
ABSTRACT

CHANG, CHIH-CHIEH GEOFF. Secure Localization and Tracking in Sensor Networks.
(Under the direction of Professor Wesley E. Snyder.)

Localization and tracking of objects of interest are two canonical issues in sensor

networks research. When the object of interest is static, we use localization algorithms to

identify its location. When the object of interest is moving, we use tracking algorithms to

estimate its path over time. Since sensor networks are often deployed in remote or hostile

terrains, however, security becomes another critical issue. Hence the localization or tracking

accuracy would go down as a result of the presence of malicious nodes.

The objective of this dissertation is to correctly identify the malicious nodes during

the localization and tracking processes. A novel algorithm based on relaxation labeling is

presented to achieve this objective. Our approach provides a different perspective from the

existing literature on secure localization and tracking. Current literature uses statistical

measures to perform localization and tracking as accurately as possible given the influence

of malicious nodes. Instead, those malicious nodes are isolated first, and use only data from

benign nodes to perform localization and tracking. Both simulations and field experiments

are used to demonstrate the performance of our algorithm.

Novel contributions of this dissertation are as follows: 1. Extension of the classic

relaxation labeling algorithm to contain higher-order consistency functions defined on triples

of objects, rather than pairs. 2. Solution of the secure localization problem by detecting

malicious nodes. 3. Definition of the secure tracking problem in the presence of mali-

cious nodes, and solution of that problem combining conventional tracking with relaxation

labeling.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Secure Localization and Tracking in Sensor Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
North Carolina State University,Department of Electrical and Computer
Engineering,Raleigh,NC,27695

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

157

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Secure Localization and Tracking in Sensor Networks

by

Chih-Chieh Geoff Chang

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Electrical Engineering

Raleigh, North Carolina

2008

APPROVED BY:

Dr. Griff L. Bilbro Dr. John E. Franke

Dr. Wesley E. Snyder Dr. Cliff Wang
Chair of Advisory Committee

ii

Dedication

To my parents, Yurng-Der Chang and Shiu-Mei Lee

iii

Biography

Chih-Chieh Geoff Chang was born and raised in a beautiful resort town, Hualien, Taiwan,

Republic of China. In 1993, he passed the high-school entrance exam with the highest score

in the county, and was admitted to Hualien Senior High School. Before graduation in 1996,

he enjoyed a happy childhood in the less-developed Eastern Taiwan.

Beginning in 1996, Chang left Hualien and was enrolled in National Taiwan Uni-

versity (NTU) in Taipei, Taiwan, the Capitol and the biggest city. He studied Electrical

Engineering at NTU, the most prestigious university in Taiwan, and served as President of

the Chinese Institute of Engineers Student Chapter at NTU from 1998 to 1999.

Upon graduation from NTU in 2000, Chang worked as a summer intern in Nortel

Networks in Taipei, Taiwan for three months. Beginning in October 2000, he served (com-

pulsory) military service as a communication lieutenant. After the initial five months of

training, he was dispatched to the Spratly Islands on the South China Sea for about a year.

He completed the military service in June 2002.

Chang started his graduate study at North Carolina State University in Raleigh,

North Carolina in August 2002. He was awarded his master degree in December 2003, also

in Electrical Engineering. His research interests include wireless sensor networks, radio fre-

quency identification (RFID), and all aspects of digital image processing and digital signal

processing. He has published more than four papers on internationally peer-reviewed jour-

nals and conferences. He is also a certified RFID professional by the Computing Technology

Industry Association.

iv

Acknowledgments

There is a Chinese proverb which can be loosely translated into English as: “One day as

a teacher; one lifetime as a father.” This saying demonstrates the traditional Chinese way

of respecting teachers, and as a result, one should respect his or her teacher like his or her

father. Dr. Snyder is exactly this kind of fatherly figure to his students. He is genuinely

smart, gregarious, and has an insatiable appetite for knowledge. What is more, he treats

his students as families, not subordinates. He is probably the best advisor you can find,

and I am apparently a major beneficiary of that. Without his guidance, I could not have

finished this dissertation.

I would also like to thank Dr. Cliff Wang at the United States Army Research Of-

fice for providing the funding to my research and suggestions for possible research directions.

A special thanks goes to Dr. Peng Ning at the Computer Science Department

and his students. They provide the experimental data for use in this dissertation. Another

special thanks goes to Dr. Ping-Tung Hsiao at the Marine, Earth and Atmospheric Sciences

Department for hiring me as a research assistant for one summer.

Last but not least, I would like to thank my parents for their unconditional love

and care. This dissertation is dedicated to them. Without their love I could not have

accomplished it. I would also like to thank my sister and brother-in-law who can accept

the fact that I miss their wedding in Taiwan due to the preparation of this dissertation.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 What Are Sensor Networks? . 1
1.2 Localization and Tracking in Sensor Networks 2
1.3 Security in Sensor Networks . 5
1.4 Overview of the Dissertation . 6

2 Background on Localization 8
2.1 Sensor Models . 8

2.1.1 Acoustic Amplitude Sensors . 8
2.1.2 Acoustic Array Sensors . 9

2.2 Localization Algorithms . 9
2.2.1 Localization of a Single Event . 10
2.2.2 Localization of Multiple Events . 12

2.3 Related Localization Literature . 13
2.4 Security Problem in Localization . 13

2.4.1 Problem Statement . 13
2.4.2 Problem Definition . 14
2.4.3 Supplemental Properties . 15
2.4.4 Problem Analysis . 16

3 Background on Tracking 18
3.1 Target Tracking . 18

3.1.1 System Models . 18
3.1.2 Tracking Algorithm . 20
3.1.3 Collaborative Tracking Using Sensor Networks 32

3.2 Security in Tracking . 34
3.2.1 Problem Statement . 34
3.2.2 Problem Definition . 34
3.2.3 Supplemental Properties . 36

vi

4 Relaxation Labeling 38

5 A New Relaxation Labeling Architecture for Secure Localization 43
5.1 Related Work . 43
5.2 The New Relaxation Labeling Architecture 44

5.2.1 Design of the Compatibility Function 46
5.3 Experimental Results of Detecting Malicious Nodes Using Relaxation Labeling 54

5.3.1 Simulation . 54
5.3.2 Field Experiment . 58
5.3.3 Comparison with an Existing Algorithm 62

5.4 Choice of Parameters . 65
5.4.1 The Sigmoid Function . 65
5.4.2 Choice of T1 . 67
5.4.3 Choice of T2 . 78
5.4.4 Choise of α1 and α2 . 78

5.5 Discussions on the Speed of Convergence . 79
5.5.1 Speed of Convergence . 80
5.5.2 Speed of Convergence vs. the Total Number of Nodes 81
5.5.3 Experiments . 83

6 Secure Tracking Using Relaxation Labeling 85
6.1 Related Work . 85
6.2 Algorithm to Detect Malicious Nodes while Tracking 85

6.2.1 Type I Triples . 87
6.2.2 Type II Triples . 89
6.2.3 Algorithm Details . 90

6.3 Experimental Results . 95
6.3.1 Tracking with Multiple Sensor Nodes 96
6.3.2 Node Selection Algorithm . 98
6.3.3 Secure Tracking Results . 101

7 Conclusions and Future Work 109
7.1 Conclusions . 109
7.2 Future Work . 109

Bibliography 113

A Derivation of the Kalman Filter 121

B Target Tracking Using Particle Filter 131

C Relaxation Labeling as an Optimization Process 134
C.1 Introduction . 134
C.2 Why Relaxation? . 135
C.3 Design of the Objective Function . 137
C.4 Proof of Relaxation Labeling as an Optimization Process 137

vii

D Probability of Being Malicious for Nodes in Secure Tracking 140

viii

List of Tables

3.1 Summary of the particle filter algorithm [2] 25
3.2 Procedure for resampling from the particles [2] 27

5.1 Compatibility functions . 51
5.2 Algorithm for relaxation labeling . 52
5.3 Subroutine for calculation of qi(λj) . 53
5.4 An algorithm to choose T1 . 77
5.5 Example values of (5.66). 83

6.1 Expected behaviors in d for a Type I triple 89
6.2 Expected behaviors in d for a Type II triple 90
6.3 Secure tracking algorithm using relaxation labeling 94

ix

List of Figures

1.1 Illustration of localization and tracking. The filled circles represent sensor
nodes. In (a), the star represents the static event, and 3 nodes are active
at the same time. In (b), the stars represent the target positions at each
time instant along the target path, and one new node is activated at each
successive time instant. Precise definition of “successive time instant” will
be defined later. 3

1.2 A schematic illustrating localization and tracking of a single target [44]. The
target is shown as an asterisk. (a) The target enters cell A, and cell A
becomes the active cell. Nodes in cell A are activated, and report their
measurements to the CPU. The CPU calculates the position of the target.
(b) The localization information when the target is inside A is used by the
CPU to predict the future position of the target. Cell B is the new cell that
the target is likely to enter, hence all nodes in cell B will be activated. . . 5

2.1 Illustration of how at least 3 sensors are needed to resolve ambiguity in a 2D
problem. In (a), two sensor nodes create ambiguity; while in (b), a unique
solution can be found. 12

3.1 Illustration of the particle filter process. In (a), we are given a set of samples
x1(i) and weights q1(i). In this toy example, we set Ns = 5. From (a) to
(b) is what we call the update stage. We can use (3.22) to calculate the new
samples in (b). Note that from (a) to (b), the weights are unchanged. From
(b) to (c), we calculate new weights using (3.23). Note that from (b) to (c),
the samples are unchanged. Finally, to overcome the degeneracy problem,
we perform a resampling to obtain the new set of weights q2(i) and samples
x2(i). 29

3.2 Illustration of the resampling process. After we build two cumulative distri-
bution functions, Q in (a) and T in (b), we begin with i = 1 and j = 1. As
we increment j, we compare c(j) and t(i). If c(j) ≥ t(i), we will increment i
until t(i) ≥ c(j) again. Every time we increment i, we will set x2(i) = x1∗(j)
and q2(j) = 1

N . On the other hand, if c(j) < t(i), we will do nothing except
incrementing j until c(j) ≥ t(i) again. 31

x

3.3 We have activated 6 sensor nodes consecutively, which are denoted as 0
through 5. The lower path is the true target path; while the upper one
is fictitious. In this scenario, two malicious nodes report that the target is
most likely on the upper path, i.e. Nodes 3 and 5 are malicious. Nodes 0, 1,
2 & 4 report correctly the range to the actual target position, lying on the
true path. 36

4.1 An scene labeling example to illustrate the relaxation labeling process. In
the scene we have three objects: object 1 is a circle, object 2 is a square and
object 3 is a triangle. 39

5.1 Some example parameter settings of equation (5.4) 48
5.2 Some example parameter settings of equation (5.8) 51
5.3 A sensor network consisting of four nodes. Node 1 and node 4 are malicious;

while node 2 and node 3 are benign. In this example, node 2 and node 3
are equidistant to both the true event and the fictitious event. Hence they
appear to be consistently reporting on the fictitious event. Ill-conditioned
cases like this have been excluded in our simulations. 53

5.4 Simulation Example of 7 nodes. Two of the nodes are malicious. 55
5.5 Convergence of P (b) . 56
5.6 The effect of T1 and σ2 on the system performance 57
5.7 The number of iterations required to reach convergence corresponding to the

T1 and σ2 values in Figure 5.6 . 58
5.8 Failure rate for a network of various number of nodes. At each network size,

only 2 nodes are malicious. 59
5.9 Deployment of sensor nodes in the field (Unit: 4 feet). The sensor nodes are

denoted as circles, while the event node, positioned at (5,5), is denoted as a
cross. 59

5.10 For each measurement at sensor nodes, we plot a circle using the range es-
timates. Note that the event node is at the center of the field, (5, 5). The
intersections of most of the circles are either on or near the event node due
to noise. 60

5.11 The probability of each sensor node being benign, P (b). P0(b) and P1(b) go
down to 0, which means that these two nodes cannot be benign. 61

5.12 Illustration of the voting algorithm (Reproduced from [46]). 62
5.13 Comparison of the performance of the relaxation labeling algorithm and the

voting algorithm in a 20-node network. In (a), only one node is malicious.
In (b), (c) and (d), the number of malicious nodes increase from seven to
nine. Note that both algorithms perform equally well when there are 2 -
6 malicious nodes. Since the experiments are repeated for 100 times, each
with a different set of random node locations, overlapping results are marked
at the same spots in (a) - (d). The voting algorithm occasionally concludes
that the event is actually at the fictitious event location, (7.0, 7.0). However,
our algorithm, relaxation labeling, correctly localize the event at (3.0, 3.0) in
every case. 64

xi

5.14 Histogram of ε for all triples in a seven-node simulation environment. Scale
is [0, 10] × [0, 10], noise variance σ2 = 10−6. The histogram of εa is shown
in red, while part of the histogram of εb is shown in blue. Note that the
histogram of εb larger than 1 is not shown because the maximal εb has a
much larger scale than any of εa. 72

5.15 Histogram of {εa1, · · · , εa6000}, σ2 = 10−6. The maximal value on the hori-
zontal axis is chosen relative to the maximal value of εa for clearer presentation. 73

5.16 {εa1, · · · , εa6000}, σ2 = 10−5. The maximal value on the horizontal axis is
chosen relative to the maximal value of εa for clearer presentation. 73

5.17 {εa1, · · · , εa6000}, σ2 = 10−4. The maximal value on the horizontal axis is
chosen relative to the maximal value of εa for clearer presentation. 74

5.18 (a) The maximum (as represented by 1
10

∑10
i=1 εai) of εa versus noise variance

σ2 (b) The mean (as represented by 1
6000

∑6000
i=1 εai) of εa versus noise variance

σ2 . 75
5.19 Some example PDFs of an exponential random variable. 75
5.20 Effect of α1 and α2 on the system performance. We choose a higher noise

variance, σ2 = 1.0 × 10−4 in this figure. There is little or no effect on the
system performance while the values of α1 and α2 are being changed. . . . 79

5.21 Number of iterations required to reach convergence at various number of
network sizes. We can see that the system converges faster as n gets larger.
However, the speed of convergence does not get any larger as the network
reaches a certain size (20 in this experiment). 84

6.1 At t = 0, we assume P (x0) is known, and this information is passed to the
two nodes activated at t = 1. Using the particle filter algorithm, node 1 and
node 2 can each calculate p(x1|z1), and those information is passed to node
3 and node 4. Both node 3 and node 4 have two inputs, hence they will each
produce two distinctive p(x2|z2). Note that in this model, each node (e.g.
node 3) reports BOTH of its estimates to the central processor. 87

6.2 Two predecessor nodes passing information to one successor node. 88
6.3 One predecessor node passing information to two successor nodes. 90
6.4 Illustration of some parameter settings of (6.3) and (6.4) 91
6.5 We can activate three nodes at each time step during the tracking process.

Each successor node will have three inputs, hence it can produce three dif-
ferent outputs. The inconsistency between its three outputs can be used in
the relaxation labeling process. 93

6.6 Illustration of the relaxation labeling algorithm. The rectangular box stands
for relaxation labeling algorithm. At each time step (except time 0), we
activate 3 nodes. For every 3 nodes (except time 0), we perform relaxation
labeling algorithm to detect malicious nodes. After removing malicious nodes
and average the results from benign nodes, the relaxation labeling algorithm
produces a correct result and pass it on to the next time step. 94

6.7 Tracking of the target in a two-dimensional space, x, by using three sensor
nodes. We activate three sensor nodes at each time. The three sensor nodes
act independently to perform tracking. 97

xii

6.8 Tracking of the target by using four sensor nodes. The experimental setup
is identical to Figure 6.7. The only difference is that we activate four nodes. 97

6.9 Tracking of the target by using five sensor nodes. This experiment is similar
to Figure 6.7 except that we activate five nodes. 98

6.10 Illustration of the node activation results. The states (only positions are
shown) of the target are shown as diamonds. At t = 20, 20 nodes are chosen
to calculate the mutual information, which are shown as circles. Among
them, three nodes that have the highest mutual information will be selected
as active nodes at t = 21, which are shown as filled circles. We can see from
the trajectory of the target at t = 19, 20 that the current best estimate of
velocity is in the northwest direction. Hence the three nodes which are in
the northwest direction of the target position at t = 20 are activated. This
agrees with the highest mutual information that we calculated. 99

6.11 Illustration of the node activation algorithm. This is from the same exper-
iment on Figure 6.10, except that the result here is extracted at t = 30.
Unlike Figure 6.10, it is harder to see where the target is heading based on
its trajectory at t = 28, 29, 30. Hence the three nodes activated at t = 30 do
not appear to fall on one particular spot that the target is likely heading. . 100

6.12 Adding malicious nodes to the sensor network. We choose sensor nodes s10
1 ,

s20
2 , s30

3 , s40
1 and s50

2 to be malicious. In other words, there is one malicious
nodes (out of three) at t = 10, 20, 30, 40, 50. 101

6.13 Comparison of relaxation labeling and averaging. The solid line is obtained
by averaging the three paths in Figure 6.12. The dotted line is obtained by
removing malicious nodes using relaxation labeling. 102

6.14 Tracking result with malicious nodes. We activate four sensor nodes, and
there is one malicious node (which can sense the target) at t = 10, 20, 30, 40, 50,
and that node remains active (malicious) for only one time step 103

6.15 Comparison of the tracking performance. The solid line is obtained by av-
eraging the result in Figure 6.14, and its MSE is 0.7090. The dashed line is
obtained by using relaxation labeling to remove malicious nodes. Its MSE is
0.3669, which is smaller than the MSE of averaging. 103

6.16 Tracking result with malicious nodes by activating five sensor nodes. 104
6.17 Comparison of the tracking performance for five active nodes. 105
6.18 Tracking performance under the influence of malicious nodes. Note that no

secure tracking algorithm is performed in this figure. 106
6.19 Probability of being malicious nodes for the five nodes at t = 10 and another

five nodes at t = 11. Hence we have 5 × 2 = 10 P (m) here. The first five
probabilities are for P (λ) at t = 10. The last five are for t = 11. We can see
that at t = 10, the first node is found to be malicious, while at t = 11, the
second node is found to be malicious. This agrees with the actual data. . . 107

6.20 Tracking performance under the influence of malicious nodes. Two secure
tracking results are shown in this figure. One is averaging (shown in solid
line), and the other is relaxation labeling (shown as the dashed line). The
MSE for averaging is 1.2615. The MSE for relaxation labeling is 0.7331. . . 108

xiii

7.1 A possible scenario where a target travels through some obstacles where no
sensor nodes are deployed. In this scenario, the target is traveling from the
left to the right. The shaded area is where there is no sensor nodes are
deployed. For example, consider that the shaded area is a river. The target
is a tank that we are tracking. There are no sensor nodes deployed in the
river, however, the tank can successfully pass through the river. Assume that
it takes one time step for the tank to pass the river, we cannot determine the
location of the tank at t = 4. The problem is to determine which nodes to
the right of the unavailable area should we activate, at t = 5, in order not to
miss the tank? . 110

7.2 Candidate areas for node activations. The candidate area is calculated based
on an estimated speed and an estimated turning angle of the target. First,
the candidate area for t = 4 is calculated. Then the candidate area for t = 5
is calculated based on the candidate area for t = 4. Those nodes inside the
candidate area for t = 5 will be activated to detect possible target appearances.111

7.3 Maximum likelihood estimates of the target locations. We predict the maxi-
mum likelihood target location of the target at t = 4. Based on the estimated
target location at t = 4, we predict the maximum likelihood location of the
target at t = 5. We only activate the nodes within a certain neighborhood
of the estimated target location at t = 5. The size of the neighborhood can
be adjusted according to our confidence of the prediction of the likely target
position. 112

A.1 The workflow of the Kalman filter estimation(reproduced from [4]) 126
A.2 Tracking example using the Kalman filter 130

B.1 Target tracking result using particle filters. The true target states are marked
as circles, while the estimated target states are marked as stars. The variance
of vk is 1.0, while the variance of wk is 1.0 × 10−5. The tracking result is
correct over 20 time steps. 132

B.2 Target tracking result using particle filters. The variance of vk is 1.0, while
the variance of wk is 1.0. We can see that at time step k = 1 and k = 2,
there exists some distinguishable tracking error. 133

D.1 Probability of being malicious nodes for the five nodes at t = 20 and another
five nodes at t = 21. The malicious nodes are s20

2 and s21
3 , which agrees with

what we have found here. 140
D.2 Probability of being malicious nodes for the five nodes at t = 30 and another

five nodes at t = 31. The malicious nodes are s30
3 and s31

4 , which agrees with
what we have found here. 141

D.3 Probability of being malicious nodes for the five nodes at t = 40 and another
five nodes at t = 41. The malicious nodes are s40

4 and s41
5 , which agrees with

what we have found here. 141

xiv

D.4 Probability of being malicious nodes for the five nodes at t = 50 and another
five nodes at t = 51. The malicious nodes are s50

5 and s51
1 , which agrees with

what we have found here. 142

1

Chapter 1

Introduction

1.1 What Are Sensor Networks?

Recent advances in microelectronic technology have enabled a new generation

of sensor networks which holds the potential to revolutionize our economy and society

[23, 16, 58, 50]. Large numbers of tiny and smart sensor nodes will be sprayed onto roads,

bridges, factories and forests. These “sensor nodes” collaboratively monitor all kinds of

information, including light, sound, temperature, humidity, acceleration, voltage, motion,

radiation, etc. Using the analogy of the human nervous system, the numerous sensor nodes

are just like our digital receptors to monitor the physical world. Moreover, the information

collected by the sensor networks will be transmitted over the networks, analogous to our

digital spinal cord and digital neural networks. Finally, the information will be processed

by digital computers, analogous to our digital brain. Hence a “digital nervous system” can

be created for us to instrument the physical world at a global scale.

A sensor node is made up of four basic components: a sensing unit, a processing

unit, a transceiving unit and a power unit [1]. The sensing unit may have any number of

sensors which can detect different types of signals (light, sound, temperature, etc.). The

sensing unit also may include analog-to-digital converters to convert the measurements into

digital data. The processing unit, which usually contains a small data-storage unit, coor-

dinates the cooperation with other sensor nodes and manages the activation/hibernation

schedule. The transceiving unit may contain wired or wireless communication components

in order to report sensor measurements. Finally, the power unit may use power sources

2

like battery or solar energy [59], depending on the cost of manufacturing and application

needs. Currently, companies like Arch Rock, Crossbow, Dust Networks, Millennial Net,

and Moteiv offer various types of sensor nodes, and [28] gives an overview of the hardware

platform of sensor nodes.

Sensor networks can be used in many different applications, ranging from scientific

to educational to military. For example, in environmental applications, sensor networks can

be used to track wild birds on a deserted island [56]. Before the advent of sensor networks,

estimating the number of wild birds was a daunting task because birds migrate over a large

area. Deploying a sensor network can easily solve this problem by covering the entire area

with low-cost sensor nodes that are equipped with sound sensors to keep track of the specific

bird chirp. Another example is to embed sensor networks in the physical environment to

construct a developmental problem-solving environments for early childhood education [54].

This allows “person to physical world communications” as opposed to traditional “person

to person” or “person to computer” communications. This is a natural application of sensor

networks as young children learn by exploring and interacting with objects such as toys in

their environment. Finally, a military application is the VigilNet system [27]. He et al. [27]

describe the design and implementation of a sensor network system, VigilNet, specifically

for military surveillance purposes. In the VigilNet project, 70 sensor nodes are deployed in

a 280-foot long perimeter in a grassy field that would typically represent a critical military

“choke point”. The VigilNet system can track moving vehicles in the surveillance area using

the sensor network. These three example applications of sensor networks are among the

new applications which continue to be discovered and envisioned by scientists around the

world.

1.2 Localization and Tracking in Sensor Networks

In order to realize the immense potential of sensor networks, one of the critical

capabilities of a sensor network is to keep track of the specific objects of interest. If the

object of interest is static, that is, its spatial coordinates do not change in time, we denote

it as an event. The algorithm that the sensor network uses to identify the spatial position of

the static event is denoted as an event-localization algorithm, or more briefly, a localization

algorithm. After the event has been detected and localized, it may move or be moved by

http://www.archrock.com/
http://www.xbow.com/
http://www.dustnetworks.com/
http://www.millennial.net/
http://www.moteiv.com/

3

an external force. We denote a moving object of interest as a target.

In an event-localization scenario, three or more sensor nodes will be turned on at

all times (we will explain the details in Chapter 2). Once an event occurs, those sensor

nodes which have detected the event will report their measurements. Based on the mea-

surements, we can run localization algorithms to find out the location of the event.

When the target is moving, we may use target-tracking algorithms (or simply track-

ing algorithms) to continuously estimate its current position at real-time rates.

Figure 1.1 gives illustrations of localization and tracking scenarios.

target path

u
@@R

t = k

*

u
@@R

t = k + 1

*

u@@I
t = k + 2

*

u
@
@R

t = k + 3

*

u
@
@R

t = k + 4

*

t = mu
@
@
@
@R

t = mu
�
�
�
�	

t = mu
6
*

(a) localization (b) tracking

Figure 1.1: Illustration of localization and tracking. The filled circles represent sensor nodes.
In (a), the star represents the static event, and 3 nodes are active at the same time. In (b),
the stars represent the target positions at each time instant along the target path, and one
new node is activated at each successive time instant. Precise definition of “successive time
instant” will be defined later.

Although the purposes of both localization and tracking algorithms are to estimate

the spatial position of the object of interest, subtle differences between the two algorithms

exist. We will explain the details of localization and tracking later in this dissertation. To

give the reader an overview, the differences between a localization algorithm and a tracking

algorithm, as defined in this dissertation, are:

• The localization process happens at the same time instant; while the tracking process

takes many time steps.

4

• A localization algorithm usually requires three or more sensor nodes activated at any

time; while a tracking algorithm may require as few as one node [47]. Details of

localization and tracking will be given in later sections.

