is supposed to set*of to true
if the addition overflows but can fail to do so in the 32-bit
version for very large values ofb.

ecution systems [17, 18, 32] are static in a strict sense and
do not interact with the running environment at all. They
either cannot handle programs that make use of the en-
vironment or require a complete working model. More
recent work in test generation [16, 26, 36] does allow ex-
ternal interactions, but forces them to use entirely con-
crete procedure call arguments, which limits the behav-
iors they can explore: a concrete external call will do ex-
actly what it did, rather than all things it could potentially
do. In KLEE, we strive for a functional balance between
these two alternatives; we allow both interaction with the
outside environment and supply a model to simulate in-
teraction with a symbolic one.

The path explosion problem has instead received more
attention [11, 22, 24, 27, 34]. Similarly to the search
heuristics presented in Section 3, search strategies pro-
posed in the past include Best First Search [16], Gener-
ational Search [27], and Hybrid Concolic Testing [34].
Orthogonal to search heuristics, researchers have ad-
dressed the path explosion problem by testing paths com-
positionally [8, 24], and by tracking the values read and
written by the program [11].

Like KLEE, other symbolic execution systems imple-
ment their own optimizations before sending the queries
to the underlying constraint solver, such as the simple
syntactic transformations presented in [36], and thecon-
straint subsumptionoptimization discussed in [27].

Similar to symbolic execution systems, model check-
ers have been used to find bugs in both the design and
the implementation of software [10, 12, 19, 25, 29, 30].
These approaches often require a lot of manual effort to
build test harnesses. However, the approaches are some-
what complementary toKLEE: the testsKLEE generates
can be used to drive the model checked code, similar to
the approach embraced by Java PathFinder [31, 37].

Previously, we showed that symbolic execution can
find correctness errors by crosschecking various imple-
mentations of the same library function [15]; this paper
shows that the technique scales to real programs. Subse-
quent to our initial work, others applied similar ideas to
finding correctness errors in applications such as network
protocol implementations [13] and PHP scripts [9].

7 Conclusion
Our long-term goal is to take an arbitrary program and
routinely get 90%+ code coverage, crushing it under test
cases for all interesting inputs. While there is still a long
way to go to reach this goal, our results show that the ap-
proach works well across a broad range of real code. Our
systemKLEE, automatically generated tests that, on av-
erage, covered over 90% of the lines (in aggregate over
80%) in roughly 160 complex, system-intensive appli-
cations “out of the box.” This coverage significantly
exceeded that of their corresponding hand-written test
suites, including one built over a period of 15 years.

In total, we usedKLEE to check 452 applications (with
over 430K lines of code), where it found 56 serious bugs,
including ten in COREUTILS, arguably the most heavily-
tested collection of open-source applications. To the best
of our knowledge, this represents an order of magnitude
more code and distinct programs than checked by prior
symbolic test generation work. Further, becauseKLEE’s
constraints have no approximations, its reasoning allow
it to prove properties of paths (or find counter-examples
without false positives). We used this ability both to
prove path equivalence across many real, purportedly
identical applications, and to find functional correctness
errors in them.

The techniques we describe should work well with
other tools and provide similar help in handling a broad
class of applications.
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