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ABSTRACT 

Microbial DNA fragments are classified according 
to species using compositional features and 
"genomic signatures" the oldest of which is the 
dinucleotide relative abundance profile defined by 
Karlin et al. More informative features, including 
higher order signatures, have demonstrated greater 
species-specificity in comparison to the baseline 
established by the dinucleotide signature using 
"delta-distance" to assess dissimilarity; but lack of 
standard methods has precluded rigorous 
comparison. We describe a new method for 
classifier evaluation that reduces any number of 
pair-wise inter-genomic comparisons to a single 
performance measure. To illustrate the method, we 
compare delta-distance to quadratic and linear 
discriminants prescribed by elementary pattern 
recognition theory, and find that the quadratic 
form is significantly more powerful. 

Index Terms: Biomedical signal processing, DNA, 
Error analysis, Pattern classification, Software 
performance. 

1. INTRODUCTION 

Pre-genomic investigations found that dinucleotide 
relative abundance values are fairly constant in the 
DNA of a given microbial species and more highly 
variable between species. As complete prokaryotic 
genome sequences became available in the 1990s, 
this phenomenon was carefully studied by Karlin 
and co-workers, who developed it as a basis for 
phylogeny construction. The dinucleotide relative 
abundance profile was called a "genomic 
signature" by Karlin and Burge [1] because an 
organism can generally be identified by computing 

it from any 50 kilobase (kb) or longer segment of 
the genome sequence. A suitable measure of 
dissimilarity between the signatures of two whole 
genomes provides a useful measure of their 
evolutionary distance as confirmed by a recent 
survey of 334 prokaryotes in which it was found to 
be essentially concordant with more standard 
phylogenetic measures like 16S ribosomal DNA 
identity [2].  
     Dinucleotide relative abundance is computed as 
follows. When a DNA strand of length n is 
scanned in one direction, there are nxy transitions 
(base steps) from x to y  {A, G, C, T}, and 

)1(nnf xyxy  is the normalized frequency of 
dinucleotide xy. Scanning the complementary 
strand in the reverse direction produces )( c

xyf . The 

4x4 matrix of elements )(* c
xyxyxy fff  exhibits 

counter-diagonal symmetry when the bases are 
indexed alphabetically, as {A, C, G, T}  {1, 2, 3, 
4}, by Watson-Crick base pairing. Dividing by the 
product of the marginal frequencies gives 

)( ****
yxxyxy fff  in the usual notation [1]. These 

16 quotients comprise the dinucleotide relative 
abundance profile, *, but six of them are 
redundant. The dissimilarity measure introduced 
by Karlin et al. is the dinucleotide relative 
abundance distance ("delta-distance") between 
sequences G and H,
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When G and H are the complete genomes of 
species A and B, respectively, the delta-distance 
can be taken as a monotonic (increasing) function 
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of the time since their divergence from a common 
ancestor.  
     The ability to resolve genomic signatures in 
DNA sequences shorter than 50 kb would serve 
some current objectives including the detection of 
bacterial genes acquired from foreign species by 
horizontal gene transfer [3] and the classification 
of fragments that have been directly sequenced 
from the environment in metagenomic exploration 
[4]. While the dinucleotide signature pervades its 
genome on scales down to 1 kb and less [5], the 
"phylogenetic signal [6]" that it represents is 
typically too weak for reliable identification in 
single genes and gene-sized fragments. The 
average size of protein-coding genes in most 
prokaryotes is around 1 kb [7]. Because genomic 
signatures are indistinct on this small scale, more 
powerful discriminants are needed to reliably 
detect foreign genes in a known genome or to 
associate unknown genes with genome sequences 
that are under construction.  
     The search for better discriminants has led 
investigators to species-specific features in codon 
usage [3], in the base compositions at the three 
codon positions, and in higher order genomic 
signatures [6,8] obtained from frequencies of over-
lapping (frame-independent) short oligonucleo-
tides of length >2. This search proceeds without a 
"ground truth" list of all the foreign genes in any 
single species and without a standard dataset and 
metric for assessing the accuracy of a fragment-to-
genome classifier. Progress in this field produces 
fragment classifiers and foreign gene detectors that 
perform above the baseline level that is attained 
with the dinucleotide signature; but this 
improvement is merely relative because the 
baseline is not an absolute benchmark. 
     While classifiers and detectors based on higher 
order compositional features have been the focus 
of considerable research, the optimality of * for 
recognizing dinucleotide signatures in short 
genomic segments has never really been asserted. 
It is impossible say what functional form is best in 
the absence of a generally accepted stochastic 
model. Many practical problems in signal 
detection and pattern classification have likewise 
been approached without a model of the data 
source and this situation often motivates the use 
quadratic discriminant analysis. The quadratic 
discriminant would be optimal if the components 
of * are normally distributed—perhaps after a 

