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Abstract

This paper analyses the properties of the full covari-
ance simultaneous map building problem (SLAM). We
prove that, for the special case of a stationary vehi-
cle (with no process noise) which uses a range-bearing
sensor and has non-zero angular uncertainty, the full-
covariance SLAM algorithm always yields an incon-
sistent map. We also show, through simulations, that
these conclusions appear to extend to a moving vehi-
cle with process noise. However, these inconsistencies
only become apparent after several hundred beacon up-
dates.

1 Introduction

Autonomous Guided Vehicle (AGV) technology
plays a prominent role in a wide variety of scientific,
industrial, and military applications. In all of these
applications there is a critical need for localization —
the AGV must be able to accurately and repeatedly
estimate its own position. The most general localiza-
tion strategy is to equip the AGV with the capabil-
ity to construct its own map of beacons (which can
be artificial or naturally-occurring). The AGV main-
tains a continuous estimate of its absolute position as
it re-observes the dynamically mapped beacons. This
strategy is referred to as Simultaneous Localization
And Map building (SLAM).

The seminal work on the rigorous application of the
Kalman filter to the SLAM problem was carried out in
the late 1980s by Smith, Self and Cheeseman [1] who
introduced the notion of a stochastic map. Previous
researchers addressed the SLAM problem by assum-
ing that the beacon and vehicle estimates could be
propagated independently of one another. What [1]
showed was that the vehicle and beacon estimates are
not independent of one another and a complete joint
covariance matrix comprising the vehicle and all bea-
con estimates must be maintained. Failure to do so
causes the filter to believe that it has more information
than is really available and, as demonstrated in [2],

this leads to an erroneous map and an inconsistent
vehicle estimate.

It has been widely assumed that the stochastic
mapping approach of [1] is theoretically sound. Conse-
quently, most recent research has focused on practical
issues such as reducing the computational resources,
which scale quadratically with map size, required by
the optimal algorithm [3–6].

In this paper we re-examine the properties of the
stochastic map and consider the problem of a vehicle
which possesses a sensor which is capable of measuring
range and bearing to beacons in the environment. We
show that, when the vehicle is stationary and no pro-
cess noise acts on it, the joint system is guaranteed to
be inconsistent. Furthermore, simulation studies show
that a moving vehicle with process noise exhibits a
similar type of behavior. However, the time required
for the map to become visibly inconsistent is of the or-
der of several hundred timesteps, which is longer than
most experimental runs presented in the literature.

The structure of this paper is as follows. The full
covariance SLAM algorithm is described in Section 2.
The behavior of a stationary vehicle is examined in
Section 3 and we derive a theory of a necessary condi-
tion which must be met by a map building algorithm.
Section 4 describes a simple system and shows that it
does not build a consistent map for either a stationary
or moving vehicle. Conclusions are drawn in Section 5.

2 Simultaneous Localization and Map
Building

The structure of a joint vehicle-beacon system is
as follows. The state of the vehicle at timestep k is
xv (k) and the state of the ith beacon is pi (k). The
complete state space for a system which comprises of
n beacons is

xn (k) =
[
xTv (k) pT1 (k) . . . pTn (k)

]T
. (1)
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The mean and covariance of this estimate are

x̂Tn (k | k) =
[
x̂Tv (k | k) . . . p̂Tn (k | k)

]T
(2)

Pn (k | k) = (3)
Pvv (k | k) Pv1 (k | k) . . . Pvn (k | k)
P1v (k | k) P11 (k | k) . . . P1n (k | k)
P2v (k | k) P21 (k | k) . . . P2n (k | k)

...
...

. . .
...

Pnv (k | k) Pn1 (k | k) . . . Pnn (k | k)


where Pvv (k | k) is the covariance of the AGV’s posi-
tion estimate, Pii (k | k) is the covariance of the posi-
tion estimate of the ith beacon and Pij (k | k) is the
cross-correlation between the estimate of i and j.