In [44], Li et al. provide a general framework to detect an event using localization

algorithms and subsequently track its movement using tracking algorithms, as illustrated in

Figure 1.2. In Figure 1.2, the monitored area is divided into different cells. A cell is defined

as a local collection of nodes, all of which are active at a given time. In order to preserve

battery power, not all cells are simultaneously activated. Note that although Figure 1.2

shows disjoint cells, this definition does not necessarily require disjoint, non-overlapping

cells. They also assume (as does this dissertation) that there is a central processing unit

(CPU) that collects the information from all of the sensor nodes in a specific collection of

cells. The basic approach for localization and tracking a single target is reproduced and

summarized as follows [44] (for complete details, please refer to [44]):

1. Some and perhaps all of the nodes in cell A detect the target. These nodes are

the “active nodes”, and cell A is the “active cell”. The active nodes report their

measurements to the CPU.

2. At each time instant, the CPU determines the location of the target from the mea-

surements of the active nodes.

3. The CPU uses locations of the target at the N successive time instants to predict the

location of the target at M future time instants.

4. The predicted positions of the target are used by the CPU to activate new cells that

the target is likely to enter. This is illustrated in Figure 1.2(b) where cell B represents

the region that the target is likely to enter after the current active cell (cell A in Fig

1.2(a)).

5. Once the target is detected in the new cell, it is designated as the new active cell and

the nodes in the original active cell (cell A in Fig 1.2(a)) may be put in the standby

state to conserve energy.

The steps 1 - 5 are repeated for the new active cell, and this forms the basis of

a sensor network monitoring system. Chu et al. [13] also provides a similar mechanism for

5

the localization and tracking of targets.

Note that once the target is moving, it is possible to activate all of the sensor

nodes in the network and use those nodes who detect the target to perform localization at

each successive time step. In other words, we could activate all nodes in the network, and

performing “tracking” by localization at each time step without using the actual tracking

algorithm. However, activating all of the sensor nodes in the network will consume much

more power than needed since at each time step only those nodes near the current target

position can detect it. Those nodes who are not in the vicinity of the target are turned on

unnecessarily. Hence tracking algorithms allow us to only activate necessary nodes. Those

nodes not in the active cell can be put in the standby state to conserve energy.

*

��
A

r
r r *

@
@
@
@
@
@
@
@
@
@
@@R

��
B

r
rrr

(a) (b)
Figure 1.2: A schematic illustrating localization and tracking of a single target [44]. The
target is shown as an asterisk. (a) The target enters cell A, and cell A becomes the active
cell. Nodes in cell A are activated, and report their measurements to the CPU. The CPU
calculates the position of the target. (b) The localization information when the target is
inside A is used by the CPU to predict the future position of the target. Cell B is the new
cell that the target is likely to enter, hence all nodes in cell B will be activated.

1.3 Security in Sensor Networks

Sensor networks are often deployed in remote or hostile terrains, hence they are

often susceptible to various attacks. Ilyas et al. [33] provide several survey articles on dif-

6

ferent types of security issues in sensor networks. For the purpose of this dissertation, we

define two types of sensor nodes: malicious and benign. The purpose of malicious nodes

is to lower the accuracy of the localization and tracking processes. The adversary may

physically capture some unknown number of existing benign nodes, and replace them with

malicious ones. Or, the adversary may remotely login to the sensor nodes and turn them

into malicious nodes, assuming that such network connection is available.

Furthermore, we define malicious nodes to be able to authenticate correctly with

the sensor network. The malicious nodes also use the same type of encryption codes to

communicate with the other nodes in the network. Malicious nodes can inject false local-

ization or tracking reports into the network without being detected using authentication or

encryption methods. In this dissertation, we will provide novel algorithms to detect those

malicious nodes, which are assumed to be less than half of the total nodes inside the sensor

network, based solely on their behavior.

1.4 Overview of the Dissertation

In dissertation, two interrelated problems are presented: secure localization and

secure tracking. In both localization and tracking, there is an unknown number of malicious

nodes in the network (we generally assume that the number of malicious nodes are fewer

than benign nodes). The malicious nodes will attempt to lower the accuracy of localization

and tracking by reporting that the target is at a fictitious location which is different from

the true target location. Furthermore, we assume that malicious nodes will agree (collude)

on that fictitious position. Our objective is to detect those malicious nodes.

We propose a novel algorithm to detect malicious nodes, in both localization and

tracking scenarios [11, 9, 10]. The rest of this dissertation is to explain our algorithm, and

it is organized as follows:

In Chapter 2, we will provide the background on secure localization. Similarly,

background on the secure tracking problem is provided in Chapter 3.

Chapter 4 gives the background on the relaxation labeling algorithm. The relax-

7

ation labeling algorithm is a prominent method to reduce ambiguity, and we will extend it

in Chapter 5 and Chapter 6.

Chapter 5 is our proposed algorithm to solve the secure localization problem. It

corresponds to the problem defined in Chapter 2. Chapter 6 is our proposed algorithm to

solve the secure tracking problem, and it corresponds to the problem defined in Chapter 3.

Finally, Chapter 7 is the conclusion and discussions on future work.

8

Chapter 2

Background on Localization

2.1 Sensor Models

In order to estimate the location of events, an adequate model of the sensors is

needed. Given an adequate sensing model, we may derive location estimation algorithms

for such sensors. We denote the time-dependent sensor measurement from sensor node i

as zi(t). We denote x(t) as the unknown event-related parameters that we would like to

estimate, and in this dissertation x(t) is the unknown event location in a two-dimensional

space. One general model to relate zi(t) to x(t) is given as [13]

zi(t) = h(x(t), wi), i = 1, 2, · · · , n (2.1)

where h : R2×R→ R is a (possibly) non-linear function which depends on x(t) and wi. wi

is additive, signal-independent Gaussian noise whose variance σ2 is assumed to be known.

Existing literature on sensor networks commonly uses two special cases of the sensor model

given in (2.1): acoustic amplitude sensors and acoustic array sensors. We do not specifically

define the form of h here because they could be different in both types of sensors. Please

see details in the next sections.

2.1.1 Acoustic Amplitude Sensors

Acoustic amplitude sensors provide a range estimate as follows [40]: First, we

assume that acoustic signals propagate isotropically. We denote the known sensor node

9

position as ξi for the ith sensor node. For acoustic amplitude sensors, (2.1) becomes

zi =
a

‖x− ξi‖
α
2

+ wi, (2.2)

where a is the given amplitude of the signal at the event position x, α is a known attenua-

tion coefficient, and ‖‖ is the Euclidean norm. Equation (2.2) means that zi should go up

as a goes up, except for the influence of noise. Similarly, zi will be smaller if the distance

from the node to the event is farther, except for the influence of noise. Note that x and

ξi are both vectors denoting spatial locations, where x is the (unknown) spatial location of

the event, and ξi is the known spatial location of the sensor node i. For the purpose of this

dissertation, both x and ξi are in the two-dimensional space (more details will be given in

Figure 2.1).

Note that the model in (2.2) is also adopted in modeling types of sensors other

than acoustic amplitudes. For example, [37] uses this model in radiation sensors.

In this dissertation, we assume that the sensor node has a limited sensing range.

When the event is out of the sensing range of the node, or when the event amplitude is too

small, the sensor node will not be able to detect such an event. Hence we do not consider

the exceptional case when a

‖x−ξi‖
α
2
' 0 and the received signal consists only of the noise

term, zi ' wi.

2.1.2 Acoustic Array Sensors

Acoustic array sensors are essentially arrays of microphones, and signal processing

algorithms such as beam-forming [20, 12] may be used to estimate the location of the event.

Acoustic array sensors can measure the Direction of Arrival information of the target, and

are another example of the general sensor model in (2.1). However, in this dissertation, we

assume that each node has a single sensor, not an array. Readers interested in array sensors

should refer to [61] and the references therein.

2.2 Localization Algorithms

The sensor model in (2.2) is adaptable to different types of sensors since it has been

used to model acoustic amplitude sensors [40] and radiation sensors [37]. As mentioned in

10

Chapter 1, the sensor in a sensor node could be a sound sensor, a pressure sensor, a light

sensor, and so on. In order to model as many different types of sensors as possible, the sensor

model in (2.2) is the most suitable one. Equation (2.2) simply states that an event, which

has an associated event amplitude, decays as the distance gets larger (to the power of the

attenuation constant). This can be used to model many physical phenomena. Therefore,

we will use (2.2) as the sensor model.

2.2.1 Localization of a Single Event

The most common localization algorithm is triangulation [61]. Similar concepts

of triangulation by solving a linear system can also be found in Global Positioning Systems

(GPS) [62] to locate a GPS module or Time of Arrival (TOA) techniques in cellular phone

systems [63]. In triangulation, we form a system of linear equations of the unknown x. We

may estimate x by inverting the system matrix, as described below.

We assume that a single target exists and is detected by sensor i. We introduce a

term range for each sensor node, and it is denoted as δi which is a measurement of ‖x−ξi‖.
Letting α = 4 in (2.2), δi is defined by

zi =
a

δ2i
(2.3)

Or equivalently,

δi =
√
a

zi
(2.4)

Note that in (2.3) and (2.4), the noise term in (2.2) is implicit in the measurement zi

δi =
√
a

zi
=
√

a
1

‖x−ξi‖2
+ wi

(2.5)

Finding the unknown location of the event, x, can then be posed as minimizing

the following objective function

x̂ = argmin
x

n∑
i=1

(δi − ‖x− ξi‖)
2 . (2.6)

Triangulation is a method to approximate the solution of (2.6). Since we assume

sensor nodes are deployed in a two-dimensional space, we denote the known location of

11

each sensor node as ξi = [xi yi]
T and the unknown location of the event as x = [x0 y0]T .

Then

(xi − x0)2 + (yi − y0)2 = δ2i , i = 1, 2, · · · , n (2.7)

Equation (2.7) basically says that using the location of the sensor node as the center and

the range δi as the radius, we can plot a circle. The location of the event lies somewhere

on the circle. In (2.7), if we subtract the i = 1 equation from the the other equations, we

obtain a system of linear equations in x0 and y0 of the form

2(xi − x1)x0 + 2(yi − y1)y0 = (x2
i − x2

1) + (y2
i − y2

1) + δ21 − δ2i , i = 2, . . . , n (2.8)

Defining

A =


2(x2 − x1) 2(y2 − y1)

...
...

2(xn − x1) 2(yn − y1)



b =


(x2

2 − x2
1) + (y2

2 − y2
1) + δ21 − δ22

...

(x2
n − x2

1) + (y2
n − y2

1) + δ21 − δ2n

 ,
we get a linear system of equations

Ax = b. (2.9)

where A is referred to as the “system matrix”. If A is invertible, the location of the event

can be estimated by

x̂ = A−1b. (2.10)

In general, we need at least 2 sensors in a one-dimensional space to resolve am-

biguity. Similarly, we need at least 3 sensors in a 2D problem, as illustrated in Figure

2.1. Without loss of generality, we will assume that sensor nodes are deployed in a two-

dimensional space from this point on.

12

bsensor 3

�
�

�
�

�
�
�	

event

b sensor 2
b

sensor 1

bsensor 1

bsensor 2

event?@
@
@
@@I

event?
�
�
�	

(a) (b)

Figure 2.1: Illustration of how at least 3 sensors are needed to resolve ambiguity in a 2D
problem. In (a), two sensor nodes create ambiguity; while in (b), a unique solution can be
found.

In the cases when we have more than enough sensors (n > 3), it becomes an over-

determined problem, and a mean-squared-error estimate of the location of the event can be

determined using the pseudoinverse

x̂ =
[
ATA

]−1
ATb. (2.11)

under the assumptions that the inverse of ATA exists. Geometrically, since (2.7) is draw-

ing a circle, solving (2.9) is equivalent to estimating the common intersection of all of the

circles. What is notable is that one sensor alone cannot determine the location of the event;

it requires collaboration of multiple sensors to solve the event-localization problem. Hence

event-localization is a typical example of collaborative signal processing [61].

2.2.2 Localization of Multiple Events

It is possible to extend the localization algorithm to estimate the locations of

multiple simultaneous events. In this case, the sensor model becomes a mixture

zi =
∑
j

aj

‖xj − ξi‖
α
2

+ wi, (2.12)

13

in which aj is the amplitude of each event. In this dissertation, we do not consider multiple

events in secure localization problems. Please refer to [8] for a discussion of localization of

multiple events.

2.3 Related Localization Literature

In this dissertation, localization refers to finding the location of the event, not

the location of the sensor node itself. There exists literature in which a sensor network is

deployed with only a portion of the nodes knowing their locations [32]. In that literature,

localization refers to using those nodes who know their own locations to determine the lo-

cations of the rest of the nodes in the network [32]. Although related to this dissertation,

the objective (determining ξi) is distinctive from our objective, determining x.

In the robotics literature, there is a topic on Simultaneous Localization and Map-

ping (SLAM) [14]. SLAM refers to the process in which a mobile robot explores and maps

the current environment while keeping track of its own current position. What a mobile

robot localizes is the current position of itself, and this is also distinctive from what we

mean by localization in this dissertation.

Also note from our sensor model in (2.2) that we do not have time information

from the event since we cannot know when the event occurred in advance. Hence we cannot

measure how long it takes for the “signal” to propagate from the event position to the

node position. There exists localization techniques to determine the location of a mobile

subscriber in a cellular or wireless local area network (WLAN) environments [53]. Those

techniques include Time of Arrical, Time Difference of Arrival and Angle of Arrival, but

because of our assumptions, they will not be discussed or used in this dissertation.

2.4 Security Problem in Localization

2.4.1 Problem Statement

Consider the case when we have deployed a sensor network, and all of the node

positions have been determined and calibrated. All of the nodes are active and listen to

the environment for possible event occurrences, and those who have detected the event will

14

report it. An unknown number of benign nodes are replaced with malicious nodes by the

adversary. The problem of secure localization [43] is to correctly identify the location of the

event under the influence of malicious nodes. Further detail follows.

2.4.2 Problem Definition

For the n nodes that have detected some particular event, each of their locations,

(xi, yi), and range reports δi are known. We denote a set of 3 nodes as a triple. Since n > 3,

we have (
n

3
) = n!

(n−3)!3! = (n−2)·(n−1)·n
1·2·3 triples. For any triple, we can readily obtain an

estimate of the event location, x̂ ≡ (x̂0, ŷ0), using triangulation.

There is an unknown number of malicious nodes inside the network. We generally

assume that malicious nodes are fewer than benign nodes in the newtork. We define a

malicious node to have the following properties

1. The objective of the malicious node is to lower the accuracy of the localization of

events by injecting false localization reports into the network.

2. All of the malicious nodes collude on a “fictitious event”. The fictitious event location

is the location of the event, as reported by the malicious nodes. It is almost always

different from the true location of the event.

3. Malicious nodes can successfully authenticate with any other node or the central

server of the network, and they also have obtained the encryption key used by existing

nodes. Hence malicious nodes can successfully communicate with the network (and

each other), and any effort to use encryption or authentication to detect them will be

futile.

For a triple whose nodes are located at

ξa, ξb, ξc, a, b, c ∈ {1, 2, · · · , n}, a 6= b, b 6= c, c 6= a,

we denote the locations of the nodes of that particular triple by

ξl, l ∈ {a, b, c}

15

and similarly the subscript l is used for other data or parameters belonging to the nodes of

that particular triple.

Within a particular triple, we have the ranges δl, l ∈ {a, b, c}, calculated using the

measurements and (2.4). We also have the estimated location of the target, x̂ = (x̂0, ŷ0),

determined by (2.10)

x̂ = (x̂0, ŷ0) = A−1b.

Then, for each node in the triple, we may define a “discrepancy” as [46]

εl = |δl −
√

(x̂0 − xl)2 + (ŷ0 − yl)2|, l ∈ {a, b, c} (2.13)

since the location of each sensor node, (xl, yl), is known. In (2.13), the discrepancy has

two major contributors: noise and (possibly) false δl generated by malicious nodes. Hence

the problem is to classify which sensor nodes are malicious using our currently-available

information:

• (xl, yl), the location of the sensor nodes

• δl, the range estimate reported by the sensor node (or the measurement, zl)

• (x̂0, ŷ0), the estimated event location based on zl

• εl, the error term

Note that we allow malicious nodes to know their exact location, (xl, yl), by either physically

capturing existing nodes which hold location information or breaking into our system to

obtain the system coordinates.

2.4.3 Supplemental Properties

The event is static

In this section, we assume that the source of the event detected by the sensor

network is not moving, or moving slowly enough that its motion is negligible relative to the

measurement process.

16

Redundancy of the sensor measurements

We assume that when an event occurs, there are more than enough (n > 3) nodes

that have detected the event. The reason why the required number of nodes is greater than

three is that we need more than one triples. If n = 3, there exists only one triple and we

cannot use the consistency among triples to detect malicious nodes.

Fictitious event

The fictitious event location has to fall within the sensing range of all the active

nodes. Otherwise, the benign nodes can simply tell which node is lying.

Centralized model

Since we are considering a secure localization scheme, we assume a centralized sys-

tem in which a central processor will collect information from all active nodes and calculate

the event location. This is due to the fact that some of the nodes may be malicious, hence

we need a central processor to make the final decision. Secure localization methods in ad

hoc systems [43] are not covered in this dissertation.

2.4.4 Problem Analysis

The challenge of this problem is that we do not know which sensor is malicious

in the first place, so (x̂0, ŷ0) is possibly erroneous. Hence the discrepancy εl depends on

whether or not the node is malicious. Therefore, the problems of classification of sensors

and event localization are like a ”chicken and egg” problem - whichever comes first will

solve the other. If we knew which sensors are malicious in the first place, we could use only

benign sensor measurements to do the localization and find the correct event location. If

we knew where the event is located, (x0, y0), we could use it to immediately tell which node

is lying by verifying δi and
√

(x0 − xi)2 + (y0 − yi)2.

The malicious nodes in the sensor network could be either non-colluding or collud-

ing. For non-colluding attacks, the malicious nodes would independently generate random

location estimation reports into the network; while colluding nodes could uniformly report

a new, fictitious event. Current research have proposed methods including mean-squared-

error [46] and statistical filtering [60, 65, 17] to detect malicious nodes. When the attackers

17

are non-colluding, using mean-squared-error and statistical filtering can detect those at-

tackers who are outliers to the community. However, when the attackers are colluding, they

become a consistent group which is harder to detect. This dissertation focuses on colluding

attacks and uses relaxation labeling to poll every triple in the network, and can detect even

a large number of malicious nodes in the network.

Before we discuss the new algorithm in detail, we would like to point out that the

philosophy of relaxation labeling algorithms is to use “local information” to achieve global

consistency. Classical relaxation labeling algorithms use pairs of objects (local information)

to resolve ambiguity of the entire system (global consistency). Due to the nature of our

problem, we extend classical relaxation labeling algorithms to use triples. However, we do

not need quadruples or any higher-order compatibility functions because the philosophy of

relaxation labeling is to strive to use as local information as possible. Classical relaxation

labeling algorithms will be reviewed in Chapter 4. A new relaxation labeling algorithm will

be proposed based on triples of sensor nodes, instead of pairs, in Chapter 5.

18

Chapter 3

Background on Tracking

3.1 Target Tracking

As discussed in Section 1.2, the use of tracking algorithms allows us to estimate the

current position of the target using fewer sensor nodes. As a result, less power is consumed.

In this chapter, we will describe the concept of target tracking and propose the problem of

secure tracking.

3.1.1 System Models

In target tracking, we aim to estimate the current state of the target(s) based

on available information, including past target states and measurements. The state of the

target can be location, velocity, orientation, etc. In our sensor model, the nodes can get

only a range estimate of the location of the target(s). Hence in this dissertation, we will

refer to the location and velocity of the target(s) in a two-dimensional space as the state of

the target(s). We extend the notation of the previous chapter to denote {xk, k ∈ N} as the

state of the target(s) at time k, where xk =
[
xk yk ẋk ẏk

]T .

In target tracking using sensor nodes as described in the previous chapter, two

models form the foundation of all algorithms: the motion model of the target positions

and the measurement model of the sensor nodes. A good motion model of the target will

certainly facilitate the extraction of the information about the target states from sensor-

node observations [45]. Consider the evolution of state sequence {xk, k ∈ N} of a target

19

given by

xk = fk(xk−1,vk−1) (3.1)

where xk is the state of the target at time k, fk : R4×R4 → R4 is a possibly nonlinear func-

tion, and vk−1 is a noise sequence. vk−1 models the unpredictable disturbances [4] while

the target is moving. The disturbances are assumed independent of the target motion, and

we do not assume any relation between the elements in the noise sequence. Hence vk−1 is

an independently and identically distributed (i.i.d.) noise sequence. Note that in (3.1), xk

depends only on xk−1, but not on any of the previous states {xi, i = 1, · · · , k − 2}. Hence,

for the purpose of this dissertation, (3.1) defines a Markov process of order one.

The other model of interest is the measurement model of the sensor nodes, and it

is given by

zki = h(xk, wki) (3.2)

where zki is node i’s measurement from the target at time k, h : R4 × R → R is a possibly

nonlinear function, and wk is an i.i.d. noise sequence. Similar to vk−1 in (3.1), we assume

that each wk is identically distributed, and each wk is independent from each other. Hence

wk is i.i.d. wk is also assumed to have no relation to the target state, xk. In this dissertation,

we consider only single-target tracking problems, hence in (3.2), xk represents the state of

the target at time k. We use the amplitude sensor model in Section 2.1.1 since it models

a general amplitude measurement and can be applied to many different types of signals.

Hence (3.2) follows (2.2) as

zki =
a

|xk − ξi|
α
2

+ wki (3.3)

where a is the amplitude of the signal emitted from the target and it is assumed to be

known. In (3.3), ξi is the location of node i, and it is also assumed to be known. Note that

the measurement model in (3.3) is nonlinear and the motion model in (3.1) could also be

nonlinear.

20

3.1.2 Tracking Algorithm

In a tracking problem, our purpose is to estimate the probability density function

(pdf) p(xk|z1:k) that the target is in state xk, based on measurements z1:k = {zi, i =

1, · · · , k}. We have two stages at each time step k: prediction and update. Suppose that

the pdf p(xk−1|z1:k−1) is available. In the prediction stage, we obtain the prior pdf of xk

via the Chapman-Kolmogorov equation [2]

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3.4)

In (3.4), the probabilistic model of p(xk|xk−1) is defined by (3.1) and the known

statistics of vk−1. Moreover, in (3.4), the pdf p(xk−1|z1:k−1) is known from the previous

time step, k − 1. Hence in (3.4) we obtain p(xk|z1:k−1), the belief that the state at time k

is xk given past measurements.

As mentioned in the previous section, vk−1 models the unpredictable disturbances

of the target motion [4]. Although vk−1 is a random variable, its statistics have to be known

in order to derive solutions to the tracking problems.

Our eventual goal is to estimate p(xk|z1:k), hence we need the update stage.

The update stage starts as the measurement zk becomes available. We may obtain

the desired p(xk|z1:k) using Bayes rule as

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.5)

where the normalizing constant

p(zk|z1:k−1) =
∫
p(zk|xk)p(xk|z1:k−1)dxk (3.6)

depends on the likelihood function p(zk|xk). The likelihood function, p(zk|xk), is deter-

mined by the measurement model and the known statistics of wk
i in (3.2). The other term

in (3.6), p(xk|z1:k−1), is already obtained using (3.4). Hence we can calculate p(zk|z1:k−1) in

(3.6). Similarly, when we look at (3.5), we have the likelihood function p(zk|xk) from (3.2),

p(xk|z1:k−1) from (3.4), and p(zk|z1:k−1) from (3.6), so the desired pdf p(xk|z1:k) is obtained.

21

The recursive prediction and update relations of (3.4) and (3.5) form the optimal

Bayesian solution to the tracking problem. They are only a conceptual solution in general

since they usually cannot be determined analytically [2]. Solutions do exist under strict

conditions, which we will cover in the next section.

Note that the initial pdf p(x0|z0) ≡ p(x0) is also assumed to be given. In our

simulations, p(x0) is a given unit-variance Gaussian distribution centered at x0.

Kalman Filter

There exists an optimal solution to the tracking problem, the Kalman filter [38, 39],

which was derived based on (3.4) and (3.5). The Kalman filter assumes that the system

models are Gaussian and linear [38, 39]. That is, (3.1) becomes

xk = Fkxk−1 + vk−1 (3.7)

where Fk is a known system matrix. Meanwhile, (3.2) becomes

zk = Hkxk + nk (3.8)

where Hk is also a known measurement matrix1. vk−1 and nk are zero-mean Gaussian

noises and have covariances of Qk−1 and Rk, respectively. Also, v is independent from n.

Note that nk is different from the wki in (3.2) because nk is strictly zero-mean Gaussian

with known covariance Rk (for details of the derivation of the Kalman filter please refer to

Appendix A).

Under such Gaussian and linear conditions, the Kalman filter can be derived as a

recursive relationship involving Fk, Hk and the statistics of vk−1 and nk. Relation of the

Kalman filter to our target tracking problem will be presented in the following sections.

The restrictions of Gaussianity and linearity of the Kalman filter algorithm is of-

ten impractical. Hence there exists two major types of nonlinear tracking algorithms: the

extended Kalman filter (EKF) [35] and particle filters [18]. They are also referred to as
1We observe that our measurement model, eq. (3.2), cannot be written in this way

22

suboptimal algorithms since the Kalman filter is the optimal solution under Gaussian and

linear assumptions.

