
 

ABSTRACT 
 

U.S. Army Training and Doctrine Command 

(TRADOC) Pamphlet 525-66 identifies Force Operating 

Capabilities required for the Army to fulfill its mission 

for a networked Warfighter concept. Two such 

capabilities are Battle Command and Battle-space 

Awareness for which there are expectations (trust) that 

networked nodes will perform in a certain manner given 

certain contexts. As an example, for battlefield or disaster 

area teams in a distributed network, trust is interpreted as 

a set of relations among the nodes participating in the 

network activities. Trust establishment in distributed 

communication networks such as mobile ad hoc networks 

(MANETs), sensor networks and ubiquitous computing 

systems is considered to be more difficult than in 

traditional hierarchical structures such as the Internet 

and Wireless LANs centered on base-stations and access 

points. In this paper, we concentrate on trust 

establishment in self-organized, distributed and resource 

constrained networks.  We model our trust establishment 

strategy as a bilinear local voting protocol and discuss its 

behavior, i.e. how trusts spreads in the distributed 

network, and analyze its convergence behavior based on 

algebraic graph theory. Then, we show how to 

incorporate trust into local networked control laws which 

yields two coupled systems, a bilinear trust dynamics 

coupled to a local control law. Different team behaviors 

will emerge automatically depending on the trust each 

node has for its neighbors. In this paper we give 

examples of the flocking and formation behavior of nodes 

in a distributed network. 

1. INTRODUCTION 

 

ission command is the US Army’s preferred 

method for executing battle command and is 

characterized by decentralized execution in which 

commanders convey purpose without providing detailed 

direction on how to perform the task or mission (U.S. 

Army Training and Doctrine Command (TRADOC) 

Pamphlet 525-66). Mission command requires an 

environment of trust and mutual understanding between 

agents and empowers subordinate initiative by 

emphasizing the higher commander’s intent. For 

example, battlefield or disaster area teams may be 

heterogeneous networks consisting of interacting 

humans, ground sensors, and unmanned airborne or 

ground vehicles (UAV, UGV). Developed team scenarios 

include the War-fighter Information Network-Tactical 

(WIN-T), DARPA Agile Information Control 

Environment (AICE), C4ISR Architectures for the War-

fighter (CAW), Joint Force Air Component Commander 

(JFACC) Project, etc.  Such scenarios should provide 

intelligent shared services of sensors and mobile nodes to 

augment the capabilities of the remote-site mission 

commander and on-site war-fighter in terms of: (1) 

extended sensing ranges, (2) sensing of modalities such 

as IR and ultrasound not normally open to humans, and 

(3) cooperative control of UAV/UGV to extend the war 

fighter strike range. Also (4) Automated decision 

assistance (via, e.g., handheld PDAs) should be provided 

to the war fighter based on algorithms that only depend 

on local information from nearest neighbor sensor nodes 

or humans, yet yield network-wide guaranteed 

performance.  

 

There is a need to provide means for teams to grow 

and develop trust through the extensive use of 

simulation, scenario-driven war games, experiments, and 

training exercises that challenge leaders and reduce the 

need to learn “on the job” in actual combat operations 

(U.S. Army Training and Doctrine Command 

(TRADOC) Pamphlet 525-66). As the team members 

may often be geographically distributed there will be a 

heightened need for shared conceptualization of 

teamwork built on trust.  Also, given the presence of 

enemy components and the possibility of node 

compromise, a trust consensus must be reached by the 

team that determines which nodes to trust, which to 

disregard, and which to avoid. Trust algorithms for 

unmanned nodes must be autonomous computationally 

efficient numerical schemes. However, existing schemes 

for control of dynamical systems on communications 

graphs (in the style of work by (Beard and Stepanyan, 

2003; Fax and Murray, 2004; Jadbabaie et al., 2003; Lee 
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and Spong, 2007; Olfati-Saber and Murray, 2004; Ren 

and Beard, 2005; Ren et al., 2005; Saligrama et al., 

2006.)) do not take into account trust propagation and 

maintenance (such as work by (Jiang and Baras, 2006; 

Theodorakopoulos and Baras, 2006)). Yet it is a fact that 

biological groups such as flocks, swarms, herds 

(Reynolds, 1987), do have built-in trust mechanisms to 

identify team members, team leaders, and enemies to be 

treated as obstacles or avoided. Cooperative mission 

planning should involve decisions made in the context of 

the trust opinions of all nodes, and be based on 

performance criteria set by human war fighter nodes or 

team leaders. These performance criteria may change 

with time depending on varying mission objectives in the 

field. 

