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1. INTRODUCTION

Soon after the first “0” was concatenated to a “1” there has been a “software crisis.” Software
pervades life and all software, with rare exception, is broken. Errors range from simple crashes,
to medical devices harming rather than helping, to security holes that allow attackers to view
sensitive data and spend large amounts of money that someone else owns. Finding, fixing, and
preventing software errors are arguably one of the most important problems in computer science.

The work in this contract aimed to attack this problem in three ways. First, to commercially
deploy static program checking techniques we developed in prior work that had proven their
worth, hopefully achieving wide impact. Second, to run these commercial tools on widely used
open source code both to improve such software’s quality and to demonstrate the tools’
effectiveness in a transparent way. Finally, to do new research that would develop more
powerful methods able to find errors out of the reach of static techniques.



2. METHODS, ASSUMPTIONS, AND PROCEDURES

This effort has developed and commercialized static bug-finding and software model checking
tools we have built at Stanford and Coverity, to identify and remediate vulnerabilities as
specified in Technical Topic Area 2, Composable and Scalable Secure Systems.

Commercialization focused on static (i.e., compile time) checkers that had shown their ability to
find large numbers of errors in large source bases quickly, and with few false reports.
Commercialization was done through Coverity, a company previously founded on research done
at Stanford. Coverity also applied these tools to widely used open source projects (as discussed
below). The effort at Stanford focused on developing techniques based on symbolic execution
and model checking that are deeper than static analysis (at least in its usual sense). A constant
challenge was making the techniques work on real code: they are significantly more heavy
weight than static analysis and in the past had not been particularly effective at dealing with non-
toy programs. As the results in this report show, the tools we built can regularly handle large,
complex code. We deployed these tools via open source releases.

We validated all tools built and commercialized by using them to find bugs in important open-
source projects (e.g., Linux, BSD, and many other widely-used projects). As a crucial part of
doing so, Coverity built and ran an ongoing “open source hardening” project that automatically
applied our tools to these projects as a nightly regression and published the bugs in a developer-
available database of errors. The benefits of automated, regular regressions are fourfold. First, it
gave an objective, highly-visible validation that our tools work well on real code. Second, it
provided corrective guidance to development, forcing tools to focus on what matters. Third, it
strengthened on our relationships with developers on these projects, leading to (among other
things) valuable user feedback, checking ideas, and (from experience) customer leads. Finally,
and in some ways most important, it led to immediate improvements in the vast open-source
infrastructure that serves as a foundation to much of the nation's computing environments.

Somewhat unusually, much of the contract went according to plan. There were two main
deviations from the initial proposal. First, while the technical aspect of the race detection and
security checkers were largely within the realm of what we understood how to do, the users were
not: commercial users have a somewhat erratic grasp of static analysis which can have a
surprising impact on what the tool can do. It’s not enough to find an error --- the tool must
describe, clearly and in a way that is difficult to misinterpret, why the error is a true error. Ata
high level, what this means is that the analysis used by the tool is no longer invisible (as it is with
optimizing compilers). In particular, each time your tool calls a complicated subroutine in order
to detect an error, you will essentially have to explain to the user what that routine did. For
example, why two pointers are aliased or why a variable can be equal to a given constant.
Depending on the details of this calculation, this exposition can be surprisingly difficult. The
main consequence is that commercialization of checkers did not proceed en masse but started
with simple ones, refined them, added more complex checkers gradually and in some cases
scaled back the types of errors reported --- not because the checkers did not find them, but
because it was too challenging to find ways to describe them so that users would not mark them
as false positives.



The second deviation was the result of a breakthrough in understanding. We had planned to take
our FiSC model checker and make it more general and powerful. We succeeded in producing a
more general and powerful model checker, but it was fundamentally different than FiSC. Ata
high level, FiSC worked by importing the code to check into the tool and running it in a fake
environment. This fake environment allowed FiSC to easily control all the inputs and
environmental actions the code saw (for example: when a machine crash happened, when
memory allocation would fail). At the time, this approach seemed like the easiest way to go
since we checked operating system code, which was otherwise hard to manipulate. The
breakthrough came when we realized that we could instead interlace the tool into the checked,
thereby completely eliminating the need to construct a fake environment or simulate anything.
As a result we were then able to even check commercial software for which we lacked source.
The interested reader is referred to the eXplode section in this document and the paper included
in Appendix A.



3. RESEARCH RESULTS AND DISCUSSION

Coverity was tasked with commercializing three static analysis methods and developing a
framework for doing nightly checks of open source projects. Stanford was tasked with
developing open source tools for model checking and developing effective tools that exploited
symbolic constraint analysis to find bugs out of the reach of static methods.

We first discuss the results at Coverity and then at Stanford.

3.1 Coverity: Commercializing Static Checking Tools

The specific static checking tools Coverity developed and productized were:
o RACE: astatic tool that uses path-sensitive, inter-procedural analysis to detect both race
conditions and deadlocks. It is based on our prior work" and explicitly designed to find
errors in large, complex, un-annotated multi-threaded systems.

e SECURE: asuite of security checkers that flag improper stack/heap accessing, integer
overflow, buffer overflow and user-controllable string management errors. These are a
more powerful version of analysis we had done previously.? In addition it flagged
potentially time-to-check-to-time-of-use bugs.

e EXTEND: aprogramming interface for writing custom static checkers. It allows
companies to write their own custom checks that look for domain- or even program-
specific errors.

As one might expect, despite being able to leverage earlier research efforts, commercialization
had to overcome numerous obstacles that only show up when you go from a few people checking
a few code bases to thousands of people checking hundreds.

We now give some examples of the specific checkers in SECURE and RACE. For SECURE:
e Unsafe Use of Returned Values — NEGATIVE_RETURNS and NULL_RETURNS
In C/C++, when a program calls a function the results are normally passed back to the
calling code in a return value. In many cases a function reports errors in its operation, or
complains about the arguments it was called with, by returning a negative or a NULL

value.

When the analysis sees that a function can return a negative or NULL value, and a code
path exists where that value is subsequently used unsafely, then a defect will be flagged.

! “Racer: Effective, Static Detection of Race Conditions and Deadlock,” Dawson Engler and Ken Ashcraft,
Proceedings of the 19" Symposium on Operating Systems Principles, 2003.

2 “Using Programmer Written Compiler Extensions to Catch Security Holes,” Ken Ashcraft and Dawson Engler,
Proceedings of the Oakland Security Conference, May, 2002.
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The TAINTED_SCALAR checker finds many instances where scalars (for example:
integers) are not properly bounds-checked (sanitized) before being used as array or
pointer indexes, loop boundaries, or function arguments. Scalars that are not sanitized
are considered tainted.

Missing or inadequate scalar validation can cause buffer overflows, integer overflows,
denials of service, memory corruption, and security vulnerabilities.

Signed scalars must be upper- and lower-bounds checked. Unsigned integers need only
an upper-bounds check. You can also sanitize scalars with an equality check since this
effectively bounds the value to a single number.

The TAINTED_STRING checker finds many instances of improper string validation.
Incorrectly checked strings are the root cause of many security holes. A simple example
is reading a string from an environment and writing it to an internal buffer without
checking that it does not exceed a maximum length. A trickier example: forgetting to
check if an externally supplied string used to do a database lookup has wildcards. In this
case an attacker could provide “*”” which would match everything, returning the entire
database. Other possible attacks include access control violations, environment
corruption, cross-site scripting, file corruption, format string vulnerabilities, command
injection, and SQL injection.

Because an array of characters must be validated as opposed to bounds checking a single
value, string sanitation is inherently more difficult than scalar cleansing. Doing so,
therefore, usually means passing the string to a sanitizing function before using it in a
trusted sink.

To fix tainted string defects, implementers can use a programmer-defined format-string,
such as syslog(LOG_WARNING, "%s", error_msg). Or, they can check for format
specifics before passing to syslog()code. In general, they should run tainted strings
through a sanitizing routine before using in a potentially unsafe way.

SECURE_CODING: is one of the simplest checkers in that it does not use any flow
information at all but just looks for any use of unsafe functions.

Certain unsafe functions should never be used (such as “gets”), while others have been
identified a security threat (such as “strcpy”). Also, some functions that were designed to
alleviate the problems associated with their predecessors (for example, “strncpy” instead
of “strcpy”), can still cause issues when used incorrectly.

This set of checkers serve as more of an auditing tool since they flag any call to a
potentially dangerous function, without analyzing the behavior of the code or the context
with which the function was called. As such, it serves to warn of uses of historically
unsafe functions and possible alternatives.



A representative subset of the checkers in RACE:

The ATOMICITY checker reports defects when it finds a variable definition inside a
critical section, but the use of that variable outside of that critical section. A critical
section is a block of code that accesses a shared resource and that must not be accessed
concurrently by another thread, and so is protected by a lock. Both the definition and use
of the variable must be protected by the same lock.

The LOCK checker finds many instances of double locks (locks acquired twice) and
missing locks (missing lock releases).

Two types of locks are supported:
e Exclusive. An exclusive lock cannot be acquired recursively and attempt
to do so will deadlock.
e Recursive. The same thread can recursively acquire a recursive lock.

A lock can be either a global variable or local to a function. LOCK reports a defect when
the following sequence occurs: (Note that the values in parenthesis, such as (+lock), are
a documentation convention used to aid in illustrating the following examples.)

a. Avariable L is locked (+lock).

b. L is not unlocked (-unlock).

One of the following can now occur:
a. The path's end is reached (-lock_returned) and L does not appear anywhere in the
function's return value or its expression.
b. L is locked again (+double_lock). (Only for exclusive locks.)
No errors are reported for functions that intentionally lock a function argument.

Defects are also reported when the following sequence occurs:

a. L isunlocked (+unlock).
b. L is passed to a function which asserts that lock L is held (+lockassert)

Forgetting to release an acquired lock can result in the program hanging; subsequent
attempts to acquire the lock fail as the program waits for a release that will never occur.



e The MISSING_LOCK checker finds many instances where global variables or fields of
structs are updated without locks, causing potential race conditions. Race conditions can
lead to unpredictable or incorrect program behavior.

The MISSING_LOCK checker tracks when variables are updated with locks. If a
variable update is found that does not have a lock, but usually does have a lock, a defect
is reported.

In the Coverity Defect Manager, events from this checker are displayed in the multi-event
code browser, which shows the missing lock event, followed by example_lock and
example_access events. You can click on the file names to see the events in-line with the
code.

e The ORDER_REVERSAL checker finds many instances of acquiring locks in the wrong
order which can potentially cause deadlocks.

Acquiring pairs of locks in the incorrect order can result in the program hanging.
Because of thread interleaving, it is possible for two threads to each be waiting on a lock
that the other thread has acquired (deadlock). Other threads attempting to acquire either
of the two locks will also deadlock.

e The SLEEP checker finds many instances where blocking functions can cause a lock to
be held too long, preventing other threads trying to acquire the same lock from
continuing until the lock is released.

Corrective action for this defect includes acquiring the lock after, or releasing the lock
before, the blocking function call.

Incorrect derivations of blocking functions, such as a function which blocks occasionally
but not in all cases, are the most common causes of false positives. You can correct this
with a model correctly indicating the function's behavior or with an annotation to
suppress the block model. The annotation should suppress the blocks property.

Both of these suites of checkers have seen wide deployment at Coverity customer sites.

3.2 Coverity: Open Source Scanning

In addition, Coverity made its suite of checking tools available to qualified open source software
projects through the SCAN project. Through the SCAN website site, open source developers can
retrieve the defects identified by Prevent analyses through a portal accessible only by qualified
project developers. The SCAN site is located at: http://scan.coverity.com.



The site divides open source projects into rungs based on the progress each project makes in
resolving defects. Projects at higher rungs receive access to additional analysis capabilities and
configuration options. Projects are promoted as they resolve the majority of defects identified at
their current rung. More information on the criteria for the SCAN ladder is available at:
http://scan.coverity.com/ladder.

The hardware behind the project consists of 6 servers: 5 build machines, and one database/web
server machine. The systems run Linux and NetBSD, have 4 processing cores, 4G of RAM, and
1 or more terabytes of mirrored (Raid 1) disk.

3.3 Stanford

Stanford had two main tasks:
e Do an open source release of the FiSC file system checker we had built in previous work,
and extend it to a broader class of code than just file systems.

e Prototype static analysis and model checking tools with integrated logical constraint
analysis. The goal here was to find bugs out of the reach of static analysis.

For the first, we obsoleted FiSC by developing a dramatically lighter weight yet more powerful
approach that worked with a much broader set of applications. We built an open source version
of a tool, eXplode, based on this approach instead. For the second, we developed a very fast
constraint solver, STP, and two tools that used it to deeply check C code. The first, EXE, used it
to find security holes and to automatically generate attacks. The second, KLEE, used constraints
to automatically generate inputs that would execute most statements in real code. We discuss
each below.

3.4 eXplode: Systematically Checking Storage Systems
Our main research paper on eXplode is:

e Junfeng Yang, Can Sar, and Dawson Engler, “eXplode: a
Lightweight, General System for Finding Serious Errors in
Storage Systems,” 7th Symposium on Operating Systems Design
And Implementation (OSDI), 2006.

Storage systems such as file systems, databases, and RAID systems have a simple, basic
contract: you give them data, they do not lose or corrupt it. Often they store the only copy,
making its irrevocable loss almost arbitrarily bad. Unfortunately, their code is exceptionally
hard to get right, since it must correctly recover from any crash at any program point, no matter
how their state was smeared across volatile and persistent memory.

In the paper above, we describe eXplode: a system that makes it easy to systematically check
real storage systems for errors. It takes user-written, potentially system-specific checkers and
uses them to drive a storage system into tricky corner cases, including crash recovery errors.



It uses a novel adaptation of ideas from model checking, a comprehensive, heavy-weight formal
verification technique, that makes its checking more systematic (and hopefully more effective)
than a pure testing approach while being just as lightweight.

eXplode is effective. It found serious bugs in a broad range of real storage systems (without
requiring source code): three version control systems, BerkeleyDB, an NFS implementation, ten
file systems, a RAID system, and the popular VMware GSX virtual machine. We found bugs in
every system we checked, 36 bugs in total, typically with little effort.

Table 1 gives a rundown of which bugs were where and how much code we required to find

them. More complex checkers can find more bugs, but even simple ones find serious errors in
production code, where an inopportune crash will cause the unrecoverable loss of data.

Table 1: summary of storage systems checked by eXplode

System Storage  Checker Bugs

ES 744 5477 18

CVs 27 a8 1
Subwversion - - 1
EXrENSIV 30 124 3
Berkeley DB g2 202 6
RAID 144 F5+137 2

NES 34 FS 4
VMware G5/ Linux 54 Fs 1
Total 1115 6,008 36



3.5 EXE: Using Constraint Solving to Automatically Generate Inputs of Death.

Systems code defines an error-prone execution state space built from deeply nested conditionals
and function call chains, massive amounts of code, and enthusiastic use of casting and pointer
operations. Such code is hard to test and difficult to inspect, yet a single error can crash a
machine or form the basis of a security breach.

We developed EXE, a system designed to automatically find bugs in such code using symbolic
execution. The central insight behind EXE is that code can be used to automatically generate its
own (potentially highly complex) test cases. At a high level, we mark data from untrusted
sources as unconstrained symbolic input, which we then run to produce constraints and test
cases. Instead of running code on manually generated test cases, EXE runs it on symbolic input
that is initially free to be any value. As the code executes, the data is “interrogated”; the results
of conditional expressions and other operations incrementally inform EXE what constraints to
place on the values of the input in order for execution to proceed on a given path. Each time the
code performs a conditional check involving a symbolic value, EXE forks execution, adding on
the true path a constraint that the branch condition held while on the false path a constraint that it
did not. EXE generates test cases for the program by using a constraint solver to find concrete
values that satisfy the constraints. These automatically generated inputs are then fed back into
the code.

EXE has several novel features. First, it precisely models all operations on *symbolic* pointers
-- pointers whose address values are not concrete but instead symbolically constrained. EXE
correctly handles: (1) the constraints generated from pointer arithmetic expressions involving
(concrete or symbolic) pointers and (concrete or symbolic) offsets, (2) reads and writes to
memory by dereferencing a symbolic pointer, and (3) arrays of symbolic size. Implementing
these features involves more subtleties than one may expect. For example, given a concrete
pointer "a" and a symbolic variable "i" constrained to be between 0 and n, then the conditional
expression "if(a[i] == 10)" is essentially equivalent to a big disjunction: “if(a[0] == 10| ... ||
a[n] == 10)".

Similarly, the assignment “a[i] = 42” can potentially assign to any element in the array that the
index could name. By design, because EXE has a precise view of the concrete heap -- which it
treats as a sequence of untyped bytes whose constraints are induced by observation -- it does not
matter how data is manipulated or how pointers are manufactured or cast.

Second, EXE symbolically executes all of the C language with bit-level precision. EXE works
in the presence of unions, bit-fields, casts, and aggressive bit-operations (such as shifting,
masking, byte swapping, or check summing). Every bit of a program executing under test is
either not symbolic and thus represented exactly in the program's memory, or has a
corresponding symbolic constraint that is exactly accurate. Thus, if at any program point in a
deterministic program we generate a concrete solution for the constraints at that point, and then
re-execute the program on this solution, the execution is guaranteed to arrive exactly back at this
point, with concrete values compatible with the current symbolic constraints.
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Third, EXE amplifies the effect of running a single code path since the use of a constraint solver
lets it reason about all possible values that the path could be run with, rather than a single set of
concrete values from an individual test case. To illustrate, a dynamic memory checker such as
the Purify tool will only catch an out-of-bounds array access if the index (or pointer) has a
specific concrete value that is out-of-bounds. In contrast, EXE will identify this bug if there is
any possible input value on the given path that can cause an out-of-bounds access to the array.
In addition, for an arithmetic expression that uses symbolic data, EXE can solve the associated
constraints for values that cause an overflow or a division by zero. Moreover, for an "assert"
statement, EXE searches over all possible input values on the given path for values that cause the
assert to fail. If the assert does not fail then either (1) no input on this path can cause it to fail or
(2) there is a bug in EXE.

Finally, EXE works well on real code. It automatically found buffer overruns in the very mature
and audited Berkeley Packet Filter (BPF) code, the Linux networking code, and a server for the
DHCPD protocol. EXE can scale up to large, real (and sometimes overly complex) systems
code.

We had two main papers on EXE, which we discuss below:

e Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar and Dawson
Engler, “Automatically Generating Malicious Disks using Symbolic
Execution,” IEEE Proceedings on Security and Privacy, 2006.

Many current systems allow data produced by potentially malicious sources to be mounted as a
file system. File system code must check this data for dangerous values or invariant violations
before using it. Because file system code typically runs inside the operating system kernel, even
a single unchecked value can crash the machine or lead to an exploit. Unfortunately, validating
an allegedly safe file system image is complex: they form directed acyclic graphs (DAGSs) with
complex dependency relationships across massive amounts of data bound together with intricate,
undocumented assumptions. We have used EXE to automatically find bugs in such code using
symbolic execution. The approach works well in practice: we checked the disk mounting code
of three widely-used Linux file systems: ext2, ext3, and JFS and generated concrete disks that
when mounted would either cause a kernel panic or form the basis of a buffer overflow attack.
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Figure 1: symbolic execution overview.

Figure 1 gives an overview of how the system works. We run Linux at user-level using the user-
mode Linux kernel. We have a simple test driver that calls the “mount()”” system call to mount a
symbolic disk using one of the three Linux file systems we test (ext2, ext3, or JFS). EXE runs
the given file system and whenever it hits an error will emit a raw disk image that triggers it.
These disk images can be mounted on a live running file system to demonstrate the security hole.