Extended Kalman Filters

The EKF [35] allows the motion model in (3.1) and the measurement model in

(3.2) to become nonlinear. The concept of EKF is to use local linearization of the equations,

(3.1) and (3.2). In the EKF algorithm, we use the notation of mt1|t2 to denote the expected

value m at time t1 based on the measurement that was obtained at time t2. Assuming

that the expected value of the target position, mk−1|k−1, and the covariance of its error,

Pk−1|k−1, are both given from the previous time step (t = k − 1), and the pdf at t = k − 1

is Gaussianly distributed

p(xk−1|z1:k−1) ≈ N (xk−1; mk−1|k−1,Pk−1|k−1) (3.9)

where N (x,m,P) denotes a Gaussian distribution of variable x whose mean is m and whose

covariance is P. The EKF solution to the tracking problem can be shown to be [2]

p(xk|z1:k−1) ≈ N (xk; mk|k−1,Pk|k−1) (3.10)

p(xk|z1:k) ≈ N (xk; mk|k,Pk|k) (3.11)

where

mk|k−1 = fk
(
mk−1|k−1

)
(3.12)

Pk|k−1 = Qk−1 + F̂kPk−1|k−1
(
F̂k
)T

(3.13)

mk|k = mk|k−1 + Kk
(
zk − hk

(
mk|k−1

))
(3.14)

Pk|k = Pk|k−1 −KkĤkPk|k−1 (3.15)

23

and where fk(·) and hk(·) are the nonlinear functions from (3.1) and (3.2), F̂k and Ĥ are

local linearizations of these nonlinear functions

F̂k =
dfk(x)
dx

∣∣∣∣
x=mk−1|k−1

, (3.16)

the Jacobian of fk(x);

Ĥk =
dhk(x)
dx

∣∣∣∣
x=mk|k−1

, (3.17)

the Jacobian of hk(x); and where

Sk = ĤkPk|k−1
(
Ĥk
)T

+ Rk (3.18)

Kk = Pk|k−1
(
Ĥk
)T

Sk
−1
. (3.19)

Particle Filters

Particle filter algorithms [26, 34, 7, 15], known collectively as Sequential Monte

Carlo algorithms [18], represent the density function by a set of particles. The particle

filter algorithm described in [26] was demonstrated to have better performance than the

EKF, hence that algorithm was chosen for use in our dissertation.

In the particle filter algorithm, the key idea is to represent the required density

function by a set of particles. A particle, (x(i), q(i)), has two components: a sample of the

state vector, x(i), and each sample is also associated with a weight, q(i). To initiate the

particle filter algorithm, Ns samples x0(i), i = 1, · · · , Ns are drawn from the known prior,

p(x0). Each sample is associated with a weight, qk(i), and
∑Ns

i qk(i) = 1. Then the desired

density at iteration k can be approximated as

p(xk|z1:k) =
Ns∑
i=1

qk(i)δ
(
xk − xk(i)

)
(3.20)

which is a discrete weighted approximation of the desired pdf p(xk|z1:k) and δ() is

δ(t) =
{ 1, t = 0

0, t 6= 0
. (3.21)

Recall that in a tracking problem, we have two stages: prediction and update. We

now explain the particle filter algorithm proposed by Gordon et al. [26] at these two stages.

24

• Prediction

Recall that for a target tracking problem, we are given two models: the system

model in (3.1) and the measurement model in (3.2). At the prediction stage, each sample,

xk−1(i), is passed through the system model in (3.1) to obtain a corresponding new sample,

xk
∗
(i) [26]

xk
∗
(i) = fk(xk−1(i),vk−1(i)), i = 1, · · · , Ns (3.22)

where vk−1(i) is a sample drawn from the given pdf of the noise p(vk−1) in (3.1). Intuitively,

this is a fast way of obtaining the new samples at t = k since the system model (3.1) and

the statistics of the noise are both known.

• Update

At the update stage, recall that the sensor node will make a measurement of the

current target state. On receipt of the measurement zk, we evaluate the likelihood of each

sample, p(zk|xk∗(i)), based on the known measurement noise properties in (3.2). Then, it

can be derived (see [2]) that we can calculate the weights at t = k, qk(i), according to

qk(i) =
p(zk|xk∗(i))∑Ns
j=1 p(zk|xk

∗(j))
(3.23)

where the denominator is the normalization to ensure
∑Ns

i qk(i) = 1 [26]. We summarize

the particle filter algorithm in Table 3.1.

25

Table 3.1: Summary of the particle filter algorithm [2]
Given:
A set of particles {xk−1(i), qk−1(i)}Nsi=1 and measurement zk

Objective:
Calculate the updated particles {xk(i), 1

Ns
}Nsi=1

Algorithm:
1. (prediction)

for i=1:Ns {
Generate a new sample by passing the old sample through the system model
xk
∗
(i) = fk(xk−1(i),vk−1(i))

}
2. (update)

for i=1:Ns {
Calculate qk(i) = p(zk|xk∗ (i))PNs

j=1 p(z
k|xk∗ (j))

}
3. (resampling)

Resample {xk∗(i), qk(i)}Nsi=1 using the resampling algorithm in Table 3.2
to obtain {xk(i), 1

Ns
}Nsi=1

Using (3.22) and (3.23), we now have a set of particles (xk
∗
(i), qk(i)), i = 1, · · · , Ns.

However, the update stage is not complete yet. There is a “degeneracy phenomenon” which

is a common problem with particle filter algorithms [48]. The degeneracy problem occurs

when after a few iterations, all but one sample will have negligible weights [2]. To avoid

the degeneracy problem, Gordon et al. propose to perform a resampling procedure [26]. In

the resampling procedure, we are given (xk
∗
(i), qk(i)), i = 1, · · · , Ns, and the output is a

new set of particles (xk(i), 1
Ns

), i = 1, · · · , Ns. After the resampling procedure, the update

stage is complete. Note that xk
∗
(i), i = 1, · · · , Ns are only intermediate samples (hence the

asterisk sign). Rather, the new xk(i), i = 1, · · · , Ns (after resampling) are what will be used

and passed on to the next time step.

• Resampling

The basic idea of resampling is to eliminate samples that have small weights and

concentrate on samples with large weights [2]. We begin by building a cumulative dis-

tribution function (CDF) of qk(j), and we denote it as cj , j = 1, · · · , Ns. We will also

26

build another CDF of a uniformly distributed random variable, and we denote it as ti,

i = 1, · · · , Ns. After we have these two CDF functions (both of equal length Ns), we begin

at the bottoms of them, i = 1 and j = 1. Next we will iterate through cj . As we traverse

along cj , we compare cj with ti. There are two cases:

1. If cj ≥ ti, we will set xk(i) = xk
∗
(j) and keep incrementing i (while setting xk(i) =

xk
∗
(j)) until cj < ti.

2. If cj < ti, we will skip this xk
∗
(j).

In other words, the resampling procedure is saying that when we encounter a weight, qk(j),

that is larger than that which would result from a uniform distribution (cj > ti), we will

make multiple copies of the xk
∗
(j), corresponding to the same qk(j), to multiple xk(i) (by

incrementing i until cj < ti again). When we encounter a weight, qk(j), that is less than

what a uniform distribution would produce (cj < ti), the xk
∗
(i) corresponding to qk(i) is

skipped. This follows the basic idea of resampling.

Readers interested in other variations of the particle filter algorithms should refer

to [18] and the references therein.

The particle filter algorithm in Table 3.1, in essence, is a process of producing the

pdf p(xk|zk) given the previous pdf, p(xk|zk−1), and the current measurement zk. At every

time step, only one measurement (of the target state) is required. Hence in a sensor network

scenario, it is feasible to only activate one sensor node to make the measurement. This is

the beauty of target tracking algorithms. Armed with the known models in (3.1) and (3.2),

and also the known statistics of the noises in them, target tracking algorithms produce an

estimate of the current target location, based only on one measurement.

27

Table 3.2: Procedure for resampling from the particles [2]
Given:
A set of particles {xk∗(i), qk(i)}Nsi=1

Objective:
Calculate the new particles {xk(i), 1

Ns
}Nsi=1

Algorithm:
(1)
Initialize the Cumulative Distribution Function(CDF) of qk(j): c1 = 0
for j = 2 : Ns {

Construct the CDF: cj = cj−1 + qk(j)
}
(2)
Initialize another CDF of a uniformly distributed random variable: ti
Draw a value: t1 = U

[
0, 1

Ns

]
for i = 2 : Ns {

ti = t1 + 1
Ns

(i− 1)
}
(3)
Start at the bottom of the CDF of qk(j): j = 1
Start at the bottom of the CDF of t: i = 1
for (i = 1 : Ns) {

while (ti > cj) {
j = j + 1;

}
Assign sample: xk(i) = xk

∗
(j)

Assign weight: qk(i) = 1
Ns

}

28

For better illustration, we also provide a toy example of the particle filter process

in Figure 3.1. We illustrate this example in a two-dimensional space. In Figure 3.1(a), we

are at time step k = 1, and we have a set of q1(i) and x1(i), where i = 1, 2, . . . , 5. Note that

in Figure 3.1(a), the sequence order, i = 1, 2, . . . , 5, for both q1(i) and x1(i) is determined

at the initialization of the particle filter, and will not be altered at any later time step.

In Figure 3.1(b), we will calculate new samples and denote them as x2∗(i), i = 1, 2, . . . , 5.

Note that the weights q1(i) are unchanged from Figure 3.1(a) to Figure 3.1(b).

At the update stage, we will recalculate the new weights, q2(i). Note that from

Figure 3.1(b) to Figure 3.1(c), the samples, x2∗(i), are unchanged. Finally, after the update

stage, we will perform a resampling step in Figure 3.1(d). After resampling, all weights are

set to equal to 1
Ns

, where Ns = 5 in this toy example, and Ns = 500 in our simulations in

Chapter 6.

29

(a) Initialization (b) Prediction

(c) Update (d) Resampling

Figure 3.1: Illustration of the particle filter process. In (a), we are given a set of samples
x1(i) and weights q1(i). In this toy example, we set Ns = 5. From (a) to (b) is what we call
the update stage. We can use (3.22) to calculate the new samples in (b). Note that from (a)
to (b), the weights are unchanged. From (b) to (c), we calculate new weights using (3.23).
Note that from (b) to (c), the samples are unchanged. Finally, to overcome the degeneracy
problem, we perform a resampling to obtain the new set of weights q2(i) and samples x2(i).

30

From Figure 3.1(c) to Figure 3.1(d), the resampling process is not shown. We

present an illustration of the resampling process in Figure 3.2. We use the weights to build

a cumulative distribution function, Q, in Figure 3.2(a). We can also build a cumulative

distribution function for a uniform random variable, and we denote it as T in Figure 3.2(b).

At the beginning, the index for Q, j, and the index for T , i, are both set to 1. We then

increment i and j based on the resampling algorithm in Table 3.2 as follows:

1. i = 1, j = 1, c1 = 0.05 < t1 = 0.2

2. i = 1, j = 2, c2 = 0.2 ≥ t1 = 0.2, x2(1) = x2∗(2)

3. i = 2, j = 2, c2 = 0.2 < t2 = 0.4

4. i = 2, j = 3, c3 = 0.7 > t2 = 0.4, x2(2) = x2∗(3)

5. i = 3, j = 3, c3 = 0.7 > t3 = 0.6, x2(3) = x2∗(3)

6. i = 4, j = 3, c3 = 0.7 < t4 = 0.8

7. i = 4, j = 4, c4 = 0.9 > t4 = 0.8, x2(4) = x2∗(4)

8. i = 5, j = 4, c4 = 0.9 < t5 = 1.0

9. i = 5, j = 5, c5 = 1.0 ≥ t5 = 1.0, x2(5) = x2∗(5)

After the above procedure, the resampling is complete. The new set of sample and

weight pairs are shown in Figure 3.1(d). The basic idea of resampling can be seen in this

toy example, where x2∗(1) is ignored because q1(1) = 0.05 is too small. On the other hand,

x2∗(3) is duplicated, because q1(3) = 0.5 is larger.

The new set of samples, {x2(i)}, i = 1, . . . , 5, will be passed to (3.22) to begin the

next iteration of particle filters.

To illustrate the performance of the particle filter, we provide an example tracking

problem where the measurement model is nonlinear in Appendix B.

31

(a)

(b)

Figure 3.2: Illustration of the resampling process. After we build two cumulative distribu-
tion functions, Q in (a) and T in (b), we begin with i = 1 and j = 1. As we increment j, we
compare c(j) and t(i). If c(j) ≥ t(i), we will increment i until t(i) ≥ c(j) again. Every time
we increment i, we will set x2(i) = x1∗(j) and q2(j) = 1

N . On the other hand, if c(j) < t(i),
we will do nothing except incrementing j until c(j) ≥ t(i) again.

32

3.1.3 Collaborative Tracking Using Sensor Networks

For sensor networks, Liu et al. [47] propose a special treatment for the tracking

problem. At any time k, only one sensor node will be activated to perform the tracking

task. This strategy is referred to as leader-based tracking. We will not reproduce all of the

details in [47] here. Instead, we describe how the tracking algorithm is performed and how

to activate the sensor node in the next time step.

Liu et al. [47] assume that sensor nodes are resource-limited, hence the tracking

task itself is done by approximating the two equations in (3.4) and (3.5) numerically by

nonparametric representations of p(xk|zk). This approach may reduce the computing cost

on the sensor nodes, however, tracking accuracy is not guaranteed. Instead of restricting

the capability of the nodes, in this dissertation we will instead use the particle filter tracking

algorithm which will perform at least as well at the cost of computing resources.

As for the selection of sensor node, Liu et al. [47] propose to use mutual information

to select the next sensor node to activate. Let U and V be two random variables having a

joint pdf p(u, v). The mutual information between U and V is defined as

I(U ;V) ≡ E
[
log

p(u, v)
p(u)p(v)

]
(3.24)

At time step k − 1, Liu et al. [47] propose to select the sensor node s that maximizes the

mutual information between the next target location, xk, and the new measurement zk

s = argmax
s∈S

Is(xk|zk−1; zk|zk−1) (3.25)

where S is the collection of sensors that the current node can talk to, namely the current

node’s neighborhood. Using the definition of mutual information in (3.24), we have

Is(xk|zk−1; zk|zk−1) = E

[
log

p(xk, zk|zk−1)
p(xk|zk−1)p(zk|zk−1)

]
(3.26)

In summary, the node activation algorithm is that at time step k− 1, we select a collection

of sensor nodes, S, as the candidates to be activated in the next time step, k. For each node

in S, we will compute the mutual information according to (3.26). The node in S with the

highest mutual information will be the next node to be activated at step k.

33

Let us look at how to compute (3.26) in detail. Recall that in the prediction stage

of the particle filter algorithm, we pass the set of samples through the known motion model

in (3.1). In a similar manner, at time step k − 1, the term p(xk|zk−1) can be “predicted”

by passing the current p(xk−1|zk−1) through the motion model in (3.1).

The predicted p(xk|zk−1) can be represented by a discrete approximation, say,

a set of particles. Recall from the previous section that a particle has two components:

(x(i), q(i)), i = 1, . . . , Ns. The set of x(i), i = 1, . . . , Ns is the samples of the target state.

We also choose a set of real values to quantify the possible range of the sensor measurement

zk. For example, we can use [1, 2, . . . ,Ms] to quantify the range of the possible values of

zk. We denote this set as Zk, and Zk ∈ R. Then for every element in the set of x(i),

i = 1, . . . , Ns and for every element in the set Zk, we can calculate

p(xk, zk|zk−1) = p(zk|xk)p(xk|zk−1) (3.27)

We already have the second term in (3.27), p(xk|zk−1), by passing the current p(xk−1|zk−1)

through the motion model. The first term in (3.27), p(zk|xk), can be calculated using the

known statistics of the measurement noise in (3.3). Note that if we have Ns samples x(i),

and there are Ms values in Zk, then p(xk, zk|zk−1) in (3.27) is a Ns ×Ms matrix.

After we have the joint density function p(xk, zk|zk−1), we can calculate the partial

density function p(zk|zk−1) by

p(zk|zk−1) =
∑
xk(i)

p(xk, zk|zk−1) (3.28)

Note that p(zk|zk−1) is now a vector of length Ms.

Now that we have p(xk|zk−1), p(xk, zk|zk−1) and p(zk|zk−1), we can calculate the

Ns ×Ms matrix

D = log
p(xk, zk|zk−1)

p(xk|zk−1)p(zk|zk−1)
(3.29)

and the mutual information can be calculated using

Is =
∑
xk(i)

∑
Zk

D · p(xk, zk|zk−1) (3.30)

34

Note that the scalar value of Is is calculated for every sensor node in the collection S. The

node with the maximal Is will be activated in the next time step.

We follow this node activation scheme as part of our secure tracking algorithms.

However, if we only activate only one sensor node at a time, the sensor network is susceptible

to attacks. Once the active node is replaced with a malicious node, the tracking result will

be inaccurate. Let us consider the following security problem in target tracking.

3.2 Security in Tracking

3.2.1 Problem Statement

Consider the case when we have deployed a sensor network, and all of the node

positions have been determined and calibrated. At each time step, one or more sensor

nodes will be activated, depending on battery resources and security needs. Following [47],

we assume that sensor nodes have adequate processing power, and can calculate the cur-

rent pdf p(xk|zk) after making measurements of their ranges to the current target location.

The current pdf is reported to the central processor. The central processor will select the

next sensor node(s) to activate, and send p(xk|zk) to the next node(s) in order to calculate

p(xk+1|zk+1). In the sensor network, an unknown number of the nodes are malicious and

attempt to lower the accuracy of target tracking. The problem of secure tracking, as de-

fined in this dissertation, is to correctly estimate the current target location by removing

malicious nodes.

3.2.2 Problem Definition

Our objective is to detect the malicious nodes in the network during the tracking

process. The basic assumptions given in Section 2.4 about the objective and behavior of

the malicious nodes still hold. At any time step, all the malicious nodes will agree that

the current target location is the fictitious event location in Section 2.4, and we refer to it

as fictitious target location. In other words, at any time step, all the malicious nodes will

report a pdf p(xk|zk) as if the target is at the fictitious target location. If we connect the

fictitious locations over time, we form a fictitious path. We illustrate a fictitious path in

35

Figure 3.3. The fictitious path will mislead our defense mechanism and allow the enemy to

avoid detection. The colluding behavior is also another feature that distinguishes malicious

nodes from ordinary malfunction nodes.

In this section, localization is not performed at each time step, hence the discrep-

ancy described in (2.13) no longer exists. Also, in tracking we do not activate as many

nodes as in localization at each time step. In localization, there are multiple nodes active

at one moment in time. In tracking, only one node is necessary since the motion model,

the measurement model and past tracking history are known (we will activate more than

one node in our secure tracking algorithm in Chapter 6).

What is notably different from Section 2.4 is that in Section 2.4, each sensor node

only reports a range estimate δi. Here in target tracking, each sensor node can independently

estimate the current target location using particle filters. We summarize what a particular

sensor node does at each time step k as follows2:

1. The sensor node is given p(xk−1|zk−1).

2. Next, the sensor node makes a measurement of the target using the measurement

model given in (3.2). Hence zk is obtained.

3. Using zk and p(xk−1|zk−1), calculate the current belief p(xk|zk)

Based on the current belief p(xk|zk) from the sensor node, we estimate the current

location of the target using the posterior mean

x̂k =
∫

xkp(xk|zk)dxk (3.31)

or the posterior max

x̂k = argmax
xk

p(xk|zk) (3.32)

From this point on, we will use the expected value as in (3.31) to illustrate the estimated

current location of the target in the figures. However, between nodes and the central server,

the entire density function p(xk|zk) is transmitted.
2Note that since we are describing the behavior of one node, we omit the subscript denoting which node

this is

36

fictitious path

true path

u
@@R

0
u
@@R

1 u@@I
2

u@@@I
3

u
@
@R

4
u@@@I
5

Figure 3.3: We have activated 6 sensor nodes consecutively, which are denoted as 0 through
5. The lower path is the true target path; while the upper one is fictitious. In this scenario,
two malicious nodes report that the target is most likely on the upper path, i.e. Nodes
3 and 5 are malicious. Nodes 0, 1, 2 & 4 report correctly the range to the actual target
position, lying on the true path.

3.2.3 Supplemental Properties

Discrete time steps

We assume that time is discrete in this dissertation. Also, the measurement process

is fast enough that at the same time step, the target is (relatively) stationary, from the

beginning to the end of the measurement process.

Sensor measurements

At each time step, we may activate more than one sensor node, if necessary. For

those nodes active at the same time, we assume that their clocks are synchronized.

Fictitious target location

Similar to Section 2.4, the fictitious target location has to fall within the sensing

range of all the active nodes. Otherwise, the benign nodes can simply tell which node is

lying.

Centralized model

Although sensor nodes can perform tracking independently, the current pdf will

be collected by the central processor. The central processor also determines which node(s)

to activate in the next time step.

37

No communication delay

We do not consider any communication delay between the sensor nodes and the

central processor. So even if the target is moving, we can still keep track of it using the

tracking algorithm.

38

Chapter 4

Relaxation Labeling

The problems defined in Section 2.4 and Section 3.2 are critical to a secure sensor

network environment. Before we could solve these two problems, however, we need to re-

view the relaxation labeling algorithm which will be the foundation of our solution in the

next chapters.

Relaxation labeling was proposed in the seminal paper of [51] in the area of com-

puter vision - teaching computers to recognize the content of digital images. The original

purpose of designing the relaxation labeling algorithm was to reduce the ambiguity in iden-

tifying the objects in a scene. Given the different relationships among the objects in the

scene, the relaxation labeling algorithm will give a higher weight to a more likely solution

and vice versa. The ambiguity is said to be removed when the objects in a scene can each

be uniquely labeled with a consistent label.

Reducing ambiguity is also important in many other areas of science. For example,

shape and stereo matching, image enhancement (edges, features) and high-level interpre-

tation of image content [42] all can be posed as problems of reducing ambiguity. Over the

years, relaxation labeling has become a prominent algorithm in solving them.

Let us begin with a toy example in image content interpretation. In Figure 4.1,

we have an image which has three objects. Suppose for now that we have used some image

segmentation algorithm to obtain this image. Based on the result, we found three objects

inside this image. Assume that we somehow know that one of them is a circle, one of

39

them is a triangle, and one of them is a square, except that we do not know which is which.

How do we correctly label the right object inside the image to have the correct shape(label) ?

-

d

1

︸ ︷︷ ︸
d

2

�
�
�
�
�
�

A
A
A
A
A
A

︸ ︷︷ ︸
d

3

Figure 4.1: An scene labeling example to illustrate the relaxation labeling process. In the
scene we have three objects: object 1 is a circle, object 2 is a square and object 3 is a
triangle.

The solution lies in relaxation labeling. Introduced in 1976 [51], the formulation of

“nonlinear relaxation” presented here has become the de facto standard method for solving

consistent labeling problems. We review the method in this section to ensure the reader

understands the method, before extending it to triples and applying the extension to sensor

networks in Chapter 5. Both the extension and application are novel.

In relaxation labeling, three key components of the algorithm are defined [51]:

• Pi(λ): the “confidence” for object i to have label λ

• qi(λ): the “support” for object i having label λ

• r(i, j, λ, λ′): the compatibility function between object i having label λ and object j

having label λ′

Let us begin the explanation of relaxation labeling with Pi(λ). Pi(λ) is the fi-

nal, desired result that we are seeking. The value of Pi(λ) will eventually determine the

labeling of each object. After we introduce Pi(λ), we will introduce qi(λ) because Pi(λ) de-

pends on qi(λ). Finally, r(i, j, λ, λ′) will be introduced because qi(λ) depends on r(i, j, λ, λ′).

40

Each object i will be assigned a different label λ, and we assume that the types

of labels are known. For example, in Figure 4.1, there are three labels: circle, triangle

and square. The confidence that one can say object i has label λ is called Pi(λ) [51].

Pi(λ) is a number between 0 and 1, and the higher it is, the more confidence we have

in saying that object i is correctly labeled as λ. Again using our example in Figure

4.1, we want P1(circle) → 1 over the iterations. Since we assume the labels are mutu-

ally exclusive and collectively exhaustive,
∑

j Pi(λj) = 1 (at any iteration) [51]. Hence

P1(circle) + P1(square) + P1(triangle) = 1 in Figure 4.1. In general, a relaxation labeling

process works with a set of labels Λ = {λ1, λ2, · · · , λd} and
∑

j Pi(λj) = 1.

Now that we have defined Pi(λ) and its properties, let us look at how to calculate

it. Relaxation labeling is an iterative process. For iteration t + 1, P t+1
i (λ) is updated as

follows [51]

P t+1
i (λ) =

P ti (λ)
[
1 + qti(λ)

]∑
j

P ti (λj)
[
1 + qti(λj)

] , (4.1)

In (4.1), the numerator means that P t+1
i , the new confidence in the next iteration,

will be equal to the current confidence, P ti , multiplied by
[
1 + qti(λ)

]
. qti(λ) is the support

of object i having label λ, as provided by other labelings, and −1 ≤ qti(λ) ≤ 1 [51]. Hence if

the support is larger,
[
1 + qti(λ)

]
should be higher, and as a result the confidence in the next

iteration will be higher. If the support is negative, it will drive the confidence pi(λ) in the

next iteration down. We can also see that in (4.1), the denominator acts as a normalization

factor that scales P t+1
i (λ) to ensure 0 ≤ Pi(λ) ≤ 1.

In (4.1), if qti(λ) is large (i.e., close to 1), it will eventually drive P t+1
i (λ) to be

close to 1. On the other hand, if qti(λ) is negative, it will drive P t+1
i (λ) toward 0. Hence

qti(λ) is essential to how we will end up getting Pi(λ). Rosenfeld et al. [51] defines qti(λ) as

follows

qti(λ) =
∑
j

Cij

[∑
λ′

r(i, j, λ, λ′)P tj (λ
′)

]
(4.2)

where Cij is an optional coefficient. The purpose of Cij is to be a normalization coefficient

to make sure that −1 ≤ qti(λ) ≤ 1. It may also be used to constrain the relationship be-

41

tween two objects. For example, if object i and object j have no relation at all, then Cij = 0.

Equation (4.2) answers the question: given object i having label λ, how is that

compatible with all the possible cases of the other objects having different labels? For exam-

ple, in Figure 4.1, if we want to calculate q1(circle), we need to examine the compatibilities

of

1. object 1 is circle and object 2 is triangle

2. object 1 is circle and object 2 is square

3. object 1 is circle and object 3 is triangle

4. object 1 is circle and object 3 is square

After we calculate the four compatibilities, we multiply them each with its respective con-

fidence and sum them up. We observe that (4.2) is a sum of a function multiplied by a

“probability” and some readers may find it helpful to think of it as an expected value.

The actual design of the compatibility function r(i, j, λ, λ′) is problem-dependent.