 

 Recently, many researchers have worked on problems 

that are essentially different forms of agreement problems 

with differences in the types of agent dynamics, 

properties of graphs and the names of the tasks of 

interest. In (Fax and Murray, 2004), graph Laplacians 

were used for the task of formation stabilization for 

groups of agents with linear dynamics. In (Jadbabaie et 

al., 2003) directed graphs were be used to represent the 

information exchange between the agents. In (Beard and 

Stepanyan, 2003), a linear update scheme was introduced 

for directed graphs. In (Chopra and Spong, 2006) a 

Lyapunov-based approach was used to consider stability 

of consensus synchronization for balanced and weakly 

connected networks. The work by (Olfati-Saber and 

Murray, 2004) solved the average consensus problem 

with directed graphs which required the graph to be 

strongly connected and balanced. In (Ren and Beard, 

2005), it was shown that under certain assumptions 

consensus can be reached asymptotically under 

dynamically changing interaction topologies if the union 

of the collection of interaction graphs across some time 

intervals has a spanning tree frequently enough. The 

spanning tree requirement is a milder condition than 

connectedness and is therefore suitable for practical 

applications. They also allowed the link weighing factors 

to be time-varying which provides additional flexibility. 

In contrast to the aforementioned protocols, this work 

uses a bilinear protocol for trust consensus in directed 

graphs.  

 

 In this paper, we develop a framework for trust 

propagation and maintenance in team networks of nodes 

that yields global consensus of trust under rich enough 

communication structure graphs.  Most of the work in 

literature considers the graph Laplacian to be static or 

have time-varying weights which are due to unreliable 

transmission or limited communication or sensing range. 

In this paper we consider the case where the graph 

Laplacian is a time-varying function of the trusts based 

on the graph connectivity. This makes the trust 

consensus protocol bilinear. 

 

  There has been a tremendous amount of interest in 

flocking and swarming that has primarily originated 

from the pioneering work of Reynolds, 1987. The trust 

consensus protocols developed in this paper is 

incorporated into cooperative control laws that depend on 

local information from neighboring nodes, yet yield 

team-wide desired behavior such as flocking and 

formations.  

 

 This paper is organized as follows. In Section 2 we 

describe the notions involved in trust graphs and 

formally devise a bilinear trust consensus protocol in 

continuous-time and discrete-time. Section 3 contains our 

main results with the convergence performance for the 

two consensus protocols. Section 4 gives examples of 

emerging team behavior using these protocols with a case 

study on flocking and formations. Section 5 offers our 

concluding remarks.   

2. TRUST PROPAGATION IN GRAPHS 

2.1 Trust Graphs 

 Given a network of N agents or nodes V={v1,…,vN} 

who are to engage in cooperative trust evaluation.  Define 

a trust graph GT = (V, E), where edge (vi, vj) E∈  if node 

vj obtains a direct trust evaluation about node vi.  Note 

this is backwards from (Jiang and Baras, 2006; 

Theodorakopoulos and Baras, 2006).  Define the direct 

trust neighborhood of node vi as }∈),(:{= EvvvN ijji , 

i.e. the set of nodes with edges incoming to vi.  The 

graph is directed since if node j can obtain a direct 

evaluation of trust about node i, the reverse may not be 

true. Given the trust graph, define the graph adjacency 

matrix   A = [aij] where  aij = 1 if eji  is an edge, and aij = 

0  otherwise.  A is a constant matrix defined by the direct 

trust relations between nodes.  In fact, adjacency matrix 

A captures the information flow in the trust graph. If 

there is a directed path, e.g. a sequence of nodes 

0 1, , ,
r

v v v�  such that 

1( , ) , {0,1, , 1}
i i

v v E i r+ ∈ ∈ −� , then, node vr should 

be able to form an indirect trust opinion about node v0 

based on the opinions of the agents along the path.  

Likewise, if two paths converge at an agent vr, each of 

which contains agent v0, then vr has a basis to form a 

more confident opinion about the trustworthiness of 

agent v0 than if there were only a single path. 