Offset Hex Values
00000 Q000 Q000 Q000 Q000 0000 0000 Q000 Q000

D=000 464a 3153 0000 0000 0000 0200 Q00O 0000
05010 1000 Q000 QQOO QOO0 Q0Q0 QOO0 Q000 QQO0
0=020 Q000 Q000 Q100 0000 00G0 0000 Q000 Q000
0=030 a004 O0OE QOO0 0000 00G2 0000 0000 Q000
0=040 Q000 QOO0 Q000 Q000 00G0 0000 0000 Q000

10000

Figure 2: hex dump of a disk generated by EXE that will cause JFS to crash.
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Figure 2 gives a hex dump of a 64KB disk generated by EXE that will cause JFS on the Linux
2.4.27 kernel to dereference a null pointer. If you save this to a file and mount it with JFS it will
cause a kernel crash. To reproduce the null dereference simply create an empty 64K file and set
the 64™ sector to the values in the figure (... indicates repeat of the previous row).

e "EXE: a System for Automatically Generating Inputs of death™ Cristian Cadar, Vijay
Ganesh, Peter M. Pawlowski, David L. Dill, Dawson R. Engler. Association for
Computing Machinery (ACM) Conference on Computer and Communication Security,
2006.

This paper gives an operational view of EXE and applies it to networking code where it found
numerous security holes including invalid memory reads and writes in a Dynamic Host
Configuration Protocol (DHCPD server implementation to finding buffer overflow attacks in the
BSD and Linux packet filter implementations.

In addition, it describes the optimizations done in EXE's custom constraint solver, STP, which
gains significant speed and simplicity by directly translating constraints to a Boolean
satisfiability solver.

3.6 KLEE: Automatically Running Most Statements in Real Code
Our main paper on KLEE:

e “Klee: Unassisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” Cristian Cadar, Daniel Dunbar and Dawson Engler, Operating
System Design and Implementation, 2008(Won Best paper)

Many classes of errors, such as functional correctness bugs, are difficult to find without
executing a piece of code. The importance of such testing, combined with the difficulty and poor
performance of random and manual approaches has led us to develop a set of tools based on
symbolic execution designed to deeply check real code.

At a high-level, these tools use variations on the following idea: Instead of running code on
manually- or randomly-constructed input, they run it on symbolic input initially allowed to be
“anything.” They substitute program inputs with symbolic values and replace corresponding
concrete program operations with ones that manipulate symbolic values. When program
execution branches based on a symbolic value, the system (conceptually) follows both branches,
on each path maintaining a set of constraints called the path condition which must hold on
execution of that path. When a path terminates or hits a bug, a test case can be generated by
solving the current path condition for concrete values. Assuming deterministic code, feeding this
concrete input to an uninstrumented version of the checked code makes it follow the same path
and hit the same bug.
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Our most recent tool, KLEE, is capable of automatically generating tests that achieve high
coverage on a diverse set of complex and environmentally-intensive programs. We used it to
thoroughly check (1) all 89 stand-alone programs in the CoreUtils utility suite, which form the
core user-level environment installed on almost all Unix systems, and, as such, represent some of
the most heavily used and tested open-source programs in existence, (2) 72 application in the
BusyBox utilities suite for embedded systems, and (3) the HiStar operating system kernel.
KLEE- generated tests achieved high statement coverage --- on average over 90% per tool in
CoreUtils and BusyBox (median: over 94%) --- and in aggregate significantly beat the coverage
of the developers' own hand-written test suites.

We also used KLEE as a bug finding tool, applying it to 448 applications (over 433K total lines
of code), where it found 56 serious bugs, including three in CoreUtils that had been missed for
over 15 years. In addition, we also used KLEE to cross-check purportedly identical BusyBox
and CoreUtils utilities, finding functional correctness errors and a myriad of inconsistencies.

To support this analysis we developed a new constraint solver, STP, which can efficiently solve
the types of constraints generated by real code (arrays, bit operations, etc). Using STP we can
support all of C with no imprecision, with the exception of floating point, which we have elided.

We now give a more detailed breakdown of these experiments.
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of executable lines of code
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Figure 3 gives a breakdown of the CoreUtils program by size. While they are not millions of
lines of code, they are not toys, ranging from 2K to 10K executable lines of code: this count is
roughly a factor of three smaller than a simple line count, and excludes blank lines, variable
declarations, structure definitions, etc.
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Figure 4: Coverage with and without failing system calls

Our experiments consisted of running these 89 applications unaltered for an hour apiece with
KLEE and then taking the tests it generated and rerunning these on uninstrumented versions of
the programs to get line coverage. Figure 4 shows the distribution of the line coverage achieved
on a per application basis. It sorts applications by their line coverage from least to greatest. 16
utilities have 100% line coverage, and the average is 91% (median 94.7%!).
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Figure 5: KLEE vs. the developers' manual test suite for CoreUtils. A bar above 0 means KLEE beat the
developers and by how much.
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Figure 5 compares the KLEE generated coverage to that of the developers’ own manual written
test suite, constructed over a period of 15 years. It subtracts the developers’ coverage from
KLEE’s coverage and plots the result. A bar at 100% means KLEE got 100% coverage and the
developers got nothing. A bar below the 0% line means the developers beat KLEE. As can be
seen from the graph, this rarely happened (in 9 cases out of 89 utilities).

| paste -d\\| abedefghijklmnopgrstuvwxysz
pr -= t2.txt
| tac -r t3.txt £3.ext
mkdir -Z a b
| mkfifo -Z a b
mkned -4 a b p
| mdSsum - tl.txt
ptx -F\\ abcdefghijklmnopgrstuvwxyz
| ptx x td.txt
seq - %0 1

tl.ect: "\t \EMDS ("

2.0t "\b\b\b\b\b\b\b\t"
f3. et "hn"

. et “é"

Figure 6: KLEE generated inputs (modified for readability) that will cause crashes on version 6.10.

Figure 6 gives KLEE generated command lines of death. When KLEE finds an error, it solves
the constraints for the given path to get a concrete input that will trigger that error. It then
provides these constraints to developers so that they can replicate the error. All of these produce
crashes in CoreUTtils version 6.10.
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4 TRANSITION EFFORTS
4.1 Coverity

Commercialization has gone exceptionally well. Coverity has met all goals, and shipped the
results to many customers. Department of Homeland Security sponsorship has been extremely
helpful in terms of getting publicity and (as a result) into more companies.

Coverity has grown over the course of the contract from around 50 customers to over 500+
customers, with a combined source code base of over a billion lines of code. It has achieved
good penetration into The Fortune 500: 57% of software companies, 54% of networking
companies, 50% of computer companies, and 44% of aerospace companies. Many of these sales
have included the checkers developed for this effort to find concurrency errors (RACE) and
security holes (SECURE).

() coverity

History of Research and Growth of Coverity

Stanford
Checker

Employees

2

1
2003

1999-2003 2004 2005 2007
SYNOPSYS Qyomaree. BZZA & »ﬁ
2000+ Defects Standardizes Standardizes Standardizes ﬁH.s Wwall Standardizes
Found in Linux on Coverity ~ on Coverity  on Coverity Vulnerability Street  on Coverity
Initiative Journal

Contract Technology
Awarded  Innovation
Award

Figure 7: Coverity growth in terms of customers and employees up to 2007
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Figure 7 is a somewhat outdated graphic showing the early history of growth: the initial research
was started at Stanford in 1999, commercialized in 2003, and after an initial point when
employees outnumbered customers, switched the other way. As mentioned above, the trend lines
have seen even sharper growth on the right, hitting over 500 customers and 120+ employees.
Despite the current recession, the last quarter set a record in terms of most revenue brought in.

Since 2006, the SCAN site has analyzed over 55 million lines of code on a recurring basis from
more than 250 open popular source projects such as Firefox, Linux, and PHP. This represents
14,238 individual project analysis runs for a total of nearly 10 billion lines of code analyzed.

Of these 250 projects, over 120 have developers actively working to reduce the number of
reported defects in their code. The efforts of these developers have resulted in the elimination of
more than 8,500 defects in open source programs over a period of 24 months.

The effort has generated significant press, good will, and as can be seen from the bug counts,
helped remove significant amounts of defects from key open source code. Additionally,
numerous sales have come about because of developers have had a good initial impression of
Coverity, because they either have read about it helping open source or have seen its effects first
hand on open source they are involved with. Coverity has significant interest in finding a way to
continue this effort after the current contract has expired.

With that said, the use of the EXTEND framework to add new, company-specific checkers has
lagged significantly in comparison to RACE and SECURE. The main reason is that most
companies have never used any automatic checker at all. Thus, usually the bugs found by the
default Coverity checker suite are all they can handle. After the initial wave of sales we hope to
see the more advanced customers pick it up more widely.

There have been literally hundreds of press articles on Coverity and the SCAN effort.
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4.2 Stanford

Both the eXplode storage system checker and KLEE tool for automatically executing most
statements in code automatically have been made available as open source. KLEE is the
cornerstone of the Stanford research group and remains under active development (likely for the
next several years).

The STP constraint solver developed at Stanford partially funded by DHS has seen wide-spread
use in a variety of areas, detailed below. Tools that use STP:

MINESWEEPER, Jim Newsome, David Brimley, Prof. Dawn Song and others at
Berkeley.

CATCHCONYV, David Molnar and Prof. David Wagner at University of California,
Berkeley

A backward path-sensitive analysis of C programs to find bugs by Tim Leek from MIT
Lincoln Labs

JPF-SE, a symbolic execution extension to the Java Pathfinder model checker by SiSwati
An and, Corona Pasadena and Willem Visor from NASA Ames Research Center

REPLAYER, atool that replays an application dialog between two hosts in order to

analyze security exploits by Jim Newsome, David Brimley, Prof. Dawn Song and others
at Carnegie Mellon University (CMU)
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5 CONCLUSIONS

The effort funded by DHS has met all deliverable goals.

Coverity has commercialized the static checking tools it was tasked with, and has seen great
commercial success, helped by DHS sponsorship. During the course of the effort it has grown
from 50 customers to more than 500, with over a billion lines of code between them.

Stanford has developed several new, powerful tools for checking real code. The most recent,
KLEE, can automatically execute most statements in a diverse set of widely used programs.
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6 RECOMMENDATIONS

The field of effective bug finding has seen a revolution in the past decade. Real tools have
emerged that work well on real code. We expect the next decade to see just as many advances.
We urge the agency to aggressively fund such efforts.

In addition, we strongly urge the agency to provide a way to have the many tools being
developed be continuously applied to the open source code crucial to the Nation's infrastructure.
Doing so both provides effective hardening of key attacker exposed surfaces and serves as a
rigorous test as to which tools work and which are a waste of effort.
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8 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS
ACM: ASSOCIATION FOR COMPUTING MACHINERY.
BPF: BERKELEY PACKET FILTER.
BSD: BERKELEY UNIX

DHCPD: COMMONLY USED SERVER THAT IMPLEMENTS THE DYNAMIC HOST
CONFIGURATION PROTOCOL.

EXE: ATOOL DEVELOPED AT STANFORD THAT USES CONSTRAINT-BASED
EXECUTION TO AUTOMATICALLY GENERATE INPUTS OF DEATH THAT
CRASH REAL PROGRAMS

EXPLODE: A TOOL DEVELOPED AT STANFORD THAT USED A VARIATION ON
MODEL CHECKING TO DO LIGHTWEIGHT CHECKING OF STORAGE SYSTEMS
TO FIND WHEN THEY WILL LOSE OR CORRUPT DATA.

FISC: THE INITIAL STORAGE CHECKING TOOL THAT EXPLODE (ABOVE) WAS
BASED ON.

KLEE: A TOOL DEVELOPED AT STANFORD THAT USES CONSTRAINT-BASED
EXECUTION TO AUTOMATICALLY GENERATE INPUTS THAT EXECUTE MOST
STATEMENTS IN REAL PROGRAMS

JFS: FILE SYSTEM FOR LINUX, DEVELOPED BY IBM.

PREVENT: GENERIC NAME FOR THE COMMERCIAL TOOL DEVELOPED BY
COVERITY.

SQL: WIDELY USED DATABASE QUERY LANGUAGE

STP: AN EFFICIENT CONSTRAINT SOLVER DEVELOPED AT STANFORD USED BY
BOTH EXE AND KLEE.
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APPENDIX: A

EXPLODE: a Lightweight, General System for Finding Serious Storage
System Errors

Junfeng Yang, Can Sar, and Dawson Engler
Computer Systems Laboratory
Stanford University

Abstract dynamic storage checkersXpPLODE makes it easy for

Storage systems such as file systems, databases, and RAID sgfieckers to find bugs in crash recovery code: as they run
tems have a simple, basic contract: you give them data, they ¢@n a live system they teHXPLODEwhen to generate the
not lose or corrupt it. Often they store the only copy, making disk images that could occur if the system crashed at the
its irrevocable loss almost arbitrarily bad. Unfortunately, their current execution point, which they then check for errors.
code is exceptionally hard to get right, since it must correctly \\e explicitly designedEXPLODE so that clients can
recover from any crash at any program point, no matter howgheck complex storage stacks built from many different
their state was smeared across volatile and persistent memong hsystems. For example, Figure 1 shows a version con-
This paper describeeXPLODE, a system that makes it trol system on top of NFS on top of the JFS file sys-

easy to systematically check real storage systems for errors. . .
Y 0 5. v ge 5y, %em on top of RAID EXPLODE makes it quick to assem-

It takes user-written, potentially system-specific checkers an .
uses them to drive a storage system into tricky corner case le checkers for such deep stacks by providing interfaces

including crash recovery erroreXPLODE uses a novel adap- that let users write small checker components and then
tation of ideas from model checking, a comprehensive, heavyPlug them together to build many different checkers.
weight formal verification technique, that makes its checking Checking entire storage stacks has several benefits.
more systematic (and hopefully more effective) than a pure testFirst, clients can often quickly check a new layer (some-
ing approach while being just as lightweight. times in minutes) by reusing consistency checks for one
EXPLODEISs effective. It found serious bugs in a broad range layer to check all the layers below it. For example, given

of real storage systems (without requiring source code): thrr:‘%m existing file system checker, if we can slip a RAID
version control systems, Berkeley DB, an NFS implementation '

ten file systems, a RAID system, and the popular VMware GS)J ayer below the file system we can immediately use the

virtual machine. We found bugs in every system we checked,flle system checker to detect if the RAID causes errors.

36 bugs in total, typically with little effort. (Section 9 uses this approach to check NFS, RAID, and
] a virtual machine.) Second, it enables strong end-to-end
1 Introduction checks, impossible if we could only check isolated sub-

Storage system errors are some of the most destructi@/stems: correctness in isolation cannot guarantee cor-
errors possible. They can destroy persistent data, witfiectness in composition [22]. Finally, users can localize
almost arbitrarily bad consequences if the system ha@rors by cross-checking different implementations of a
the only copy. Unfortunately, storage code is simultanelayer. If NFS works incorrectly on seven out of eight file
ously both difficult to reason about and difficult to test. It Systems, it probably has a bug, but if it only breaks on
must always correctly recover to a valid state if the sys-one, that single file system probably dog8.g).
tem crashes any program point, no matter what data  We believeEXPLODE as described so far is a worth-
is being mutated, flushed (or not flushed) to disk, andwhile engineering contribution. A second conceptual
what invariants have been violated. Further, despite thgontribution is its adaptation of ideas from model check-
severity of storage system bugs, deployed testing mething [6,15,17], a typically heavyweight formal verifica-
ods remain primitive, typically a combination of manual tion technique, to make its checking more systematic
inspection (with the usual downsides), fixes in reaction(and thus hopefully more effective) than a pure testing
to bug reports (from angry users) and, at advanced sitegpproach while remaining as lightweight as testing.
the alleged use of manual extraction of power cords from Traditional model checking takes a specification of a
sockets (a harsh test indeed, but not comprehensive). system (a “model”) which it checks by starting from an
This paper presentsXPLODE, a system that makes initial state and repeatedly performing all possible ac-
it easy to thoroughly check real systems for such crastions to this state and its successors. A variety of tech-
recovery bugs. It gives clients a clean framework to buildniques exist to make this exponential search less inef-
and plug together powerful, potentially system-specificficient. Model checking has shown promise in finding
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checking o crash recovery machinery rather than re-implementing or emulating it.

subversion|, —  — - 9
checker Italso becomes trivial to check new storage systems: just

L3

_ mount and run them. Finally, any check that can be run

on the base system can also be run ®XPLODE.

[_NFS client || The final contribution of the paper is an experimental

loopback interface evaluation ofEX PLODE that shows the following:

NFS server frmdadm ——assembic 1. eXrPLoDEcheckers are effectiv§—5§9). We found
s | rorce bugs in every system we checked, 36 bugs in total,

| oupdatesresyne typically with little effort, and often without source
code §8.1,§9.3). Checking without source code is

valuable, since many robust systems rely on third-

party software that must be vetted in the context of
Figure 1: A snapshot ofEXPLODE with a stack of storage systems

the integrated system.
being checked on the left and the recovery tools being run on the right

software
RAID1
S s S ——
checking checking
disk 1 disk 2

I}

2. EXPLODE checkers have enough power to do thor-

after EXPLODE “crashes” the system to generate possible crash disks. ough checks, demonstrated by using it to comprehen-
This example checks Subversion running on top of NFS exporting a  Sively check ten Linux file system§?).

JFS file system running on RAID. 3. Even simple checkers find bugg8). Tiny check-

ers found bugs in three version control systeggsX)

and a widely-used databas@(2).

