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This one-year effort focused on the transition of FERI's machine learning algorithms for 
HyperSpectral Imagery (HSI) in the Very Shallow Water (VSW) into a distributable code 
set. Our objective focused on two areas of application research and transitions. First, we 
transitioned our machine learning-based algorithms and computer code for the 
determination of bathymetry, bottom type, and water column Inherent Optical Properties 
from HyperSpectral Imagery (HSI) into a deliverable Message Passing Interface (MPI) 
code set that may be easily used by other research and military operators. Second, we 
moved beyond the use of single pixel HSI inversion to the use of spatial context-filtering 
to remove pixel-to-pixel noise inherent in the HSI data. In addition, the techniques and 
computer code used in this effort may be used with any set of spectral reflectance data, 
not just hyperspectral imagery. As such the deliverables from this effort will allow others 
to create maps of depths, bottom types, and water clarity from a variety of airborne and 
space-based spectral sensors planned for operational deployment. 
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LONG-TERM GOALS 

This one-year effort will focus on the transition of FERI's machine learning algorithms for 
HyperSpectral Imagery (HSI) in the VSW into a distributable code set. This will provide a 
stable code platform for the application and transition of machine learning-based hyperspectral 
classification techniques into 6.3/6.4 programs. (This work was funded mid-year 2008.) 

OBJECTIVES 

Our objective is to focus on three areas of application research and transitions. First, we will 
transition our machine learning-based algorithms and computer code for the determination of 
bathymetry, bottom type, and water column Inherent Optical Properties from HyperSpectral 
Imagery (HSI) into a deliverable Message Passing Interface (MPI) program that may be easily 
used by other research and military operators. Second, we will use this program to determine the 
impacts of the granularity of the classification database on the inversion bathymetry, bottom 
type, and IOPs. Third, we will move beyond the use of single pixel HSI inversion to the use of 
spatial context-filtering to remove pixel-to-pixel noise inherent in the HSI data. 

APPROACH 

Taskl 

In previous works, a Look-Up Table (LUT) algorithm was used in accurately predicting 
bathymetry (Mobley et al. 2002, Bissett et al. 2004, Bissett et al. 2005, Mobley et al. 2005, 
Lesser and Mobley, 2008). The LUT approach is a subset of a larger body of artificial 
intelligence work concerned with algorithms and techniques that "teach" machines to learn from 
the examination of data and rules. This body of work is aptly called "machine learning" and 
some of its techniques include decision trees, genetic algorithms, and neural networks. The LUT 
approach is a subset of the k-Nearest Neighbor (kNN) algorithm, which is in the family of 
supervised learning algorithms. 



Our use of the kNN algorithm maps a single HSI remote sensing reflectance vector, Rrs(X), onto 
a database of estimated Rrs(l). This database is created by providing the attributes of 
bathymetry, spectral bottom reflectance, and spectral IOPs to the radiative transfer routines of 
Ecolight (which is a high speed variant of Hydrolight, Mobley, 1994). We select the 
classification of the measured Rrs vector based on the best match of measured Ris(k) to 
estimated Rrs(X,). The LUT algorithm is based on a single best fit for our classification, i.e. k = 
1. However, more recent work suggested that we could achieve a better classification by 
selecting a larger number for k, e.g. k = 50 (Bissett et al. 2006a). This larger number for k 
provides better accuracy and precision, as well as provides us with the ability to create 
confidence intervals for our classifications of bathymetry. 

When classifying new spectra, the distance or angle between each measured spectrum and 
estimated spectrum in the database is calculated. The k nearest neighbors to that spectra (those 
having the smallest distances or angles), are considered sufficiently qualified to predict the 
corresponding attributes of bathymetry, bottom type, and IOP set. We have used the following 
metrics for the calculation of distance (Euclidean, Manhattan. Chebyshev, Canberra and Bray 
Curtis) and/or angle (Angular Separation and Correlation Coefficient). In general, our 
applications suggest that the Manhattan distance and the Correlation Coefficient angle metrics to 
be the best metrics to use for this algorithm. Once the set of nearest neighbors are determined, 
the attribute (e.g. bathymetry) of a pixel may be determined by a majority vote from the k nearest 
neighbor vectors. In the event of a tie, a prediction is made randomly from amongst the majority 
classes. 