suitable nonlinear transformation—and the 
quadratic form would reduce to a linear form only 
if the covariance matrix were approximately 
constant for all species. Finding no previous 
comparison of this kind, we formulate the problem 
in the next section. After that, we demonstrate a 
method for assessing the accuracies of alternative 
discriminants based on a manageable number of 
pair-wise intergenomic comparisons. 

2. METHODS 

For any query sequence (gene or fragment) q and 
any genome G, we define:  

v(q) = a row vector of ten components, the 
non-redundant elements of ln[ (q)];

(G) = E[v(g)], where the expectation 
operator E takes the average over all 
contiguous fragments g of genome G;
[v(g) (G)] = a matrix with 10 columns and 
one row for each contig of G;
S(G) = E{[v(g) v(G)]T[v(g) v(G)]}, in 

which the superscript (T) takes the transpose, 
is a 10x10 covariance matrix; and  
S (G) = the matrix inverse.  

With these definitions, the quadratic discriminant 
function is  

d2(q,G) = [v(q) v(G)]S (G)[v(g) v(G)]T     

in which v(G) consists of the ten non-redundant 
elements of ln[ (G)]. When the quadratic form d2
reduces to a linear form, it can be expressed as a 
weighted correlation coefficient (corr). For 
simplicity, we assume equal weights and use the 
function 

d1(q,G) = 1  corr[v(q), v(G)] 

for a sub-optimal approximation. Note 0 < d1 < 2 
with smaller values indicating greater similarity.  
     Two species A and B are selected from the 
public database and their respective genomes G
and H are broken into fragments. For a 
reproducible experiment, a 1 kb window is 
displaced by increments of 1 kb across each 
published sequence, and each displacement 
produces a fragment g of G (or h of H). The 2-way 
classifier uses discriminant function d to measure 
dissimilarity between the fragment and each 
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genome. For each fragment q, the classifier 
calculates two values of d, assigning q to G if 
d(q,G) < d(q,H) and vice versa. One error is 
counted every time d(g,G) > d(g,H) or d(h,H) > 
d(h,G). The pair-wise classification error rate 
(A,B) is computed as the number of errors 

divided by the total number of fragments without 
regard for the unequal sizes of G and H. One-half 
error is counted when the discriminants are exactly
equal so that  = ½ (instead of 1) in the event that 
G = H. But pair-wise classification error rates 
(CERs) will only be computed for each unordered 
pair of different genomes.  
     When two species A and B are randomly 
selected from the database of k complete genomes, 
(A,B) is a random variable that depends on which 

of k(k – 1)/2 unordered pairs is chosen. We have 
discriminants d1 and d2, possibly involving 
different compositional features, and cor-
responding error rates 1 and 2 are computed for 
each pair of species. To claim that d2 is preferable 
to d1, it will be sufficient to show that 1 > 2 for a 
clear preponderance of pairs, and statistical 
significance can be assessed with reference to a 
binomial model. But if (A,B) is essentially 
determined by the evolutionary distance (A,B) 
then we expect the relation between  and  to 
show a clear decreasing trend. Taking (A,B) 
1000 *(G,H), we obtain a scatter plot in which the 
decreasing trend is evident. A monotonic 
transformation of the error rate captures this trend 
as the slope of a regression line that intersects the 
origin. Thus the resolving power of the 
discriminant is expressed as a single number—the 
(negative) slope of the regression line—which is 
expected to approach a fixed limit as the number 
of pair-wise comparisons increases.  