EXPLODE makes it easy to check subsystems de-
signed to transparently slip into storage stad}&y.(

We reused file system checkers to quickly find er-

Recent work onimplementation-level model check- rors in RAID (§9.1), NFS §9.2), and VMware§9.3)
ing [3,13, 18] eliminates the need to write a model by which should not (but do) break the behavior of stor-

using code itself as its own (high-fidelity) model. We age systems layered above or below them
used this approach in prior work to find serious errors The paper is organized as follows. We first state our

in Linux file systems [30]. However, while more prac- principles §2) and then show how to USEXPLODE to

t'ﬁal Lha:jnl_z?\ traditional gpp;oachh, It rqu:'rid rEnn.mg Itchecheck an example storage system stei&).( We then
checked Linux system inside the model checker itsel ag; o 51 gyerview 0EXPLODE (§4) and focus on how it;

a user-space process, which demanded enormously invi ) explores alternative actions in checked coi and

ﬁivzmodri]ﬁcaktions.h_Theb na_tdure fc_)lf the Changesdmade ' 2) checks crasheg®). After the experimental evalua-
ard to check anything besides file systems and, even i | (§7—89), we discuss our experiences porti-

the best case, checking a new file system took a Week’ﬁl_oDE to FreeBSD § 10), contrast with related work
work. Porting to a new Linux kernel, much less a differ- (511), and then concludé12)

ent operating system, could take months. o
This paper shows how to get essentially all the mode  Principles
checking benefits of our prior work with little effort by |n a sense, this entire paper boils down to the repeated
turning the checking process inside out. Instead of shoeapplication of a single principle:
horning the checked system inside the model checker Explore all choices When a program point can
(or worse, cutting parts of the checked system out, olegally do one ofN different actions, fork executioN
worse still, creating models of the checked code) it in-times and do each. For example, the kernel memory al-
terlaces the control needed for systematic state expldocator can returtNULL, but rarely does so in practice.
rationin situ, throughout the checked system, reducingFor each call to this allocator we want to fork and do both
the modifications needed down to a single device driveractions. The next principle feeds off of this one:
which can run inside of a lightly-instrumented, stock ker- Exhaust states Do every possible action to a state
nel running on real hardware. As a resel{PLODEcan  pefore exploring another state. In our context, a state is
thoroughly check large amounts of storage system codgefined as a snapshot of the system we check.
with little effort. We distilled these two principles after several years of
Running checks on a live, rather than emulated, sysusing model checking to find bugs. Model checking has
tem has several nice fallouts. Because storage systenasvariety of tricks, some exceptionally complex. In retro-
already provide many management and configuratiorspect, these capture the one feature of a model checking
utilities, EXPLODE checkers can simply use this pre-built approach that we would take over all others: systemat-

corner-case errors. However, requiring implementors to
rewrite their system in an artificial modeling language
makes it extremely expensive for typical storage systems™
(read: almost always impractical).
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ically do every legal action to a state, missing nothing,point that hasN possible actions clients insert a call
then pick another state, and repeat. This approach reli*choose( N) ,” which will appear to fork executiomN
ably finds interesting errors, even in well-tested code. Wdimes, returning the valuegs 1,..., N — 1 in each child
are surprised when it does not work. The key feature oexecution respectively. They then write code that uses
this principle over traditional testing is that it makes low- this return value to pick one unique action out of thie
probability events (such as crashes) as probable as higlpossibilities. EXPLODE can exhaust all possible actions
probability events, thereby quickly driving the checked at thischoose call by running all forked children. We
system into tricky corner-cases. The final two principlesdefine a code location that can pick one of several differ-
come in reaction to much of the pain we had with naiveent legal actions to bechoice poiniand the act of doing
application of model checking to large, real systems.  so achoice

Touch nothing. Almost invariably, changing the be- ~ An example: in low memory situations the Linux
havior of a large checked system has been a direct pathnal | oc function can returrNULL when called with-
to experiences that we never want to repeat. The intereut the __GFP_NOFAI L flag. But it rarely does so in
nal interfaces of such systems are often poorly definedpractice, making it difficult to comprehensively check
Attempting to emulate or modify them produces corner-that callers correctly handle this case. We can use
case mistakes that model checking is highly optimized tachoose to systematically explore both success and fail-
detect. Instead we try to do everything possible to runure cases of eadtnal | oc call as follows:

the checked system as-is and parasitically gather the in- ., kmallodsize t size int flagy {

formation we need for checking as it runs. if((flags & __GFP.NOFAIL) == 0)
Report only true errors, deterministically. The er- if(choos€2) == 0)
rors our system flags should be real errors, reduced to return NULL;

deterministic, replayable traces. All checking systems
share this motherhood proclamation, but, in our contexiTypically clients add a small number of such calls.
it has more teeth than usual: diagnosing even determinigon Linux, we usedchoose to fail six kernel func-
tic, replayable storage errors can take us over a day. Théons: kmal | oc (as above)page_al | oc (page al-
cost of a false one is enormous, as is the time needed t@cator), access_ok (verify user-provided pointers),
fight with any non-determinism. bread (read a block),r ead_cache_page (read a

age), ancend_r equest (indicate that a disk request
3 How to Check a Storage System Eorgnp)leted). The inqserted éode mirrors thaktimal | (():Ic:
This section shows how clients us¥ PLoDE interfaces  a callchoose( 2) and an if-statement to pick whether
to check a storage system, using a running example db either (0) return an error or (1) run normally.
a simple fiI_e sy_stem checker. Clients us)éP!_ODE to 35 Driving checked code: The checker
do two main things to a storage system. First, system-
atically exhaust all possibilities when the checked sys-The client provides a checker thakpPLODE uses to
tem can do one of several actions. Second, check that flrive and check a given storage system. The checker im-
correctly recovers from a crash. Clients can also chectlements five methods:

non-crash properties by simply inserting code to do sol. mut at e: performs system-specific operations and
in either their checker or checked code itself without re-  calls into EXPLODE to explore choices and to do
quiring EXPLODE support (for an example s§&.2). crash checking.

Below, we explain how clients expose decision points 2. check: called after eacEXPLODE-simulated crash

in the checked code; (3.1). We then explain the three to check for storage system errors.
system-specific components that clients provide (written3. get _si g: an optional method which returns a byte-
in C++). One, acheckerthat performs storage system array signature representing the current state of the

operations and checks that they worked corre¢yZ). checked system. It uses domain-specific knowledge
Two, astorage Componemhat sets up the checked sys- to discard irrelevant details so theX PLODE knows

tem §3.3). Finally, achecking stackhat combines the when two superficially different states are equivalent
first two into a checking harness3(4). and avoids repeatedly checking them. The default

get _si g simply records all choices made to pro-
duce the current state.

Like prior model checkers [13,30EXPLODE provides 4. i ni t andfi ni sh: optional methods to set up and
a function,choose, that clients use to select among clear the checker’s internal state, called whet:
possible choices in checked code. Given a program PLODEmounts and unmounts the checked system.

3.1 How checked code exposes choiaehoose
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1 : const char *dir = "/ mt/sbd0/test-dir";

2 : const char *file = "/ mt/sbd0/test-file";

3 : static void do_fsyndconst char *fn) {

4 : int fd = oper{fn, O_RDONLY);

5: fsynqfd);

6 : closdfd);

7:}

8 : void FsChecker::mutateoid) {

9 :  switch(chooséd)) {

10: caseO: systemf"'nkdir %%d", dir, choosé€b)); break;
11: casel: system{"rnmdir %%", dir, choosé€5)); break;
12: case?2: system{'rm %", file); break;

13: case3: system{'echo \"test\" > %", file);

14: if(choos€2) == 0)

15: synd);

16: else {

17: do_fsyndfile);

18: /I fsync parent to commit the new directory entry
19: do_fsynq"/ mt / sbd0");

20:

21: check crashnow(); // invokes check() for each crash
22: break;

23: }

24: }

25: void FsChecker::chegkoid) {

26: ifstream ir(file);

27:  if(lin)

28: erro"fs", "file gone!");

29:  char buf[1024];

30: in.readbuf, sizeof buf);

31: in.closd);

32:  if(strncmgbuf, "test", 4) I= 0)

33: erro"fs", "wrong file contents!");

34: }

Figure 2: Example file system checker. We omit the class initialization
code and some sanity checks.

rmdir rm file V Vcrrea“t file

Figure 3: Choices made by one invocation of that at e method in
Figure 2's checker. It creates thirteen children.

dren.

The checker calleXPLODE to check crashes. While
other code in the system can also initiate such check-
ing, typically it is themmut at e method’s responsibil-
ity: it issues operations that change the storage sys-
tem, so it knows the correct system state and when
this state changes. In our example, aftart ate
forces the file to disk it calls th&eXPLODE routine
check_crash_now(). EXPLODE then generates all
crash disks at the exact moment of the call and invokes
thecheck method on each after repairing and mounting
it using the underlying storage component (§e&.3).
Thecheck method checks if the test file exists (line 27)
and has the right contents (line 32). While simple, this
exact checker catches an interesting bug in JFS where
upon crash, afi sync’d file loses all its contents trig-
gered by the corner-case reuse of a directory inode as a
file inode §7.3 discusses a more sophisticated version of
this checker).

So far we have described how a singfet at e call
works. The next section shows how it fits in the check-

Checkers range from aggressively system-specific (0fg process. In addition, checking crashes at only a sin-

even code-version specific) to the fairly generic. Theirgje code point is crude; Section 6 describes the routines
size scales with the complexity of the invariants checkedex p| opE provides for more comprehensive checking.

from a few tens to many thousands of lines.
Figure 2 shows a file system checker that checks

23 Setting up checked code: Storage components

simple correctness property: a file that has been synSinceEXPLODE checks live storage systems, these sys-

chronously written to disk (using either tliesync or

tems must be up and running. For each storage subsys-

sync system calls) should persist after a crash. Mailtem involved in checking, clients provide a storage com-
servers, databases and other application storage systemsnent that implements five methods:
depend on this behavior to prevent crash-caused data. j ni t : one-time initialization, such as formatting a

obliteration. While simple, the checker illustrates com-

mon features of many checkers, including the fact that it

catches some interesting bugs.
The mut at e method callschoose(4) (line 9) to

file system partition or creating a fresh database.
nount : set up the storage system so that operations
can be performed on it.

3. unmount : tear down the storage system; used by

fork and do each of four possible actions: (1) create a
directory, (2) delete it, (3) create a test file, or (4) delete
it. The first two actions then catlhoose(5) and cre-
ate or delete one of five directories (the directory name is
based orchoose’s return value). The file creation ac-
tion callschoose( 2) (line 14) and forces the test file to
disk usingsync in one child and sync in the other. As
Figure 3 shows, onaut at e call creates thirteen chil-

4.

5.

27

EXPLODEt0 clear the storage system'’s state so it can
explore a different one;b.2).

recover : repair the storage system after BX-
PLODE-simulated crash.

t hr eads: return the thread IDs for the storage
system’s kernel threads.EXPLODE reduces non-
determinism by only running these threads when it
wants to §5.2).



void Ext3::init(void) { /Il Assemble FS + RAID storage stack step by step.

/I create an empty ext3 FS with user-specified block size void assembl@Component*&top, TestDriver *&driver) {
systemf{' nkfs.ext3 -F -j -b % %", /I 1. load two RAM disks with size specified by user
get.optionblk_size), children0]—>path)); ekm_load_rdd(2, get option(rdd, sectors);
} Disk *d1 = new Disk("/ dev/rdd0");
void Ext3::recovef) { Disk *d2 = new Disk("/ dev/ rdd1");

systemf" f sck. ext 3 -y %", childrerf0]—>path));
/I 2. plug a mirrored RAID array onto the two RAM disks.

void Ext3::mounfvoid) { Raid *raid = new Raid"/ dev/ nd0", "rai d1");
int ret = system{" sudo nount -t ext3 % %", raid—>plug-child(d1);
childrer{0]—>path(), path)); raid—>plug_child(d2);

if(ret < 0) errof(" Corrupt FS: Can’t nount!");

} /I 3. plug an ext3 system onto RAID
void Ext3::umoungvoid) { Ext3 *ext3 = new Ext3("/ mt / sbd0");
system{" sudo unmount %", path)); ext3—>plug_child(raid);

top = ext3 // let eXplode know the top of storage stack
void Ext3::thread@hreadst &thids) {

int thid; /I 4. attach a file system test driver onto ext3 layer
if ((thid=get pid(" kj our nal d")) = —1) driver = new FsCheckeext3);

thids push.bacKthid); }
else

o , ) R Figure 5: Checking stack: file system checker (Figure 2) on an ext3 file
explodepaniq” can’ t get kjournald pid!"); system (Figure 4) on a mirrored RAID array on t&XpPLODE RAM

}. ) disks. We elide the trivial class definitioRai d andDi sk.
Figure 4: Example storage component for thet 3 file system. The

C++ class membechi | dr en chains all storage components that a tiple RAM disks to make a RAID array. Given a stack,
component is based oaxt 3 has only one child. EXPLODE initializes the checked storage stack by call-

Clients write a component once for a given storage sysind €achi ni t bottom up, and themount bottom up.

tem and then reuse it in different checkers. Storage syg~ftér a crash, it calls theecover methods bottom up

tems tend to be easy to set up, otherwise they will no@S Well. To unmountEXPLODE appliesunnmount top

get used. Thus, components tend to be simple and smaflown. Figure 5 shows a three-layer storage stack.

since they can merely wrap up alrgady—present systen3r Implementation Overview

commands (e.qg., shell script invocations).
Figure 4 shows a storage component forebe 3 file This section gives an overview &XPLODE. The next

system that illustrates these points. Its first four methodéwo sections discuss the implementation of its most im-

call standarcext 3 commands. The one possibly non- portant features: choice and crash checking.

obvious method is hr eads, which returns the thread The reader should keep in mind that conceptually what

ID of ext 3’s kernel threadKj our nal d) using the ex- EXPLODEdoes is very simple. If we assume infinite re-

pedient hack of calling the built-iEXPLODE routine  sources and ignore some details, the following would ap-

get _pi d which automatically extracts this ID from the proximate its implementation:

output of theps command. 1. Create a clean initial stat§3.3) and invoke the
client'smut at e oniit.

2. Ateverychoose(N) call, fork N children.

The checking stack builds a checker by glueing storage3. On clientrequest, generate all crash disks and run the

system components together and then attaching a single clientcheck method on them.

checker on top of them. The lowest component of a4. Whennut at e returns, re-invoke it.

checking stack typically is a custom RAM disk (down- This is it. The bulk ofEXPLODE is code for approx-

loaded from [24] and slightly modified). WhileX- imating this loop with finite resources, mainly the ma-

PLODEruns on real disks, using a RAM disk avoids non- chinery to save and restore the checked system so it

deterministic interrupts and giveX PLODE precise, fast can run one child at a time rather than an exponen-

control over the contents of a checked system’s “perdially increasing number all-at-once. As a resudX-

sistent” storage. The simplest storage stack attaches RLODE unsurprisingly looks like a primitive operating

checker to oneEXPLODE RAM disk. Such a stack does system: it has a queue of saved processes, a scheduler

no useful crash checking, so clients typically glue one otthat picks which of these jobs to run, and time slices (that

more storage subsystems between these two. Currentlystart whenrut at e is invoked and end when it returns).

stack can only have one checker. However, there can beXpPLODE's scheduling algorithm: exhaust all possible

a fan-out of storage components, such as setting up mutombinations of choices within a singlait at e call be-

3.4 Putting it all together: The checking stack
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storage.init() Add S' to

S0.
S0 = checkpnt() ol / state queue
0 00
state queue -
pick S from S'=checkpnt()
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hoices in S?

@

discard
current state

No

(S)erenwi gy

4)
creat(...) {

generate all
] ([N
S

buffer cache

curent RAM disk

Figure 6: Simplified view ofEXPLODE's state exploration loop for the
file system checker in Figure 2; sornhoose transitions and method
calls elided for space.

fore doing anotherg(2). (Note that turningeEXPLODE

into a random testing framework is easy: never save and

restore states and make eachoose(N) call return
a random integef0, N) rather than forking, recording

each choice for error replay.) The above sketch glosses
over some important details; we give a more accurate de-
scription below, but the reader should keep this helpful,

simplistic one in mind.
From a formal method’s perspective, the corexF

PLODEIs a simple, standard model checking loop based

EXPLODE Runtime FS Checker
Model Checking Loop Ex13 Component
Rald Componem
O w
& e
g7 Raid

e 2=
RAM Disk| |RAM Disk

Hardware

|aulay || PEs Buppayd

Xnui palipoN

Py
void*
kmalloc|(size_t s) {
if(choose(2) == 0)
return NULL;

Figure 7: SnapshoteEXPLODE with Figure 5’s checking stack

control to the running Linux kernel. Tter eat sys-
tem call writes two dirty blocks to the buffer cache
and returns back tout at e.

. mut at e callseEXPLODEto check that the file system

correctly recovers from any crash at this point.

. EXPLODEgenerates combinations of disks that could

be seen after a crash. It then runs the client code to:
nmount the crash disk; ecover it,andcheck it. If
these methods flag an error or they crasipLODE
records enough information to recreate this error, and
stops exploring this state.

. Otherwise EXPLODE returns back intorut at e

which in turn returns EXPLODE checks if it has al-
ready seen the current state using the abstracted rep-
resentation returned byet _si g. If it has, it dis-
cards the state to avoid redundant work, otherwise it
checkpoints it and puts it on the state queue.

7. EXPLODE then continues exploring any remaining

choices in the original stat®. If it has exhausted all
choice combinations 08 it picks a previously saved
state off the state queue and repeats this process on it.
This loop terminates when the state queue is empty
or the user loses patience. (The number of possible
states means the former never happens.)

on exhausting state choices. Figure 6 shows this vievAfter crash checking, the checked system may have a
of EXPLODE as applied to the file system checker of the butchered internal state. Thus, before continui;
previous section; the numbered labels in the figure corPLODE restores a clean copy of the current state without

respond to the numbers in the list below:

doing crash checking (not pictured).

In addition, since

1. EXPLODE initializes the checked system using checking all possible crash disks can take too long, users
client-providedi ni t methods. It seeds the check- can set a deterministic threshold: if the number of crash
ing process by saving this state and putting it on thedisks is bigger than this thresholeXPLODE checks a
state queue, which holds all states (jobs) to exploreconfigurable number of random combinations.

It separately saves the created disk image for use as a Figure 7 gives a snapshoteXPLODE; Table 1 breaks

pristine initial disk.
2. TheEXPLODE “scheduler” selects a stagfrom its

down the lines of code for each of the components.
It consists of two user-level pieces: a client-provided

state queue, restores it to produce a running storehecking stack and theXPLODE runtime, which imple-

age system, and invokeshoose to run either the

ments most of the model checking loop described above.

mut at e method or one of the checked systems’ ker-EXPLODE also has three kernel-level pieces: (1) one or

nel threads. In the figureyut at e is selected.
3. nut at e invokeschoose to pick an action. In our

more RAM disks, (2) a custom kernel modulegm,
and (3) a modified Linux kernel (either version 2.6.11 or

example it pickscr eat and calls it, transferring 2.6.15).EXPLODEUSeSEKM to monitor and determinis-
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Name Line Cloggtl system, FiSC, did just this [30]. Unfortunately, one can-
EKM ; . .

L RAM disk Driver 326 not simply save and restore a kernel running on raw hard—
inux Kernel Patch 328 ware, so we had to instead run a heavily-hacked Linux

EKM -generated 2,194 kernel inside FiSC at user level, turning FiSC into a prim-

8sD | RAM disk Dri ;é? itive virtual machine. Doing so was the single largest

IS river . .
Kernel Patch 116 source of F_lS_C qomplexny, overhead to check new sys-
User-mode EXPLODE 5.802 tems, and limitation on what we could check.
RPC Library 521

EXPLODE uses computation rather than copying to

Table L. £X i ¢ code (ignori is and blank lines) recreate states. It checkpoints a st&tdy recording
able 1: EXPLODEIlines of code (ignoring comments and blank lines), :

broken down by modules. Thexm driver contains 2,194 lines of au- the set of ch0|ces_ the checked COd_e_t_OOk to redch
tomatically generated codeKm -generated). TheexpLoberuntime  'estoresS by starting from a clean initial state and re-
and the RPC library run at user-level, the rest is in the kernel. Theplaying these choices. Thus, assuming deterministic ac-
RPC library is used to check virtual machings9(3). BSD counts are tions, this method regeneratSs Mechanically, check-
smaller because this port does not yet provideAlPLoDEfeatures. point records the sequencemthoices that produceﬁ
tically control checking-relevant actions done by kernelin an array; during replay théh choose call simply

code and record system events needed for crashes. Theturns theth entry in this array.

modified kernel C.a"EKM tolog system e_yent; and when This one change led to orders of magnitude reduction
|F reaches a choice pomt_. These moqmcatmns add 32§n complexity and effort in usingX PLODE as opposed
lines of_mostly read—onlylnstrumentann code, typically ; FiSC, to the degree th&XPLODE completely sub-

at function entry or exit. We expect them to generally beg | o our prior work in almost every aspect by a large
done byEXPLODEusers. UnlikeEX PLODE'S user-space amount. It also has the secondary benefit that states have

code, its RAM disk driver anékwm are kernel-specific, a tiny representation: a sequence of integers, one for

but are fairly small and easily ported to a new OS. We r®each choice point, where the integer specifies which of

c_ently ported_EXPL_ODE’s core t? FreeBSD, which Sec- N choices were made. Note that some model checkers
tion _10 describes in mgre detail. ) (and systems in other contexts [10]) already use replay-

_Given all of these pieces, checking works as follows. g creation of states, but for error reporting and state size
First, the user compiles and links their code against th¢eqyction, rather than for reducing invasiveness. One
EXPLODE runtime, and runs the resultant executable.promem with the approach is that the restored state’s

Second, theeXPLODE runtime dynamically loads its  imestamps will not match the original, making it harder
kernel-level components and then initializes the storagg, cneck some time properties.

system. Finally,EXPLODE explores the checked sys- ) o
tem’s states using its model Checking |00p' Na|Ve|y, It m|ght seem that to reset the checked Sys-

While checking a live kernel simplifies many things tems’ state we have to reboot the machine, re-initialize

the downside is that many bugs we find witKpLope ~ the storage system, mount it, and only then replay
cause kernel crashes. Thus, we run the checked systeffioices. This expensive approach works, but fortunately,
inside a virtual machine monitor (VMware Workstation), Storage systems have the observed, nice property that
where it can blow itself up without hurting anyone. This SIMPly unmounting them clears their in-memory state,

approach also makes checking a non-super-user opergpmoving their buffer cache entries, freeing up their ker-
tion. with the usual benefits. nel data structures, etc. ThusXPLODE uses a faster

method: call the client-suppliednnount to clear the
5 Exploring Choices current state, then load a pristine initial state (saved after

EXPLODE exhausts a choice point by checkpointing them't'ahzat'on) using the client-supplietbunt .

current stateS, exploring one choice, restoring, and It gets more costly to restore states as the length of
then exploring the other choices. Below we discuss hovtheir choice sequence grows. Users can configite
EXPLODEImplements checkpoint and restore by replay-PLODE to periodically chop off the prefix of choice se-
ing choices § 5.1) deterministically§ 5.2). quences. It does so by (1) callimgnount to force the
checked system state to disk and (2) using the resultant
disk image as a new initial state that duplicates the effect
A standard checkpoint implementation would copy theof the choices before thenmount call. The downside
current system state to a temporary buffer, which restorés that it can no longer reorder buffer cache entries from
would then copy back. Our previous storage checkingbefore this point during crash checking.