2.2 Trust Consensus Protocols 

 We encode the trust opinions an agent i has about 

other agents in the network as a trust vector 
i

ξ N
R∈  



associated with each node, with elements indexed by all 

the nodes about which node i has an opinion. That is 

1 2[ ...]T

i ii ii
ξ ξ ξ=  where ξ ij is the trust node i has for 

node j.  Throughout this paper, the trust values 
ij

ξ are 

assumed to be in [0, 1].  

 Consider the following trust protocol in continuous-

time.  

  
i i

u
i

ξ =                          (1) 

         ( )
i

i ij j i

j N

u w ξ ξ
∈

= −∑                                        (2) 

 In (Ren and Beard, 2005), wij was taken as 

ij ij
a σ where 

ij
σ is a time-varying weighting factor 

chosen from any finite set. In (Jiang and Baras, 2006), wij 

was taken as aijcij, where cij is the confidence node i has 

in its trust opinion of node j. Hence each node has an 

associated [ξ ,c], i.e. trust and confidence each of which 

have two operations ( ,⊕ ⊗ ) which form a semi-group 

(Theodorakopoulos and Baras, 2006). In (Jiang and 

Baras, 2006), the weights cij were kept constant 

throughout.  

 

 In this paper, we propose the following local voting 

continuous-time trust protocol, 

        ( )
i

i ij ij j i

j N

u a ξ ξ ξ
∈

= −∑                                      (3) 

 This protocol is bilinear in the trust values. Note that 

this defines a graph topology that stays constant, yet the 

edge weights are equal to
ij

ξ , the trust that node i has for 

its neighbor node j. The weighted adjacency matrix is 

defined by [ ] [ ]
ij ij ij

W w a ξ= = .  This defines a graph 

which has a constant topology given by the adjacency 

matrix A, yet whose edge weights vary as node i changes 

its trust opinion about its neighbor nodes, i.e. this is a 

weighted version of the trust graph defined by the 

adjacency matrix A. If ξ i’s are scalars, (3) can be 

rewritten as, 

      ( )
i

i ij ij j i

j N

u a ξ ξ ξ
∈

= −∑  

           

( ( ) ( ))

i i

ij ij j ij ij i

j N j N

i

a a

D t W t

ξ ξ ξ ξ

ξ

∈ ∈

= −

= − −

∑ ∑
 

     ( ( ) ( )) ( )
i i i

D t W t L t
i

ξ ξ ξ= − − = −                       (4) 

  

Here, D(t) is the time-varying in-degree matrix defined 

as D(t)= diag{ni} where ni =

i

ij ij

j N

a ξ
∈

∑ , and W(t) is a 

time-varying weighted adjacency matrix. These matrices 

are functions of node trusts ξ . L(t) is a time-varying 

Laplacian matrix defined as D(t)-W(t) which is also a 

function of the node trusts. Note that the node trust 

vectors ( )
i

tξ  have nonzero entries 
ij

ξ  corresponding to 

the weights of incoming edges eji, which have aij = 1, but 

there may also be nonzero entries ( )
ij

tξ  that do not 

correspond to edges in the graph.  Thus, though a node i 

forms a trust opinion about more and more nodes as trust 

propagates through the graph, its direct trust neighbors 

(the graph edges coming into node i) never change, and 

are defined by the adjacency matrix A.   

 Since 
N

i
Rξ ∈ , we must use Kronecker product 

(Godsil and Royle, 2001) to write, 

    ( ( ) )
N

L t I
i

ξ ξ= − ⊗                      (5) 

where IN  is an identity matrix of N×N.  Here, 
2

1[ ]
T T T N

N Rξ ξ ξ= ∈�  is the overall network trust 

vector. 

  

The Laplacian L(t) corresponds to a time-varying 

graph G(t).  The initial Laplacian L(0) corresponds to the 

initial graph G(0). Note that the row sum of L(t) is zero 

for t∀ . Hence, L(t) has a zero eigenvalue corresponding 

to the right eigenvector of 1, where 1 is a column vector 

with all entries equal to one.   