3. RESULTS
The baseline classifier takes (q) as its feature 
vectors and uses delta-distances d0(q,G) *(q,G)
and d0(q,H) for discrimination. For pair-wise 
comparisons among seven selected bacterial 
species, a subset of those considered in [7], the 
CERs are plotted against the corresponding values 
of . This scatter plot of  versus  (not shown) 
has a clear decreasing trend but is apparently 
nonlinear. Since  estimates a probability, the 
logistic transformation y( ) = log(1/  – 1) is the 
canonical link for linearizing the data. Note that y

is the logarithm of the odds ratio (1 )  and that 
y(1/2) = 0. The transformed scatter plot of Figure 1 
shows y versus using the base 10 logarithm, and 
the trend is reasonably described by the simple 
linear regression line or least squares fit. The line 
is forced through the origin because we must have 
 = ½ if G = H. The estimated slope of the 

regression line (x1000) is 10.4  0.4 and the 
simple correlation coefficient is –0.986.  

Figure 1. Scatter plot of transformed CER versus 
for 21 pair-wise inter-genomic comparisons using 
(d0) the delta-distance discriminant. 

     The CERs 2 and 1 achieved by the new 
discriminants are now compared to the baseline 
results. For the quadratic discriminant, they mostly 
fall below the baseline; and we find that 2 < 0 in 
19/21 cases (p < 10 ), where the p-value of 
success rate x/21 is the probability of x or more 
successes in 21 binomial trials. For the linear 
discriminant, the results compare unfavorably with 
the baseline CERs, as 1 < 0 in 4/21 cases (p > 
0.99). Finally, since 2 < 1 in 21/21 cases (p = 0), 
these results imply that d2 is substantially better 
than d0 which is better than d1.
     In order to compare discriminants objectively, 
and reduce performance to a single number, the 
CERs are transformed by the logit link and plotted 
against evolutionary distances in Figure 2. 
Handling the baseline CERs this way produced a 
least squares fit in Figure 1 which is now copied as 
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a dashed line onto Figure 2. The CERs produced 
by the new discriminants are fitted by regression 
lines that straddle the baseline. Their respective 
slopes (x1000) are (for d1) 9.3 + 0.3 and (for d2)

12.5 + 0.5, which imply the same rank ordering 
as the binomial p-values.  

Figure 2. Scatter plots of transformed CERs versus 
using linear (open circles) and quadratic (solid 

triangles) discriminants. Baseline data fit the 
dashed regression line. 

     When the experiment was repeated for a 
different set of seven species, the estimated slope 
parameters were all within 1.5 standard deviations 
of the stated results. After pooling all 42 data 
points, the final estimate in each case fell within 
one standard deviation. 

4. DISCUSSION 

It has been theorized that higher order genomic 
signatures are inherently more species-specific 
than lower order signatures and hence that 
tetranucleotide frequencies, computed without 
reference to a reading frame, convey more 
information than codon usage. The species-
specificity of the tetranucleotide signature has 
been claimed "even in DNA fragments as short as 
1 kb [8]." Yet other investigators found that it 
"works quite well for sequences in the range of 40 
kb" but "is certainly not suited for the analysis of 
single-read end-sequences, which are usually 

shorter than 1 kb [6]." Such apparently divergent 
claims may be reconciled by understanding that 
discrimination accuracy increases with both 
fragment length and evolutionary distance.     
     Although this point is generally understood, 
and previous analyses have stratified the problem 
accordingly, our new method formalizes and 
quantifies the dependence more explicitly. In this 
way it yields consistent performance estimates 
based on a small fraction of the pair-wise 
comparisons that can be selected from the growing 
public database and avoids the tendency to 
summarize results in terms of averages that fail to 
generalize from one experiment to another. 
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