The computer code used in our creation of the estimated Rrs(X) database and the spectral 
matching of the measured versus estimated Rrs(^.) is functional for scientific research; however it 
is not well developed for transition for use by others in testing and evaluation applications. Our 
first task of this project will build upon our past research efforts to provide a Message 
Passing Interface (MPI) executable version of our kNN workbench for the inversion of 
hyperspectral imagery. This code will be distributed to research and military partners for 
testing and evaluation purposes, as well as to complete Task 2 and 3. 

Task 2 

The spectrum for one particular depth, bottom type, and set of inherent optical properties may 
closely match a multitude of spectra with many different attributes (Figure 1). The selection of a 
single nearest neighbor may produce noisy predictions because of the noise in both the measured 
and estimated Rrs(X.). The total prediction noise is a function of the noise associated with the 
measured Rrs(X), which contains components of sensor and environmental noise, and the noise 
associated with the estimation of Rrs(X.)in the training database. This noise is evident in the 
"speckling" that may be associated with these inversion techniques (Figure 2). The use of kNN 
algorithms work to reduce noise of the prediction by increasing the probability that a spectrum 
presented for classification will come from the majority class of proximally-located spectral 
vectors, rather than a single "lucky" spectrum. In this case, rather than selecting the single 
database spectrum "O" that is closest to the measured spectrum (represented by the square in 
Figure 1), a majority vote of all of the nearest neighbors around the square is used to make the 



prediction of the attribute (e.g. bathymetry) at that pixel location. Choosing the majority class 
creates a less variable space from which to make a decision, making it less likely to produce 
different classifications due to small amounts of noise in the spectra. 

However, as the size of the training database increases (through the increase in number of 
bathymetry depths, bottom types, or IOP sets) the number of nearest neighbors also increases 
(Figure 3). This in turn causes a problem with "non-uniqueness" in the selection of the 
appropriate class, and its component attribute. This, in turn, causes increasing noise in the map 
of the estimated attribute (e.g. bathymetry), and therefore it becomes very important to have the 
appropriate "granularity", or the proper step size in the discrete selection of attributes that are 
used in the creation of the training database. In this specific case, it means that we need to be 
selective in the selection of the number of depth levels, bottom types, and IOP sets that we use to 
create the estimated Rrs(A.) database. The second Task of this project will be to use the code 
from Task 1 to rapidly test the impacts of granularity of attribute selection on the accuracy 
and precision of bathymetry estimated from our kNN code and the HSI data from 
Horseshoe Reef and St. Joseph Bay, FL1 (Bissett et al. 2006b). 
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Figure 1. Xs and Os are the classes of examples belonging to the training database.  The 
measured spectrum, •, is closer to the O than any X. In kNN, multiple nearest neighbors are 
used to vote on the appropriate class. Ifk = 1, class O is chosen. Ifk > I, a vote amongst all 

the classes X is chosen. The total number ofXs is dependent on the value ofk, and which will 
include O in the retrieved set.  The estimate of the attribute may then be calculated from any 

number of statistical calculations on the set ofXs, e.g. mean, majority vote, etc. 

Task 3 

The problem of sensor and environmental noise is a critical issue in the retrieval of accurate 
bathymetry from maps of HSI data. There are many sources of environmental noise in the 

' The use of St. Joseph Bay, FL data will depend on acquiring accurate bathymetry from the State of Florida. If we 
do not receive bathymetry of sufficient quality, we will focus on the Horseshoe Reef imagery. 



collection of sensor measured radiance, for example, surface waves that alter the reflection 
surface and path length to the bottom reflectance target. These surface noise effects are 
commingled with the atmospheric and illumination correction noise to produce spatially varying 
Rrs(X.) over areas with identical bathymetry, bottom types, and IOPs (Figure 2). In order to 
reduce the impacts of this environmentally generated noise component, we should use the spatial 
context of the measured spectrum during the selection of the nearest neighbor classes, and 
subsequent estimate of the attribute of interest. 

Figure 2. LUT bathymetry estimate for Horseshoe Reef, Bahamas. The black dots show 
the locations of the acoustic pings. The color-coded depths are for the unconstrained LUT 

retrieval (k = 1) applied to the entire image. The speckling in bathymetry is evident 
throughout the image. 
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Figure 3. Xs and Os are the classes of examples belonging to the training database and are 
the same as Figure 1. The A's are additional classes resulting from increasing the depth 

resolution, as well as the number of bottom types and IOP sets. In this case discussed in the 
text, these A's may contain attributes that are unrepresentative of the actual values and 



represents a non-unique solution to this inversion problem. The selection of the appropriate 
depth intervals or range of bottom types andlOPs sets is important to reducing this non- 

uniqueness. The term granularity is used to describe the separation between the discrete levels 
in the attributes. 