 We also propose the following nonlinear local voting 

discrete-time trust consensus protocol based on the 

Vicsek model (Vicsek et al., 1995), 

    
1

( 1) ( ) ( )
1

i

i i ij ij j i

j Ni

k k a
n

ξ ξ ξ ξ ξ
∈

+ = + −
+
∑        (6) 

which can be rewritten in the scalar case as, 

    
1( 1) ( ( ( )) ( )) ( )

i i
k I I D k L k kξ ξ−+ = − +  

    ( 1) ( ) ( )
i i

k F k kξ ξ+ =                                          (7) 

where  
1 1( ) ( ( )) ( ) ( ( )) ( ( ))F k I I D k L k I D k I W k− −= − + = + +

 Since 
N

i
Rξ ∈ , we must use Kronecker product to 

write, 

    ( 1) ( ( ) ) ( )
N

k F k I kξ ξ+ = ⊗                               (8) 

Here, 
2

1[ ]
T T T N

N Rξ ξ ξ= ∈� . Note that F(k) is a time-

varying stochastic matrix that depends on the trust values 

ijξ . The matrix F(k) corresponds to a time-varying graph 

G(k) with Laplacian L(k)  F(0) corresponds to the initial 

graph G(0) with initial Laplacian L(0). For each k, F(k) 

has a eigenvalue of one corresponding to the right 

eigenvector of 1, where 1 is a column vector with all 

entries equal to one. Even if F(k), F(k-1), F(k-2),…, F(0) 



are time-varying, the graph topology remains the same, 

only the weights in F change, which we prove in Section 

3. 

3. CONVERGENCE OF TRUST 

  

We say that a protocol achieves (asymptotic) consensus 

if for every i, j one has *( ) ( )i jt tξ ξ ξ→ →  in 

continuous-time, *( ) ( )i jk kξ ξ ξ→ →  in discrete-

time, where *ξ  is called the consensus trust vector value.  

If this occurs, then in the limit one has ip jpξ ξ=  for all 

i, j so that all nodes arrive at the same trust value for 

each other at node p. To prove the trust consensus, we 

need to have the following assumption. 

Assumption 1: In the trust graph GT, (0) 0
ij

ξ > if aij = 

1. 

 The main result of this paper is that the bilinear trust 

protocol (5) for continuous-time and (8) for discrete-time 

achieve asymptotic consensus for a trust graph GT if and 

only if the initial graph G(0) has a spanning tree. Under 

Assumption 1, this is equivalent to the trust graph GT 

containing a spanning tree.  We are of course inspired by 

(Ren and Beard, 2005), which covers the case of linear 

integrator dynamics.  

 Two nonnegative matrices are said to be of the same 

type if their zero elements are in the same locations (Ren 

and Beard, 2005). We will use the notation P ~ Q to 

denote that P and Q are of the same type. Two graphs on 

the same nodes are of the same type if their edge sets are 

the same. 

3.1 Consensus of the Discrete-Time Protocol 

 In this section, we prove that the trust protocol in (8) 

achieves asymptotic consensus if and only if the initial 

graph G(0) has a spanning tree. Assumption 1 means 

that GT and G(0) are of the same type, i.e. GT ~ G(0). For 

each F(k) associate a set of graphs {G(k)}. Now, F is a 

time-varying function of the trusts with the initial trust 

vectors for each node )0(ξ i  in [0, 1]. Consider the local 

voting discrete-time trust consensus scheme based on the 

Vicsek model given in (8). Let F(0) represent the initial 

directed graph G(0). If )0(ξ ij is an edge in G(0) then 

)(ξ kij is an edge for all G(k), for k 0≥ . This is 

formalized in the next result. 

 

Lemma 1: Consider a network with initial graph G(0) 

running the discrete-time consensus scheme in (8) with 

initial condition (0)ξ . Let ( ) 0
ij

kξ > for some time 

instant 0≥k . Then ( 1) 0
ij

kξ + > . As a result, G(k) for 

0≥k are all of the same type. 