By assumption, all of the beacons are stationary
and no process noise acts upon them. Therefore, the
process model is of the form

f [xn (k) ,u (k) ,v (k)] =
(

fv [xv (k) ,u (k) ,v (k)]
0

)
(4)

where u (k) is the control input and v (k) is the process
noise. Similarly, the process noise covariance matrix
is

Qn (k + 1) =

Qv (k + 1) 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 . (5)

The observation model and observation model Jaco-
bian for when the vehicle observes the ith beacon is

zi (k) = hi [xv (k) ,pi (k) ,w (k)] (6)
∇hi = [∇hxi −∇hpi ] (7)

where w (k) is the observation noise with covariance
R (k) and the negative sign on ∇hpi denotes the fact
that the beacon estimates often enter with the op-
posite sign to the vehicle estimates. Whenever the
vehicle observes a beacon which is in the map, the
joint system is updated using the Kalman filter up-
date rule1. If the beacon is not in the map, a new
beacon estimate is created and inserted into the map.
To initialise the beacon position, the inverse of the
beacon observation equation is used:

pi (k) = gi [xv (k) , zi (k) ,w (k)] .
1These are

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) + W (k + 1) ν (k + 1) , (8)

P (k + 1 | k + 1) = P (k + 1 | k) −W (k + 1) S (k + 1) W
T (k + 1) (9)

ν (k + 1) = z (k + 1) − ẑ (k + 1 | k) (10)

W (k + 1) = P (k + 1 | k)∇h
T

S
−1 (k + 1) (11)

S (k + 1) = ∇h P (k + 1 | k)∇h
T + R (k + 1) (12)

The new beacon estimate is appended to the map, and
the new mean and covariance become:

x̂n+1 (k | k) =
[

x̂n (k | k)
gn [x̂v (k | k) , zn (k) ,0]

]
, (13)

Pn+1 (k | k) = (14)(
Pn (k | k) Pn (k | k)∇Tgxn

∇gxn Pn (k | k) ∇gxn Pn (k | k)∇Tgxn +∇gwn R (k)∇Tgwn

)
.

3 Mapping From A Stationary AGV

Consider the following scenario. An AGV is placed
at an unknown location in its environment with a spec-
ified mean x̂v (0 | 0) and covariance Pvv (0 | 0). The
AGV then uses a sensor (such as a laser range finder)
to measure the position of the beacons relative to the
AGV. The AGV is assumed to remain stationary, so
no process noise is injected as beacons are initialised
and updated. Because the AGV’s state is unchanging,
and because beacon positions are only measured rela-
tive to the AGV, the AGV’s position estimate should
not change. Therefore, x̂v (k | k) = x̂v (0 | 0) for all
timesteps k. This condition is satisfied if the following
theorem holds:

Theorem 1. If an AGV estimate is initialised with
a non-zero covariance, beacon estimates are initialised
using Equations 13 and 14, and all observation covari-
ances are finite, then the state estimate of the AGV
will remain unchanged if and only if

∇hx1 −∇hp1∇gx1 = 0 (15)

for all timesteps k.

Proof. Assume that the beacon is initialised at
timestep 0. We prove Equation 15 by considering the
first two timesteps.

The beacon estimate is initialised into the map at
timestep 0. Therefore, the state of the system with the
intialised beacon is given by Equations 13 and 14. Be-
cause the vehicle is stationary and no process noise is
injected, the predicted state of the vehicle at timestep
1 is x̂1 (1 | 0) = x̂1 (0 | 0) and P1 (1 | 0) = P1 (0 | 0).