It should be a function that returns a higher value when both labeling object i as λ and

labeling object j as λ′ make sense. Specifically, in the design of r(i, j, λ, λ′), the return value

is required to satisfy

− 1 ≤ r(i, j, λ, λ′) ≤ 1 (4.3)

Using our toy example in Figure 4.1, we assume that we somehow know that all

the objects in the image are drawn with a constant size, i.e. the radius of the circle and

the sides of the triangle and square are all d. Then using our knowledge of geometry, we

know that the area of a circle of radius d is πd2, which is larger than the area of a square of

size d. The area of the square, d2, is again larger than the area of a regular triangle of size

d, which is
√

3
4 d

2. Hence one way of designing a compatibility function for the problem in

Figure 4.1 is to compare the area of object i and object j. If we label object i as circle and

object j as square, then the area of object i should be larger than j. Similarly, if we label

object i as square and object j as triangle, then the area of object i should also be larger

than object j. If we find the area of object i to be much bigger than the area of object

42

j, then labeling i as circle and labeling j as square makes sense, so r(i, j, circle, square)

should return a positive value close to 1.

We give a simple example design of the compatibility function here. Suppose that

we use a certain image processing algorithm to estimate the area of object i in the image, and

we denote it as Ai. Similarly, the area of another object j is estimated to be Aj . Following

our previous assumption that the objects should be of the same side length, we know that if

we label object i as circle while labeling object j as square, then we are expecting Ai > Aj .

We also know that given Ai > Aj , the number Ai−Aj
Ai

should be between 0 and 1 since both

Ai and Aj are positive numbers. To meet the requirement of returning a value between −1

and 1 when we design a compatibility function, we can choose r(i, j, circle, square) to be

2Ai−AjAi
− 1 when we label i as circle and j as square. Similarly, when we expect Ai > Aj ,

we can also use this form. In the cases where Ai < Aj , we can use the form 2Aj−AiAj
− 1.

Then one possible design of the compatibility function can be

{ r(i, j, circle, square) = r(i, j, circle, triangle) = r(i, j, square, triangle) = 2Ai−AjAi
− 1

r(i, j, square, circle) = r(i, j, triangle, circle) = r(i, j, triangle, square) = 2Aj−AiAj
− 1
(4.4)

It is important to understand the distinction between the terms “compatible” and

“correct”. It is possible for a labeling of node i by λ to be completely compatible with

labeling node j by λ′ and both be wrong. We hope to always set up the iterative labeling

problem so that the most globally compatible labeling will also be the correct one.

In Appendix C, we will explain why relaxation labeling is a “relaxation” process

and derive how to minimize its objective function.

43

Chapter 5

A New Relaxation Labeling

Architecture for Secure

Localization

5.1 Related Work

The secure localization problem was first proposed by Lazos et al. [43] who for-

mulated the problem in an a distributed system. Also, there is no direct measurement of

range in [43]. Instead, the distance between sensor nodes are calculated by counting how

many intermediate hops between nodes there are, the so-called “hop counts”. For exam-

ple, if a message is sent by node 1, and it goes through node 2 to reach node 3, then the

hop count is two. As another example, if a message is sent by node 1, and goes through

nodes 2 through 4 to reach node 5, then the hop count is 4. Since our localization algo-

rithms are centralized and range-based, the distributed methods are not furthered discussed.

A recent work was proposed by Liu et al. [46], which uses a thresholding technique

to detect malicious nodes. If n sensor nodes report the same event, each with a different

range estimate δi, i = 1, · · · , n, we can calculate the discrepancy associated with each node

as in (2.13). Liu et at. [46] set a threshold on the discrepancy, and set those nodes with dis-

crepancies higher than the threshold as malicious nodes. The performance of [46] decreases

as the number of malicious nodes increases in the network.

44

Statistical filtering methods based on authentication are proposed in [60, 65, 17]

to detect false range reports made by malicious nodes. In [60], when an event occurs, those

nodes which have detected the event collectively calculate the location of the event, and

endorse it with a Message Authentication Code (MAC). As a report is forwarded through

multiple hops toward the central processing unit, each forwarding node verifies the correct-

ness of the MAC with certain probability. If the probability of some MAC being correct is

too low, the report will be dropped. The probability of detecting incorrect MACs increases

with the number of hops it travels. The success of the algorithm in [60] depends on the

design of the MAC key for other nodes to authenticate. Our algorithm is not based on key

authentication, and Ye et al. [60] also does not formulate the problem assuming the sensor

nodes are colluding.

Although we assume that malicious nodes can successfully authenticate with the

network, earlier works propose methods to securely distribute keys to nodes inside the

network. For example, Eschenauer et al. propose a key management scheme for key distri-

bution, revocation, re-eying and incremental additions of nodes [22].

Our work provides a different perspective to the secure localization problem [9,

11]. We propose a new relaxation labeling architecture to detect colluding malicious nodes

first [9]. After removing malicious nodes, we can use only data from benign nodes to perform

localization [11].

5.2 The New Relaxation Labeling Architecture

We assume that the sensor nodes are densely deployed, i.e., for every event there

will be n nodes that have detected it, and n > 3. Besides, as illustrated in Figure 2.1, only

three nodes are needed to localize the event. We will denote a set of 3 nodes as a triple.

Since n > 3, we have (
n

3
) = n!

(n−3)!3! = (n−2)·(n−1)·n
1·2·3 triples. The estimated event locations

from each triple may vary, since there may be 1, 2 or 3 malicious nodes in each set. If a

triple has malicious nodes in it, the ranges reported by the 3 nodes will usually be incon-

sistent (unless all 3 are malicious), and such inconsistency will be shown in εi, i = 1, 2, 3.

45

We would like to exploit such inconsistency and use relaxation labeling algorithms to detect

malicious nodes. In Chapter 6, we will activate more than one node at each time step, and

the relationship between those active nodes at successive time steps can be used to examine

inconsistency. More details on the tracking part will be described in Chapter 6.

In classical relaxation labeling algorithms [51], the compatibility function is de-

fined over two objects. The idea of extending the compatibility function to three or more

objects, the so-called “higher-order” compatibility functions, was first conceived in [31].

However, very little literature has really designed and implemented higher-order relaxation

labeling. The reason is explained in [21], as Eklundh et al. experimented with both clas-

sical and higher-order relaxation labeling algorithms on edge enhancement applications.

The conclusion in [21] is that the performance improvement gained from using higher-order

compatibility functions is not very significant. Hence the performance gain does not justify

the increased computing cost of higher-order compatibility functions.

There does exist evidence showing that higher-order relaxation labeling algorithms,

when designed for certain applications, outperform classical ones. One example is graph

matching [25, 41]. The compatibility function in [25] is specified in terms of the face-units

of the graphs under match, and it requires only knowledge of the number of nodes, edges

and faces in the model graph. The work in [25] shows that higher-order relaxation label-

ing algorithms, when designed well, can provide better performance. In this dissertation,

however, it is necessary to use higher-order compatibility functions since localization of an

event requires a triple of nodes.

We define label λ for each sensor node as assigning it to be malicious or benign.

A “labeling” is the association of a node, i, with a label, λ, and this association is denoted

by the ordered pair (i, λ). Specifically, if a node has label λ = m, it is considered to

be malicious, while having label λ = b denotes benign. For each sensor node, we define

a confidence P (λ). The confidence of node i having label λ is denoted as Pi(λ). The

confidence Pi(λj) has probability-like properties:

0 ≤ Pi(λj) ≤ 1 ∀i, j
∑
j

Pi(λj) = 1. (5.1)

46

Note that in (5.1), we only have two labels, hence λj ∈ {m, b}. Following [51], we

iteratively update the confidence of node i having label j as

P t+1
i (λj) =

P ti (λj)
[
1 + qti(λj)

]
Dt
i

, (5.2)

where Dt
i =

∑
k P

t
i (λk)

[
1 + qti(λk)

]
, λk ∈ {m, b} is a normalization required to ensure that

Pi(λj) sums to 1, and t stands for iteration.

Since we need at least 3 nodes to perform the localization task, we define qti(λ) to

be a measure of how consistent the labeling of node i as having label λ is with the labeling

of both the other nodes:

qti(λ) =
1
N

∑
j

∑
k

∑
λ′

Pj(λ′)
∑
λ′′

Pk(λ′′)r(i, j, k, λ, λ′, λ′′), (5.3)

where N = (n−1)(n−2), n is the number of nodes in the network, j = 1, ..., n, k = 1, ..., n,

j 6= i, k 6= i, j 6= k, and r(i, j, k, λ, λ′, λ′′) is a “compatibility function” to be defined and

explained later. Note that the summation are over all the nodes, not just a single triple.

The power of qti(λ) is that it considers the consistency of node i having label λ with all other

pairs of nodes j, k. If (i, λ) is not consistent with other labelings, qki (λ) will be negative,

hence driving Pi(λ) down.

From (5.1), it is evident that we only need to calculate one probability (Pi(b) or

Pi(m)) for each node since the two probabilities sum up to 1. That probability is further

dependent on qti(λj), as shown in (5.2). The computational complexity of qti(λj), as shown

in (5.3), is O(n2), where n is the number of nodes in the network.

5.2.1 Design of the Compatibility Function

To implement (5.3), we need to design a compatibility function r(i, j, k, λ, λ′, λ′′)

which will be higher when nodes i, j, k having labels λ, λ′, λ′′, respectively, is consistent,

and vice versa. Specifically, −1 ≤ r(·) ≤ 1. For example, if we have 10 nodes, and we are

examining nodes 3, 5 and 7. If node 3 is malicious, and nodes 5 and 7 are benign, then

r(3, 5, 7,m, b, b) should be close to 1.

47

For each triple containing nodes (i, j, k), we may calculate the respective discrep-

ancies εi, εj , and εk by equation (2.13). Define ε = εi + εj + εk as the total discrepancy.

Each node of the triple could be either benign or malicious, so we ought to have 23 = 8

different compatibility functions for each triple

1. r(i, j, k, b, b, b): node i benign, node j benign, node k benign

2. r(i, j, k, b, b,m): node i benign, node j benign, node k malicious

3. r(i, j, k, b,m, b): node i benign, node j malicious, node k benign

4. r(i, j, k, b,m,m): node i benign, node j malicious, node k malicious

5. r(i, j, k,m, b, b): node i malicious, node j benign, node k benign

6. r(i, j, k,m, b,m): node i malicious, node j benign, node k malicious

7. r(i, j, k,m,m, b): node i malicious, node j malicious, node k benign

8. r(i, j, k,m,m,m): node i malicious, node j malicious, node k malicious

Due to the fact that the malicious nodes are colluding, we only need to design

two types of compatibility functions. Case 1 and Case 8 use one type of the compatibility

function. Case 2, Case 3, Case 4, Case 5 and Case 6 use the other type of the compatibility

function. Let us look at them in detail.

Case 1 and Case 8

We assume that the malicious nodes are colluding, i.e. all the malicious nodes will

report that a fictitious event occurred at a particular location (which is, of course, different

from the true event location). In this regard, the case where all three nodes are malicious

is as compatible as the case where all three nodes are benign. Let us consider the 3-node

benign case. Since all of the 3 nodes are benign, the total discrepancy should be small. So

what we need is a function with the following properties:

• Given a small ε, the compatibility function returns a value close to 1

• Given a large ε, the compatibility function returns a value close to −1

48

• Given any intermediate value of ε, the compatibility function returns a value between

−1 and 1

• The compatibility function is monotonic and (preferably) smooth

Hence for the 3-node benign case, we can define

r(i, j, k, b, b, b) = 1− 2
1 + e−α1(ε−T1)

(5.4)

where T1 is a threshold on the error term ε. In equation (5.4), ε is the total discrepancy

of the triple. The larger ε is, the less likely that this triple has all benign nodes, because

a large ε indicates that the nodes in the triple do not agree with each other. In equation

(5.4), the function of the form 1/(1+e−α(x−β)) is generally referred to as a sigmoid function

[57]. The advantage of using a sigmoid function is that the compatibility function will be

a smooth curve between -1 and 1. We show some example parameters of equation (5.4) in

Figure 5.1.

Figure 5.1: Some example parameter settings of equation (5.4)

The compatibility function for the 3-node malicious case is identically

49

r(i, j, k,m,m,m) = 1− 2
1 + e−α1(ε−T1)

(5.5)

since the malicious nodes are assumed to be colluding. Values for α1 and T1 and sensitivity

to their choices will be discussed in Section 5.4.

Case 2 to Case 6

If there is only one malicious node in the triple, the other two nodes must be

benign. This one-node malicious case is exactly the same as the one-node benign case,

because in the one-node benign case, the other two malicious nodes are colluding.

Let us look at the one-node malicious case first. For one-node malicious case, the

single malicious node in the triple reports an incorrect event location. Hence the local-

ization result will be shifted due to the “contamination” from the malicious node. As a

result, inconsistency among the three nodes exists. Since the localization result is incorrect,

every node in this triple will have a discrepancy, εl, l ∈ {a, b, c} ∈ {1, 2, · · · , n}. Since the

malicious node is the minority among the three, it will tend to contribute a higher error.

We can design our compatibility function based on this concept:

Given a particular triple, (i, j, k), and considering the labelings (i,m), (j, b) and

(k, b), we then introduce a new variable x which measures the relative contribution of node

i to the total discrepancy

x =
εi
ε

=
εi

εi + εj + εk
(5.6)

We also need to check if the total discrepancy, ε, of this triple is small. In (5.5), T1 was

used to indicate a significant inconsistency, and we use it again here for the same purpose.

If ε < T1, then this triple should be either all-benign or all-malicious. Therefore, we want

a compatibility function which has the following properties

• First check if ε is small. If yes, the compatibility function should return a negative

value1. Otherwise, check x as follows:
1If ε is quite small or quite large, we are confident that our labeling is consistent, and r is allowed to

go to ±1. However, in the 1-node different case, we have less confidence overall. Fortunately, relaxation
labeling provides a mechanism for expressing this lack of confidence; we simply bound r to be in the range
−0.5 < r < 0.5.

50

– Given a small x, the compatibility function should return a negative value

– Given a large x, the compatibility function should return a positive value

– Given any intermediate value of x, the compatibility function is a smooth curve

The compatibility function for one-node malicious (or one-node benign) case is

then defined as

r(i, j, k,m, b, b) = −0.5 if ε ≤ T1 (5.7)

Otherwise, if ε > T1, we use the following form for the compatibility function for one-node

malicious (one-node benign) case

r(i, j, k,m, b, b) =
1

1 + e−α2(x−T2)
− 0.5 (5.8)

where x = εi/ε, the ratio of the discrepancy by the malicious node i divided by the total

discrepancy, ε. In equation (5.8), the larger x is, the larger r is. That is to say, if we find

that for a particular triple (i, j, k), the discrepancy coming from node i is a large component

of the total discrepancy ε, then we have a high confidence to claim that node i is malicious

and nodes j and k are benign. Some example parameter choices of (5.8) are illustrated in

Figure 5.2.

The other one-node benign/malicious compatibility functions are defined in the

same manner as (5.8). We summarize all 8 compatibility functions in Table 5.1. Note that

in Table 5.1, xζ = εζ/ε, where ζ = i, j, k.

We have observed that the concept behind the compatibility function in (5.4) al-

most always matches with real data (see Section 5.4). In other words, what we have found

from the real data is that for all benign nodes, the total discrepancy, ε, is always small.

However, the design concept of the compatibility function in (5.8) is less robust on real

data. That is to say, some small portion of the triples having one malicious node and two

benign nodes, will violate the rule of x = εm
ε ≤

1
3 , where εm denotes the discrepancy from

the malicious node. For this reason, we scale the compatibility functions to be between -0.5

and 0.5 in (5.8). We have discovered that, empirically, this makes the convergence of the

confidences more stable.

51

Figure 5.2: Some example parameter settings of equation (5.8)

Table 5.1: Compatibility functions

r(i, j, k,m,m,m) 1− 2/(1 + e−α1(ε−T1))
r(i, j, k,m,m, b) -0.5 if ε ≤ T1

1/(1 + e−α2(xk−T2))− 0.5 if ε > T1

r(i, j, k,m, b,m) -0.5 if ε ≤ T1

1/(1 + e−α2(xj−T2))− 0.5 if ε > T1

r(i, j, k,m, b, b) -0.5 if ε ≤ T1

1/(1 + e−α2(xi−T2))− 0.5 if ε > T1

r(i, j, k, b,m,m) -0.5 if ε ≤ T1

1/(1 + e−α2(xi−T2))− 0.5 if ε > T1

r(i, j, k, b,m, b) -0.5 if ε ≤ T1

1/(1 + e−α2(xj−T2))− 0.5 if ε > T1

r(i, j, k, b, b,m) -0.5 if ε ≤ T1

1/(1 + e−α2(xk−T2))− 0.5 if ε > T1

r(i, j, k, b, b, b) 1− 2/(1 + e−α1(ε−T1))

52

We summarize the algorithm of relaxation labeling in Table 5.2. The pseudo code

for calculation of qi(λj) in equation (5.3) is listed in Table 5.3. In our simulations in Section

5.3.1, we specifically removed the exceptional cases where some sensor nodes are equidistant

to both true event and fictitious event locations. For example, we show one sensor network

consisting of four nodes in Figure 5.3. In that figure, we have two malicious nodes and

two benign nodes. The two benign nodes are equidistant to both the true event and the

fictitious event. Hence they appear to be consistent, but the result is incorrect (all agreeing

on the fictitious event in Figure 5.3). For the purpose of simulations, we have excluded

such ill-conditioned cases where sensor nodes are equidistant to both the true and fictitious

events.

Table 5.2: Algorithm for relaxation labeling
Use range estimates δi to calculate εi, εj , εk for all triples;
Initialize Pi(m) ' Pi(b) ' 0.5;
Set κ to be a small positive number;
while (for all nodes κ < Pi(m) < 1− κ) {
for each node {

Calculate qi(m) and qi(b) using Table 5.3;
Calculate Di(m) = Pi(m)(1 + qi(m)) + Pi(b)(1 + qi(b));
Calculate Pi(m) = Pi(m)× (1 + qi(m))/Di;
Calculate Pi(b) = 1− Pi(m);
} }

53

Table 5.3: Subroutine for calculation of qi(λj)
Given node number i and λ1;
total = 0.0;
n is the total number of nodes;
for (k from 0 to number of nodes) {

if (k 6= i) {
for (l from 0 to number of nodes) {

if ((i 6= l and k 6= l)) {
for (λ1 from m to b) {

tot = 0.0;
for (λ2 from m to b) {

Calculate r(i, k, l, λ1, λ2, λ3) using Table 5.1;
tot += r(i, k, l, λ1, λ2, λ3) × Pl(λ2);

}
total += tot × Pk(λ1);

} } } } }
return total/(n− 1)/(n− 2);

r1 b2

b 3
r

4

'
?

true event

%
6

fictitious event

Figure 5.3: A sensor network consisting of four nodes. Node 1 and node 4 are malicious;
while node 2 and node 3 are benign. In this example, node 2 and node 3 are equidistant to
both the true event and the fictitious event. Hence they appear to be consistently reporting
on the fictitious event. Ill-conditioned cases like this have been excluded in our simulations.

54

5.3 Experimental Results of Detecting Malicious Nodes Us-

ing Relaxation Labeling

5.3.1 Simulation

We randomly generate the positions of n nodes in a test field of [0, 10] × [0, 10].

Among the n nodes, nm are malicious. We simulate the sensor measurements zi using the

sensor model in (2.2) by setting α = 4

zi =
a

d2
i

+ wi, (5.9)

where a is the amplitude of the event, di is the actual distance from sensor i to the event,

and w is additive Gaussian noise. Without loss of generality, we set a = 1.0, and equation

(5.9) becomes

zi =
1
d2
i

+ wi (5.10)

For benign nodes, di is the distance from node i to (xb, yb), the location of the

true event. Similarly, for malicious nodes, di is the distance from node i to (xm, ym), the

fictitious event location that the malicious nodes report. To get an estimate of how large

we should choose the noise variance in our simulations, consider the position of a sensor

node, (xi, yi). xi and yi are both uniform random variables, xi ∼ U [0, 10] and yi ∼ U [0, 10].

Consider that the event is positioned at (0, 0), hence d2
i =

(
x2
i + y2

i

)
. The expected value

of x2
i is 100

3 , so the expected value of d2
i is roughly 200

3 . Hence a typical value of 1
d2i

is
3

200 = 0.015. So noise variance σ2 = 0.01 is large as compared to 1
d2i

.

To obtain range estimates from each sensor node, we use (2.4) to calculate

δi =
√

1
zi

=
√

1
1
d2i

+ wi
=

√
d2
i

1 + d2
iwi

(5.11)

In our first experiment, we set (xb, yb) = (3.0, 3.0) and (xm, ym) = (7.0, 7.0). All of

the probabilities are initialized at Pi(λj) ' 0.5. The number of nodes, n, is 7, and the first

two nodes are always chosen to be malicious, i.e. nm = 2. The parameters are determined

experimentally (see Section 5.4) as α1 = 4.0, T1 = 0.1, α2 = 2.0, T2 = 1/3. Note that α1

and α2 merely control the slope of the sigmoid function in Equation (5.4) and (5.8), and

small changes of α1 and α2 generally do not have any influence on the simulation outcome.

55

We choose α1 to be larger than α2 because for a triple to be consisting of all benign or all

malicious nodes is a more strict condition than one node benign or one node malicious2.

T2 is also almost always set to 1/3 since we assume that each node in a triple contributes

equally. Hence, the two parameters that impact the performance are T1 and the noise

variance σ2, where T1 can be controlled by the user but σ2 is determined by the system

environment.

To verify the correctness of our relaxation labeling algorithm, we set σ2 = 1.0 ×
10−6, essentially noise free. The relaxation labeling process took 22 iterations to converge,

and the time it took was less than 1 second on a Dual 1.8GHz PowerPC G5 computer. We

plot an instance of the (random) locations of the 7 nodes in Figure 5.4. Also, based on δ

reported from each sensor, we plot a circle for each node in Figure 5.4. In Figure 5.5, we

show the convergence of Pi(b), i = 1, ..., 7. Since P0(b) and P1(b) converged to 0, node 0

and node 1 are found to be malicious.

Figure 5.4: Simulation Example of 7 nodes. Two of the nodes are malicious.

2Recall that for a triple to be all benign or all malicious, its ε has to be small. Choosing α1 larger will
make the sigmoid function more like a threshold function

56

Figure 5.5: Convergence of P (b)

Next, to examine if the relaxation labeling process is correct, we repeat the same

experiment using σ2 = 1.0× 10−6 and T1 = 0.01 for 10,000 times. In all of the 10, 000 ex-

periments, the locations of the nodes are different. The result from the 10, 000 experiments

are all correct.

Next, we look at the impact of parameters on the system performance. At a par-

ticular T1 and noise variance σ2, we repeat the relaxation labeling experiment (2 malicious

nodes out of 7 nodes) for 100 times, each time the nodes are positioned randomly. For any

experiment out of 100 times, we will consider the entire experiment a failure if ANY of the

7 nodes is misclassified. Note that this is a very strict failure definition. We then perform

another 100-times experiment at different T1 and noise variance σ2 values. The failure rate

(out of 100 experiment) is shown in Figure 5.6 as a 3D graph. Note that in Figure 5.6,

the y-axis is log-scale (base 10), hence noise variance σ2 ranges from 1.0 to 1.0× 10−6. We

can see that at 1.0 × 10−5 ≤ σ2 ≤ 1.0 × 10−6 and 0.1 ≤ T1 ≤ 0.75, the error rates are

almost 0. The error percentage goes up as T1 goes up. As σ2 goes up, the failure rate

goes up considerably. These two phenomena are expected because as σ2 increases, more

and more of the localizations done by each triple would be inaccurate. Hence the overall

system error rate would go up. There should a suitable range for T1 because, as in (5.4), it

controls threshold for determining a triple to be all-benign (all-malicious) or not. If T1 is set

too high, then no matter how a triple behaves, it will always be regarded as an all-benign

57

(all-malicious) triple. This will create error for the overall system performance. Hence if T1

is set too high and as it increases, the error rate goes up. The number of iterations required

to reach convergence corresponding to the T1 and σ2 values in Figure 5.6 are illustrated in

Figure 5.7. We can see that as σ2 increases, the number of iterations required to converge

also increases. This is because that higher σ2 leads to more inaccurate localizations, and

there are more inconsistencies in the system. Increasing T1 also makes the required number

of iterations to go up a bit, although the trend is less obvious. If we increase T1 too large,

there will be more triples incorrectly regarded as one-benign (one-malicious). Such incon-

sistencies lead to the slight increase in the number of iterations in Figure 5.7. In Figure 5.6,

the average time to perform any 100-times experiment is 3.489 seconds on a Dual 1.8GHz

PowerPC G5 computer.

Figure 5.6: The effect of T1 and σ2 on the system performance

Finally, we fix the number of malicious nodes at 2, and increase the number of

total nodes in the network. We also fix T1 = 0.5 and repeat the experiments for 100 times,

each time with different random node locations. The failure rate (out of 100 times) is shown

in Figure 5.8 at three different noise levels. In Figure 5.8, we can see that the failure rate

slightly goes down as the number of nodes gradually increases. This agrees with intuition

58

Figure 5.7: The number of iterations required to reach convergence corresponding to the
T1 and σ2 values in Figure 5.6

because we are detecting the malicious nodes. As the number of total nodes increases, there

are more consistency in the system because the number of benign nodes go up. Note that in

Figure 5.8 , under the assumption of dense deployment, even if we misclassify a small num-

ber of benign nodes, we can still use the remaining benign nodes to correctly localize events.

5.3.2 Field Experiment

In this section, we use an existing set of field experiment data to test our relaxation

labeling algorithm [46]. The field experiment was conducted in an outdoor environment us-

ing MICA2 motes [29] running TinyOS [28]. 8 nodes are deployed in a 40 × 40 feet field,

as illustrated in Figure 5.9. The node positioned at (5, 5) of Figure 5.9 does not know its

position, hence the original purpose of the experiment [46] is to use the other nodes (node

0, node 1, · · · , node 6) to localize its position.

The node positioned at (5, 5) is denoted as the “event” node. The reader might

find it helpful to think of it as the event. The rest of the nodes are sensor nodes (since they

know their respective positions), and they localize the event node based on the received

59

Figure 5.8: Failure rate for a network of various number of nodes. At each network size,
only 2 nodes are malicious.