Proof: From (8), each updated node trust is a weighted 

average of its neighboring trust values such that the 

weights are nonnegative and less than 1, because the row 

sum of F(k) and F(k) ⊗ IN is 1, i.e. they are stochastic 

(Wolfowitz, 1963). Protocol in (8) can be rewritten for 

each state as, 

    ( 1) ( ) ( )
ij il lj

l

k f k kξ ξ+ =∑  

    ( ) ( ) ( ) ( )
ii ij il lj

l i

f k k f k kξ ξ
≠

= +∑  

 where fij(k) is the (i,j)th element of F(k). Then by 

definition of F(k), we know that, 1<)(≤0 kf ij , for 

i j≠ and 0<fii(k)≤1. Also, fii=
1

0
1 in

>
+

. Hence, 

if ( ) 0
ij

kξ > , the first term is always positive. The 

second term is a weighted average which once again is 

always nonnegative for non-zero initial trusts. Therefore, 

for 0≥k , if ( ) 0
ij

kξ > ,  ( 1)
ij

kξ + 0> .    

 Thus, if (0) 0
ij

ξ >  is an edge weight for G(0), then 

( ) 0, 0
ij

k kξ > ∀ > is an edge weight for G(k). 

Therefore, G(k), 0≥∀k are all of the same type.   ■ 

 

Theorem 1: Let (0) 0
ij

ξ > if aij = 1. Then the discrete-

time trust protocol in (8) achieves a trust consensus for 

ij
ξ (k) if and only if the trust graph GT has a spanning 

tree. 

Proof: Now G(0) has a spanning tree if and only if G(k), 

k∀ >0, has a spanning tree by Lemma 1. Under 

Assumption 1, this is equivalent to the trust graph GT 

containing a spanning tree. This is a necessary and 

sufficient condition for the union of graphs over any 

finite time interval to have a joint spanning tree. 

Therefore, Theorem 3.8 in (Ren and Beard, 2005) proves 

the result.                   ■ 

 

Example 1: Consider a six node network as shown in 

Figure 1. Let the initial trust vectors 
6(0)

i
Rξ ∈  have 

elements selected randomly in [0, 1]. 

 

 
Figure 1. A Six Node Directed Graph 
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Figure 2 shows convergence of trust in a six node 

network with 6 states using the discrete-time protocol 

given by (8).                  ■ 

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Steady State in DT scheme

Time

C
o
n
s

e
n

s
u

s

 
Figure 2. Trust Consensus in the Discrete-time 

Scheme 

 

3.2 Consensus of the Continuous-Time Trust Protocol 

 In this section, we prove that the bilinear trust protocol 

in (5) achieves asymptotic consensus for a trust graph GT 

if and only if the initial graph G(0) has a spanning tree. 

Assumption 1 means that GT and G(0) are of the same 

type, i.e. GT ~ G(0). For each L(t) associate graph G(t). 

For the continuous-time scheme, one has L(t)=[lij(t)], the 

diagonal elements of L(t) are positive, the off-diagonal 

elements are negative and 0
ij

j

l =∑ . Let 0( , )t tφ be the 

corresponding transition matrix of L(t) defined as 

0 0

1

0( , ) ( 1) 1 ( 2) 2 1 ...

t

t t

t t I L d L d d

σ

φ σ σ σ σ σ= + + +∫ ∫ . 

From (Ren and Beard, 2005), we know that the transition 

matrix 0( , )
L

t tφ of L(t) is a nonnegative stochastic 

matrix with positive diagonal elements. Also, the 

corresponding transition matrix of L(t) ⊗ IN is 

0( , )
L

t tφ ⊗ IN which is once again a nonnegative 

stochastic matrix with positive diagonal entries. Along 

the same lines as in Lemma 1, we can prove the 

following Lemma. 

 

Lemma 2: Consider a network with initial graph G(0) 

running the continuous-time protocol (5) with initial 

node trust vectors  (0)
i

ξ . Let (0) 0
ij

ξ > . Then for 

∀ 0>t , ( ) 0
ij

tξ > . As a result, G(t) for 0≥t are all of 

the same type.  