From Equation 9, a necessary and sufficient con-
dition to ensure that the vehicle estimate does not
change is that the Kalman weight (gain matrix) which
is applied to it should be 0. Therefore, the weight
should be of the form

W (k + 1) =
[
Wv (k + 1)
Wp (k + 1)

]
=
[

0
Wp (k + 1)

]
,

where the dimension of 0 is the same as x̂v (k | k) and
Wp (k + 1) is the weight applied to the beacon. From



Equation 11, the condition is equivalent to demanding
that

P (k + 1 | k)∇Thx1 =

[
0

WpS (k + 1)

]
, (16)

where the second term is the weight applied to the
beacon (not considered here). The actual weight ap-
plied to the vehicle is

Wv (1) = Pv (1 | 0) (∇hx1 −∇hp1∇gx1 )TS−1 (1) . (17)

Because Pv (1 | 0) and S−1 (1) are nonsingular, a nec-
essary and sufficient condition for Wv (1) to be 0 is

0 =∇hx1 −∇hp1∇gx1 .

This result proves the theorem for a single timestep.
In [7] we show that it can be readily extended to an
arbitrary number of timesteps.

The importance of this result is that the behavior of
the vehicle and beacon depends critically on the Jaco-
bian matrices used to initialise the beacon. In the spe-
cial case that the observation model is linear and time
invariant2 (∇hxi = Hx,∇hpi = Hp and ∇gxi = Gx),
the condition requires that HpGx = Hx. However, in
a general nonlinear system where the Jacobian matri-
ces are functions of noisy observations and erroneous
estimates, it is not clear that the condition in Equa-
tion 15 can be guaranteed to hold. Furthermore, be-
cause this condition is a structural relationship, nor-
mal tuning procedures (such as inflating the observa-
tion noise covariances) cannot circumvent the prob-
lem. If the vehicle estimate changes for one value of
R (k), it will change for all (finite) values of R (k). In
fact, as we now show, this condition cannot be guaran-
teed even for the simplest case of a position-orientation
AGV model and a range-bearing sensor model.

4 A Concrete Example
Consider the following simple system. The vehicle

state is described by its position (xv, yv) and orienta-
tion θv in some global coordinate system. The vehicle
is equipped with a sensor that is able to return the
range r and bearing φ of a target relative to the sen-
sor platform. The sensor is a rotating scanner (such as
a laser range finder) which completes one revolution
per second.

2Even with nonlinear process and observation models, such
a system structure arises in the relative map [6] and geometric
projection filter [5] which decouple the problem of map building
from vehicle localization. However, with these approaches it
appears that the map can only be used as an aid to beacon
gating and it cannot be used to update the vehicle position
estimate.

4.1 System Equations

The vehicle model is the standard equation for a
steered bicycle [8]:

xv (k + 1) =

xv(k) + V (k + 1)∆T cos(δ(k + 1) + θv(k))
yv(k) + V (k + 1)∆T sin(δ(k + 1) + θv(k))

θv(k) + V (k+1)∆T sin(δ(k+1))
B

 ,

where the timestep is ∆T , the control inputs are the
wheel speed V (k+ 1) and steer angle δ(k+ 1) and the
vehicle wheel base is B. The process noises are ad-
ditive disturbances which act on V (k) and δ(k). The
observation model is

hi [xv (k) ,pi (k) ,w (k)] =

[√
(xi − xv)2 + (yi − yv)2

tan−1
(
yi−yv
xi−xv

)
− θv

]
(18)

The Jacobian for this equation can be written as

∇hxi =
(
hxvyvi hφi hxiyii

)
,

where

hxvyvi =

(
−(xi − xv)/r −(yi − yv)/r
(yi − yv)/r2 −(xi − xv)/r2

)
, (19)

hθvi =

[
0
−1

]
, (20)

hxiyii = −hxvyvi . (21)

The observation noise Jacobian is

hwi =
[

1 0
0 1

]
. (22)

Let α(k) = θv(k) + φ(k). Inverting Equation 18, the
beacon position is initialised as

gi [xv (k) ,w (k)] =

[
xv(k) + r(k) cos[α(k)]
yv(k) + r(k) sin[α(k)]

]
. (23)

and the Jacobian is

∇gxi =
(
gxvyvi gθi

)
,

where

gxvyvi =

[
1 0
0 1

]
, (24)

gθi =

[
−r(k) sin[α(k)]

r(k) cos[θv(k) + φ(k)]

]
, (25)

gwi =

[
cos[α(k)] −r(k) sin[α(k)]
sin[α(k)] r(k) cos[α(k)]

]
. (26)

We now consider two special cases for this system
— a stationary vehicle with no process noise, and a ve-
hicle which moves in a circle with nominally constant
control inputs.