Heretofore we have done point- or pixel-specific classification of HSI data. That is, each pixel is 
classified (for depth, bottom type, and water IOPs) independently of its neighbors, and only the 
spectral character of the pixel is used in its classification. Task 3 will be to evaluate spatial 
context-sensitive classification, which means that we will incorporate information about the 
spatial neighborhood (the spatial context) of a pixel to assist with its classification. Context- 
sensitive classification is often used in traditional terrestrial thematic mapping (e.g., Richards 
and Jia, 2006, §8.8) and some of those techniques may be beneficial for our oceanic problem. 

This Task will evaluate two types of context-filtering - (1) pre-filtering of the Rrs(X) spectra 
before classification, and (2) context-filtering of the retrieved attributes after classification. 
The first type of context-filtering seeks to reduce the noise in Ris(k) spectra by replacing the 
spectrum value at each wavelength with the median value of the spectra in a spatial area 
surrounding the pixel of interest, say a 3 x 3 grid of pixels centered on the one of interest. This 
spatial filter is applied wavelength by wavelength. At wavelengths where Rrs(X.) is mostly 
signal, the final spectrum will not change by much. At wavelengths where Rrs(A.) is noisy, the 
noise in the surrounding pixels will tend to average out and the final spectrum values over the 
entire image area will be less noisy than the original. 

The second type of context-filtering involves post-processing the retrievals themselves, rather 
than the original image spectra. In the case of real numbered attributes, such as bathymetry, we 
can apply a median filter to the retrieved depth. For bottom type and IOP set, the way forward is 
less clear. Each of these attributes is assigned a type with a specific vector (or set of vectors in 
the case of IOPs) of spectral values. How we filter "Dark Sediment" with "Sparse Vegetation" 
or "Highly absorbing and scattering waters #1" with "Case 1, chlorophyll a = 0.5 mg m" " will be 
a challenge. It may require some iterative solution that context-filters bathymetry first, and 
solves the kNN again using a constrained bathymetry solution approach. It may also be highly 
dependent on the granularity study in Task 2. These are the issues that we will address in this 
Task. 

WORK COMPLETED 

Task (1) has been completed and the serial and MPI versions of our optimized machine learning 
code is available for v 0.1.0 release. The code will be distributed in a generic Red Hat Package 
Manager (RPM; http://en.wikipedia.org/wiki/RPM_Package_Manager) format for installation on 
Red Hat, Fedora, and CentOS version of Linux. This Task was expanded in anticipation of an 
ONR contract to transition this code set into an application appliance to be delivered to the Naval 
Oceanographic Office. This contract (N00014-09-C-0553) has been funded and the code set will 
be delivered September 2009. 

The work for Task 2 and 3 starts with a baseline set of statistics with which to compare our 
spectral matching approaches to the "true" bathymetry measured with acoustical techniques. In 



addition to previously used estimates (see below), we include a new estimation of "spikiness" in 
the retrieval of bathymetry from our spectrum matching techniques. Spikiness, S, is defined in 
the depth estimates as follows. For a given pixel (ij) with retrieved depth z(ij), the average 
depth of the 4 neighboring pixels is 

zavg4 = 0.25[z(i-l, j) + z(i+l, j) + z(i, j-1) + z(i, j+1)]. 

Spikiness, S(i,j), of the retrieved depth at (i,j) as the absolute percent difference in depth z(i,j) 
and zavg4, 

S(ij) = 100 {|z(ij) - zavg4|} over {zavg4} 

For example at a kNN=l (a single value LUT retrieval), if retrieval z(i,j) = 5 m or 15 m, and 
zavg4 = 10 m, then S(ij) = 50%. Note that a linearly sloping bottom is the same as a level 
bottom as regards the value of zavg4. Thus a change in depth from one pixel to the next because 
of a sloping bottom is not recorded as spikiness. This metric is best suited for detecting a single 
spiky pixel. However, if a group of pixels is spiky, then some of the spiky pixels may be 
included in the zavg4 value, and the true spikiness may be underestimated for pixel (i j). 
Likewise, a sharp change in bottom depth, e.g., due to a coral head, may be recorded as a depth 
spike even though the LUT retrieval is correct. 