5.1 Checkpointing and restoring states.
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5.2 Re-executing code deterministically While checked code must do the santeose calls

for deterministic error replay, it does not have to allocate
the same physical blockeXPLODEreplays choices, but
then regenerates all different crash combinations after the
last choice point until it (re)finds one that fails checking.

EXPLODE's restore method only works if it can deter-
ministically replay checked code. We discuss hex+
PLODEdoes so below, including the restrictions imposed

on thg checked system: . Thus, the checked code can put logical contents in differ-
Doing the same choices.Kemel code containing & ot hhysical blocks (e.g., an inode resides in disk block
choose call can be invoked by non-checking code, suchy 5 51 one run and in block 20 on another) as long as the

as Interrupt handlers or system calls_ run by cher pro1ogical blocks needed to cause the error are still marked
cesses. Including such calls makes it impossible to re; g dirty in the buffer cache

play traces. EXPLODE filters them by discarding any _
calls from an interrupt context or calls from any process6 Checking Crashes
whose ID is not associated with the checked system.  11s section discusses crash checking issueX-

Controlling threads. EXPLODE uses priorities t0 5| opes checking interface § 6.1), how it generates
control when storage system threads rgid (bullet 2).  rash disks{ 6.2), how it checks crashes during recov-
It quiesces storage system threads by giving them theyy s 6.3), how it checks for errors caused by application

lowest priority possible using aBkM i oct | . It runs crashesq 6.4), and some refinementsa.5).
a thread by giving it a high priority (others still have the

lowest) and calling the kernel scheduler, letting it sched8-1  The full crash check interface

ule the right thread. It might seem more sensiblesikr The check_crashes_now() routine is the simplest
PLODE to orchestrate thread schedules via semaphoregyay to check crashessX PLODE also provides a more
However, doing so requires intrusive changes and, ihowerful (but complex) interface clients can use to di-
our experience [30], backfires with unexpected deadlockectly inspect the logeXPLODE extracts fromekm.
since semaphores prevent a given thread from runninghey can also add custom log records. Clients use the
even if it absolutely must. Unfortunately, using priorities |og to determine what state the checked system should
is not perfect either, and still allows non-deterministic recover to. They can initiate crash checking at any time
thread interleaving. We detect pathological cases wherghile examining the log. For space reasons we do not
a chosen thread does not run, or other “disabled” threadgjscuss this interface further, though many of our check-
do run using the “last-run” timestamps in the Linux pro- ers use it. Instead we focus on two simpler routines
cess data structure. These sanity checks let us catch whepeck cr ashes st art andcheck_cr ashes _end
we generate an error trace that would not be replayable ghat give most of the power of the logging approach.
when replaying it takes a different path. Neither happens clients callcheck_cr ashes_st art before invok-
much in practice. ing the storage system operations they want to check and
Requirements on the checked systeniThe checked check_cr ashes_end after. For example, assume we
system must issue the sarné@oose calls across re- want to check if we can atomically rename a #l¢o B
play runs. However, many environmental features carby callingr enane and thersync() . We could write
change across runs, providing many sources of poterthe following code inrut at e:
tial non-deterministic input: thread stacks in different lo- /I Assume: A, B on disk Legal state(s) after crash
cations, memory allocations that return different blocks, (A and B)

data structures that have different sizes, etc. None of  check crashes start(..);
rename(“A”, “B”);

these perturbations should cause the checked code to be- sync(): (AandB), orB
have differently. Fortunately, the systems we checked check_crashes_end(...); 5
satisfy this requirement “out of the box” — in part be-

cause they are isolated during checking, and nothing beeX PLODEgenerates all crash disks that can occur (inclu-
sides the checker and their kernel threads call into thensively) between these calls, invoking the cliertiseck

to modify their RAM disk(s). Non-deterministic systems method on each. Note how the state the system should
require modification beforeXPLODEcan reliably check recover to changes. At theheck_crashes_start
them. However, we expect such cases to rarely occur. I€dl, the recovered file system should contain bdth
nothing else, usability forces systems to ensure that reand B. During the process of renaming, the recovered
executing the same user commands produces the sarfile system can contain either (1) the origialand B
system state. As a side-effect, they largely run the samer (2) B with A's original contents. Aftesync com-
code paths (and thus would hit the sachmose calls).  pletes, onlyB with A's original contents should exist.
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This pattern of having an initial state, a set of legal in- (o === Gt 1N
termediate states, and a final state is a common one fd mark_dirtyB1) add B1, {B1,}
checking. ThusgXPLODE makes it easy focheck to make_request(B1) ) | add B1,//B1,1=B1, | {B1,B1,} ﬂ

L. S k make_request(B2) add B2, {B1: B1, B2 }
distinguish between these epochs by passing a flag th{ end request(81,82) | | remove B1, B2 ¢

tellscheck if the crash disk could occur at the first call
(EXP_BEG N), the last call EXP_END), or in between
(EXP_I NBETVWEEN). We could write a check method to
use these flags as follows:

{B1,B1,, B2}
Initial disk —
By

_—
> >

B1, B12

- Bzu

B1o
B2g

generate

crashes B2

= 3
B1o B1, B1;
B2, B2, B2,

checKint epoch ...) { Figure 8: Generating all potential crash disks.

if (epoch == EXP_BEGIN)
/I check (A and B) 1.

else if{epoch== EXP_INBETWEEN)
/I check (A and B) or B

As the storage system executesi logs operations
that affect which blocks could be written to disk.
else//  EXPEND 2. EXPLODEextracts this log us_ing KM i_ oct | and_
Jl check B reduces the logged operations to micro-operations
} that add or remove blocks from the write set.

EXPLODE uses C++ tricks so that clients can pass an3.
arbitrary number of arguments to these two routines (up
to a user-specified limit) that in turn get passed to their4.

It then applies these add and remove operations, in
order, to the initial write set.
Whenever the write set shrinks, it generates all pos-

sible crash disks by applying all subsets of the write
set to the current disk. (Doing so when the write set
shrinks rather than grows makes it trivial to avoid du-
EXPLODEgenerates crash disks by first constructing the  plicate work.)
currentwrite set: the set of disk blocks that Currently Note that the write set tracks a block’s contents in addi-
could bewritten to disk. Linux has over ten functions tion to the block itself. Naive|y it may appear that when
that affect whether a block can be written or not. Thegx popeadds a block to the write set it should replace
following two representative examples CalB€PLODE  any previous copy of with this more recent one. (Our
to add blocks to the write set: previous work [30] did exactly this.) However, doing so
1. mark_buffer _dirty(b) ses the dirty flag of a  misses errors. For example, in the figure, doing so misses
block b in the buffer cache, making it eligible for one crash diskB1,, B2,) since the second insertion of

asynchronous write back. block B1 replaces the previous versid@ ; with B1s.
2. generi c_nmake_request (req) submits a list of

sectors to the disk queueXPLODE adds these sec-
tors to the write set, even if they are clean, which canClients can also useXPLODE to check that storage sys-
happen for storage systems maintaining their owntems correctly handle crashes during recovery. Since en-
private buffer caches (as in the Linux port of XFS). vironmental failures are correlated, once one crash hap-
The following three representative examples cagXde  pens, another is not uncommon: power may flicker re-
PLODE to remove blocks from the write set: peatedly in a storm or a machine may keep rebooting
1. clear buffer _dirty(b) clearsb’s dirty flag.  because of a bad memory boardXPLODE generates
The buffer cache does not write clean buffers to disk.the disks that could occur if recovery crashes, by track-
2. end_request (), called when a disk request com- ing the write set produced while runningcover , and
pletes. EXPLODE removes all versions of the re- then applying all its subsets to the initial crash disk. It
quest’s sectors from the write set since they are guarehecks these “crash-crash” disks as it would a crash disk.
anteed to be on disk. Note this assumes recovery is idempotent in that if a cor-
3. l ock_buffer(b), locksb in memory, prevent- rect recovery with no crash produces stéig;;; then so
ing it from being written to disk. A subsequent should a prematurely crashed repair followed by a suc-
cl ear buffer_| ocked(b) will add b to the cessful one. We do not (but could) check for further
write set ifb is dirty. crashes during recovery since implementors seem unin-
Writing any subset of the current write set onto theterested in such errors [30].
current disk contents generates a disk that could be see
if the system crashed at this moment. Figure 8 show
how EXPLODE generates crash disks; its numbered la-In addition to “hard” machine crashes that wipe volatile
bels correspond to those below: state, EXPLODE can also check that applications cor-

check method.
6.2 Generating crash disks

6.3 Checking crashes during recovery

.4 Checking “soft” application crashes
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rectly recover from “soft” crashes where they crashedfile systems on Linux 2.6.11: ext2, ext3, JFS, ReiserFS,
but the operating system did not. Such soft crashefReiser4, XFS, MSDOS, VFAT, HFS, and HFS+. We
are usually more frequent than hard crashes with causeskipped NTFS because repairing a crashed NTFS disk
ranging from application bugs to impatient users pressrequires mounting it in Windows. For most file sys-
ing “ctrl-C.” Even applications that ignore hard crashestems, we used the most up-to-date utilities in the Debian
should not corrupt user data because of a soft crash.  “etch” Linux distribution. For HFS and HFS+, we had
EXPLODE checks soft crashes in two steps. First, itto download the source of their utilities from OpenDar-
runs the checkerisut at e method and logs all mutating win [14] and compile it ourselves. The storage compo-
file system operations it performs. Second, for each logients for these file systems mirrext 3's component
prefix EXPLODE mounts the initial disk and replays the (§ 3.3). Four file systems use kernel threads: JFS, Reis-
operations in the prefix in the order they are issued. IferFS, Reiser4 and XFS. We extracted these thread IDs
the log has: operationsEXPLODE generates storage  using the same trick as witnxt 3.
states, and passes each tocheck method. While these file systems vary widely in terms of im-
plementation, they are identical in one way: none give
clean, precise guarantees of the state they recover to af-
In some cases we remove blocks from the write set toger a crash. As a result, we wrote three checkers that
eagerly. For example, we always remove the sectors agpcused on different special cases where what they did
sociated witrend_r equest , but doing so can miss per- \as somewhat well-defined. We built these checkers by
mutations since subsequent writes may not in fact havextending a common core, which we describe below. We

waited for (depended on) the write to complete. Con-then describe the checkers and the bugs they found.
sider the events: (1) a file system writes sector S1, (2

the write completes, (3) it then writes sector S2. If the
file system wrote S2 without explicitly waiting for the S1 The basic checker starts from an empty file system
write to complete then these writes could have been reand systematically generates file system topologies up
ordered (i.e., there is no happens-before dependency by a user-specified number of files and directories. Its
tween them). However, we do not want to grovel aroundmut at e exhaustively applies each of the following eight
inside storage systems rooting out these false dependegystem calls to each node (file, link, directory) in the cur-
cies, and conservatively treat all writes that complete asent topology before exploring the nextt r uncat e,
waited for. A real storage system implementor could ob-pwr i t e (which writes to a given offset within a file),
viously do a better job. creat ,nkdir,unlink,rndir,linkandrenane.

To prevent the kernel from removing buffers from the For example, if there are two leaf directories, the checker
write set, we completely disable the dirty buffer flushing will delete both, create files in both, etc. Thus, the num-
threadspdf | ush, and only schedule the kernel thread ber of possible choices for a given tree grows (determin-
kbl ockd that periodically flushes the disk queue be-istically) with its size. For file systems that support holes,
tween calls to the clientut at e method. the checker writes at large offsets to exercise indirect

If a checked system uses a private buffer cae¥e,  blocks. Other operations can easily be added.

PLODE cannot see all dirty blocks. We partially counter  For each operation it invokesut at e duplicates its
this problem by doing an unmount before generatingeffect on a fake “abstract” file system it maintains pri-
crash disks, which will flush all private dirty buffers to vately. For example, if it performs three operations
disk (wheneEXPLODE can add them to its write set). Un- nkdi r (/ a), nkdi r (/a/b), andsync() then the
fortunately, this approach is not a complete solution sinceabstract file system will be the trée/ b, which the real
these unmount-driven flushes can introduce spurious deile system must match exactly. The checkeges _si g
pendencies (as we discussed above). method returns a canonical version of this abstract file
7 In-Depth Checking: File Systems system. Thi§ canonicalization mirro_rs that in [3Q], and
uses relabeling to make topologies differing only in nam-
This section demonstrates treXPLODES lightweight  ing equivalent and discards less interesting properties
approach does not compromise its power by replicatsuch as timestamps, actual disk blocks used, etc.
ing (and sometimes superseding) the results we obtained .
with our previous, more strenuous approach [30]. It also7'2 Check: Failed system calls have no effect
showseX PLODE's breadth by using it to check ten Linux This check does not involve crash-recovery. It checks
file systems with little incremental effort. that if a file system operation (excemiw i t €) returns
We appliedeEXPLODEto all but one of the disk based an error, the operation has no user-visible effect. It uses

6.5 Refinements

)7.1 The generic checker core
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EXPLODE to systematically fail calls to the six kernel FStZ sync m’“”tD sync fsénc O—SSNC
functions discussed in Section 3.1. The actual check uses o3 -
the abstract file system described in the previous sub- Regserrs O O
section. If a system call succeeds, the checker updates Reser4 O
the abstract file system, but otherwise does not. It then f(iss g o g
checks that the real file system matc_hes the abstract one. \spos 0 0 0
Bugs found. We found 2 bugs in total. One of VEAT ] O O
them was an unfixed Linux VFS bug we already re- HFS O O O O
ported in [30]. The other one was a minor bug in Reis-  HFS* o o O o

erFSf t runcat e which can fail with its job half-done  tapje 2 sync checking resuits indicates the file system failed the
if memory allocation fails. We also found that Reiser4 check. There were 13 bugs, three of which show up more than once,
calls pani ¢ on memory allocation failures, and Reis- causing morél marks than errors.

erFS callspani ¢ on disk read failures. (We did notin- rectory loops. The maintainers confirmed they knew of
clude these two undesired behaviors in our bug counts.xhese bugs, though they had not been publicly disclosed.
7.3 Check: “sync” operations work These bugs have subsequently been fixed. Eight file sys-

tems had synchronous mount bugs. For exangté 2

App]lcatlons such as databases and mail SEIVers use Oafves no consistency guarantees by default, but mounting
erating system-provided methods to force their data tq; synchronously still allows data loss

disk in order to prevent crashes from destroying or cor-
rupting it. Unfortunately, they are completely at these
routines’ mercy — there is no way to check they do what

they claim, yet their bugs can be almost arbitrarily bad. |, "The bug occurs when we: (1) shrink a file “A"
Fortunately,EXPLODE makes it easy to check these .kt r uncat e and (2) subsequenttyr eat , write,
operations. We built a checker (similar to the one in Fig-_ 4 sync a second file “B." If file B reuses the indi-

ure 2) to check four methods that force data to disk: rect blocks of A freed vid r uncat e, then following a

1. sync forces all dirty buffers to disk. crashe2f sck notices that As indirect blocks are cor-
2. fsync(fd) forcesf d's dirty buffers to disk. _rupt and clears them, destroying the contents of B. (For
3. Synchronously mounted file system: a system call'§yoo4 measure it then notices that A and B share blocks
modifications are on disk when the call returns. and “repairs” B by duplicating blocks from A.) Because
4. Files opened witl) SYNC: all modifications done by - g,1> makes no guarantees about what is written to disk,
asystem call through the returned file descriptor aréryndamentally one cannot usync to safelyforce a
on disk when the call returns. _ . file to disk, since the file can still have implicit depen-
After each operation completes and its modificationsyencies on other file system state (in our case if it reuses

have been forced to disk, the sync-checker tells 5, indirect blocks for a file whose inode has been cleared
PLODE to do crash checking and verifies that the mod-;, memory but not on disk).

ifications persist.

Note, neitherf sync nor O.SYNC guarantee that di-
rectory entries pointing to the sync’'d file are on disk, Our final check is the most stringent: after a crash a file
doing so requires callingsync on any directory con- system recovers to a “reasonable” state. No files, di-
taining the file (a legal operation in Linux). Thus, the rectories, or links flushed to disk are corrupted or dis-
checker does ahsync on each directory along the path appear (unless explicitly deleted). Nor do they sponta-
to the sync'd file, ensuring there is a valid path to it in theneously appear without being created. For example, if
recovered file system. we crash after performing two operatiomidi r (/ A)

Bugs found. Table 2 summarizes the 13 bugs found andnkdi r (/ A/ B) on an empty file system, then there
with this checker. Three bugs show up in multiple waysare exactly three correct recovered file systems! (ho
(but are only counted three times): a VFS limitation data), (2 A, or (3)/ A/ B. We should not see directories
caused all file systems to fail tleeSYNCcheck, and both  or files we never created. Similarly,/ifA was forced to
HFS and HFS+ mangled file and directory permissiongdisk before the crash, it should still exist.
after crashing, therefore failing all four sync checks. We For space reasons we only give a cursory implemen-
describe a few of the more interesting bugs below. tation overview. Agut at e issues operations, it builds

Besides HFS/HFS+, both MSDOS and VFAT mishan-two sets: (1) the stable set, which contains the opera-
dledsync. Simple crashes aftslync can introduce di- tions it knows are on the disk, (2) the volatile set, which

There were two interestingsync errors, one in JFS
(§3.2) and one irext 2. Theext 2 bug is a case where
an implementation error points out a deeper design prob-

7.4 Check: arecovered FS is “reasonable”
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contains the operations that may or may not be on disk. SVFStSem Stor?gi Ch?:?; BU?;
The check method verifies that the recovered file sys- cvs 7 " 68 1
tem can be constructed using some sequence of volatile Subversion . - 1
operations legally combined with all the stable ones. The EXPENSIV 30 124 3
implementation makes heavy use of caching to prune the Berkeley DB 82 202 6
h and “desugars” operations suchrkdi r into RAID lad FS+ 137 2
searc desugars” operatioj , , NFS 34 FS 4
smaller atomic operations (in this case it creates an in- VM ware GSX/Linux 54 FS 1
ode and then forms a link to it) to ensure it can describe Total 1,115 6,008 36

their intermediate effects.
Bugs found. We applied this check to ext2, ext3, Table 3 Summary of all storage systems checked. All line counts

JFS, ReiserFS and Reiser4. Unsurprisingly, sixe2 ignore comments and whitespa@oragegives the line count for each

gives no crash guarantees, files can point to uninitial$YSems storage component, which kincludes the components for

: e . . all ten file systemsChecker gives the checker line counts, which for

ized bIOCkS_: and Sync_d files anq directories can be regxpeNsy includes two checkers. We reused the FS checker to check

moved by itsf sck. Since JFS journals metadata but RAID, NFS and VMware. We wrote an additional checker for RAID.

not data, its files can also point to garbage. These pele checked Subversion using an early versiogXPLODE we have

haviors are design decisions so we did not include then°tYet Ported its component and checker.

in our bug counts. We found two bugs (one in JFS,8.1 Version control software

one in Reiserd4) where crashed disks cannot be reco

ered byf sck. We could not check many topologies for

ReiserFS and Reiser4 because they appear to leak lar

amounts of memory on evemypunt and unnount o S
(Our bug counts do zot includrgtt)hese leaks.) (its license precludes naming it directly). We check that
In addition, we used the crash-during-recovery checihese systems meet their fundamental goal: do not lose
: or corrupt a committed file. We found errors in all three.