Figure 5.9: Deployment of sensor nodes in the field (Unit: 4 feet). The sensor nodes are
denoted as circles, while the event node, positioned at (5,5), is denoted as a cross.

60

signal from it. This experiment is isomorphic to our problem formulation in Chapter 3

since the event node plays the role of the event.

At each sensor node location, we plot circles using the range estimates δ, and the

result is illustrated in Figure 5.10. We observe from Figure 5.10 that due to noise, some

nodes report longer δ; while some report shorter δ. However, the intersections of most of

the circles fall on or near the event node location, (5, 5), in Figure 5.10.

Figure 5.10: For each measurement at sensor nodes, we plot a circle using the range esti-
mates. Note that the event node is at the center of the field, (5, 5). The intersections of
most of the circles are either on or near the event node due to noise.

To create colluding attacks, we chose node 0 and node 1 to be malicious and replace

their range estimates with the distance from each node to (1, 1), plus some noise distur-

bances. The noise variance chosen for the malicious node is small, σ2 = 0.000001, since

these nodes are colluding. That is to say, node 0 and node 1 report that the event occurs

at (1, 1). The range estimates for nodes 2, ..., 6 are chosen from the field measurements

we have. In future work, malicious nodes could be modeled as having randomness in their

behavior.

61

Using our relaxation labeling algorithm, we set the threshold in Equation (5.4) to

1.5. This threshold is higher than the T1 in Section 5.3.1 because the range of the sensor

field is 40 by 40 feet, larger than our simulations. Recall that T1 is the threshold on the total

discrepancy. As the scale of the system in this field experiment is larger, we are expecting a

larger total discrepancy. Hence T1 is larger. All the other parameters are unmodified. The

probabilities converged at iteration = 104. We show the convergence of the probabilities in

Figure 5.11, and we successfully identify node 0 and node 1 to be malicious and nodes 2,

..., 6 to be benign.

Figure 5.11: The probability of each sensor node being benign, P (b). P0(b) and P1(b) go
down to 0, which means that these two nodes cannot be benign.

In the field measurement data that we obtained, each node has several range

estimates of the event. We randomly pick two range estimates from every node, so we have

27 = 128 different experiments. Again, we pick the first 2 nodes to be malicious, and we

replace their range estimates δ with the distance to (1, 1). We successfully identified node

0 and node 1 to be malicious nodes in all 128 experiments.

62

5.3.3 Comparison with an Existing Algorithm

Liu et al. propose a voting-based secure localization algorithm [46]. We illustrate

the voting algorithm in Figure 5.12. The sensor field is divided into different non-overlapping

cells, and each cell has a counter. At the beginning, all counters are reset to zero. At each

node location, we plot a circle using the range estimate, δi, as the radius. Those cells on

the circle are incremented by one. Note that Liu et al. also consider a measurement error

term, ϕ, such that the circles are actually rings [46]. After all circles have been drawn, we

pick the cell having the highest count as the event location. The choice of cell sizes and

other statistical measures to make the voting algorithm more robust are also discussed in

[46]. Note that this is also a Hough-transform [19, 30, 3] like approach, where consistent

solutions get high increment values.

Figure 5.12: Illustration of the voting algorithm (Reproduced from [46]).

For our relaxation labeling algorithm, we identify the malicious nodes first, and

remove them from the network. The localization is then done by collecting the δi from the

benign nodes and using (2.11).

Here we are demonstrating that the voting algorithm produces more incorrect

63

location estimates as the number of malicious nodes increases. For the voting algorithm, we

choose the cell size to be 1.0×1.0, and we denote the center of the cell as the event location,

according to [46]. We repeat the localization experiments for 100 times, each time using a

different (and random) set of 20 node locations. The estimated event locations using each

algorithm are shown in Figure 5.13 under various number of malicious nodes. In Figure

5.13(a), there is only one malicious node present. The number of malicious nodes increase

from seven to nine in Figure 5.13(b), Figure 5.13(c) and Figure 5.13(d). The relaxation

labeling algorithms can correctly localize the event location, (3.0, 3.0), with a high number

of malicious nodes. Hence the estimated event locations (marked as circles) in Figure 5.13

are fairly close to each other and to the true event location. However, as the number of

malicious nodes increases, a higher percentage of estimates using voting algorithm (marked

as triangles) is close to the fictitious event location. The choice of cell size of 1.0×1.0 is not

related to this trend, since we have observed the same phenomenon at cell size of 0.5× 0.5.

64

(a) n1 = 1 (b) n1 = 7

(c) n1 = 8 (d) n1 = 9

Figure 5.13: Comparison of the performance of the relaxation labeling algorithm and the
voting algorithm in a 20-node network. In (a), only one node is malicious. In (b), (c) and
(d), the number of malicious nodes increase from seven to nine. Note that both algorithms
perform equally well when there are 2 - 6 malicious nodes. Since the experiments are re-
peated for 100 times, each with a different set of random node locations, overlapping results
are marked at the same spots in (a) - (d). The voting algorithm occasionally concludes
that the event is actually at the fictitious event location, (7.0, 7.0). However, our algorithm,
relaxation labeling, correctly localize the event at (3.0, 3.0) in every case.

65

5.4 Choice of Parameters

In Figure 5.6, we can see that the system performance is effected by two factors:

the noise in the measurement process, which is not controlled by the user, and the parame-

ters T1 and T2 that can be controlled by the user. In this section, we would like to develop

ways to choose useful values of parameters.

5.4.1 The Sigmoid Function

Before we can do that, we would like to remind the reader of the sigmoid function

in (5.4). Given a set of (i, j, k, b, b, b), (5.4) is essentially

r(ε) = 1− 2
1 + e−α1(ε−T1)

which is in the form of

r : R1 → R1 (5.12)

We know from (2.13) that ε is the sum of three discrepancies, εl, l ∈ {a, b, c} ∈ {1, 2, · · · , n},
within a triple, hence ε > 0. So the Domain of (5.12) is

{ε ∈ R1|ε > 0}

The Range of (5.12) is

{r(ε) ∈ R1|r(ε) ∈ [−1, 1]}

since

lim
ε→∞

r = −1

lim
ε→−∞

r = 1

The sigmoid function in (5.4) is also a solution to the differential equation

∂r

∂ε
=
α1

2
(r2 − 1). (5.13)

66

To see this, we take derivative of r(i, j, k, b, b, b) with respect to ε, and we get

∂r

∂ε
= 2(1 + e−α1(ε−T1))−2e−α1(ε−T1)(−α1)

= 2α1(
1− r

2
)2(1− 2

1− r
)

= 2α1(
1− r

2
)(

1− r
2
− 1)

= −2α1(
1− r

2
)(

1 + r

2
)

=
α1

2
(r2 − 1) (5.14)

The parameter T1 is the inflection point of the function r(ε). That is to say, ∂2r
∂ε2

= 0 at

ε = T1. To see this, we again take the derivative of (5.14) and set it equal to 0, and we have

∂2r

∂ε2
=

α1

2
(2r)

∂r

∂ε

=
α1

2
(2r)

α1

2
(r2 − 1)

=
α2

1

2
r(r2 − 1)

= 0 (5.15)

Therefore, we have r = 0, r = −1 or r = 1 as the solution to (5.15). When r = −1, it

is clear that r = −1 is the asymptotic limit of ε → ∞, hence r = −1 is merely a trivial

solution (∂r∂ε = 0). Similarly, r = 1 is another trivial solution to (5.15). The interesting

solution is when r = 0, we have

r(i, j, k, b, b, b) = 1− 2
1 + e−α1(ε−T1)

= 0

2
1 + e−α1(ε−T1)

= 1

1 + e−α1(ε−T1) = 2

e−α1(ε−T1) = 1

α1(ε− T1) = 0 (5.16)

Hence ε = T1. The property that ε = T1 is an inflection point will be used in the following

sections.

Analysis of the sigmoid function in (5.8) can be derived in a similar manner.

67

Recall from equations (5.4) and (5.8), four parameters are of interest

1. T1: controls the shift in (5.4). See Figure 5.1

2. α1: controls the slope in (5.4). See Figure 5.1

3. T2: controls the shift in (5.8). See Figure 5.2

4. α2: controls the slope in (5.8). See Figure 5.2

We now examine each of them as follows.

5.4.2 Choice of T1

We would like to choose suitable values of T1 so that the system error rate in terms

of misclassifying nodes into wrong labels would be minimal. However, it is difficult to write

any analytic equation that directly relates the system error rate to T1.

One alternative is to think of qi(λ) as the objective function, and relate qi(λ) to T1.

We call this approach the optimization perspective. Another alternative is to simply learn

from the experimental data. Our design objective in (5.4) is to choose T1 as a threshold

for the total discrepancy ε. By modeling the experimental data, we can choose a suitable

T1 that matches our design objective in (5.4). We call this approach data dependency

perspective.

Optimization perspective

In relaxation labeling, our objective is to calculate Pi(λ), the probability of object

i having label λ. What drives Pi(λ) is qi(λ). Hence we can begin the optimization approach

by focusing on qi(λ). We denote the correct value for qi(λ) to be Gi(λ). When node i is

indeed of type λ, Gi(λ) is 1.0. In other words, qi(λ) should be 1.0 when node i actually has

label λ. On the other hand, Gi(λ′) = −1.0 ∀ λ′ 6= λ because we are labeling node i with

a wrong label λ′.

Since we expect qi(λ) to be Gi(λ), we can design the following objective function∑
i

∑
λ

[qi(λ)−Gi(λ)]2 (5.17)

68

where i = 1, . . . , n are all nodes in the sensor network, and λ ∈ {m, b}. We will take deriva-

tive of this objective function, and set it to zero.

Using chain rule, we have

∂

∂T1

∑
i

∑
λ

[qi(λ)−Gi(λ)]2 =
∑
i

∑
λ

2 [qi(λ)−Gi(λ)]
∂ [qi(λ)−Gi(λ)]

∂T1
(5.18)

=
∑
i

∑
λ

2 [qi(λ)−Gi(λ)]
∂qi(λ)
∂T1

(5.19)

From the definition of qi(λ), we can expand the term ∂qi(λ)
∂T1

in (5.19) as

qi(λ) =
1
N

∑
j

∑
k

∑
λ′

Pj(λ′)
∑
λ′′

Pk(λ′′)r(i, j, k, λ, λ′, λ′′) (5.20)

∂qi(λ)
∂T1

=
1
N

(
∑
j

∑
k

Pj(λ)Pk(λ)
∂r(i, j, k, λ, λ, λ)

∂T1
) (5.21)

Note that now we are treating T1 as a parameter of r. That is to say, (5.4) is treated as

r(T1) by holding the ε in (5.4) as a constant. Take derivative of r(i, j, k, λ, λ, λ) with respect

to T1, we get

∂r(i, j, k, λ, λ, λ)
∂T1

= 2(1 + e−α1(ε−T1))−2e−α1(ε−T1)α1 (5.22)

= 2α1(
1− r

2
)2(

2
1− r

− 1) (5.23)

= 2α1(
1− r

2
)(1− 1− r

2
) (5.24)

= 2α1(
1− r

2
)(

1 + r

2
) (5.25)

=
α1

2
(1− r2) (5.26)

This arrives at a similar differential equation as (5.14).

Substituting (5.26) into (5.21), we get

∂qi(λ)
∂T1

=
1
N

(
∑
j

∑
k

Pj(λ)Pk(λ)
∂r(i, j, k, λ, λ, λ)

∂T1
)

=
1
N

∑
j

∑
k

Pj(λ)Pk(λ)
α1

2
(1− r2(i, j, k, λ, λ, λ))

 (5.27)

69

where j = 1, · · · , n, k = 1, · · · , n, j 6= i, k 6= i.

Hence (5.18) becomes

∂
∂T1

∑
i

∑
λ [qi(λ)−Gi(λ)]2 =∑

i

∑
λ [qi(λ)−Gi(λ)] 1

N

[∑
j

∑
k Pj(λ)Pk(λ)α1(1− r2(i, j, k, λ, λ, λ))

] (5.28)

Setting (5.28) to 0, we have∑
i

∑
λ

(qi(λ)−Gi(λ))
∑
j

∑
k

Pj(λ)Pk(λ)(1− r2(i, j, k, λ, λ, λ)) = 0 (5.29)

The next step is to relate (5.29) to T1. We can achieve this by using the Taylor

series

ex = 1 + x+
1
2
x2 +

1
6
x3 + · · · ' 1 + x (5.30)

and we have

r = 1− 2
1 + e−α1(ε−T1)

(5.31)

= 1− 2
1 + 1− α1(ε− T1)

(5.32)

= 1− 2
2− α1(ε− T1)

(5.33)

Using (5.33), we can have

1− r2 = (1− r)(1 + r) (5.34)

= (
2

2− α1(ε− T1)
)(2− 2

2− α1(ε− T1)
) (5.35)

=
4

2− α1(ε− T1)
− 4

[2− α1(ε− T1)]2
(5.36)

= 4
[

2− α1(ε− T1)
(2− α1(ε− T1))2

− 1
(2− α1(ε− T1))2

]
(5.37)

=
4(1− α1(ε− T1))
(2− α1(ε− T1))2

(5.38)

70

Substituting (5.38) into (5.29), we have∑
i

∑
λ

(qi(λ)−Gi(λ))
∑
j

∑
k

Pj(λ)Pk(λ)
4(1− α1(ε− T1))
(2− α1(ε− T1))2

= 0 (5.39)

One condition that (5.39) will hold is qi(λ) = Gi(λ) ∀ i, λ. However, it is

impossible to derive an analytic solution of T1 from this condition. The other condition

that (5.39) will hold is 4(1− α1(ε− T1)) = 0, that is

T̂1 = ε− 1
α1

(5.40)

The analytic solution in (5.40) is still difficult to be applied to real conditions since

ε is a variable that is different for every triple in the sensor network. To obtain a useful

solution for choosing T1, we take the expected value of (5.40)

T1 = E[ε]− 1
α1

(5.41)

' E[ε] (5.42)

where E[u] is the expected value of u and we have assumed that in practical cases, α1 can

be chosen to be large enough that 1
α1

is negligible as compared to ε. Hence we arrive at the

analytic solution that T1 can be chosen by E[ε]. The probability density function of ε can

be approximated by a histogram (see the following section for examples) and hence obtain

the expected value of ε.

Data dependency perspective

Based on our analysis in the previous two sections, we know that T1 controls the

location where r(ε) = 0. When ε = T1, it is also the location of an inflection point. Hence

T1 lies in the domain of r(ε), not in the range of r(ε). To choose a suitable value for T1, we

need to model ε well.

In other words, the suitable choice of T1 depends on ε, the total discrepancy of a

triple. To choose T1 is a data-dependent issue.

From (2.13), we know that ε is the sum of three respective discrepancies in a triple.

There are two terms in (2.13), namely δl and
√

(x̂0 − xl)2 + (ŷ0 − yl)2. δl is the reported

71

range from the node to the event, hence it is proportional to the scale of our coordinate

system.
√

(x̂0 − xl)2 + (ŷ0 − yl)2 is the distance from the node to the estimated event lo-

cation, hence it is also proportional to the scale of our coordinate system. Therefore, as

the scale of our coordinate system gets larger, T1 needs to be larger (and vice versa) since

it is the inflection point of ε. For example, in our simulations, the scale of our coordinate

system is chosen to be [0, 10] × [0, 10]. If we set it instead to be [0, 100] × [0, 100], then ε

will also be scaled by 10 times, and T1 will need to be similarly scaled.

The other factor of importance to T1 is the measurement noise, wi, in (2.2). ε

measures the difference between the reported range, δl, and the calculated distance from

the node to the event,
√

(x̂0 − xl)2 + (ŷ0 − yl)2. Regardless of whether the node is malicious

or benign, noise contributes to part of ε. Hence the suitable choice of T1 should also take

noise into account.

How do we model T1 based on the real data? In most situations, prior calibrations

can be used to find suitable parameters for the algorithm. As an example calibration, we

simulate a seven-node system with two malicious nodes whose experimental settings are the

same as those in Section 5.3.1. After repeating the simulation for 100 times, we show the

histogram of all ε in Figure 5.14. We denote the ε for triples which are all benign or all

malicious as εa. Similarly, we denote the ε for one benign or one malicious triples as εb. In

Figure 5.14, the histogram of εa is shown in red, while part of the histogram of εb is shown

in blue. The histogram of εb larger than 1 is not shown because the maximal εb has a much

larger scale than any of εa.

We can see from Figure 5.14 that most of the ε from all-benign (or all-malicious)

triples are smaller than the ε of one-benign (or one-malicious) triples. This is reasonable

since there is some disagreement among nodes for one-benign or one-malicious triples.

In a later section, we will need the largest values of εa, therefore, for notational

clarity, we denote εa in descending order as

εa1 ≥ εa2 ≥ · · · ≥ εa6000 (5.43)

since there are 6000 εa samples from a seven-node simulation which is repeated for 100 times.

72

Figure 5.14: Histogram of ε for all triples in a seven-node simulation environment. Scale is
[0, 10] × [0, 10], noise variance σ2 = 10−6. The histogram of εa is shown in red, while part
of the histogram of εb is shown in blue. Note that the histogram of εb larger than 1 is not
shown because the maximal εb has a much larger scale than any of εa.

We show the histogram of {εa1, · · · , εa6000} at σ2 = 10−6 in Figure 5.15.

Similarly, histogram of {εa1, · · · , εa6000} at σ2 = 10−5 in Figure 5.16. Histogram

of {εa1, · · · , εa6000} at σ2 = 10−4 is shown in Figure 5.17.

73

Figure 5.15: Histogram of {εa1, · · · , εa6000}, σ2 = 10−6. The maximal value on the horizontal
axis is chosen relative to the maximal value of εa for clearer presentation.

Figure 5.16: {εa1, · · · , εa6000}, σ2 = 10−5. The maximal value on the horizontal axis is
chosen relative to the maximal value of εa for clearer presentation.

74

Figure 5.17: {εa1, · · · , εa6000}, σ2 = 10−4. The maximal value on the horizontal axis is
chosen relative to the maximal value of εa for clearer presentation.

We have observed that as the noise variance of our system increases, {εa1, · · · , εa6000}
also increases. First, we plot 1

10

∑10
i=1 εai versus noise variance σ2 in Figure 6.4(a). We choose

the ten largest εa to represent the maximal values of εa. Next, we plot 1
6000

∑6000
i=1 εai, the

mean of εa, versus noise variance σ2 in Figure 6.4(b).

In order to construct a parametric form of ε, we observe that the histogram of εa

is close to the pdf of an exponential random variable in Figure 5.15, Figure 5.16 and Figure

5.17. The probability density function of an exponential random variable is

P (x) = κe−κx (5.44)

where κ here is a free parameter pertaining to the exponential random variable. We show

some example PDFs of an exponential random variable in Figure 5.19.

To derive T1 as a function of εa, consider that the mean (expected value) of an

exponential pdf is
1
κ

(5.45)

75

(a) 1
10

P10
i=1 εai versus noise variance σ2 (b) 1

6000

P6000
i=1 εai versus noise variance σ2

Figure 5.18: (a) The maximum (as represented by 1
10

∑10
i=1 εai) of εa versus noise variance

σ2 (b) The mean (as represented by 1
6000

∑6000
i=1 εai) of εa versus noise variance σ2

Figure 5.19: Some example PDFs of an exponential random variable.

76

The moment-generating function of an exponential pdf is

θ(t) =
∫ ∞

0
etxκe−κxdx

= κ

∫ ∞
0

e(t−κ)xdx

= κ

∫ 0

−∞
e(κ−t)xdx

= κ
e(κ−t)x

κ− t

∣∣∣∣∣
0

−∞

=
κ

κ− t
(5.46)

If we model the histogram of εa as an exponential pdf, we can use the Chernoff

bound

P [X ≥ a] ≤ e−atθ(t)

=
κe−at

κ− t
(5.47)

as a tool to choose a suitable T1. In (5.47), the Chernoff bound means that the probability

for an exponential random variable X to be larger than a certain value a is less than or

equal to its moment-generating function θ(t) multiplied by e−at [55]. Also, in (5.47), the

moment-generating function is a function of a variable, t. To have the tightest bound, take

d

dt
(
κe−at

κ− t
) = 0

−aκe−at(κ− t)− κe−at(−1)
(κ− t)2

= 0

κe−at = aκe−at(κ− t)

t = κ− 1
a

(5.48)

Substituting the t in (5.47) with t = κ− 1
a , the tightest Chernoff bound is

P [X ≥ a] ≤ aκe(1−aκ) (5.49)

Comparing with (5.47), (5.49) is the tightest Chernoff bound because t = κ− 1
a is the place

where κe−at

κ−t is minimized.

77

Example

When σ2 = 10−6, we can calculate the κ = 377.1124 by simply calculating the

inverse of the mean of the εa1 , · · · , εa6000 . Then we have

• Let T1 = 0.01, P [X ≥ T1] ≤ 0.2360

• Let T1 = 0.02, P [X ≥ T1] ≤ 0.0109

• Let T1 = 0.03, P [X ≥ T1] ≤ 3.75× 10−4

• Let T1 = 0.04, P [X ≥ T1] ≤ 1.15× 10−5

• Let T1 = 0.05, P [X ≥ T1] ≤ 3.31× 10−7

This means that at the particular scale and noise variance (σ2 = 10−6), if we choose

T1 = 0.01, it is not a good upper bound because there is a probability of 0.236 that some εa

will be greater than T1. However, at the same scale and noise variance, T1 = 0.05 would be

a suitable choice because the probability of εa > T1 is fairly small (' 3.31×10−7). However,

it does not imply that choosing a large T1 will always be good, as illustrated in Figure 5.6.

We have to choose a T1 that is large enough for P [X ≥ T1] to be small, but not too large to

raise the overall system error rate higher. We could choose a reasonably small P [X ≥ T1]

so that we are confident in saying that T1 is almost at the top of all εa. In this example, we

choose P [X ≥ T1] ≤ 1.0× 10−3, and calculate the corresponding T1 = 0.0262 using (5.49).

We present an algorithm for choosing T1 in Table 5.4.

Table 5.4: An algorithm to choose T1

1. Simulate a sensor network localization process, including malicious nodes

2. Collect all ε for all triples

3. Calculate κ in (5.49) by inverting the mean of the εa: κ = 1
1
Na

P
εa

where Na is the number of εa available

4. Set a reasonably small probability of P [X ≥ T1]. For example, P [X ≥ T1] ≤ 1.0× 10−3

5. Calculate the T1 corresponding to P [X ≥ T1] ≤ 1.0× 10−3 using (5.49)

78

5.4.3 Choice of T2

Similar to the role T1 plays, T2 controls the place where the sigmoid function in

(5.8) equals 0. Hence we can choose T2 as a function of x in (5.8). However, note that x in

(5.8) measures the relative contribution from this particular node i to the total discrepancy.

Since there are three nodes in a triple, and there is no reason for us to assume that one

node is more important to another, setting T2 to 1
3 makes the most sense, because choosing

any value other than T2 = 1
3 is equal to saying that node i (which is malicious) is more

important than nodes j or k.

5.4.4 Choise of α1 and α2

We perform secure localization in a seven-node system with two malicious nodes

using the following parameters

1. σ2 = 1.0× 10−6

2. T1 = 0.5

3. T2 = 1
3

α1 and α2 merely control the slope of the sigmoid functions, and have little impact on the

performance of the relaxation labeling algorithm. This can be demonstrated by the failure

rate of detecting malicious nodes. We adjust different values of α1, and the result demon-

strates that with a suitable choice of σ2, T1 and T2, the failure rate is consistently 0 at low

noise level. The same outcome is obtained for α2. (The graphs are not shown since they

are both 0).

For completeness, we report the effect of α1 and α2 at higher noise variances.

Again, we perform secure localization in a seven-node system with two malicious nodes

using the following parameters

1. σ2 = 1.0× 10−4

2. T1 = 0.5

3. T2 = 1
3

79

Figure 5.20 shows the system error rate with respect to different values of α1 and α2. As

we have expected, α1 and α2 do not effect the system performance.

Figure 5.20: Effect of α1 and α2 on the system performance. We choose a higher noise
variance, σ2 = 1.0×10−4 in this figure. There is little or no effect on the system performance
while the values of α1 and α2 are being changed.

5.5 Discussions on the Speed of Convergence

In this section, we aim to address the following question. How is the speed of

convergence of a relaxation labeling process affected by the total number of nodes in the

network?

One way to address this issue is from Appendix C of this dissertation, which for-

mulates relaxation labeling as a gradient descent method. We briefly review the related

parts of Appendix C here.

Classical relaxation labeling updates the probability as follows

P t+1
i (λj) =

P ti (λj)
[
1 + qti(λj)

]∑
k P

t
i (λk) [1 + qti(λk)]

(5.50)

We define Qi(λ) =
[
1 + qti(λ)

]
, and (5.50) becomes

80

P t+1
i (λj) =

P ti (λj)Q
t
i(λj)∑

k P
t
i (λk)Q

t
i(λk)

(5.51)

The relaxation labeling process in (5.51) can be expressed as a gradient method

P t+1
i (λ) = P ti (λ) + φsti(λ) (5.52)

where

sti(λ) =
P ti (λ)

[
Qti(λ)−

∑
k P

t
i (λk)Q

t
i(λk)

]∑
k P

t
i (λk)Q

t
i(λk)

(5.53)

and φ = 1.

The term sti(λ) in (5.52) is indeed the rate of change for Pi(λ)

sti(λ) = P t+1
i (λ)− P ti (λ) ' dPi(λ)

dt
(5.54)

Therefore, if sti(λ) is larger, Pi(λ) will converge faster (and vice versa).

5.5.1 Speed of Convergence

We will define the number of nodes in the network as n, and the number of ma-

licious nodes in the network as nm. Hence the ratio of malicious nodes in the network is

nm/n. In this section, we relate sti(λ), the term that controls the speed of convergence, to n.