Other statistical measures for "goodness of fit" from previous efforts include - 

1. The average percent difference in LUT vs acoustic depths (a negative/positive value 
means that the LUT depths are on average shallower/deeper than the acoustic depths) 

2. The average difference in meters in LUT vs acoustic depths (a negative/positive value 
means that the LUT depths are on average shallower/deeper than the acoustic depths) 

3. The standard deviation in meters of the LUT vs acoustic depths 
4. The correlation coefficient, r2- between the LUT and acoustic depths 
5. The percent of pixels for which the LUT depth is within ±lm of the correct depth 
6. The percent of pixels for which the LUT depth is within ±25% of the correct depth 

The baseline for our comparison of various selections of spatial filtering parameters and kNN 
parameters is seen in Figures 4-6 and summarized in Figure 7. These figures show the 
bathymetry retrievals for unfiltered, kNN = 1 (LUT), parameters of our spectrum matching 
algorithms. In summary, we now have six quantitative measures of the overall accuracy of depth 
retrievals and two measures of the spikiness of depth retrievals. These metrics are used below to 
compare the effects of spatial smoothing of input Rrs spectra, of spatial smoothing of retrieved 
depths, and of the type of kNN analysis. 
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Figure 4. A 2D plot of retrieved depths, with the actual LUT-retrieved depths binned into 2-m 
bins and color-coded. Even with the binning, there is noticeable speckle in the deeper waters 

at the upper right. 
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Figure 5. The LUT-retrieved depths plotted as a 3D surface and viewed in perspective (from 
the lower right direction of Fig. 4). The extreme spikiness of the depth retrievals is now quite 

apparent. 
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Figure 6. Depths along the 3 black transect lines seen in Fig. 5. The "bottom left" line in Fig. 
5 is plotted in purple, the middle line in blue, and the "top right" line in green. 
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Figure 7. Goodness-of-fit results from LUT vs. acoustic depths for the baseline retrieval. 



There are various ways of running a kNN algorithm to retrieve depth at each pixel that may 
impact the spikiness of the results, regardless of whether spatial smoothing of the Rrs or the 
retrieved attribute (e.g. depth) is performed. In performing the goodness-of-fit test, we wanted to 
consider the impact of differences in kNN selections in altering the results of the smoothing. 
The following are the basic criteria for kNN selections: 

1. the closest match (k = 1, LUT) 
2. the average of the k = 30 depths 
3. the median of the k = 30 depths 

It should be noted that kNN analysis does not reduce the retrieval error for pixels having 
whitecap or glitter contamination—if you start with a bad spectrum you get a bad result, no 
matter what the technique. 

To spatially smooth an Rrs spectrum, we considered an n x n block of pixels centered on the 
pixel of interest, with n = 1,3, and 5 (n = 1 corresponds to no spatial smoothing). Let Rrs(ij,X,) 
be the image spectrum at pixel (i,j). To help eliminate anomalously large or small "bad" spectra, 
we discarded the highest and smallest values of the 9 spectra at each wavelength, and averaged 
the remaining 7 values. For n = 5, we discard the highest 2 and lowest 2 values, and averaged 
the remaining 21 values. If some of the pixels are flagged as land, clouds, or whitecaps, or if (ij) 
is next to the image boundary, there are fewer than n2 valid pixels, we discarded the highest and 
lowest values and average the remaining values. The original Rrs(ij,X) is then replaced by the 
average spectrum computed from the n x n block of pixels. Note that this algorithm is applied 
independently at each wavelength. Thus, the particular spectra that are eliminated at one 
wavelength may or may not be the spectra that are eliminated at another wavelength. 

To smooth the retrieved depths, we again consider n x n blocks of pixels. Now, however, we do 
not discard the high or low values of the retrieved depths before averaging. The reason is that 
when doing kNN matching, the kNN algorithm may have already omitted the high or low values, 
or done some other sort of filtering or averaging of the k retrieved depths at each pixel. We omit 
any pixels in the n x n block that are flagged as invalid (land, whitecap, image edge, etc), and 
then average the remaining (usually n2) depths to obtain the spatially smoothed depth for the 
pixel at the center of the n x n block. 