Proof: Solution of (5) can be written as 

( ) ( ( ,0)
L

t tξ φ= ⊗ IN) (0)ξ . This can be rewritten for 

each state as, 

  ( ) ( ,0) (0) ( ,0) (0)
ij Lii ij Lil lj

l i

t t tξ φ ξ φ ξ
≠

= +∑      (9)

 Here, the diagonal elements of ( ,0)
L

tφ ⊗ IN are 

always positive and therefore the first term in the RHS of 

Equation (9) will always be positive for (0) 0
ij

ξ > .  The 

second term in the RHS of Equation (9) is always 

nonnegative since ( ,0)
L

tφ ⊗ IN is a nonnegative 

stochastic matrix with positive diagonal entries 

(Wolfowitz, 1963). Thus, if (0) 0
ij

ξ >  is an edge 

weight for G(0), then ( ) 0, 0
ij

t tξ > ∀ > is an edge 

weight for G(t). Therefore, G(t), 0≥∀t are all of the 

same type.                  ■ 

 

Theorem 2: : Let (0) 0
ij

ξ > if aij = 1. Then the 

continuous-time trust consensus protocol in (5) achieves 

trust consensus for ijξ  (t) if and only if the trust graph GT 

has a spanning tree.  

Proof: Now G(0) has a spanning tree if and only if G(t), 

t∀ has a spanning tree by Lemma 2. Under Assumption 

1, this is equivalent to the trust graph GT containing a 

spanning tree. Also )0,(φ tL is a continuous function of 

L(t) for the interval [0, t]. This is a necessary and 

sufficient condition for the union of graphs over any 

finite time interval to have a joint spanning tree. 

Therefore, the result (Theorem 3.2) in (Ren et al., 2005) 

proves the result.                ■ 

 

Example 2: Consider the same six node network as 

shown in Figure 1. Let the initial
6(0) Rξ ∈ be the same 

as in Example 1. Figure 3 shows convergence of trust in 

a six node network with six states using the continuous-

time protocol given by (5). It can be observed that the 

discrete-time and the continuous-time schemes give 

different consensus values for the same initial conditions.

                      ■ 

3.3 Relation of the Continuous and Discrete-time 

Protocols 

The Laplacian L in the continuous-time protocol is 

related to the stochastic matrix F in the discrete-time 

protocol at each time instance. As shown in Figures 3 

and 4, the trust consensus using (8) and (5) do not 

converge to the same consensus. This is because the 

graph represented by F(k) is not the same as the graph 

represented by L(t). In fact,  

 

 F = I-(I+D)-1
L               (10) 



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Steady State in CT scheme

Time

C
o
n
s
e
n
s
u
s

 
Figure 3. Trust Consensus in the Continuous-time 

Scheme 

 

 It can be seen that the discrete-time consensus protocol 

is the first order Euler approximation of the continuous-

time protocol given by, 

 
i

ξ
•

= - )+( DI
-1

L
i

ξ              (11) 

 If this protocol is used, both the continuous-time 

protocol in (11) and the discrete-time protocol in (7) 

would approximately converge to the same consensus. 

See Figures 4 and 5. Here for the same network in Figure 

1, initial trusts 6∈)0(ξ R  are selected randomly in [0, 1]. 
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Figure 4. Trust Consensus in the Discrete-time 

Scheme 
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Figure 5. Trust Consensus in the Continuous-time 

Scheme using scheme (11) 

4. TEAM BEHAVIORS BASED ON TRUST 

 Different team behaviors will emerge automatically 

depending on the trust each node has for its neighbors, 

e.g. flock (Tanner et al., 2003a, 2003b), or swarm (Gazi 

and Passino, 2003, 2004) with trusted neighbors, follow 

trusted leader, avoid enemy node. In this section we 

explore flocking behavior and formations in a distributed 

network of agents.  

4.1 Flocking 

 The flocking model consists of three steering behaviors 

which describe how an individual agent maneuvers based 

on the positions and velocities of the neighboring flock-

mates (Reynolds’ rules (Reynolds, 1987)):  

1. Separation: steer to avoid closely located flock-

mates.  

2. Alignment: steer towards the average heading 

of local flock-mates. 

3. Cohesion: steer to move toward the average 

position of local flock-mates. 

 The superposition of these three rules results in all 

agents moving in a formation (Chopra and Spong, 2006, 

Dunbar and Murray, 2006), with a common heading 

while avoiding collisions. Generalizations of this model 

include a leader follower strategy, in which one agent 

acts as the group leader and the other agents would just 

follow the aforementioned rules, resulting in leader 

following.  