In this dissertation, we have only two labels, m and b. Without loss of generality,

we look at si(b) first. Equation (5.53) becomes

sti(b) =
P ti (b)

[
Qti(b)− P ti (b)Qti(b)− P ti (m)Qti(m)

]
P ti (b)Q

t
i(b) + P ti (m)Qti(m)

(5.55)

=
P ti (b)Q

t
i(b)− P ti (b)

[
P ti (b)Q

t
i(b) + P ti (m)Qti(m)

]
P ti (b)Q

t
i(b) + P ti (m)Qti(m)

(5.56)

=
P ti (b)Q

t
i(b)

P ti (b)Q
t
i(b) + P ti (m)Qti(m)

− P ti (b) (5.57)

=
1

1 + P ti (m)Qti(m)

P ti (b)Q
t
i(b)

− P ti (b) (5.58)

81

In (5.58), we need to identify those terms related to n. The terms P ti (m) and P ti (b)

change with respect to time steps, hence we assume them to be constants, not functions of

n. Rather, Qti(m) and Qti(b) will be changed once n changes.

5.5.2 Speed of Convergence vs. the Total Number of Nodes

In order to analyze sti(b) (or sti(m), for that matter) as n changes, we consider a

specific case of the sensor network. Consider a sensor network of n nodes, and each node

is labeled as 1, 2, . . . , n. Node 1 is a malicious node, while nodes 2, . . . , n are all benign nodes.

Now we add an extra benign node into the network. That is, node 1 is malicious,

nodes 2, . . . , n+1 are all benign. We denote the Qti(b) when the network size is n as Qti(b)
∣∣∣
n
.

Consider node 1 (which is malicious) first. The rate of convergence for P t1(b) is

controlled by st1(b), which is controlled by Qt1(m)

Qt1(b)
. Since we know in advance that node 1 is

malicious, we know that, as P t1(b) converges, P t1(b) ≤ P t1(m). Hence we have

Qt1(b)
∣∣∣
n
≤ Qt1(m)

∣∣∣
n

(5.59)

By definition, we have the following equation

Qt1(m)
∣∣∣
n+1

= 1 +
1

n(n− 1)

{
(n− 1)(n− 2)(Qt1(m)

∣∣∣
n
− 1)

+
∑
i

∑
λ′

Pj(λ′)
∑
λ′′

Pn+1(λ′′)r(1, i, n+ 1,m, λ′, λ′′)

+
∑
i

∑
λ′

Pn+1(λ′)
∑
λ′′

Pj(λ′′)r(1, n+ 1, i,m, λ′′, λ′)
}

(5.60)

In (5.60), we know that node 1 is malicious, and the rest of the nodes are benign.

Hence as the system approaches convergence, only P1(m) and Pi(b), i = 2, . . . , n + 1 are

closer to 1. Other probabilities for other possible labels are small, or even close to 0. For the

purpose of analysis, we will omit those terms (this is, in spirit, similar to Taylor series where

we drop higher-order terms which are much smaller). Hence (5.60) can be approximated as

82

Qt1(m)
∣∣∣
n+1

' 1 +
1

n(n− 1)

{
(n− 1)(n− 2)(Qt1(m)

∣∣∣
n
− 1)

+
∑
i

Pj(b)Pn+1(b)r(1, i, n+ 1,m, b, b)

+
∑
i

Pn+1(b)Pj(b)r(1, n+ 1, i,m, b, b)
}

(5.61)

The terms r(1, i, n + 1,m, b, b) in (5.61) are positive numbers ∀i 6= 1, (n + 1).

Equation (5.61) can be simplified in the form of Qt1(m)
∣∣∣
n+1
≈ aQt1(m)

∣∣∣
n

+ b, where a and

b are both positive numbers. Hence we have

Qt1(m)
∣∣∣
n+1
≥ Qt1(m)

∣∣∣
n

(5.62)

In a similar manner, we can have

Qt1(b)
∣∣∣
n+1
≤ Qt1(b)

∣∣∣
n

(5.63)

Moreover, the fact the node 1 is malicious still holds, hence we have

Qt1(b)
∣∣∣
n+1
≤ Qt1(m)

∣∣∣
n+1

(5.64)

From (5.59), (5.62), (5.63) and (5.66), we have

st1(m)
∣∣∣
n+1
≥ st1(m)

∣∣∣
n

(5.65)

which means that the speed of convergence should be faster as we introduce one more benign

node. Let us take a numerical example, suppose that Qt1(b)

Qt1(m)
= 0.4

0.6 . As we introduce more

benign nodes, let us say that Qt1(b)

Qt1(m)
becomes 0.2

0.8 . Since 0.4
0.6 >

0.2
0.8 , we have 1

1+ 0.4
0.6

< 1
1+ 0.2

0.8

.

Hence we know that the speed of convergence will be be faster. We illustrate the following

equation in Table 5.5

st1(m) ' 1

1 + Qt1(b)

Qt1(m)

(5.66)

We only select a few decreasing values of Qt1(b) and increasing values of Qt1(m) in Table

5.5. As Table 5.5 illustrates, rt1(m) will go up as Qt1(b) decreases and Qt1(m) increases.

For the purpose of analysis, we consider only the case where there is one malicious

node inside the network. When the sensor network has a different number of malicious

83

Table 5.5: Example values of (5.66).
Qt1(b) Qt1(m) st1(m)

0.5 0.5 0.5
0.4 0.6 0.6
0.3 0.7 0.7
0.2 0.8 0.8
0.1 0.9 0.9

nodes, it becomes difficult to analyze. Qti(λ) is a collection of compatibility functions,

rti(λ). The value that rti(λ) gives depends on the actual triples and how they perform the

localizations. It is difficult to predict, as n gets larger, whether a Qti(λ) will be larger or

smaller simply because it has more rti(λ) in the summation.

5.5.3 Experiments

We simulate a sensor network of n nodes, in which only the first node is malicious.

We then record the number of iterations required to converge. After we repeat such experi-

ments for 10 times, we average the number of iterations and show them in Figure 5.21. We

can see that the system converges faster as n gets larger. This agrees with our analytical

solution in (5.65).

However, the speed of convergence will not get larger as long as the network grows

to a certain size. Recall that, by definition, 0 ≤ Qti(λ) ≤ 1. Hence in this example, Qt1(m)

is getting closer to 1, while Qt1(b) is getting smaller and closer to 0. Let us consider a

numerical example. Let us say that Qt1(b)

Qt1(m)
= 0.1

0.9 . As the network size gets larger, Qt1(b)

Qt1(m)

becomes 0.05
0.95 , which is not much different from 0.1

0.9 . Hence the speed of convergence will not

indefinitely increase as the network size grows.

84

Figure 5.21: Number of iterations required to reach convergence at various number of
network sizes. We can see that the system converges faster as n gets larger. However, the
speed of convergence does not get any larger as the network reaches a certain size (20 in
this experiment).

85

Chapter 6

Secure Tracking Using Relaxation

Labeling

Our algorithm can successfully detect malicious nodes in event localization scenar-

ios. Now we design and extend the relaxation labeling algorithm for secure tracking issues.

For background on target tracking, please refer to Chapter 3.

6.1 Related Work

There is little or no literature on the topic of secure tracking in sensor networks.

Capkun et al. [6] propose a protocol to securely verify the time of encounters in multi-hop

networks. However, Capkun et al. [6] did not address Bayesian tracking as defined by (3.1)

and (3.2). Besides, the work in [6] is based on an ad hoc network, which is different from

our centralized setting.

Our work uses relaxation labeling to identify the malicious nodes in the sensor

network, and use only information from benign nodes to build the particle filter to perform

target tracking [10]. Both the problem definition and the proposed algorithm are novel [10].

6.2 Algorithm to Detect Malicious Nodes while Tracking

We propose a secure tracking algorithm based on relaxation labeling algorithms [51,

66, 67, 52, 31, 42]. Whereas for localization, at least three active nodes are required to lo-

86

calize an event; for tracking, fewer may be used. For example, in [47], Liu et al. propose to

perform target tracking by activating one node at a time. However, for security purposes,

we activate two or more nodes at each time step k in the sensor networks. With such redun-

dancy, any inconsistency in the behavior of nodes can be exploited. Besides, activating more

nodes at each time step allows us to remove some portion of them that are deemed malicious.

We begin the explanation of our algorithm by considering the case where we ac-

tivate two nodes at each time step, as illustrated in Figure 6.1. The cases in which we

activate three or more nodes will be discussed later in this section. As defined in Section

3.2, we assume that each sensor node has adequate processing power, and can calculate the

current estimate of the target location based on previous estimates. Let us begin with time

step t = 0, when the initial position of the target, p(x0), is assumed to be known. p(x0) is

passed to the two nodes (nodes 1 and 2) activated1 at time step t = 1. After calculating

p(x1|z1) using particle filter algorithms, each of the two nodes at t = 1 will pass p(x1|z1) to

both of the two nodes at t = 2 (nodes 3 and 4). Based on the two different p(x1|z1) from

t = 1 given, the two nodes at t = 2 will each produce two different p(x2|z2). For example,

in Figure 6.1, node 3 receives p(x1|z1) from both nodes 1 and 2, so it can calculate two

different p(x2|z2) based on them. What if, in Figure 6.1, that node 1 is malicious, and node

2 is benign (assuming that node 3 is benign)? Then the two estimates of p(x2|z2) calculated

by node 3 could be drastically different since the p(x1|z1) reported by node 1 is already

different from the p(x1|z1) by node 2.

Following such logic, we design our relaxation labeling algorithm based on sets of

three nodes, which we again denote as triples. There are three types of triples

1. Type I : a triple consisting of two predecessor nodes and one successor nodes. For

example, nodes (1,2,3) and (1,2,4) in Figure 6.1

2. Type II: a triple consisting of one predecessor node and two successor nodes. For

example, nodes (1,3,4) and (2,3,4) in Figure 6.1

3. Type III: a triple consisting solely of nodes at the same time instant. For example,

nodes (1,2,3) and (4,5,6) in Figure 6.5
1We use the node activation algorithm discussed in Section 3.1.3.

87

u�����
�*

HH
HHHHj

0

u -
@
@
@
@
@@R

1

u���
�
���

-

2

u
@@R
���
3

u
@@R
���

4
t = 0 t = 1 t = 2

Figure 6.1: At t = 0, we assume P (x0) is known, and this information is passed to the two
nodes activated at t = 1. Using the particle filter algorithm, node 1 and node 2 can each
calculate p(x1|z1), and those information is passed to node 3 and node 4. Both node 3 and
node 4 have two inputs, hence they will each produce two distinctive p(x2|z2). Note that in
this model, each node (e.g. node 3) reports BOTH of its estimates to the central processor.

In our algorithm, the nodes in a Type III triple do not pass information to each

other, so there is no way to exploit their inconsistency. We will only use Type I and Type

II triples in our algorithm. As a result, we will design two different compatibility functions

for these two types of triples.

Note that the three Types are mutually exclusive and collectively exhaustive for

triples. However, a single node could belong to one or more Types. For example, in Figure

6.1, node 1 belong to both (1, 2, 3), a Type I triple, and (1, 3, 4), a Type II triple.

When malicious nodes collude in a localization scenario, as in Chapter 2 and 5, they

report ranges which are distances from the fictitious event position to the node positions.

In a tracking scenario, nodes report a PDF, hence the way they collude is to report PDF’s

whose means lies on the fictitious target location, as defined in Chapter 3.

6.2.1 Type I Triples

In this section, we focus on Type I triples and how we define the compatibility

function for them. In Figure 6.2, we illustrate a Type I triple, and we denote the predecessor

nodes as g1 and g2; and the successor node as s. For clarity of notation, explicit references

to time are omitted unless required by context.

Both node g1 and node g2 pass information to node s, hence node s can examine

88

u
HHH

HHHj

g1

u�����
�*

g2

u
@@R
���
s

t t + 1

Figure 6.2: Two predecessor nodes passing information to one successor node.

the difference between the two beliefs that it produces and reports. We denote the belief

that node s calculates based on the belief of node g1 as p1(x|z). Similarly, we denote the

other belief that node s calculates as p2(x|z). We can quantify their difference by comparing

the expected values of p1(x|z) and p2(x|z)

d = || < p1(x|z) > − < p2(x|z) > || (6.1)

= ||
∫

x[p1(x|z)− p2(x|z)]dx|| (6.2)

where || · || denotes the 2-norm.

Let us consider whether g1, g2 or s is malicious or benign here. Since each node

in a Type I triple could have two possible labels: malicious or benign, there ought to be

23 = 8 combinations.

If node s is malicious, then, regardless of what were passed to it from its prede-

cessors, node s will report two p(x|z), both of which have means that fall on the fictitious

target location. Hence d should be close to 0 if node s is malicious.

If node s is benign, there are three cases:

1. One of its predecessor is malicious (the other benign)

2. Both nodes g1 and g2 are malicious

3. Both nodes g1 and g2 are benign

89

If node s is benign, and one of its predecessors is malicious, the two outputs from

node s would disagree on each other. Hence we expect d to be large in case 1. However,

cases 2 and 3 are equivalent, since in case 2 the two malicious nodes are colluding and both

point to the fictitious location. Hence in both case 2 and case 3, we expect d to be small.

We list all the possible cases for a Type I triple in Table 6.1. Note that in Figure 6.1, the

behaviors of Table 6.1 apply to nodes (1, 2, 3) and (1, 2, 4). A formulation for “small” and

“large” will be presented in Section 6.2.3.

Table 6.1: Expected behaviors in d for a Type I triple
Predecessor 1 Predecessor 2 Successor Behavior

malicious malicious malicious d ' 0
malicious malicious benign d small
malicious benign malicious d ' 0
malicious benign benign d large

benign malicious malicious d ' 0
benign malicious benign d large
benign benign malicious d ' 0
benign benign benign d small

6.2.2 Type II Triples

In a Type II triple, one predecessor node will pass its p(x|z) to two different suc-

cessors. We highlight such scenario in Figure 6.3. We call the predecessor node g, and the

two successors node s1 and s2 in this section. Assuming that node g is benign, and one

of the successors is malicious (and the other benign), the outputs from the two successor

nodes would be different. Again, we can exploit the inconsistency whenever the nodes are

behaving differently.

We denote (for Type II triples) the belief that node s1 calculates as p1(x|z), and

it has a different meaning from the p1(x|z) defined for Type I triples. Similarly, the belief

that node s2 calculates is denoted as p2(x|z). Then we can calculate the difference between

p1(x|z) and p2(x|z) using (6.1).

Regardless of whether node g is malicious or not, as long as one successor is

90

uHH
HHHHj

�
��
�
��*

g

u-s1

u-
s2

t t + 1

Figure 6.3: One predecessor node passing information to two successor nodes.

malicious and the other is not, we expect d to be large. What if both of node s1 and node

s2 are benign? Since they are given the same input from node g, their outputs should be

similar because they are both benign nodes. Hence we expect d to be small when both of

node s1 and node s2 are benign. If both of node s1 and node s2 are malicious, we expect

d ' 0, since no matter what their inputs are, they will collude in their reports. We list all

8 possible behaviors in Table 6.2.

Table 6.2: Expected behaviors in d for a Type II triple
Predecessor Successor 1 Successor 2 Behavior
malicious malicious malicious d ' 0
malicious malicious benign d small
malicious benign malicious d small
malicious benign benign d small

benign malicious malicious d ' 0
benign malicious benign d large
benign benign malicious d large
benign benign benign d small

6.2.3 Algorithm Details

The expected behaviors in Table 6.1 and 6.2 are the core of our relaxation labeling

algorithm. We define a compatibility function, r, based on d. In Table 6.1 and 6.2, if d is

expected to be small or close to 0, we have

r = 2e−αd − 1 (6.3)

91

On the other hand, if d is expected to be large, we will use this compatibility function

r =
2

1 + e−α(d−β)
− 1 (6.4)

where in (6.3) and (6.4), α and β are parameters. Note that the compatibility function r

will always return a value between -1 and 1. The higher the value that r returns, the more

compatible the 3 nodes are. For example, in Figure 6.1, if we assume node 1 is malicious,

node 2 is benign, and node 3 is malicious, then we expect d ' 0, as in Table 6.1. We then

calculate r using 2e−αd − 1. If the assumption that node 1 is malicious, node 2 is benign,

and node 3 is malicious is indeed true, then the empirical data, d, should lead r to return

a value close to 1. Otherwise, it should return a negative number (which is larger than -1).

We illustrate some parameter settings of (6.3) and (6.4) in Figure 6.4. In Figure

6.4(a), we expect d to be small for a correct labeling, hence a small d will lead r to return a

value close to 1. On the other hand, we expect d to be large in Figure 6.4(b), hence a large

d will make r return a value close to 1.

(a) (6.3) (b) (6.4)

Figure 6.4: Illustration of some parameter settings of (6.3) and (6.4)

So if we assume node 1 is malicious, how is that compatible with, say, node 2

being malicious and node 3 benign? How about node 1 being malicious, node 2 and 3 both

being benign? In each possible case, we can calculate the compatibility function r using

(6.3) or (6.4). We denote malicious as m and benign as b, and we define a function q which

92

accumulates all the effects of labeling node i as λ

qti(λ) =
1
N

∑
j

∑
k

∑
λ′

Pj(λ′)
∑
λ′′

Pk(λ′′)r(·), (6.5)

where N = (n−1)(n−2), n is the number of nodes in the network, j = 1, ..., n, k = 1, ..., n,

j 6= i, k 6= i, j 6= k, and P (·) is a confidence function to be defined and explained later.

As before, in (6.5), qti(λ) is a way to tally all the possibilities when we label node i as λ,

label node j as λ′ and label node k as λ′′. Note that in (6.5), t is the iteration number, and

this superscript on the right-hand side has been omitted for clarity. Furthermore, in (6.5),

we exclude all the cases that node i, j and k are at the same time step in the tracking process.

Finally, we define confidence P (λ) as in Chapter 5. The confidence of node i

having label λj is denoted as Pi(λj), and

0 ≤ Pi(λj) ≤ 1 ∀i, j (6.6)

and ∑
j

Pi(λj) = 1. (6.7)

remain the same.

Note that in (6.7), we only have two labels, hence λj ∈ {m, b}. Being labeled as

m means that this node is malicious, and being labeled λb means benign. Following [51],

we will iteratively update the confidence of node i having label j as

P t+1
i (λj) =

P ti (λj)
[
1 + qti(λj)

]
Dt
i

, (6.8)

where Dt
i =

∑
k P

t
i (λk)

[
1 + qti(λk)

]
is a normalization required to ensure that Pi(λj) sums

to 1, and t stands for iteration. If P t2(m) converges to 1, while P t2(b) converges to 0, then

node 2 is found to be malicious.

In Figure 6.1, we apply the relaxation labeling process to nodes 1, 2, 3 and 4. If,

say, P1(m) approaches 1 after certain iterations in the relaxation labeling process, then we

determine node 1 to be malicious. After the relaxation labeling process, we remove mali-

cious nodes, and average the p(x|z) of benign nodes at t = 2. The averaged p(x|z) is passed

93

on to the two nodes active at t = 3. The two nodes at t = 3 will each calculate p(x|z), and

pass them on to the two nodes at t = 4. We then use the four nodes at t = 3, 4 to perform

relaxation labeling. After the malicious nodes are detected, we average the correct results

from benign nodes, and produce a single p(x|z) to transmit to the two nodes at t = 5. The

process repeats afterwards.

It is also possible to activate more nodes at each time step. What is more, if we

have more than 3 nodes, we can not only do tracking, but also localization of the target.

This will provide added security mechanism using the secure localization algorithms. Fig-

ure 6.5 illustrates the case when we activate three nodes at each time step in tracking.

We will examine any combination of 3 nodes in the relaxation labeling process, except the

combination of nodes (1, 2, 3) or nodes (4, 5, 6). If we select two predecessor nodes and

one successor node, we should use the compatibility functions as in Table 6.1. Similarly, if

the 3 nodes that we choose have one predecessor and two successors, we will use the com-

patibility function in Table 6.2. The algorithm is summarized in Table 6.3 and in Figure 6.6.

u�����
�*

HHH
HHHj

-
0

u -H
HHH

HHj

@
@
@
@
@@R

1

u�����
�*

-HH
HHHHj

2

u���
�
���

��
��

��*

-

3

uHHj-��*4
uHHj-��*5
uHHj-��*
6

t = 0 t = 1 t = 2

Figure 6.5: We can activate three nodes at each time step during the tracking process. Each
successor node will have three inputs, hence it can produce three different outputs. The
inconsistency between its three outputs can be used in the relaxation labeling process.

94

Table 6.3: Secure tracking algorithm using relaxation labeling
time t = k Receive p(xk−1|zk−1)

(if k == 1, p(x0|z0) ≡ p(x0) is known)
Activate n nodes
Node i calculates pi(xk|zk)

time t = k + 1 Activate n nodes
Each node receives pi(xk|zk), i = 1, . . . , n
Node j calculates pj(xk+1|zk+1), j = 1, . . . , n
Use relaxation labeling algorithm
Remove malicious nodes
Average the results to obtain p̂(xk+1|zk+1)

time t = k + 2 Go to time t = k; use the same algorithm except
k is replaced with (k + 2)
p(xk−1|zk−1) is replaced with p̂(xk+1|zk+1)

u����
@
@
@R

-

u -
A
A
A
A
AAU

@
@
@Ru����-

@
@
@Ru�����

�
�
�
���

-

u
A
A
AU

-
@@Ru���-
@@Ru-������� A

AAU

-�
���

u
A
A
A
A
AAU

-
@
@
@Ru

@
@
@R

-�
�
��

u����-�
�
�
�
���

u
A
A
AU

-
@@Ru���-
@@Ru-������� A

AAU

-�
���

u
A
A
A
A
AAU

-
@
@
@Ru

@
@
@R

-�
�
��

u����-�
�
�
�
���

u
A
A
AU

-
@@Ru���-
@@Ru-������� A

AAU

-�
���

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Figure 6.6: Illustration of the relaxation labeling algorithm. The rectangular box stands for
relaxation labeling algorithm. At each time step (except time 0), we activate 3 nodes. For
every 3 nodes (except time 0), we perform relaxation labeling algorithm to detect malicious
nodes. After removing malicious nodes and average the results from benign nodes, the
relaxation labeling algorithm produces a correct result and pass it on to the next time step.

95

6.3 Experimental Results

In this section, we demonstrate results of relaxation labeling for secure tracking.

The target in our experiments is traveling in a two-dimensional space. That is, the state

vector is x = [x, y, ẋ, ẏ]T . We begin our experiments with a linear motion model of the

target as

xk = xk−1 + [0.25, 0.25, 0, 0]t + vk−1 (6.9)

where vk−1 is the process noise and the initial state is x = [0.1, 0.2]t. In (6.9), we assume

that the target is traveling at a constant velocity. This assumption is for the simplicity

of our simulations, and such restrictions can be relaxed. For example, in [64], Zhou et al.

proposed a linear motion model in which both the velocity and noise variance are updated

at each time step. Another issue worth of note is that, although (6.9) is linear and looks

simple, in modeling real-world applications such as tracking objects in video sequences [64]

a linear model does a fairly good job.

Our sensor model is

zk =
50

‖xk − ξi‖
+ wk (6.10)

wt is the measurement noise.

To choose suitable variances for the process and measurement noises, consider the

evolution of the state sequences, x, over a certain period of time steps. For example, here

we choose time steps t = 0, 1, · · · , 50. At t = 0, the target starts at the origin of our

coordinate system, that is, it is given an initial position of x = [0.1, 0.2]t. We confine our

observations to be within this 50-time-step window, because such a window is wide enough

to demonstrate the dynamics of the target maneuvering and to show the effectiveness of our

algorithm. The assumption of the initial position, x = [0.1, 0.2]t, is also reasonable because

although the target is constantly maneuvering, we can always choose any time step (during

the path of the target) as t = 0 and that particular target location as the origin of our

coordinate system.

The initial position of the target is x = [0.1, 0.2]t, and it is traveling with a con-

96

stant velocity of ẋ = [0.25, 0.25]. After 50 time steps, therefore, it will be at a position

around x = [12.6, 12.7]t. Adding the influence of noise, we expect that the position of

the target, at t = 50, will generally have a range of 0 ≤ x1,x2 ≤ 15. Hence we choose an

isotropic covariance matrix for the disturbance, v, to be Q =

 0.15 0

0 0.15

. To choose an

appropriate noise variance, we also observe from (6.10) that the measurement zk is obtained

by 50
‖xk−ξi‖

, where ‖xk − ξi‖ is the distance from the current target position to the node

position. We use the node activation algorithm in Section 3.1.3 to activate nodes, hence

the activated nodes are fairly close to the latest target position. Hence we can assume that

0 < ‖xk − ξi‖ < 2, and 0 < 50
‖xk−ξi‖

< 30. So we choose the variance of the measurement

noise wt to be 3.0, although it is trivial to vary in simulations.

6.3.1 Tracking with Multiple Sensor Nodes

We begin our experiments with target tracking by activating multiple (redundant)

sensor nodes. The tracking result in a two-dimensional space using three sensor nodes is

shown in Figure 6.7. Note that the three sensor nodes act independently. We denote the

nodes as s1, s2 and s3. The node at t = k, sk1, will pass its estimate, p(xk|zk) to node sk+1
1

only. Similarly, sk2 will pass information to sk+1
2 only, and sk3 will interact with sk+1

3 only.

In other words, the three activated nodes at any time step act independently, as shown

in Figure 6.7. The central processor collects all of the data from each active sensor node,

and it performs the relaxation labeling algorithm to detect malicious nodes before activate

future nodes.

We can also activate more sensor nodes to perform tracking. For example, we

activate four sensor nodes in Figure 6.8 and five nodes in 6.9. Note that in Figure 6.7,

Figure 6.8 and Figure 6.9, there is no malicious node present.

In the simulations illustrated in Figure 6.8 and Figure 6.9, all of the nodes can

sense the target, and the only difference between them is the number of nodes activated.

Hence the node positions are not shown. Node selection is shown in the next section.

97

Figure 6.7: Tracking of the target in a two-dimensional space, x, by using three sensor nodes.
We activate three sensor nodes at each time. The three sensor nodes act independently to
perform tracking.

Figure 6.8: Tracking of the target by using four sensor nodes. The experimental setup is
identical to Figure 6.7. The only difference is that we activate four nodes.