(86.3) on Reiser4. It found a bug where Reiser4 be-
comes so corrupted that mounting it causes a kernel The storage component for each wraps up the com-

panic. (Since our prior work explored this check in detail M&Nds needed to set up a new repository on top of one
we did not apply it to more systems.) of the file systems we check. The checkerist at e

Finally, we did a crude benchmark run by running method checks out a copy of the repository, modifies it,

the checker (without crash-during-recovery checking) to?"d commits the changes back to the main repository.
ext 3 inside a virtual machine with 1G memory on a In- ATter this commit completes, these changes should per-
tel P4 3.2GHZ with 2G memory. After about 20 hours, SISt after any crash. To test thisut at e immediately
EXPLODE checked 230,744 crashes for 327 differentCallS check-crashes.now() after the commit com-
FS topologies and 1582 different FS operations. The?€tes. Thecheck me’thod flags an error if: (1) the ver-
run died because Linux leaks memory on eadunt sion control systems’ cras_h recovery tpol (if any) gives
andunnmount and runs out of memory. Although we &N €170 or (2) committed files are missing. _
fixed two leaks, more remain (we did not count these Bugs found. All three systems made the same mis-
obliquely-detected errors in our bug counts but wergl@ke. To update a repository fike without corrupting
tempted to). We intend to haweX PLODE periodically it they first update a temporary filg, which they then
checkpoint itself so we can reboot the machine and legtomically rename ta\. However, they forget to force

\LI_'his section checks three version control systems: CVS,
%Jbversion [27], and an expensive commercial system
e did not have source code for, denoted agIEENSIv

EXPLODE resume from the checkpoints. B's contents to disk before the rename, which means a
. ] crash can destroy it.
8 Even Simple Checkers Find Bugs In addition EXPENSIV purports to atomically merge

This section shows that even simple checkers find intertwo repositories into one, where any interruption (such
esting bugs by applying it to three version control sys-as crash) will either leave the two original repositories
tems and the Berkeley DB database. or one entirely (correctly) merged oneXpLODE found

The next two sections demonstrate tleXPLODE  a bug where a crash during merge corrupts the repos-
works on many different storage systems by applying ititory, which EXPENSIV’s recovery tool EXPENSI v
to many different ones. The algorithm for this process:-r check -f) cannot fix. This error seems to be
write a quick checker, use it to find a few errors, declarecaused by the same renaming mistake as above.
success, and then go after another storage system. InFinally, we found that even a soft crash during a merge
all cases we could check many more invariants. Table Zorrupts EXPENSIV’s repository. It appears>BENSvV
summarizes all results. renames multiple files at the end of the merge. Although
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each individual rename is atomic against a soft crashshould be the same as without it: any (new) errors the
their aggregation is not. The repository is corrupted if checker flags are RAID bugs. The second checks that
not all files are renamed. losing any single sector in a RAID1 or RAID5 stripe does
not cause data loss [20]. l.e., the disk’s contents were
8.2 Berkeley DB always correctly reconstructed from the non-failed disks.
The database checker in this section checks that after awe applied these checks to Linux's software
crash no committed transaction records are corrupted qRAID [26] levels 1 and 5. Linux RAID groups a set
disappear, and no uncommitted ones appear. It found sigf disks and presents them as a single block device to
bugs in Berkeley DB 4.3 [2]. the rest of the system. When a block write request is

Berkeley DB'’s storage component only defines thereceived by the software RAID block device driver, it re-

i ni t method, which calls Berkeley DB utilities to cre- computes the parity block and passes the requests to the
ate a database. It does not requitaunt orunmount,  underlying disks in the RAID array. Linux RAID repairs
and has no threads. It performs recovery when thex disk using a very simple approach: overwrite all of the
database is opened with tiB RECOVER flag (in the  disk’s contents, rather than just those sectors that need to
check method). We stack this component on top of abe fixed. This approach is extremely slow, but also hard
file system one. to mess up. Still, we found two bugs.

The checker'stut at e method is a simple loop that ~ The RAID storage component methods map directly
starts a transaction, adds several records to it, and thew different options for its administration utilitydadm
commits this transaction. It records committed trans-The i nit method usesndadm --create to as-
actions. It callcheck_crashes_st art before each semble either two or four RAM disks into a RAID1
commit andcheck_crashes_end (§ 6.1) after to ver- or RAID5 array respectively. Theount method
ify that there is a one-to-one mapping between the transealls ndadm - - assenbl e on these disks and the
actions it committed and those in the database. unnmount method tears down the RAID array by invok-

Bugs found. We checked Berkeley DB on top of ingndadm - - st op. Ther ecover method reassem-
ext2, ext3, and JFS. On ext2 creating a database insidelsles and recovers the RAID array. We used tiftadm
transaction, while supposedly atomic, can lead to a cor- - add command to replace failed disks after a disk fail-
rupted database if the system crashes before the databas@. The checking stack is similar to that in Figure 5.
is closed osync is manually called. Furthermore, even  Bugs found. The checker found that Linux RAID
with an existing database, committed records can disapdoes not reconstruct the contents of an unreadable sec-
pear during a crash. On ext3 an unfortunate crash whilgor (as it easily could) but instead marks tetire disk
adding a record to an existing database can again leawat contains the bad sector as faulty and removes it from
the database in an unrecoverable state. Finally, on athe RAID array. Such a fault-handling policy is not so
three file systems, a record that was added but never congood: (1) it makes a trivial error enough to prevent the
mitted can appear after a crash. We initially suspecte®RAID from recovering fromany additional failure, and
these errors came from Berkeley DB incorrectly assum{2) as disk capacity increases, the probability that another
ing that file system blocks were written atomically. How- sector goes bad goes to one.
ever, setting Berkeley DB to use sector-aligned writes Given this fault-handling policy, it is unsurprising our
did not fix the problem. While the errors we find differ checker found that after two sector read errors happen
depending on the file system and configuration settingson different disks, requiring manual maintenance, almost
some are probably due to the same underlying problemall maintenance operations (suchnakadm - - st op or
9 Checking “Transparent” Subsystems rrdadm_- - ad_d) fail with a “Devi_cg or resource busy’i

error. Disk write requests also fail in this case, rendering
Many subsystems transparently slip into a storage stackhe RAID array unusable until the machine is rebooted.
Given a checker for the original system, we can easilyOne of the main developers confirmed that these behav-
check the new stack: run the same checker on top of ifors were bad and should be fixed with high priority [4].
and make sure it gives the same results. 92 NES

9.1 Software RAID NFS synchronously forces modifications to disk before
We ran two checkers on RAID. The first checks that arequests return [23]. Thus, with only a single client mod-
RAID transparently extends a storage stack by runningfying an NFS file system, after a crash NFS must recover
the file system sync-checkef 7.3) on top of it. A file  tothe same file system tree as a local file system mounted
system’s crash and non-crash behavior on top of RAIDsynchronously. We check this property by running the
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sync-checker§7.3) on NFS and having it treat NFS as Checking Stack
a synchronously mounted file system. This check found
four bugs when run on the Linux kernel's NFS (NFSv3)
implementation [19]. X Component
The NFS storage component is a trivial 15-lines of FpSe— \_’
code (plus a hand-edit of “/ et ¢/ expor t"sto define
an NFS mount point). It provides two methods: (1)
nmount , which sets up an NFS partition by exporting

RPC Server

Guest Linux

FS Test Driver

VM-ext3 Component

Swiuny 3dOTd X3

Il

Ext3

&z
a local FS over the NFS loop-back interface and (2) Host Linux with EKM
unnmount , which tears down an NFS partition by un- Hardware

mounting it. It does not provide aecover method
since ther ecover of the underlying local file system
must be sufficient to repair crashed NFS partitions. Wevmwar e-cnd start and unnount stops it using
did not model network failures, neither did we control Vmar e-cnmd stop hard. Therecover method
the scheduling of NFS threads, which could make erro€alls vimar e- cmd st art, which repairs a crashed
replay non-deterministic (but did not for ours). virtual machine, and then removes a dangling lock (cre-
Bugs found. The checker found a bug where a client ated by the “crashed” virtual machine to prevent races on
that writes to a file and then reads the same file througihe Virtual disk file).
a hard link in a different directory will not see the values ~ As shown in Figure 9 the checking stack was the most
of the first write. We elide the detailed cause of this errorintricate of this paper. It has five layers, starting from bot-
for space, other than noting that diagnosing this bug aomto top: (1) a RAM disk, (2) the ext3 file system in the
NFS’s fault was easy, because it shows up regardless &¥ost, storing the GSX virtual disk file, (3) GSX, (4) the
the underlying file system (we tried ext2, ext3, and JFS)€xt3 file system in the guest, (5) the sync-checker. The
We found additional bugs specific to individual file Main complication in building this stack was the need to
systems exported by NFS. When JFS is exported ovesPlit EXPLODE into two pieces, one running in the host,
NFS, thel i nk andunl i nk operations are not commit- the other in the guest. Since the virtual machine will
ted synchronously. When an ext2 file system is exportedrequently “crash” we decided to keep the part running
over NFS, our checker found that many Operations Werénside it Simp|e and make it a stateless RPC server. The
not committed synchronously. If the NFS server crashe§ntire storage stack and the sync-checker reside in the

these bugs can lose data and cause data values to go baBRst. When the sync-checker wants to run an operation
wards for remote clients. in the guest, or a storage method wants to run a utility,

they do RPC calls to the server in the guest, which then

9.3 VMware GSX server performs the operation.
In theory, a virtual machine slipped beneath a guest OS Bugs found. Calling sync in the guest OS does not
should not change the crash behavior of a correctlycorrectly flush dirty buffers to disk, but only to the host’s
written guest storage system. Roughly speaking, corbuffer cache. According to VMware documents, setting
rectness devolves to not lying about when a disk blockhe “disable write caching” configuration flag forces all
actually hits a physical disk. In practice, speed concernsvrites to disk. However, we hit the same bug even with
make lying tempting. We check that a file system on topthis flag on. This bug makes it impossible to reliably run
of a virtual machine provided “disk” has the same syn-a storage system on top of this VMM on Linux. We con-
chronous behavior as running without it (again) using thefirmed this problem with one of the main developers who
sync-checkery7.3). We applied this check to VMware stated that it should not show up in the latest version [28].
GSX 3.2.0[29] running on Linux. GSX is an interesting . .
case foEXPLODE: a large, complex commercial system 10 Checking on a new system: FreeBSD
(for which we lack source code) that, from the point of We portedeXPLODE to FreeBSD 6.0 to ensure porting
view of a storage system checker, implements a blockvas easy and to shake out Linux-specific design assump-
device interface in a strange way. tions. We spent most of our time writing a new RAM

The VMware GSX scripting APl makes the storage disk andeEkm module; we only needed to change a few
component easy to build. ThHeni t method copies a lines in the user-level runtime to run on FreeBSD.
precreated empty virtual disk image onto the file sys- The FreeBSD version oEXPLODE supports crash
tem on top ofEXPLODE RAM disk. The nount checking, but currently does not provide a kernel-level
method starts the virtual machine using the command¢hoose nor logging of system calls. Neither should

Figure 9: The VMware checking stack.
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present a challenge here or in general. Even without Recently, Prabhakaraet al [21] studied how file sys-
these features, we reproduced the errors in CVS and E tems handle disk failures and corruption. They devel-
PENSIV we saw on Linux as well as finding new errors oped a testing framework that uses techniques from [25]
in FreeBSD UFS2. Below, we discuss issues in writingto infer disk block types and then inject “type-aware”
EKM and the RAM disk. block failure and corruption into file systems. Their re-
EKM . Crash checking requires adding callsstov in ~ sults provide motivation for using existing checksum-
functions that mark buffers as clean, dirty, or write thembased file systems (such as Sun’s ZFS [32]). While their
to disk. While a FreeBSD developer could presumablytechnique is more precise than random testing, it does
enumerate all such functions easily, our complete lackiot find the crash errors tha&XPLODE does, nor is it
of experience with FreeBSD meant it took us about aas systematic. ExtendirgXPLODE to similarly return
week to find all corner-cases. For example, FreeBSD'garbage on disk reads is trivial.
UFS?2 file system sometimes bypasses the buffer cache Software Model Checking. Model checkers have
and writes directly to the underlying disk. been previously used to find errors in both the design

There were also minor system-differences we had t@nd the implementation of software systems [1,3,7, 13,
correct for. As an example, while Linux and FreeBSD 15, 16,18, 30]. Two notable examples are Verisoft [13],
have similar structures for buffers, they differ in how Which systematically explores the interleavings of a con-
they store bookkeeping information (e.g., representingurrent C program, and Java PathFinder [3] which used
offsets in sectors on Linux, and in bytes on FreeBSD).2 specialized virtual machine to check concurrent Java
We adjusted for such differences insiglem so thateX-  Programs by checkpointing states.

PLODES user-level runtime sees a consistent interface. The model checking ide@XPLODEuses — exhaust-
We believe porting should generally be easy siege1  INg States, systematic exploration, and choice — are not
only logs the offset, size, and data of buffer modifica-Novel. This paper’s conceptual contribution is dramati-
tions, as well as the ID of the modifying thread. All of cally reducing the large work factor that plagues tradi-
these should be readily available in any OS. tional model checking. It does so by turning the check-

RAM disk. We built our FreeBSD RAM disk by mod- ing process inside out. It interlaces the control it needs
ifying the / dev/ md memory-based disk device. We ex- for systematic state exploratian situ, throughout the
pect developers can generally use this approach: takghecked system. As far as we knoXPLODE is t,he
an existing storage device driver and add triviact | 'St €xample ofn situ model checking. The paper’s en-

commands to read and write its disk state by copying pedineering contribution is building a system that exploits
tween user- and kernel-space. this technique to effectively check large amounts of stor-

Bug-Finding Results. In addition to our quick tests age sy_stem C(.)de. with relatively litile effort.
to replicate the EPENSV and CVS bugs, we also ran Static bug finding. There has been much recent work

our sync-checker§.3) on FreeBSD's UFS2 with soft on Sts.t'c btl:g flndlng (e.g.,. [11_]5’?(’_9’ 11, 12]).d thu.gf;_ly
updates disabled. It found errors whéreck with the f{pgi I_ng,t ecau::ed yntzmlgct ecking run:fcot_ e’II 'Sh Iml;
- p option could not recover from crashes. WHilseck itedto just executed paths, but cah more efiectively chec

without - p could repair the disk, the documentation for ?ueaﬁlpeégr:iﬁﬁ;“g;;ngIifala/etifocrgd: (ogf%rn;s(h) rzg(-)ver
f sck claims- p can recover from all errors unless un- y g y

expected inconsistencies are introduced by hardware (WOI’kS). The errors we found would be difficult to get

software failures. Developers confirmed that this is astatlcally. However, we view static analysis as comple-

problem and should be further investigated. mentary: easy enough to apply that there is no reason not
to use it and then useXPLODE.

11 Related Work 12 Conclusion and Future Work
Below we compareXpLODETo file system testing, soft-  eXpLoDE comprehensively checks storage systems by
ware model checking, and static bug finding. adapting key ideas from model checking in a way that

File system testing tools. There are many file sys- retains their power but discards their intrusiveness. Its
tem testing frameworks that use application interfaces tanterface lets implementors quickly write storage check-
stress a “live” file system with an adversarial environ-ers, or simply compose them from existing components.
ment. These testing frameworks are less comprehensivEhese checkers run on live systems, which means they
than our approach, but they work “out of the box.” Thus, do not have to emulate either the environment or pieces
there is no reason not to both test a file system and theaf the system. As a result, we often have been able to
test withEXPLODE (or vice versa). check a new system in minutes. We usetiPLODE to

38



find serious bugs in a broad range of real, widely-usedReferences

storage systems, even when we did not have their sourcetl
code. Every system we checked had bugs. Our gut belief

has become that an unchecked systensthave bugs —  [2]
if we do not find any we immediately look to see what is 3
wrong with our checker (a similar dynamic arose in our
prior static checking work). 5]

The work in this paper can be extended in numerous
ways. First, we only checked systems we did not build. [6]
While this showsEXPLODE gets good results withouta [7]
deep understanding of checked code, it also means we
barely scratched the surface of what could be checked!/8l
In the future we hope to collaborate with system builders !
to see just how deepX PLODEcan push a valued system.

Second, we only useeX PLODE for bug-finding, but
it is equally useful as an end-to-end validation tool (with
no bug fixing intended). A storage subsystem implemen-
tor can use it to double-check that the environment thélll
subsystem runs in meets its interface contracts and that
the implementor did not misunderstand these contractgi2]
Similarly, a user can use it to check that slipping a sub-
system into a system breaks nothing. Or use it to pick
a working mechanism from a set of alternatives (e.qg., ifl 3
f sync does not work useync instead).

Finally, we can do many things to improgX PLODE.
Our biggest missed opportunity is that we do nothing[is]
clever with states. A big benefit of model checking is (16]
perspective: it makes state a first-class concept. Thus it
becomes natural to think about checking as a state space,
search; to focus on hitting states that are most “differ-q,
ent” from those already seen; to infer what actions cause
“interesting” states to be hit; and to extract the essence
of states so that two superficially different ones can begzg
treated as equivalent. We have a long list of such things
to add toEXPLODE N the future. (1]
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KLEE: Unassisted and Automatic Generation of High-Coverage
Tests fa Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler
Stanford University

Abstract bolic values and replace corresponding concrete program
We present a new symbolic execution toelL g€, ca- operations with ones f[hat manipulate symbolic vaIues_.
When program execution branches based on a symbolic

pable of automatically generating tests that achieve

high coverage on a diverse set of complex andvalue, the system (conceptually) follows both branches,

environmentally-intensive programs. We usatkE to on each path maintaining a set of constraints called the
thoroughly check all 89 stand-alone programs in thepath conditionwhich mu§t hold on.executlon of that
GNU COREUTILS utility suite, which form the core path. When a path terminates or hits a bug, a test case

) . ' - . can be generated by solving the current path condition
user-level environmentinstalled on millions of Unix sys-

. . for concrete values. Assuming deterministic code, feed-
tems, and arguably are the single most heavily tested se . . o ;
. . ing this concrete input to a raw, unmodified version of
of open-source programs in existence.Ee-generated : .
. L e checked code will make it follow the same path and
tests achieve high line coverage — on average over 90%.
T L hit the same bug.
per tool (median: over 94%) — and significantly beat Results are promising. However, while researchers
the coverage of the developers’ own hand-written tes P 9- !
. . . ._have shown such tools can sometimes get good cover-
suite. When we did the same for 75 equivalent tools in

the BusyBOx embedded system suite, results were everi;":1ge and find bugs on a small number of programs, it
better, including 100% coverage on 31 of them. as been an open question whether the approach has any

e o hope of consistently achieving high coverage on real ap-
We also used@LEE as a bug finding tool, applyingitto .~ . )
452 applications (over 430K total lines of code), wherephcatlons' Two common concerns are (1) the exponen

it found 56 serious bugs, including three IMEEUTILS tial number of paths through code and (2) the challenges

. . in handling code that interacts with its surrounding envi-
that had been missed for over 15 years. Finally, we usei‘f g 9

) . onment, such as the operating system, the network, or
KLEE to crosscheck purportedly identicabBYBox and P g sy

COREUTILS utilities, finding functional correctness er the user (colloquially: “the environment problem”). Nei-
. ' 9 . ther concern has been much helped by the fact that most
rors and a myriad of inconsistencies.

past work, including ours, has usually reported results on

1 Introduction a limited set of hand-picked benchmarks and typically
) has not included any coverage numbers.

Many classes of errors, such as functional correctness Thjs paper makes two contributions. First, we present

bugs, are difficult to find without executing a piece of 5 new symbolic execution tookLEE, which we de-

code. The importance of such testing — combined withgigned for robust, deep checking of a broad range of ap-
the difficulty and poor performance of random and man-pications, leveraging several years of lessons from our
ual approaches — has led to much recent work in uspyevious tool, EXE [16]KLEE employs a variety of con-
ing symbolic executioto automatically generate test in- gyraint solving optimizations, represents program states
puts [11,14-16,20-22,24,26,27,36]. At a high-level,compactly, and uses search heuristics to get high code
these tools use variations on the following idea: '”SteaQ:overage. Additionally, it uses a simple and straight-
of running code on manually- or randomly-constructedsoryard approach to dealing with the external environ-
input, they run it on sympolic input initi_ally alloyved 10 ment. These features improxeEE’s performance by

be “anything.” They substitute program inputs with Sym- gyer an order of magnitude and let it check a broad range

of system-intensive programs “out of the box.”

