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ABSTRACT
When compared to the tracking problem in which prior

knowledge is available, generating the initial distribution for

the state vector of a phenomenon of interest, with no prior

knowledge of the desired state, is a challenging problem. In

this paper, the authors develop a fully distributed initialization

algorithm that fuses data in heterogeneous sensor networks

using communication trees. Monte Carlo methods are used

to fuse the collected data and to represent the desired state

vector distribution. The presented algorithm utilizes an im-

portance function that is additive in the local node posterior

distributions, providing a robust alternative to belief propaga-

tion methods in which particles are generated according to the

product of local node posteriors.

Index Terms— Multisensor systems, data fusion, initial-

ization, distributed processing, Monte Carlo methods

1. INTRODUCTION

The algorithm presented in this paper focuses on distributed

data fusion in arbitrary sensor networks, possibly consisting

of heterogeneous sensor nodes. These nodes can not only

sense the environment, but can also (i) process sensed data to

produce local estimates, referred to as organic state estimates,

and (ii) communicate with neighboring nodes. To ensure scal-

ability, the communication bandwidth should be fixed. The

goal is to generate the initial probability density function (pdf)

of the state vector of a phenomenon of interest, called the tar-

get state. This pdf can be used as the required prior knowledge

to initialize arbitrary tracking algorithms. Since an analytical

solution is complicated, the initialization algorithm presented

in this paper uses a sequential implementation of importance

sampling [1], a powerful Monte Carlo method.

The presented algorithm has general applicability in arbi-

trary sensor networks because it only depends on the abil-

ity of the network to organize its communication in a tree
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structure—any node could play the role of the root node in

the tree. The root node would be responsible for launching

the initialization algorithm. It would process the data it re-

ceives from the environment and produce an estimate of the

pdf of the target’s state. This estimate is generated in a dis-

crete format using particles, representing hypothesized target

states, and their associated importance weights, representing

the degree of belief in these particles. These particles and

importance weights are then sent to one or more neighboring

nodes which are the children of the root node. Each neighbor-

ing (child) node generates its own intrinsic set of particles and

importance weights based on its organic state estimates. Then

a combining step is needed to merge the intrinsic particles and

importance weights with the received set of particles and im-

portance weights to produce an improved representation of

the target’s state distribution. This process is obviously recur-

sive so it can be continued as particles propagate throughout

the network from the root node to its descendants (children,

grandchildren, and so on). Once the leaf nodes of the tree are

reached, it is necessary to propagate the pdf’s back up to the

root, so that one node will have a pdf that incorporates the

measurements from all nodes. In the process of moving the

pdf’s back up the tree it is necessary to merge pdf’s from dif-

ferent branches while not weighting any measurement more

than once. The last step in the initialization is a global broad-

cast of the final pdf from the root to all the other nodes.

The initialization algorithm presented in this work uses an

equally weighted mixture of local node posterior distributions

as the sequentially generated importance function. This pro-

vides an attractive alternative to the commonly used nonpara-

metric implementations of belief propagation [2, 3] in which

particles are sequentially generated according to the product

of local node posteriors. While the belief propagation meth-

ods provide high resolution in regions of the target state space

where all sensor nodes are in agreement, our initialization al-

gorithm saves local knowledge from being lost during the se-

quential updates, which could prove extremely useful in real

world scenarios with missed detections and false alarms.

In the rest of the paper, Section 2 briefly describes pre-
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vious work by the authors addressing distributed initializa-

tion of heterogeneous sensor networks with a chain-structured

communication topology. In Section 3, the initialization algo-

rithm is generalized to more realistic communication topolo-

gies for the network. In Section 4, the new algorithm is sim-

ulated in a sensor network consisting of bearing-only nodes

and range-only nodes. Section 5 summarizes the results.

2. CHAIN STRUCTURED ALGORITHM

Consider the basic case in which the sensors in the network

communicate with each other using a fixed one-hop chain.

In previous work [4] the authors developed an algorithm to

effectively fuse data collected at the various sensor nodes in

a fully distributed manner. The algorithm uses importance

sampling to sequentially generate a set of particles and im-

portance weights that represent the combined knowledge of

all the nodes in the network. If st represents the target state

vector to be approximated at time t, zt represents the joint

set of organic state estimates from all the M sensors in the

network, and zm,t represents the vector of organic state esti-

mates at the mth sensor, then the importance function is given

by a sum

π(st|zt) =
1
M

M∑
m=1

p(st|zm,t). (1)

Assuming conditional independence of estimates available at

the various nodes given the true target state, the importance

weights {w(i)
t }D

i=1 assigned to particles {s(i)
t }D

i=1 are

w
(i)
t ∝

M∏
m=1

p(s(i)
t |zm,t)

M∑
m=1

p(s(i)
t |zm,t)

. (2)

It can be shown [4] that these particles and importance weights

together represent the desired posterior distribution

p(st|zt) ∝
M∏

m=1

p(st|zm,t). (3)

Internode messages consist of sets of D particles and impor-

tance weights.