98

Figure 6.9: Tracking of the target by using five sensor nodes. This experiment is similar to
Figure 6.7 except that we activate five nodes.

6.3.2 Node Selection Algorithm

We follow the node selection algorithm proposed in [47] to calculate the mutual

information between p(xk+1|zk) and p(zk+1|zk)2. Here we demonstrate a target traveling

in a two-dimensional space, as shown in Figure 6.10. In the area that the target is likely to

pass, we have deployed 500 sensor nodes which are randomly located within [0, 15]× [0, 15].

At every time step, we choose 20 nodes which are closest to the current (known) target lo-

cation, xk. Then for each of the 20 nodes, we can calculate the mutual information between

p(xk+1|zk) and p(zk+1|zk) [47], and pick the 3 nodes that have the highest mutual informa-

tion values. Figure 6.10 shows the three nodes that have the highest mutual information

at t = 20, while Figure 6.11 shows the three nodes at t = 30. Recall from Section 3.1.3

that the calculation of mutual information (for activation of the next nodes) is equivalent

to calculating velocity implicitly.

We enlarge the sensor field to [0, 15] × [0, 15] because we are dealing with a ma-

neuvering target in Chapter 6. The target is maneuvering with a certain unpredictable

disturbance, so it is better to enlarge the sensor field to [0, 15]× [0, 15].
2This is explained in Section 3.1.3

99

Figure 6.10: Illustration of the node activation results. The states (only positions are
shown) of the target are shown as diamonds. At t = 20, 20 nodes are chosen to calculate
the mutual information, which are shown as circles. Among them, three nodes that have
the highest mutual information will be selected as active nodes at t = 21, which are shown
as filled circles. We can see from the trajectory of the target at t = 19, 20 that the current
best estimate of velocity is in the northwest direction. Hence the three nodes which are in
the northwest direction of the target position at t = 20 are activated. This agrees with the
highest mutual information that we calculated.

100

Figure 6.11: Illustration of the node activation algorithm. This is from the same experiment
on Figure 6.10, except that the result here is extracted at t = 30. Unlike Figure 6.10, it is
harder to see where the target is heading based on its trajectory at t = 28, 29, 30. Hence
the three nodes activated at t = 30 do not appear to fall on one particular spot that the
target is likely heading.

101

6.3.3 Secure Tracking Results

In this section, we demonstrate the performance of relaxation labeling in secure

tracking, as compared to averaging the results from the multiple sensor nodes. Recall that

we have activated several multiple sensor nodes at each time step, and they act indepen-

dently to perform target tracking. One method of secure tracking is simply to average the

calculated p(x|z) over the sensor nodes at each time step. We denote this method as aver-

aging. Our algorithm, however, detect malicious nodes first, and average the results from

only benign nodes.

First, we activate three sensor nodes in Figure 6.12. Denoting the three nodes at

each time steps as sk1, sk2 and sk3, we choose one node to be malicious at every ten time

steps. In Figure 6.12, we have s10
1 , s20

2 , s30
3 , s40

1 and s50
2 as malicious nodes. Over the 60

time steps, we can average the result of the three paths, and calculate the mean-squared

error (MSE) with respect to the true target path. The MSE of such averaging algorithm is

1.2349 in Figure 6.12.

Figure 6.12: Adding malicious nodes to the sensor network. We choose sensor nodes s10
1 ,

s20
2 , s30

3 , s40
1 and s50

2 to be malicious. In other words, there is one malicious nodes (out of
three) at t = 10, 20, 30, 40, 50.

102

Next, we compare the performance of using relaxation labeling and averaging

(without relaxation labeling). Figure 6.13 shows the result of activating three sensor nodes.

By using relaxation labeling to remove malicious nodes, the MSE decreases to 0.4938 in

Figure 6.13.

Figure 6.13: Comparison of relaxation labeling and averaging. The solid line is obtained by
averaging the three paths in Figure 6.12. The dotted line is obtained by removing malicious
nodes using relaxation labeling.

Next, we activate four nodes at each time step, as shown in Figure 6.14. The ma-

licious nodes are s10
1 , s20

2 , s30
3 , s40

4 and s50
1 . The MSE over the 60 time steps is 0.7090, which

is better than the MSE in Figure 6.12. This comes at the price of activating more sensor

nodes and utilizing more system resources. The result using relaxation labeling to remove

malicious nodes is shown in Figure 6.15. We can see that the MSE by using relaxation

labeling has been decreased to 0.3669.

In a similar manner, we activate five nodes in Figure 6.16. The result of using

relaxation labeling to remove malicious nodes is shown in Figure 6.17. Figure 6.16 and

Figure 6.17 have identical experimental setup as the previous one, except that we active

five sensor nodes. It is worth noting that since we only have one malicious node present

103

Figure 6.14: Tracking result with malicious nodes. We activate four sensor nodes, and there
is one malicious node (which can sense the target) at t = 10, 20, 30, 40, 50, and that node
remains active (malicious) for only one time step

Figure 6.15: Comparison of the tracking performance. The solid line is obtained by averag-
ing the result in Figure 6.14, and its MSE is 0.7090. The dashed line is obtained by using
relaxation labeling to remove malicious nodes. Its MSE is 0.3669, which is smaller than the
MSE of averaging.

104

and we activate five sensor nodes, averaging has relatively good results. This is because

that the malicious node is a minority among the five nodes. Using relaxation labeling still

provides a better MSE, 0.4081.

Figure 6.16: Tracking result with malicious nodes by activating five sensor nodes.

105

Figure 6.17: Comparison of the tracking performance for five active nodes.

As a final demonstration, we activate five nodes in Figure 6.18. In this experiment,

we choose one malicious node at two consecutive time steps. That is, the malicious nodes

are

1. s10
1 and s11

2

2. s20
2 and s21

3

3. s30
3 and s31

4

4. s40
4 and s41

5

5. s50
5 and s51

1

For example, when we apply the relaxation labeling algorithm to t = 10 and t = 11,

we will have one malicious node at both time steps. We further examine the probability of

each node being malicious at t = 10 and t = 11 in Figure 6.19. Figure 6.19 shows that we

correctly identify s10
1 and s11

2 to be malicious nodes, which is a correct result. The relaxation

labeling algorithm took about 20 iterations to converge, which is very fast. There are other

malicious nodes at t = 20, 30, 40, 50. The probabilities of being malicious for those nodes

at t = 20, 30, 40, 50 are listed in Appendix D for the ease of reading. The final tracking

106

result using relaxation labeling is shown in Figure 6.20. Figure 6.20 shows that detection

of malicious nodes are successful for t = 10, 20, 30, 40, 50.

Figure 6.18: Tracking performance under the influence of malicious nodes. Note that no
secure tracking algorithm is performed in this figure.

107

Figure 6.19: Probability of being malicious nodes for the five nodes at t = 10 and another
five nodes at t = 11. Hence we have 5× 2 = 10 P (m) here. The first five probabilities are
for P (λ) at t = 10. The last five are for t = 11. We can see that at t = 10, the first node
is found to be malicious, while at t = 11, the second node is found to be malicious. This
agrees with the actual data.

108

Figure 6.20: Tracking performance under the influence of malicious nodes. Two secure
tracking results are shown in this figure. One is averaging (shown in solid line), and the
other is relaxation labeling (shown as the dashed line). The MSE for averaging is 1.2615.
The MSE for relaxation labeling is 0.7331.

109

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, the problems of secure localization and secure tracking for

sensor networks were investigated. Malicious nodes are assumed to be colluding, and the

only way to detect them is by their behaviors. A new relaxation labeling algorithm was

proposed which employs higher-order compatibility functions to detect malicious nodes, and

then uses the report from benign nodes to perform localization and tracking. The perfor-

mance of the relaxation labeling algorithm has been demonstrated with both simulations

and field experiments. The result of secure localization has also been compared with an

existing algorithm based on majority voting. Our algorithm is shown to be able to de-

tect malicious nodes, even when they are colluding. Choice of suitable parameters for the

relaxation labeling algorithm was also discussed.

7.2 Future Work

In Chapter 6, we considered the target tracking problem for sensor networks. Tar-

get tracking, as explained in Chapter 3, consists of two parts: prediction and update. The

update stage hinges on the measurement made by the sensor nodes - that is, we can only

correctly estimate the current location of the target if sensor nodes make measurement of

the target range.

A future research direction is to consider that, due to the difficulty of the terrain,

110

some parts of our monitored area do not have sensor nodes deployed. However, the target

may go through these areas. In other words, our sensor network will inevitably lose track

of the target for several time steps when the target is within the difficult domain. For

example, consider the scenario depicted in Figure 7.1 which has a shaded area where no

sensor node can be deployed. We denote the shaded area as the unavailable area. Therefore,

when the target passes through the unavailable area, we cannot make measurement of the

range between the target and any sensor node. The problem is then to decide which sensor

nodes to the right of the unavailable area (assuming that the target is traveling from left

to right) should we activate in order not to lose track of the target?

t = 0 r����
t = 1r -

t = 2r
@
@
@R
t = 3r -

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

t = 4?b
t = 4?

b

t = 5?b
t = 5?b

t = 5?b
t = 5?b

r target (actual position)b target (possible position)

Figure 7.1: A possible scenario where a target travels through some obstacles where no
sensor nodes are deployed. In this scenario, the target is traveling from the left to the right.
The shaded area is where there is no sensor nodes are deployed. For example, consider
that the shaded area is a river. The target is a tank that we are tracking. There are no
sensor nodes deployed in the river, however, the tank can successfully pass through the river.
Assume that it takes one time step for the tank to pass the river, we cannot determine the
location of the tank at t = 4. The problem is to determine which nodes to the right of the
unavailable area should we activate, at t = 5, in order not to miss the tank?

One possible approach to this research problem is to consider a possible radius and

a possible angle for the target to move, based on the available motion model of the target.

Based on the last available target position, we may predict a candidate area wherein the

target will be, at the immediately following time step. Depending on the number of time

steps that the target will not be measured, we may expand this candidate area based on

the available motion model of the target. Hence the nodes within the expanded candidates

area which are located beyond the unavailable area should be activated. Figure 7.2 shows

111

an example of a fan-shaped candidate area. Based on the linear motion model of the target,

we can calculate the radius of the fan-shaped area based on the speed of the target. The

angle of the fan-shaped area is also determined according to the past trajectory of the target

and known bounds on accelerations. Hence we may expand the candidate area for all the

necessary time steps that we have no measurement of the target. The nodes to be activated

will be within the expanded candidate areas.

t = 0 r����
t = 1r -

t = 2r
@
@
@R

t = 3

r

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

H
HHH

HH

�
�
�
�
�
�

@
@
@
@
@
@

r target (actual position)

@@I candidate area for t = 5

�
�
�
���

candidate area for t = 4

Figure 7.2: Candidate areas for node activations. The candidate area is calculated based
on an estimated speed and an estimated turning angle of the target. First, the candidate
area for t = 4 is calculated. Then the candidate area for t = 5 is calculated based on the
candidate area for t = 4. Those nodes inside the candidate area for t = 5 will be activated
to detect possible target appearances.

Obviously, the candidate area will enlarge as time progresses. If the target is

undetected for several time steps (within the unavailable area), the number of nodes required

to be activated will be large. Another possible research approach is to predict a maximum

likelihood position of the target. In other words, we try to extend the target trajectory. For

example, Jonker et al. provide an algorithm for path extension [36]. After we arrive at the

maximum likelihood estimate of the target location beyond the unavailable area, we may

turn on only the nodes close to the maximum likelihood target location. In this way, we

do not have to activate a large number of nodes and waste precious system resources. One

example is illustrated in Figure 7.3. In Figure 7.3, we try to extend the target trajectory and

arrive at the maximum likelihood target location at t = 5. We only activate nodes within

the neighborhood of the estimated target location at t = 5. The size of the neighborhood

is increased or decreased based on our confidence of the estimated target location at t = 5.

112

t = 0 r����
t = 1r -

t = 2r
@
@
@R
t = 3r -

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

t = 4b���
�
�
��

t = 5b
&%
'$ r target (actual position)b target (possible position)

Figure 7.3: Maximum likelihood estimates of the target locations. We predict the maximum
likelihood target location of the target at t = 4. Based on the estimated target location at
t = 4, we predict the maximum likelihood location of the target at t = 5. We only activate
the nodes within a certain neighborhood of the estimated target location at t = 5. The size
of the neighborhood can be adjusted according to our confidence of the prediction of the
likely target position.

113

Bibliography

[1] I. F. Akyildiz, W. Su, and Y. Sankarasubramaniam. Wireless sensor networks: a survey.

Computer Networks, 38(4):393 – 422, March 2002.

[2] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters

for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal

Processing, 50(2):174 – 188, February 2002.

[3] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern

Recognition, 13(2):111 – 122, 1981.

[4] Yaakov Bar-Shalom and Xiao-Rong Li. Estimation and Tracking. Artech House, 685

Canton Street, Norwood, MA 02062, 1993 1993.

[5] B. Bhanu and O. D. Faugeras. Segmentation of images having unimodal distributions.

IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(4):408 –

419, July 1982.

[6] S. Capkun, L. Buttyan, and J.-P. Hubaux. Sector: secure tracking of node encounters

in multi-hop wireless networks. In ACM Workshop on Security of Ad Hoc and Sensor

Networks (SASN), pages 21 – 32, 2003.

[7] J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for nonlinear

problems. IEE Proceedings - Radar, Sonar and Navigation, 146(1):2 – 7, February

1999.

[8] C. G. Chang, W. E. Snyder, and C. Wang. Robust localization of multiple events in

sensor networks. In IEEE International Conference on Sensor Networks, Ubiquitous,

and Trustworthy Computing, 2006, volume 1, pages 168 – 177, June 2006.

114

[9] C. G. Chang, W. E. Snyder, and C. Wang. A new relaxation labeling architecture for

secure localization in sensor networks. In IEEE International Conference on Commu-

nications, pages 3076 – 3081, June 2007.

[10] C. G. Chang, W. E. Snyder, and C. Wang. Secure tracking in sensor networks. In

IEEE International Conference on Communications, pages 3082 – 3087, June 2007.

[11] C. G. Chang, W. E. Snyder, and C. Wang. Secure target localizaiton in sensor networks

using relaxation labeling. International Journal of Sensor Networks, 2008.

[12] J. C. Chen, K. Yao, and R. E. Hudson. Source localization and beamforming. IEEE

Signal Processing Magazine, 19:30 – 39, 2002.

[13] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying

and routing for ad hoc heterogeneous sensor networks. International Journal of High

Performance Computing Applications, 16(3), Fall 2002.

[14] J. Craig. Introduction to Robotics: Mechanics and Control. Prentice Hall, 3 edition,

October 2003.

[15] D. Crisan, P. Del Moral, and T. J. Lyons. Non-linear filtering using branching and

interacting particle systems. Markov Processes Related Fields, 5(3):293 – 319, 1999.

[16] D. Culler, D. Estrin, and M. Srivastava, editors. Special Issue on Sensor Networks,

volume 37 of Computer. IEEE Computer Society, August 2004.

[17] J. Deng, R. Han, and S. Mishra. Sensor networks: Defending against path-based dos

attacks in wireless sensor networks. In the 3rd ACM workshop on Security of ad hoc

and sensor networks, 2005.

[18] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential monte carlo methods in

practice. Springer-Verlaag New York, Inc, 2001.

[19] R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and curves

in pictures. Communications of the ACM, 15:11 – 15, January 1972.

[20] D. E. Dudgeon and R. M. Mersereau. Multidimensional digital signal processing.

Prentice-Hall, Inc., 1984.

115

[21] J.-O. Eklundh and A. Rosenfeld. Some relaxation experiments using triples of pixels.

IEEE Transactions on Systems, Man and Cybernetics, SMC-10(3):150 – 153, 1980.

[22] L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor

networks. In Proceedings of the 9th ACM conference on Computer and communications

security, pages 41 – 47, 2002.

[23] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the physical world with

pervasive networks. IEEE Pervasive Computing, 1(1):59 – 69, Jan - March 2002.

[24] O. D. Faugeras and M. Berthod. Improving consistency and reducing ambiguity in

stochastic labeling: an optimization approach. IEEE Transactions on Pattern Analysis

and Machine Intelligence, PAMI-3(4):412 – 424, July 1981.

[25] A. M. Finch, R. C. Wilson, and E. R. Hancock. Matching delaunay triangulations

by probabilistic relaxation. In V. Hlavac and R. Sara, editors, Proceedings of the

Sixth International Conference on Computer Anaylsis of Images and Patterns, volume

970/1995, pages 350 – 358, 1995.

[26] N. Gordon, D. Salmond, and A. F. M. Smith. Novel approach to nonlinear and non-

gaussian bayesian state estimation. IEE Proceedings-F (Radar and Signal Processing),

140(2):107 – 113, April 1993.

[27] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan,

L. Gu, G. Zhou, J. Hui, and B. Krogh. Vigilnet: an integrated sensor network system

for energy-efficient surveillance. ACM Transactions on Sensor Networks, 2(1):1 – 38,

February 2006.

[28] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The platforms enabling wireless

sensor networks. Communications of the ACM, 47(6):41 – 46, 2004.

[29] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System

architecture directions for networked sensors. In Architecture Support for Programming

Languages and Operating Systems, pages 93 – 104, November 2000.

[30] Paul V. C. Hough. Method and means for recognizing complex patterns. U.S. Patent

3069654, March 25 1960.

116

[31] R. A. Hummel and S. W. Zucker. On the foundations of relaxation labeling processes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(3):267 – 287, May

1983.

[32] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky. Nonparametric belief

propagation for self-localization of sensor networks nonparametric belief propagation

for self-localization of sensor networks. IEEE Journal on Selected Areas in Communi-

cations, 23(4):809 – 819, April 2005.

[33] M. Ilyas and I. Mahgoub, editors. Handbook of sensor networks: compact wireless and

wired sensing systems. CRC Press LLC, 2005.

[34] M. Isard and A. Blake. Condensation – conditional density propagation for visual

tracking. International Journal of Computer Vision, 29(1):5 – 28, August 1998.

[35] A. H. Jazwinski. Stochastic processes and filtering theory. New York: Academic, 1970.

[36] R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense and

sparse linear assignment problems. Computing, 38(4):325 – 340, December 1987.

[37] D. L. Stephens Jr. and A. J. Peurrung. Detection of moving radioactive sources using

sensor networks. IEEE Transactions on Nuclear Science, 51(5):2273 – 2278, October

2004.

[38] R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions

of the ASME - Journal of Basic Engineering, 82:35 – 45, 1960.

[39] R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory.

Transactions of the ASME - Journal of Basic Engineering, 83:95 – 107, 1961.

[40] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J.V. Sanders. Fundamentals of Acoustics.

John Wiley and Sons, Inc., 1999.

[41] J. Kittler and E. R. Hancock. Contextual decision rule for region analysis. Image and

Vision Computing, 5(2):145 – 153, May 1987.

[42] J. Kittler and J. Illingworth. Relaxation labeling algorithms - a review. Image and

Vision Computing, 3(4):206 – 216, 1985.

117

[43] L. Lazos and R. Poovendran. Serloc: Robust localization for wireless sensor networks.

ACM Transactions on Sensor Networks (TOSN), 1(1):73 – 100, August 2005.

[44] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed. Detection, classification, and tracking

of targets. IEEE Signal Processing Magazine, pages 17 – 29, March 2002.

[45] X. R. Li and V. P. Jilkov. Survey of maneuvering target tracking: dynamic models.

In Oliver E. Drummond, editor, Proceedings of SPIE Conference on Signal and Data

Pocessing of Small Targets, volume 4048, pages 212 – 235, July 2000.

[46] D. Liu, P. Ning, and W. K. Du. Attack-resistant location estimation in sensor networks.

In Fourth International Symposium on Information Processing in Sensor Networks

(IPSN2005), pages 99 – 106, April 15 2005.

[47] J. Liu, J. Reich, and F. Zhao. Collaborative in-network processing for target tracking.

EURASIP Journal on Applied Signal Processing, 4:378 – 391, March 2003.

[48] J. S. Liu and R. Chen. Sequential monte carlo methods for dynamical systems. Journal

of The American Statistical Association, 93:1032 – 1044, 1998.

[49] S. A. Lloyd. An optimization approach to relaxation labelling algorithms. Image and

Vision Computing, 1(2):85 – 91, May 1983.

[50] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communications

of the ACM, 43(5):51 – 58, May 2000.

[51] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling by relaxation oper-

ations. IEEE Transactions on Systems, Man and Cybernetics, SMC-6(6):420 – 433,

June 1976.

[52] A. Rosenfeld and A. Kak. Digital Picture Processing. Academic Press, 2 edition, 1982.

[53] A. H. Sayed, A. Tarighat, and N. Khajehnouri. Network-based wireless location: chal-

lenges faced in developing techniques for accurate wireless location information. IEEE

Signal Processing Magazine, 22(4):24 – 40, July 2005.

[54] M. Srivastava, R. Muntz, and M. Potkonjak. Smart kindergarten: sensor-based wireless

networks for smart developmental problem-solving enviroments. In the 7th annual

118

international conference on Mobile computing and networking, pages 132 – 138. ACM

Press, 2001.

[55] H. Stark and J. W. Woods. Probability and random processes with applications to signal

processing. Prenteice Hall, third edition, 2002.

[56] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin.

Wireless sensor networks: Habitat monitoring with sensor networks. Communications

of the ACM, 47(6):34 – 40, June 2004.

[57] D. H. von Seggern. CRC Standard Curves and Surfaces. CRC Press LLC, 1992.

[58] B. Warneke, M. Last, B. Liebowitz, and K. Pister. Smart dust: communicating with

a cubic-millimeter computer. Computer, 34(1):44 – 51, January 2001.

[59] B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak,

J. M. Kahn, B. E. Boser, and K. S. J. Pister. An autonomous 16 mm3 solar-powered

node for distributed wireless sensor networks. Proceedings of IEEE Sensors, 2:12 – 14,

June 2002.

[60] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filtering of injected false data

in sensor networks. IEEE Journal on Selected Areas in Communications, 23(4):839 –

850, April 2005.

[61] F. Zhao and L. J. Guibas. Wireless sensor networks: an information processing ap-

proach. Morgan Kaufmann Publishers, 2004.

[62] Y. Zhao. Vehicle location and navigation systems. Artech House, 1997.

[63] Y. Zhao. Standardization of mobile phone positioning for 3g systems. IEEE Commu-

nications Magazine, 40(7):108 – 116, July 2002.

[64] S. K. Zhou, R. Chellappa, and B. Moghaddam. Visual tracking and recognition using

appearance-adaptive models in particle filters. IEEE Transactions on Image Processing,

13(11):1491 – 1506, November 2004.

[65] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved hop-by-hop authentication

scheme for filtering of injected false data in sensor networks. In IEEE Symposium on

Security and Privacy, 2004.

119

[66] S. W. Zucker, E. V. Krishnamurthy, and R. L. Haar. Relaxation processes for scene

labeling: convergence, speed and stability. IEEE Transactions on Systems, Man and

Cybernetics, 8(1):41 – 48, 1978.

[67] S. W. Zucker, Y. G. Leclerc, and J. L. Mohammed. Continuous relaxation and local

maxima selection: conditions for equivalence. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 3(2):117 – 127, 1981.

120

Appendices

121

Appendix A

Derivation of the Kalman Filter

In this section we derive the Kalman filter1 [38, 39, 4]. The motion model of the

target is

xk = Fkxk−1 + vk−1 (A.1)

where Fk is a known system matrix. Meanwhile, the measurement model is

zk = Hkxk + wk (A.2)

where Hk is also a known measurement matrix. vk−1 and wk are zero-mean, statistically

independent, and have covariances of Qk−1 and Rk, respectively. That is

Qk−1 = E

[
vk−1

(
vk−1

)T]
(A.3)

Rk = E

[
wk
(
wk
)T]

(A.4)

We begin with the given pdf p(xk−1|zk−1), which is assumed Gaussian, i.e.

p(xk−1|z1:k−1) = N (xk−1; mk−1|k−1,Pk−1|k−1) (A.5)

which is to say, we can parameterize p(xk−1|zk−1) using

mk−1|k−1 = E
[
xk−1

]
(A.6)

1Appendix A derived by C.-C. G. Chang, using notation from [2] and the approach described in [4]

122

and covariance

Pk−1|k−1 = E

[(
xk−1 −mk−1|k−1

)(
xk−1 −mk−1|k−1

)T]
(A.7)

Next, we calculate the intermediate pdf p(xk|zk−1) based on p(xk−1|zk−1). First, Kalman

proposes to predict the state estimates at t = k using

mk|k−1 = E
[
xk|zk−1

]
= Fkmk−1|k−1 (A.8)

On the other hand, the transition of the true states, xk, is xk = Fkxk−1 + vk−1. Therefore,

we can calculate the error between the state estimates and true states using

ek|k−1 = xk −mk|k−1 (A.9)

= (Fkxk−1 + vk−1)− Fkmk−1|k−1 (A.10)

= Fkek−1 + vk−1 (A.11)

Hence for Pk|k−1, we have

Pk|k−1 = E
[
ek|k−1

(
ek|k−1

)]
(A.12)

= E

[(
Fkek−1 + vk−1

)(
Fkek−1 + vk−1

)T]
(A.13)

= E

[
Fkek−1

(
Fkek−1

)T]
+ E

[
vk−1

(
vk−1

)T]
(A.14)

= FkPk−1|k−1
(
Fk
)T

+ Qk−1 (A.15)

The intermediate pdf p(xk|zk−1) is another Gaussian

p(xk|z1:k−1) = N (xk; mk|k−1,Pk|k−1) (A.16)

Next, we will calculate the desired pdf p(xk|zk) using the intermediate pdf in

(A.16). We will soon derive that the desired pdf p(xk|zk) is also Gaussian

p(xk|z1:k) = N (xk; mk|k,Pk|k) (A.17)

whose parameters are calculated using

mk|k = mk|k−1 + Kk(zk −Hkmk|k−1) (A.18)

123

Pk|k = Pk|k−1 −KkHkPk|k−1 (A.19)

and where

Sk = HkPk|k−1
(
Hk
)T

+ Rk (A.20)

is the covariance of the innovation term zk −Hkmk|k−1, and

Kk = Pk|k−1
(
Hk
)T

Sk
−1

(A.21)

is the Kalman gain.