*Author names are in alphabetical order. Daniel Dunbar is the main
author of thexLEE system.
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Second, we show that Ee’s automatically-generated tests hit over 90% of the lines in each tool (median:
tests get high coverage on a diverse set of real, com- over 94%), achieving perfect 100% coverage in 16
plicated, and environmentally-intensive programs. Our COREUTILStools and 31 BsyBOX tools.

most in-depth evaluation applies.ee to all 89 pro- 2 KLEE can get significantly more code coverage than
grams! in the latest stable version of GNUGREUTILS a concentrated, sustained manual effort. The roughly
(version 6.10), which contains roughly 80,000 lines of  89-hour run used to generat®REUTILSline cover-
library code and 61,000 lines in the actual utilities [2]. age beat the developers’ own test suite — built incre-
These programs interact extensively with their environ-  mentally over fifteen years — by 16.8%!

ment to provide a variety of functions, including man- 3 With one exception,KLEE achieved these high-

aging the file system (e.gl,s, dd, chnod), display-
ing and configuring system properties (elgognane,
printenv, host nane), controlling command invo-
cation (e.g.nohup, ni ce, env), processing text files

coverage results on unaltered applications. The sole
exception,sort in COREUTILS, required a single
edit to shrink a large buffer that caused problems for
the constraint solver.

(e.g.,sort, od, pat ch), and so on. They form the 4 KLEE finds importanterrors in heavily-tested code. It
core user-level environment installed on many Unix sys-  found ten fatal errors in GREUTILS (including three
tems. They are used daily by millions of people, bug that had escaped detection for 15 years), which ac-
fixes are handled promptly, and new releases are pushed count for more crashing bugs than were reported in
regularly. Moreover, their extensive interaction with the 2006, 2007 and 2008 combined. It further found 24
environment stress-tests symbolic execution where it has bugs in BJSYBOX, 21 bugs in MNIX, and a security
historically been weakest. vulnerability in H STAR— a total of 56 serious bugs.

Further, finding bugs in GREUTILSIS hard. They are 5 The fact thakLEE test cases can be run on the raw
arguably the single most well-tested suite of open-source version of the code (e.g., compiled wijlec) greatly
applications available (e.g., is there a program the reader simplifies debugging and error reporting. For exam-
has used more under Unix thahs”?). In 1995, ran- ple, all COREUTILS bugs were confirmed and fixed
dom testing of a subset of GREUTILS utilities found within two days and versions of the testsee gen-
markedly fewer failures as compared to seven commer- erated were included in the standard regression suite.
cial Unix systems [35]. The last@REUTILS vulnerabil- 6 KLEE is not limited to low-level programming er-
ity reported on the SecurityFocus or US National Vulner-  rors: when used to crosscheck purportedly identical
ability databases was three years ago [5, 7]. BusyBox and GNU REUTILS tools, it automat-

In addition, we checked two othemux utility suites: ically found functional correctness errors and a myr-
BusyBOX, a widely-used distribution for embedded sys-  iad of inconsistencies.
tems [1], and the latest release fornvix [4]. Finally, we 7 KLEE can also be applied to non-application code.
checked the HSTAR operating system kernel as a con- ~ When applied to the core of thel&TAR kernel, it
trast to application code [39]. achieved an average line coverage of 76.4% (with

Our experiments fall into three categories: (1) those disk) and 67.1% (without disk) and found a serious
where we do intensive runs to both find bugs and get high  security bug.
coverage (OREUTILS, HISTAR, and 75 BysYBOX util- The next section gives an overview of our approach.
ities), (2) those where we quickly run over many appli- Section 3 describesLEE, focusing on its key optimiza-
cations to find bugs (an additional 204ByBOX util- tions. Section 4 discusses how to model the environment.
ities and 77 MNix utilities), and (3) those where we The heart of the paper is Section 5, which presents our
crosscheck equivalent programs to find deeper correcexperimental results. Finally, Section 6 describes related
ness bugs (67 BsyBox utilities vs. the equivalent 67 in - work and Section 7 concludes.
COREUTILS). .

In total, we rarkLEE on more than 452 programs, con- 2 Overview
taining over 430K total lines of code. To the best of ourThjs section explains howLEE works by walking the
knowledge, this represents an order of magnitude moreaader through the testing of IMIx’s t r tool. Despite
code and distinct programs than checked by prior symits small size — 169 lines, 83 of which are executable —

bolic test generation work. Our experiments show: it illustrates two problems common to the programs we
1 KLEE gets high coverage on a broad set of complex:heck:

programs. Its automatically generated tests covered; complexity. The code aims to translate and delete
84.5% of the total lines in GREUTILSand 90.5% in characters from its input. It hides this intent well be-

BusyBoX (ignoring library code). On average these  a4th non-obvious input parsing code, tricky bound-

ary conditions, and hard-to-follow control flow. Fig-
ure 1 gives a representative snippet.

1we igrored utilities that are simply wrapper calls to others, such
asar ch (“unanme -nf)andvdir (“Is -1 -b").
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2 Environmental Dependenciesviost o the code iS 1 : void expandchar *arg unsigned char *buffer) { 8
controlled by values derived from environmental in-2 : int i, ag 9

put. Command line arguments determine what pro- - WTf”e(*g?fg_)_{’ W g i(lJ:
cedures execute, input values determine which way, argﬂ.“
if-statements trigger, and the program depends on the : i=ac=0:
ability to read from the file system. Since inputs can7 : if (farg >="0" && *arg <="'7") {
be invalid (or even malicious), the code must handle® ; do {_ o
. . . : ac = (ac << 3) + *fargt+ — ' 0’ ;
these cases gracefully. It is not trivial to test all im- ;. it
portant values and boundary cases. 11: } while (i<4 && *arg>='0" && *arg<="7');
The code illustrates two additional common features.iz }*?Uffe,][*(* - as o)
. . . ' : else if (*farg = "\ 0’
First, it has bugs, WthlP(LEI.E finds arjd generates test . “bufferr+ = *argr+:
cases for. SecondLEE quickly achieves good code 1s: } else if (farg == ") { 12%
coverage: in two minutes it generates 37 tests that covels: arg+; 13
all executable statements. L | = rarghh 14
. . 18: if (fargt+ 1="-") { 15!
KLEE has two goals: (1) hit every line of executable 7. *puffer+ = * [ ;
code in the program and (2) detect at each dangerous ope: arg —= 2;
eration (e.g., dereference, assertiongily input value — 2L: continue;
exists that could cause an errar.ee does so by running gg e}lc —
programssymbolically unlike normal execution, where . while (i <= ag *bufferr+ = i++;
operations produce concrete values from their operandgs: argr+; * Skip T *
here they generate constraints that exactly describe thé: } Stl)sif . _
set of values possible on a given path. WhemE de- 2;: ) ullers+ = Targe;
tects an error or when a path reachegant call, KLEE 29: }
solves the current path’s constraints (callecpash con-  30: ...
dition) to produce a test case that will follow the same31: int main(int arge char* argq]) { 1
ath when rerun on an unmodified version of the checke(iz: int index = 1, 2
P ; _ 3 if (argc > 1 && argfindeX[0] == ") { 3
program (e.g, compiled withcc). 34 o 4
KLEE is designed so that the paths followed by theggi } 2
unmodified program will always follow the same path 37 é'){pamuargv[index++], index): 7

KLEE took (i.e., there are no false positives). However,zg.
non-determinism in checked code and buggli®E or  39: }
its models have produced false positives in practice. The
ability to rerun tests outside @iLEE, in conjunctionwith  Figyre 1: Code snippet from Muix's t r, representative
standard tools such agib andgcov is invaluable for  of the programs checked in this paper: tricky, non-obvious,
diagnosing such errors and for validating our results.  difficult to verify by inspection or testing. The order of the

We next show how to useLEE, then give an overview statements on the path to the error at line 18 are numbered on
of how it works. the right hand side.

2.1 Usage

A user can start checking many real programs witge '€ first option,- - max-ti me, tells KLEE to check

in seconds:KLEE typically requires no source modifi- - Pc for at most two minutes. The rest describe the
cations or manual work. Users first compile their codeSymbolic inputs. The option-symargs 1 10 10

to bytecode using the publicly-available LLVM com- Says to use zero to three command line arguments, the

piler [33] for GNU C. We compiled r using: first 1 character long, the others 10 characters [&ie
) option--symfiles 2 2000 says to use standard
I'lvmgec --emt-llvm-c tr.c -o tr.bc input and one file, each holding 2000 bytes of symbolic

Users then rukLEE on the generated bytecode, option- 938 The option - max-fai | 1 says to fail at most
9 y » OP one system call along each program path (sée).

ally stating the number, size, and type of symbolic inputs
to test the code on. For we used the command: 2.2 Symbolic execution withk LEE

klee --max-tinme 2 --symargs 1 10 10 WhenkKLEE runs ont r, it finds a buffer overflow error
--symfiles 2 2000 --nax-fail 1 tr.bc atline 18 in Figure 1 and then produces a concrete test

2The piogram has one line of dead code, an unreachable return 3Sincestrings in C are zero terminated, this essentially generates
statement, which, reassuringks, EE cannot run. arguments ofip tothat size.
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case{r [ "" "")thathitsit. Assuming the options 3.1 Basic architecture

of the previous subsectiorEE runst r as follows: At any one timeKLEE may be executing a large number

1 KLEE constructs symbolic command line string argu- of states. The core ofLEE is an interpreter loop which
ments whose contents have no constraints other thage|ects a state to run and then symbolically executes a
zero-termination. It then constrains the number of ar-single instruction in the context of that state. This loop
guments to be between 0 and 3, and their sizes to bgontinues until there are no states remaining, or a user-
1, 10 and 10 respectively. It then cafl®i n with  gefined timeout is reached.
these initial path constraints. _ Unlike a normal process, storage locations for a state

2 _\NhenK_LEE hits the branchargc > 1 atline :_33’ ~— registers, stack and heap objects — refer to expres-
it uses its constraint solver STP [23] to see which di-sjons (trees) instead of raw data values. The leaves of
rections can execute given the current path conditiongy expression are symbolic variables or constants, and
For this brar_lch, both directions are possib{e_EE the interior nodes come from LLVM assembly language
forks execution and follows both paths, adding thegperations (e.g., arithmetic operations, bitwise manipu-
constrainar gc > 1onthefalse pathamak gc <1 |ation, comparisons, and memory accesses). Storage lo-
on the true path. cations which hold a constant expression are said to be

3 Given more than one active patkl.EE must pick  concrete
which one to execute first. We describe its algorithm Symbolic execution of the majority of instructions is

in Section 3.4. For now assume it follows the pathgyraightforward. For example, to symbolically execute
that reaches the bug. As it does BOEE adds further 5, | VM add instruction:

constraints to the contents af g, and forks for a
total of five times (lines denoted with & ™): twice
online 33, and then onlines 3, 4, and 1®kpand.  kLEE retrieves the addends from ther c0 and¥%r c1

4 At each dangerous operation (e.g., pointer dereferregisters and writes a new expressiadd( %sr cO,
ence) KLEE checks if any possible value allowed by osr c1) to the%st register. For efficiency, the code
the current path condition would cause an error. Onthat builds expressions checks if all given operands are
the annotated patkyEE detects no errors beforeline concrete (i.e., constants) and, if so, performs the opera-
18. At that point, however, it determines that input tjon natively, returning a constant expression.
values exist that allow the read af g to go out of Conditional branches take a boolean expression
bounds: after taking the true branch at line 15, the(branch condition) and alter the instruction pointer of
code incrementar g twice without checking if the  the state based on whether the condition is true or false.
string has ended. If it has, this increment skips thex ee queries the constraint solver to determine if the

%dst = add i 32 %rc0O, %rcl

terminating’ \0" and points to invalid memory. branch condition is either provably true or provably false
5 KLEE generates concrete values éargc andar gv  along the current path; if so, the instruction pointer is
(ie,tr [ "" "")that when rerun on a raw ver- ypdated to the appropriate location. Otherwise, both

sion oft r will hit this bug. It then continues follow-  pranches are possiblecLEE clones the state so that it

ing the current path, adding the constraint that thecan explore both paths, updating the instruction pointer

error does not occur (in order to find other errors).  and path condition on each path appropriately.

. Potentially dangerous operations implicitly generate

3 TheKLEE Architecture branches that check if any input value exists that could
KLEE is a complete redesign of our previous systemCause an error. For example, a division instruction gen-
EXE [16]. At a high level,KLEE functions as a hybrid €rates a branch that checks for a zero divisor. Such
between an operating system for symbolic processes arjf@nches work identically to normal branches. Thus,
an interpreter. Each symbolic process has a register filVen when the check succeeds (i.e., an error is detected),
stack, heap, program counter, and path condition. T&X€cution continues on the false path, which adds the
avoid confusion with a Unix process, we refetdoee’s nggation of the check as a.constraint (e.g., making the
representation of a symbolic process atae Programs divisor not zero). If an error is detected,EE generates
are compiled to the LLVM [33] assembly language, a& test case to trigger the error and terminates the state.
RISC-like virtual instruction set.KLEE directly inter- As with other dangerous operations, load and store in-
prets this instruction set, and maps instructions to conStructions generate checks: in this case to check that the

straints without approximation (i.e. bit-level accurady). address is in-bounds of a valid memory object. However,
load and store operations present an additional compli-

2 _ . . . cation. The most straightforward representation of the
KLEE does not currently support: symbolic floating point,

| ongj np, threads, and assembly code. Additionally, memory objectsM€MOry L_Jsed by checked code would be a flat byte ar-
are required to have concrete sizes. ray. In this case, loads and stores would simply map to
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array read and write expressions respectively. UnfortuThus, we spent a lot of effort on tricks to simplify ex-
nately our constraint solver STP would almost never bepressions and ideally eliminate queries (no query is the
able to solve the resultant constraints (and neither wouldastest query) before they reach STP. Simplified queries
the other constraint solvers we know of). Thus, as inmake solving faster, reduce memory consumption, and
EXE, KLEE maps every memory object in the checkedincrease the query cache’s hit rate (see below). The main
code to a distinct STP array (in a sense, mapping a flagjuery optimizations are:

address space to a segmented one). This representationExpression Rewriting The most basic optimizations
dramatically improves performance since it lets STP ig-mirror those in a compiler: e.g., simple arithmetic sim-
nore all arrays not referenced by a given expression.  plifications k + 0 = x), strength reductiorx( » 2™

Many operations (such as bound checks or object-levet x << n), linear simplification2+*x - x = Xx).
copy-on-write) require object-specific information. If a  Constraint Set Simplification Symbolic execution
pointer can refer to many objects, these operations betypically involves the addition of a large number of con-
come difficult to perform. For simplicitLEE sidesteps  straints to the path condition. The natural structure of
this problem as follows. When a dereferenced poipter programs means that constraints on same variables tend
can refer toNV objects,KLEE clones the current stat€  to become more specific. For example, commonly an in-
times. In each state it constraipsto be within bounds exact constraint such as < 10 gets added, followed
of its respective object and then performs the approprisome time later by the constraint= 5. KLEE actively
ate read or write operation. Although this method cansimplifies the constraint set by rewriting previous con-
be expensive for pointers with large points-to sets, mosstraints when new equality constraints are added to the
programs we have tested only use symbolic pointers thatonstraint set. In this example, substituting the value for
refer to a single object, arkLEE is well-optimized for  z into the first constraint simplifies it tor ue, which
this case. KLEE eliminates.

Implied Value ConcretizationVhen a constraint such
asx + 1 = 10 is added to the path condition, then the
The number of states grows quite quickly in practice:value ofx has effectively become concrete along that
often even small programs generate tens or even hurpath.KLEE determines this fact (in this case that= 9)
dreds of thousands of concurrent states during the firsind writes the concrete value back to memory. This en-
few minutes of interpretation. When we ra@REUTILS  sures that subsequent accesses of that memory location
with a 1GB memory cap, the maximum number of con-can return a cheap constant expression.

3.2 Compact state representation

current states recorded was 95,982 (fosst i d), and Constraint Independence. Many constraints do not
the average of this maximum for each tool was 51,385¢verlap in terms of the memory they reference. Con-
This explosion makes state size critical. straint independence (taken from EXE) divides con-

SinceKLEE tracks all memory objects, it can imple- straint sets into disjoint independent subsets based on the
ment copy-on-write at the object level (rather than pagesymbolic variables they reference. By explicitly track-
granularity), dramatically reducing per-state memory re-ing these subsetLEE can frequently eliminate irrel-
quirements. By implementing the heap as an immutablevant constraints prior to sending a query to the con-
map, portions of the heap structure itself can also bestraint solver. For example, given the constraint set
shared amongst multiple states (similar to sharing por{; < j,; < 20,k > 0}, a query of whethei = 20
tions of page tables acrossr k() ). Additionally, this  just requires the first two constraints.
heap structure can be cloned in constant time, which is Counter-example CacheRedundant queries are fre-
important given the frequency of this operation. quent, and a simple cache is effective at eliminating a

This approach is in marked contrast to EXE, whichlarge number of them. However, it is possible to build
used one native OS process per state. Internalizing tha more sophisticated cache due to the particular struc-
state representation dramatically increased the numbeure of constraint sets. The counter-example cache maps
of states which can be concurrently explored, both bysets of constraints to counter-examples (i.e., variable as-
decreasing the per-state cost and allowing states to shagsggnments), along with a special sentinel used when a set
memory at the object (rather than page) level. Addition-of constraints has no solution. This mapping is stored
ally, this greatly simplified the implementation of cachesin a custom data structure — derived from the UBTree
and search heuristics which operate across all states. structure of Hoffmann and Hoehler [28] — which al-
lows efficient searching for cache entries for both sub-
sets and supersets of a constraint set. By storing the
Almost always, the cost of constraint solving dominatescache in this fashion, the counter-example cache gains
everything else — unsurprising, given thatee gen-  three additional ways to eliminate queries. In the ex-
erates complicated queries for an NP-complete logicample below, we assume that the counter-example cache

3.3 Query optimization
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| Optimizations|| Queries| Time (s) | STP Time (s)] 400 o
None 13717 300 281 ---- Cex. Cache
Independencg| 13717 166 148 s Zfependence
Cex. Cache 8174 177 156 =
Al 699 20 0] £,

&

Table 1: Performance comparison &t EE’s solver optimiza- §

tions on G®REUTILS. Each tool is run for 5 minutes without = 100 L

optimization, and rerun on the same workload with the given

optimizations. The results are averaged across all applications.