4.2 Behavior of a Stationary Vehicle

First consider the special case that the vehicle is
stationary, there is only one beacon, and no process
noise acts on the system. In this situation the process
model reduces to the identity matrix and

fv [xv (k) ,0,0] = xv (k) .

where the dimension of 0 is the same as x̂v (k | k). At
timestep 0 the beacon is initialised into the map and
the mean and covariance are set using Equations 13
and 14. This case can be analysised by Theorem 1.
Assuming that Equation 16 has been obeyed up to
timestep k, the numerator of W (k) is

(
Pn (k | k) Pn (k | k)∇Tgxn
∇gxn Pn (k | k) ∇gxn Pn (k | k)∇Tgxn + A

)[hxvyvTi

hφTi

]
hxiyiTi


where A (k) is a positive semidefinite matrix corre-
sponding to the partially filtered observation noise.
Therefore, the weight on the vehicle Wv is

Wv = Pn (k | k)
{[

hxvyvTi

hθTi

]
+
[
gxvyvTi

gθTi

]
hxiyiTi

}
.

Substituting from Equations 24 to 26 and using the
property that hxvyvTi = −hxiyiTi ,

Wv = Pn (k | k)
[

0

hθTi − gθTi hxvyvTi

]
.

Therefore, the weight on the vehicle position states
is always guaranteed to be 0. However, this is not
the case for the vehicle orientation state. Substitut-
ing from Equations 20, 25 and 19, it can be readily
shown that this weight is non-zero only if the angle be-
tween the vehicle and the beacon (θv +φ) is the same
as the value when the beacon was first initialised [7].
It should be emphasised that these analytical results
reflect a fundamental failure in the structure of the
cross correlation between the vehicle and beacon esti-
mates. The errors occur irrespective of the magnitude
of covariances and they are not the result of subtle
numerical implementation errors.

This behavior can be clearly seen in a simulation
study of this scenario. For the results in this paper
we use the following conditions. The vehicle initially
starts at the origin with the standard deviations in xv
and yv of 0.7m and θv of 5◦. It observes a beacon at
(97.89, 70.1) with an accurate sensor whose observa-
tion noise covariance is R (k) = diag(0.25m2, (1◦)2).
Figure 1 plots the time history of the estimates of xv,
θv, x1 and y1. As expected, the estimate of xv does

(a) Error in xv . (b) Error in θv .

(c) Error in x1. (d) Error in y1.

Figure 1: Estimation errors and 2 standard deviation
bounds. The standard deviation bounds are shown as
dashed lines.

not change. However, the estimate of θv immediately
starts to change and its covariance begins to decline.
By the end of the run, the orientation covariance is less
than 6% of its initial value. However, this update is
entirely spurious — there is no additional information
about the vehicle’s orientation and so the orientation
estimate becomes inconsistent. In turn, the beacon
estimate becomes inconsistent as well. Extending the
simulation further shows that, in the limit, the steady-
state covariance of the beacon estimate does not be-
come 0 but is a value greater than the initial vehicle
position covariance.

The value of (θv + φ) also changes if the vehicle
and beacon configuration changes. Figure 2 shows the
result when the vehicle, at timestep 10, “teleports”
to the position (50, 50). This jump occurs instanta-
neously and without uncertainty, i.e., at the same time
the estimate changes, the true vehicle position changes
by the same amount3. As can be seen the results are
dramatic. Although the error in the estimate of xv re-
mains unchanged after the instantaneous translation,
observations of the beacons lead to a large spurious
reduction in both the vehicle orientation and the bea-
con position estimates. Again, these reductions corre-
spond to inconsistent estimates.

3This is equivalent to the process model xv(k+1) = xv(k)+
∆x, yv(k + 1) = yv(k) + ∆y where ∆x and ∆y are known.