3. TREE STRUCTURED ALGORITHM

The goal of this paper is to generalize the initialization algo-

rithm developed in [4] to sensor networks using communi-

cation trees for message passing. A root node launches the

initialization algorithm and propagates messages downward

in the root-to-leaf direction. During this downward pass, data

from various nodes is aggregated, and the internode messages

represent the combined knowledge for the branches of the tree

that have already been traversed. Once the messages reach

the leaf nodes, they are propagated upwards back to the root.

During this upward pass, data across branches is aggregated,

and the internode messages represent the combined knowl-

edge for the different subtrees from multiple children. The fi-

nal set of messages that reach the root node represent the joint

knowledge of the entire tree, and is disseminated through the

network. The fusion algorithms for the downward pass and

the upward pass are developed in the following subsections.

(a) (b)

Fig. 1. Subtrees for algorithm development. Circles represent

single nodes and clouds represent sets of nodes: (a) Down-

ward pass (b) Upward pass.

3.1. Downward Pass

Consider a leaf node Sl with parent node Pl and a set of an-

cestor nodes GPl. The root node is contained within GPl.

A message launched by the root node propagates downward

through the network, incorporating data from nodes that it

traverses. The particular message received at Sl has followed

a fixed one-hop communication chain starting from the root

node as given in Fig. 1(a). A distributed fusion algorithm

for such a chain has been developed in [4]. After fusing the

received message with local organic state estimates, the par-

ticles and importance weights available at Sl are given by (4)

and (5), where Ml represents the number of nodes traversed

by the message.

s(i)
l,t ∼ 1

Ml

∑
m∈{Sl,Pl,GPl}

p(st|zm,t), (4)

w
(i)
l,t ∝

∏
m∈{Sl,Pl,GPl}

p(s(i)
l,t |zm,t)

∑
m∈{Sl,Pl,GPl}

p(s(i)
l,t |zm,t)

. (5)

3.2. Upward Pass

During the upward pass shown in Fig. 1(b), a parent node

Pl receives messages from multiple child nodes Cl,n, with

5329



n = 1, . . . , N . The fusion algorithm developed below is the

general method to fuse the messages received by any arbitrary

node in the network, Pl, whose ancestor nodes are the set GPl.

Without loss of generality, one can assume that a message

sent by the child Cl,n to Pl represents the joint knowledge of

all subtrees below it, defined by the set of all successor nodes

GCl,n, and common ancestors. In the following equations,

M∗ represents the total number of nodes that have been tra-

versed by the current message and is used simply for normal-

ization. Thus, the message received by Pl from Cl,n consists

of particles and importance weights given by

s(i)
Cl,n,t ∼

1
Ml,n

∑
m∈{GPl,Pl,Cl,n,GCl,n}

p(st|zm,t), (6)

w
(i)
Cl,n,t ∝

∏
m∈{GPl,Pl,Cl,n,GCl,n}

p(s(i)
Cl,n,t|zm,t)

∑
m∈{GPl,Pl,Cl,n,GCl,n}

p(s(i)
Cl,n,t|zm,t)

. (7)

Particles and importance weights from the first downward pass,

representing common knowledge of the ancestors, are still

stored at Pl. These are given by

ŝ(i)
Pl,t

∼ 1
MPl

∑
m∈{GPl,Pl}

p(st|zm,t), (8)

ŵ
(i)
Pl,t

∝

∏
m∈{GPl,Pl}

p(ŝ(i)
Pl,t

|zm,t)

∑
m∈{GPl,Pl}

p(ŝ(i)
Pl,t

|zm,t)
. (9)

After fusion is complete, the final set of particles and impor-

tance weights should obey

s(i)
Pl,t

∼ 1
Ml

∑
m∈{GPl,Pl,Cl,1,...,N ,GCl,1,...,N }

p(st|zm,t), (10)

w
(i)
Pl,t

∝

∏
m∈{GPl,Pl,Cl,1,...,N ,GCl,1,...,N }

p(s(i)
Pl,t

|zm,t)

∑
m∈{GPl,Pl,Cl,1,...,N ,GCl,1,...,N }

p(s(i)
Pl,t

|zm,t)
. (11)

One can define a set of scaled weights as

w̃
(i)
t =

∏
m∈{GPl,Pl,Cl,1,...,N ,GCl,1,...,N }

p(s(i)
t |zm,t). (12)

After some algebraic manipulation and assuming conditional

independence of estimates at the various nodes given the true

target state, the scaled weights can be written as

w̃
(i)
t =

N∏
n=1

⎛
⎝ ∏

m∈{GPl,Pl,Cl,n,GCl,n}

p(s(i)
t |zm,t)

⎞
⎠

⎛
⎝ ∏

m∈{GPl,Pl}

p(s(i)
t |zm,t)

⎞
⎠

N−1
. (13)

Since particles and importance weights representing the nu-

merator and denominator are given in (6), (7), (8) and (9),

scaled weights can be evaluated using kernel density estima-

tion [5] as

w̃
(i)
t =

N∏
n=1

⎛
⎝ D∑

j=1

w
(j)
Cl,n,tW

(
s(i)
t − s(j)

Cl,n,t

)⎞
⎠

⎛
⎝ D∑

j=1

ŵ
(j)
Pl,t

W
(
s(i)
t − ŝ(j)

Pl,t

)⎞
⎠

N−1
, (14)

where W (·) is an appropriate stochastic kernel. Such scaled

weights are evaluated for all received particles and stored as

{{w̃(i)
Cl,n,t}D

i=1}N
n=1.