The matrix of combinations between kNN, Rrs, and depth averaging yield a 3 x 3 x 3 solution 
matrix of 27 different combinations for analysis. That matrix and the results from the 8 tests are 
seen in Table 1. The following list provides a brief summary of the results. 
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1. kNN analysis does not help if the input Rrs spectrum is bad 
2. Using the median of k = 30 depths gives slightly better signed depth errors than does the 

average of 30 depths 
3. Using the average of k = 30 depths gives somewhat less spikiness (smaller average S values, 

and fewer pixels with S > 25%) than does the median of k = 30 values 
4. Other goodness-of-fit metrics are about the same for the average and median of k = 30 values 
5. The average and median of k = 30 values give smaller signed depth errors (-0.8 to -2%) than 

does k = 1 (-7.0 to -7.4%), regardless of what smoothing is applied 
6. The k = 1 depths give a smaller standard deviation of the LUT vs acoustic depth errors than 

does either the average or median of k = 30 
7. Smoothing of the retrieved depths reduces spikiness much more than does a corresponding 

(having the same value of n) smoothing of the Rrs 
8. The average of k = 30 values reduces both average and extreme spikiness more than does the 

median 

These results are very encouraging when compared to our baseline retrievals (Figures 4 - 7). 
However, there is no single "best" methodology that gives superior values for all error metrics. 
Nevertheless, it appears that a reasonable recommendation (at least for the Horseshoe Reef image) is 
to: 

1. 

3. 

use the median of k = 30 values to estimate the depth at each pixel (although using the average 
of k = 30 is about the same), which will give the most accurate average signed depth retrievals 
definitely perform 3X3 or 5*5 spatial smoothing of the retrieved depths, which will greatly 
reduce the spikiness and thus further decrease the depth errors (Figure 8-11) 
optionally also perform 3x3 or 5*5 spatial smoothing of the Rrs spectra before doing the LUT 
matching (Figure 12 - 15) 

Figures 8-11 and 12-15 should be compared with Figures 4 - 7, which show the corresponding 
results for the baseline retrieval using no Rrs or z smoothing and k = 1 closest matching. 
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no Rrs spatial smoothing 
median of 30 depths with 3x3 z spatial smoothing 

Idepth (m) 

= 30 

Figure 8. A 2D plot of retrieved depths, with the actual kNN-retrieved depths binned into 2-m bins 
and color-coded. 
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Figure 9. The LUT-retrieved depths plotted as a 3D surface and viewed in perspective (from the 
lower right direction of Fig. 8) 
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Figure 10. Depths along the 3 black transect lines seen in Fig. 9. The "bottom left" line in Fig. 9 is 
plotted in purple, the middle line in blue, and the "top right" line in green. 
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Figure 11. Goodness-of-fit results from kNN vs. acoustic depths for the must-do retrieval. 
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Figure 12. A 2D plot of retrieved depths, with the actual kNN-retrieved depths binned into 2-m bins 
and color-coded. 
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Figure 13. The LUT-retrieved depths plotted as a 3D surface and viewed in perspective (from the 
lower right direction of Fig. 12). 
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Figure 14. Depths along the 3 black transect lines seen in Fig. 13. The "bottom left" line in Fig. 13 
is plotted in purple, the middle line in blue, and the "top right" line in green. 
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Figure 15. Goodness-of-fit results from kNN vs. acoustic depths for optional retrieval. 

IMPACT/APPLICATIONS 

This effort will deliver an application for testing and evaluating of our machine learning approaches to 
bathymetry estimation in Very Shallow Waters (VSW). While it is being demonstrated on 
hyperspectral imagery, the techniques and computer code may be used with any set of spectral 
reflectance data. As such the deliverables from this effort will allow others to create maps of depths, 
bottom types, and water clarity from a variety of airborne and space-based spectral sensors planned for 
operational deployment. 

RELATED PROJECTS 

This work is being conducted in conjunction with Dr. Curtis D. Mobley at Sequoia Scientific, Inc., 
who is funded under this effort for the collaboration as well as under other collaborative spectrum 
matching funding. These techniques developed here are now being applied to imagery of Australian 
coastal waters in a comparison of several different hyperspectral remote sensing algorithms for a 
variety of environments. That comparison study is being led by A. Dekker of CSIRO. The kNN 
algorithms developed under this grant are being transitioned within an application appliance to be 
delivered to the Naval Oceanographic Office (N00014-09-C-0553) and is to be delivered September, 
2009. 
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