(a) Error in xv . (b) Error in θv .

(c) Error in x1. (d) Error in y1.

Figure 2: Estimation errors and 2 standard deviation
bounds. For a vehicle which “teleports” from position
(0, 0) to (50, 50) at timestep 10.

It must be emphasised that the inconsistencies in
both examples are not simply due to the fact that
the observation Jacobian is calculated using the noise-
corrupted sensor observations. Even if the true state
of the beacon and the vehicle were always used to cal-
culate the Jacobian of the observation equation, any
motion by the vehicle that affects the observation Ja-
cobian will lead to inconsistency analogous to a viola-
tion of the condition of Equation 15 in the stationary
case described in Section 3. In fact, a perfectly known
change in the AGV’s orientation – with no change in
position – will have the same effect. In the next section
we generalise the example to include the accumulation
of process noise by a moving vehicle.

4.3 The Behavior of a Moving Vehicle

In this section we consider the case of a moving ve-
hicle in a long-duration SLAM simulation. As in our
example of a stationary vehicle with a range-bearing
sensor, our goal is to keep the scenario as simple as
possible to demonstrate the perniciousness of the in-
consistency problem. To this end, we assume that
the vehicle travels in a circle with constant control
inputs u (k + 1) = [1 2◦] and process noise standard
deviations Q (k) = diag{0.25, (0.3◦)2}. The vehicle
observes an environment which contains 5 beacons.

The time history of the first 600 timesteps of the
vehicle and beacon estimates are shown in Figure 3
and Figure 4 respectively. The errors in the beacons
and the beacon estimates appear to have stabilised
within the two sigma bounds and it appears that this
algorithm is performing in a satisfactory manner.

(a) Error in xv . (b) Error in θv .

Figure 3: Results for the first 600 seconds (3000
timesteps) of a moving vehicle.

(a) Error in x1. (b) Error in y1.

Figure 4: Results for the first 600 seconds (3000
timesteps) of beacton 1.

Figures 5 and 6 show the time histories when the ex-
periment is allowed to run for 16,000 timesteps. These
results clearly show that the apparent consistency is
only a short-term phenomena: within less than five
thousand time steps (1000 updates per beacon) the
map has become inconsistent. We speculate that this
behavior has not been recognised in the literature for
two main reasons. First, most systems reported in the
literature (such as [9] or [6]) only present results for the
first few hundred timesteps. Over such short durations
the signs of divergence are not very prominent. Sec-
ond, the few long-duration studies (such as [3]) have
all used compasses to measure the absolute orienta-
tion of the vehicle. A compass causes the orientation
errors to be filtered out, and significantly reduces the
rate of divergence [7].



(a) Error in xv . (b) Error in θv .

Figure 5: Results for the first 3200 seconds (16000
timesteps).

(a) Error in x1. (b) Error in y1.

Figure 6: Estimation errors and 2 standard devia-
tion bounds for beacon 1 for 3200 seconds (16000
timesteps). The standard deviation bounds are the
pairs of dashed lines.

5 Conclusions
This paper has analysed the properties of the full-

covariance stochastic mapping approach to SLAM. We
have shown that a simple but realistic scenario is guar-
anteed to produce inconsistent vehicle and beacon es-
timates. Furthermore, we have shown that the prob-
lem typically occurs after several hundred timesteps,
which is longer than the duration of many experi-
mental runs. The full implications of this result (for
example, whether it is possible to build a consistent
map without adding process noise to the beacon esti-
mates) is presently under investigation [7]. However,
two conclusions can be immediately drawn from these
results. First, it is questionable whether the Kalman
filter framework developed in [1] provides a general,
robust and rigorous solution to the stochastic SLAM
problem. Second, the consistency of any map building
algorithm cannot be fully assessed from experimental
runs which are of short duration. As demonstrated

in Subsection 4.3, an algorithm can appear to be con-
sistent for many hundreds of time steps but, in fact,
might prove to be inconsistent.
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