Next, particles representing (10) must be generated from

the ND received particles {{s(i)
Cl,n,t}D

i=1}N
n=1. This can be

accomplished using a weighted resampling operation. Each

set of received particles can be divided into two sets, and the

resampling weights w̌, not to be confused with the importance

weights, can be assigned accordingly. Let Ml,n denote the

number of nodes represented in the message received from

Cl,n. The first set represents particles sampled from the child

and successor posteriors only. This set of particles from Cl,n

is given by

{s(j)
Cl,n,C,t} = {s(i)

Cl,n,t}D
i=1

⋂
{ŝ(i)

Pl,t
}D

i=1, (15)

and assigned resampling weights

{w̌(j)
Cl,n,C,t} = Ml,n. (16)

The second set represents particles sampled from the parent

and ancestor posteriors only. This set of particles from Cl,n is

given by

{s(j)
Cl,n,P,t} = {s(i)

Cl,n,t}D
i=1

⋂
{ŝ(i)

Pl,t
}D

i=1, (17)

and assigned resampling weights

{w̌(j)
Cl,n,P,t} =

Ml,n

N
. (18)

A set of D particles can be generated by weighted sampling

with replacement from the sets of particles {{s(i)
Cl,n,t}D

i=1}N
n=1

using resampling weights generated using (16) and (18). The

surviving particles and the associated scaled weights are la-

beled and saved as {s(i)
Pl,t

, w̃
(i)
Pl,t

}D
i=1.

The scaled weights {w̃(i)
Pl,t

}D
i=1 can now be modified to

determine the importance weights {w(i)
Pl,t

}D
i=1. From (11) and

(12), the importance weights can be defined as

w
(i)
Pl,t

∝ w̃
(i)
Pl,t∑

m∈{GPl,Pl,Cl,1,...,N ,GCl,1,...,N}
p(s(i)

Pl,t
|zm,t)

, (19)
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and can be evaluated using kernel density estimation as

w
(i)
Pl,t

∝ w̃
(i)
Pl,t

D∑
j=1

W
(
s(i)

Pl,t
− s(j)

Pl,t

) . (20)

The final particles and importance weights {s(i)
Pl,t

, w
(i)
Pl,t

}D
i=1 at

Pl represent the desired joint distribution

p(st|zμ,t), μ = {m|m ∈ {GPl, Pl, Cl,1,...,N , GCl,1,...,N}},
(21)

and are propagated to the parent node for Pl. This fusion pro-

cedure is repeated at each node during the upward pass un-

til messages arrive at the root node. After fusing incoming

messages at the root node, the final particles and importance

weights {s(i)
t , w

(i)
t }D

i=1 represent the joint distribution for the

entire network, and need only be broadcast to complete the

distributed initialization.

4. SIMULATION

The generalized initialization algorithm is simulated in a net-

work consisting of bearing-only nodes and range-only nodes

as shown in Fig. 2(a). None of these nodes are capable of
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Fig. 2. (a) Sensor network setup. × represent bearing nodes,

� represent range nodes, ∗ represent targets, and ↔ represent

communication paths. (b) Joint distribution generated using

our algorithm. (b) Joint distribution generated using a non-

parametric implementation of belief propagation.

locally observing the states, st = [xt, yt]T, representing the

initial positions, in meters, of two targets, T1 and T2, that are

seen simultaneously by the sensor network. A total of 7 nodes

exist, S1 through S7. S1 is the root node that launches the ini-

tialization algorithm. The paths taken by various messages

form a tree. All nodes except S2 and S3 see both targets. S2

only sees T1 and S3 only sees T2. The algorithm developed in

Section 3 is used to fuse noisy local estimates in a distributed

manner, with minor modifications made to account for missed

detections. Explicit data association is not required.

The joint distribution for the entire network generated us-

ing the particles and importance weights at the end of the up-

ward pass is plotted in Fig. 2(b). It can be seen that two

distinct peaks appear at the true target locations. This demon-

strates that the initialization algorithm developed in this paper

is effective in fusing data across the network. A nonpara-

metric implementation of belief propagation fails to generate

peaks at both target states, as shown in the pdf given in Fig.

2(c).

5. SUMMARY

The authors have developed a distributed initialization algo-

rithm for sensor networks using communication trees. The

presented algorithm uses Monte Carlo methods to fuse data

collected at the various nodes in the network and to represent

the initial target state vector distribution. Simulation results

for sensor networks consisting of bearing nodes and range

nodes show good initialization performance, even in the case

where targets are occluded. A nonparametric implementation

of belief propagation fails under similar conditions.
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