 Define a control graph GC and consider the node 

dynamics having local rule, 

 ( )
c
i

i ij ij j i

j N

x k x xξ
∈

= −∑�           (12) 

with kij some control graph edge weights (control gains) 

and 
c

i
N  the control neighborhood of node i.  Suppose 

the trust of node i for node j satisfies the bilinear trust 

local voting dynamics, 

   ( - )
t
i

i ij ij j i

j N

a�ξ ξ ξ ξ
∈

= ∑            (13) 

with 
t

i
N  the trust neighborhood of node i. The structure 

of the trust graph GT is defined by the adjacency matrix 

A=[aij]. Note that (12) and (13) is a coupled system. 

 

 
Figure 6. Tree network with one leader and five 

followers 

Leader 

Followers 



Example 3: Let xi represent the heading of node i in a 

formation.  Consider the formation graph shown in 

Figure 6.  First we run the trust update protocol above on 

the case of fully trusted nodes.  That is, the initial trust 

vectors )0(
i

ξ  of the nodes have all entries positive or 

zero.  Then, as the trusts change, the edge weights 

change but stay positive, so the graph structure is 

preserved.  Then, all nodes converge to the initial 

heading value x1(0) of the leader. 

 Let the initial 6∈)0(ξ R  selected randomly in [0, 1]. 

Figure 7(a) shows that the trusts of the followers 

converge to the initial trusts of the leader node. Let the 

heading of each node be 
1x R∈ . Figure 7(b) shows the 

heading consensus in this network. As mentioned before, 

the heading of the followers converge to the heading of 

the leader. 

 

 Figure 8 shows the motion of each node with the 

follower node headings converging to the heading of the 

leader node. Here the velocity of each node is considered 

to be the same.                ■ 
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Figure 7. (a)Convergence of trusts of all the nodes, (b) 

Convergence of headings of all the nodes in a tree 

network 

4.2 Formations 

 A formation of autonomous vehicles refers to a set of 

spatially distributed vehicles whose dynamic states are 

coupled through a common control law.  

10 20 30 40 50 60 70 80 90 100

-200

-150

-100

-50

0

50

100

150

200

Heading Update using Spanning Tree Trust Update

x

y

Leader

 
Figure 8. Convergence of headings of all the nodes in 

a tree network 

  

Following shows an easier way to maintain formations 

in a desired configuration.  Moreover, as the desired 

configuration changes, the formation can quickly be 

moved into the new desired structure.  

Let the states x in (12) be defined as, x 

= ])...()()[( 21
Td

N
TdTd

xxx  with 
3d

i
x R∈ , the desired 

(x,y,z) position of node i in the formation with respect to 

the leader.  All other nodes take their initial states as 

their own actual initial positions.  

Example 4: For the same tree network in Example 3, we 

want the desired positions of the nodes in the hexagonal 

formation structure. Let the initial state of the leader xl(0) 

contain the desired formation positions of all the other 

nodes in the network in 2D, i.e. (x, y).  If we run the 

coupled node dynamics and bilinear trust update in (12) 

and (13) (and using Kronecker product), all nodes 

converge to the initial state of the leader, i.e. to their 

desired formation positions as shown in Figure 9.   
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Figure 9. Convergence of positions of all the nodes in a 

tree network to a hexagon formation 

  

 If the desired relative positions of all or some of the 

nodes change, then the leader simply resets xss = x1(0), 

and all nodes will automatically converge to the new 

consensus trust and positions, as specified by the leader 

in its initial state vector.              ■ 



5. CONCLUSIONS 

 This paper considered the problem of trust 

establishment and consensus in a distributed network. 

Directed graphs were used to represent the information 

exchange between the nodes. We proposed a continuous-

time and a discrete-time bilinear trust update scheme for 

trust consensus. We described the convergence 

characteristics of these schemes in terms of the steady 

state and the convergence bound. We provided an 

application of these update schemes in team behaviors 

such as flocking and formations. As a part of future 

study, we would like to find the exact steady-state of trust 

in these protocols in terms of the Eigenvectors of F and 

L. Also, in this paper we considered the trusts to be in [0, 

1]. As a part of the future work, we would like to have 

trusts in [-1, 1] where 1 represents complete trust, 0 

represents no opinion and -1 represents complete distrust. 

One way of solving this would be to use a one-step 

distrust model where all the nodes connected to a 

distrusted node are disregarded or to use graph pruning 

and reconnection to remove the distrusted node from the 

original network. 
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