The derivation begins with calculating mk|k using mk|k−1. Kalman proposes that

the measurement prediction is ẑk = Hkmk|k−1, so the measurement residual (also referred

to as the innovation term) is

zk − ẑk =
(
zk −Hkmk|k−1

)
(A.22)

Kalman proposes to update the state predictions mk|k using the intermediate state predic-

tions, mk|k−1, as

mk|k = mk|k−1 + Kk
(
zk −Hkmk|k−1

)
(A.23)

where Kk is the Kalman gain. Substituting the measurement model in (A.2) into (A.23),

we have

mk|k = mk|k−1 + Kk
(
zk −Hkmk|k−1

)
= mk|k−1 + Kk

(
Hkxk + wk −Hkmk|k−1

)
(A.24)

To calculate the covariance of the error term Pk|k, we have

Pk|k = E

[
ek
(
ek
)T]

(A.25)

= E

[(
xk −mk|k

)(
xk −mk|k

)T]
(A.26)

Substituting (A.24) into (A.26), we have

124

Pk|k = E

[(
xk −mk|k

)(
xk −mk|k

)T]
= E

{[
(I −KkHk)(xk −mk|k−1)−Kkwk

]
[
(I −KkHk)(xk −mk|k−1)−Kkwk

]T }
(A.27)

The error term xk −mk|k−1 is uncorrelated with the measurement noise wk, so we have

Pk|k = E

{[
(I −KkHk)(xk −mk|k−1)−Kkwk

]
[
(I −KkHk)(xk −mk|k−1)−Kkwk

]T }
= (I −KkHk)E

[
(xk −mk|k−1)(xk −mk|k−1)T

]
(I −KkHk)T

+ KkE

[
wk
(
wk
)T](

Kk
)T

(A.28)

= (I −KkHk)Pk|k−1(I −KkHk)T + KkR
(
Kk
)T

(A.29)

= Pk|k−1 −KkHkPk|k−1 −Pk|k−1
(
Hk
)T (

Kk
)T

+Kk

(
HkPk|k−1

(
Hk
)T

+R

)(
Kk
)T

(A.30)

The sum of the diagonal elements of a matrix is the trace of a matrix. In the case of a error

covariance matrix in (A.30), the trace is the sum of the mean squared errors. The Kalman

filter is a Minimum Mean Square Error (MMSE) estimator. The mean squared error may

be minimized by minimizing the trace of Pk|k, and by minimizing the trace of Pk|k we can

obtain the desired Kk.

We differentiate Pk|k with respect to Kk in order to find the conditions of this

minimum. Note that the trace of a matrix is equal to the trace of its transpose, hence we

have

Tr[Pk|k] = Tr[Pk|k−1]− 2Tr[KkHkPk|k−1] + Tr

[
Kk

(
HkPk|k−1

(
Hk
)T

+ R
)(

Kk
)T]

(A.31)

where Tr[·] is the trace of a matrix.

125

Differentiating with respect to Kk gives

Tr[Pk|k]
dKk

= −2
(
HkPk|k−1

)T
+ 2Kk

(
HkPk|k−1

(
Hk
)T

+ R
)

(A.32)

= 0 (A.33)

we have (
HkPk|k−1

)T
= Kk

(
HkPk|k−1

(
Hk
)T

+ R
)

(A.34)

Solving for Kk, we have

Kk = Pk|k−1
(
Hk
)T (

HkPk|k−1
(
Hk
)T

+ R
)−1

(A.35)

= Pk|k−1
(
Hk
)T (

Sk
)−1

(A.36)

(A.36) is the Kalman gain equation as previously defined in (A.21). Also, the definition of

the covariance of the innovation term in (A.37) comes from (A.36)

Sk = HkPk|k−1
(
Hk
)T

+ Rk (A.37)

Substituting (A.36) into (A.30), we obtain

Pk|k = Pk|k−1 −Pk|k−1
(
Hk
)T (

HkPk|k−1
(
Hk
)T

+ R
)−1

HkPk|k−1 (A.38)

= Pk|k−1 −KkHkPk|k−1 (A.39)

(A.39) proves the error covariance matrix update equation given in (A.19). We illustrate

the workflow of the Kalman filter estimation process in Figure A.1.

Example. Consider an illustrative example in which the target state consists only

of the target position in the two-dimensional space

x =

 x

y

 (A.40)

and our motion model for the target is linear

xk+1 = Fxk + vk =

 1 1
2

0 1

 x

y

+ vk (A.41)

126

Update state sequence

xk|k = xk|k−1 + Kk
“
zk − ẑk

”
Update state covariance

Pk|k = Pk|k−1 −KkHkPk|k−1

Measurement at t = k

zk = HkXk + wk

wk --

Measurement residual

“
zk − ẑk

”

?

Filter gain

Kk = Pk|k−1
“
Hk

”T
Sk−1

?

�

Measurement prediction

ẑk = Hkmk|k−1

?

Innovation covariance

Sk = HkPk|k−1
“
Hk

”T
+ Rk

?

Transition to t = k

xk = Fkxk−1 + vk−1

vk−1

?

-

State prediction

xk|k−1 = Fkmk−1|k−1

?

State prediction covariance

Pk|k−1 = FkPk−1|k−1
“
Fk

”T
+ Qk−1

?

State at t = k − 1

xk−1

?

State estimate at t = k − 1

mk−1|k−1

?

State covariance at t = k − 1

Pk−1|k−1

?

Evolution
of the system

Estimation
of the state

State Covariance
Computation

Figure A.1: The workflow of the Kalman filter estimation(reproduced from [4])

127

The noise vk is zero-mean, Gaussian

E[vk] =

 0

0

 E[vk
(
vk
)T

] = Q =

 1 0

0 1

 (A.42)

For the measurement model, we have

zk = Hxk + wk =

 1 0

0 1

 x

y

+ wk (A.43)

which is again linear. The noise in the measurement model is also zero-mean, Gaussian

E[wk] =

 0

0

 E[wk
(
wk
)T

] = R =

 1 0

0 1

 (A.44)

To initialize the system, we choose

x0 =

 5

7

 m0|0 =

 5

7

 P0|0 =

 1 0

0 1

 (A.45)

Using those initial parameters, we can simulate the target moment by generating random

noise sequences. In this example, we show the tracking of the target using Kalman filter

for 10 iterations. The first random noise that we generate is

v0 =

 −0.4326

−1.6656

 (A.46)

Hence we can calculate the first location of the target as

x1 =

 1 1
2

0 1

 5

7

+

 −0.4326

−1.6656

 =

 8.0674

5.3344

 (A.47)

Next, we generate the first random measurement noise as

w1 =

 1.1892

−0.0376

 (A.48)

Hence we can calculate the first measurement value as

z1 =

 1 0

0 1

 8.0674

5.3344

+

 1.1892

−0.0376

 =

 9.2566

5.2968

 (A.49)

128

If we continue this process, we can simulate more samples of the noise sequences as

v1 =

 −1.1465

1.1909

v2 =

 0.3273

0.1746

v3 =

 −0.5883

2.1832

v4 =

 1.0668

0.0593

v5 =

 0.2944

−1.3362



v6 =

 −0.6918

0.8580

v7 =

 −1.4410

0.5711

v8 =

 0.8156

0.7119

v9 =

 1.1908

−1.2025

v10 =

 −1.6041

0.2573


Similarly, repeat the process of generating measurement noise

w2 =

 −0.1867

0.7258

w3 =

 −0.1364

0.1139

w4 =

 −0.0956

−0.8323

w5 =

 0.7143

1.6236

w6 =

 1.2540

−1.5937



w7 =

 −0.3999

0.6900

w8 =

 1.2912

0.6686

w9 =

 −0.0198

−0.1567

w10 =

 −1.0565

1.4151


Using these noise sequences, we can simulate the evolution of the state sequence as

x2 =

 9.5882

6.5253

x3 =

 13.1781

6.7

x4 =

 15.9398

8.8832

x5 =

 21.4481

8.9424

x6 =

 26.2138

7.6063



x7 =

 29.3251

8.4643

x8 =

 32.1163

9.0354

x9 =

 37.4496

9.7473

x10 =

 43.5141

8.5449

 (A.50)

Next, we repeat the process of generating measurements using (A.43), and we have

z2 =

 9.4015

7.2511

 z3 =

 13.0417

6.8139

 z4 =

 15.8441

8.0508

 z5 =

 22.1625

10.5660

 z6 =

 27.4678

6.0125



z7 =

 28.9252

9.1542

 z8 =

 33.4065

9.7040

 z9 =

 37.4298

9.5906

 z10 =

 42.4576

9.96

 (A.51)

At this point we have built a system in which the system is moving according to the state

sequences in (A.50) and the sensor measurements are in (A.51).

129

Now we begin to perform target tracking using the Kalman filter. First, using

(A.8), we update the intermediate m1|0 as

m1|0 = Fm0|0 =

 1 1
2

0 1

 5

7

 =

 8.5

7.0

 (A.52)

For P1|0, we use (A.15) and we have

P1|0 = FP0|0FT +Q =

 1 1
2

0 1

 1 0

0 1

 1 0
1
2 1

+

 1 0

0 1

 =

 2.25 0.5

0.5 2

 (A.53)

The next two items to be calculated in the Kalman filter process are the innovation term S

and the Kalman gain K. We use (A.37) to calculate the innovation term and obtain

S1 = HP1|0HT + R =

 1 0

0 1

 2.25 0.5

0.5 2

 1 0

0 1

+

 1 0

0 1

 =

 3.25 0.5

0.5 3


To calculate the Kalman gain, we use (A.21) and we have

K1 = P1|0HT
(
S1
)−1 =

 2.25 0.5

0.5 2

 1 0

0 1

 0.3158 −0.0526

−0.0526 0.3421

 =

 0.6842 0.0526

0.0526 0.6579


The final two items that we seek are the state estimate m1|1 and its error covariance P1|1.

We already have K1, z1 and m1|0, and substitute them into (A.18), we have

m1|1 = m1|0 + K1(z1 −Hm1|0)

=

 8.5

7.0

+

 0.6842 0.0526

0.0526 0.6579

 7.3757

6.1924

−
 1 0

0 1

 8.5

7.0


=

 8.9280

5.9193

 (A.54)

This is our estimate of the target state at k = 1. The true state of the target at k = 1 is

(A.47). The final item that we need to calculate in the Kalman filter process is P1|1. We

use (A.19) to obtain

P1|1 = P1|0 −K1HP1|0

=

 2.25 0.5

0.5 2

−
 0.6842 0.0526

0.0526 0.6579

 1 0

0 1

 2.25 0.5

0.5 2


=

 0.6842 0.0526

0.0526 0.6579

 (A.55)

130

Thus we complete one iteration of the Kalman filter process. If we continue the same

process, and calculate the six items mk|k−1, Pk|k−1, Sk, Kk, mk|k and Pk|k in the same

manner, we have

m2|2 =

 10.3420

6.615

m3|3 =

 13.2682

6.7068

m4|4 =

 16.1874

7.4895



m5|5 =

 21.5138

9.4754

m6|6 =

 26.8649

7.4208

m7|7 =

 29.5995

8.3988



m8|8 =

 33.6102

9.1764

m9|9 =

 37.7248

9.3920

m10|10 =

 42.4720

9.7404

 (A.56)

We show the actual state sequence, xk, k = 0, · · · , 10 and the estimated state sequence,

mk|k, k = 0, · · · , 10 in Figure A.2.

Figure A.2: Tracking example using the Kalman filter

131

Appendix B

Target Tracking Using Particle

Filter

In this appendix, we provide a target tracking example. The state of the target,

x, evolves based on the following motion model

xk = xk−1 + 5 + vk (B.1)

where vk is the unpredictable disturbances during the traversal of the target. Note that

in this example, the target state, x, is one-dimensional. The variance of vk is 1.0. At the

beginning, when time step k = 0, x0 = 0.1.

Our measurement z is related to the target state, x, according to the following

nonlinear measurement model

zk =
(xk)2

20
+ wk (B.2)

where wk is the measurement noise. Note that wk does not necessarily model the measure-

ment noise of a sensor node. Here, we provide a general target tracking problem, where

(B.1) models any general target motion model and (B.2) models any measurement model.

The motion model is apparently similar to a straight line in (B.1). However, the

measurement model in (B.2) is nonlinear. The particle filter algorithm is designed to solve

nonlinear tracking problems like this. To demonstrate the correctness of the particle filter

algorithm, we set the variance of the measurement noise, wk, to be 1.0 × 10−5 first. The

132

number of samples, Ns = 1000 in this appendix. The evolution of the target state, xk, and

the estimated target state using particle filter is shown in Figure B.1. In this experiment,

the (simulated) true target states are marked as circles, and we can see that the target mo-

tion has some fluctuations, since the noise variance is nonzero. The estimated target states,

using particle filter, are marked as stars. We can see from Figure B.1 that particle filter is

very successful in tracking the target, even thought measurement model is nonlinear. The

mean squared error (MSE) between the true target states and the estimated target states,

over 20 time steps, is 7.5× 10−4.

Figure B.1: Target tracking result using particle filters. The true target states are marked
as circles, while the estimated target states are marked as stars. The variance of vk is 1.0,
while the variance of wk is 1.0× 10−5. The tracking result is correct over 20 time steps.

As another example, we use the same motion model in (B.1) and the same mea-

surement model in (B.2) to perform another tracking experiment with the variance of the

measurement noise, wk, equalling 1.0. Again, we illustrate the true target states (circles)

and the estimated target states (stars) on the same figure in Figure B.2. The tracking

result in shown in Figure B.2. The MSE is 0.1302, which is much larger than the previous

experiment. We can also visibly see the mismatch between the true target states and the

estimated target states.

133

Figure B.2: Target tracking result using particle filters. The variance of vk is 1.0, while the
variance of wk is 1.0. We can see that at time step k = 1 and k = 2, there exists some
distinguishable tracking error.

134

Appendix C

Relaxation Labeling as an

Optimization Process

C.1 Introduction

Appendix C is a revision of [49].

Consider a system of N objects and M labels. Let Pi(λj) denote the “confidence”

that object i has label λj . The confidence Pi(λj) has probability-like properties:

0 ≤ Pi(λj) ≤ 1
M∑
j=1

Pi(λj) = 1. (C.1)

Following [51], we iteratively update the confidence of node i having label j as

P t+1
i (λj) =

P ti (λj)
[
1 + qti(λj)

]
Dt
i

, (C.2)

where Dt
i =

∑
k P

t
i (λk)

[
1 + qti(λk)

]
, k = 1, · · · , N is a normalization required to ensure that

Pi(λj) sums to 1, and t stands for iteration. qti(λj) is the “support” of object i having label

λj . More details follow.

The support is defined as

qi(λ) =
∑
j

∑
µ

Rij(λ, µ)Pj(µ) (C.3)

135

where the superscript for iteration is omitted for clarity. The Rij(λ, µ) in (C.3) is the

compatibility function of objects i and j having label λ and µ, respectively. The design

of the compatibility function is problem-dependent, and we require that −1 ≤ Rij(λ, µ) ≤ 1.

For brevity, we define Qi(λ) =
[
1 + qti(λj)

]
, and (C.2) becomes

P t+1
i (λj) =

P ti (λj)Q
t
i(λj)∑

µ P
t
i (µ)Qti(µ)

, (C.4)

C.2 Why Relaxation?

Our objective is to show that the relaxation labeling algorithm can be formulated

as an optimization problem, and the relaxation labeling algorithm is indeed a type of relax-

ation method. Relaxation is an algorithm that can be found in areas such as optimization

and differential equations. We define the “feasible region”, P, to be the collection of points

P = [P1(λ1), P1(λ2), · · · , P2(λ1), P2(λ2), · · · , PN (λM)]T (C.5)

where each point in P satisfies the criteria in (C.1). For example, 0 ≤ P1(λ2) ≤ 1, and∑
j P1(λj) = 1. Denote the objective function that we wish to minimize as F (P). We

iteratively replace the current point Pt with a more “relaxed” point Pt+1, and eventually

minimize F (P). A relaxation method has two criteria:

1. Pt+1 contains Pt

2. F (Pt+1) 6 F (Pt)

Now we demonstrate that relaxation labeling can be formulated as an optimization

problem. First, the objective function can be formulated as

F (P) = −1
2

∑
i

∑
λ

Pi(λ)Qi(λ) (C.6)

and subject to the conditions given in (C.1)

0 ≤ Pi(λj) ≤ 1 (C.7)

M∑
j=1

Pi(λj) = 1. (C.8)

136

(the reason for choosing this objective function is explained in the next section). We can

observe from (C.4) that relaxation labeling is an iterative process, and we can rewrite (C.4)

as a gradient method

P t+1
i (λ) = P ti (λ) + φrti(λ) (C.9)

where

rti(λ) =
P ti (λ)

[
Qti(λ)−

∑
µ P

t
i (µ)Qti(µ)

]
∑

µ P
t
i (µ)Qti(µ)

(C.10)

and

φ = 1. (C.11)

To satisfy the first criteria of a relaxation method, we require that P t+1
i (λ) also

satisfies the conditions given in (C.1). Since P t+1
i (λ) = P ti (λ) + rti(λ), we have

M∑
j=1

P t+1
i (λj) =

M∑
j=1

P ti (λj) +
M∑
j=1

rti(λj) (C.12)

Since
∑M

j=1 P
t+1
i (λj) = 1 and

∑M
j=1 P

t
i (λj) = 1, we have

M∑
j=1

ri(λj) = 0 i = 1, · · · , N (C.13)

and

ri(λj) > 0 if Pi(λj) = 0 (C.14)

To satisfy the second criteria of a relaxation method, we have

F (Pt+1) 6 F (Pt) (C.15)

⇒ F (Pt+1)− F (Pt) 6 0 (C.16)

⇒ F (Pt+1)− F (Pt)
4t

6 0 (C.17)

⇒ ∂F (P)
∂t

6 0 (C.18)

⇒ ∂F (P)
∂Pi(λj)

∂Pi(λj)
∂t

6 0 (C.19)

Denoting 5F ≡
[
∂F (P)
∂Pi(λj)

. . .
]

and observe that r in (C.12) is the change of P over time, we

have

5 F · r 6 0 (C.20)

where

r = [r1(λ1), r1(λ2), · · · , r2(λ1), r2(λ2), · · · , rN (λM)]T (C.21)

137

C.3 Design of the Objective Function

In summary, the relaxation labeling process can be formulated as the following

optimization problem

minimize F (P) = −1
2

∑
i

∑
λ

Pi(λ)Qi(λ) (C.22)

subject to 0 ≤ Pi(λj) ≤ 1 i = 1, · · · , N (C.23)

and
M∑
j=1

Pi(λj) = 1 i = 1, · · · , N j = 1, · · · ,M (C.24)

The relaxation labeling process is a gradient method to find r satisfying

P t+1
i (λ) = P ti (λ) + rti(λ) (C.25)

M∑
j=1

ri(λj) = 0 i = 1, · · · , N (C.26)

ri(λj) > 0 if Pi(λj) = 0 (C.27)

5F · r 6 0 (C.28)

The reason for choosing the objective function in (C.22) is that inconsistency is

defined as the difference between Pi(λ) and Qi(λ) [24]. Intuitively, Pi(λ) is what every

object “thinks” about its own labeling, and Qi(λ) is what its neighbors “think” about it [5].

Hence if we maximize the following function [5]

1
2

∑
i

∑
λ

Pi(λ)Qi(λ) (C.29)

the inconsistency will be minimized, since (C.29) is maximized when Pi(λ) = Qi(λ) (minimal

inconsistency). To maximize (C.29) is equivalent to minimizing (C.22). The 1
2 in (C.22) is

to scale Qi(λ) to be between 0 and 1, that is, 0 ≤ 1
2Qi(λ) ≤ 1.

C.4 Proof of Relaxation Labeling as an Optimization Process

We need to prove that ri(λ) in (C.10) satisfies (C.26), (C.27) and (C.28). Denote

X =
∑

µ Pi(µ)Qi(µ), we have

138

∑
λ

ri(λ) =
1
X

∑
λ

Pi(λ) [Qi(λ)−X] (C.30)

=
∑

λ Pi(λ)Qi(λ)
X

−
∑

λ [Pi(λ)X]
X

(C.31)

=
X
X
−

X
∑

λ Pi(λ)
X

(C.32)

=
X
X
− X

X
(C.33)

= 1− 1 (C.34)

= 0 (C.35)

and if Pi(λ) = 0 then ri(λ) = 0, and thus equations (C.26) and (C.27) are satisfied.

Next we check equation (C.28). Now we use different indexes in (C.6)

F (P) = −1
2

∑
k

∑
λl

Pk(λl)Qk(λl) (C.36)

and we have

5 F =
∂F

∂Pi(λ)
(C.37)

= −1
2

∑
k

∑
l

[
∂Pk(λl)
∂Pi(λ)

Qk(λl) + Pk(λl)
∂Qk(λl
∂Pi(λ)

]
(C.38)

= −1
2

∑
k

∑
l

Qk(λl) + Pk(λl)
∑
j

∑
µ

∂

∂Pi(λ)
Rkj(λl, µ)Pj(µ)

 (C.39)

= −1
2

∑
k

∑
l

[Qk(λl) + Pk(λl)Rki(λl, µ)] (C.40)

= −1
2
Q− 1

2

∑
k

∑
l

[Pk(λl)Rki(λl, µ)] (C.41)

= −1
2
Q− 1

2
Q (C.42)

= −Q (C.43)

So

5 F · r = −
∑
i

∑
λ

ri(λ)Qi(λ) (C.44)

= −
∑
i

1
X

∑
λ

Pi(λ)Qi(λ) [Qi(λ)−X] (C.45)

139

Furthermore,∑
λ

Pi(λ)Qi(λ) [Qi(λ)−X] =
∑
λ

Pi(λ) [Qi(λ)−X]2 + X
∑
λ

Pi(λ) [Qi(λ)−X] (C.46)

=
∑
λ

Pi(λ) [Qi(λ)−X]2 + X
∑
λ

Pi(λ)Qi(λ)−X
∑
λ

Pi(λ)X

=
∑
λ

Pi(λ) [Qi(λ)−X]2 + X2 −X2
∑
λ

Pi(λ) (C.47)

=
∑
λ

Pi(λ) [Qi(λ)−X]2 + X2 −X2 (C.48)

=
∑
λ

Pi(λ) [Qi(λ)−X]2 (C.49)

> 0 (C.50)

and since X > 0, this implies that 5F · r 6 0 and (C.28) is satisfied.

140

Appendix D

Probability of Being Malicious for

Nodes in Secure Tracking

Here we have the probabilities for all the nodes in the last secure tracking experi-

ment in Section 6.3.3.

Figure D.1: Probability of being malicious nodes for the five nodes at t = 20 and another
five nodes at t = 21. The malicious nodes are s20

2 and s21
3 , which agrees with what we have

found here.

141

Figure D.2: Probability of being malicious nodes for the five nodes at t = 30 and another
five nodes at t = 31. The malicious nodes are s30

3 and s31
4 , which agrees with what we have

found here.

Figure D.3: Probability of being malicious nodes for the five nodes at t = 40 and another
five nodes at t = 41. The malicious nodes are s40

4 and s41
5 , which agrees with what we have

found here.

142

Figure D.4: Probability of being malicious nodes for the five nodes at t = 50 and another
five nodes at t = 51. The malicious nodes are s50

5 and s51
1 , which agrees with what we have

found here.

	List of Tables
	List of Figures
	1 Introduction
	1.1 What Are Sensor Networks?
	1.2 Localization and Tracking in Sensor Networks
	1.3 Security in Sensor Networks
	1.4 Overview of the Dissertation

	2 Background on Localization
	2.1 Sensor Models
	2.1.1 Acoustic Amplitude Sensors
	2.1.2 Acoustic Array Sensors

	2.2 Localization Algorithms
	2.2.1 Localization of a Single Event
	2.2.2 Localization of Multiple Events

	2.3 Related Localization Literature
	2.4 Security Problem in Localization
	2.4.1 Problem Statement
	2.4.2 Problem Definition
	2.4.3 Supplemental Properties
	2.4.4 Problem Analysis

	3 Background on Tracking
	3.1 Target Tracking
	3.1.1 System Models
	3.1.2 Tracking Algorithm
	3.1.3 Collaborative Tracking Using Sensor Networks

	3.2 Security in Tracking
	3.2.1 Problem Statement
	3.2.2 Problem Definition
	3.2.3 Supplemental Properties

	4 Relaxation Labeling
	5 A New Relaxation Labeling Architecture for Secure Localization
	5.1 Related Work
	5.2 The New Relaxation Labeling Architecture
	5.2.1 Design of the Compatibility Function

	5.3 Experimental Results of Detecting Malicious Nodes Using Relaxation Labeling
	5.3.1 Simulation
	5.3.2 Field Experiment
	5.3.3 Comparison with an Existing Algorithm

	5.4 Choice of Parameters
	5.4.1 The Sigmoid Function
	5.4.2 Choice of T1
	5.4.3 Choice of T2
	5.4.4 Choise of 1 and 2

	5.5 Discussions on the Speed of Convergence
	5.5.1 Speed of Convergence
	5.5.2 Speed of Convergence vs. the Total Number of Nodes
	5.5.3 Experiments

	6 Secure Tracking Using Relaxation Labeling
	6.1 Related Work
	6.2 Algorithm to Detect Malicious Nodes while Tracking
	6.2.1 Type I Triples
	6.2.2 Type II Triples
	6.2.3 Algorithm Details

	6.3 Experimental Results
	6.3.1 Tracking with Multiple Sensor Nodes
	6.3.2 Node Selection Algorithm
	6.3.3 Secure Tracking Results

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	A Derivation of the Kalman Filter
	B Target Tracking Using Particle Filter
	C Relaxation Labeling as an Optimization Process
	C.1 Introduction
	C.2 Why Relaxation?
	C.3 Design of the Objective Function
	C.4 Proof of Relaxation Labeling as an Optimization Process

	D Probability of Being Malicious for Nodes in Secure Tracking