I

0 0.2 0.4 0.6 0.8 1
Num. Instructions (normalized)

currently has entries fofi < 10,7 = 10} (no solution)

and{i < 10,j = 8} (satisfiable, with variable assign- Figure 2: The effect ofLEE’s solver optimizations over
mentsi — 5,7 — 8). time, showing they become more effective over time, as the
1 When a subset of a constraint set has no solutiorngaches fill and queries become more complicated. The num-
then neither does the original constraint set. AddingPer of executed instructions is normalized so that data can be
constraints to an unsatisfiable constraint set cannct99regated across all applications.
make it satisfiable. For example, given the cache

above,{i < 10,7 = 10,j = 12} is quickly deter- age number of STP queries are reduced to 5% of the orig-

mined to be unsatisfiable. . .
. ._inal number and the average runtime decreases by more
2 When a superset of a constraint set has a solutlor{han an order of magnitude

that solution also satisfies the original constraint set. It is also worth noting the degree to which STP time

Dropping constraints from a constraint set does not, . . . . .

. : . . time spent solving queries) dominates runtime. For the

invalidate a solution to that set. The assignment® . . .

) . - o original runs, STP accounts for 92% of overall execution

1 — 5,7 — 8, for example, satisfies eithér< 10 . - S .
. A time on average (the combined optimizations reduce this

or j = 8individually.

A , R .
3 When a subset of a constraint set has a solution, it isl,)y almost 300%). With both optimizations enabled this

o : .
likely that this is also a solution for the original set. percentage drops to 41%. Finally, Figure 2 shows the

This is because the extra constraints often do not in_efﬂcacy OfKLEE'S optimizations increases with time —

validate the solution to the subset. Because checkin?j:]S the counter-example cache is ﬁ”e.d .and_ query Sizes
. o . L crease, the speed-up from the optimizations also in-
a potential solution is cheaglEE tries substituting

) : ) creases.
in all solutions for subsets of the constraint set and

returns a satisfying solution, if found. For example, 3.4 State scheduling

the constraint sefi < 10,7 = 8,7 # 3} canstillbe | ¢ selects the state to run at each instruction by inter-
satisfied byi — 5,7 — 8. leaving the following two search heuristics.

To demonstrate the effectiveness of these optimiza- Random Path Selectionaintains a binary tree record-
tions, we performed an experiment whereREUTILS  ing the program path followed for all active states, i.e. the
applications were run for 5 minutes with both of these|eaves of the tree are the current states and the internal
optimizations turned off. We then deterministically reran nodes are places where execution forked. States are se-
the exact same workload with constraint independencgected by traversing this tree from the root and randomly
and the counter-example cache enabled separately ar@lecting the path to follow at branch points. Therefore,
together for the same number of instructions. This experwhen a branch point is reached, the set of states in each
iment was done on a large sample cdREUTILS utili-  subtree has equal probability of being selected, regard-
ties. The results in Table 1 show the averaged results. |ess of the size of their subtrees. This strategy has two

As expected, the independence optimization by itselimportant properties. First, it favors states high in the
does not eliminate any queries, but the simplifications itoranch tree. These states have less constraints on their
performs reduce the overall running time by almost halfsymbolic inputs and so have greater freedom to reach un-
(45%). The counter-example cache reduces both the rurcovered code. Second, and most importantly, this strat-
ning time and the number of STP queries by 40%. How-egy avoids starvation when some part of the program is
ever, the real win comes when both optimizations are enrapidly creating new states (“fork bombing”) as it hap-
abled; in this case the hit rate for the counter-examplgens when a tight loop contains a symbolic condition.
cache greatly increases due to the queries first being siniNote that the simply selecting a state at random has nei-
plified via independence. For the sample runs, the averther property.
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Coverage-Optimized Seartfes b select states likely 1 . ssizet readint fd, void *buf, sizet couny {

to cover new code in the immediate future. It uses heuris2 : i (is_invalid(fd)) {

tics to compute a weight for each state and then ran3: ermo = EBADF;

domly selects a state according to these weights. Curg : ) retum —1;

rently these heuristics take into account the minimumg :  syuct Klee fd *f = &fdsifd];

distance to an uncovered instruction, the call stack of th& : if (is_concretefile(f)) {

state, and whether the state recently covered new code$ : It r = preadf—>realfd, buf. count f->off)
KLEE uses each strategy in a round robin fashion.io': f f(r_;oﬁ_i)z .

While this can increase the time for a particularly effec-11: return

tive strategy to achieve high coverage, it protects against2:  } else {

cases where an individual strategy gets stuck. Further:: I sym files are fixed size: don’t read beyond the end. */
: if (f—>off >= f—>sizg

more, since strategies pick from the same state pool, ings. return O
terleaving them can improve overall effectiveness. 16: count = min(count f—>size — f—>off);
The time to execute an individual instruction can vary17: ~ memcpybuf, f—file_data+ f—>off, court);

f—>off += count

. . . . " 18:
widely between simple instructions (e.g., addition) and; g’ return. count

instructions which may use the constraint solver or forko:
execution (branches, memory accesseQ)EE ensures 21: }
that a state which frequently executes expensive instruc-
tions will not dominate execution time by running each Figure 3: Sketch ofkLEE's model forr ead() .
state for a “time slice” defined by both a maximum num-for each whether the associated file is symbolic or con-
ber of instructions and a maximum amount of time. crete. Iff d refers to a concrete file, we use the operating
. . system to read its contents by callipgead() (lines
4 Environment Modeling 7-11). We useor ead to multiplex access frorRLEE’s
When code reads values from its environment —many states onto the one actual underlying file descrip-
command-line arguments, environment variables, filetor.® If f d refers to a symbolic file,ead() copies from
data and metadata, network packets, etc — we conceptthe underlying symbolic buffer holding the file contents
ally want to return all values that the read could legallyinto the user supplied buffer (lines 13-19). This ensures
produce, rather than just a single concrete value. When that multipler ead() calls that access the same file use
writes to its environment, the effects of these alterationsonsistent symbolic values.
should be reflected in subsequent reads. The combina- Our symbolic file system is crude, containing only a
tion of these features allows the checked program to exsingle directory withV symbolic files in it. KLEE users
plore all potential actions and still have no false positives specify both the numbeN and the size of these files.
Mechanically, we handle the environment by redirect-This symbolic file system coexists with the real file sys-
ing calls that access it tmodelsthat understand the se- tem, so applications can use both symbolic and concrete
mantics of the desired action well enough to generate théles. When the program callspen with a concrete
required constraints. Crucially, these models are writtername, we (attempt to) open the actual file. Thus, the call:
in normal C code which the user can readily customize,
extend, or even replace without having to understand the
internals ofkLEE. We have about 2,500 lines of code t0 sets fd to point to the actual configuration file
define simple models for roughly 40 system calls (e.9. et ¢/ f st ab.
open, read, wite, stat, | seek, ftruncate,
ioctl).

int fd = open("/etc/fstab", O _RDNLY);

On the other hand, callingpen() with an uncon-
strained symbolic name matches each oftheymbolic
4.1 Example: modeling the file system files in turn, and will also fail once. For example, given
=1, callingopen() with a symbolic command-line

N
For each file system operation we check if the action isargumenar gv[1]:

for an actual concrete file on disk or a symbolic file. For
concrete files, we simply invoke the corresponding sys- int fd = open(argv[1], O_RDNLY);
tem call in the running operating system. For symbolic

files we emulate the operation’s effect on a simple symWill resultin two paths: one in whichd points to the
bolic file system, private to each state. single symbolic file in the environment, and one in which

Figure 3 gives a rough sketch of the model for d S setto-1indicating an error.

read(), eliding details for dealing with linking, reads ——5 ; A :

. . . . SinceKLEE's states execute within a single Unix process (the one
on _Standard_mpUt’ and fa”ures-_ The code maintains a sgfed to rurkLeE), then unless we duplicated file descriptors for each
of file descriptors, created at filgpen() , and records (which seemed expensive)r @ad by one would affect all the others.
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Unsurprisingly, the choice of what interface to model *
has a by impact on model complexity. Rather than hav- _ | 52
ing our models at the system call level, we could have in-
stead built them at the C standard library levfebfen, w0l
fread, etc.). Doing so has the potential performance
advantage that, for concrete code, we could run these op |
erations natively. The major downside, however, is that
the standard library contains a huge number of functionso ¢
— writing models for each would be tedious and error-
prone. By only modeling the much simpler, low-level |
system call API, we can get the richer functionality by s ‘ ‘ ]—\ ‘ ﬁ 1 =
just compiling one of the many implementations of the ’ s ©

h . . oS $ %@Q » N %@Q %@Q @“Q’
C standard library (we use uClibc [6]) and let it worry PO R
about correctness. As a side-effect, we simultaneously Execntable Lines of Code ®
check the library for errors as well.
4.2 Failing system calls Figure 4: Histogram showing the number ofd®EUTILS

. o tools that have a given number of executable lines of code
The real environment can fail in unexpected ways (e.g.(ELOC)_

write() fails because of a full disk). Such failures
can often lead to unexpected and hard to diagnose bugs.

Even when applications do try to handle them, this Codqine coverage as reported WOV, because it is W|de|y_

is rarely fully exercised by the regression suite. To helpynderstood and uncontroversial. Of course, it grossly
catch such errorssLEE will optionally simulate envi-  ynderestimatesLEE's thoroughness, since it ignores the
ronmental failures by failing system calls in a controlled fact thatkLEE explores many different unique paths with
manner (similar to [38]). We made this mode optionala|| possible values. We expect a path-based metric would
since not all applications care about failures — a simpleshow even more dramatic wins.

application may ignore disk crashes, while a mail server \\,e measure coverage by runningeE-generated test
expends a lot of code to handle them. cases on a stand-alone version of each utility and using
4.3 Rerunning test cases gcov to measure coverage. Running tests independently

... of KLEE eliminates the effect of bugs KLEE and veri-
KLEE-generated test cases are rerun on the unmodlfleﬁ

. L . : ies that the produced test case runs the code it claims.
native binaries by supplying them to a replay driver we

provide. The individual test cases describe an instancg[eo(')\ll(i)t;eéhcO lfl_rhtéovg(?ingoet (r:f)iwttslil;)r glry iggzlqs?r:c(:eoggir:n tsr:)e
of the symbolic environment. The driver uses this de- ’ y y 9

scription to create actual operating system objects (filesr,na'(es the results harder to- mterp.ret: i
1 It double-counts many lines, since often the same li-

pipes, ttys, directories, links, etc.) containing the con- b ¢ o led b licati
crete values used in the test case. It then executes the un- 2raty unction is called by many applications.

modified program using the concrete command-line ar- 2 't Iggfawlyfundgr-coulrlltsdcgverage. (I)_fter_l, the bl#k of
guments from the test case. Our biggest challenge was & 'lPrary function called by an application Is effec-
making system calls fail outside &i.EE — we built a tively dead code since the library code is general but
simple utility that uses thpt r ace debugging interface call sites are not. For examplprintf is excep-

to skip the system calls that were supposed to fail and tionally complex, but the ca_h)rl nt_f (_ hel [ 0")
instead return an error. can only hit a small a fraction (missing the code to

) print integers, floating point, formatting, etc.).
5 Evaluation However, we do include library code when measuring

This section describes our in-depth coverage experith® raw size of the applicatioLEE must successfully

ments for ®REUTILS (§ 5.2) and BISYBOX (§ 5.3) handle this library code (and gets no credit for doing so)
as well as errors found during quick bug-finding runsin order to exercise the code in the tool itself. We mea-
(§ 5.4). We use<LEE to find deep correctness errors by SUre size in terms of executable lines of code (ELOC)

crosschecking purportedly equivalent tool implementaPy counting the total number of executable lines in the
tions § 5.5) and close with results foriISTAR (§5.6). final executable after global optimization, which elimi-
nates uncalled functions and other dead code. This mea-

sure is usually a factor of three smaller than a simple line
We use line coverage as a conservative measwesrH- count (usingwe - 1).
produced test case effectiveness. We chose executableln our experiment&LEE minimizes the test cases it

5.1 Coverage methodology
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COREUTILS BusyBOX 100% —— e
Coverage KLEE | Devel. || KLEE | Devel. = Base el il |
(w/o lib) tests tests tests tests — 80% t i il | I
100% 16 1 31 7 5 A
90-100% 40 6 24 3 Q 6o% ff
80-90% 21 20 10 15 %
70-80% 7 23 5 6 g 40%
60-70% 5 15 2 7 g
50-60% - 10 - 4 20%
40-50% - 6 - -
30-40% - 3 - 2 0% 25 50 75
20-30% - 1 - 1
10-20% ' 3 ' _ Figure 5: Line coverage for each application with and without
0-10% . 1 . 30 failing system calls.
Overall cov. 84.5% | 67.7% || 90.5% | 44.8%
Med cov/App || 94.7% | 72.5% || 97.5% | 58.9%
Ave cov/App || 90.9% | 68.4% || 93.5% | 43.7% so presumably a tool implementer or user would as well.
After these runs completed, we improved them by failing
Table 2: Number of @REUTILS tools which achieve line system calls (se§4.2).

coverage in the given ranges fiotEe and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average andThe first two columns in Table 2 give aggregate line
median coverage per application. coverage results. On average our tests cover 90.9% of
the lines in each tool (median: 94.7%), with an overall
. . (aggregate) coverage across all tools of 84.5%. We get
generates by only emitting tests cases for paths that hit 85004, jine coverage on 16 tools, over 90% on 56 tools,

new statement or branch in the main utility code. A useryq over 80% on 77 tools (86.5% of all tools). The min-
that wants high library coverage can change this setting; ., m coverage achieved on any tool is 62.6%.

5.2 GNU COREUTILS We believe such high coverage on a broad swath of ap-

We now givekKLEE coverage results for all 89 GNU plications “out of the box_ conv_lncmglyshows the power
of the approach, especially since it is across the entire

COREUTILS utiliies. tool suite rather than focusing on a few particular appli-
Figure 4 breaks down the tools by executable lines g P PP

of code (ELOC), including library code the tool calls. Caf:rc:nz}tantl KLEE generates hiah coverage with few
While relatively small, the tools are not toys — the small- P Y, 9 9 9

est five have between 2K and 3K ELOC, over half (52);82'(2?12(:5: ]:,(v)irthogr l?ggs;lg\?e:;nz’(# ,278 ?rc:]seji;?aég)f
have between 3K and 4K, and ten have over 6K. . ’ b 9 . '

Previ K included. h luat dThe maximum number needed was 129 (for thétbol)
revious ~work, —ours -included, has  evalualed,, gy needed 5. As a crude measure of path complexity,

ﬁon(sjtrawln—tt)a;eg exr:ecutlli) n oFr; a t;mall nlIJtmk;er tﬁae counted the number of static branches run by each test
and-selected benchmarks. - Reporting resutts for i, qq usingicov® (i.e., an executed branch counts once

entire (OREUTILS suite, t_he_worst along W't_h the _best, no matter how many times the branch ran dynamically).
prevents us from hand-picking results or unintentionally.

cheating through the use of fragile optimizations. The average path length was 76 (median: 53), the maxi-

: mum was 512 and (to pick a random number) 160 were
Almost all tools were tested using the same comman%‘t least 250 branches long

(command arguments explainedi2.1):

5.2.1 Line coverage results

Figure 5 shows the coverageEE achieved on each
./run <tool -name> --max-tinme 60 tool, with and without failing system call invocations.

--symargs 10 2 2 Hitting system call failure paths is useful for getting the

--symfiles 2 8 last few lines of high-coverage tools, rather than signif-

[--max-fail 1] icantly improving the overall results (which it improves
As specified by the - max-t i me option, we ran each from_79.9% to 84.5%). _The one exceptiorpisgd which
tool for about 60 minutes (some finished before this limit, €Auires system call failures to go from a dismal 21.2%
a few up to three minutes after). For eight tools where thd® 72-6%. The second bestimprovement for a single tool
coverage results of these values were unsatisfactory, wi§ & more modest 13.1% extra coverage onctheool.
consulted theran page and increased the number and &, gcov terminology, a branch is a possible branch direction, i.e.
size of arguments and files. We found this easy to doa simple if statement has two branches.
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100% paste -d\\ abcdefghijkl mopqgrstuvwxyz
pr -e t2.txt

tac -r t3.txt t3.txt

nkdir -Z a b

nkfifo -Z ab

0% nmknod -Z a b p

md5sum -c t1.txt

ptx -F\\ abcdef ghi j kl mopqgr st uvwxyz
ptx x t4.txt

seq -f 9% 1

tlixt: "\t \t MD5("

50%

—50% t

KLEE vs. Manual (ELOC %)

—100%

1 10 25 50 75

t2.txt: " \b\b\b\b\b\b\b\t "
Figure 6: Relative coverage difference betweeree and Ei:xi \n
ixt:"a

the COREUTILSmManual test suite, computed by subtracting
the executable lines of code covered by manual tdsis. )
from KLEE tests( L) and dividing by the total possible:
(Lkiee — Lman)/Ltotar- Higher bars are better fen_EE,
which beats manual testing on all but 9 applications, often
significantly.

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes @REUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Each utility in COREUTILS comes with an extensive  Finally, it is important to note that althougtLEE’s
manually-written test suite extended each time a new buguns significantly beat the developers’ tests in terms of
fix or extra feature is added. As Table 2 showsKLEE  coverageKLEE only checks for low-level errors and vi-
beats developer tests handily on all aggregate measuresiations of user-level asserts. In contrast, developer tests
overall total line coverage (84.5% versus 67.7%), avertypically validate that the application output matches the
age coverage per tool (90.9% versus 68.4%) and mediagxpected one. We partially address this limitation by val-
coverage per tool (94.7% versus 72.5%). At a more deidating the output of these utilities against the output pro-
tailed level,KLEE gets 100% coverage on 16 tools and duces by a different implementation ($g8.5).
over 90% coverage on 56 while the developer tests geft) 23 Buas found
100% on a single utilityt(r ue) and reach over 90% on ~ 9
only 7. Finally, the developers tests get below 60% covKLEE found ten unique bugs in @REUTILS (usually
erage on 24 tools whileLEE always achieves over 60%. memory error crashes). Figure 7 gives the command
In total, an 89 hour run ofLEE (about one hour per ap- lines used to trigger them. The first three errors ex-
plication) exceeds the coverage of a test suite built oveisted since at least 1992, so should theoretically crash any
a period of fifteen years by 16.8%! CoREeuTILsdistribution up to 6.10. The others are more

Figure 6 gives a relative view ofLEE versus devel- recent, and do not crash oldep@EuTILS distributions.
oper tests by subtracting the lines hit by manual testingVhile one bug (inseq) had been fixed in the develop-
from those hit by LEE and dividing this by the total pos- ers’ unreleased version, the other bugs were confirmed
sible. A bar above zero indicates tkatEE beat the man- and fixed within two days of our report. In addition, ver-
ual test (and by how much); a bar below shows the opposions of thekLEE-generated test cases for the new bugs
site. KLEE beats manual testing, often significantly, on were added to the official QREUTILS test suite.
the vast majority of the applications. As an illustrative example, we discuss the bugpm

To guard against hidden bias in line coverage, we(used to paginate files before printing) hit by the invoca-
also compared the taken branch coverage (as reported BN “pr -e t 2. txt”in Figure 7. The code contain-
gcov) of the manual anckLEE test suites. While the ing the bug is shown in Figure 8. On the path that hits
absolute coverage for both test suites decreage=s’s  the bug, botfthar s_per i nput _t ab andchar s_per ¢
relative improvement over the developers’ tests remainséqual &b width (let's call itT). Line 2665 computes

width = (T — input _position modT) using the

T\We ran he test suite using the commaneésiv RUNNEXPENSI VE - macro on line 602. The root cause of the bug is the in-

_TESTS=YES RUN.VERY _EXPENS|I VE_TESTS=YES nuake correct assumption that< z mod y < y, which only

check and make check-root (as root). A small number of tests i : . .
(14 out of 393) which require special configuration were not run; from _hOIdS for positive integers. Whennput posi ti on

manual inspection we do not expect these to have a significant impadS POStive, wi dth will be less thanT S_ince 0 <
on our results. i nput _position mod T < T. However, in the pres-

5.2.2 Comparison against developer test suites
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J Random @@ Devel B KLEE

602: #define TAB_WIDTH(c_, h_) ((c.) — ((h.) % (c.))) 100

1322: clump_buff = xmallodMAX (8,chars per_input_tab));

... Il (set s to clumpbuff) 80

2665: width = TAB_WIDTH(charsper._c, input_position);

2666:

2667: if (untabify_input) 60 |

2668: {

2669: for (i = width; i; ——i) 40 L

2670: *st+ = 7

2671: chars= width;

2672: } 20

Figure 8: Code snippet fronpr where a memory 0 N N

overflow ofcl unp_buf f via pointers is posible if %,x‘f;"S@Q.@@ﬁé% & PSS ‘yb@o@ @;@@ S
char s_per _.i nput .t ab == char s_per _c and ¢ Yoy 0&*& ©

i nput _position < 0.

Figure 9: Coverage of random vs. manual \a.EE testing
for 15 randomly-chosen @REuUTILS Utilities. Manual testing
beats random on average, whileee beats both by a signifi-
cant margin.

ence ofbackspaces,nput _posi ti on can beome neg-
ative, so(—7 < i nput position mod T < T). Con-
sequentlywi dt h can be as large &9 — 1.

The bug arises when the code allocates a buffer
cl unp_buf f of sizeT (line 1322) and thenwritesi dth  tool natively withoutgcov for 65 minutes (using the
characters into this buffer (lines 2669-2670) via thesame random seed as the first run), recorded the number
pointers (initially set tocl unp_buf f). Becausev dth  of test cases generated, and then reran ugiay for
can be as large &' — 1, a memory overflow is possible. that number. This run completely eliminates theov

This is a prime example of the power of symbolic ex- overhead, and overall it generates 44% more tests than
ecution in finding complex errors in code which is hard during the initial run.

to reason about manually — this bug has existegrin However, these 44% extra tests increase the average
since at least 1992, wheno®EuTILs was first added to  coverage per tool by only 1%, with 11 out of 15 utili-
a CVS repository. ties not seeing any improvement— showing that random

gets stuck for most applications. We have seen this pat-
tern repeatedly in previous work: random quickly gets
In our opinion, the ©REUTILS manual tests are un- the cases it can, and then revisits them over and over. In-
usually comprehensive. However, we compare to rantuitively, satisfying even a single 32-bit equality requires
dom testing both to guard against deficiencies, and to gejorrectly guessing one value out of four billion. Cor-
a feel for how constraint-based reasoning compares tegectly getting a sequence of such conditionals is hope-
blind random guessing. We tried to make the comparisoness. Utilities such asspl i t (the worst performer), il-
apples-to-apples by building a tool that takes the saméustrate this dynamic well: their input has structure, and
command line agLEE, and generates random values for the difficulty of blindly guessing values that satisfy its
the specified type, number, and size range of inputs. ltules causes most inputs to be rejected.
then runs the checked program on these values using the one unexpected result was that for 11 of these 15
same replay infrastructure &sEe. For time reasons, programsikLEE explores paths to termination (i.e., the
we randomly chose 15 benchmarks (shown in Figure 9phecked code callexi t ()) only a few times slower
and ran them for 65 minutes (to always exceed the timghan random does!kLEE explored paths to termina-
given tokLEE) with the same command lines used whentjon in roughly the same time for three programs and,
run with KLEE. in fact, was actually faster for three othese(, t ee,
Figure 9 shows the coverage for these programs&ndnohup). We were surprised by these numbers, be-
achieved by random, manual, aKicEE tests. Unsurpris-  cause we had assumed a constraint-based tool would run
ingly, given the complexity of OREUTILSprogramsand  orders of magnitude more slowly than raw testing on a
the concerted effort of the @REUTILS maintainers, the per-path basis, but would have the advantage of explor-
manual tests get significantly more coverage than raning more unique paths over time (with all values) because
dom.KLEE handily beats both. it did not get stuck. While the overhead on four pro-
Becausegcov introduces some overhead, we alsograms matched this expectation (where constraint solver
performed a second experiment in which we ran eacloverhead made paths ran 7x to 220x more slowly than

5.2.4 Comparison with random tests
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native execution), the performance tradeoff for the oth- | date -1

. . cut -f t3.txt
ers is nore nuanced. Assume we have a branch deep in| | S --co

install --m
the program. Covering both true and false directions us- EhIO\INn f" a- nmet er -
ing traditional testing requires running the program from tho-loa - envdi r

L S .| setuidgid a C

start to finish twice: once for the true path and again printf "%« B setui dgid
for the false. In contrast, whileLEE runs each instruc- od t1.txt envui dgi d
tion more slowly than native execution, it only needs to | 54 t2. txt envdir -
run the instruction path before the branch once, since it| printf % arp - Ainet
forks execution at the branch point (a fast operationgiven | printf %o tar :jf -

top

[

its object-level copy-on-write implementation). As path | tr
length grows, this ability to avoid redundantly rerunning | tr [=

setarch ""
<full-path>/Iinux32

path prefixes gets increasingly important. tr [a-z T —
With that said, the reader should view the per-path | tl.txt:a hexdunp -e "
costs of random anklLEE as very crude estimates. First, t2.txt: A pi ng6 -

the KLEE infrastructure random uses to run tests adds | t3-txt: \t \n
about 13ms of per-test overhead, as compared to around ) _ )
1ms for simply invoking a program from a script. This Flgure 10: KLE_E_-generated command lines and |_nputs (modi-
code runs each test case in a sandbox directory, maki;gd for readability) that cause program crashes s BBOX.

B

| - t and ¢ . ‘ bi hen multiple applications crash because of the same shared
a clean environment, and creates various sy,s em objecty 1) piece of code, we group them by shading.
with random contents (e.qg., files, pipes, tty’s). It then
runs the tested program with a watchdog to terminate
infinite Io_op_s. Wh."e a dedicated te_stlng tool must dosus only 44.8% for the developers’ suite. The developers
roughly similar actions, presumably it could shave some

. L do better on only one benchmadq.

milliseconds. However, this fixed cost matters only for
short program runs, such as when the code exits with ag 4 Bug-finding: Minix + all BUSYBOX tools
error. In cases where random can actually make progress S o
and explore deeper program paths, the inefficiency of reTo demonstrat&LEE’s applicability to bug finding, we
running path prefixes starts to dominate. Further, we conUSedKLEE to check all 279 BSYBOX tools and 84
servatively compute the path completion ratefeee: ~ MINIX tools [4] in a series of short runs. These 360+
when its time expires, roughly 30% of the states it hasapplications cover a wide range of functionality, such

created are still alive, and we give it no credit for the @s networking tools, text editors, login utilities, archiv-
work it did on them. ing tools, etc. While the tests generatedneEe dur-

ing these runs are not sufficient to achieve high coverage
(due to incomplete modeling), we did find many bugs
BusyBoOXx is a widely-used implementation of standard quickly: 21 bugs in BISYBox and another 21 in Mi1x
UNix utilities for embedded systems that aims for smallhave been reported (many additional reports await in-
executable sizes [1]. Where there is overlap, it aims tespection). Figure 10 gives the command lines for the
replicate @REUTILS functionality, although often pro- BusyBoXx bugs. All bugs were memory errors and were
viding fewer features. We ran our experiments on a bugfixed promptly, with the exception afat e which had
patched version of Bsysox 1.10.2. We ran the 75 been fixed in an unreleased tree. We have not heard back
utilities & in the BusyBoXx “cor eut i | s” subdirectory  from the Minix developers.

(14K lines of code, with another 16K of library code), ) .

using the same command lines as when checkingee ~ 2-5 Checking tool equivalence

UTILS, except we did not fail system calls. Thus far, we have focused on finding generic errors that
As Table 2 showskLEE does even better than on g, not require knowledge of a program’s intended be-

COREUTILS: over 90.5% total line coverage, on aver- pavior. We now show how to do much deeper checking
age covering 93.5% per tool with a median of 97.5%. Itjnc|yding verifying full functional correctness on a finite
got 100% coverage on 31 and over 90% on 55 utilities. gat of explored paths.

BusyBOX has a less comprehensive manual test suite
than GREUTILS (in fact, many applications don’t seem
to have any tests). ThuslEE beats the developers tests
by roughly a factor of two: 90.5% total line coverage ver-

5.3 BusyBOX utilities

KLEE makes no approximations: its constraints have
perfect accuracy down to the level of a single bit. If
KLEE reaches anssert and its constraint solver states
the false branch of th@sser t cannot execute given the

8We areactually measuring coverage on 72 files because severapu_rrent path constraints, then it mvedthat no ValL_Je
utilities are implemented in the same file. exists orthe current paththat could violate the assertion,
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: unsigned mod_optunsigned x, unsigned y) { trived example in Figure 11, which crosschecks a triv-

1:

2 if((y & —y) ==vy) /I power of twc® ial modulo implementationnfod) against one that opti-
3: retun x & (y—1); mizes for modulo by powers of twarpd_opt ). It first

g : elsrgtum Y %y, makesthe inputsx andy symbolic and then uses the
6:) ' assert (line 14) to check for differences. Two code
7 : unsigned modunsigned x, unsigned y) { paths reach thimssert, depending on whether the
g o fetun x % y; test for power-of-two (line 2) succeeds or fails. (Along
10- ?m mair() { the way,KLEE generates a division-by-zero test case for
11:  unsigned xy; wheny = 0.) The true path uses the solver to check that
12: makesymboliq&x, sized(x)); the constrainfy& — y) == y implies (z&(y — 1)) ==

iif g‘;‘;‘?@i}y&z‘)“‘igﬁ rié?éyi()x ) 2%y holds for all values. This query succeeds. The
15  return O: V== Py false path checks the vacuous tautology that the con-
16: } straint (y& — y) # y implies thatz%y == 2%y also

holds. ThekLEE checking run then terminates, which
Figure 11: Trivial prog_ram |Ilustrat|ng equwalence checklng. means thakLEE has proved equiva|ence for all non-zero
KLEE proves total equivalence whenz 0. values using only a few lines of code.

modulo bugS INKKLEE or non-determinism in the Cod%. This methodo'ogy is useful in a broad range of con-
Importantly,KLEE will do such proofs for any condition texts. Most standardized interfaces — such as libraries,
the programmer expresses as C code, from a simple nopetworking servers, or compilers — have multiple im-
null pointer check, to one verifying the correctness of aplementations (a partial motivation for and consequence
program’s output. of standardization). In addition, there are other common

This property can be leveraged to perform deepegases where multiple implementations exist:
checking as follows. Assume we have two procedures

f andf’ that take a single argument and purport to im-
plement the same interface. We can verify functional
equivalence on a per-path basis by simply feeding them
the same symbolic argument and asserting they return
the same valueassert (f(x) == f’(x)). Each
time KLEE follows a pgth that reaches this a_ssertio_n, it equivalence check to verif§~ (f(x)) = «, such as:
checks if any value exists on that path that violates it. If asser t (unconpr ess( conpr ess( x) ) ==x)
it finds none exists, then it has proven functional equiv- ] ’ ’
alence on that path. By implication, if one function is  EXperimental results. We show that this technique
correct along the path, then equivalence proves the othé&@n find deep correctness errors and scale to real pro-
one is as well. Conversely, if the functions compute dif-9r@ms by crosschecking 670BEUTILS tools against
ferent values along the path and theser t fires, then their allegedly gquwalent stl_aox implementations.
KLEE will produce a test case demonstrating this differ-FOr €xample, given the same input, thessox and
ence. These are both powerful results, completely beCOREUTILSVersions ofxc should output the same num-
yond the reach of traditional testing. One way to look atP€r of lines, words and bytes. In fact, both thes¥Box
KLEE is that it automatically translates a path through a@nd GREUTILS tools intend to conform to IEEE Stan-
C program into a form that a theorem prover can reasoflard 1003.1[3] which specifies their behavior.
about. As a result, proving path equivalence just takes a We built a simple infrastructure to make crosschecking
few lines of C code (the assertion above), rather than aautomatic. Given two tools, it renames all their global
enormous manual exercise in theorem proving. symbols and then links them together. It then runs both
Note that equivalence results only hold on the finite sewith the same symbolic environment (same symbolic ar-
of paths thakLEE explores. Like traditional testing, it guments, files, etc.) and compares the data printed to
cannot make statements about paths it misses. Howevest dout . When it detects a mismatch, it generates a test
if KLEE is able to exhaust all paths then it has shown totakcase that can be run to natively to confirm the difference.

equivalence of the functions. Although not tractable in - Taple 3 shows a subset of the mismatches found by
general, many isolated algorithms can be tested this wayg g, The first three lines show hard correctness er-
at least up to some input size. rors (which were promptly fixed by developers), while
We help make these points concrete using the conthe others mostly reveal missing functionality. As an ex-
9Code hat depends on the values of memory addresses will notfample of a serious correctness buQ’ the first line g_ives the
satisfy determinism sinceL e will almost certainly allocate memory  INPUtS that when run on BsyBOX's conmcauses it to

objects at different addresses than native runs. behave as if two non-identical files were identical.

1 f isasimple reference implementation drida real-
world optimized version.

2 f’ is a patched version df that purports only to
remove bugs (so should have strictly fewer crashes)
or refactor code without changing functionality.

3 f has an inverse, which means we can change our
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[ Input | Busysox | COoREUTILS
commtl. txt t2.txt [does not show difference] [shows difference]
tee - [does not copy twice to stdout] [does]
tee "" <tl.txt [infinite loop] [terminates]
cksum / "4294967295 0 /" "/ Is a directory"
split / "/: Is adirectory"
tr [duplicates input on stdout] "m ssing operand”
[ 0 “'< 1] "bi nary operator expected"
sum-s <t1.txt "97 1 -" "97 1"
tail -2l [rejects] [accepts]
unexpand -f [accepts] [rejects]
split - [rejects] [accepts]
I's --color-blah [accepts] [rejects]
tl.ixt: a t2.txt b

Table 3: Very small subset of the mismatcheseE found between the BsyBox and GOREUTILSVersions of equivalent utili-
ties. The first three are serious correctness errors; most of the others are revealing missing functionality.

for (int j=0; j<8; j++)
make symbolid&arggj], sizeof(arggj]));
kern_syscal(argq0], argg1], argg2], arg43],
arg44], arggs], argg6], argg7]);

| Test | Random | KLEE | ELOC | 1 : static void tes{void *upage unsigned num.calls) {
With Disk | 50.1% | 67.1% | 4617 2 ?ﬁak(esymbolic(upage PI?SSIZE)); .
: ) 0 3 or (int i=0; i<num.calls i++
No Disk 48.0% | 76.4% | 2662 a4 Uint64.t argq8l;
5 -
6

Table 4: Coverage on the EBTAR kemel for runs with up to
three system calls, configured with and without a disk. For 7 :
comparison we did the same runs using random inputs for one8 :

million trials. 9:
10:  sysself_halt);

11: }

5.6 The HiStar OS kernel ] ) ) )
Figure 12: Test driver for HSTAR: it makes a single page of

We have also appliedlLEE to checking non-application user memory symbolic and executes a user-specified number
code by using it to check the HiStar [39] kernel. We usedof system calls with entirely symbolic arguments.
a simple test driver based on a user-mod&HR ker-
nel. The driver creates the core kernel data structures and
initializes a single process with access to a single page of KLEE’S constraint-based reasoning allowed it to find a
user memory. It then calls the test function in Figure 12 tricky, critical security bug in the 32-bit version ofi 8-
which makes the user memory Symbo"c and executes aAR. Figure 13 shows the code for the function contain-
predefined number of system calls using entirely syming the bug. The functiosaf e_addpt r is supposed
bolic arguments. As the system call number is encodedP setxof to true if the addition overflows. However,
in the first argument, this simple driver effectively tests because the inputs are 64 bit long, the test used is insuf-
all (sequences of) system calls in the kernel. ficient (it should bg(r < a) || (r < b))andthe
Although the setup is restrictive, in practice we havefunction can fail to indicate overflow for large values of
found that it can quickly generate test cases — sequenc
of system call vectors and memory contents — which Thesaf e_addptr function validates user memory
cover a large portion of the kernel code and uncove@ddresses prior to copying data to or from user space. A
interesting behaviors. Table 4 shows the coverage opkernel routine takes a user address and a size and com-
tained for the core kernel for runs with and without a Putes if the user is allowed to access the memory in that
disk. When configured with a disk, a majority of the un- range; this routine uses the overflow to prevent access
covered code can only be triggered when there are a largghen a computation could overflow. This bug in com-
number of kernel objects. This currently does not happe,{puting overflow therefore allows a malicious process to
in our testing environment; we are investigating ways to9ain access to memory regions outside its control.
exercise this code adequatelly_ during testing. As a qmcl@ Related Work
comparison, we ran one million random tests through
the same driver (similar t§ 5.2.4). As Table 4 shows, Many recent tools are based on symbolic execution [11,
KLEE’s tests achieve significantly more coverage thanl4-16,20-22,24,26,27,36]. We contrast hawee
random testing both for runs with (+17.0%) and without deals with the environment and path explosion problems.
(+28.4%) a disk. To the best of our knowledge, traditional symbolic ex-
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: uintptr_t safeaddpt{int *of, uint64_t a uint64_t b) { 7 Conclusion

1
g : :;'”(tr‘x;-tar) =a+h Our long-term goal is to take an arbitrary program and
4 *of = 1: routinely get 90%-+ code coverage, crushing it under test
5 retum T, cases for all interesting inputs. While there is still a long
6:} way to go to reach this goal, our results show that the ap-

proach works well across a broad range of real code. Our
Figure 13: HISTAR function containing an important security SYStEMKLEE, automatically generated tests that, on av-

vulnerability. The function is supposed to setf to true erage, covered over 90% of the lines (in aggregate over
if the addition overflows but can fail to do so in the 32-bit 80%) in roughly 160 complex, system-intensive appli-
version for very large values af. cations “out of the box.” This coverage significantly

exceeded that of their corresponding hand-written test

suites, including one built over a period of 15 years.
ecution systems [17, 18, 32] are static in a strict sense and |, total, we usedLEE to check 452 applications (with
do not interact with the running environment at all. They gyer 430K lines of code), where it found 56 serious bugs,
either cannot handle programs that make use of the enncluding ten in @REUTILS, arguably the most heavily-
vironment or require a complete working model. More tested collection of open-source applications. To the best
recent workin test generation [16, 26, 36] does allow ex-of our knowledge, this represents an order of magnitude
ternal interactions, but forces them to use entirely conmore code and distinct programs than checked by prior
crete procedure call arguments, which limits the behavsympolic test generation work. Further, becadsee’s
iors they can explore: a concrete external call will do €x-constraints have no approximations, its reasoning allow
actly what it did, rather than all things it could potentially it to prove properties of paths (or find counter-examples
do. InKLEE, we strive for a functional balance between ithout false positives). We used this ability both to
these two alternatives; we allow both interaction with theprove path equivalence across many real, purportedly

outside environment and supply a model to simulate inigentical applications, and to find functional correctness
teraction with a symbolic one. errors in them.
The path explosion problem has instead received more The techniques we describe should work well with

attention [11,22,24,27,34]. Similarly to the searchother tools and provide similar help in handling a broad
heuristics presented in Section 3, search strategies pretass of applications.

posed in the past include Best First Search [16], Gener-
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